WO2021177807A1 - Method for producing an animal leather substitute and product obtained - Google Patents

Method for producing an animal leather substitute and product obtained Download PDF

Info

Publication number
WO2021177807A1
WO2021177807A1 PCT/MX2020/000008 MX2020000008W WO2021177807A1 WO 2021177807 A1 WO2021177807 A1 WO 2021177807A1 MX 2020000008 W MX2020000008 W MX 2020000008W WO 2021177807 A1 WO2021177807 A1 WO 2021177807A1
Authority
WO
WIPO (PCT)
Prior art keywords
mycelium
animal leather
culture
substitute
manufacture
Prior art date
Application number
PCT/MX2020/000008
Other languages
Spanish (es)
French (fr)
Inventor
Daniel DIAZ TAZZER HERRERÍAS
Rodrigo MARTÍN BARRIENTOS
Ricardo MUTTIO LIMAS
Amador DUARTE GONZÁLEZ
Original Assignee
Papel Laboratorio De Ideas, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Papel Laboratorio De Ideas, S.A. De C.V. filed Critical Papel Laboratorio De Ideas, S.A. De C.V.
Publication of WO2021177807A1 publication Critical patent/WO2021177807A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/40Cultivation of spawn
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather

Definitions

  • the present invention relates to the field of biotechnology in general; in particular, it is related to the production of a material with the capacity to act as a substitute for anima leather! , manufactured in the laboratory using the metabolic and reproductive technology of fungi through a natural process, sustainable, free of animal pollution and water footprint.
  • the present invention is based on the processing of the substitute for animal leather based on fungi, it is a process with a low water footprint, with processes of low energy and high cost.
  • Using difficult-to-handle industrial waste such as molasses, barley, bagasse, sawdust, among others, becomes a product with a negative carbon footprint, so the overall production costs are low.
  • the main impact sector is fashion, since animal leather is widely used in footwear, apparel and clothing, in the same way, the automotive and furniture industry may require this type of material for luxury finishes.
  • the technology that is sought to protect is capable of being developed in order to be able to cover different finishes, thicknesses, stains and textures, as well as to comply with physical-mechanical characteristics comparable with animal leather, which makes this technology a highly competitive development.
  • the material obtained finds a particularly important, although not exclusive, application in the field of construction, and in particular in the manufacture of acoustic insulating panels, as well as in multiple industrial applications, such as in the field of furniture, bodywork and structural elements in the automotive sector (bumpers, dashboards, etc.) or kitchen or storage utensils (bowls, containers, plates).
  • the invention aims to provide a method and a part of a certain shape, obtained in particular by said method, which better meets the previously known requirements of practice, in particular because it provides a non-toxic part that can be molded and / or machined, which is acoustically insulating, with good resistance to fire, hydrophobic, simple in its design and in its mode of operation and yet it has excellent mechanical strength due to its compactness and very high cohesion.
  • the invention makes it possible to produce a plate that can be used outdoors, that is to say, resistant to rain and weather, acoustically insulating and at the same time having good resistance to fire.
  • the invention starts from the idea of using straw seeded with mycelium in order, by means of a very strong compression exerted when it is hot, to obtain a compact material that presents completely unexpected results both in terms of sound quality, impermeability and fire retardant.
  • the material obtained is similar to a plastic, due to the mycelial branches that overlap and / or intimately impregnate the organic fibers.
  • the techniques that can be used in plastics, which can even go as far as injection, will therefore be possible.
  • the product material of our invention is not a material composed of fibers, but rather a product made entirely from mycelium, without plant fiber, since it grows externally. to the fiber due to the component called the separation membrane.
  • the material determined by our invention is a material made entirely from plant residues, which, unlike D 1, includes a mixture with plastic additives such as PFTE.
  • the incubation times of the D1 document method are up to 1 year, when in the method of our invention it is for a culture period of no more than 45 days, likewise, parameters such as CO 2 / O 2 levels, agitation are mentioned. and lighting, when in the method described in D 1. it only talks about temperature.
  • Biodegradable material is manufactured by fermenting a source material consisting of the following Ingredients in percentage by weight: 40-70% of fresh feces of a fungus that have edible fruiting bodies harvested and not contaminated by bacteria, 10-30% of a fiber material, 10-20% of water and 1-5% of an inorganic salt.
  • the invention employs simple and readily available ingredients, has a simple manufacturing process, and provides a novel method for reusing the feces of an edible mushroom.
  • the biodegradable material made using the invention can be used as a packing filler material, a thermal insulation layer in a building material and a decoration product.
  • the entire manufacturing process is environmentally friendly and does not use chemical additives, therefore it does not cause secondary pollution.
  • the method referred to in the above-mentioned document D2 discloses a series of steps that deliver a biodegradable material as a product based on biological technology, the objective of this is the development of a material composed of vegetable fibers and bound by mycelium.
  • the resulting material is not a composite material, but rather a product made entirely from mycelium, the product of a metabolic action of the organism to be used, this without vegeta fiber!, since it grows external to the fiber due to the component called the separation membrane.
  • Document D3 (CN 104830082A) by Wang Guidong and Song Rui, dated April 10, 2015, was also located, which reveals a biodegradable plastic that uses bongo waste as raw material.
  • Biodegradable plastic is characterized by being prepared from the following raw materials by weight: 20-30 parts of mushroom residues, 10-15 parts of polyethylene, 0.5- 1 part of rice bran oil, 6-8 parts of palm oil, 1-2 parts magnesium stearate, 3-5 parts peanut seedling powder, 1-2 parts peanut protein powder, 5- 10 parts peanut shell powder, 3-5 parts of pumice stone powder, 2-4 parts of guar gum, 1-2 parts of a KH-550 silane coupling agent and 10-15 parts of a compound additive.
  • Biodegradable plastic has the advantages of high degradation rate, high degradation rate, good flexibility and strength that meets SOS usage requirements; The main raw materials have abundant sources, low cost and good economic performance; and the invention saves energy, uses waste, can effectively reduce white pollution, and has high environmental and economic benefits.
  • the material described in document D3 covers a series of processes that involve a chemical transformation of matter into matter! compound that at the end of its useful life biodegrades due to its partially vegetal characteristics. Even though the material referred to in document D3, above, is endowed with biodegradability characteristics and uses a section of the mushroom cultivation industry, the objective of this, is to generate an alternative bioplastic to conventional plastic. On the other hand, we can refer that the material of our invention has different functions and characteristics, since its manufacture is made entirely from plant components and is the product of a biological process, but not a chemical one.
  • the present invention provides a new way of obtaining a substitute material for animal leather, manufactured in the laboratory using the metabolic and reproductive technology of fungi, making this process a natural, sustainable process, free of animal pollution and water footprint.
  • the main objective of the present invention is to make available a method for the production of a material with the ability to function as a substitute for animal leather, manufactured in the laboratory, using the metabolic and reproductive technology of fungi through a natural process, sustainable, shelter free and water footprint free,
  • Another objective of the invention is to provide such a method that allows the production of alternative materials (substitute for animal leather), which allows the substitution of highly polluting materials by themselves or derived from their manufacturing processes, with materials made from 100% renewable sources, taking as a biotechnological basis the vegetative body of fungi, better known as mycelium.
  • Another objective of the invention is to provide said method for the production of a substitute for animal leather which, in addition, where said material, substitute for leather encourages! can be obtained from a matter! 100% biodegradable, made from difficult-to-handle industrial waste such as molasses, barley, bagasse, sawdust, among others, which represents a product with a neutral carbon footprint, so the general production costs are low.
  • Another objective of the invention is to provide such a method for the production of a substitute for animal leather that, furthermore, is a low-energy cost process.
  • Another objective of the invention is to provide said method for the production of a substitute for animal leather to which different finishes, thicknesses, stains and textures can be given, as well as to comply with physico-mechanical characteristics comparable to animal leather.
  • the invention proposes a method for the production of a material with the ability to function as a substitute for animal leather, manufactured in the laboratory using the metabolic and reproductive technology of fungi, making this process a natural, sustainable process, free of animal pollution and water footprint.
  • the method for the manufacture of substitute for animal leather based on fungal mycelium allows to obtain a product capable of complying with the same physical characteristics as animal leather, taking into account that it has the ability to grow in a matter of weeks and in a pest-free laboratory.
  • the growth method is based on the development and production of by-products of macromycete fungi. with a number of variants Regarding nutrition, control of parameters and the type of fungus selected, surprisingly, a product with industrialization potential was created, friendly to the environment and at a competitive price.
  • the method for the manufacture of substitute for animal leather based on fungal mycelium consists of creating an atmosphere of control of environmental parameters (temperature, humidity, CO 2 / O 2 balance), with a specific surface, a specific mixture of nutrients and an organism in charge of developing within it, in order to develop a material with the ability to function as an alternative to conventional animal leather.
