WO2021177545A1 - Solar power generation system with heating element and method for controlling same - Google Patents

Solar power generation system with heating element and method for controlling same Download PDF

Info

Publication number
WO2021177545A1
WO2021177545A1 PCT/KR2020/015856 KR2020015856W WO2021177545A1 WO 2021177545 A1 WO2021177545 A1 WO 2021177545A1 KR 2020015856 W KR2020015856 W KR 2020015856W WO 2021177545 A1 WO2021177545 A1 WO 2021177545A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater controller
heating element
heating
snow
unit
Prior art date
Application number
PCT/KR2020/015856
Other languages
French (fr)
Korean (ko)
Inventor
김준석
송금석
김은경
장병석
강문식
Original Assignee
(주)파루
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파루 filed Critical (주)파루
Publication of WO2021177545A1 publication Critical patent/WO2021177545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation system having a heating element and a method for controlling the same.
  • a method of using solar energy is largely divided into a method using solar heat and a method using sunlight.
  • the method of using solar heat is a method of heating and power generation using water heated by solar heat, and it is called solar power generation.
  • the method of making it work is called solar power generation.
  • solar power generation is a photovoltaic effect (photovoltaic effect) in which an electromotive force by electrons/holes is generated by light energy when n-type doping on a silicon crystal and irradiating sunlight to a solar cell having a p/n junction ) to generate electricity
  • photovoltaic effect photovoltaic effect
  • it is a clean energy source that does not cause global warming, such as greenhouse gas emissions, noise, and environmental destruction, and there is no fear of exhaustion.
  • solar power generation facilities have the advantage of being free to install and low maintenance costs.
  • Solar power generation requires a solar cell for concentrating sunlight, a photovoltaic module that is an assembly of solar cells, and a solar array in which solar cells are uniformly arranged.
  • a solar power generation facility maintenance device is used.
  • a facility to improve the efficiency of solar power generation is a cooling action that cools the temperature of the solar cell module and washing and snow removal accumulated on the solar cell module such as dirt, snow, rainwater, etc. It functions to maintain and manage solar power generation facilities.
  • an object of the present invention is a solar power generation system having a heating element capable of reducing supply power by sequentially supplying power to a plurality of heating elements, and a photovoltaic power generation system and the same To provide a control method.
  • the present invention may include the following examples in order to achieve the above object.
  • An embodiment according to the present invention includes a plurality of solar cell modules and one or more heating elements, and is installed on the rear surface of the solar cell module to generate heat, and a sensor unit for detecting the amount of snow and temperature, and heat according to the sensing information of the sensor unit a heater controller for controlling the unit, wherein a plurality of the heating units form one group, each group is connected in series to the heater controller, and the heater controller has a delay time set for each group of the heating units according to the sensing information of the sensor unit. It is possible to provide a solar power generation system having a heating element, characterized in that it operates sequentially.
  • the present invention has the effect of saving power supply by grouping a plurality of heating elements and sequentially operating each group with a time difference.
  • the present invention can conduct heat from the heating elements to the entire area of the solar cell module, thereby reducing the number of heating elements, thereby saving cost and energy.
  • FIG. 1 is a block diagram illustrating a solar power generation system provided with a heating element according to the present invention.
  • FIG. 2 is a block diagram illustrating a heater controller.
  • FIG. 3 and 4 are perspective views illustrating a solar cell module in the present invention.
  • FIG. 5 is an exploded view of FIG. 4 .
  • FIG. 6 is a cross-sectional view of a main part of FIG. 4 .
  • FIG. 7 is a plan view illustrating a heat generating unit.
  • FIG. 8 is a cross-sectional view illustrating a cross section of a heat generating unit.
  • FIG. 9 is a plan view illustrating another embodiment of the heat generating unit.
  • FIG. 10 is a cross-sectional view illustrating the heating part of FIG. 9 .
  • 11 and 12 are diagrams illustrating an operation example of a solar cell module.
  • FIG. 13 is a flowchart illustrating a control method of a solar power generation system provided with a heating element.
  • step S310 is a flowchart illustrating step S310.
  • step S320 is a flowchart illustrating step S320.
  • FIG. 1 is a block diagram illustrating a solar power generation system provided with a heating element according to the present invention
  • FIG. 2 is a block diagram illustrating a heater controller.
  • the photovoltaic power generation system provided with a heating element 61 includes a solar cell module 50 that converts incident sunlight into electric energy and outputs it, and a remote monitoring device from a distance.
  • the control unit 90, the sensor unit 20 for detecting snow and rain, rainfall amount and/or wind speed, the heating unit 60 for heating the solar cell module 50, and a heater for controlling the heating unit 60 It may include a controller 10 , a power supply unit 40 for supplying power to the heating unit 60 , and an emergency switch 30 for outputting an emergency stop command.
  • the remote control unit 90 receives and outputs the state information (the amount of power generation, the presence or absence of a failure, detection information of the sensor unit 20) of the solar cell module 50 from a distance.
  • the remote control unit 90 may include a server located at a remote location, and it is also possible to transmit monitoring information to a set mobile terminal (not shown).
  • the remote control unit 90 may install and modify the control program of the heater controller 10 (eg, change the setting conditions for controlling the heat generating unit 60 ) and update.
  • the sensor unit 20 includes a snow load sensor 21 for detecting the amount of snow, a wind speed sensor 23 for detecting wind speed, a temperature sensor 22 for detecting temperature, and a quantity sensor 24 for detecting rainfall. It may include at least one or more of The sensor unit 20 outputs sensing information to the heater controller 10 .
  • One or more heat generating units 60 are installed on the rear surface of each solar cell module 50 to generate heat under the control of the heater controller 10 .
  • a plurality of the heat generating units 60 are divided into one group (A, B).
  • the heating unit 60 may be set in a plurality of groups A and B.
  • Each group A and B of the heat generating unit 60 is electrically connected in series with the heater controller 10 .
  • the heating units 60 belonging to the same group (A, B) are connected in parallel to each other.
  • the heating units 60 are sequentially turned on for each group (A, B), and the heating units 60 belonging to the same group (A, B) may be turned on or off at the same time.
  • the first heat generating unit 60 group A and the second heat generating unit 60 group B are connected in series with the heater controller 10 . Therefore, the heater controller 10 supplies power to the first heat generating unit 60 group (A), and then supplies power to the second heat generating unit 60 group (B) after a set delay time to operate it.
  • the heating units 60 belonging to the same group are turned on at the same time power is supplied as they are connected in parallel with each other.
  • the heater controller 10 is fixed to any one supporting structure among the plurality of solar cell modules 50 , and wired/wireless communication with the sensor unit 20 and the remote control unit 90 and/or the mobile terminal (not shown)
  • the communication module 110 capable of this, the operation module 120 for calculating the power consumption for each group (A, B) of the heat generating unit 60, and the heat generating unit 60 group (A, B) between the delay time It may include a control module 130 for sequentially controlling the control module 130 , a switching module 140 for switching a power line, and a display module 150 for light-emitting display of operation and failure.
  • the communication module 110 performs communication with the remote control unit 90 and/or a mobile terminal (not shown).
  • the communication module 110 may include a wireless communication device that is connected to the remote control unit 90 by wired communication as a wired communication device or is capable of wireless communication with a mobile terminal (not shown).
  • the control module 130 turns on or off one or more heat generating units 60 installed for each solar cell module 50 according to the amount of snow, temperature, wind speed and/or rainfall received from the sensor unit 20 .
  • the control module 130 may control the switching module 140 to sequentially operate each heat generating unit 60 for each set group (A, B).
  • the heater controller 10 groups the heating units 60 to reduce such supply power, and sequentially operates the groups (A, B) of the heating units 60 with a delay time therebetween. do.
  • the operation module 120 calculates the power consumption for each heat generating unit 60 or each heat generating unit 60 grouped into a plurality of heat generating units 60 (A, B) for each group (A, B).
  • information on power consumption for each light emitting unit group (A, B) calculated by the operation module 120 is output to the control module 130 .
  • the control module 130 compares the set power consumption with the calculated power consumption, and if it does not fall within the set range, controls the display module 150 to indicate the occurrence of a failure, and controls the communication module 110 to control the remote control unit 90 and/or control to transmit a failure alert to a mobile terminal (not shown).
  • the switching module 140 energizes the output power line of the power supply unit 40 and the power line connected to each group (A, B) of the heating unit 60 under the control of the control module 130 .
  • the switching module 140 turns on the first power line and the power supply unit 40 connected to the group A of the first heating unit 60 under the control of the control module 130, and after a set delay time In the second heat generating unit 60, the power line between the second power line connected to the group (B) and the power supply unit 40 is energized.
  • the display module 150 emits light to indicate whether the control module 130 operates or not by the control or operation module 120 .
  • the display module 150 may be composed of a plurality of LEDs emitting colored light so that on, off, and failure can be visually checked.
