WO2021179145A1 - Vapor retarder with improved mechanical properties - Google Patents

Vapor retarder with improved mechanical properties Download PDF

Info

Publication number
WO2021179145A1
WO2021179145A1 PCT/CN2020/078481 CN2020078481W WO2021179145A1 WO 2021179145 A1 WO2021179145 A1 WO 2021179145A1 CN 2020078481 W CN2020078481 W CN 2020078481W WO 2021179145 A1 WO2021179145 A1 WO 2021179145A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sealing device
polymeric layer
adhesive
polymeric
Prior art date
Application number
PCT/CN2020/078481
Other languages
French (fr)
Inventor
Lanwei WANG
Qin WEI
Original Assignee
Sika Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Technology Ag filed Critical Sika Technology Ag
Priority to PCT/CN2020/078481 priority Critical patent/WO2021179145A1/en
Priority to CN202080097803.7A priority patent/CN115279584A/en
Publication of WO2021179145A1 publication Critical patent/WO2021179145A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B13/06Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/12Coating on the layer surface on paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes

Definitions

  • the invention relates to the field of waterproofing of above ground building constructions by using water impermeable multilayer sealing devices.
  • the invention relates to vapor retarders, which applied over roof substrates, such as concrete, metal, plywood or timber board, or an orientated strand fiber board deck.
  • Vapor retarders are commonly used in the field of construction to control the movement of water through the building structure by vapor diffusion. Vapor retarders are provided with different water vapor permeance properties or permeability, which is typically measured as a moisture vapor transmission rate (g/m 2 per day) or as rate of transfer of water vapor through a material (US or SI perms) . Vapor retarding materials are generally categorized as 1) impermeable ( ⁇ 1 US perm) , 2) semi-permeable (1-10 US perm) , or 3) permeable (> 10 US perm) . Vapor retarders of class 1) are generally defined as “vapor barriers” .
  • Vapor retarders are commonly provided as coatings or multilayer composites composed of several thin films or as structural vapor retarders.
  • Commonly used materials in vapor retarders provided as multilayer composites include, for example, elastomeric, metallic, bitumen, and plastic films.
  • plastic films such as polyethylene and polypropylene films provide flexibility to a vapor retarder but their mechanical performance, especially tear resistance is very low. Consequently, these types of materials have a general disadvantage of having low resistance against mechanical impacts caused, for example, by people walking on the vapor retarder during the construction phase of a building.
  • Aluminum films, which are typically used in composites with plastic films have low permeability and high plasticity but they also have very low tear resistance, which prevents their use in roofing applications without additional supporting layers.
  • Published Chinese patent application CN 109914714 A discloses a membrane comprising a composite of a bitumen layer, an aluminum film, a plastic layer, a reinforcement layer, a foam layer, an adhesive layer, and release liner.
  • a published Chinese utility model application CN 202016237 U discloses a membrane based on multilayer structure comprising a first plastic film, a reinforcement layer, and a second plastic film, wherein the plastic film can be metallization treated or not treated.
  • the reinforcement layer is composed of a polypropylene or polyethylene woven fabric.
  • the vapor retarders disclosed in the two prior art documents are both used on a roofing system to protect a building from the damage of water vapor.
  • the membrane as disclosed in CN 109914714 A can only be produced using a complicated production process, the total thickness of the membrane is high, and cost of raw materials is also high.
  • the membrane as disclosed in CN 202016237 U has no self-adhering properties, which complicates its installation onto the surface of a roof substrate.
  • the object of the present invention is to provide a sealing device having improved mechanical properties for use as a vapor retarder.
  • Another object of the present invention is to provide a sealing device, which can be used for providing roof structures with vapor retarding properties.
  • the subject of the present invention is a sealing device as defined in claim 1.
  • a multilayer sealing device comprising first and second polymeric layers, a reinforcing layer based on a woven fabric, and a metallic layer can be used for providing vapor retarders with improved mechanical properties. Consequently, such sealing devices can solve or at least mitigate the problems of the State-of-the-Art vapor retarders.
  • the sealing device of the present invention is that in addition to the improved mechanical properties, the sealing devices also exhibit high vapor retarding properties. Furthermore, the improvements in mechanical properties and the other advantageous features can be achieved without significant increase in production and raw material costs since the thickness of individual layers of the sealing device is relatively small.
  • Fig. 1 shows a cross-section of a sealing device (1) comprising a first polymeric layer (2) , a reinforcing layer (3) , a metallic layer of (4) , and a second polymeric layer (5) .
  • Fig. 2 shows a cross-section of a sealing device (1) comprising a first polymeric layer (2) , a reinforcing layer (3) , a metallic layer of (4) , and a second polymeric layer (5) , an adhesive layer (6) , and a release liner (7) .
  • Fig. 3 shows a cross-section of a roof structure comprising a roof substrate (8) , a sealing device (1) , and an insulation board (9) , wherein the sealing device (1) is arranged between the roof substrate (8) and the insulation board (9) .
  • a sealing device (1) comprising
  • the reinforcing layer (3) comprises a woven fabric.
  • poly designate substances which formally contain, per molecule, two or more of the functional groups occurring in their names.
  • a polyol refers to a compound having at least two hydroxyl groups.
  • a polyether refers to a compound having at least two ether groups.
  • molecular weight designates the molar mass (g/mol) of a molecule or a part of a molecule, also referred to as “moiety” .
  • average molecular weight refers to number average molecular weight (M n ) of an oligomeric or polymeric mixture of molecules or moieties.
  • M n number average molecular weight
  • the molecular weight may be determined by conventional methods, preferably by gel permeation-chromatography (GPC) using polystyrene as standard, styrene-divinylbenzene gel with porosity of 100 Angstrom, 1000 Angstrom and 10000 Angstrom as the column and tetrahydrofurane as a solvent, at 35°C.
  • softening point or “softening temperature” designates a temperature at which compound softens in a rubber-like state, or a temperature at which the crystalline portion within the compound melts.
  • the softening point can be measured by a Ring and Ball method as defined in DIN EN 1238 standard.
  • melting temperature designates a temperature at which a material undergoes transition from the solid to the liquid state.
  • the melting temperature (T m ) is preferably determined by differential scanning calorimetry (DSC) according to ISO 11357-3 standard using a heating rate of 2 °C/min.
  • DSC differential scanning calorimetry
  • the measurements can be performed with a Mettler Toledo DSC 3+ device and the T m values can be determined from the measured DSC-curve with the help of the DSC-software. In case the measured DSC-curve shows several peak temperatures, the first peak temperature coming from the lower temperature side in the thermogram is taken as the melting temperature (T m ) .
  • glass transition temperature designates the temperature above which temperature a polymer component becomes soft and pliable, and below which it becomes hard and glassy.
  • the glass transition temperature is preferably determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G” ) curve using an applied frequency of 1 Hz and a strain level of 0.1 %.
  • the “amount or content of at least one component X” in a composition refers to the sum of the individual amounts of all thermoplastic polymers contained in the composition. Furthermore, in case the composition comprises 20 wt. -%of at least one thermoplastic polymer, the sum of the amounts of all thermoplastic polymers contained in the composition equals 20 wt. -%.
  • room temperature designates a temperature of 23 °C.
  • layer refers in the present disclosure to a sheet-like element having first and second major surfaces, i.e. top and bottom surfaces, and a thickness defined there between, wherein the sheet-like element preferably has a length and width at least 15 times, preferably at least 25 times, more preferably at least 50 times greater than the thickness of the element.
  • the sealing device can be provided in form of a narrow strip having a width, for example, in the range of 10 –500 mm, such as 50 –350 mm, in particular 75 –250 mm.
  • the sealing device can also be provided in form of a broad sheet having a width of, for example, in the range of 0.5 –5 m, such as 0.75 –3.5 m, in particular 1 –2.5 m.
  • the sealing devices of the present invention are typically provided in a form of prefabricated articles, which are delivered to the construction site in form of rolls, which are then unwounded to provide sheets having length of several times the width.
  • the sealing device is a vapor retarder or a vapor control layer, preferably having a width in the range of 0.5 –5 m, more preferably 0.75 –3.5 m, even more preferably 1 –2.5 m, still more preferably 1 –2 m.
  • polymeric layer refers in the present disclosure to a layer comprising a continuous phase composed of one or more polymers.
  • polymer refers to a collective of chemically uniform macromolecules produced by a polyreaction (polymerization, polyaddition, polycondensation) where the macromolecules differ with respect to their degree of polymerization, molecular weight and chain length.
  • the term also comprises derivatives of said collective of macromolecules resulting from polyreactions, that is, compounds which are obtained by reactions such as, for example, additions or substitutions, of functional groups in predetermined macromolecules and which may be chemically uniform or chemically non-uniform.
  • the sealing device of the present invention comprises a reinforcing layer comprising a woven fabric.
  • woven fabric refers in the present disclosure to a fabric or web comprising at least two sets of fibers or yarns/threads, commonly referred to as a warp and a weft, which are interlaid in a regular, identifiable manner, wherein one set of fibers or yarns/threads is interwoven with the other set of fibers or yarns/threads to form an angle between the sets of fibers or yarns/threads. It may be preferred that in a woven fabric, the weft is interwoven with the warp to form an angle of about 90°therewith.
  • the term "woven fabric” encompasses fabrics containing one or more warps, one or more wefts, and any interwoven angle formed between a given warp and a given weft.
  • the woven fabric comprises as the main fiber component synthetic organic fibers and/or inorganic fibers, more preferably synthetic organic fibers.
  • the expression “as the main fiber component” is understood to mean that the respective fibers comprise at least 55 wt. -%, preferably at least 75 wt. -%, more preferably at least 95 wt. -%, even more preferably at least 99 wt. -%of the fibers contained in the woven fabric.
  • Suitable synthetic organic fibers to be used in the woven fabric include, for example, polyester, homopolymers and copolymers of ethylene and/or propylene, viscose, nylon, polyamides, and aramid.
  • Suitable inorganic fibers to be used in the woven fabric include, for example, metal and mineral fibers, such as glass fibers, wollastonite fibers, and carbon fibers. Inorganic fibers, which have been surface treated, for example, with silanes, may also be suitable.
  • the non-woven fabric comprises as the main fiber component synthetic organic fibers, preferably selected from the group consisting of polyethylene, polypropylene, nylon, polyamide, and aramid fibers, more preferably from the group consisting of polyethylene, polypropylene, nylon, and aramid fibers, even more preferably from the group consisting of low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, and polypropylene, still more preferably from the group consisting of medium-density polyethylene, high-density polyethylene, and polypropylene, most preferably from the group consisting of medium-density polyethylene and high-density polyethylene.
  • synthetic organic fibers preferably selected from the group consisting of polyethylene, polypropylene, nylon, polyamide, and aramid fibers, more preferably from the group consisting of polyethylene, polypropylene, nylon, and aramid fibers, even more preferably from the group consisting of low-density poly
  • the woven fabric has a mass per unit weight of not more than 350 g/m 2 , preferably not more than 250 g/m 2 , more preferably not more than 150 g/m 2 . According one or more embodiments, the woven fabric has a mass per unit weight of 15 –300 g/m 2 , preferably 25 –200 g/m 2 , more preferably 35 –150 g/m 2 , even more preferably 45 –100 g/m 2 .
  • the mass per unit area of a woven fabric can be determined by measuring the mass of test piece of the woven fabric having a given area and dividing the measured mass by the area of the test piece. Preferably, the mass per unit area of a woven fabric is determined by using the method as defined in ISO 9073-18: 2007 standard.
  • the reinforcing layer is composed of the non-woven fabric.
  • the first polymeric layer and the reinforcing layer are directly or indirectly connected to each other over at least a portion of their opposing major surfaces and/or the metallic layer and the second polymeric layer are directly or indirectly connected to each other over at least a portion of their opposing major surfaces.
  • the expression “directly connected” is understood to mean in the context of the present disclosure that no further layer or substance is present between the two layers and that the opposing surfaces of the two layers are directly bonded to each other or adhere to each other. At the transition area between the two layers, the materials forming the layers can also be present mixed with each other.
  • the expression “indirectly connected” is understood to mean in the context of the present disclosure that the layers are connected to each other via a connecting layer, such an adhesive layer.
  • the first polymeric layer and the reinforcing layer are directly connected to each other over at least a portion of their opposing major surfaces and/or the metallic layer and the second polymeric layer are directly connected to each other over at least a portion of their opposing major surfaces.
  • the first major surface of the first polymeric layer forms one of the primary exterior surfaces of the sealing device.
  • the term “primary exterior surface of the sealing device” refers in the present disclosure to the outermost surfaces of the sealing device.
  • the sealing device further comprises an adhesive layer located on the outward facing side of the second polymeric layer opposite to the side of the metallic layer or located on the outward facing side of the first polymeric layer opposite to the side of the reinforcing layer.
  • the sealing device further comprises a first adhesive layer located on the outward facing side of the second polymeric layer opposite to the side of the metallic layer and a second adhesive layer located on the outward facing side of the first polymeric layer opposite to the side of the reinforcing layer.
  • the adhesive layer can be present on the second major surface of the second polymeric layer and/or on the first major surface of the first polymeric layer in form of a continuous or a discontinuous adhesive layer.
  • continuous adhesive layer refers in the present disclosure to layers consisting of one single area coated with an adhesive composition whereas the term “discontinuous adhesive layer” refers to layers consisting of two or more areas coated with an adhesive composition, which areas are not connected to each other to form a continuous layer.
  • the adhesive layer is a continuous adhesive layer.
  • the adhesive layer covers at least 50 %, more preferably at least 75 %, even more preferably at least 85 %, still more preferably at least 95 wt.-%of the area of the second major surface of the second polymeric layer and/or of the first major surface of the first polymeric layer.
  • the adhesive layer covers essentially the whole area of the second major surface of the second polymeric layer and/or of the first major surface of the first polymeric layer, such as at least 97.5 %, preferably at least 99 %of the area of the second major surface of the second polymeric layer and/or of the first major surface of the first polymeric layer.
  • the adhesive layer is a pressure sensitive adhesive (PSA) .
  • PSA pressure sensitive adhesive
  • pressure sensitive adhesive refers in the present disclosure to viscoelastic materials, which adhere immediately to almost any kind of substrates by application of light pressure and which are permanently tacky.