  • the method for the manufacture of animal leather substitute based on fungal mycelium consists of the following stages: a) Selection of the organism, where at least one species of fungi is selected with the potential to develop a material with properties suitable to function as 'animal leather substitute' (SCA). These species may be, but are not limited to, the families of the polyporal order: Ganodermataceae, Polyporaceae and Fomitopsidaceae.
  • the nutrition of the organism is a great selection criterion. Once isolated from the natural environment, the organism undergoes performance tests. Taxonomic Classification: Theoretical criteria such as the type of nutrition and their distribution can be determined. Based on previous studies, the organizations that are sought to prioritize in This invention relates to a large group of common fungi in forest soils as they are degraders of decomposing organic matter such as dead trees, litter, and. other forest residues in a state of decomposition. Within the saprophytic fungi are the fungi of the polyporal order. which due to their characteristics have a hardness, resistance and adaptability superior to other organisms.
  • Morphological Classification Based on physical and microscopic characteristics, it is possible to determine what type of fungus we are working with, thereby strengthening the taxonomic classification and verifying which organisms we are using.
  • Performance and Adaptability Once the type of fungal organism that we are going to work has been identified, it is necessary to subject it to a series of performance indicator processes to be used in the process of producing animal-leather based on fungal mycelium.
  • these organisms are subjected to more specific processes such as variations in the amount and type of light they perceive, to changes in the quality of the air they breathe (CO 2 / O 2 balance). in other cases, they are subjected to diets with liquid culture media, where the nutrients are dissolved and growth is encouraged with mechanical oxygenation through agitation or aeration, this to promote more accelerated growth.
  • Isolation of Culture A total adaptation of the organism that must undergo a purification process is sought: eliminating contaminants and external agents to the organism to be cultivated, nutrition; through a nutritious diet and growth stimuli (light, agitation, temperature, humidity, CO 2 / O 2 balance. time) and resistance; the organism is subjected to different agents to create resistance and adaptation to a specific culture medium based mainly on a residue from the region.
  • the isolation of the strain occurs according to its origin: living tissue, spore, mycelium. For isolation, one or more characterized specimens must be obtained. Once the organism that we are going to use is characterized and classified, it undergoes a series of defining processes.
  • H2O2 hydrogen peroxide
  • MCE Enriched Culture Medium
  • the organisms are previously subjected to a nutrition testing process, by which nutrients with development potential are defined for a future growth stage in the specialized production reactor. Once the organisms are isolated from the wild, they are subjected to a series of nutritional processes to determine their digestive capacity. In this way, and with an increasing rate, the diet of the fungus changes from being a diet based on plant residues from the wooded soil to a diet of plant residues from industrial processes such as agriculture, residues from the brewing industry, tequila, from the production of seeds and cereals, among others.
  • the finishes can be, but are not limited to the following list: staining, waxing, waterproofing, chemical finishing and pressing.
  • Example 1 staining, waxing, waterproofing, chemical finishing and pressing.
  • the tissue was purified by the selective propagation of the mycelium tissue of the Ganoderma specimen previously collected in the Forest La Spring. and. Once the organism had been purified and isolated, a mother strain called Ganoderma primavera was used.
  • the organism was classified as Ganoderma curtisii (Primavera, Jalisco).
  • MCE Enriched Culture Medium
  • a liquid culture medium was prepared (4% sugar water) previously inoculated with the Ganoderma Primavera strain, which was used as the main inoculum for the growth reactor.
  • Post-harvest treatment a. The fresh material was introduced into a wash of a plasticizer solution (25% Polyethylene glycol in H 2 O), for a period of 12 hours. b. The plasticized material was washed and dried in a dehydrator oven at 65 ° C for a period of 12 hours. c. At this time a substitute material is available leather based on Ganodarma curtisii mushroom mycelium fabrics without a specialized finish such as; i. Waxing i. Staining ii. Pressing d. In the case of this example, the material is stained with 5% cedar oil, which gives it a chemical finish for greater durability and a pressing to give texture and resemble the tanned skin of animal leather.
  • a plasticizer solution 25% Polyethylene glycol in H 2 O
  • the material is grown entirely using a natural biological process that includes the metabolism of polyporal fungi in this case of the genus Ganodermataceae. This is achieved by manipulating the growth parameters and the nutritional formulation given to the organism in question.
  • Figure 1 shows a process flow diagram for the manufacture of animal leather substitute based on fungal mycelium.
  • the method for the manufacture of substitute for animal leather based on fungal mycelium consists of the following stages: a) Selection of the organism, where at least one species of fungi is selected with the potential to develop a material with suitable properties to act as 'substitute for animal leather' (SCA).
  • SCA animal leather'
  • These species can be, but are not limited to, the families of the polyporal order: Ganodermataceae, Polyporaceae and Fomitopsidaceae. Within the aforementioned families, it is sought to give priority to species of local origin according to the site where the technology is being developed.
  • Isolation of Culture a total adaptation of the organism that must undergo a purification process is sought: eliminating contaminants and external agents to the organism to be cultivated, evaluating nutrition; through a nutritious diet and growth stimuli (light, agitation, temperature, humidity, CO 2 / O 2 balance. time) and resistance; the organism is subjected to different agents to create resistance and adaptation towards a specific culture medium based mainly on a residue from the region.
  • MCE Enriched Culture Medium
  • Sources cellulose, lignin, simple sugars, syrups, etc.
  • Nitrogen enzyme and protein production and function.
  • Phosphorus Biosynthesis of nucleic acids, phospholipids and glycophosphates.
  • Sources K +, salts. v.
  • Magnesium enzymatic activity, organelle structure.
  • Sulfur synthesis of amino acids and vitamins.
  • Sources sulfates. methionine.
  • the determined culture medium can be but is not limited to that shown in the following table 1 with two examples:
  • the raw material for the manufacture of the product is mostly selected from waste from the agricultural industry.
  • the origin of the nutrients can be according to the availability and reliability determined by the residues of the region. These can be of origin; mineral, vegetable, artificial or animal. What example in Table 1.
  • d) Culture Inoculum It is inoculated at a rate of 10-30% of the total volume of the "standard culture medium” (MCE) in the culture reactor.
  • MCE standard culture medium
  • Reactor Design i. It is determined by a container with a flat bottom and smooth walls, the shape of the container must be orthogonal and it can be scalable in the dimensions required. ii. A floating or fixed membrane is placed on the floor of the reactor, which allows a superficial separation between the medium and the culture to be developed.
  • the purpose of the membrane is to separate the fungal organism from the culture medium, avoiding the adhesion of solid components, also guaranteeing a vertical and not underground growth.
  • the membrane material should be made of an autoclavable polymer such as polypropylene and the pore size should not be greater than 10mm.
  • the reactor should preferably be made of a non-porous and easy to clean material, of some plastic material such as polypropylene, stainless steel or glass.
  • Parameter Control i. Illumination: kept under a photoperiod of 12/12 hours, under a wavelength of 380 - 480 nm.
  • Temperature the range is determined by the species selected from the isolation. A general range of 22 - 27 ° C is determined.
  • Humidity the range is determined between 75 - 95
  • Initial phase Constant agitation at 100 RPM for a period of 5 days. It favors the initial growth of the mycelium, increasing its mass and reproductive capacity.
  • Growth phase It is kept under periodic agitation of 1 hour every 20 hours at a speed of 25 RPM. This phase lasts approximately 10 days. The growth of the superficial layer is favored and the agitation favors the oxygenation of the organism.
  • g) Post-harvest treatment Once the mycelium vegetable mat has been harvested, it is put to dry in the sun until it loses 80% of its humidity, the material is hung to fence.
  • g1) Plasticizer soak Once the mycelium vegetable mat is finished, it is placed in a tub in a solution of 10-40% of some plasticizing agent using some plasticizing agent (which can be but is not limited to, glycerol, ethylene glycol , surfactants, polyols, among others) in clean water, with a soaking period of between 12 - 48 hours and at the end it is washed with clean water.
  • g2) Drying The process takes place in the drying temperature for mycelium material should 'be in a range of 40 - 65 ° C.
  • Finishing Finally, it is finished: it is subjected to one or more treatment to obtain a finished product with the same or better characteristics than animal leather. This material grows in less time, does not use pollutants and the process is manufactured under a technology free of carbon footprint.
  • the finishes can be more are not limited to the following: g 3 ⁇ . Staining: Pigments of vegetable origin with a lipid base. g 3 i i. Waxing: Natural fats from cocoa, coconut, beeswax. They are made in a proportion of between 5-15% of the dry weight of the sample through an immersion of 12 hours of treatment with subsequent drying, we obtain the material in its finished product presentation. g3iii. Waterproofing: Using soft polymers. They are made in a proportion of between 5-15% of the dry weight of the sample through an immersion of 12 hours of treatment with subsequent drying, we obtain the material in its finished product presentation. g 3i v. Chemical: Aldehydes, catechins, tannins.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Textile Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mushroom Cultivation (AREA)