  • the emergency switch 30 outputs an emergency stop command so that the operator can manually turn off the heating unit 60 .
  • the emergency stop command is output to the heater controller 10 , and the heater controller 10 turns off the entire heating unit 60 according to the emergency stop command output from the emergency switch 30 .
  • the power supply unit 40 may include a battery 42 for storing power generated by the solar cell module 50 and a commercial power supply unit 41 for converting and supplying external power.
  • the battery 42 and the commercial power supply unit 41 may selectively supply power to the heater controller 10 and the heating unit 60 by the heater controller 10 or a separate power control device (not shown).
  • the power control device may include an output power line of the commercial power source 41 and a power line connected to the heating unit 60 according to the charge amount of the battery 42 , or the output power of the battery 42 . It is also possible to control the switching so that the line and the power line of the heating unit 60 are connected.
  • the solar cell modules 50 are arranged in a state spaced apart from the ground by a support structure as a plurality, and convert the incident sunlight into electrical energy and output it.
  • the solar cell module may melt snow or ice accumulated on the upper surface by the heat generated by the heat generating unit 60 .
  • FIG. 3 is a perspective view illustrating a solar cell module supported by a support pillar in the present invention
  • FIG. 4 is a perspective view illustrating a solar panel and a support frame
  • FIG. 5 is an exploded view of FIG.
  • FIG. 6 is a cross-sectional view of the main part of FIG. 4
  • FIG. 7 is a plan view illustrating the heating unit
  • FIG. 8 is a cross-sectional view illustrating the heating unit.
  • the solar cell module includes a solar panel 51 to which sunlight is incident, a support frame 52 supporting the solar panel 51 , and a support frame 52 to be spaced apart from the ground. It includes a support structure for fixing it.
  • the solar panel 51 converts and outputs electric energy when sunlight is incident on it.
  • the solar panel 51 is fastened to the support frame 52 at both ends, so that a plurality of them are aligned.
  • the double support frame 52 has an upper inlet groove 521 through which the side end of the solar panel 51 is introduced from the upper end of the main body extending in one direction, and a lower fastening end that protrudes from the lower end and is fastened to the heating unit 60 ( 522) may be included.
  • the support frame 52 may be supported by a support structure including a support pillar 53 as shown in FIG. 3 .
  • the support structure is not limited to that shown in the drawings, and a rotating device may be added to be rotated according to the position of sunlight.
  • the heating unit 60 includes a heating element 61 that generates heat when power is supplied, a support means 62 for fixing the heating element 61 to the solar panel 51 , and a support means 62 to a support frame 52 . It includes a fastening means (63) for fastening, and a fixing means (64) for pressing the fastening means (63) to the support frame (52).
  • the heating element 61 includes a substrate 611 , an electrode 616 , a heating pattern 612 printed on the substrate 611 to constitute a heating wire, and a protective layer 613 applied on the upper surface of the heating pattern 612 ) and an adhesive layer 614 laminated on the upper surface of the protective layer 613 , and a heat insulating material 615 .
  • the substrate 611 is a film of an insulating material and has a thin thickness (eg, 0.1 mm to 5 mm).
  • the heating pattern 612 extends to the positive and negative electrodes 616, respectively, and heats up when power is supplied. That is, the heating pattern 612 functions as a heating wire.
  • the heating pattern 612 may be printed on one surface of the substrate 611 by conductive ink.
  • the conductive ink is applied to one surface of the substrate 611 as silver nano ink to configure the heating pattern 612 .
  • the protective layer 613 is, for example, a liquid resin containing carbon, and is applied to the upper surface of the heating pattern 612 to perform insulation, electromagnetic wave shielding, and protection functions.
  • the adhesive layer 614 is formed on the upper surface of the protective layer 613 and is in close contact with the rear surface of the solar cell module 50 .
  • the adhesive layer 614 is a double-sided tape, with one side exposed first and adhered to the upper surface of the protective layer 613 , and then the adhesive solution on the opposite side is exposed and adhered to the back surface of the solar cell module 50 .
  • the adhesive layer 614 performs a function of temporarily adhering until the support means 62 is fixed.
  • the heat insulating material 615 blocks the heat generated by the heating pattern 612 from being conducted to the support means 62 .
  • the support means 62 may be fixed to the rear surface of the solar panel 51 by accommodating the heating element 61 on one surface.
  • the support means 62 is a metal bar made of aluminum extending in one direction, and the heating element is adhered to the upper surface to press and fix the heating element to the rear surface of the solar panel 51 .
  • the support means 62 may further include a bending end 622 extending downward from the front and rear surfaces or both sides so that the fastening means 63 can be fastened in a fitting manner and the ends are bent.
  • the fastening means 63 includes a long groove 632 facing inward from both sides, a short groove 631 extending from the front or rear to both sides, and a fixing hole 633 to which the fixing means 64 is screwed.
  • the long groove 632 is a long groove 632 facing inward on both sides, and the bent end 622 of the support means 62 is fitted.
  • the short groove 631 is a groove facing inward from the front to both sides, into which the lower fastening end 522 of the support frame 52 is fitted.
  • the fixing hole 633 is threaded on the inner surface so as to be screwed with the fixing means 64 such as bolts or screws.
  • the fixing means 64 presses the short groove 631 while being screwed with the fastening means 63 as bolts or screws. That is, as for the fastening means 63 , the bent end 622 is fitted into the long groove 632 , and the lower fastening end 522 of the support frame 52 is fitted into the short groove 631 . And the fixing means 64 is fastened to the fixing hole 633 and rotated in the connection state of the fastening means 63 as described above to tighten the short groove 631 . Accordingly, the lower fastening end 522 of the support frame 52 may be fixed within the short groove 631 by tightening the short groove 631 by the fixing means 64 .
  • a plurality of heat generating units 60 may be installed on one supporting means 62 . That is, two or more heat generating units 60 may be fixed to one solar cell module 50 by one supporting means 62 . Another embodiment of the heating unit 60 will be described with reference to FIGS. 9 and 10 .
  • FIG. 9 is a plan view illustrating another embodiment of the heating unit
  • FIG. 10 is a cross-sectional view of the heating unit of FIG. 9 .
  • another embodiment of the heating unit 60 includes two or more heating elements 61 , a support means 62 , and a heat-conducting sheet 65 for conducting heat of the heating elements 61 . do.
  • the support means 62 includes a housing 621 capable of accommodating two or more heating elements 61 and 61 ′ on the inside, electrodes 616 of the heating elements 61 and a power supply line extending from the power supply unit 40 . It may include a power connector board 623 for connecting.
  • the housing 621 is formed with upright wall surfaces on the front and rear left and right sides to form a space for accommodating the plurality of heating elements 61 and a space for installing the power connector board 623 .
  • the housing 621 may include an upright partition wall 621a to partition a space in which the power connector board 623 is installed and a space in which the heating elements 61 are accommodated.
  • the partition wall 621a has a plurality of cutouts (not shown) so that the positive (+) and negative (-) electrodes 616 and the power connector board 623 can be interconnected, or The height of the partition wall 621a may be adjusted.
  • the housing 621 may include a bent end 622 that extends and bends downward so that the fastening means 63 of the embodiment described above is fitted, so that the support frame (by the fastening means 63 and the fixing means 64) 52) can be fixed.
  • the power connector board 623 electrically energizes the terminal (not shown) to which the electrode 616 of the heating element 61 is connected, the power line extending from the power supply unit 40, and the electrodes of the heating elements 61 and 61'.
  • a circuit may be configured.
  • the power connector board 623 is fixed to the space partitioned by the partition wall 621a of the housing 621 by an adhesive or other fixing fixtures (screws or bolts).
  • the heating elements 61 and 61' are installed to be spaced apart from each other as, for example, the first heating element 61 and the second heating element 61', respectively, the substrate 611, the heating element 61, and the protective layer 613. and a heat insulating material 615 and/or an adhesive layer 614 .
  • the first heating element 61 and the second heating element 61 ′ are electrically connected to the power connector board 623 , and are connected in parallel with each other.
  • the heat conduction sheet 65 is laminated on the upper surfaces of the plurality of heating elements 61 and 61' to conduct heat.
  • the heat conductive sheet 65 may include a resin layer 651 made of an insulating material and a heat conductive metal wire 652 embedded in the resin layer 651 .
  • the adhesive layer 614 of the heating element 61 is applied to the upper surface of the resin layer 651 as a double-sided tape.
  • the heat conductive sheet 65 may be laminated on the upper surface of the adhesive layer 614 .
  • the heat conduction sheet 65 may be temporarily attached to the rear surface of the solar panel 51 by a separate double-sided tape and then completely fixed by the support means 62 .
  • the resin layer 651 insulates the heat-conducting metal wire 652 embedded therein by applying and curing an insulating liquid resin.