  • pressure sensitive adhesive is considered to encompass also hot-melt pressure sensitive adhesives (HM-PSA) , which are applied as a melt.
  • Suitable pressure sensitive adhesives to be used as the adhesive layer include adhesive compositions based on acrylic polymers, styrene block copolymers, amorphous polyolefins (APO) , amorphous poly-alpha-olefins (APAO) , vinyl ether polymers, bitumen, and elastomers such as, for example, styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, butyl rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubber, acrylic rubber, ethylene vinyl acetate rubber, and silicone rubber.
  • SBR styrene-butadiene rubber
  • EPDM ethylene propylene diene monomer
  • EPR ethylene-propylene rubber
  • nitrile rubber acrylic rubber, ethylene vinyl acetate rubber, and silicone rubber
  • suitable pressure sensitive adhesive compositions typically comprise one or more additional components including, for example, tackifying resins, waxes, and plasticizers as well as additives, for example, UV-light absorption agents, UV-and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
  • additional components including, for example, tackifying resins, waxes, and plasticizers as well as additives, for example, UV-light absorption agents, UV-and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
  • the adhesive layer is a pressure sensitive adhesive composition comprising:
  • the polymer component comprises at least one styrene block copolymer.
  • Suitable styrene block copolymers include block copolymers of the SXS type, in each of which S denotes a non-elastomer styrene (or polystyrene) block and X denotes an elastomeric ⁇ -olefin block, which may be polybutadiene, polyisoprene, polyisoprene-polybutadiene, completely or partially hydrogenated polyisoprene (poly ethylene-propylene) , completely or partially hydrogenated polybutadiene (poly ethylene-butylene) .
  • the elastomeric ⁇ -olefin block preferably has a glass transition temperature in the range from -55°C to -35°C.
  • the elastomeric ⁇ -olefin block may also be a chemically modified ⁇ -olefin block.
  • Particularly suitable chemically modified ⁇ -olefin blocks include, for example, maleic acid-grafted ⁇ -olefin blocks and particularly maleic acid-grafted ethylene-butylene blocks.
  • the polymer component comprises at least one styrene block copolymer selected from the group consisting of styrene-isoprene-styrene (SIS) block copolymer, styrene-butadiene-styrene (SBS) block copolymer, styrene-isoprene-butadiene-styrene block copolymer (SIBS) , styrene-ethylene-butadiene-styrene (SEBS) block copolymer, and styrene-ethylene-propylene-styrene (SEPS) block copolymer.
  • SIS styrene-isoprene-styrene
  • SIBS styrene-butadiene-styrene
  • SIBS styrene-isoprene-butadiene-styrene block copolymer
  • SEBS s
  • Suitable styrene block copolymers can have a linear, radial, or star structure, the linear structure being preferred.
  • Styrene block copolymers of the SXS-type having saturated and unsaturated middle blocks are suitable as well as hydrogenated styrene block copolymers.
  • the polymer component comprises at least one elastomer.
  • elastomer refers to any polymer or a blend of polymers, which can recover from large deformations. Typical elastomers are capable of being elongated or deformed to at least 200 %of their original dimension under an externally applied force, and will substantially resume the original dimensions, sustaining only small permanent set (typically no more than about 20 %) , after the external force is released. As used herein, the term “elastomer” may be used interchangeably with the term “rubber. ” In particular, the term “elastomer” refers to elastomers that are not chemically crosslinked. The term “chemically crosslinked” is understood to mean that the polymer chains forming the elastomer are inter-connected by a plurality of covalent bonds, which are mechanically and thermally stable.
  • the polymer component comprises at least one elastomer selected from the group consisting of styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, butyl rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubber, acrylic rubber, and ethylene vinyl acetate rubber.
  • SBR styrene-butadiene rubber
  • EPDM ethylene propylene diene monomer
  • EPR ethylene-propylene rubber
  • nitrile rubber acrylic rubber
  • acrylic rubber ethylene vinyl acetate rubber
  • the polymer component comprises 5 –60 wt. -%, preferably 10 –55 wt. -%, more preferably 15 –55 wt. -%, even more preferably 20 –50 wt. -%of the total weight of the pressure sensitive adhesive composition.
  • tackifying resin designates in the present disclosure resins that in general enhance the adhesion and/or tackiness of an adhesive composition.
  • tackiness designates in the present disclosure the property of a substance of being sticky or adhesive by simple contact. The tackiness can be measured, for example, as a loop tack.
  • Preferred tackifying resins are tackifying at a temperature of 25 °C.
  • the at least one tackifying resin comprises 10 –75 wt. -%, preferably 15 –70 wt. -%, more preferably 20 –65 wt.-%, even more preferably 25 –60 wt. -%of the total weight of the pressure sensitive adhesive composition.
  • Suitable tackifying resins to be used in the pressure sensitive adhesive composition include natural resins, synthetic resins and chemically modified natural resins.
  • Suitable natural resins and chemically modified natural resins include rosins, rosin esters, phenolic modified rosin esters, and terpene resins.
  • rosin is to be understood to include gum rosin, wood rosin, tall oil rosin, distilled rosin, and modified rosins, for example dimerized, hydrogenated, maleated and/or polymerized versions of any of these rosins.
  • Suitable terpene resins include copolymers and terpolymers of natural terpenes, such as styrene/terpene and alpha methyl styrene/terpene resins; polyterpene resins generally resulting from the polymerization of terpene hydrocarbons, such as the bicyclic monoterpene known as pinene, in the presence of Friedel-Crafts catalysts at moderately low temperatures; hydrogenated polyterpene resins; and phenolic modified terpene resins including hydrogenated derivatives thereof.
  • natural terpenes such as styrene/terpene and alpha methyl styrene/terpene resins
  • polyterpene resins generally resulting from the polymerization of terpene hydrocarbons, such as the bicyclic monoterpene known as pinene, in the presence of Friedel-Crafts catalysts at moderately low temperatures
  • hydrogenated polyterpene resins and phenolic modified
  • synthetic resin refers to compounds obtained from the controlled chemical reactions such as polyaddition or polycondensation between well-defined reactants that do not themselves have the characteristic of resins.
  • Monomers that may be polymerized to synthesize the synthetic resins may include aliphatic monomer, cycloaliphatic monomer, aromatic monomer, or mixtures thereof.
  • Aliphatic monomers can include C 4 , C 5 , and C 6 paraffins, olefins, and conjugated diolefins.
  • aliphatic monomer or cycloaliphatic monomer examples include butadiene, isobutylene, 1, 3-pentadiene, 1, 4-pentadiene, cyclopentane, 1-pentene, 2-pentene, 2-methyl-1-pentene, 2-methyl-2-butene, 2-methyl-2-pentene, isoprene, cyclohexane, 1-3-hexadiene, 1-4-hexadiene, cyclopentadiene, dicyclopentadiene, and terpenes.
  • Aromatic monomer can include C 8 , C 9 , and C 10 aromatic monomer. Examples of aromatic monomer include styrene, indene, derivatives of styrene, derivatives of indene, coumarone and combinations thereof.
  • Particularly suitable synthetic resins include synthetic hydrocarbon resins made by polymerizing mixtures of unsaturated monomers that are obtained as by-products of cracking of natural gas liquids, gas oil, or petroleum naphthas. Synthetic hydrocarbon resins obtained from petroleum-based feedstocks are referred in the present disclosure as “hydrocarbon resins” or “petroleum hydrocarbon resins” . These include also pure monomer aromatic resins, which are made by polymerizing aromatic monomer feedstocks that have been purified to eliminate color causing contaminants and to precisely control the composition of the product.
  • Hydrocarbon resins typically have a relatively low average molecular weight (M n ) , such in the range of 250 –5000 g/mol and a glass transition temperature, determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G” ) curve using an applied frequency of 1 Hz and a strain level of 0.1 %, of above 0 °C, preferably equal to or higher than 15 °C, more preferably equal to or higher than 30 °C.
  • M n average molecular weight
  • G measured loss modulus
  • suitable hydrocarbon resins include C5 aliphatic hydrocarbon resins, mixed C5/C9 aliphatic/aromatic hydrocarbon resins, aromatic modified C5 aliphatic hydrocarbon resins, cycloaliphatic hydrocarbon resins, mixed C5 aliphatic/cycloaliphatic hydrocarbon resins, mixed C9 aromatic/cycloaliphatic hydrocarbon resins, mixed C5 aliphatic/cycloaliphatic/C9 aromatic hydrocarbon resins, aromatic modified cycloaliphatic hydrocarbon resins, C9 aromatic hydrocarbon resins, polyterpene resins, and copolymers and terpolymers of natural terpenes as well hydrogenated versions of the aforementioned hydrocarbon resins.
  • the notations "C5" and “C9” indicate that the monomers from which the resins are made are predominantly hydrocarbons having 4-6 and 8-10 carbon atoms, respectively.
  • the term “hydrogenated” includes fully, substantially and at least partially hydrogenated resins. Partially hydrogenated resins may have a hydrogenation level, for example, of 50 %, 70 %, or 90 %.
  • Suitable hydrocarbon resins are commercially available, for example, under the trade name of series, Plus, Extra, and STS (all from Cray Valley) ; under the trade name of 1000 series, 2000 series, and 5000 series (all from Exxon Mobile Chemical) ; under the trade name of T series, TT series, TD series, TL series, TN series, TK series, and TV series (all from Novares GmbH) ; and under the trade name of and (all from Eastman Chemicals) .
  • the at least one tackifying resin has:
  • M n an average molecular weight in the range of 150 –5000 g/mol, preferably 250 –3500 g/mol, more preferably 250 –2500 g/mol and/or
  • T g glass transition temperature determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G” ) curve using an applied frequency of 1 Hz and a strain level of 0.1 %of at or above 0 °C, preferably at or above 15 °C, more preferably at or above 25 °C, even more preferably at or above 30 °C, still more preferably at or above 35 °C.
  • DMA dynamical mechanical analysis
  • the at least one mineral filler comprises 5 –60 wt. -%, preferably 10 –55 wt. -%, more preferably 10 –50 wt.-%, even more preferably 15 –45 wt. -%of the pressure sensitive adhesive composition.
  • Suitable mineral fillers include, for example, sand, granite, calcium carbonate, clay, expanded clay, diatomaceous earth, pumice, mica, kaolin, talc, dolomite, xonotlite, perlite, vermiculite, Wollastonite, barite, magnesium carbonate, calcium hydroxide, calcium aluminates, silica, fumed silica, fused silica, aerogels, glass beads, hollow glass spheres, ceramic spheres, bauxite, comminuted concrete, and zeolites.
  • the at least one mineral filler is preferably present in the pressure sensitive adhesive composition in the form of finely divided particles.
  • finely divided particles refers to particles, whose median particle size d 50 does not exceed 500 ⁇ m, preferably 350 ⁇ m, more preferably 150 ⁇ m.
  • median particle size d 50 refers in the present disclosure to a particle size below which 50 %of all particles by volume are smaller than the d 50 value.
  • the particle size distribution can be determined by sieve analysis according to the method as described in ASTM C136/C136M -2014 standard ( “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates) .
  • the adhesive layer is a bituminous pressure sensitive adhesive.
  • Bituminous pressure sensitive adhesives are well known to a person skilled in the art. These types of adhesives typically comprise bitumen as the main polymer component and various additives, such as, processing oils and fillers. Suitable processing oils to be used in a bituminous pressure sensitive adhesive include, for example, mineral oils and synthetic oils.
  • mineral oil refers to any hydrocarbon liquid of lubricating viscosity (i.e. having a kinematic viscosity at 100°C of 1 cSt or more) derived from petroleum crude oil and subjected to one or more refining and/or hydroprocessing steps, such as fractionation, hydrocracking, dewaxing, isomerization, and hydrofinishing, to purify and chemically modify the components to achieve a final set of properties.
  • Mineral oils can be characterized as either “paraffinic” , “naphthenic” , or “aromatic” based on the relative content of paraffinic, naphthenic, and aromatic moieties therein.
  • the term “mineral” refers in the present disclosure to refined mineral oils, which can be also characterized as Group I-III base oils according the classification of the American Petroleum Institute (API) .
  • synthetic oil refers in the present disclosure to full synthetic (polyalphaolefin) oils, which are also known as Group IV base oils according to the classification of the American Petroleum Institute (API) .
  • Suitable synthetic oils are produced from liquid polyalphaolefins (PAOs) obtained by polymerizing ⁇ -olefins in the presence of a polymerization catalyst, such as a Friedel-Crafts catalyst.
  • PAOs liquid polyalphaolefins
  • liquid PAOs are high purity hydrocarbons with a paraffinic structure and high degree of side-chain branching.
  • Particularly suitable synthetic oils include those obtained from so-called Gas-To-Liquids (GTL) processes.
  • GTL Gas-To-Liquids
  • Bituminous pressure sensitive adhesives can be prepared by melting bitumen and mixing the other constituents into the thus obtained molten bitumen mass.
  • bitumen contained in a bituminous pressure sensitive adhesive is typically modified with one or more polymers in order to improve the mechanical properties of the bitumen component.
  • Typical modifying polymers used in a bituminous pressure sensitive adhesive include, for example, atactic polypropylenes (APP) , amorphous polyolefins (APO) , styrene block copolymers, in particular SIS, SBS, and SEBS block copolymers as well as elastomers, for example, styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubbers, and acrylic rubbers.
  • SBR styrene-butadiene rubber
  • EPDM ethylene propylene diene monomer
  • EPR ethylene-propylene rubber
  • amorphous polyolefin refers to a polyolefin having a degree of crystallinity of less than 10 %, preferably less than 5 %, more preferably less than 3.5 %, measured by differential scanning calorimetry (DSC) conducted according to the method as defined in ISO 11357 standard.
  • Suitable amorphous polyolefins (APO) include, for example, homopolymers of propylene and copolymers of propylene with one or more ⁇ -olefin comonomer, such as, for example, ethylene, 1-butene, 1-hexene, 1-octene and 1-decene.
  • the bituminous pressure sensitive adhesive comprises:
  • the at least one modifying polymer is selected from the group consisting of atactic polypropylenes (APP) , amorphous polyolefins (APO) , styrene block copolymers, styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubbers, and acrylic rubbers.
  • APP atactic polypropylenes
  • APO amorphous polyolefins
  • SBR styrene block copolymers
  • SBR styrene-butadiene rubber
  • EPDM ethylene propylene diene monomer
  • polyisoprene polybutadiene
  • natural rubber polychloroprene rubber
  • EPR ethylene-propylene rubber
  • nitrile rubbers
  • the bituminous pressure sensitive adhesive may further comprise not more than 60 wt. -%, preferably not more than 55 wt. -%, more preferably not more than 45 wt. -%, based on the total weight of the bituminous pressure sensitive adhesive, of at least one mineral filler, preferably selected from the group consisting of silica, calcium carbonate, talc, or clay.
  • the adhesive layer is an acrylic pressure sensitive adhesive.
  • acrylic pressure sensitive adhesive designates in the present disclosure pressure sensitive adhesive compositions containing one or more acrylic polymers as the main polymer component.
  • Suitable acrylic pressure sensitive adhesives include, for example, water-based acrylic dispersion pressure sensitive adhesives, solvent-based acrylic pressure sensitive adhesives, acrylic hot-melt pressure sensitive adhesives, and UV-cured acrylic pressure sensitive adhesives.
  • water-based acrylic dispersion adhesive designates in the present disclosure adhesive compositions comprising one or more acrylic polymers, which have been formulated into aqueous dispersion or aqueous colloidal suspension.
  • water-based dispersion adhesive refers to dispersion adhesives containing water as the main continuous (carrier) phase.
  • solvent-based acrylic adhesive designates in the present disclosure adhesive compositions comprising a solvent and one or more acrylic polymers, which are substantially completely dissolved in the solvent.
  • the solvent comprises at least 20 wt. -%, preferably at least 30 wt. -%, most preferably at least 40 wt. -%, of the total weight of the adhesive composition.
  • Suitable solvents for the solvent-based acrylic adhesive include, for example, alcohols, aliphatic and aromatic hydrocarbons, ketones, esters, and mixtures thereof. It is possible to use only a single solvent or a mixture of two or more solvents.