Abstract

The invention relates to a method for producing an animal leather substitute based on fungal mycelium, which comprises the steps of: a) selecting at least one fungal species from families of the Polyporales order – Ganodermataceae, Polyporaceae and Fomitopsidaceae; b) isolating the selected microorganism (by live tissue, spore, mycelium); c) preparing culture medium based on a technical selection of nutrients to selectively grow the vegetative body of the fungi, called mycelium; d) inoculating the culture in a ratio of 10-30% of the total volume of the culture medium in a culture reactor; e) incubating in the culture reactor with parameter control, such as illumination under a 12/12 photoperiod and a wavelength of 380-480 nm, temperature in a general range of 22-27°C, relative humidity of 75-95%, stirring with different stirring phases and with an oxygen–carbon dioxide balance in the upper range of 20,000 ppm CO2, and a culture retention time of 5-45 days; f) harvesting a coating of vegetative mycelium approximately 3-15 cm thick on the reactor surface; g) carrying out a post-harvest treatment of the vegetative mat of mycelium, soaking it for 12-48 hours and drying it at 40-65°C until 80% of its humidity is lost; and finishing.

Description

MÉTODO PARA LA PRODUCCIÓN DE UN SUSTITUTO DE CUERO METHOD FOR THE PRODUCTION OF A LEATHER SUBSTITUTE
ANIMAL Y PRODUCTO OBTENIDO CAMPO DE LA INVENCIÓN ANIMAL AND OBTAINED PRODUCT FIELD OF THE INVENTION
La presente invención se relaciona con el campo de la biotecnología en lo general; en lo particular se relaciona con la producción de un material con la capacidad de fungir como sustituto de cuero anima! , fabricado en laboratorio utilizando la tecnología metabólica y reproductiva de los hongos mediante un proceso natural, sustentadle, libre de crueldad animal y huella h ídrica. The present invention relates to the field of biotechnology in general; in particular, it is related to the production of a material with the capacity to act as a substitute for anima leather! , manufactured in the laboratory using the metabolic and reproductive technology of fungi through a natural process, sustainable, free of animal cruelty and water footprint.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Según datos de la FAO, Organización para la Alimentación y la Agricultura de las Naciones Unidas, por sus siglas en inglés, se dice que la industria ganadera es responsable del 18% de las emisiones de gases que producen el efecto invernadero, situación que cobra gran relevancia cuando hablamos de cuero animal . En diferentes partes de la línea de producción del cuero animal existen impactos considerables al medio ambiente, desde la producción animal, hasta el proceso de curtido, tinción y acabado. Además de las emisiones de CO2, la industria bovina contamina grandes cantidades de agua y afecta los ecosistemas erosionando el suelo y áreas riparias. According to data from the FAO, the Food and Agriculture Organization of the United Nations, for its acronym in English, it is said that the livestock industry is responsible for 18% of the emissions of gases that produce the greenhouse effect, a situation that charges great relevance when we talk about animal leather. In different parts of the animal leather production line there are considerable impacts on the environment, from animal production, to the tanning, dyeing and finishing process. In addition to CO 2 emissions, the bovine industry pollutes large amounts of water and affects ecosystems by eroding the soil and riparian areas.
En la industria manufacturera de piel animal se usan procesos altamente contaminantes que conlleva el procesamiento de curtido de la piel y el uso de grandes cantidades de agua residual cargada de sales y metales como el Cromo +6. In the animal skin manufacturing industry, highly polluting processes are used that involves the tanning of the skin and the use of large amounts of wastewater loaded with salts and metals such as Chromium +6.
La presente invención se basa en el procesamiento del sustituto de cuero animal a base de hongos, es un proceso de baja huella hidrica, con procesos de bajo costo energético y a! utilizar residuos de la industria de difícil manejo tales como melaza, cebada, bagazo, aserrín, entre otros, se convierte en un producto de huella de carbono negativa por lo que los costos generales de producción son bajos. El sector de impacto mayoritario es el de la moda, ya que, el cuero animal es ampliamente utilizado en calzado, indumentaria y vestimenta, de igual manera, la industria automotriz y del mobiliario pueden llegar a requerir este tipo de material para acabados de lujo. La tecnología que se busca proteger, es capaz desarrollarse con el fin de poder abarcar distintos acabados, grosores, tinciones y texturas, asi como, cumplir con características físico-mecánicas comparables con el cuero animal lo que hace de esta tecnología un desarrollo altamente competitivo. The present invention is based on the processing of the substitute for animal leather based on fungi, it is a process with a low water footprint, with processes of low energy and high cost. Using difficult-to-handle industrial waste such as molasses, barley, bagasse, sawdust, among others, becomes a product with a negative carbon footprint, so the overall production costs are low. The main impact sector is fashion, since animal leather is widely used in footwear, apparel and clothing, in the same way, the automotive and furniture industry may require this type of material for luxury finishes. The technology that is sought to protect is capable of being developed in order to be able to cover different finishes, thicknesses, stains and textures, as well as to comply with physical-mechanical characteristics comparable with animal leather, which makes this technology a highly competitive development.
Se realizó una búsqueda para determinar el estado de la técnica mas cercano, encontrándose los siguientes documentos. A search was carried out to determine the closest state of the art, finding the following documents.
Se encontró el documento D1 (EP3003663A1 ) de Laurence Laboutiere et al. del 04 de junio de 2014, que divulga un proceso para fabricar un material compuesto en donde se prepara una mezcla de fibras orgánicas naturales, se pasteuriza, se siembra con micelio, la mezcla así sembrada se incuba durante un período de tiempo determinado para formar un sustrato micelial que comprende por 100 partes en peso de sustrato, entre 2 partes y 80 partes en peso de micelio seco y entre 10 partes y 30 partes en peso de agua, y el sustrato micelial se comprime calentándolo a una temperatura dada mayor o igual a la temperatura suficiente para hacer que el micelio del sustrato sea inerte y se produce un material viscoso que impregna y une el sustrato, formando todo el conjunto, después de enfriar y secar, el material. Sin embargo, el material obtenido encuentra una aplicación particularmente importante, aunque no exclusiva, en el campo de la construcción, y en particular en la fabricación de paneles aislantes acústicos, asi como en múltiples aplicaciones industriales, como en el campo de muebles, carrocería y elementos estructurales en el sector automotriz (parachoques, tableros, etc.) o utensilios de cocina o almacenamiento (cuencos, recipientes, platos). Found Laurence Document D1 (EP3003663A1) Laboutiere et al. of June 04, 2014, which discloses a process to manufacture a composite material in which a mixture of natural organic fibers is prepared, pasteurized, seeded with mycelium, the mixture thus seeded is incubated for a certain period of time to form a mycelial substrate comprising per 100 parts by weight of substrate, between 2 parts and 80 parts by weight of dry mycelium and between 10 parts and 30 parts by weight of water, and the mycelial substrate is compressed by heating it to a given temperature greater than or equal to the temperature sufficient to make the mycelium of the substrate inert and a viscous material is produced that impregnates and binds the substrate, forming the whole, after cooling and drying, the material. However, the material obtained finds a particularly important, although not exclusive, application in the field of construction, and in particular in the manufacture of acoustic insulating panels, as well as in multiple industrial applications, such as in the field of furniture, bodywork and structural elements in the automotive sector (bumpers, dashboards, etc.) or kitchen or storage utensils (bowls, containers, plates).
La invención tiene como objetivo proporcionar un método y una parte de forma determinada, obtenida en particular por dicho método, que cumpla mejor que los requisitos previamente conocidos de ia práctica, en particular porque proporciona una parte no tóxica que puede moldearse y / o mecanizado, que es aislante acústicamente, de buena resistencia al fuego, hidrofóbico, simple en su diseño y en su modo de funcionamiento y, sin embargo, tiene una excelente resistencia mecánica debido a su compacidad y su muy alta cohesión . La invención permiíe producir una placa que pueda usarse al aire libre, es decir, resistente a la lluvia y al clima, aislante acústicamente y que a la vez tenga buena resistencia al fuego. The invention aims to provide a method and a part of a certain shape, obtained in particular by said method, which better meets the previously known requirements of practice, in particular because it provides a non-toxic part that can be molded and / or machined, which is acoustically insulating, with good resistance to fire, hydrophobic, simple in its design and in its mode of operation and yet it has excellent mechanical strength due to its compactness and very high cohesion. The invention makes it possible to produce a plate that can be used outdoors, that is to say, resistant to rain and weather, acoustically insulating and at the same time having good resistance to fire.
La invención parte de la idea de usar paja sembrada con micelio para, por medio de una compresión muy fuerte ejercida cuando está caliente, obtener un material compacto que presenta resultados completamente inesperados tanto en términos de calidad de sonido, como impermeabilidad y retardante de fuego. The invention starts from the idea of using straw seeded with mycelium in order, by means of a very strong compression exerted when it is hot, to obtain a compact material that presents completely unexpected results both in terms of sound quality, impermeability and fire retardant.
Sorprendentemente, la combinación de presión y calor que se ejercerá genera un jugo extraído de la paja sembrada y el micelio durante la compresión. Este jugo forma un aglutinante pegajoso de origen completamente natural, que impregna todo y le da, una vez que se ha secado, las cualidades inesperadas observadas. Surprisingly, the combination of pressure and heat that will be exerted generates a juice extracted from the seeded straw and mycelium during compression. This juice forms a sticky binder of completely natural origin, which permeates everything and gives it, once it has dried, the unexpected qualities observed.
El material obtenido es similar a un plástico, debido a las ramificaciones del micelio que se superponen y/o impregnan las fibras orgánicas de manera íntima. Aquí , las técnicas que se pueden utiiizar en plásticos, que incluso pueden llegar hasta la inyección, por lo tanto, serán posibles. The material obtained is similar to a plastic, due to the mycelial branches that overlap and / or intimately impregnate the organic fibers. Here, the techniques that can be used in plastics, which can even go as far as injection, will therefore be possible.
Aun cuando el método al que refiere el documento D1 arriba mencionado está dotado por una serie de pasos que entregan como producto un material biodegradable a base de una tecnología biológica, el objetivo de este es el desarrollo de un material compuesto por fibras vegetales y aglutinadas por micelio, Even though the method referred to in the above-mentioned document D1 is equipped with a series of steps that deliver a biodegradable material as a product based on biological technology, the objective of this is the development of a material composed of vegetable fibers and bound by mycelium,
En cambio, nuestra invención tiene funciones distintas y una metodología de producción diferente, el material producto de nuestra invención no es un material compuesto por fibras, si no que es un producto enteramente fabricado a base de micelio, sin fibra vegetal, ya que crece externo a la fibra debido al componente denominado como membrana de separación. On the other hand, our invention has different functions and a different production methodology, the product material of our invention is not a material composed of fibers, but rather a product made entirely from mycelium, without plant fiber, since it grows externally. to the fiber due to the component called the separation membrane.
Por otro lado, una de las diferencias más significativas es que el material determinado por nuestra invención, es un material hecho enteramente a base de residuos vegetales lo que a diferencia del D 1 , se incluye una mezcla con aditivos plásticos como el PFTE. Los tiempos de incubación del método del documento D1 son de hasta 1 año, cuando en el método de nuestra invención es de un periodo de cultivo no mayor a 45 días, así mismo, se mencionan parámetros como niveles de CO2/O2 , agitación e iluminación, cuando en el método descrito en D 1 . únicamente se habla de temperatura. On the other hand, one of the most significant differences is that the material determined by our invention is a material made entirely from plant residues, which, unlike D 1, includes a mixture with plastic additives such as PFTE. The incubation times of the D1 document method are up to 1 year, when in the method of our invention it is for a culture period of no more than 45 days, likewise, parameters such as CO 2 / O 2 levels, agitation are mentioned. and lighting, when in the method described in D 1. it only talks about temperature.
También se ubicó el documento D2 (solicitud PCT/C N 2017/073715), publicado como WO201 8068456A1 del 18 de febrero de 2017, de Hu Wenfeng, et, ai., que divulga un material biodegradable fabricado mediante el uso de heces de hongos comestibles como semilla de fermentación secundaria, y el método de fabricación de los mismos. El material biodegradable se fabrica fermentando un material fuente que consta de los siguientes ingredientes en porcentaje en peso: 40-70% de las heces frescas de un hongo que tienen cuerpos fructíferos comestibles cosechados y no contaminados por bacterias, 10-30% de un material de fibra, 10-20% de agua y 1-5% de una sal inorgánica. La invención emplea ingredientes simples y fácilmente disponibles, tiene un proceso de fabricación simple y proporciona un método novedoso para reutilizar las heces de un hongo comestible. ES material biodegradable fabricado empleando la invención se puede usar como material de relleno de embalaje, una capa de aislamiento térmico en un material de construcción y un producto de decoración. Todo el proceso de fabricación es ecológico y no utiliza aditivos químicos, por io que no causa contaminación secundaria. Aun cuando el método al que refiere el documento D2 arriba mencionado divulga una serie de pasos que entregan como producto un material biodegradable a base de una tecnología biológica, el objetivo de éste es el desarrollo de un material compuesto por fibras vegetales y aglutinadas por micelio. Document D2 (application PCT / CN 2017/073715), published as WO201 8068456A1 of February 18, 2017, by Hu Wenfeng, et, ai., Which discloses a biodegradable material manufactured by using edible mushroom feces, was also located. as a secondary fermentation seed, and the method of manufacturing them. Biodegradable material is manufactured by fermenting a source material consisting of the following Ingredients in percentage by weight: 40-70% of fresh feces of a fungus that have edible fruiting bodies harvested and not contaminated by bacteria, 10-30% of a fiber material, 10-20% of water and 1-5% of an inorganic salt. The invention employs simple and readily available ingredients, has a simple manufacturing process, and provides a novel method for reusing the feces of an edible mushroom. The biodegradable material made using the invention can be used as a packing filler material, a thermal insulation layer in a building material and a decoration product. The entire manufacturing process is environmentally friendly and does not use chemical additives, therefore it does not cause secondary pollution. Even though the method referred to in the above-mentioned document D2 discloses a series of steps that deliver a biodegradable material as a product based on biological technology, the objective of this is the development of a material composed of vegetable fibers and bound by mycelium.