  • the heat-conducting metal wire 652 extends in a form embedded in the resin layer 651 to conduct heat generated from the heating elements 61 to the entire rear surface of the solar panel 51 .
  • the heat-conducting metal wire 652 may be formed in a mesh shape as it cross-extends in the horizontal and vertical directions.
  • the heat-conducting metal wire 652 is preferably manufactured in an area that can be installed on the entire rear surface of the solar panel 51 .
  • the solar cell module 50 may vary in real time according to the position of sunlight. Therefore, the present invention can also be applied to a solar cell module to which a solar tracking device capable of changing the posture of the solar cell module 50 according to the position of the sun as described above is added. This will be described with reference to FIGS. 11 and 12 .
  • FIG 11 and 12 are views showing another embodiment of the solar cell module in the present invention.
  • the present invention provides a rotational part 80 that deforms the position of the solar cell module 50 and a rotational driving part that operates the rotational part 80 under the control of the heater controller 10 ( 70) may be included.
  • the rotating unit 80 will be briefly described with only the main configuration and principle as the technology applied to the tracking device of the generally known solar cell module 50 is applied.
  • the rotation unit 80 to be described below does not limit the present invention, and corresponds to any device capable of changing the position of the solar cell module 50 .
  • the rotation driving unit 70 drives the rotation unit 80 installed in the solar cell module 50 under the control of the heater controller 10 or the remote control unit 90 .
  • the rotation unit 80 is between the cylinder 81 operated by the control of the rotation driving unit 70 , the rotation bar 82 connected to the cylinder 81 , and the solar cell module 50 and the rotation bar 82 . It includes a connection bar 83 that is rotatably connected in the and a support bar 84 for supporting the solar cell module 50 .
  • the cylinder 81 moves the rotation bar 82 forward or backward.
  • the support bar 84 is rotatably connected between the rotation bar 82 and the solar cell module 50 . That is, the support bar 84 rotates the solar cell module 50 counterclockwise or clockwise when the rotation bar 82 is moved forward.
  • the heater controller 10 detects the amount of snow according to the detection signal of the snow sensor 21, and when the detected amount of snow exceeds the set standard, controls the rotation driving unit 70 to set the solar cell module 50 in an upright position. control to keep
  • the present invention includes the configuration as described above, and below, a control method of a solar power generation system having the heating element 61 using the configuration as described above will be described.
  • FIG. 13 is a flowchart illustrating a control method of a solar power generation system provided with a heating element.
  • the heater controller 10 collects detection information from the sensor unit 20, step S100, comparing the detection information with a set standard, step S200, and the heating unit 60 group (A) , step S300 of sequentially operating each B), step S400 of detecting on/off of the emergency switch 30, and step S500 of turning off the heating elements 61 by cutting off the power when the emergency switch 30 is turned on. .
  • Step S100 is a step in which the heater controller 10 collects detection information of the sensor unit 20 .
  • the heater controller 10 receives snow amount detection information of the snow load sensor 21 , temperature detection information of the temperature sensor 22 , wind speed detection information of the wind speed sensor 23 , and rainfall detection information of the water quantity sensor 24 . do.
  • Step S200 is a step in which the heater controller 10 compares detected information with set information.
  • the heater controller 10 sets a standard for operating the heating element 61 according to the amount of snow, temperature, wind speed, and rainfall.
  • the heating element 61 may be operated when the temperature is below the set temperature or the wind speed exceeds the set value even when it snows or snows stop, and when it is detected below the set temperature and/or the set wind speed or more after it rains or stops can
  • the heater controller 10 may set criteria for combining the amount of snow, rainfall, temperature, and wind speed.
  • Step S300 is a step in which the heater controller 10 sequentially operates the heating elements 61 when the detection information corresponds to the condition set in step S200 .
  • the heating units 60 including the heating element 61 are set in a plurality of groups A and B, and each of the heating units 60 groups A and B is connected in series to the heater controller 10 .
  • the heating elements 61 belonging to the same group (A, B) are connected in parallel.
  • the heater controller 10 for example, operates the second heat generating unit 60 group (B) after a set delay time elapses after operating the first heat generating unit (60) group (A). As described above, the heater controller 10 sequentially operates the groups A and B of the heating unit 60 at a set delay time period.
  • the switching module 140 of the heater controller 10 sequentially connects the output power line of the power supply unit 40 and the power line connected to the corresponding heating unit 60 groups A and B. Therefore, the supply power output from the power supply unit 40 is not for simultaneously operating the entire heating unit 60 group (A, B), but can be reduced as it is sequentially supplied for each heating unit 60 group (A, B). .
  • Step S400 is a step in which the heater controller 10 detects on/off of the emergency switch 30 .
  • the emergency switch 30 may be manually operated by an administrator and may be provided integrally with the heater controller 10 .
  • the remote control unit 90 may remotely control the emergency switch 30 or transmit an emergency stop command.
  • the heater controller 10 detects whether the emergency switch 30 is turned on or an emergency stop command from the remote control unit 90 is received after the heating element 61 is operated.
  • Step S500 is a step in which the heater controller 10 turns off the groups A and B of the heating unit 60 when an emergency stop command is received.
  • the switching module 140 is connected in series with the power supply unit 40 and the heating unit 60 for each group (A, B). cut off the power line.
  • step S300 may include a step S310 for vertically controlling the solar cell module 50 according to the amount of snow, and a step S320 for detecting whether or not the groups A and B of the heating unit 60 are faulty. This will be described with reference to FIGS. 14 and 15 .
  • step S310 is a flowchart illustrating step S310.
  • step S310 includes step S311 of detecting snow load, step S312 of sequentially driving for each group (A, B) of the heat generating unit 60, step S313 of comparing the set first snow load amount with the detected snow amount, and , a step S314 of comparing a time reference when a snow load exceeding the set first snow load is detected, a step S315 of comparing the detected snow amount with a set second snow amount if it does not correspond to a set time standard, a set time standard or a set second When the amount of snow falls, a step S316 of controlling the solar cell module 50 upright, and a step S317 of controlling the groups (A, B) of the heat generating units 60 at a differential cycle according to the temperature and/or wind speed standard are included.
  • Step S311 is a step in which the heater controller 10 receives detection information of the snow load sensor 21 .
  • the heater controller 10 receives sensing information of the sensor unit 20 in real time.
  • Step S312 is a step in which the heater controller 10 sequentially operates for each group (A, B) of the heating unit 60 when snow is detected.
  • the heater controller 10 sequentially operates the heating unit 60 for each group (A, B).
  • the heater controller 10 supplies power to the next heat generating unit 60 groups A and B. control to supply
  • step S313 the heater controller 10 receives the snow load amount detection information from the snow load sensor 21 and compares it with a set first snow load amount.
  • the heater controller 10 continuously receives the detection information of the snow load sensor 21 even after the heating element 61 is operated and compares the sensed snow load amount with the set first snow load amount.
  • Step S314 is a step in which the heater controller 10 detects whether the set first snowfall amount corresponds to the set time reference.
  • the time reference may include a time zone from after sunset to before sunrise. Accordingly, the heater controller 10 compares the current time with the time reference through its own timer.
  • step S315 if the current time does not correspond to the time reference, the heater controller 10 detects whether the snow load amount detected by the snow load sensor 21 corresponds to the set second snow load amount.
  • the second snow load is set to be larger than the first snow load.
  • Step S316 is a step in which the heater controller 10 controls the solar cell module 50 upright when the time reference or the second snow load is sensed.
  • the heater controller 10 outputs an operation command to the rotation driving unit 70 when it corresponds to the snow load amount set according to the detection information of the snow load sensor 21 .
  • the rotation driving unit 70 operates the rotation unit 80 to transform the solar cell module 50 into an upright posture. Therefore, as the solar cell module 50 maintains an upright posture, all of the previously accumulated snow may fall to the ground, and the amount of snow accumulated thereafter may be minimized.
  • Step S317 is a step in which the heater controller 10 controls the groups A and B of the heating units 60 to operate in a differential cycle according to the sensing information of the sensor unit 20 .
  • the heater controller 10 may alternately turn on and off for a set period of time for which the heating unit 60 groups A and B are set according to temperature, wind speed, and time. control so that
  • the heater controller 10 controls so that the on time of the groups A and B of the heating unit 60 is longer and the off time is shorter as the temperature is lower and the wind speed is stronger.
  • the heater controller 10 may turn the heating element 61 off and/or release the upright position when the heating element 61 off criterion and/or the upright release condition are met in step S317 .
  • the off criterion of the heating element 61 may be set such that any one or more of temperature (eg, 20° C. or higher), wind speed, and rainfall are combined, and the upright release condition is a combination of time, snow load, and temperature. can be
  • Step S320 will be described with reference to FIG. 15 .
  • 15 is a flowchart illustrating a failure detection step in step S320.