  • Suitable solvent-based acrylic adhesives are substantially water-free, such as those containing less than 10 wt. -%, preferably less than 5 wt. -%, more preferably less than 1 wt. -%of water, based on the total weight of the adhesive composition.
  • acrylic hot-melt pressure sensitive adhesives refers in the present disclosure to solvent-free acrylic pressure sensitive adhesives, which are applied as a melt.
  • UV-cured acrylic pressure sensitive adhesive refers in the present disclosure to acrylic pressure sensitive adhesives, which are applied as a film and then cured by UV-light.
  • cured refers here to compositions, which have been cured by initiation of chemical curing reactions comprising forming of bonds resulting, for example, in chain extension and/or crosslinking of polymer chains.
  • acrylic polymer designates in the present disclosure homopolymers, copolymers and higher inter-polymers of an acrylic monomer with one or more further acrylic monomers and/or with one or more other ethylenically unsaturated monomers.
  • acrylic monomer refers in the present disclosure to monomers having at least one (meth) acryloyl group in the molecule.
  • (meth) acryloyl designates methacryloyl or acryloyl.
  • (meth) acrylic designates methacrylic or acrylic.
  • a (meth) acryloyl group is also known as (meth) acryl group.
  • acrylic monomers include, for example, (meth) acrylates, (meth) acrylic acid or derivatives thereof, for example, amides of (meth) acrylic acid or nitriles of (meth) acrylic acid, and (meth) acrylates with functional groups such as hydroxyalkyl (meth) acrylates, and hydroxyl group-containing (meth) acrylates.
  • Preferred acrylic polymers to be used in the acrylic pressure sensitive adhesive contain acrylic monomers as the main monomer component, i.e. preferred acrylic polymers contain at least 30 wt. -%, preferably at least 40 wt. -%, more preferably at least 50 wt. -%of acrylic monomers, based on the weight of the acrylic polymer.
  • Particularly suitable acrylic polymers to be used in the acrylic pressure sensitive adhesive contain alkyl (meth) acrylates, preferably (meth) acrylic acid esters of alcohols containing from 1 to 24 carbon atoms, as the main monomer component. There are preferably more than 25 wt. -%, preferably more than 35 wt. -%of these types of acrylic monomers in the acrylic polymer.
  • alkyl (meth) acrylates include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-octyl methacrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, as for example isobutyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isooctyl acrylate, isooctyl methacrylate, and also cyclohexyl methacrylate, isobornyl acrylate, isobornyl methacrylate,
  • Suitable comonomers to be used with the alkyl (meth) acrylates include, for example, hydroxyl-group and hydroxyalkyl-group containing acrylic monomers.
  • suitable hydroxyl-group and hydroxyalkyl-group containing acrylic monomers include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl butyl (meth) acrylate, 2-hydroxy-hexyl (meth) acrylate, 6-hydroxy hexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate.
  • suitable are (4-hydroxymethyl cyclohexyl) methyl acrylate, polypropylene glycol mono (meth) acrylate, N-hydroxyethyl (meth) acrylamide, and N-hydroxypropyl (meth) acrylamide.
  • Hydroxyl-group and hydroxyalkyl-group containing acrylic monomers are preferably used in a range of 0.01 –15 wt. -%, more preferably 0.1 –10 wt. -%, based on the total amount of the monomers used in the synthesis of the acrylic polymer.
  • Suitable comonomers for the acrylic polymers include vinyl compounds, in particular vinyl esters, vinyl halides, vinylidene halides, ethylenically unsaturated hydrocarbons with functional groups, and nitriles of ethylenically unsaturated hydrocarbons.
  • suitable vinyl compounds include, for example, maleic anhydride, styrene, styrenic compounds, beta-acryloyloxypropionic acid, vinylacetic acid, fumaric acid, crotonic acid, aconitic acid, trichloroacrylic acid, itaconic acid, and vinyl acetate
  • the acrylic pressure sensitive adhesive comprises at least 65 wt. -%, preferably at least 75 wt. -%, more preferably at least 85 wt. -%, even more preferably at least 90 wt. -%of at least one acrylic polymer, based on the total weight of the acrylic pressure sensitive adhesive.
  • the at least one acrylic polymer has a glass transition temperature (T g ) , determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G”) curve using an applied frequency of 1 Hz and a strain level of 0.1 %, of below 0 °C, preferably below –20 °C and/or an average molecular weight (M n ) in the range of 50’000 –1’000’000 g/mol, in particular 100’000 –750’000 g/mol, more preferably 150’000 –500’000 g/mol.
  • T g glass transition temperature
  • DMA dynamical mechanical analysis
  • the acrylic pressure sensitive adhesive may comprise one or more additional constituents including, for example, tackifying resins, waxes, and plasticizers as well as one or more additives such as, for example, UV-light absorption agents, UV-and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
  • additional constituents including, for example, tackifying resins, waxes, and plasticizers as well as one or more additives such as, for example, UV-light absorption agents, UV-and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
  • the amount of such additional constituents and additives is not more than 25 wt. -%, more preferably not more than 15 wt. -%, even more preferably not more than 10 wt. -%, based on the total weight of the acrylic pressure sensitive adhesive.
  • the adhesive layer has a has a coating weight in the range of 25 –200 g/m 2 , preferably 35 –175 g/m 2 , more preferably 45 –150 g/m 2 , even more preferably 50 –125 g/m 2 , still more preferably 50 –100 g/m 2 .
  • the sealing device has a peel resistance measured at an angle of 90° from a aluminum plate, determined by using the method as defined in EN 12316-2: 2013 standard, of at least 15 N/50 mm, more preferably at least 35 N/50 mm, even more preferably at least 45 N/50 mm, still more preferably at least 65 N/50 mm.
  • the sealing device further comprises a release liner arranged on the outward facing side of the adhesive layer opposite to the side of the second polymeric layer.
  • the adhesive layer and the release liner are directly connected to each other over at least portion of their opposing major surfaces.
  • the release liner may be used to prevent premature unwanted adhesion and to protect the adhesive layer from moisture, fouling, and other environmental factors.
  • the sealing device is provided in form of rolls, the release liner enables ease of unwind without sticking of the adhesive to the back side of the sealing device.
  • the release liner may be sliced into multiple sections to allow portioned detachment of the liner from the adhesive layer.
  • Suitable materials for the release liner include Kraft paper, polyethylene coated paper, silicone coated paper as well as polymeric films, for example, polyethylene, polypropylene, and polyester films coated with polymeric release agents selected from silicone, silicone urea, urethanes, waxes, and long chain alkyl acrylate release agents.
  • the first polymeric layer comprises at least 50 wt. -%, preferably at least 75 wt. -%, based on the total weight of the first polymeric layer, of at least one first thermoplastic polymer P1 and/or the second polymeric layer comprises at least 50 wt. -%, preferably at least 75 wt.-%, based on the total weight of the second polymeric layer, of at least one second thermoplastic polymer P2.
  • thermoplastic polymers P1 and P2 are not particularly restricted.
  • Various types of thermoplastic polymers including crystalline, semi-crystalline, and amorphous polymers and thermoplastic elastomers are suitable.
  • Suitable thermoplastic polymers include, in particular, polyolefin homopolymers and copolymers, copolymers of ethylene with vinyl acetate, and thermoplastic olefin elastomers (TPE-O) .
  • the at least one first thermoplastic polymer P1 and the at least one second thermoplastic polymer P2 have
  • T m -melting temperature determined by differential scanning calorimetry (DSC) according to ISO 11357-3 standard using a heating rate of 2 °C/min of at least 65 °C, preferably at least 75 °C, more preferably at least 85 °C, even more preferably at least 95 °C and/or
  • -a softening point determined by a Ring and Ball method as defined in DIN EN 1238 standard of at least 35 °C, preferably at least 45 °C, more preferably at least 55 °C, even more preferably at least 60 °C.
  • the at least one first thermoplastic polymer P1 is selected from the group consisting of polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, propylene- ⁇ -olefin copolymers, polystyrene, polyamides, and polyesters, more preferably from the group consisting of polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, propylene- ⁇ -olefin copolymers, and polyesters and/or the at least one second thermoplastic polymer P2 is selected from the group consisting of polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, propylene- ⁇ -olefin copolymers, polystyrene, polyamides, and polyesters, more preferably from the group consisting of polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers, propylene- ⁇ -olefin copolymers, and polyesters.
  • the at least one first thermoplastic polymer P1 is polyethylene, preferably selected from the group consisting of low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene and/or the at least one second thermoplastic polymer P2 is polyethylene terephthalate.
  • the at least one first thermoplastic polymer P1 is polyethylene terephthalate and/or the at least one second thermoplastic polymer P2 is polyethylene, preferably selected from the group consisting of low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene.
  • the first and second polymeric films may further contain one or more auxiliary components, such as, UV-and heat stabilizers, antioxidants, plasticizers, flame retardants, fillers, dyes, pigments, matting agents, antistatic agents, impact modifiers, biocides, and processing aids such as lubricants, slip agents, antiblock agents, and denest aids.
  • auxiliary components such as, UV-and heat stabilizers, antioxidants, plasticizers, flame retardants, fillers, dyes, pigments, matting agents, antistatic agents, impact modifiers, biocides, and processing aids such as lubricants, slip agents, antiblock agents, and denest aids.
  • the total amount of these auxiliary components is preferably not more than 35 wt.-%, more preferably not more than 25 wt. -%, most preferably not more than 15 wt. -%, based on the total weight of the respective polymeric layer.
  • the sealing device further comprises a metallic layer.
  • the metallic layer is a metallized plastic film or a metal film, preferably an aluminum or aluminum alloy film, more preferably an aluminum film.
  • the first polymeric layer has a thickness in the range of 5 –150 ⁇ m, preferably 10 –100 ⁇ m, more preferably 15 –75 ⁇ m, even more preferably 25 –50 ⁇ m and/or
  • the reinforcing layer has a thickness in the range of 25 –200 ⁇ m, preferably 50 –150 ⁇ m, more preferably 75 –135 ⁇ m, even more preferably 85 –125 ⁇ m and/or
  • the metallic layer has a thickness in the range of 1 –50 ⁇ m, preferably 2.5 –35 ⁇ m, more preferably 2.5 –25 ⁇ m, even more preferably 3.5 –15 ⁇ m and/or
  • the second polymeric layer (5) has a thickness in the range of 2.5 –100 ⁇ m, preferably 5 –50 ⁇ m, more preferably 7.5 –35 ⁇ m, even more preferably 10 –25 ⁇ m.
  • the sealing device has a total thickness of not more than 750 ⁇ m, more preferably not more than 500 ⁇ m, even more preferably not more than 350 ⁇ m, still more preferably not more than 250 ⁇ m.
  • the sealing device has a total thickness in the range of 50 –350 ⁇ m, preferably 75 –300 ⁇ m, more preferably 100 –250 ⁇ m, even more preferably 125 –200 ⁇ m.
  • the thickness of the layers i) to iv) and the total thickness of the sealing device can be determined by using the measurement method as defined in DIN EN 1849-2 standard.
  • Another subject of the present invention is a method for producing a sealing device according to the present invention, the method comprising forming the layers i) to iv) and coupling them to each other.
  • the coupling of the layers can be conducting using any conventional techniques known to a person skilled in the art, such as heat-melting, thermo-laminating, and adhesive lamination.
  • thermo-lamination refers in the present disclosure to a process in which the respective layers are bonded to each other by the application of heat and pressure and without using an adhesive, such that the layers remain adhered to each other when the pressure is removed whereas the term “adhesive lamination” refers to a process in which the respective layers are adhered to each other using adhesive bonding.
  • the details of the method for producing the sealing device depend on the embodiment of the sealing device.
  • the method for producing the sealing device comprises steps of:
  • the layers ii) to iv) are coupled to each other by adhesive lamination.
  • the method for producing the sealing device comprises a further step of:
  • the adhesive layer may be applied to the second major surface of the second polymeric layer by using any conventional techniques such as slot die coating, extrusion coating, roller coating, direct gravure coating, offset gravure coating, reverse gravure roll coating, powder dispersion, or spray lamination techniques.
  • step IV. of the method preferably comprises heating the adhesive composition to an elevated temperature and applying the adhesive layer as a melt onto the second major surface of the second polymeric layer.
  • the method for producing the sealing device preferably comprises a step IV. ) of applying an UV curable acrylic pressure sensitive adhesive as a film onto the second major surface of the second polymeric layer and a further step of subjecting film to UV-radiation to effect curing of the adhesive.
  • Another subject of the present invention is a method for damp proofing a substrate, the method comprising steps of:
  • the substrate is a roof substrate, preferably selected from the group consisting of concrete, metal, plywood or timber board, or an orientated strand fiber board deck.
  • the substrate is a metal roof deck, such as a steel roof deck.
  • Another subject of the present invention is a roof structure comprising:
  • the roof substrate may be any conventional roof substrate known to a person skilled in the art, such as, concrete, metal, plywood or timber board, or an orientated strand fiber board deck.
  • the roof substrate is a metal roof deck, such as a steel roof deck.
  • Suitable insulation boards to be used in the roof structure include, for example, foamed insulation boards, such as expanded polystyrene (EPS) , extruded expanded polystyrene (XPS) , and polyisocyanurate (PIR) boards.
  • foamed insulation boards such as expanded polystyrene (EPS) , extruded expanded polystyrene (XPS) , and polyisocyanurate (PIR) boards.
  • the roof structure further comprises a roofing or waterproofing membrane located on the outward facing side of the insulation board opposite to the side of the sealing device.
  • the roofing or waterproofing membrane can be attached to the insulation board using any conventional means known to a person skilled in the art, such as by means of an adhesive and/or mechanical fastening.
  • Suitable roofing and waterproofing membranes include single-and multi-ply membranes.
  • the term “single-ply membrane” designates in the present disclosure membranes comprising exactly one waterproofing layer whereas the term “multi-ply membrane” designates membranes comprising two or more waterproofing layers.
  • the waterproofing layers of a multi-ply membrane may have similar or different compositions.
  • Commonly used materials for roofing and waterproofing membranes include plastics, in particular thermoplastics such as plasticized polyvinylchloride (p-PVC) , thermoplastic olefins (TPE-O, TPO) , copolymers of ethylene and vinyl acetate, and elastomers such as ethylene-propylene diene monomer (EPDM) .
  • Single-and multi-ply roofing and waterproofing membranes are known to a person skilled in the art and they may be produced by any conventional means, such as by way of extrusion or co-extrusion, calendaring, or hot-pressing.
  • Still another subject of the present invention is use of the sealing device of the present invention as a vapor retarder or as a vapor control layer.
  • the use as a vapor retarder or vapor control layer comprises applying the sealing device to a surface of a substrate to control the movement of water through a building structure by vapor diffusion.
  • PE polyethylene
  • HDPE high-density polyethylene
  • PET polyethylene terephthalate
  • the exemplary sealing device was prepared by compositing the HDPE woven fabric, the aluminum layer, and the PET layer to each other using an adhesive followed by spraying a melted composition of the PE layer on the top surface of the HDPE woven fabric.
  • a hot-melt pressure sensitive adhesive composition based on styrene-isoprene-styrene (SIS) and styrene-butadiene-styrene (SBS) block copolymers was coated on the bottom surface of the PET layer with a coating thickness of ca. 100 ⁇ m.
  • the thus obtained self-adhering sealing device was bonded to an aluminum plate and peel resistances at 90° and 180° angles were measured.
  • PE polyethylene layer