En cambio, podemos referir que nuestra invención tiene funciones distintas y una metodología de producción diferente, el material resultante no es un material compuesto, si no que es un producto enteramente fabricado a base de micelio, producto de una acción metabólica del organismo a utilizar, esto sin fibra vegeta!, ya que crece externo a la fibra debido al componente denominado como membrana de separación. También se localizó el documento D3 (CN 104830082A) de Wang Guidong y Song Rui, del 10 de abril del 2015 que revela un plástico biodegradable que usa residuos de bongos como materia prima. El plástico biodegradable se caracteriza por estar preparado a partir de las siguientes materias primas en peso: 20- 30 partes de residuos de hongos, 10-15 partes de polietileno, 0.5- 1 parte de aceite de salvado de arroz, 6-8 partes de aceite de palma, 1 -2 partes de estearato de magnesio, 3-5 partes de polvo de plántulas de maní, 1 -2 partes de polvo de proteina de maní, 5- 10 partes de polvo de cáscara de maní, 3-5 partes de polvo de piedra pómez, 2-4 partes de goma guar, 1 -2 partes de un agente de acoplamiento de silano KH-550 y 10-15 partes de un aditivo compuesto. El plástico biodegradable tiene las ventajas de una alta tasa de degradación, alta velocidad de degradación, buena flexibilidad y resistencia que cumple con Sos requisitos de uso; las principales materias primas tienen abundantes fuentes, bajo costo y buen desempeño económico; y la invención ahorra energía, usa desechos, puede reducir efectivamente la contaminación blanca y tiene altos beneficios ambientales y económicos. On the other hand, we can refer that our invention has different functions and a different production methodology, the resulting material is not a composite material, but rather a product made entirely from mycelium, the product of a metabolic action of the organism to be used, this without vegeta fiber!, since it grows external to the fiber due to the component called the separation membrane. Document D3 (CN 104830082A) by Wang Guidong and Song Rui, dated April 10, 2015, was also located, which reveals a biodegradable plastic that uses bongo waste as raw material. Biodegradable plastic is characterized by being prepared from the following raw materials by weight: 20-30 parts of mushroom residues, 10-15 parts of polyethylene, 0.5- 1 part of rice bran oil, 6-8 parts of palm oil, 1-2 parts magnesium stearate, 3-5 parts peanut seedling powder, 1-2 parts peanut protein powder, 5- 10 parts peanut shell powder, 3-5 parts of pumice stone powder, 2-4 parts of guar gum, 1-2 parts of a KH-550 silane coupling agent and 10-15 parts of a compound additive. Biodegradable plastic has the advantages of high degradation rate, high degradation rate, good flexibility and strength that meets SOS usage requirements; The main raw materials have abundant sources, low cost and good economic performance; and the invention saves energy, uses waste, can effectively reduce white pollution, and has high environmental and economic benefits.
El material descrito en el documento D3, cubre una serie de procesos que implican una transformación química de la materia en un materia! compuesto que al final de su vida útil se biodegrada por sus características parcialmente vegetales. Aún cuando el material al que se refiere el documento D3, arriba está dotado por características de biodegradabilidad y utiliza una sección de la industria del cultivo de hongos, el objetivo de éste, es generar un bioplástico alternativo al plástico convencional. En cambio, podemos referir que la materia de nuestra invención tiene funciones y características distintas, ya que su fabricación está hecha enteramente a base de componentes vegetales y es producto de un proceso biológico, mas no químico. The material described in document D3 covers a series of processes that involve a chemical transformation of matter into matter! compound that at the end of its useful life biodegrades due to its partially vegetal characteristics. Even though the material referred to in document D3, above, is endowed with biodegradability characteristics and uses a section of the mushroom cultivation industry, the objective of this, is to generate an alternative bioplastic to conventional plastic. On the other hand, we can refer that the material of our invention has different functions and characteristics, since its manufacture is made entirely from plant components and is the product of a biological process, but not a chemical one.
Por otro lado, otra diferencia significativa son los tiempos de crecimiento, ias temperaturas de incubación y sistema de cultivo, los cuales no se mencionan en absoluto en e! documento D3, ya que la metodología hace mención de un proceso de fabricación de plástico, dado por un proceso químico. On the other hand, another significant difference is the growth times, the incubation temperatures and the culture system, which are not mentioned at all in e! document D3, since the methodology makes mention of a plastic manufacturing process, given by a chemical process.
La presente invención proporciona una nueva forma de obtener un material sustituto de cuero animal, fabricado en laboratorio utilizando la tecnología metabólíca y reproductiva de los hongos haciendo de este proceso un proceso natural, sustentadle, libre de crueldad animal y huella hidrica, The present invention provides a new way of obtaining a substitute material for animal leather, manufactured in the laboratory using the metabolic and reproductive technology of fungi, making this process a natural, sustainable process, free of animal cruelty and water footprint.
OBJETIVOS DE LA INVENCIÓN La presente invención tiene como principal objetivo hacer disponible un método para la producción de un material con ia capacidad de fungir como sustituto de cuero animal, fabricado en laboratorio, utilizando la tecnología metabólíca y reproductiva de los hongos mediante un proceso natural, sustentable, libre de crueldad animal y huella hidrica, OBJECTIVES OF THE INVENTION The main objective of the present invention is to make available a method for the production of a material with the ability to function as a substitute for animal leather, manufactured in the laboratory, using the metabolic and reproductive technology of fungi through a natural process, sustainable, cruelty free and water footprint free,
Otro objetivo de la invención es proveer dicho método que permite la producción de materiales alternativos (sustituto de cuero animal), que permita sustituir materiales altamente contaminantes por sí mismos o derivado de sus procesos de fabricación, por materiales hechos 100% de fuentes renovables tomando como base biotecnológica el cuerpo vegetativo de los hongos, mejor conocido como micelio. Another objective of the invention is to provide such a method that allows the production of alternative materials (substitute for animal leather), which allows the substitution of highly polluting materials by themselves or derived from their manufacturing processes, with materials made from 100% renewable sources, taking as a biotechnological basis the vegetative body of fungi, better known as mycelium.
Otro objetivo de la invención es proveer dicho método para la producción de un sustituto de cuero animal que, además, en donde dicho materia, sustituto de cuero anima! se pueda obtener de un materia! 100% biodegradable, hecho a base de residuos de la industria de difícil manejo tales como melaza, cebada, bagazo, aserrín , entre otros, que represente un producto de huella de carbono neutra por lo que los costos generales de producción son bajos. Another objective of the invention is to provide said method for the production of a substitute for animal leather which, in addition, where said material, substitute for leather encourages! can be obtained from a matter! 100% biodegradable, made from difficult-to-handle industrial waste such as molasses, barley, bagasse, sawdust, among others, which represents a product with a neutral carbon footprint, so the general production costs are low.
Otro objetivo de la invención es proveer dicho método para la producción de un sustituto de cuero animal que, además, sea un proceso de bajo costo energético. Another objective of the invention is to provide such a method for the production of a substitute for animal leather that, furthermore, is a low-energy cost process.
Otro objetivo de la invención es proveer dicho método para la producción de un sustituto de cuero animal al que se le puedan dar distintos acabados, grosores, tinciones y texturas, así como, cumplir con características físico-mecánicas comparables con el cuero animal. Another objective of the invention is to provide said method for the production of a substitute for animal leather to which different finishes, thicknesses, stains and textures can be given, as well as to comply with physico-mechanical characteristics comparable to animal leather.
Y todas aquellas cualidades y objetivos que se harán aparentes ai realizar una descripción general y detallada de la presente invención apoyados en las modalidades ilustradas. And all those qualities and objectives that will become apparent when making a general and detailed description of this invention supported by the illustrated modalities.
BREVE DESCRIPCIÓN DEL INVENTO La invención plantea un método para la producción de un material con la capacidad de fungir como sustituto de cuero animal, fabricado en laboratorio utilizando la tecnología metabólica y reproductiva de los hongos haciendo de este proceso un proceso natural, sustentable, libre de crueldad animal y huella hídrica. BRIEF DESCRIPTION OF THE INVENTION The invention proposes a method for the production of a material with the ability to function as a substitute for animal leather, manufactured in the laboratory using the metabolic and reproductive technology of fungi, making this process a natural, sustainable process, free of animal cruelty and water footprint.
En este sentido se desarrolló un método de biofabricación para la producción de materiales alternativos que puedan sustituir materiales altamente contaminantes por materiales hechos 100% de fuentes renovables tomando como base biotecnológica el cuerpo vegetativo de los hongos, mejor conocido como micelio. Utilizando está tecnología hemos encontrado sorprendentemente un material que puede fungir como un sustituto al cuero animal, esto creado con una huella de carbono neutra sin crueldad animal y sin procesos de curtido altamente contaminantes. In this sense, a biofabrication method was developed for the production of alternative materials that can replace highly polluting materials with materials made from 100% renewable sources, taking as a biotechnological basis the vegetative body of fungi, better known as mycelium. Using this technology we have surprisingly found a material that can act as a substitute for animal leather, this created with a neutral carbon footprint without animal cruelty and without highly polluting tanning processes.
El método para la fabricación de sustituto de cuero animal a base de micelio de hongos, permite obtener un producto capaz de cumplir con las mismas características físicas que el cuero animal, tomando en cuenta, que éste tiene la capacidad de crecer en cuestión de semanas y en laboratorio libre de crueldad animal. El método de crecimiento se basa en el desarrollo y producción de subproductos de hongos macromicetos. con una serie de variantes en cuanto a la nutrición, control de parámetros y el tipo de hongo seleccionado, sorprendentemente se creo un producto con potencial de industrialización, amigable con el medio ambiente y a un precio competitivo. The method for the manufacture of substitute for animal leather based on fungal mycelium, allows to obtain a product capable of complying with the same physical characteristics as animal leather, taking into account that it has the ability to grow in a matter of weeks and in a cruelty-free laboratory. The growth method is based on the development and production of by-products of macromycete fungi. with a number of variants Regarding nutrition, control of parameters and the type of fungus selected, surprisingly, a product with industrialization potential was created, friendly to the environment and at a competitive price.
Durante el desarrollo del método para la fabricación de sustituto de cuero animal a base de micelio de hongos se llevaron acabo múltiples ensayos fallidos, experimentación de más de 30 especies de hongos diferentes, experimentación con más de 20 fuentes nutritivas, experimentación con distintas formas de reactores; experimentación con variaciones en los parámetros de cultivo (temperatura, humedad, balance CO2/O2. iluminación y tiempos de crecimiento). El método para la fabricación de sustituto de cuero animal a base de micelio de hongos consiste en crear una atmósfera de control de parámetros ambientales (temperatura, humedad, balance CO2/O2), con una superficie determinada, una mezcla de nutrientes determinada y un organismo encargado de desarrollarse dentro del mismo, para así, poder desarrollar un material con la capacidad de fungir como una alternativa al cuero animal convencional. During the development of the method for the manufacture of animal leather substitute based on fungal mycelium, multiple failed trials were carried out, experimentation with more than 30 different species of fungi, experimentation with more than 20 nutritional sources, experimentation with different forms of reactors. ; experimentation with variations in the cultivation parameters (temperature, humidity, CO 2 / O 2 balance, lighting and growth times). The method for the manufacture of substitute for animal leather based on fungal mycelium consists of creating an atmosphere of control of environmental parameters (temperature, humidity, CO 2 / O 2 balance), with a specific surface, a specific mixture of nutrients and an organism in charge of developing within it, in order to develop a material with the ability to function as an alternative to conventional animal leather.
El método para la fabricación de sustituto de cuero animal a base de micelio de hongos consta de las siguientes etapas: a) Selección del organismo, en donde se selecciona al menos una especie de hongos con el potencial de desarrollar un material con propiedades adecuadas para fungir como "sustituto de cuero animal' (SCA). Estas especies pueden ser, más no están limitadas a las familias del orden poliporales: Ganodermataceae, Polyporaceae y Fomitopsidaceae. The method for the manufacture of animal leather substitute based on fungal mycelium consists of the following stages: a) Selection of the organism, where at least one species of fungi is selected with the potential to develop a material with properties suitable to function as 'animal leather substitute' (SCA). These species may be, but are not limited to, the families of the polyporal order: Ganodermataceae, Polyporaceae and Fomitopsidaceae.