  • step S320 includes a step S321 of measuring power consumption for each group (A, B) of each heating unit 60 in the heater controller 10, and a consumption among groups (A, B) of the heating unit 60
  • Step S322 for detecting an abnormality in the group (A, B) of the heating unit 60 according to whether there is a difference between power and set power consumption
  • step S323 for waiting for a set time when an abnormality is detected, and consumption after the standby time
  • Step S324 of re-measuring power step S325 of detecting a failure after re-measurement
  • step S326 of outputting and transmitting a failure alert.
  • Step S321 is a step in which the heater controller 10 measures the power consumption for each heat generating unit 60 group (A, B).
  • the operation module 120 calculates power consumption for each group (A, B) of each heat generating unit 60 supplied with power by the switching module 140 .
  • the arithmetic module measures power consumption for each set time period
  • the control module 130 compares the set power consumption standard with the power consumption of each heat generating unit 60 group (A, B) calculated by the arithmetic module 120 . to detect any abnormality.
  • the first heating unit 60 group (A) includes a first heating element 61 and a second heating element 61 ′, among which the first heating element 61 is not operated due to a failure, and the second Only the heating element 61' can be operated. Therefore, in the group (A) of the first heating unit 60, as only one heating element (61, 61') is operated, the power consumption is reduced to half compared to the normal operation.
  • the power consumption standard is set to the range of power consumption used when the heating unit 60 group (A, B) is operated.
  • control module 130 may detect whether there is an abnormality based on the actual power consumption calculated by the operation module 120 and the set power consumption standard.
  • Step S323 is a step of waiting for a time set in the heater controller 10 .
  • Step S324 is a step in which the heater controller 10 re-measures the power consumption of the groups A and B of the heating unit 60 for which the abnormality is detected in step S322 after the standby time.
  • the operation module 120 re-measures the power consumption of the group (A, B) of the heating unit 60 for a set time after the standby time, and outputs the result.
  • Step S325 is a step of detecting whether there is a failure by comparing the re-measured power consumption by the heater controller 10 with a set power consumption standard.
  • the control module 130 detects a failure based on whether there is a difference between the re-measured power consumption of the operation module 120 and the set power consumption standard.
  • Step S326 is a step of alerting a failure when the power consumption re-measured by the heater controller 10 is different from the set power consumption standard.
  • the failure alarm may be transmitted directly to the remote control unit 90 and a mobile terminal (not shown).
  • the heater controller 10 may operate the display module 150 to display whether there is a malfunction or not.
  • the present invention sets a plurality of heating units 60 provided with one or more heating elements 61 and 61' as one heating unit 60 group (A, B), and each heating unit ( 60) Groups (A, B) can be operated sequentially at a set delay time interval to reduce supply power, Since the heating time of the heating element 61 can be shortened, energy can be saved.

Abstract

An embodiment of the present invention comprises a solar power generation system having a heating element (61), comprising: a plurality of photovoltaic modules (50); heating parts (60) which have one or more heating elements (61, 61') and are installed on the rear surface of the photovoltaic modules (50) so as to generate heat; a sensor part (20) which detects the amount of snow and temperature; and a heater controller (10) which controls the heating parts (60) according to sensing information of the sensor part (20), wherein a plurality of heating parts (60) form one group (A, B), each group (A, B) is connected in series to the heater controller (10), and the heater controller (10) sequentially operates each group of the heating parts (60) according to the sensing information of the sensor part (20) with a delay time set for each group (A, B) of the heating parts (60) therebetween.

Description

발열체를 구비한 태양광 발전 시스템 및 그 제어방법Solar power generation system with heating element and method for controlling the same
본 발명은 발열체를 구비한 태양광 발전 시스템 및 그 제어방법에 관한 것이다.The present invention relates to a solar power generation system having a heating element and a method for controlling the same.
일반적으로 태양에너지를 이용하는 방법은 크게 태양열을 이용하는 방법과 태양광을 이용하는 방법으로 구분된다. 태양열을 이용하는 방법은 태양열에 의해 데워진 물 등을 이용하여 난방 및 발전을 하는 방법으로 태양열 발전이라 하고, 태양광을 이용하는 방법은 태양의 빛을 이용하여 전기를 생산 및 생산된 전기로 각종 기계 및 기구를 작동시킬 수 있도록 하는 방법으로 태양광 발전이라 한다.In general, a method of using solar energy is largely divided into a method using solar heat and a method using sunlight. The method of using solar heat is a method of heating and power generation using water heated by solar heat, and it is called solar power generation. The method of making it work is called solar power generation.
상술한 방법 중 태양광 발전은 실리콘 결정 위에 n형 도핑을 하여 p/n접합을 한 태양전지에 태양광을 조사하면 광 에너지에 의해 전자/정공에 의한 기전력이 발생하게 되는 광기전력 효과(photovoltaic effect)를 이용하여 전기를 발생시킴으로써, 화석원료 등의 기존 에너지원과는 달리 지구 온난화를 유발하는 온실가스 배출, 소음, 환경파괴 등의 위험성이 없는 청정 에너지원이며 고갈의 염려도 없다. 또한 여타 풍력이나 해수력과 달리 태양 광 발전설비는 설치가 자유롭고 유지비용이 저렴하다는 장점을 갖는다.Among the above-described methods, solar power generation is a photovoltaic effect (photovoltaic effect) in which an electromotive force by electrons/holes is generated by light energy when n-type doping on a silicon crystal and irradiating sunlight to a solar cell having a p/n junction ) to generate electricity, unlike existing energy sources such as fossil raw materials, it is a clean energy source that does not cause global warming, such as greenhouse gas emissions, noise, and environmental destruction, and there is no fear of exhaustion. In addition, unlike other wind power or sea water power, solar power generation facilities have the advantage of being free to install and low maintenance costs.
태양광 발전은 태양광을 집광하기 위한 태양전지(solar cell), 태양전지의 집합체인 태양전지모듈(photovoltaicmodule) 및 태양전지들을 일정하게 배열한 태양전지어레이(solar array) 등이 요구된다.Solar power generation requires a solar cell for concentrating sunlight, a photovoltaic module that is an assembly of solar cells, and a solar array in which solar cells are uniformly arranged.
그러나, 현재 가장 널리 사용되고 있는 실리콘 태양전지의 경우 태양전지모듈의 온도가 올라갈 경우 1℃ 당 05%의 출력 감소가 발생한다. 이러한 특성에 따라 태양광 발전의 출력은 태양이 가장 긴 여름이 아닌 봄과 가을에 최고치를 기록한다. 이러한 온도 상승은 태양광 발전의 발전 효율이 저하되는 주요 원인이 되고 있다. 또한, 태양전지모듈에 황사, 악천후 등의 기상현상 등에 의해 오물이 쉽게 쌓일 수 있다는 단점을 갖는다. 태양전지모듈에 오물이 쌓일 경우 태양전지모듈은 광투과 및 광흡수율이 현저히 떨어지므로 발전효율이 저하되며, 겨울철에 비나 눈 등이 태양 전지판에 내릴 경우 발전효율의 저하가 발생한다.However, in the case of silicon solar cells, which are currently most widely used, when the temperature of the solar cell module increases, an output decrease of 05% per 1°C occurs. According to these characteristics, the output of photovoltaic power peaks in spring and autumn, not in summer, when the sun is the longest. This temperature rise is a major cause of the deterioration of the power generation efficiency of solar power generation. In addition, it has a disadvantage that dirt may easily accumulate on the solar cell module due to weather phenomena such as yellow sand or bad weather. When dirt accumulates on the solar cell module, the light transmittance and light absorptivity of the solar cell module is significantly lowered, so the power generation efficiency is lowered.
따라서, 이러한 오물, 눈, 비로 인한 발전효율의 저하의 방지를 위해 태양광 발전설비 유지장치가 사용된다. 태양광 발전의 효율을 향상시키기 위한 설비는 태양전지모듈의 온도를 식혀주는 냉각 작용과 태양전지모듈에 쌓인 오물, 눈, 우수 등을 세척, 제설 등을 함으로써 태양전지모듈이 일정한 출력의 발전을 수행할 수 있도록 태양광 발전설비를 유지관리하는 기능을 한다.Therefore, in order to prevent a decrease in power generation efficiency due to such filth, snow, and rain, a solar power generation facility maintenance device is used. A facility to improve the efficiency of solar power generation is a cooling action that cools the temperature of the solar cell module and washing and snow removal accumulated on the solar cell module such as dirt, snow, rainwater, etc. It functions to maintain and manage solar power generation facilities.
특히, 태양전지모듈에 눈이 쌓일 경우에는 발전효율의 저하 및 하중에 의한 손상이 발생될 수 있음에 따라 눈이 내리때, 신속하여 발열하여 태양전지모듈에 눈이 쌓이는 것을 방지함이 바람직하다. In particular, when snow accumulates on the solar cell module, it is desirable to prevent the accumulation of snow on the solar cell module by rapidly generating heat when it snows, as a decrease in power generation efficiency and damage due to a load may occur.