Abstract

The invention is directed to a sealing device (1) comprising a first polymeric layer (2), a reinforcing layer (3), a metallic layer (4), and a second polymeric layer (5), said reinforcing layer (3) comprising a woven fabric. The invention is also related to a method for producing a sealing device, to a roof structure comprising a roof substrate (8), an insulation board (9), and a sealing device (1) arranged between the roof substrate (8) and the insulation board (9), and to use of the sealing device as a vapor retarder or as a vapor control layer.

Description

Vapor retarder with improved mechanical properties Technical field
The invention relates to the field of waterproofing of above ground building constructions by using water impermeable multilayer sealing devices. In particular, the invention relates to vapor retarders, which applied over roof substrates, such as concrete, metal, plywood or timber board, or an orientated strand fiber board deck.
Background of the invention
Vapor retarders are commonly used in the field of construction to control the movement of water through the building structure by vapor diffusion. Vapor retarders are provided with different water vapor permeance properties or permeability, which is typically measured as a moisture vapor transmission rate (g/m 2 per day) or as rate of transfer of water vapor through a material (US or SI perms) . Vapor retarding materials are generally categorized as 1) impermeable (≤ 1 US perm) , 2) semi-permeable (1-10 US perm) , or 3) permeable (> 10 US perm) . Vapor retarders of class 1) are generally defined as “vapor barriers” .
Vapor retarders are commonly provided as coatings or multilayer composites composed of several thin films or as structural vapor retarders. Commonly used materials in vapor retarders provided as multilayer composites include, for example, elastomeric, metallic, bitumen, and plastic films. Each of the listed materials have some advantages and disadvantages when used alone as a vapor retarder. For example, plastic films such as polyethylene and polypropylene films provide flexibility to a vapor retarder but their mechanical performance, especially tear resistance is very low. Consequently, these types of materials have a general disadvantage of having low resistance against  mechanical impacts caused, for example, by people walking on the vapor retarder during the construction phase of a building. Aluminum films, which are typically used in composites with plastic films, have low permeability and high plasticity but they also have very low tear resistance, which prevents their use in roofing applications without additional supporting layers.
Published Chinese patent application CN 109914714 A discloses a membrane comprising a composite of a bitumen layer, an aluminum film, a plastic layer, a reinforcement layer, a foam layer, an adhesive layer, and release liner. Furthermore, a published Chinese utility model application CN 202016237 U discloses a membrane based on multilayer structure comprising a first plastic film, a reinforcement layer, and a second plastic film, wherein the plastic film can be metallization treated or not treated. The reinforcement layer is composed of a polypropylene or polyethylene woven fabric. The vapor retarders disclosed in the two prior art documents are both used on a roofing system to protect a building from the damage of water vapor. Despite of being generally suitable for use as vapor retarders, the discussed solutions have some critical disadvantages. The membrane as disclosed in CN 109914714 A can only be produced using a complicated production process, the total thickness of the membrane is high, and cost of raw materials is also high. The membrane as disclosed in CN 202016237 U has no self-adhering properties, which complicates its installation onto the surface of a roof substrate.
There thus remains a need for a novel type of vapor retarder having improved mechanical properties, in particular in terms of tear resistance, tensile strength, and flexibility, which vapor retarder can furthermore be produced with reduced costs compared to State-of-the-Art vapor retarders.
Summary of the invention
The object of the present invention is to provide a sealing device having improved mechanical properties for use as a vapor retarder.
Another object of the present invention is to provide a sealing device, which can be used for providing roof structures with vapor retarding properties.
The subject of the present invention is a sealing device as defined in claim 1.
It was surprisingly found out that a multilayer sealing device comprising first and second polymeric layers, a reinforcing layer based on a woven fabric, and a metallic layer can be used for providing vapor retarders with improved mechanical properties. Consequently, such sealing devices can solve or at least mitigate the problems of the State-of-the-Art vapor retarders.
One of the advantages of the sealing device of the present invention is that in addition to the improved mechanical properties, the sealing devices also exhibit high vapor retarding properties. Furthermore, the improvements in mechanical properties and the other advantageous features can be achieved without significant increase in production and raw material costs since the thickness of individual layers of the sealing device is relatively small.
Other aspects of the present invention are presented in other independent claims. Preferred aspects of the invention are presented in the dependent claims.
Brief description of the Drawings
Fig. 1 shows a cross-section of a sealing device (1) comprising a first polymeric layer (2) , a reinforcing layer (3) , a metallic layer of (4) , and a second polymeric layer (5) .
Fig. 2 shows a cross-section of a sealing device (1) comprising a first polymeric layer (2) , a reinforcing layer (3) , a metallic layer of (4) , and a second polymeric layer (5) , an adhesive layer (6) , and a release liner (7) .
Fig. 3 shows a cross-section of a roof structure comprising a roof substrate (8) , a sealing device (1) , and an insulation board (9) , wherein the sealing device (1) is arranged between the roof substrate (8) and the insulation board (9) .
The proportion of thicknesses of the layers in Figures 1 to 3 is not true to scale. In particular, the ratio of the thickness of the insulation board (8) to the thickness of the other layers is in reality far higher than that shown in Figure 3.
Detailed description of the invention
The subject of the present invention a sealing device (1) comprising
i) A first polymeric layer (2) ,
ii) A reinforcing layer (3) ,
iii) A metallic layer (4) ,
iv) A second polymeric layer (5) ,
wherein the reinforcing layer (3) comprises a woven fabric.
Substance names beginning with "poly" designate substances which formally contain, per molecule, two or more of the functional groups occurring in their names. For instance, a polyol refers to a compound having at least two hydroxyl groups. A polyether refers to a compound having at least two ether groups.
The term “molecular weight” designates the molar mass (g/mol) of a molecule or a part of a molecule, also referred to as “moiety” . The term “average molecular weight” refers to number average molecular weight (M n) of an oligomeric or polymeric mixture of molecules or moieties. The molecular weight may be determined by conventional methods, preferably by gel permeation-chromatography (GPC) using polystyrene as standard, styrene-divinylbenzene  gel with porosity of 100 Angstrom, 1000 Angstrom and 10000 Angstrom as the column and tetrahydrofurane as a solvent, at 35℃.
The term “softening point” or “softening temperature” designates a temperature at which compound softens in a rubber-like state, or a temperature at which the crystalline portion within the compound melts. The softening point can be measured by a Ring and Ball method as defined in DIN EN 1238 standard.
The term “melting temperature” designates a temperature at which a material undergoes transition from the solid to the liquid state. The melting temperature (T m) is preferably determined by differential scanning calorimetry (DSC) according to ISO 11357-3 standard using a heating rate of 2 ℃/min. The measurements can be performed with a Mettler Toledo DSC 3+ device and the T m values can be determined from the measured DSC-curve with the help of the DSC-software. In case the measured DSC-curve shows several peak temperatures, the first peak temperature coming from the lower temperature side in the thermogram is taken as the melting temperature (T m) .
The term “glass transition temperature” (T g) designates the temperature above which temperature a polymer component becomes soft and pliable, and below which it becomes hard and glassy. The glass transition temperature is preferably determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G” ) curve using an applied frequency of 1 Hz and a strain level of 0.1 %.
The “amount or content of at least one component X” in a composition, for example “the amount of the at least one thermoplastic polymer” refers to the sum of the individual amounts of all thermoplastic polymers contained in the composition. Furthermore, in case the composition comprises 20 wt. -%of at least one thermoplastic polymer, the sum of the amounts of all thermoplastic polymers contained in the composition equals 20 wt. -%.
The term “room temperature” designates a temperature of 23 ℃.
The term “layer” refers in the present disclosure to a sheet-like element having first and second major surfaces, i.e. top and bottom surfaces, and a thickness defined there between, wherein the sheet-like element preferably has a length and width at least 15 times, preferably at least 25 times, more preferably at least 50 times greater than the thickness of the element.
There are no strict limitations for the width and length of the sealing device, and these depend on the intended use of the sealing device. For example, the sealing device can be provided in form of a narrow strip having a width, for example, in the range of 10 –500 mm, such as 50 –350 mm, in particular 75 –250 mm. The sealing device can also be provided in form of a broad sheet having a width of, for example, in the range of 0.5 –5 m, such as 0.75 –3.5 m, in particular 1 –2.5 m. The sealing devices of the present invention are typically provided in a form of prefabricated articles, which are delivered to the construction site in form of rolls, which are then unwounded to provide sheets having length of several times the width.
According to one or more embodiment, the sealing device is a vapor retarder or a vapor control layer, preferably having a width in the range of 0.5 –5 m, more preferably 0.75 –3.5 m, even more preferably 1 –2.5 m, still more preferably 1 –2 m.
The term “polymeric layer” refers in the present disclosure to a layer comprising a continuous phase composed of one or more polymers. The term “polymer” refers to a collective of chemically uniform macromolecules produced by a polyreaction (polymerization, polyaddition, polycondensation) where the macromolecules differ with respect to their degree of polymerization, molecular weight and chain length. The term also comprises derivatives of said collective of macromolecules resulting from polyreactions, that is, compounds which are obtained by reactions such as, for example, additions or substitutions, of functional groups in predetermined macromolecules and which may be chemically uniform or chemically non-uniform.
The sealing device of the present invention comprises a reinforcing layer comprising a woven fabric. The term “woven fabric” refers in the present disclosure to a fabric or web comprising at least two sets of fibers or yarns/threads, commonly referred to as a warp and a weft, which are interlaid in a regular, identifiable manner, wherein one set of fibers or yarns/threads is interwoven with the other set of fibers or yarns/threads to form an angle between the sets of fibers or yarns/threads. It may be preferred that in a woven fabric, the weft is interwoven with the warp to form an angle of about 90°therewith. However, as used in the present disclosure, the term "woven fabric" encompasses fabrics containing one or more warps, one or more wefts, and any interwoven angle formed between a given warp and a given weft.
The type of fibers of the non-woven fabric is not particularly restricted. Preferably, the woven fabric comprises as the main fiber component synthetic organic fibers and/or inorganic fibers, more preferably synthetic organic fibers. The expression “as the main fiber component” is understood to mean that the respective fibers comprise at least 55 wt. -%, preferably at least 75 wt. -%, more preferably at least 95 wt. -%, even more preferably at least 99 wt. -%of the fibers contained in the woven fabric.
Suitable synthetic organic fibers to be used in the woven fabric include, for example, polyester, homopolymers and copolymers of ethylene and/or propylene, viscose, nylon, polyamides, and aramid. Suitable inorganic fibers to be used in the woven fabric include, for example, metal and mineral fibers, such as glass fibers, wollastonite fibers, and carbon fibers. Inorganic fibers, which have been surface treated, for example, with silanes, may also be suitable.
According to one or more embodiments, the non-woven fabric comprises as the main fiber component synthetic organic fibers, preferably selected from the group consisting of polyethylene, polypropylene, nylon, polyamide, and aramid fibers, more preferably from the group consisting of polyethylene, polypropylene, nylon, and aramid fibers, even more preferably from the group  consisting of low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, and polypropylene, still more preferably from the group consisting of medium-density polyethylene, high-density polyethylene, and polypropylene, most preferably from the group consisting of medium-density polyethylene and high-density polyethylene.