Para la determinación del organismo es necesario someterlos a ciertos criterios de selección, los cuales se enlistan a continuación: De acuerdo a su distribución: Se busca que sean organismos locales, debido a la adaptación a parámetros climáticos dados por la región donde se obtiene dicho organismo. To determine the organism, it is necessary to submit them to certain selection criteria, which are listed below: According to their distribution: They are intended to be local organisms, due to adaptation to climatic parameters given by the region where said organism is obtained. .
De acuerdo a su nutrición: Se busca que sean organismos saprófitos, es decir que su nutrición y energía sea proveniente de materia muerta, en este caso, los hongos se alimentan de aquellos residuos vegetales del suelo, los cuales pueden ser fácilmente sustituidos por residuos vegetales de la industria local (rastrojo de cereales, residuo de la industria cervecera, residuo de la industria tequilera, entre otras. According to their nutrition: They are intended to be saprophytic organisms, that is, their nutrition and energy come from dead matter, in this case, fungi feed on those plant residues in the soil, which can be easily replaced by plant residues. of the local industry (cereal stubble, residue from the brewing industry, residue from the tequila industry, among others.
La nutrición del organismo es un gran criterio de selección. Una vez aislado del medio natural, el organismo se somete a pruebas de desempeño. Clasificación Taxonómica: Se pueden determinar criterios teóricos como el tipo de nutrición y la distribución de los mismos. Con base en estudios previos los organismos que se busca priorizar en esta invención hacen relación a un grupo grande de hongos comunes en suelos forestales por ser degradadores de la materia orgánica en descomposición como arboles muertos, hojarasca, y. otros residuos del bosque en estado de descomposición. Dentro de los hongos saprófitos se encuentran los hongos del orden polyporal. los cuales por sus características tienen una dureza, resistencia y adaptabilidad superior a otros organismos. The nutrition of the organism is a great selection criterion. Once isolated from the natural environment, the organism undergoes performance tests. Taxonomic Classification: Theoretical criteria such as the type of nutrition and their distribution can be determined. Based on previous studies, the organizations that are sought to prioritize in This invention relates to a large group of common fungi in forest soils as they are degraders of decomposing organic matter such as dead trees, litter, and. other forest residues in a state of decomposition. Within the saprophytic fungi are the fungi of the polyporal order. which due to their characteristics have a hardness, resistance and adaptability superior to other organisms.
Clasificación Morfológica: Con base en características físicas y de microscopía es posible determinar que tipo de hongo estamos trabajando, con lo cual se fortalece la clasificación taxonómica y se comprueba que organismos estamos utilizando. Morphological Classification: Based on physical and microscopic characteristics, it is possible to determine what type of fungus we are working with, thereby strengthening the taxonomic classification and verifying which organisms we are using.
Desempeño y Adaptabilidad: Una vez identificado el tipo de organismo fúngico que vamos a trabajar es necesario someterlo a una serie de procesos indicadores de desempeño para ser utilizados en el proceso de la de producción de cuero-animal a base de micelio de hongos. Performance and Adaptability: Once the type of fungal organism that we are going to work has been identified, it is necessary to subject it to a series of performance indicator processes to be used in the process of producing animal-leather based on fungal mycelium.
Es necesario someter al/los organismos a distintas fuentes de nutrientes; se hace preliminar con las fuentes principales de nutrientes con base en la disponibilidad de residuo regional. Por ejemplo: residuo de la producción de maíz (rastrojo), producción de agave tequilero (bagazo), producción de caña de azúcar (bagazo), residuo de cereales, residuos de papel y cartón (material molido), entre otros. Dicho ejercicio se comprueba utilizando distintos parámetros de crecimiento como lo es humedad y temperatura, se hacen pruebas a 22°, 24° y 26° y 28°C, y 50, 70, 85% de humedad relativa respectivamente, con ello se determina cuales son los parámetros de crecimiento generales y el tipo de residuo que brinda mejor resultado. It is necessary to subject the organisms to different sources of nutrients; It is preliminary with the main sources of nutrients based on the availability of regional residue. For example: residue from corn production (stubble), tequila agave production (bagasse), sugar cane production (bagasse), cereal residue, paper and cardboard waste (ground material), among others. This exercise is checked using different growth parameters such as humidity and temperature, tests are made at 22 °, 24 ° and 26 ° and 28 ° C, and 50, 70, 85% relative humidity respectively, with this it is determined which are the general growth parameters and the type of residue that gives the best result.
Posteriormente, se someten dichos organismos a procesos más específicos como variaciones en la cantidad y tipo de luz que perciben, a cambios en la calidad de aire que respiran (balance CO2/O2). en otros casos se someten a dietas con medios de cultivo líquidos, donde los nutrientes están disueltos y se incentiva el crecimiento con una oxigenación mecánica por medio de agitación o aeración, esto para favorecer un crecimiento más acelerado. b) Aislamiento de Cultivo: Se busca una adaptación total del organismo que se debe someter a un proceso de purificación: eliminando contaminantes y agentes externos al organismo a cultivar, nutrición; mediante una dieta nutritiva y estímulos de crecimiento (luz, agitación, temperatura, humedad, balance CO2/O2. tiempo) y resistencia; se somete el organismo a diferentes agentes para crear resistencia y adaptación hacia un medio de cultivo especifico basado principalmente en un residuo de la región. Subsequently, these organisms are subjected to more specific processes such as variations in the amount and type of light they perceive, to changes in the quality of the air they breathe (CO 2 / O 2 balance). in other cases, they are subjected to diets with liquid culture media, where the nutrients are dissolved and growth is encouraged with mechanical oxygenation through agitation or aeration, this to promote more accelerated growth. b) Isolation of Culture: A total adaptation of the organism that must undergo a purification process is sought: eliminating contaminants and external agents to the organism to be cultivated, nutrition; through a nutritious diet and growth stimuli (light, agitation, temperature, humidity, CO 2 / O 2 balance. time) and resistance; the organism is subjected to different agents to create resistance and adaptation to a specific culture medium based mainly on a residue from the region.
El aislamiento de la cepa se da de acuerdo a su origen: tejido vivo, espora, micelio. Para el aislamiento se debe obtener uno o más ejemplares caracterizados. Una vez caracterizado y clasificado el organismo que vamos a utilizar se somete a una serie de procesos definitorios. The isolation of the strain occurs according to its origin: living tissue, spore, mycelium. For isolation, one or more characterized specimens must be obtained. Once the organism that we are going to use is characterized and classified, it undergoes a series of defining processes.
Para el aislamiento de los organismos es necesario ir al medio natural: bosque, parque, campo, entre otros espacios que alberguen la vida silvestre en la región donde se desempeña la invención. Es común encontrar estos organismos en terrenos con especies arbóreas de maderas duras como el encino-roble (quercus). Estos árboles, al final de su vida productiva, son aprovechados por especies de hongos de interés particular de este proceso. i, Una vez identificado el organismo, es necesario extraer una muestra fresca y colocarla en un recipiente cerrado (bolsa, contenedor, etc.). Dicha muestra se guarda y conserva para posteriormente ser aislada en laboratorio. ii. Utilizando campana de flujo laminar, para el aislamiento de tejido es necesario previamente preparar placas Petri con un medio de cultivo bajo en nutrientes como los es el medio de cultivo de Agar Dextrosa y Papa, agregar el 0.20% de H2O2 (peróxido de hidrógeno) como agente desinfectante-antibacterial, contemplar que es una muestra silvestre con una carga biológica alta y diversa, es por ello que requerimos un medio de cultivo bajo en nutrientes y con un potencial de supresión bacteriana lo suficientemente bajo como para no suprimir el organismo en cuestión. iii. Tomando una pequeña porción de la parte interna de la muestra y colocando por quintuplicado en las cajas Petri, y tras un período de 1-4 días y a una temperatura entre 24-27°C es posible observar el crecimiento del micelio del organismo a aislar. En este punto es también posible apreciar otro tipo de contaminantes como bacterias, levaduras y otros hongos filamentosos. Es necesario descartar todo aquello que este sobrepoblado por contaminantes no deseados. iv. Es común observar el crecimiento del tejido de micelio de interés en conjunto con otros organismos no deseados, es por ello que es necesario mantener un seguimiento puntual y una vez identificado el micelio de interés, cortar un pequeño trozo y sembrarlo nuevamente en una placa Petri limpia. v. Se repite el proceso anterior, hasta que tengamos una placa Petri limpia con el organismo de interés y libre de contaminantes externos. De esta manera se purifica el organismo de interés y es posible continuar con el proceso de desempeño y adaptabilidad. c) Preparación de Medio de Cultivo Enriquecido (MCE): Se determinó en base a una selección técnico de nutrientes para llevar a cabo el desarrollo de un material basado en el crecimiento selectivo del cuerpo vegetativo de los hongos denominado micelio, considerando los nutrientes asimilables por el organismo, éstos pueden ser más no están limitados a carbono, nitrógeno, fósforo, potasio, magnesio, azufre que se pueden obtener de diferentes fuentes. For the isolation of the organisms, it is necessary to go to the natural environment: forest, park, field, among other spaces that house wildlife in the region where the invention is carried out. It is common to find these organisms in lands with hardwood tree species such as oak (quercus). These trees, at the end of their productive life, are used by fungal species of particular interest in this process. i, Once the organism has been identified, it is necessary to extract a fresh sample and place it in a closed container (bag, container, etc.). Said sample is saved and conserved to later be isolated in the laboratory. ii. Using a laminar flow hood, for tissue isolation it is necessary to previously prepare Petri dishes with a culture medium low in nutrients such as the Dextrose Agar and Potato culture medium, add 0.20% H2O2 (hydrogen peroxide) as disinfectant-antibacterial agent, consider that it is a wild sample with a high and diverse biological load, that is why we require a culture medium low in nutrients and with a bacterial suppression potential low enough not to suppress the organism in question. iii. Taking a small portion of the internal part of the sample and placing it in the Petri dishes five times over, and after a period of 1-4 days and at a temperature between 24-27 ° C, it is possible to observe the growth of the mycelium of the organism to be isolated. At this point it is also possible to see other types of contaminants such as bacteria, yeasts and other filamentous fungi. It is necessary to discard everything that is overpopulated by unwanted pollutants. iv. It is common to observe the growth of the mycelium tissue of interest in conjunction with other unwanted organisms, that is why it is necessary to keep a punctual follow-up and once the mycelium of interest has been identified, cut a small piece and seed it again in a clean Petri dish . v. The previous process is repeated, until we have a clean Petri dish with the organism of interest and free of external contaminants. In this way the organism of interest is purified and it is possible to continue with the process of performance and adaptability. c) Preparation of Enriched Culture Medium (MCE): It was determined based on a technical selection of nutrients to carry out the development of a material based on the selective growth of the vegetative body of fungi called mycelium, considering the nutrients assimilable by the body, these can be but are not limited to carbon, nitrogen, phosphorus, potassium, magnesium, sulfur that can be get from different sources.
Previamente los organismos son sometidos a un proceso de pruebas de nutrición, mediante las cuales, se definen los nutrientes con potencial de desarrollo para una futura etapa de crecimiento en el reactor de producción especializado. Una vez que el/los organismos son aislados del medio silvestre, éstos son sometidos a una serie de procesos de nutrición para determinar la capacidad digestiva de los mismos. De esta manera, y con un ritmo ascendente, la dieta del hongo cambia de ser una dieta a base de residuos vegetales del suelo boscoso a una dieta de residuos vegetales de procesos industriales como la agricultura, residuos de la industria cervecera, tequilera, de la producción de semillas y cereales, entre otras. The organisms are previously subjected to a nutrition testing process, by which nutrients with development potential are defined for a future growth stage in the specialized production reactor. Once the organisms are isolated from the wild, they are subjected to a series of nutritional processes to determine their digestive capacity. In this way, and with an increasing rate, the diet of the fungus changes from being a diet based on plant residues from the wooded soil to a diet of plant residues from industrial processes such as agriculture, residues from the brewing industry, tequila, from the production of seeds and cereals, among others.