따라서 종래에는 태양전지모듈의 배면에 발열체를 구비하여 태양전지모듈을 가열하는 방식으로 눈을 녹여서 제거하는 기술이 제안되었다. 하지만, 이경우에 다수의 태양전지모듈별로 설치되는 복수의 발열체를 동시에 가열함에 따라 공급전력의 소비가 많은 문제점이 있었다. Therefore, conventionally, a technique for removing snow by melting snow by heating the solar cell module by providing a heating element on the rear surface of the solar cell module has been proposed. However, in this case, as a plurality of heating elements installed for each solar cell module are simultaneously heated, there is a problem in that supply power is consumed.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 복수의 발열체들에 순차적으로 전원을 공급하여 공급전력을 줄일 수 있는 발열체를 구비한 태양광 발전 시스템 및 그 제어 방법을 제공함에 있다. Accordingly, the present invention has been devised to solve the problems of the related art as described above, and an object of the present invention is a solar power generation system having a heating element capable of reducing supply power by sequentially supplying power to a plurality of heating elements, and a photovoltaic power generation system and the same To provide a control method.
본 발명은 상기와 같은 목적을 달성하기 위하여 하기와 같은 실시예를 포함할 수 있다. The present invention may include the following examples in order to achieve the above object.
본 발명에 따른 실시예는 복수의 태양전지모듈과, 하나 이상의 발열체를 구비하여 태양전지모듈의 배면에 설치되어 발열하는 발열부와, 적설량 및 온도를 감지하는 센서부 및 센서부의 감지 정보에 따라 발열부를 제어하는 히터 컨트롤러를 포함하고, 발열부는 복수로서 하나의 그룹을 형성하고, 각 그룹은 히터 컨트롤러에 직렬 연결되고, 히터 컨트롤러는 센서부의 감지 정보에 따라 발열부의 그룹별로 설정된 지연시간을 사이에 두고 순차 작동시키는 것을 특징으로 하는 발열체를 구비한 태양광 발전 시스템을 제공할 수 있다. An embodiment according to the present invention includes a plurality of solar cell modules and one or more heating elements, and is installed on the rear surface of the solar cell module to generate heat, and a sensor unit for detecting the amount of snow and temperature, and heat according to the sensing information of the sensor unit a heater controller for controlling the unit, wherein a plurality of the heating units form one group, each group is connected in series to the heater controller, and the heater controller has a delay time set for each group of the heating units according to the sensing information of the sensor unit. It is possible to provide a solar power generation system having a heating element, characterized in that it operates sequentially.
그러므로 본 발명은 다수개의 발열체를 그룹화하고, 각 그룹별로 시간차를 두고 순차 작동시킴에 따라 공급 전력을 절약할 수 있는 효과가 있다. Therefore, the present invention has the effect of saving power supply by grouping a plurality of heating elements and sequentially operating each group with a time difference.
또한, 본 발명은 발열체들로부터 발열된 태양전지모듈의 전체 영역으로 전도시킬 수 있어 발열체의 숫자를 줄일 수 있어 비용 및 에너지를 절약할 수 있는 효과가 있다. In addition, the present invention can conduct heat from the heating elements to the entire area of the solar cell module, thereby reducing the number of heating elements, thereby saving cost and energy.
도 1은 본 발명에 따른 발열체가 구비된 태양광 발전 시스템을 도시한 블럭도이다. 1 is a block diagram illustrating a solar power generation system provided with a heating element according to the present invention.
도 2는 히터 컨트롤러를 도시한 블럭도이다. 2 is a block diagram illustrating a heater controller.
도 3 및 도 4는 본 발명에서 태양전지모듈을 도시한 사시도이다. 3 and 4 are perspective views illustrating a solar cell module in the present invention.
도 5는 도 4의 분해 도면이다. FIG. 5 is an exploded view of FIG. 4 .
도 6은 도 4의 요부 단면도이다. 6 is a cross-sectional view of a main part of FIG. 4 .
도 7은 발열부를 도시한 평면도이다. 7 is a plan view illustrating a heat generating unit.
도 8은 발열부의 단면을 도시한 단면도이다. 8 is a cross-sectional view illustrating a cross section of a heat generating unit.
도 9는 발열부의 다른 실시예를 도시한 평면도이다. 9 is a plan view illustrating another embodiment of the heat generating unit.
도 10은 도 9의 발열부를 도시한 단면도이다. FIG. 10 is a cross-sectional view illustrating the heating part of FIG. 9 .
도 11과 도 12는 태양전지모듈의 작동예를 도시한 도면이다. 11 and 12 are diagrams illustrating an operation example of a solar cell module.
도 13은 발열체가 구비된 태양광 발전 시스템의 제어방법을 도시한 순서도이다. 13 is a flowchart illustrating a control method of a solar power generation system provided with a heating element.
도 14는 S310 단계를 도시한 순서도이다. 14 is a flowchart illustrating step S310.
도 15는 S320 단계를 도시한 순서도이다. 15 is a flowchart illustrating step S320.
본 연구는 ㈜파루의 주관 하에 대한민국 산업통상자원부 산하 한국에너지기술평가원의 신재생 에너지 핵심기술개발(R&D) 사업의 지원에 의해 이루어진 것으로 연구과제명은 태풍과 지진 등 자연재해에 안전한 저가형 영농형 태양광 구조물 제작기술(과제고유번호:20193010014750) 이고, 연구기간은 2019.05.01 ~ 2021.12.31이다.This research was carried out with the support of the new and renewable energy core technology development (R&D) project of the Korea Institute of Energy Technology and Evaluation under the Ministry of Trade, Industry and Energy of the Republic of Korea under the supervision of Faroo Co., Ltd. It is a structure manufacturing technology (task unique number: 20193010014750), and the research period is from 2019.05.01 to 2021.12.31.
이하에서는 본 발명의 실시예들을 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 발열체가 구비된 태양광 발전 시스템을 도시한 블럭도, 도 2는 히터 컨트롤러를 도시한 블럭도이다. 1 is a block diagram illustrating a solar power generation system provided with a heating element according to the present invention, and FIG. 2 is a block diagram illustrating a heater controller.
도 1 및 도 2를 참조하면, 본 발명에 따른 발열체(61)가 구비된 태양광 발전 시스템은 입사된 태양광을 전기에너지로 변환 및 출력하는 태양전지모듈(50)과, 원거리에서 모니터링 하는 원격 제어부(90)와, 눈과 비와 강우량 및/또는 풍속을 감지하는 센서부(20)와, 태양전지모듈(50)을 가열하는 발열부(60)와, 발열부(60)를 제어하는 히터 컨트롤러(10)와, 발열부(60)에 전원을 공급하는 전원부(40)와, 비상 정지 명령을 출력하는 비상 스위치(30)를 포함할 수 있다. 1 and 2, the photovoltaic power generation system provided with a heating element 61 according to the present invention includes a solar cell module 50 that converts incident sunlight into electric energy and outputs it, and a remote monitoring device from a distance. The control unit 90, the sensor unit 20 for detecting snow and rain, rainfall amount and/or wind speed, the heating unit 60 for heating the solar cell module 50, and a heater for controlling the heating unit 60 It may include a controller 10 , a power supply unit 40 for supplying power to the heating unit 60 , and an emergency switch 30 for outputting an emergency stop command.
원격 제어부(90)는 원거리에서 태양전지모듈(50)의 상태 정보(발전량, 고장 유무, 센서부(20)의 감지 정보)를 수신 및 출력한다. 여기서 원격 제어부(90)는 원거리에 위치된 서버를 포함할 수 있고, 설정된 모바일 단말(도시되지 않음)에 모니터링 정보를 송신함도 가능하다. 원격 제어부(90)는 히터 컨트롤러(10)의 제어 프로그램의 설치와 수정(예를 들면, 발열부(60)의 제어를 위한 설정 조건의 변경)과 업데이트를 진행할 수 있다. The remote control unit 90 receives and outputs the state information (the amount of power generation, the presence or absence of a failure, detection information of the sensor unit 20) of the solar cell module 50 from a distance. Here, the remote control unit 90 may include a server located at a remote location, and it is also possible to transmit monitoring information to a set mobile terminal (not shown). The remote control unit 90 may install and modify the control program of the heater controller 10 (eg, change the setting conditions for controlling the heat generating unit 60 ) and update.
센서부(20)는 눈의 적설량을 감지하는 적설센서(21)와, 풍속을 감지하는 풍속센서(23)와, 온도를 감지하는 온도센서(22)와, 강우량을 감지하는 수량센서(24) 중 적어도 하나 이상을 포함할 수 있다. 센서부(20)는 감지 정보를 히터 컨트롤러(10)로 출력한다. The sensor unit 20 includes a snow load sensor 21 for detecting the amount of snow, a wind speed sensor 23 for detecting wind speed, a temperature sensor 22 for detecting temperature, and a quantity sensor 24 for detecting rainfall. It may include at least one or more of The sensor unit 20 outputs sensing information to the heater controller 10 .