According to one or more embodiments, the woven fabric has a mass per unit weight of not more than 350 g/m 2, preferably not more than 250 g/m 2, more preferably not more than 150 g/m 2. According one or more embodiments, the woven fabric has a mass per unit weight of 15 –300 g/m 2, preferably 25 –200 g/m 2, more preferably 35 –150 g/m 2, even more preferably 45 –100 g/m 2. The mass per unit area of a woven fabric can be determined by measuring the mass of test piece of the woven fabric having a given area and dividing the measured mass by the area of the test piece. Preferably, the mass per unit area of a woven fabric is determined by using the method as defined in ISO 9073-18: 2007 standard.
According to one or more embodiments, the reinforcing layer is composed of the non-woven fabric.
According to one or more embodiments, the first polymeric layer and the reinforcing layer are directly or indirectly connected to each other over at least a portion of their opposing major surfaces and/or the metallic layer and the second polymeric layer are directly or indirectly connected to each other over at least a portion of their opposing major surfaces.
The expression “directly connected” is understood to mean in the context of the present disclosure that no further layer or substance is present between the two layers and that the opposing surfaces of the two layers are directly bonded to each other or adhere to each other. At the transition area between the two layers, the materials forming the layers can also be present mixed with each other. The expression “indirectly connected” is understood to mean in the  context of the present disclosure that the layers are connected to each other via a connecting layer, such an adhesive layer.
According to one or more preferred embodiments, the first polymeric layer and the reinforcing layer are directly connected to each other over at least a portion of their opposing major surfaces and/or the metallic layer and the second polymeric layer are directly connected to each other over at least a portion of their opposing major surfaces.
According to one or more embodiments, the first major surface of the first polymeric layer forms one of the primary exterior surfaces of the sealing device. The term “primary exterior surface of the sealing device” refers in the present disclosure to the outermost surfaces of the sealing device.
According to one or more embodiments, the sealing device further comprises an adhesive layer located on the outward facing side of the second polymeric layer opposite to the side of the metallic layer or located on the outward facing side of the first polymeric layer opposite to the side of the reinforcing layer. According to one or more further embodiments, the sealing device further comprises a first adhesive layer located on the outward facing side of the second polymeric layer opposite to the side of the metallic layer and a second adhesive layer located on the outward facing side of the first polymeric layer opposite to the side of the reinforcing layer.
The adhesive layer can be present on the second major surface of the second polymeric layer and/or on the first major surface of the first polymeric layer in form of a continuous or a discontinuous adhesive layer. The term “continuous adhesive layer” refers in the present disclosure to layers consisting of one single area coated with an adhesive composition whereas the term “discontinuous adhesive layer” refers to layers consisting of two or more areas coated with an adhesive composition, which areas are not connected to each other to form a continuous layer. According to one or more embodiments, the adhesive layer is a continuous adhesive layer.
Preferably, the adhesive layer covers at least 50 %, more preferably at least 75 %, even more preferably at least 85 %, still more preferably at least 95 wt.-%of the area of the second major surface of the second polymeric layer and/or of the first major surface of the first polymeric layer. According to one more embodiments, the adhesive layer covers essentially the whole area of the second major surface of the second polymeric layer and/or of the first major surface of the first polymeric layer, such as at least 97.5 %, preferably at least 99 %of the area of the second major surface of the second polymeric layer and/or of the first major surface of the first polymeric layer.
Preferably, the adhesive layer is a pressure sensitive adhesive (PSA) . The term “pressure sensitive adhesive” refers in the present disclosure to viscoelastic materials, which adhere immediately to almost any kind of substrates by application of light pressure and which are permanently tacky. The term “pressure sensitive adhesive” is considered to encompass also hot-melt pressure sensitive adhesives (HM-PSA) , which are applied as a melt.
Suitable pressure sensitive adhesives to be used as the adhesive layer include adhesive compositions based on acrylic polymers, styrene block copolymers, amorphous polyolefins (APO) , amorphous poly-alpha-olefins (APAO) , vinyl ether polymers, bitumen, and elastomers such as, for example, styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, butyl rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubber, acrylic rubber, ethylene vinyl acetate rubber, and silicone rubber. In addition to the above-mentioned polymers, suitable pressure sensitive adhesive compositions typically comprise one or more additional components including, for example, tackifying resins, waxes, and plasticizers as well as additives, for example, UV-light absorption agents, UV-and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
According to one or more embodiments, the adhesive layer is a pressure sensitive adhesive composition comprising:
A) 5 –65 wt. -%of a polymer component,
B) 10 –80 wt. -%of at least one tackifying resin,
C) 0 –60 wt. -%of at least one mineral filler,
D) 0 –30 wt. -%of at least one plasticizer, all proportions being based on the total weight of the pressure sensitive adhesive composition.
According to one or more embodiments, the polymer component comprises at least one styrene block copolymer.
Suitable styrene block copolymers include block copolymers of the SXS type, in each of which S denotes a non-elastomer styrene (or polystyrene) block and X denotes an elastomeric α-olefin block, which may be polybutadiene, polyisoprene, polyisoprene-polybutadiene, completely or partially hydrogenated polyisoprene (poly ethylene-propylene) , completely or partially hydrogenated polybutadiene (poly ethylene-butylene) . The elastomeric α-olefin block preferably has a glass transition temperature in the range from -55℃ to -35℃. The elastomeric α-olefin block may also be a chemically modified α-olefin block. Particularly suitable chemically modified α-olefin blocks include, for example, maleic acid-grafted α-olefin blocks and particularly maleic acid-grafted ethylene-butylene blocks.
According to one or more embodiments, the polymer component comprises at least one styrene block copolymer selected from the group consisting of styrene-isoprene-styrene (SIS) block copolymer, styrene-butadiene-styrene (SBS) block copolymer, styrene-isoprene-butadiene-styrene block copolymer (SIBS) , styrene-ethylene-butadiene-styrene (SEBS) block copolymer, and styrene-ethylene-propylene-styrene (SEPS) block copolymer. Suitable styrene block copolymers can have a linear, radial, or star structure, the linear structure being preferred. Styrene block copolymers of the SXS-type having saturated  and unsaturated middle blocks are suitable as well as hydrogenated styrene block copolymers.
According to one or more further embodiments, the polymer component comprises at least one elastomer.
The term “elastomer” refers to any polymer or a blend of polymers, which can recover from large deformations. Typical elastomers are capable of being elongated or deformed to at least 200 %of their original dimension under an externally applied force, and will substantially resume the original dimensions, sustaining only small permanent set (typically no more than about 20 %) , after the external force is released. As used herein, the term “elastomer” may be used interchangeably with the term “rubber. ” In particular, the term “elastomer” refers to elastomers that are not chemically crosslinked. The term “chemically crosslinked” is understood to mean that the polymer chains forming the elastomer are inter-connected by a plurality of covalent bonds, which are mechanically and thermally stable.
According to one or more embodiments, the polymer component comprises at least one elastomer selected from the group consisting of styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, butyl rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubber, acrylic rubber, and ethylene vinyl acetate rubber.
According to one or more embodiments, the polymer component comprises 5 –60 wt. -%, preferably 10 –55 wt. -%, more preferably 15 –55 wt. -%, even more preferably 20 –50 wt. -%of the total weight of the pressure sensitive adhesive composition.
The term “tackifying resin” designates in the present disclosure resins that in general enhance the adhesion and/or tackiness of an adhesive composition. The term “tackiness” designates in the present disclosure the property of a  substance of being sticky or adhesive by simple contact. The tackiness can be measured, for example, as a loop tack. Preferred tackifying resins are tackifying at a temperature of 25 ℃.
According to one or more embodiments, the at least one tackifying resin comprises 10 –75 wt. -%, preferably 15 –70 wt. -%, more preferably 20 –65 wt.-%, even more preferably 25 –60 wt. -%of the total weight of the pressure sensitive adhesive composition.
Examples of suitable tackifying resins to be used in the pressure sensitive adhesive composition include natural resins, synthetic resins and chemically modified natural resins.
Examples of suitable natural resins and chemically modified natural resins include rosins, rosin esters, phenolic modified rosin esters, and terpene resins. The term “rosin” is to be understood to include gum rosin, wood rosin, tall oil rosin, distilled rosin, and modified rosins, for example dimerized, hydrogenated, maleated and/or polymerized versions of any of these rosins.
Suitable terpene resins include copolymers and terpolymers of natural terpenes, such as styrene/terpene and alpha methyl styrene/terpene resins; polyterpene resins generally resulting from the polymerization of terpene hydrocarbons, such as the bicyclic monoterpene known as pinene, in the presence of Friedel-Crafts catalysts at moderately low temperatures; hydrogenated polyterpene resins; and phenolic modified terpene resins including hydrogenated derivatives thereof.
The term “synthetic resin” refers to compounds obtained from the controlled chemical reactions such as polyaddition or polycondensation between well-defined reactants that do not themselves have the characteristic of resins. Monomers that may be polymerized to synthesize the synthetic resins may include aliphatic monomer, cycloaliphatic monomer, aromatic monomer, or mixtures thereof. Aliphatic monomers can include C 4, C 5, and C 6 paraffins,  olefins, and conjugated diolefins. Examples of aliphatic monomer or cycloaliphatic monomer include butadiene, isobutylene, 1, 3-pentadiene, 1, 4-pentadiene, cyclopentane, 1-pentene, 2-pentene, 2-methyl-1-pentene, 2-methyl-2-butene, 2-methyl-2-pentene, isoprene, cyclohexane, 1-3-hexadiene, 1-4-hexadiene, cyclopentadiene, dicyclopentadiene, and terpenes. Aromatic monomer can include C 8, C 9, and C 10 aromatic monomer. Examples of aromatic monomer include styrene, indene, derivatives of styrene, derivatives of indene, coumarone and combinations thereof.
Particularly suitable synthetic resins include synthetic hydrocarbon resins made by polymerizing mixtures of unsaturated monomers that are obtained as by-products of cracking of natural gas liquids, gas oil, or petroleum naphthas. Synthetic hydrocarbon resins obtained from petroleum-based feedstocks are referred in the present disclosure as “hydrocarbon resins” or “petroleum hydrocarbon resins” . These include also pure monomer aromatic resins, which are made by polymerizing aromatic monomer feedstocks that have been purified to eliminate color causing contaminants and to precisely control the composition of the product. Hydrocarbon resins typically have a relatively low average molecular weight (M n) , such in the range of 250 –5000 g/mol and a glass transition temperature, determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G” ) curve using an applied frequency of 1 Hz and a strain level of 0.1 %, of above 0 ℃, preferably equal to or higher than 15 ℃, more preferably equal to or higher than 30 ℃.
Examples of suitable hydrocarbon resins include C5 aliphatic hydrocarbon resins, mixed C5/C9 aliphatic/aromatic hydrocarbon resins, aromatic modified C5 aliphatic hydrocarbon resins, cycloaliphatic hydrocarbon resins, mixed C5 aliphatic/cycloaliphatic hydrocarbon resins, mixed C9 aromatic/cycloaliphatic hydrocarbon resins, mixed C5 aliphatic/cycloaliphatic/C9 aromatic hydrocarbon resins, aromatic modified cycloaliphatic hydrocarbon resins, C9 aromatic hydrocarbon resins, polyterpene resins, and copolymers and terpolymers of natural terpenes as well hydrogenated versions of the aforementioned hydrocarbon resins. The notations "C5" and "C9" indicate that the monomers  from which the resins are made are predominantly hydrocarbons having 4-6 and 8-10 carbon atoms, respectively. The term “hydrogenated” includes fully, substantially and at least partially hydrogenated resins. Partially hydrogenated resins may have a hydrogenation level, for example, of 50 %, 70 %, or 90 %.
Suitable hydrocarbon resins are commercially available, for example, under the trade name of
Figure PCTCN2020078481-appb-000001
series, 
Figure PCTCN2020078481-appb-000002
Plus, 
Figure PCTCN2020078481-appb-000003
Extra, and 
Figure PCTCN2020078481-appb-000004
STS (all from Cray Valley) ; under the trade name of
Figure PCTCN2020078481-appb-000005
1000 series, 
Figure PCTCN2020078481-appb-000006
2000 series, and
Figure PCTCN2020078481-appb-000007
5000 series (all from Exxon Mobile Chemical) ; under the trade name of
Figure PCTCN2020078481-appb-000008
T series, 
Figure PCTCN2020078481-appb-000009
TT series, 
Figure PCTCN2020078481-appb-000010
TD series, 
Figure PCTCN2020078481-appb-000011
TL series, 
Figure PCTCN2020078481-appb-000012
TN series, 
Figure PCTCN2020078481-appb-000013
TK series, and
Figure PCTCN2020078481-appb-000014
TV series (all from