Una vez que se obtiene un organismo, el cual tiene la capacidad de duplicar su cobertura (cm2) en un periodo menor a 24 hr y bajo condiciones de temperatura (22 - 27°C) y humedad (55-85% HR) y con medio de cultivo con base en nutrientes provenientes de un residuo agroindustrial, es que se ha obtenido un organismo con la capacidad de fungir como candidato para el desarrollo de la presente invención. d) Inóculo de Cultivo: Se inocula a razón del 10-30% del volumen total del medio de cultivo estándar (MCE) en el reactor de cultivo. e) Incubación en reactor de cultivo con control de parámetros como iluminación bajo un fotoperiodo de 12/12 horas, bajo una longitud de onda de 380 - 480 nm; temperatura un rango general de 22 - 27 °C; humedad relativa de entre 75 - 95 %; agitación con diferentes fases de agitación como una fase, inicia de agitación constante a 100 RPM por un periodo de 5 dias para favorecer el crecimiento inicial del micelio aumentando su masa y capacidad reproductiva, una fase de crecimiento donde se mantiene bajo agitación periódica de 1 hora cada 20 horas a una velocidad de 25 RPM que dura aproximadamente 10 dias para favorecer el crecimiento de la capa superficial y la agitación favorece a la oxigenación del organismo y una fase de engrosamiento con agitación constante para favorecer el crecimiento homogéneo de la parte superficial del reactor; el balance entre oxigeno - dióxido de carbono en el rango mayor 20,000 ppm CO2 y finalmente el tiempo de retención del cultivo que va entre 5 - 45 dias. f) Cosecha: Se deberá obtener una cobertura de micelio vegetal en la superficie del reactor de aproximadamente 3 - 15 cm de grosor. Una vez obtenida esta superficie se deberá retirar la membrana de separación, con ello se cosecha con facilidad sin necesidad de retirar por completo el medio de cultivo. g) Tratamiento post-cosecha: Una vez cosechado el tapete vegetal de micelio, se pone a secar al sol o en horno hasta perder 80% de su humedad, el material se cuelga. En donde primero se le da un remojo en una solución del 10-40% de algún agente plastificante usando algún agente plastificante (que pueden ser más no esta limitado a. glicerol, etileng licol , surfactantes, polioles, entre otros), en agua limpia para después lavar con agua limpia con un tiempo de remojo de entre 12 - 48 horas y un secado en un rango de 40 - 65 °C. Finalmente, se le da un acabado: se somete a uno o más tratamiento para obtener un producto terminado con las mismas o mejores características que el cuero animal. Once an organism is obtained, which has the ability to double its coverage (cm2) in a period of less than 24 hr and under conditions of temperature (22 - 27 ° C) and humidity (55-85% RH) and with A culture medium based on nutrients from an agro-industrial waste, is that an organism with the ability to serve as a candidate for the development of the present invention has been obtained. d) Culture Inoculum: It is inoculated at a rate of 10-30% of the total volume of the standard culture medium (MCE) in the culture reactor. e) Incubation in culture reactor with parameter control as illumination under a photoperiod of 12/12 hours, under a wavelength of 380-480 nm; temperature a general range of 22 - 27 ° C; relative humidity between 75 - 95%; agitation with different phases of agitation as one phase, starts constant agitation at 100 RPM for a period of 5 days to favor the initial growth of the mycelium increasing its mass and reproductive capacity, a growth phase where it is kept under periodic agitation of 1 hour every 20 hours at a speed of 25 RPM that lasts approximately 10 days to favor the growth of the surface layer and the agitation favors the oxygenation of the organism and a thickening phase with constant agitation to favor the homogeneous growth of the surface part of the reactor ; the balance between oxygen - carbon dioxide in the greater range 20,000 ppm CO 2 and finally the retention time of the culture that goes between 5 - 45 days. f) Harvest: A covering of plant mycelium should be obtained on the surface of the reactor approximately 3-15 cm thick. Once this surface is obtained, the separation membrane must be removed, thus it is easily harvested without the need to completely remove the culture medium. g) Post-harvest treatment: Once the mycelium vegetable mat is harvested, it is dried in the sun or in the oven until it loses 80% of its humidity, the material is hung. Where first it is soaked in a solution of 10-40% of some plasticizing agent using some plasticizing agent (which may be more not this limited to. glycerol, ethylene glycol, surfactants, polyols, among others), in clean water to later wash with clean water with a soaking time of between 12 - 48 hours and drying in a range of 40 - 65 ° C. Finally, it is finished: it is subjected to one or more treatment to obtain a finished product with the same or better characteristics than animal leather.
Los acabados pueden ser, más no están limitadas al siguiente listado: tinción, encerado, impermeabilizado, acabado químico y prensado. Ejemplo 1 The finishes can be, but are not limited to the following list: staining, waxing, waterproofing, chemical finishing and pressing. Example 1
Desarrollo de material sustituto de cuero animal a base de micelio de Ganoderma Curtisii, obtenido de Bosque La Primavera (BLP), Jalisco, México. 1. Aislamiento del organismo: a. Se identificó un hongo polyporal del genero Ganoderma en un tronco de encino en descomposición, ubicado en una zona forestal aledaña a la Zona Metropolitana de Guadalajara, Jalisco, denominada Bosque La Primavera. b. Se tomó una muestra de dicho organismo para clasificación y aislamiento en laboratorio. c. Se aisló el organismo bajo la metodología de aislamiento de campo correspondiente a 5 cajas de Petri con medio de cultivo PDA (agar dextrosa y papa) con 0.25% H2O2. d. Posterior al crecimiento inicial, se purificó el tejido mediante la propagación selectiva del tejido de micelio del espécimen de Ganoderma previamente colectado en el Bosque La Primavera. e. Una vez purificado y aislado el organismo, se contó con una cepa madre denominada Ganoderma primavera. f. Con el organismo aislado, se llevó a cabo una clasificación morfológica y taxonómica de la especie en cuestión para determinar que especie especifica estamos utilizando. g. Técnicas de análisis Morfológico tales como; i. Cortes de píleo, color, aroma, textura y consistencia. ii. Tinciones y mediciones de tejido al microscopio, iii. Observación y medición de esporas al microscopio. h. Se clasificó el organismo como Ganoderma curtisii (Primavera, Jalisco). Development of an animal leather substitute material based on Ganoderma Curtisii mycelium, obtained from Bosque La Primavera (BLP), Jalisco, Mexico. 1. Isolation of the organism: a. A polyporal fungus of the genus Ganoderma was identified in a decomposing oak trunk, located in a forest area bordering the Metropolitan Area of Guadalajara, Jalisco, called Bosque La Primavera. b. A sample of this organism was taken for classification and isolation in the laboratory. c. The organism was isolated under the field isolation methodology corresponding to 5 Petri dishes with PDA culture medium (dextrose agar and potato) with 0.25% H 2 O 2 . d. After the initial growth, the tissue was purified by the selective propagation of the mycelium tissue of the Ganoderma specimen previously collected in the Forest La Spring. and. Once the organism had been purified and isolated, a mother strain called Ganoderma primavera was used. F. With the isolated organism, a morphological and taxonomic classification of the species in question was carried out to determine which specific species we are using. g. Morphological analysis techniques such as; i. Hair cuts, color, aroma, texture and consistency. ii. Microscopic staining and measurements of tissue, iii. Observation and measurement of spores under a microscope. h. The organism was classified as Ganoderma curtisii (Primavera, Jalisco).
2. Una vez aislado el organismo se sometió a diversas pruebas de nutrición. a. Se determinaron los parámetros de crecimiento ideales de la cepa Ganoderma primavera. Se realizó un ensayo en cajas de Petri, utilizando un medio de cultivo PDA (agar dextrosa y papa), adicionado con un 0.5% Sulfato de Magnesio y 1% Peptona de Soya. Se sometió a experimentación en un periodo de 7 días a 3 distintas temperaturas; 22. 24 y 27°C respectivamente, utilizando la misma cantidad de inóculo y en ensayos por triplicado para medir % de colonización. i 22 °C - colonización 50% a los 5 días. ii. 24 °C - colonización 90% a los 5 dias. iii. 27 "C - colonización 50% a los 5 dias. b. Se hizo un análisis preliminar utilizando 5 fuentes de nutrientes de alta disponibilidad en la región. Midiendo en un plazo de 10-15 días el % de crecimiento y colonización del sustrato, utilizando la temperatura determinada anteriormente a2. Once isolated, the organism underwent various nutritional tests. to. The ideal growth parameters of the Ganoderma primavera strain were determined. An assay was carried out in Petri dishes, using a PDA culture medium (dextrose and potato agar), added with 0.5% Magnesium Sulfate and 1% Soy Peptone. It was subjected to experimentation in a period of 7 days at 3 different temperatures; 22. 24 and 27 ° C respectively, using the same amount of inoculum and in triplicate tests to measure% colonization. i 22 ° C - colonization 50% after 5 days. ii. 24 ° C - 90% colonization after 5 days. iii. 27 "C - colonization 50% at 5 days. B. A preliminary analysis was made using 5 sources of nutrients with high availability in the region. Measuring in a period of 10-15 days the% growth and colonization of the substrate, using the temperature previously determined at
24"C. 24 "C.
Bagazo de Agave - 100% a los 10 días. i. Rastrojo de Maíz - 100% a los 12 días. ii. Bagazo de Caña - 100% a los 10 dias. v. Mosto de Cerveza - 80% a los 15 días. v. Borra de Café - 70% a los 15 días. c. Se determinó el sustrato o mezcla de los mismos a utilizar mediante el ensayo anterior (Bagazo deAgave Bagasse - 100% after 10 days. i. Corn Stubble - 100% after 12 days. ii. Cane Bagasse - 100% after 10 days. v. Beer must - 80% after 15 days. v. Coffee grounds - 70% after 15 days. c. The substrate or mixture of the same to be used was determined by the previous test (Bagasse of
Agave/RastrojoMaiz). Agave / RastrojoMaiz).
3. Una vez determinada la fuente principal de nutrientes (carbono), se formuló el Medio de Cultivo Enriquecido (MCE), adicionando a este una fuente de nitrógeno (Urea 2%), sulfatos (1%), fosfatos (1%) y metales traza (0.5%). 3. Once the main source of nutrients (carbon) was determined, the Enriched Culture Medium (MCE) was formulated, adding to it a nitrogen source (Urea 2%), sulfates (1%), phosphates (1%) and trace metals (0.5%).
4. Posteriormente se preparó un medio de cultivo liquido (agua azucarada al 4%) previamente inoculado con la cepa Ganoderma Primavera, la cual fue utilizada como inóculo principal para el reactor de crecimiento. 4. Subsequently, a liquid culture medium was prepared (4% sugar water) previously inoculated with the Ganoderma Primavera strain, which was used as the main inoculum for the growth reactor.
5. Incubación en reactor; a. Utilizando un reactor con un volumen de 4 litros MCE previamente esterilizado, se inoculó a razón de 15% con inóculo liquido de 5 días de antigüedad. Se prestó atención a mantener los parámetros de crecimiento correspondientes tales como temperatura 24°C, humedad 85%, CO2 > 2% (20,000ppm), y ausencia de agitación e iluminación por un periodo de 10 dias. b. Se colocó la membrana de separación y se incentivó a la oxigenación reduciendo los niveles de CO2 en un rango de 1.5 - 2% (15, 000-20, OOOppm) y con una foto período de luz de 380nm por 10 dias bajo un esquema de 12 encendido/12 apagado. c. Al cabo de 5 dias se contó con una superficie de 2cm de espesor, la cual puede crecer hasta obtener 10cm, por encima de este espesor el hongo tiende a pasar a una fase de reproducción por su naturaleza biológica. Es en este momento donde detenemos el crecimiento, cosechamos mediante el desprendimiento de la membrana de separación y obtenemos una cubierta con las medidas del reactor y un espesor menor a 10cm. 5. Incubation in reactor; to. Using a reactor with a volume of 4 liters MCE previously sterilized, it was inoculated at a rate of 15% with liquid inoculum 5 days old. Attention was paid to maintaining the corresponding growth parameters such as temperature 24 ° C, humidity 85%, CO 2 > 2% (20,000ppm), and absence of agitation and lighting for a period of 10 days. b. The separation membrane was placed and oxygenation was encouraged by reducing CO 2 levels in a range of 1.5 - 2% (15,000-20,000ppm) and with a photoperiod of light of 380nm for 10 days under a scheme 12 on / 12 off. c. After 5 days there was a 2cm thick surface, which can grow up to 10cm, above this thickness the fungus tends to go into a reproduction phase due to its biological nature. It is at this moment where we stop the growth, we harvest by detaching the separation membrane and we obtain a cover with the measurements of the reactor and a thickness less than 10cm.
6. Cosecha; se obtuvo la muestra de material y se procedió al tratamiento post-cosecha. 6. Harvest; The material sample was obtained and the post-harvest treatment was carried out.
7. Tratamiento Post-cosecha: a. Se introdujo el material en fresco en un lavado de una solución plastificante (Polietilenglicol al 25% en H2O), por un período de 12 horas. b. Se lavó el material plastificado y se secó en un horno deshidratador a 65° C por un período de 12 horas. c. En este momento se cuenta con un material sustituto de cuero a base de tejidos de micelio de hongo Ganodarma curtisii sin un acabado especializado tal como; i. Encerado i . Tinción ii. Prensado d. En el caso de este ejemplo el material se tifie con aceite de cedro al 5%, el cual le da un acabado químico para mayor durabilidad y un prensado para dar textura y asemejar a la piel curtida de cuero animal. 7. Post-harvest treatment: a. The fresh material was introduced into a wash of a plasticizer solution (25% Polyethylene glycol in H 2 O), for a period of 12 hours. b. The plasticized material was washed and dried in a dehydrator oven at 65 ° C for a period of 12 hours. c. At this time a substitute material is available leather based on Ganodarma curtisii mushroom mycelium fabrics without a specialized finish such as; i. Waxing i. Staining ii. Pressing d. In the case of this example, the material is stained with 5% cedar oil, which gives it a chemical finish for greater durability and a pressing to give texture and resemble the tanned skin of animal leather.
El material es crecido enteramente utilizando un proceso natural biológico que comprende el metabolismo de los hongos poliporales en este caso del genero Ganodermataceae. esto se logra mediante la manipulación de los parámetros de crecimiento y la formulación nutritiva dada al organismo en cuestión. The material is grown entirely using a natural biological process that includes the metabolism of polyporal fungi in this case of the genus Ganodermataceae. This is achieved by manipulating the growth parameters and the nutritional formulation given to the organism in question.
Para comprender mejor las características de la presente invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación. In order to better understand the characteristics of the present invention, the present description is accompanied, as an integral part thereof, by the drawings with an illustrative but non-limiting character, which are described below.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra un diagrama de flujo del proceso para la fabricación de sustituto de cuero animal a base de micelio de hongos. Figure 1 shows a process flow diagram for the manufacture of animal leather substitute based on fungal mycelium.
Para una mejor comprensión del invento, se pasará a hacer la descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción. For a better understanding of the invention, the Detailed description of some of the modalities thereof, shown in the drawings that for illustrative but non-limiting purposes are attached to the present description.
DESCRIPCIÓN DETALLADA DEL INVENTO DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos del método para la fabricación de sustituto de cuero animal a base de micelio de hongos, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar los mismos pasos. The characteristic details of the method for the manufacture of animal leather substitute based on fungal mycelium are clearly shown in the following description and in the accompanying illustrative drawings, the same reference signs serving to indicate the same steps.