발열부(60)는 각 태양전지모듈(50)의 배면에서 하나 또는 그 이상이 설치되어 히터 컨트롤러(10)의 제어에 의하여 발열한다. 여기서 발열부(60)는 복수가 하나의 그룹(A, B)으로 분할된다. 따라서 발열부(60)는 복수의 그룹(A, B)으로 설정될 수 있다. 발열부(60)의 각 그룹(A, B)은 히터 컨트롤러(10)와 전기적으로 직렬 연결된다. 또한, 동일 그룹(A, B)에 속한 발열부(60)들은 상호 병렬 연결된다. One or more heat generating units 60 are installed on the rear surface of each solar cell module 50 to generate heat under the control of the heater controller 10 . Here, a plurality of the heat generating units 60 are divided into one group (A, B). Accordingly, the heating unit 60 may be set in a plurality of groups A and B. Each group A and B of the heat generating unit 60 is electrically connected in series with the heater controller 10 . In addition, the heating units 60 belonging to the same group (A, B) are connected in parallel to each other.
따라서 발열부(60)는 그룹(A, B)별로 순차 온되되, 동일 그룹(A, B)에 속한 발열부(60)들은 동시 온 또는 오프 될 수 있다. 예를 들면, 제1발열부(60) 그룹(A)과 제2발열부(60) 그룹(B)은 히터 컨트롤러(10)와 직렬 연결된다. 따라서 히터 컨트롤러(10)는 제1발열부(60) 그룹(A)에 공급전원을 공급한 뒤, 설정된 지연시간 이후에 제2발열부(60) 그룹(B)에 전원을 공급하여 작동시킨다. Accordingly, the heating units 60 are sequentially turned on for each group (A, B), and the heating units 60 belonging to the same group (A, B) may be turned on or off at the same time. For example, the first heat generating unit 60 group A and the second heat generating unit 60 group B are connected in series with the heater controller 10 . Therefore, the heater controller 10 supplies power to the first heat generating unit 60 group (A), and then supplies power to the second heat generating unit 60 group (B) after a set delay time to operate it.
이때, 동일 그룹(A, B)에 속한 발열부(60)들은 상호 병렬 연결됨에 따라 전원이 공급됨과 동시에 온된다.At this time, the heating units 60 belonging to the same group (A, B) are turned on at the same time power is supplied as they are connected in parallel with each other.
위와 같은 발열부(60)의 상세 구성은 후술한다. The detailed configuration of the heating unit 60 as described above will be described later.
히터 컨트롤러(10)는 복수의 태양전지모듈(50) 중 어느 하나의 지지 구조물에 고정되며, 센서부(20)와 원격 제어부(90) 및/또는 모바일 단말(도시되지 않음)과 유/무선 통신이 가능한 통신모듈(110)과, 발열부(60) 그룹(A, B)별 소비전력을 연산하는 연산모듈(120)과, 발열부(60) 그룹(A, B)를 지연시간을 사이에 두고 순차 제어하는 제어모듈(130)과, 전원라인을 스위칭하는 스위칭모듈(140)과, 작동여부 및 고장 여부를 발광표시하는 표시모듈(150)을 포함할 수 있다. The heater controller 10 is fixed to any one supporting structure among the plurality of solar cell modules 50 , and wired/wireless communication with the sensor unit 20 and the remote control unit 90 and/or the mobile terminal (not shown) The communication module 110 capable of this, the operation module 120 for calculating the power consumption for each group (A, B) of the heat generating unit 60, and the heat generating unit 60 group (A, B) between the delay time It may include a control module 130 for sequentially controlling the control module 130 , a switching module 140 for switching a power line, and a display module 150 for light-emitting display of operation and failure.
통신모듈(110)은 원격 제어부(90) 및/또는 모바일 단말(도시되지 않음)과 통신을 수행한다. 예를 들면, 통신모듈(110)은 유선 통신 장치로서 원격 제어부(90)와 유선 통신 연결되거나, 모바일 단말(도시되지 않음)과 무선 통신 가능하도로 무선 통신 장치를 포함할 수 있다. The communication module 110 performs communication with the remote control unit 90 and/or a mobile terminal (not shown). For example, the communication module 110 may include a wireless communication device that is connected to the remote control unit 90 by wired communication as a wired communication device or is capable of wireless communication with a mobile terminal (not shown).
제어모듈(130)은 센서부(20)에서 수신된 적설량, 온도, 풍속 및/또는 강우량에 따라서 태양전지모듈(50) 별로 설치된 하나 또는 그 이상의 발열부(60)를 온 또는 오프한다. 여기서 제어모듈(130)은 각 발열부(60)를 설정된 그룹(A, B)별로 순차 작동되도록 스위칭모듈(140)을 제어할 수 있다. The control module 130 turns on or off one or more heat generating units 60 installed for each solar cell module 50 according to the amount of snow, temperature, wind speed and/or rainfall received from the sensor unit 20 . Here, the control module 130 may control the switching module 140 to sequentially operate each heat generating unit 60 for each set group (A, B).
예를 들면, 복수의 발열부(60)를 동시에 작동시킬 경우에는 소비전력보다 필요 이상으로 많은 공급 전력이 필요하다. 따라서 히터 컨트롤러(10)는 이와 같은 공급전력을 절감시킬 수 있도록 발열부(60)들을 그룹화하고, 각 발열부(60) 그룹(A, B)들을 지연시간을 사이에 두고 순차 작동시키는 것을 특징으로 한다. For example, when the plurality of heat generating units 60 are simultaneously operated, more power than necessary is supplied than power consumption. Therefore, the heater controller 10 groups the heating units 60 to reduce such supply power, and sequentially operates the groups (A, B) of the heating units 60 with a delay time therebetween. do.
연산모듈(120)은 각 발열부(60) 또는 복수의 발열부(60)로 그룹(A, B)화된 각 발열부(60) 그룹(A, B)별 소비전력을 산출한다. 여기서 연산모듈(120)에서 산출된 각 발광부 그룹(A, B)별 소비전력의 정보는 제어모듈(130)에 출력된다. The operation module 120 calculates the power consumption for each heat generating unit 60 or each heat generating unit 60 grouped into a plurality of heat generating units 60 (A, B) for each group (A, B). Here, information on power consumption for each light emitting unit group (A, B) calculated by the operation module 120 is output to the control module 130 .
제어모듈(130)은 설정된 소비전력과 연산된 소비전력을 비교하여 설정된 범위 이내에 해당되지 않으면 표시모듈(150)을 제어하여 고장발생을 표시하고, 통신모듈(110)을 제어하여 원격 제어부(90) 및/또는 모바일 단말(도시되지 않음)에 고장 경보를 송신하도록 제어한다. The control module 130 compares the set power consumption with the calculated power consumption, and if it does not fall within the set range, controls the display module 150 to indicate the occurrence of a failure, and controls the communication module 110 to control the remote control unit 90 and/or control to transmit a failure alert to a mobile terminal (not shown).
스위칭모듈(140)은 제어모듈(130)의 제어에 의하여 전원부(40)의 출력 전원 라인과, 각 발열부(60) 그룹(A, B)별로 연결되는 전원 라인을 통전시킨다. 예를 들면, 스위칭모듈(140)은 제어모듈(130)의 제어에 의하여 제1발열부(60) 그룹(A)에 연결되는 제1전원라인과 전원부(40)를 온하고, 설정된 지연시간 이후에 제2발열부(60) 그룹(B)에 연결되는 제2전원라인과 전원부(40) 사이의 전원라인을 통전시킨다. The switching module 140 energizes the output power line of the power supply unit 40 and the power line connected to each group (A, B) of the heating unit 60 under the control of the control module 130 . For example, the switching module 140 turns on the first power line and the power supply unit 40 connected to the group A of the first heating unit 60 under the control of the control module 130, and after a set delay time In the second heat generating unit 60, the power line between the second power line connected to the group (B) and the power supply unit 40 is energized.
표시모듈(150)은 제어모듈(130)의 제어 또는 연산모듈(120)에 의해 작동 여부 및/또는 고장 여부를 발광 표시한다. 이를 위하여 표시모듈(150)은 온, 오프 및 고장 여부를 시각적으로 확인할 수 있도록 유색으로 발광하는 복수의 LED로 구성될 수 있다. The display module 150 emits light to indicate whether the control module 130 operates or not by the control or operation module 120 . To this end, the display module 150 may be composed of a plurality of LEDs emitting colored light so that on, off, and failure can be visually checked.