Figure PCTCN2020078481-appb-000015
Novares GmbH) ; and under the trade name of
Figure PCTCN2020078481-appb-000016
Figure PCTCN2020078481-appb-000017
and
Figure PCTCN2020078481-appb-000018
 (all from Eastman Chemicals) .
According to one or more embodiments, the at least one tackifying resin has:
-a softening point measured by a Ring and Ball method according to DIN EN 1238 standard in the range of 65 –185 ℃, preferably 75 –175 ℃, more preferably 80 –170 ℃ and/or
-an average molecular weight (M n) in the range of 150 –5000 g/mol, preferably 250 –3500 g/mol, more preferably 250 –2500 g/mol and/or
- a glass transition temperature (T g) determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G” ) curve using an applied frequency of 1 Hz and a strain level of 0.1 %of at or above 0 ℃, preferably at or above 15 ℃, more preferably at or above 25 ℃, even more preferably at or above 30 ℃, still more preferably at or above 35 ℃.
According to one or more embodiments, the at least one mineral filler comprises 5 –60 wt. -%, preferably 10 –55 wt. -%, more preferably 10 –50 wt.-%, even more preferably 15 –45 wt. -%of the pressure sensitive adhesive composition.
Suitable mineral fillers include, for example, sand, granite, calcium carbonate, clay, expanded clay, diatomaceous earth, pumice, mica, kaolin, talc, dolomite, xonotlite, perlite, vermiculite, Wollastonite, barite, magnesium carbonate, calcium hydroxide, calcium aluminates, silica, fumed silica, fused silica, aerogels, glass beads, hollow glass spheres, ceramic spheres, bauxite, comminuted concrete, and zeolites.
The at least one mineral filler is preferably present in the pressure sensitive adhesive composition in the form of finely divided particles. The term “finely divided particles” refers to particles, whose median particle size d 50 does not exceed 500 μm, preferably 350 μm, more preferably 150 μm. The term “median particle size d 50 “refers in the present disclosure to a particle size below which 50 %of all particles by volume are smaller than the d 50 value. The particle size distribution can be determined by sieve analysis according to the method as described in ASTM C136/C136M -2014 standard ( “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates) .
According to one or more further embodiments, the adhesive layer is a bituminous pressure sensitive adhesive. Bituminous pressure sensitive adhesives are well known to a person skilled in the art. These types of adhesives typically comprise bitumen as the main polymer component and various additives, such as, processing oils and fillers. Suitable processing oils to be used in a bituminous pressure sensitive adhesive include, for example, mineral oils and synthetic oils.
The term “mineral oil” refers to any hydrocarbon liquid of lubricating viscosity (i.e. having a kinematic viscosity at 100℃ of 1 cSt or more) derived from petroleum crude oil and subjected to one or more refining and/or hydroprocessing steps, such as fractionation, hydrocracking, dewaxing, isomerization, and hydrofinishing, to purify and chemically modify the components to achieve a final set of properties. Mineral oils can be characterized as either "paraffinic" , "naphthenic" , or "aromatic" based on the relative content of paraffinic, naphthenic, and aromatic moieties therein. In  particular, the term “mineral” refers in the present disclosure to refined mineral oils, which can be also characterized as Group I-III base oils according the classification of the American Petroleum Institute (API) .
The term "synthetic oil” refers in the present disclosure to full synthetic (polyalphaolefin) oils, which are also known as Group IV base oils according to the classification of the American Petroleum Institute (API) . Suitable synthetic oils are produced from liquid polyalphaolefins (PAOs) obtained by polymerizing α-olefins in the presence of a polymerization catalyst, such as a Friedel-Crafts catalyst. In general, liquid PAOs are high purity hydrocarbons with a paraffinic structure and high degree of side-chain branching. Particularly suitable synthetic oils include those obtained from so-called Gas-To-Liquids (GTL) processes.
Bituminous pressure sensitive adhesives can be prepared by melting bitumen and mixing the other constituents into the thus obtained molten bitumen mass.
The bitumen contained in a bituminous pressure sensitive adhesive is typically modified with one or more polymers in order to improve the mechanical properties of the bitumen component. Typical modifying polymers used in a bituminous pressure sensitive adhesive include, for example, atactic polypropylenes (APP) , amorphous polyolefins (APO) , styrene block copolymers, in particular SIS, SBS, and SEBS block copolymers as well as elastomers, for example, styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubbers, and acrylic rubbers.
The term “amorphous polyolefin” refers to a polyolefin having a degree of crystallinity of less than 10 %, preferably less than 5 %, more preferably less than 3.5 %, measured by differential scanning calorimetry (DSC) conducted according to the method as defined in ISO 11357 standard. Suitable amorphous polyolefins (APO) include, for example, homopolymers of  propylene and copolymers of propylene with one or more α-olefin comonomer, such as, for example, ethylene, 1-butene, 1-hexene, 1-octene and 1-decene.
According to one or more embodiments, the bituminous pressure sensitive adhesive comprises:
a) 15 –95 wt. -%, preferably 25 –90 wt. -%, more preferably 35 –85 wt. -%of bitumen,
b) 5 –35 wt. -%, preferably 10 –30 wt. -%, more preferably 10 –25 wt. -%of at least one modifying polymer, and
c) 0 –40 wt. -%, preferably 0 –35 wt. -%of at least one processing oil, preferably at least one mineral oil, all proportions being based on the total weight of the bituminous pressure sensitive adhesive.
According to one or more embodiment, the at least one modifying polymer is selected from the group consisting of atactic polypropylenes (APP) , amorphous polyolefins (APO) , styrene block copolymers, styrene-butadiene rubber (SBR) , ethylene propylene diene monomer (EPDM) rubber, polyisoprene, polybutadiene, natural rubber, polychloroprene rubber, ethylene-propylene rubber (EPR) , nitrile rubbers, and acrylic rubbers.
The bituminous pressure sensitive adhesive may further comprise not more than 60 wt. -%, preferably not more than 55 wt. -%, more preferably not more than 45 wt. -%, based on the total weight of the bituminous pressure sensitive adhesive, of at least one mineral filler, preferably selected from the group consisting of silica, calcium carbonate, talc, or clay.
According to one or more embodiments, the adhesive layer is an acrylic pressure sensitive adhesive. The term “acrylic pressure sensitive adhesive” designates in the present disclosure pressure sensitive adhesive compositions containing one or more acrylic polymers as the main polymer component.
Suitable acrylic pressure sensitive adhesives include, for example, water-based acrylic dispersion pressure sensitive adhesives, solvent-based acrylic pressure sensitive adhesives, acrylic hot-melt pressure sensitive adhesives, and UV-cured acrylic pressure sensitive adhesives.
The term “water-based acrylic dispersion adhesive” designates in the present disclosure adhesive compositions comprising one or more acrylic polymers, which have been formulated into aqueous dispersion or aqueous colloidal suspension. The term “water-based dispersion adhesive” refers to dispersion adhesives containing water as the main continuous (carrier) phase.
The term “solvent-based acrylic adhesive” designates in the present disclosure adhesive compositions comprising a solvent and one or more acrylic polymers, which are substantially completely dissolved in the solvent. Typically, the solvent comprises at least 20 wt. -%, preferably at least 30 wt. -%, most preferably at least 40 wt. -%, of the total weight of the adhesive composition. Suitable solvents for the solvent-based acrylic adhesive include, for example, alcohols, aliphatic and aromatic hydrocarbons, ketones, esters, and mixtures thereof. It is possible to use only a single solvent or a mixture of two or more solvents. Suitable solvent-based acrylic adhesives are substantially water-free, such as those containing less than 10 wt. -%, preferably less than 5 wt. -%, more preferably less than 1 wt. -%of water, based on the total weight of the adhesive composition.
The term “acrylic hot-melt pressure sensitive adhesives” refers in the present disclosure to solvent-free acrylic pressure sensitive adhesives, which are applied as a melt. The term “UV-cured acrylic pressure sensitive adhesive” refers in the present disclosure to acrylic pressure sensitive adhesives, which are applied as a film and then cured by UV-light. The term “cured” refers here to compositions, which have been cured by initiation of chemical curing reactions comprising forming of bonds resulting, for example, in chain extension and/or crosslinking of polymer chains.
The term "acrylic polymer" designates in the present disclosure homopolymers, copolymers and higher inter-polymers of an acrylic monomer with one or more further acrylic monomers and/or with one or more other ethylenically unsaturated monomers. The term “acrylic monomer” refers in the present disclosure to monomers having at least one (meth) acryloyl group in the molecule. The term “ (meth) acryloyl” designates methacryloyl or acryloyl. Accordingly, “ (meth) acrylic” designates methacrylic or acrylic. A (meth) acryloyl group is also known as (meth) acryl group.
Examples of suitable acrylic monomers include, for example, (meth) acrylates, (meth) acrylic acid or derivatives thereof, for example, amides of (meth) acrylic acid or nitriles of (meth) acrylic acid, and (meth) acrylates with functional groups such as hydroxyalkyl (meth) acrylates, and hydroxyl group-containing (meth) acrylates.
Preferred acrylic polymers to be used in the acrylic pressure sensitive adhesive contain acrylic monomers as the main monomer component, i.e. preferred acrylic polymers contain at least 30 wt. -%, preferably at least 40 wt. -%, more preferably at least 50 wt. -%of acrylic monomers, based on the weight of the acrylic polymer.
Particularly suitable acrylic polymers to be used in the acrylic pressure sensitive adhesive contain alkyl (meth) acrylates, preferably (meth) acrylic acid esters of alcohols containing from 1 to 24 carbon atoms, as the main monomer component. There are preferably more than 25 wt. -%, preferably more than 35 wt. -%of these types of acrylic monomers in the acrylic polymer. Examples of particularly suitable alkyl (meth) acrylates include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-octyl methacrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, as for example isobutyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isooctyl acrylate, isooctyl  methacrylate, and also cyclohexyl methacrylate, isobornyl acrylate, isobornyl methacrylate or 3, 5-dimethyladamantyl acrylate.
Suitable comonomers to be used with the alkyl (meth) acrylates include, for example, hydroxyl-group and hydroxyalkyl-group containing acrylic monomers. Examples of suitable hydroxyl-group and hydroxyalkyl-group containing acrylic monomers include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl butyl (meth) acrylate, 2-hydroxy-hexyl (meth) acrylate, 6-hydroxy hexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate. Furthermore, suitable are (4-hydroxymethyl cyclohexyl) methyl acrylate, polypropylene glycol mono (meth) acrylate, N-hydroxyethyl (meth) acrylamide, and N-hydroxypropyl (meth) acrylamide. Hydroxyl-group and hydroxyalkyl-group containing acrylic monomers are preferably used in a range of 0.01 –15 wt. -%, more preferably 0.1 –10 wt. -%, based on the total amount of the monomers used in the synthesis of the acrylic polymer.
Other suitable comonomers for the acrylic polymers include vinyl compounds, in particular vinyl esters, vinyl halides, vinylidene halides, ethylenically unsaturated hydrocarbons with functional groups, and nitriles of ethylenically unsaturated hydrocarbons. Examples of suitable vinyl compounds include, for example, maleic anhydride, styrene, styrenic compounds, beta-acryloyloxypropionic acid, vinylacetic acid, fumaric acid, crotonic acid, aconitic acid, trichloroacrylic acid, itaconic acid, and vinyl acetate
According to one or more embodiments, the acrylic pressure sensitive adhesive comprises at least 65 wt. -%, preferably at least 75 wt. -%, more preferably at least 85 wt. -%, even more preferably at least 90 wt. -%of at least one acrylic polymer, based on the total weight of the acrylic pressure sensitive adhesive.
Preferably, the at least one acrylic polymer has a glass transition temperature (T g) , determined by dynamical mechanical analysis (DMA) as the peak of the measured loss modulus (G”) curve using an applied frequency of 1 Hz and a strain level of 0.1 %, of below 0 ℃, preferably below –20 ℃ and/or an average molecular weight (M n) in the range of 50’000 –1’000’000 g/mol, in particular 100’000 –750’000 g/mol, more preferably 150’000 –500’000 g/mol.
In addition to the at least one acrylic polymer, the acrylic pressure sensitive adhesive may comprise one or more additional constituents including, for example, tackifying resins, waxes, and plasticizers as well as one or more additives such as, for example, UV-light absorption agents, UV-and heat stabilizers, optical brighteners, pigments, dyes, and desiccants. Preferably, the amount of such additional constituents and additives is not more than 25 wt. -%, more preferably not more than 15 wt. -%, even more preferably not more than 10 wt. -%, based on the total weight of the acrylic pressure sensitive adhesive.
According to one or more embodiments, the adhesive layer has a has a coating weight in the range of 25 –200 g/m 2, preferably 35 –175 g/m 2, more preferably 45 –150 g/m 2, even more preferably 50 –125 g/m 2, still more preferably 50 –100 g/m 2.
Preferably, the sealing device has a peel resistance measured at an angle of 90° from a aluminum plate, determined by using the method as defined in EN 12316-2: 2013 standard, of at least 15 N/50 mm, more preferably at least 35 N/50 mm, even more preferably at least 45 N/50 mm, still more preferably at least 65 N/50 mm.