De acuerdo con la figura 1 El método para la fabricación de sustituto de cuero animal a base de micelio de hongos consta de las siguientes etapas: a) Selección del organismo, en donde se selecciona al menos una especie de hongos con el potencial de desarrollar un material con propiedades adecuadas para fungir como ‘sustituto de cuero animal' (SCA). Estas especies pueden ser, más no están limitadas a las familias del orden poliporales: Ganodermataceae, Polyporaceae y Fomitopsidaceae. Dentro de las familias anteriormente mencionadas se busca dar prioridad a las especies de origen local de acuerdo al sitio donde se esté desarrollando la tecnología. b) Aislamiento de Cultivo: se busca una adaptación total del organismo que se debe someter a un proceso de purificación: eliminando contaminantes y agentes externos al organismo a cultivar, evaluando nutrición; mediante una dieta nutritiva y estímulos de crecimiento (luz, agitación, temperatura, humedad, balance CO2/O2. tiempo) y resistencia; se somete el organismo a diferentes agentes para crear resistencia y adaptación hacia un medio de cultivo específico basado principalmente en un residuo de la región. According to figure 1, the method for the manufacture of substitute for animal leather based on fungal mycelium consists of the following stages: a) Selection of the organism, where at least one species of fungi is selected with the potential to develop a material with suitable properties to act as 'substitute for animal leather' (SCA). These species can be, but are not limited to, the families of the polyporal order: Ganodermataceae, Polyporaceae and Fomitopsidaceae. Within the aforementioned families, it is sought to give priority to species of local origin according to the site where the technology is being developed. b) Isolation of Culture: a total adaptation of the organism that must undergo a purification process is sought: eliminating contaminants and external agents to the organism to be cultivated, evaluating nutrition; through a nutritious diet and growth stimuli (light, agitation, temperature, humidity, CO 2 / O 2 balance. time) and resistance; the organism is subjected to different agents to create resistance and adaptation towards a specific culture medium based mainly on a residue from the region.
El aislamiento de la cepa se da de acuerdo a su origen: tejido vivo, espora, micelio. c) Preparación de Medio de Cultivo Enriquecido (MCE): Se determinó en base a una selección técnico de nutrientes para llevar a cabo el desarrollo de un material basado en el crecimiento selectivo del cuerpo vegetativo de los hongos denominado micelio, considerando los nutrientes asimilables por el organismo, éstos pueden ser más no están limitados a carbono, nitrógeno, fósforo, potasio, magnesio, azufre que se pueden obtener de diferentes fuentes. i. Carbono: fuente de energía, elemento estructural, actividad enzimática. estructura celular. The isolation of the strain occurs according to its origin: living tissue, spore, mycelium. c) Preparation of Enriched Culture Medium (MCE): It was determined based on a technical selection of nutrients to carry out the development of a material based on the selective growth of the vegetative body of fungi called mycelium, considering the nutrients assimilable by the body, these can be but are not limited to carbon, nitrogen, phosphorus, potassium, magnesium, sulfur that can be obtained from different sources. i. Carbon: source of energy, structural element, enzymatic activity. Cell structure.
Fuentes: celulosa, lignina, azúcares simples, jarabes, etc. ii. Nitrógeno: producción y función enzimática y proteina. Fuentes: Aminas, amidas, nitratos, sales. iii. Fósforo: Biosintesis de ácidos nucleicos, fosfolípidos y glicofosfatos. Sources: cellulose, lignin, simple sugars, syrups, etc. ii. Nitrogen: enzyme and protein production and function. Sources: Amines, amides, nitrates, salts. iii. Phosphorus: Biosynthesis of nucleic acids, phospholipids and glycophosphates.
Fuentes: fosfatos iv. Potasio: Balance iónico y actividad enzimática. Sources: phosphates iv. Potassium: Ionic balance and enzymatic activity.
Fuentes: K+, sales. v. Magnesio: actividad enzimática, estructura de organelos. Fuentes: Mg+2, sales. vi. Azufre: síntesis aminoácidos y vitaminas. Sources: K +, salts. v. Magnesium: enzymatic activity, organelle structure. Sources: Mg + 2, salts. saw. Sulfur: synthesis of amino acids and vitamins.
Fuentes: sulfatos. metionina. El medio de cultivo determinado puede ser más no esta limitado al mostrado en la siguiente tabla 1 con dos ejemplos: Sources: sulfates. methionine. The determined culture medium can be but is not limited to that shown in the following table 1 with two examples:
Tabla 1 Ejemplo de nutrientes (Medio de cultivo)
Figure imgf000028_0001
Table 1 Example of nutrients (Culture medium)
Figure imgf000028_0001
La materia prima para la fabricación del producto es en su mayoría se selecciona de residuos de la industria agrícola. El origen de los nutrientes puede ser de acuerdo a la disponibilidad y fiabilidad determinada por los residuos de la región. Estos pueden ser de origen; mineral, vegetal, artificial o animal. Como ejemplo en la Tabla 1 . d) Inóculo de Cultivo: Se inocula a razón del 10-30% del volumen total del "medio de cultivo estándar" (MCE) en el reactor de cultivo. e) Incubación en reactor de cultivo con control de parámetros; e1 . Diseño del Reactor: i. Está determinado por un contenedor de fondo plano y paredes lisas, la forma del contenedor debe ser ortogonal y puede ser escalable en las dimensiones que lo requiera. ii. Se coloca una membrana flotante o fija al suelo del reactor, que permita una separación superficial entre el medio y el cultivo a desarrollar. The raw material for the manufacture of the product is mostly selected from waste from the agricultural industry. The origin of the nutrients can be according to the availability and reliability determined by the residues of the region. These can be of origin; mineral, vegetable, artificial or animal. What example in Table 1. d) Culture Inoculum: It is inoculated at a rate of 10-30% of the total volume of the "standard culture medium" (MCE) in the culture reactor. e) Incubation in culture reactor with parameter control; e1. Reactor Design: i. It is determined by a container with a flat bottom and smooth walls, the shape of the container must be orthogonal and it can be scalable in the dimensions required. ii. A floating or fixed membrane is placed on the floor of the reactor, which allows a superficial separation between the medium and the culture to be developed.
11.1. Es objeto de la membrana separar el organismo fúngico del medio de cultivo, evitando la adhesión de componentes sólidos, asimismo garantizando un crecimiento vertical y no subterráneo. 11.1. The purpose of the membrane is to separate the fungal organism from the culture medium, avoiding the adhesion of solid components, also guaranteeing a vertical and not underground growth.
11.2. El material de la membrana deberá ser de un polímero autoclavable como el polipropileno y el tamaño de poro no deberá ser mayor a 10mm. iii. El reactor deberá ser preferentemente de un material no poroso y de fácil limpieza, de algún material plástico como el polipropileno, acero inoxidable o cristal. e.2. Control de Parámetros i. Iluminación: se mantiene bajo un fotoperiodo de 12/12 horas, bajo una longitud de onda de 380 - 480 nm. ii. Temperatura: el rango está determinado por la especie seleccionada a partir del aislamiento. Se determina un rango general de 22 - 27 °C. iii. Humedad: el rango está determinado entre 75 - 9511.2. The membrane material should be made of an autoclavable polymer such as polypropylene and the pore size should not be greater than 10mm. iii. The reactor should preferably be made of a non-porous and easy to clean material, of some plastic material such as polypropylene, stainless steel or glass. e.2. Parameter Control i. Illumination: kept under a photoperiod of 12/12 hours, under a wavelength of 380 - 480 nm. ii. Temperature: the range is determined by the species selected from the isolation. A general range of 22 - 27 ° C is determined. iii. Humidity: the range is determined between 75 - 95
% HR. iv. Agitación: en esta sección la agitación se divide en fases de determinados por el crecimiento, ejemplificadas a continuación: % RH. iv. Agitation: In this section agitation is divided into phases determined by growth, exemplified below:
1. Fase inicial: Agitación constante a 100 RPM por un periodo de 5 dias. Favorece al crecimiento inicial del micelio aumentando su masa y capacidad reproductiva. 1. Initial phase: Constant agitation at 100 RPM for a period of 5 days. It favors the initial growth of the mycelium, increasing its mass and reproductive capacity.
2. Fase de crecimiento: Se mantiene bajo agitación periódica de 1 hora cada 20 horas a una velocidad de 25 RPM. Esta fase dura aproximadamente 10 días. Se favorece el crecimiento de la capa superficial y la agitación favorece a la oxigenación del organismo. 2. Growth phase: It is kept under periodic agitation of 1 hour every 20 hours at a speed of 25 RPM. This phase lasts approximately 10 days. The growth of the superficial layer is favored and the agitation favors the oxygenation of the organism.
3. Fase de engrosamiento: Agitación constante para favorecer el crecimiento homogéneo de la parte superficial del reactor. v. Balance entre Oxígeno - Dióxido de Carbono: Se debe mantener un ambiente rico en CO2 para propiciar el crecimiento lineal y evitar la esporulación y formación de primordios. El rango indicado es mayor 20,000 ppm de CO2. vi. Tiempo de retención: El crecimiento del organismo está fijado por la disponibilidad de nutrientes, el equilibrio y control de los parámetros de cultivo. El tiempo de retención del cultivo va entre 5 - 45 días. f) Cosecha: Se deberá obtener una cobertura de micelio vegetal en la superficie del reactor de aproximadamente 3 - 15 cm de grosor. Una vez obtenida esta superficie se deberá retirar la membrana de separación, con ello se cosecha con facilidad sin necesidad de retirar por completo el medio de cultivo. g) Tratamiento post-cosecha: Una vez cosechado el tapete vegetal de micelio, se pone a secar al sol hasta perder 80% de su humedad, el material se cuelga para cercarse. g1) Remojo plastificante: Una vez que el tapete vegetal de micelio esté terminado, se coloca en una tina en una solución del 10-40% de algún agente plastificante usando algún agente plastificante (que pueden ser más no esta limitado a, glicerol, etilengIicol , surfactantes, polioles, entre otros) en agua limpia, con un periodo de remojo de entre 12 - 48 horas y al final se lava con agua limpia. g2) Secado:. El proceso se hace en la temperatura de secado para el material de micelio deberá' ser en un rango de 40 - 65 °C. g3) Acabado: Finalmente se le da un acabado: se somete a uno o más tratamiento para obtener un producto terminado con las mismas o mejores características que el cuero animal. Este material crece en menor tiempo, no utiliza agentes contaminantes y el proceso esté fabricado bajo una tecnología libre de huella de carbono. 3. Thickening phase: Constant agitation to promote the homogeneous growth of the surface part of the reactor. v. Balance between Oxygen - Carbon Dioxide: An environment rich in CO 2 must be maintained to promote linear growth and avoid sporulation and formation of primordia. The indicated range is greater than 20,000 ppm CO 2 . saw. Retention time: The growth of the organism It is fixed by the availability of nutrients, the balance and control of the cultivation parameters. The retention time of the culture ranges between 5 - 45 days. f) Harvest: A covering of plant mycelium should be obtained on the surface of the reactor approximately 3-15 cm thick. Once this surface is obtained, the separation membrane must be removed, thus it is easily harvested without the need to completely remove the culture medium. g) Post-harvest treatment: Once the mycelium vegetable mat has been harvested, it is put to dry in the sun until it loses 80% of its humidity, the material is hung to fence. g1) Plasticizer soak: Once the mycelium vegetable mat is finished, it is placed in a tub in a solution of 10-40% of some plasticizing agent using some plasticizing agent (which can be but is not limited to, glycerol, ethylene glycol , surfactants, polyols, among others) in clean water, with a soaking period of between 12 - 48 hours and at the end it is washed with clean water. g2) Drying :. The process takes place in the drying temperature for mycelium material should 'be in a range of 40 - 65 ° C. g3) Finishing: Finally, it is finished: it is subjected to one or more treatment to obtain a finished product with the same or better characteristics than animal leather. This material grows in less time, does not use pollutants and the process is manufactured under a technology free of carbon footprint.
Los acabados pueden ser más no están limitados a los siguientes: g 3 í . Tinción: Pigmentos de origen vegetal de base lipídica. g 3 i i . Encerado: Grasas naturales de cacao, coco, cera de abeja. Se hacen en una proporción de entre el 5-15% del peso seco de la muestra mediante una inmersión de 12 horas de tratamiento con secado posterior obtenemos el material en su presentación de producto terminado. g3iii. Impermeabilizado: Empleando polímeros suaves. Se hacen en una proporción de entre el 5-15% del peso seco de la muestra mediante una inmersión de 12 horas de tratamiento con secado posterior obtenemos el material en su presentación de producto terminado. g 3i v . Químico: Aldehidos, catecoles, taninos. Se hacen en una proporción de entre el 5-15% del peso seco de la muestra mediante una inmersión de 12 horas de tratamiento con secado posterior obtenemos el material en su presentación de producto terminado. g3v. Prensado: Para darle textura y aumentar su resistencia se somete a procesos de prensado. The finishes can be more are not limited to the following: g 3 í. Staining: Pigments of vegetable origin with a lipid base. g 3 i i. Waxing: Natural fats from cocoa, coconut, beeswax. They are made in a proportion of between 5-15% of the dry weight of the sample through an immersion of 12 hours of treatment with subsequent drying, we obtain the material in its finished product presentation. g3iii. Waterproofing: Using soft polymers. They are made in a proportion of between 5-15% of the dry weight of the sample through an immersion of 12 hours of treatment with subsequent drying, we obtain the material in its finished product presentation. g 3i v. Chemical: Aldehydes, catechins, tannins. They are made in a proportion of between 5-15% of the dry weight of the sample through an immersion of 12 hours of treatment with subsequent drying, we obtain the material in its finished product presentation. g3v. Pressing: To give it texture and increase its resistance, it is subjected to pressing processes.
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, sin embargo, si para la aplicación de estas modificaciones en una estructura determinada o en el proceso de manufactura del mismo, se requiere de la materia reclamada en las siguientes reivindicaciones, dichas estructuras deberán ser comprendidas dentro del alcance de la invención. The invention has been described sufficiently so that a person of ordinary skill in the art can reproduce and obtain the results mentioned in the present invention. However, anyone skilled in the field of The technique involved in the present invention may be capable of making modifications not described in the present application, however, if for the application of these modifications in a certain structure or in the manufacturing process of the same, the matter claimed in the following claims, such structures should be within the scope of the invention.