비상 스위치(30)는 작업자가 수동으로 발열부(60)를 오프시킬 수 있도록 비상 정지 명령을 출력한다. 비상 정지 명령은 히터 컨트롤러(10)로 출력되며, 히터 컨트롤러(10)는 비상 스위치(30)에서 출력되는 비상 정지 명령에 따라 전체 발열부(60)을 오프 시킨다. The emergency switch 30 outputs an emergency stop command so that the operator can manually turn off the heating unit 60 . The emergency stop command is output to the heater controller 10 , and the heater controller 10 turns off the entire heating unit 60 according to the emergency stop command output from the emergency switch 30 .
전원부(40)는 태양전지모듈(50)에서 발전된 전력을 저장하는 배터리(42)와, 외부 전원을 변환 및 공급하는 상용 전원부(41)를 포함할 수 있다. 여기서 배터리(42)와 상용 전원부(41)는 히터 컨트롤러(10) 또는 별도의 전원 제어 장치(도시되지 않음)에 의하여 선택적으로 히터 컨트롤러(10) 및 발열부(60)에 전원을 공급할 수 있다. The power supply unit 40 may include a battery 42 for storing power generated by the solar cell module 50 and a commercial power supply unit 41 for converting and supplying external power. Here, the battery 42 and the commercial power supply unit 41 may selectively supply power to the heater controller 10 and the heating unit 60 by the heater controller 10 or a separate power control device (not shown).
예를 들면, 전원 제어 장치(도시되지 않음)는 배터리(42)의 충전량에 따라 상용 전원부(41)의 출력 전원 라인과 발열부(60)에 연결되는 전원라인, 또는 배터리(42)의 출력 전원 라인과 발열부(60)의 전원라인이 연결되도록 스위칭 제어함도 가능하다. For example, the power control device (not shown) may include an output power line of the commercial power source 41 and a power line connected to the heating unit 60 according to the charge amount of the battery 42 , or the output power of the battery 42 . It is also possible to control the switching so that the line and the power line of the heating unit 60 are connected.
태양전지모듈(50)은 복수로서 지지 구조물에 의해 지면과 이격된 상태에서 정렬되고, 입사된 태양광을 전기 에너지로 변환하여 출력한다. 여기서 태양전지모듈은 발열부(60)에 의해 발열된 열에 의해 상면에 적설된 눈이나 얼음을 녹일 수 있다.The solar cell modules 50 are arranged in a state spaced apart from the ground by a support structure as a plurality, and convert the incident sunlight into electrical energy and output it. Here, the solar cell module may melt snow or ice accumulated on the upper surface by the heat generated by the heat generating unit 60 .
이와 같은 태양전지모듈의 구조와 발열부(60)의 세부구성은 도 3 내지 도 8을 참조하여 설명한다. The structure of the solar cell module and the detailed configuration of the heat generating unit 60 will be described with reference to FIGS. 3 to 8 .
먼저, 태양전지모듈의 구성은 도 3 내지 도 6을 참조하여 설명한다. First, the configuration of the solar cell module will be described with reference to FIGS. 3 to 6 .
도 3은 본 발명에서 지지 기둥에 의해 지지되는 태양전지모듈을 도시한 사시도이고, 도 4는 태양전지판 및 지지 프레임을 도시한 사시도 이고, 도 5는 도 4의 분해 도면이다. 도 6은 도 4의 요부 단면, 도 7은 발열부를 도시한 평면도, 도 8은 발열부의 단면을 도시한 단면도이다. 3 is a perspective view illustrating a solar cell module supported by a support pillar in the present invention, FIG. 4 is a perspective view illustrating a solar panel and a support frame, and FIG. 5 is an exploded view of FIG. FIG. 6 is a cross-sectional view of the main part of FIG. 4 , FIG. 7 is a plan view illustrating the heating unit, and FIG. 8 is a cross-sectional view illustrating the heating unit.
도 3 내지 도 8을 참조하면, 태양전지모듈은 태양광이 입사되는 태양전지판(51)과, 태양전지판(51)을 지지하는 지지 프레임(52)과, 지지 프레임(52)을 지면에 이격되도록 고정시키는 지지 구조물을 포함한다. 3 to 8 , the solar cell module includes a solar panel 51 to which sunlight is incident, a support frame 52 supporting the solar panel 51 , and a support frame 52 to be spaced apart from the ground. It includes a support structure for fixing it.
태양전지판(51)은 태양광이 입사되면 전기 에너지로 변환하여 출력한다. 여기서 태양전지판(51)은 양측단에서 각각 지지 프레임(52)에 체결되어 복수가 정렬된다. The solar panel 51 converts and outputs electric energy when sunlight is incident on it. Here, the solar panel 51 is fastened to the support frame 52 at both ends, so that a plurality of them are aligned.
이중 지지 프레임(52)은 일방향으로 연장된 본체의 상단에서 태양전지판(51)의 측단이 인입되는 상부 인입홈(521)과, 하단에서 돌출 연장되어 발열부(60)에 체결되는 하부 체결단(522)을 포함할 수 있다. The double support frame 52 has an upper inlet groove 521 through which the side end of the solar panel 51 is introduced from the upper end of the main body extending in one direction, and a lower fastening end that protrudes from the lower end and is fastened to the heating unit 60 ( 522) may be included.
여기서 지지 프레임(52)은 도 3에 도시된 바와 같이 지지 기둥(53)을 포함한 지지 구조물에 의해 지지될 수 있다. Here, the support frame 52 may be supported by a support structure including a support pillar 53 as shown in FIG. 3 .
지지 구조물은 도면에 도시된 바에 한정되는 것이 아니며, 태양광의 위치에 따라 회전될 수 있도록 회동장치가 추가될 수 있다. The support structure is not limited to that shown in the drawings, and a rotating device may be added to be rotated according to the position of sunlight.
발열부(60)는 전원이 공급되면 발열하는 발열체(61)와, 발열체(61)를 태양전지판(51)에 고정시키는 지지수단(62)과, 지지수단(62)을 지지 프레임(52)에 체결하는 체결수단(63)과, 체결수단(63)을 가압하여 지지 프레임(52)에 고정시키는 고정수단(64)을 포함한다. The heating unit 60 includes a heating element 61 that generates heat when power is supplied, a support means 62 for fixing the heating element 61 to the solar panel 51 , and a support means 62 to a support frame 52 . It includes a fastening means (63) for fastening, and a fixing means (64) for pressing the fastening means (63) to the support frame (52).
발열체(61)는 기판(611)과, 전극(616)과, 기판(611)에 인쇄되어 발열선을 구성하는 발열패턴(612)과, 발열패턴(612)의 상면에 도포되는 보호층(613)과, 보호층(613)의 상면에 적층되는 접착층(614)과, 단열재(615)를 포함할 수 있다. The heating element 61 includes a substrate 611 , an electrode 616 , a heating pattern 612 printed on the substrate 611 to constitute a heating wire, and a protective layer 613 applied on the upper surface of the heating pattern 612 ) and an adhesive layer 614 laminated on the upper surface of the protective layer 613 , and a heat insulating material 615 .
기판(611)은 절연 가능한 재질의 필름으로서 얇은 두께(예를 들면, 0.1mm~5mm)를 갖는다. The substrate 611 is a film of an insulating material and has a thin thickness (eg, 0.1 mm to 5 mm).
발열패턴(612)은 양과 음의 전극(616)으로 각각 연장되어 전원이 공급되면 발열된다. 즉, 발열패턴(612)은 발열선의 기능을 수행한다. 또한, 발열패턴(612)은 전도성 잉크에 의해 기판(611)의 일면에 인쇄될 수 있다. 예를 들면, 전도성 잉크는 은나노 잉크로서 기판(611)의 일면에 도포 되어 발열패턴(612)을 구성한다.The heating pattern 612 extends to the positive and negative electrodes 616, respectively, and heats up when power is supplied. That is, the heating pattern 612 functions as a heating wire. In addition, the heating pattern 612 may be printed on one surface of the substrate 611 by conductive ink. For example, the conductive ink is applied to one surface of the substrate 611 as silver nano ink to configure the heating pattern 612 .
보호층(613)은, 예를 들면, 카본이 포함된 액상의 수지로서 발열패턴(612)의 상면에 도포되어 절연과 전자파 차폐 및 보호 기능을 수행한다.The protective layer 613 is, for example, a liquid resin containing carbon, and is applied to the upper surface of the heating pattern 612 to perform insulation, electromagnetic wave shielding, and protection functions.
접착층(614)은 보호층(613)의 상면에 형성되어 태양전지모듈(50)의 배면에 밀착된다. 예를 들면, 접착층(614)은 양면 테이프로서 일면이 먼저 노출되어 보호층(613)의 상면에 접착된 후, 반대면의 접착액이 노출되어 태양전지모듈(50)의 배면에 접착된다. 여기서 접착층(614)은 지지수단(62)이 고정되기 이전까지 임시 접착하는 기능을 수행한다. The adhesive layer 614 is formed on the upper surface of the protective layer 613 and is in close contact with the rear surface of the solar cell module 50 . For example, the adhesive layer 614 is a double-sided tape, with one side exposed first and adhered to the upper surface of the protective layer 613 , and then the adhesive solution on the opposite side is exposed and adhered to the back surface of the solar cell module 50 . Here, the adhesive layer 614 performs a function of temporarily adhering until the support means 62 is fixed.