According to one or more embodiments, the sealing device further comprises a release liner arranged on the outward facing side of the adhesive layer opposite to the side of the second polymeric layer.
Preferably, the adhesive layer and the release liner are directly connected to each other over at least portion of their opposing major surfaces. The release  liner may be used to prevent premature unwanted adhesion and to protect the adhesive layer from moisture, fouling, and other environmental factors. In case the sealing device is provided in form of rolls, the release liner enables ease of unwind without sticking of the adhesive to the back side of the sealing device. The release liner may be sliced into multiple sections to allow portioned detachment of the liner from the adhesive layer.
Suitable materials for the release liner include Kraft paper, polyethylene coated paper, silicone coated paper as well as polymeric films, for example, polyethylene, polypropylene, and polyester films coated with polymeric release agents selected from silicone, silicone urea, urethanes, waxes, and long chain alkyl acrylate release agents.
According to one or more embodiments, the first polymeric layer comprises at least 50 wt. -%, preferably at least 75 wt. -%, based on the total weight of the first polymeric layer, of at least one first thermoplastic polymer P1 and/or the second polymeric layer comprises at least 50 wt. -%, preferably at least 75 wt.-%, based on the total weight of the second polymeric layer, of at least one second thermoplastic polymer P2.
The type of the at least one first and second thermoplastic polymers P1 and P2 is not particularly restricted. Various types of thermoplastic polymers, including crystalline, semi-crystalline, and amorphous polymers and thermoplastic elastomers are suitable. Suitable thermoplastic polymers include, in particular, polyolefin homopolymers and copolymers, copolymers of ethylene with vinyl acetate, and thermoplastic olefin elastomers (TPE-O) .
According to one or more embodiment, the at least one first thermoplastic polymer P1 and the at least one second thermoplastic polymer P2 have
-melting temperature (T m) determined by differential scanning calorimetry (DSC) according to ISO 11357-3 standard using a heating rate of 2 ℃/min of  at least 65 ℃, preferably at least 75 ℃, more preferably at least 85 ℃, even more preferably at least 95 ℃ and/or
-a softening point determined by a Ring and Ball method as defined in DIN EN 1238 standard of at least 35 ℃, preferably at least 45 ℃, more preferably at least 55 ℃, even more preferably at least 60 ℃.
According to one or more embodiments, the at least one first thermoplastic polymer P1 is selected from the group consisting of polyethylene, polypropylene, ethylene-α-olefin copolymers, propylene-α-olefin copolymers, polystyrene, polyamides, and polyesters, more preferably from the group consisting of polyethylene, polypropylene, ethylene-α-olefin copolymers, propylene-α-olefin copolymers, and polyesters and/or the at least one second thermoplastic polymer P2 is selected from the group consisting of polyethylene, polypropylene, ethylene-α-olefin copolymers, propylene-α-olefin copolymers, polystyrene, polyamides, and polyesters, more preferably from the group consisting of polyethylene, polypropylene, ethylene-α-olefin copolymers, propylene-α-olefin copolymers, and polyesters.
According to one or more embodiments, the at least one first thermoplastic polymer P1 is polyethylene, preferably selected from the group consisting of low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene and/or the at least one second thermoplastic polymer P2 is polyethylene terephthalate.
According to one or more further embodiments, the at least one first thermoplastic polymer P1 is polyethylene terephthalate and/or the at least one second thermoplastic polymer P2 is polyethylene, preferably selected from the group consisting of low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene.
In addition to the at least one first thermoplastic polymer P1 and the at least one second thermoplastic polymer P2, the first and second polymeric films may further contain one or more auxiliary components, such as, UV-and heat  stabilizers, antioxidants, plasticizers, flame retardants, fillers, dyes, pigments, matting agents, antistatic agents, impact modifiers, biocides, and processing aids such as lubricants, slip agents, antiblock agents, and denest aids. The total amount of these auxiliary components is preferably not more than 35 wt.-%, more preferably not more than 25 wt. -%, most preferably not more than 15 wt. -%, based on the total weight of the respective polymeric layer.
The sealing device further comprises a metallic layer. According to one or more embodiments, the metallic layer is a metallized plastic film or a metal film, preferably an aluminum or aluminum alloy film, more preferably an aluminum film.
According to one or more embodiments,
i) The first polymeric layer has a thickness in the range of 5 –150 μm, preferably 10 –100 μm, more preferably 15 –75 μm, even more preferably 25 –50 μm and/or
ii) The reinforcing layer has a thickness in the range of 25 –200 μm, preferably 50 –150 μm, more preferably 75 –135 μm, even more preferably 85 –125 μm and/or
iii) The metallic layer has a thickness in the range of 1 –50 μm, preferably 2.5 –35 μm, more preferably 2.5 –25 μm, even more preferably 3.5 –15 μm and/or
iv) The second polymeric layer (5) has a thickness in the range of 2.5 –100 μm, preferably 5 –50 μm, more preferably 7.5 –35 μm, even more preferably 10 –25 μm.
Preferably, the sealing device has a total thickness of not more than 750 μm, more preferably not more than 500 μm, even more preferably not more than 350 μm, still more preferably not more than 250 μm. According to one or more embodiments, the sealing device has a total thickness in the range of 50 –350 μm, preferably 75 –300 μm, more preferably 100 –250 μm, even more preferably 125 –200 μm.
The thickness of the layers i) to iv) and the total thickness of the sealing device can be determined by using the measurement method as defined in DIN EN 1849-2 standard.
The preferences given above for the first polymeric layer, the reinforcing layer, the metallic layer, the second polymeric layer, the adhesive layer, and to the release liner apply equally to all aspects of the present invention unless otherwise stated.
Another subject of the present invention is a method for producing a sealing device according to the present invention, the method comprising forming the layers i) to iv) and coupling them to each other.
The coupling of the layers can be conducting using any conventional techniques known to a person skilled in the art, such as heat-melting, thermo-laminating, and adhesive lamination. The term “thermo-lamination” refers in the present disclosure to a process in which the respective layers are bonded to each other by the application of heat and pressure and without using an adhesive, such that the layers remain adhered to each other when the pressure is removed whereas the term “adhesive lamination” refers to a process in which the respective layers are adhered to each other using adhesive bonding.
The details of the method for producing the sealing device depend on the embodiment of the sealing device.
According to one or more embodiments, the method for producing the sealing device comprises steps of:
I. ) Providing the reinforcing layer ii) , the metallic layer iii) , and the second polymeric layer iv) and coupling them to each other to obtain a woven fabric composite layer,
II. ) Providing the first polymeric layer i) in form of a melt, and
III. ) Spraying the melt onto the first major surface of the layer reinforcing layer ii) .
According to one or more embodiments, the layers ii) to iv) are coupled to each other by adhesive lamination.
According to one or more embodiments, the method for producing the sealing device comprises a further step of:
IV. ) Applying an adhesive layer onto the second major surface of the second polymeric layer and
V. ) Optionally covering the adhesive layer with a release liner.
The adhesive layer may be applied to the second major surface of the second polymeric layer by using any conventional techniques such as slot die coating, extrusion coating, roller coating, direct gravure coating, offset gravure coating, reverse gravure roll coating, powder dispersion, or spray lamination techniques.
The details of this step of the method depend on the embodiment of the sealing device, in particular on the type of the adhesive layer. For example, in case the adhesive layer is a hot-melt pressure sensitive adhesive, step IV. ) of the method preferably comprises heating the adhesive composition to an elevated temperature and applying the adhesive layer as a melt onto the second major surface of the second polymeric layer. Furthermore, in case the adhesive layer is an UV-cured acrylic pressure sensitive adhesive, the method for producing the sealing device preferably comprises a step IV. ) of applying an UV curable acrylic pressure sensitive adhesive as a film onto the second major surface of the second polymeric layer and a further step of subjecting film to UV-radiation to effect curing of the adhesive.
Another subject of the present invention is a method for damp proofing a substrate, the method comprising steps of:
I) Providing a sealing device to the present invention,
II) Removing the release liner, if present, from the surface of the adhesive layer,
III) Applying the sealing device on a surface of the substrate to be damp proofed such that at least a portion of the outer major surface of the adhesive layer is contacted with the surface of the substrate, and
IV) Pressing sealing device against the surface of the substrate with a pressure sufficient to affect adhesive bonding between the sealing device and the surface of the substrate.
According to one or more embodiments, the substrate is a roof substrate, preferably selected from the group consisting of concrete, metal, plywood or timber board, or an orientated strand fiber board deck. According to one or more embodiments, the substrate is a metal roof deck, such as a steel roof deck.
Another subject of the present invention is a roof structure comprising:
I) A roof substrate,
II) A sealing device according to the present invention, and
III) An insulation board, wherein the sealing device is arranged between the roof substrate and the insulation board.
The roof substrate may be any conventional roof substrate known to a person skilled in the art, such as, concrete, metal, plywood or timber board, or an orientated strand fiber board deck. According to one or more embodiments, the roof substrate is a metal roof deck, such as a steel roof deck.
Suitable insulation boards to be used in the roof structure include, for example, foamed insulation boards, such as expanded polystyrene (EPS) , extruded expanded polystyrene (XPS) , and polyisocyanurate (PIR) boards.
According to one or more embodiments, the roof structure further comprises a roofing or waterproofing membrane located on the outward facing side of the insulation board opposite to the side of the sealing device. The roofing or waterproofing membrane can be attached to the insulation board using any conventional means known to a person skilled in the art, such as by means of an adhesive and/or mechanical fastening.
Suitable roofing and waterproofing membranes include single-and multi-ply membranes. The term “single-ply membrane” designates in the present disclosure membranes comprising exactly one waterproofing layer whereas the term “multi-ply membrane” designates membranes comprising two or more waterproofing layers. The waterproofing layers of a multi-ply membrane may have similar or different compositions. Commonly used materials for roofing and waterproofing membranes include plastics, in particular thermoplastics such as plasticized polyvinylchloride (p-PVC) , thermoplastic olefins (TPE-O, TPO) , copolymers of ethylene and vinyl acetate, and elastomers such as ethylene-propylene diene monomer (EPDM) .
Single-and multi-ply roofing and waterproofing membranes are known to a person skilled in the art and they may be produced by any conventional means, such as by way of extrusion or co-extrusion, calendaring, or hot-pressing.
Still another subject of the present invention is use of the sealing device of the present invention as a vapor retarder or as a vapor control layer. Preferably, the use as a vapor retarder or vapor control layer comprises applying the sealing device to a surface of a substrate to control the movement of water through a building structure by vapor diffusion.
Examples
Tested sealing devices
An exemplary sealing device having following buildup was tested for its mechanical properties:
i) A polyethylene (PE) layer, thickness 35 μm,
ii) A high-density polyethylene (HDPE) woven fabric, thickness 100 μm,
iii) An aluminum layer, thickness 7 μm,
iv) A polyethylene terephthalate (PET) layer, thickness 12 μm.
The exemplary sealing device was prepared by compositing the HDPE woven fabric, the aluminum layer, and the PET layer to each other using an adhesive followed by spraying a melted composition of the PE layer on the top surface of the HDPE woven fabric.
After the mechanical properties were tested, a hot-melt pressure sensitive adhesive composition based on styrene-isoprene-styrene (SIS) and styrene-butadiene-styrene (SBS) block copolymers was coated on the bottom surface of the PET layer with a coating thickness of ca. 100 μm. The thus obtained self-adhering sealing device was bonded to an aluminum plate and peel resistances at 90° and 180° angles were measured.
As a reference example, a commercially available “Alustick” vapor barrier (from Pavag Folien AG) having the following buildup was tested for its mechanical properties.
i') A crosslaminated polyethylene layer (PE) , thickness 75 μm
ii’) An aluminum layer, thickness 60 μm,
iii’) Crosslaminated polypropylene (PP) layer, thickness 20 μm.
The values for tensile strength, elongation at break, and nail shank tear resistance obtained with the exemplary sealing device and reference vapor barrier are presented in Table 1.
Figure PCTCN2020078481-appb-000019