Claims

REIVINDICACIONES
Habiendo descrito suficientemente la invención, se reclama como propiedad lo contenido en las siguientes cláusulas reivindicatorías. Having sufficiently described the invention, the content of the following claims clauses is claimed as property.
1 - Un método para la fabricación de sustituto de cuero animal a base de micelio de hongos, caracterizado porque comprende las etapas de: a) Seleccionar al menos una especie de hongos con el potencial de desarrollar un material con propiedades adecuadas para fungir como "sustituto de cuero animal" (SCA), seleccionados de, sin limitarse a, las familias del orden poliporales: Ganodermataceae, Polyporaceae y Fomitopsidaceae; b) Aislar el microorganismo seleccionado (por tejido vivo, espora, micelio) sometiéndolo a un proceso de purificación; eliminando contaminantes y agentes externos al organismo a cultivar, evaluando nutrición; mediante una dieta nutritiva y estímulos de crecimiento (luz, agitación, temperatura, humedad, balance CO2/O2, tiempo) y resistencia; c) Preparación de Medio de Cultivo en base a una selección técnico de nutrientes para llevar a cabo un crecimiento selectivo del cuerpo vegetativo de los hongos denominado micelio, considerando los nutrientes asimilables por el organismo, éstos pueden ser más no están limitados a carbono, nitrógeno, fósforo, potasio, magnesio, azufre que se pueden obtener de diferentes fuentes. d) Inocular el Cultivo a razón del 10-30% del volumen total del medio de cultivo estándar (MCE) en un reactor de cultivo; e) Incubar en un reactor de cultivo con control de parámetros como iluminación bajo un fotoperiodo de 12/12 horas, bajo una longitud de onda de 380 - 480 nm; temperatura con un rango general de 22 - 27 °C: humedad relativa de entre 75 - 95 %: agitación con diferentes fases de agitación, con balance entre oxígeno - dióxido de carbono en el rango mayor 20,000 ppm CO2 y un tiempo de retención del cultivo de entre 5 - 45 días. f) Cosecha de una cobertura de micelio vegetal en la superficie del reactor de aproximadamente 3 - 15 cm de grosor, retirando una membrana de separación, para la cosecha con facilidad sin necesidad de retirar por completo el medio de cultivo. g) Tratamiento post-cosecha del tapete vegetal de micelio, sometiéndolo a un remojo en una solución del 10-40% de algún agente ptastificante en agua limpia para después lavar con agua limpia con un tiempo de remojo de entre 12 - 48 horas y un secado en un rango de 40 - 65 °C hasta perder 80% de su humedad; y finalmente dar un acabado sometiendo uno o más tratamiento como tinción, encerado, impermeabilizado, acabado químico y prensado para obtener un producto terminado con las mismas o mejores características que el cuero animal. 1 - A method for the manufacture of animal leather substitute based on fungal mycelium, characterized in that it comprises the steps of: a) Selecting at least one species of fungi with the potential to develop a material with adequate properties to act as a "substitute of animal leather "(SCA), selected from, but not limited to, the families of the order polyporales: Ganodermataceae, Polyporaceae and Fomitopsidaceae; b) Isolate the selected microorganism (by living tissue, spore, mycelium) by subjecting it to a purification process; eliminating pollutants and external agents to the organism to be cultivated, evaluating nutrition; through a nutritious diet and growth stimuli (light, agitation, temperature, humidity, CO 2 / O 2 balance, time) and resistance; c) Preparation of Culture Medium based on a technical selection of nutrients to carry out a selective growth of the vegetative body of the fungi called mycelium, considering the nutrients assimilated by the body, these can be but are not limited to carbon, nitrogen , phosphorus, potassium, magnesium, sulfur that can be obtained from different sources. d) Inoculate the Culture at a rate of 10-30% of the total volume of the standard culture medium (SCM) in a culture reactor; e) Incubate in a culture reactor with control of parameters such as lighting under a photoperiod of 12/12 hours, under a wavelength of 380-480 nm; temperature with a general range of 22 - 27 ° C: relative humidity between 75 - 95%: agitation with different phases of agitation, with balance between oxygen - carbon dioxide in the range greater than 20,000 ppm CO 2 and a retention time of culture between 5 - 45 days. f) Harvesting a cover of plant mycelium on the surface of the reactor approximately 3-15 cm thick, removing a separation membrane, for easy harvesting without the need to completely remove the culture medium. g) Post-harvest treatment of the mycelium vegetable mat, subjecting it to soaking in a solution of 10-40% of some ptastifying agent in clean water and then washing with clean water with a soaking time of between 12 - 48 hours and a drying in a range of 40 - 65 ° C until it loses 80% of its humidity; and finally give a finish by submitting one or more treatment such as staining, waxing, waterproofing, chemical finishing and pressing to obtain a finished product with the same or better characteristics than animal leather.
2.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1 , caracterizado porque el medio de cultivo consta de 5 a 10% de una fuente de carbono, de 2 a 4% de una fuente de nitrógeno, de 0.5 a 1% de una fuente de fósforo, de 1 a 2% de una fuente de potasio, de 1 a 2% de una fuente de magnesio y de 0.5 a 1% de una fuente de azufre. 2.- The method for the manufacture of animal leather substitute based on fungal mycelium according to claim 1, characterized in that the culture medium consists of 5 to 10% of a carbon source, 2 to 4% of a nitrogen source, 0.5 to 1% of a phosphorus source, 1 to 2% of a potassium source, 1 to 2% of a magnesium source, and 0.5 to 1% from a sulfur source.
3.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 2. caracterizado porque dicha fuente de carbono se selecciona de melaza o vinaza de caña, la fuente de nitrógeno se selecciona de nitrato de sodio o urea, la fuente de fósforo es fosfato de potasio . la fuente de potasio es fosfato de potasio, la fuente de magnesio es sulfato de magnesio y la fuente de azufre se selecciona de sulfato de magnesio y sulfato de cobre. 3. The method for the manufacture of animal leather substitute based on fungal mycelium according to claim 2. characterized in that said carbon source is selected from molasses or cane stillage, the nitrogen source is selected from nitrate of sodium or urea, the source of phosphorus is potassium phosphate. the potassium source is potassium phosphate, the magnesium source is magnesium sulfate, and the sulfur source is selected from magnesium sulfate and copper sulfate.
4.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1, caracterizado porque en dicho reactor de cultivo se incorpora una membrana flotante o fija al suelo del reactor, que permita una separación superficial entre el medio y el cultivo a desarrollar (organismo fúngico) y garantiza un crecimiento vertical y subterráneo. 4.- The method for the manufacture of animal leather substitute based on fungal mycelium according to claim 1, characterized in that in said culture reactor a floating or fixed membrane is incorporated to the reactor floor, which allows a superficial separation between the medium and the culture to be developed (fungal organism) and guarantees a vertical and underground growth.
5.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 4, caracterizado porque dicha membrana flotante de un polímero autoclavable como polipropileno con un tamaño de poro no mayor a 10mm. 5. The method for the manufacture of an animal leather substitute based on fungal mycelium according to claim 4, characterized in that said floating membrane of an autoclavable polymer such as polypropylene with a pore size no greater than 10mm.
6.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1 , caracterizado porque en la etapa de Incubación en reactor de cultivo la agitación consta de: 6.- The method for the manufacture of substitute for animal leather based on fungal mycelium according to claim 1, characterized in that in the incubation stage in the culture reactor, the stirring consists of:
Una fase inicia en donde la agitación es constante a 100 RPM por un periodo de 5 días para favorecer al crecimiento inicial del micelio aumentando su masa y capacidad reproductiva; A phase begins where the agitation is constant at 100 RPM for a period of 5 days to favor the initial growth of the mycelium, increasing its mass and reproductive capacity;
Una fase de crecimiento en donde la agitación es periódica de 1 hora cada 20 horas a una velocidad de 25 RPM en un periodo de aproximadamente 10 días para favorecer el crecimiento de la capa superficial y la oxigenación del organismo; A growth phase where the agitation is periodic for 1 hour every 20 hours at a speed of 25 RPM in a period of approximately 10 days to favor the growth of the surface layer and the oxygenation of the organism;
Una fase de engrosamiento con agitación constante para favorecer el crecimiento homogéneo de la parte superficial del reactor. A thickening phase with constant agitation to promote the homogeneous growth of the surface part of the reactor.
7.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1 , caracterizado porque en la etapa de tratamiento post-cosecha el agente plastificante se selecciona de glicerol. etilenglicol , surfactantes y polioles. 7. The method for the manufacture of animal leather substitute based on fungal mycelium according to claim 1, characterized in that in the post-harvest treatment stage the plasticizing agent is selected from glycerol. ethylene glycol, surfactants and polyols.
8.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1, caracterizado porque en la etapa de acabado la tinción se lleva a acabo con pigmentos de origen vegetal de base lipidica. 8. The method for the manufacture of animal leather substitute based on fungal mycelium according to claim 1, characterized in that in the finishing stage the dyeing is carried out with lipid-based pigments of vegetable origin.
9 - El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1 , caracterizado porque en la etapa de acabado el encerado se lleva a cabo con grasas naturales de cacao, coco, cera de abeja. 9 - The method for the manufacture of animal leather substitute based on fungal mycelium according to claim 1, characterized in that in the finishing stage the waxing is carried out with natural fats of cocoa, coconut, beeswax.
10.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1 , caracterizado porque en la etapa de acabado en el impermeabilizado se emplean polímeros suaves. 10. The method for manufacturing animal leather substitute based on fungal mycelium according to claim 1, characterized in that soft polymers are used in the waterproofing finishing stage.
11.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con la reivindicación 1 , caracterizado porque en la etapa de acabado químico se realiza con aldehidos, catecoles o taninos 11.- The method for the manufacture of substitute for animal leather based on fungal mycelium according to claim 1, characterized in that in the chemical finishing stage it is carried out with aldehydes, catechins or tannins
12.- El método para la fabricación de sustituto de cuero animal a base de micelio de hongos de acuerdo con las reivindicaciones 1 y 8 a 11 , caracterizado porque en la etapa de acabado en los tratamientos químico, encerado e impermeabilizado se hacen en una proporción de entre el 5-15% del peso seco de la muestra mediante una inmersión de 12 horas de tratamiento con secado posterior obteniendo el material en su presentación de producto terminado. 12.- The method for the manufacture of substitute for animal leather based on fungal mycelium according to claims 1 and 8 to 11, characterized in that in the finishing stage in the chemical treatments, waxing and waterproofing are made in a proportion of between 5-15% of the dry weight of the sample through a 12-hour immersion treatment with subsequent drying, obtaining the material in its finished product presentation.
13.- Un producto sustituto de cuero animal fabricado a base de micelio de hongos caracterizado porque se obtiene mediante el método como reclamado en las cláusulas 1 a 12. 13.- A substitute product for animal leather made from fungal mycelium characterized in that it is obtained by the method as claimed in clauses 1 to 12.
PCT/MX2020/000008 2020-03-05 2020-03-06 Method for producing an animal leather substitute and product obtained WO2021177807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2020/002520 2020-03-05
MX2020002520A MX2020002520A (en) 2020-03-05 2020-03-05 Method for producing an animal leather substitute and the obtained product.

Publications (1)

Publication Number Publication Date
WO2021177807A1 true WO2021177807A1 (en) 2021-09-10

Family

ID=77613566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2020/000008 WO2021177807A1 (en) 2020-03-05 2020-03-06 Method for producing an animal leather substitute and product obtained

Country Status (2)

Country Link
MX (1) MX2020002520A (en)
WO (1) WO2021177807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117007A1 (en) * 2021-12-23 2023-06-29 Ecco Sko A/S An industrial process of processing a mycelium panel material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180014468A1 (en) * 2016-07-14 2018-01-18 Mycoworks, Inc. Method of Producing Fungal Materials and Objects Made Therefrom
CN108202385A (en) * 2017-12-29 2018-06-26 深圳市泽青源科技开发服务有限公司 A kind of preparation method and applications of environment protection biological scutum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180014468A1 (en) * 2016-07-14 2018-01-18 Mycoworks, Inc. Method of Producing Fungal Materials and Objects Made Therefrom
CN108202385A (en) * 2017-12-29 2018-06-26 深圳市泽青源科技开发服务有限公司 A kind of preparation method and applications of environment protection biological scutum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
12 November 2020 (2020-11-12), Retrieved from the Internet <URL:https//www.mycoworks.com/01/01/2017> *
ANONYMOUS: "Meet Mylo", BOLTH THREADS, 12 November 2020 (2020-11-12), pages 1 - 15, XP055852087, Retrieved from the Internet <URL:https://boltthreads.com/technology/mylo/18.04.2018> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117007A1 (en) * 2021-12-23 2023-06-29 Ecco Sko A/S An industrial process of processing a mycelium panel material

Also Published As

Publication number Publication date
MX2020002520A (en) 2021-09-06

Similar Documents

Publication Publication Date Title
CN113166709B (en) Method for producing fungal mats and materials made therefrom
Ahmed et al. Biological efficiency and nutritional contents of Pleurotus florida (Mont.) Singer cultivated on different agro-wastes
Cueva et al. Influence of C/N ratio on productivity and the protein contents of Pleurotus ostreatus grown in differents residue mixtures
DE112014003580T5 (en) β-1,3-glucanase, polynucleotide, recombinant vector, transformant, β-1,3-glucanase production method, enzyme production, and reduced molecular weight paramylon production
Kalaw et al. Optimization of culture conditions for secondary mycelial growth of wild macrofungi from selected areas in Central Luzon, Philippines
Wu et al. Optimization of agro-residues as substrates for Pleurotus pulmonarius production
WO2022195617A1 (en) Process for producing a foam-like grown material using flower substrates
WO2021177807A1 (en) Method for producing an animal leather substitute and product obtained
JPWO2020115690A5 (en)
Albertó Naturally occurring strains of edible mushrooms: a source to improve the mushroom industry
WO2020136448A1 (en) Mycelium material, its method to produce and usage as leather substitute
Patel et al. Comparative study on growth parameters and yield potential of five species of oyster mushroom
Loftus et al. A 21st century miniguide to sporophore morphogenesis and development in Agaricomycetes and their biotechnological potential
Ruilova Cueva et al. Influence of C/N ratio on productivity and the protein contents of Pleurotus ostreatus grown in differents residue mixtures.
Chandra Molecular characterization of fungi isolated from sea urchin Stomopneustes variolaris (Lamarck, 1816)–St. Mary’s Island, west coast of India
Pokhrel et al. Growth and productivity of Lyophyllum decastes on compost enriched with various supplements
Bonner The Effect of Lignin Content on the Growth and Yield of Two Specialty Mushroom Species: Pleurotus ostreatus and Hericium erinaceus
Niazi et al. Domestication of a magic therapeutical wine glass fungus (Podoscypha petalodes) from Pakistan
Kalaiselvam Marine fungal diversity and bioprospecting
DEMISSEW CULTIVATION AND OPTIMIZATION OF Pleurotus ostreatus M2191 AND Pleurotus sajor-caju M2145 ON BREWERY SPENT GRAIN SUPPLEMENTED WITH AGRICULTURAL RESIDUES AT DEBRE BERHAN, ETHIOPIA.
Wongamthing et al. Strategies for Improvement in Cultivation Practices of Oyster Mushrooms in North Bengal, India
Paudel Yield performance of Oyster mushroom (Pleurotus ostreatus) on various crop residues as substrate.
Markson et al. Yield performances of Pleurotus ostreatus on different growth substrates as influence by some vegetable additives
Afolabi et al. Molecular Identification and Cultivation of Pleurotus Tuber-Regium for Sclerotium Production Using Supplemented Lignocellulosic Wastes
Jongman et al. Effect of seasonal variation and supplementation on yield of oyster mushrooms cultivated on indigenous grasses in Botswana

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923660

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20923660

Country of ref document: EP

Kind code of ref document: A1