Claims (16)

  1. A sealing device (1) comprising:
    i) A first polymeric layer (2) ,
    ii) A reinforcing layer (3) ,
    iii) A metallic layer (4) ,
    iv) A second polymeric layer (5) ,
    wherein the reinforcing layer (3) comprises a woven fabric.
  2. The sealing device (1) according to claim 1, characterized in that the woven fabric comprises synthetic organic fibers, preferably selected from the group consisting of polyethylene, polypropylene, nylon, and aramid fibers.
  3. The sealing device (1) according to claim 1 or 2, characterized in that the first polymeric layer (2) and the reinforcing layer (3) are directly or indirectly connected to each other over at least a portion of their opposing major surfaces and/or the metallic layer (4) and the second polymeric layer (5) are directly or indirectly connected to each other over at least a portion of their opposing major surfaces.
  4. The sealing device (1) according to any one of previous claims, characterized in further comprising an adhesive layer (6) located on the outward facing side of the second polymeric layer (5) opposite to the side of the metallic layer (4) and/or located on the outward facing side of the first polymeric layer (2) opposite to the side of the reinforcing layer (3) .
  5. The sealing device (1) according to claim 4, characterized in that the adhesive layer (6) is a pressure sensitive adhesive, preferably a hot-melt pressure sensitive adhesive.
  6. The sealing device according to claim 4 or 5, characterized in that the adhesive layer (6) has a coating weight in the range of 25 –200 g/m 2, preferably 45 –150 g/m 2.
  7. The sealing device according to any one of claims 4-6, characterized in further comprising a release liner (7) arranged on the outward facing side of the adhesive layer (6) opposite to the side of the second polymeric layer (5) .
  8. The sealing device (1) according to any one of previous claims, characterized in that the first polymeric layer (2) comprises at least 50 wt.-%, preferably at least 75 wt.-%, based on the total weight of the first polymeric layer (5) , of at least one first thermoplastic polymer P1, preferably selected from the group consisting of polyethylene, polypropylene, ethylene-α-olefin copolymers, propylene-α-olefin copolymers, and polyesters.
  9. The sealing device (1) according to any one of previous claims, characterized in that the second polymeric layer (5) comprises at least 50 wt.-%, preferably at least 75 wt.-%, based on the total weight of the second polymeric layer (5) , of at least one second thermoplastic polymer P2, preferably selected from the group consisting of polyethylene, polypropylene, ethylene-α-olefin copolymers, propylene-α-olefin copolymers, and polyesters.
  10. The sealing device (1) according to claim 8 or 9, characterized in that the at least one first thermoplastic polymer P1 is polyethylene and the at least one second thermoplastic polymer P2 is polyethylene terephthalate.
  11. The sealing device (1) according to any one of previous claims, characterized in that the metallic layer (4) is an aluminum or aluminum alloy film.
  12. The sealing device (1) according to any of previous claims, characterized in that:
    i) The first polymeric layer (2) has a thickness in the range of 5 –150 μm, preferably 10 –100 μm and/or
    ii) The reinforcing layer (3) has a thickness in the range of 25 –200 μm, preferably 50 –150 μm and/or
    iii) The metallic layer (4) has a thickness in the range of 1 –50 μm, preferably 2.5 –35 μm and/or
    iv) The second polymeric layer (5) has a thickness in the range of 2.5 –100 μm, preferably 5 –50 μm.
  13. The sealing device (1) according to any of previous claims, characterized in having a total thickness in the range of 50 –350 μm, preferably 75 –300 μm.
  14. A method for producing a sealing device as defined in any one of claims 1-13, the method comprising forming the layers i) to iv) and coupling them to each other.
  15. A roof structure comprising:
    I) A roof substrate (8) ,
    II) A sealing device according to any one of claims 1-13, and
    III) An insulation board (9) , wherein the sealing device (1) is arranged between the roof substrate (8) and the insulation board (9) .
  16. Use of the sealing device according to any one of claims 1-13 as a vapor retarder or as a vapor control layer.
PCT/CN2020/078481 2020-03-09 2020-03-09 Vapor retarder with improved mechanical properties WO2021179145A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/078481 WO2021179145A1 (en) 2020-03-09 2020-03-09 Vapor retarder with improved mechanical properties
CN202080097803.7A CN115279584A (en) 2020-03-09 2020-03-09 Vapor retarder with improved mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078481 WO2021179145A1 (en) 2020-03-09 2020-03-09 Vapor retarder with improved mechanical properties

Publications (1)

Publication Number Publication Date
WO2021179145A1 true WO2021179145A1 (en) 2021-09-16

Family

ID=77671081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078481 WO2021179145A1 (en) 2020-03-09 2020-03-09 Vapor retarder with improved mechanical properties

Country Status (2)

Country Link
CN (1) CN115279584A (en)
WO (1) WO2021179145A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101214A1 (en) * 2001-02-27 2005-05-12 Lawrence Zupon Reflective insulation
US20050124241A1 (en) * 2003-12-06 2005-06-09 Malik Tariq M. Vapor barrier
US20080120935A1 (en) * 2006-07-31 2008-05-29 Certainteed Corporation Vapor retarder fastening strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101214A1 (en) * 2001-02-27 2005-05-12 Lawrence Zupon Reflective insulation
US20050124241A1 (en) * 2003-12-06 2005-06-09 Malik Tariq M. Vapor barrier
US20080120935A1 (en) * 2006-07-31 2008-05-29 Certainteed Corporation Vapor retarder fastening strip

Also Published As

Publication number Publication date
CN115279584A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
RU2759816C1 (en) Self-adhesive sealing apparatus with a layer of an adhesive sealing agent
US11459761B2 (en) Roofing membrane with a functional layer
JP7402186B2 (en) Self-adhesive sealing device with adhesive layer arrangement
TWI535805B (en) Pressure-sensitive adhesive comprising a crosslinkable polyolefin and a tackifier resin
JP7461308B2 (en) Self-adhesive sealing device with adhesive layer arrangement
WO2021196107A1 (en) Separation sheet and use thereof for providing waterproofed structures
WO2021179145A1 (en) Vapor retarder with improved mechanical properties
CA3222436A1 (en) A self-adhering bituminous sealing element with improved bonding at low temperatures
WO2021208108A1 (en) Self-adhesive waterproof repairing tape
CA3233384A1 (en) Self-adhering sealing element
EP4008546B1 (en) A method for waterproofing of tunnel structures
WO2022253679A1 (en) A self-adhering insulation or cover board
US11965421B2 (en) Method for waterproofing of tunnel structures
WO2023139072A2 (en) A self-adhering roofing membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924511

Country of ref document: EP

Kind code of ref document: A1