단열재(615)는 발열패턴(612)에서 발열된 열이 지지수단(62)으로 전도됨을 차단한다. The heat insulating material 615 blocks the heat generated by the heating pattern 612 from being conducted to the support means 62 .
지지수단(62)은 일면에 발열체(61)를 수용하여 태양전지판(51)의 배면에 고정될 수 있다. 예를 들면, 지지수단(62)은 일 방향으로 연장되는 알루미늄 재질의 금속바로서 상면에 발열체가 접착되어 태양전지판(51)의 배면에 발열체를 가압 및 고정한다. 여기서 지지수단(62)은 체결수단(63)이 끼움식으로 체결될 수 있도록 전후면 또는 양측면에서 하향 연장되어 끝단이 절곡되는 절곡단(622)을 더 포함할 수 있다. The support means 62 may be fixed to the rear surface of the solar panel 51 by accommodating the heating element 61 on one surface. For example, the support means 62 is a metal bar made of aluminum extending in one direction, and the heating element is adhered to the upper surface to press and fix the heating element to the rear surface of the solar panel 51 . Here, the support means 62 may further include a bending end 622 extending downward from the front and rear surfaces or both sides so that the fastening means 63 can be fastened in a fitting manner and the ends are bent.
체결수단(63)은 양측면에서 각각 내향된 장홈(632)과, 전면 또는 후면에서 양측면으로 연장되는 단홈(631)과, 고정수단(64)이 나사 체결되는 고정홀(633)을 포함한다. The fastening means 63 includes a long groove 632 facing inward from both sides, a short groove 631 extending from the front or rear to both sides, and a fixing hole 633 to which the fixing means 64 is screwed.
장홈(632)은 양측면에 각각 내향된 장홈(632)으로서 지지수단(62)의 절곡단(622)이 끼움된다. The long groove 632 is a long groove 632 facing inward on both sides, and the bent end 622 of the support means 62 is fitted.
단홈(631)은 전면에서 양측면에 걸쳐 내향된 홈으로서 지지 프레임(52)의 하부 체결단(522)이 끼움 된다. The short groove 631 is a groove facing inward from the front to both sides, into which the lower fastening end 522 of the support frame 52 is fitted.
고정홀(633)은 볼트 또는 나사와 같은 고정수단(64)과 나사 체결되도록 내면에 나사산이 형성된다. The fixing hole 633 is threaded on the inner surface so as to be screwed with the fixing means 64 such as bolts or screws.
여기서 고정수단(64)은 볼트 또는 나사로서 체결수단(63)과 나사 체결되면서 단홈(631)을 가압한다. 즉, 체결수단(63)은 장홈(632)에 절곡단(622)이 끼움되고, 단홈(631)에 지지 프레임(52)의 하부 체결단(522)이 끼움된다. 그리고 고정수단(64)은 상기와 같은 체결수단(63)의 연결 상태에서 고정홀(633)에 체결 및 회전되면서 단홈(631)을 조이게 된다. 따라서 지지 프레임(52)의 하부 체결단(522)은 고정수단(64)에 의한 단홈(631)의 조임으로 단홈(631) 내에서 고정될 수 있다. Here, the fixing means 64 presses the short groove 631 while being screwed with the fastening means 63 as bolts or screws. That is, as for the fastening means 63 , the bent end 622 is fitted into the long groove 632 , and the lower fastening end 522 of the support frame 52 is fitted into the short groove 631 . And the fixing means 64 is fastened to the fixing hole 633 and rotated in the connection state of the fastening means 63 as described above to tighten the short groove 631 . Accordingly, the lower fastening end 522 of the support frame 52 may be fixed within the short groove 631 by tightening the short groove 631 by the fixing means 64 .
발열부(60)는 하나의 지지수단(62)에 복수가 설치될 수 있다. 즉, 하나의 태양전지모듈(50)에 2 이상의 발열부(60)가 하나의 지지수단(62)에 의해 고정될 수 있다. 이와 같은 발열부(60)의 다른 실시예는 도 9와 도 10을 참조하여 설명한다. A plurality of heat generating units 60 may be installed on one supporting means 62 . That is, two or more heat generating units 60 may be fixed to one solar cell module 50 by one supporting means 62 . Another embodiment of the heating unit 60 will be described with reference to FIGS. 9 and 10 .
도 9는 발열부의 다른 실시예를 도시한 평면도, 도 10은 도 9의 발열부 단면도이다. 9 is a plan view illustrating another embodiment of the heating unit, and FIG. 10 is a cross-sectional view of the heating unit of FIG. 9 .
도 9 및 도 10을 참조하면, 발열부(60)의 다른 실시예는 2 이상의 발열체(61)와, 지지수단(62)과, 발열체(61)들의 열을 전도하는 열전도 시트(65)를 포함한다. 9 and 10 , another embodiment of the heating unit 60 includes two or more heating elements 61 , a support means 62 , and a heat-conducting sheet 65 for conducting heat of the heating elements 61 . do.
여기서 지지수단(62)은 내측에 2 이상의 발열체(61, 61')를 수용할 수 있는 함체(621)와, 발열체(61)들의 전극(616)들과 전원부(40)에서 연장된 전원라인을 연결하는 전원 커넥터 기판(623)을 포함할 수 있다. Here, the support means 62 includes a housing 621 capable of accommodating two or more heating elements 61 and 61 ′ on the inside, electrodes 616 of the heating elements 61 and a power supply line extending from the power supply unit 40 . It may include a power connector board 623 for connecting.
함체(621)는 전후 좌우측에 직립된 벽면이 형성되어 복수의 발열체(61)들을 수용하는 공간과 전원 커넥터 기판(623)이 설치되는 공간을 형성한다. 여기서 함체(621)는 전원 커넥터 기판(623)이 설치되는 공간과 발열체(61)들을 수용하는 공간을 구획하도록 직립된 구획벽(621a)을 포함할 수 있다. 바람직하게로는 구획벽(621a)은 양(+)과 음(-)의 전극(616)들과 전원 커넥터 기판(623)을 상호 연결될 수 있도록 복수의 절개구(도시되지 않음)를 구비하거나, 구획벽(621a)의 높이가 조절될 수 있다.The housing 621 is formed with upright wall surfaces on the front and rear left and right sides to form a space for accommodating the plurality of heating elements 61 and a space for installing the power connector board 623 . Here, the housing 621 may include an upright partition wall 621a to partition a space in which the power connector board 623 is installed and a space in which the heating elements 61 are accommodated. Preferably, the partition wall 621a has a plurality of cutouts (not shown) so that the positive (+) and negative (-) electrodes 616 and the power connector board 623 can be interconnected, or The height of the partition wall 621a may be adjusted.
여기서 함체(621)는 앞서 설명한 일실시예의 체결수단(63)이 끼움되도록 하향 연장 및 절곡되는 절곡단(622)을 구비할 수 있어 체결수단(63) 및 고정수단(64)에 의해 지지 프레임(52)에 고정될 수 있다.Here, the housing 621 may include a bent end 622 that extends and bends downward so that the fastening means 63 of the embodiment described above is fitted, so that the support frame (by the fastening means 63 and the fixing means 64) 52) can be fixed.
전원 커넥터 기판(623)은 발열체(61)의 전극(616)가 연결되는 단자(도시되지 않음)와, 전원부(40)에서 연장된 전원선과, 발열체(61, 61')의 전극을 전기적으로 통전시키는 회로가 구성될 수 있다. 여기서 전원 커넥터 기판(623)은 함체(621)의 구획벽(621a)에 의해 구획된 공간에 접착제 또는 기타 고정치구(나사 또는 볼트)에 의해 고정된다. The power connector board 623 electrically energizes the terminal (not shown) to which the electrode 616 of the heating element 61 is connected, the power line extending from the power supply unit 40, and the electrodes of the heating elements 61 and 61'. A circuit may be configured. Here, the power connector board 623 is fixed to the space partitioned by the partition wall 621a of the housing 621 by an adhesive or other fixing fixtures (screws or bolts).
발열체(61, 61')들은, 예를 들면, 제1발열체(61)와 제2발열체(61')로서 상호 이격되어 설치되며, 각각 기판(611)과 발열체(61)와 보호층(613)과 단열재(615) 및/또는 접착층(614)으로 구성된다. 이때 제1발열체(61)와 제2발열체(61')는 전원 커넥터 기판(623)에 전기적으로 통전되도록 연결되되, 상호 병렬 연결된다. The heating elements 61 and 61' are installed to be spaced apart from each other as, for example, the first heating element 61 and the second heating element 61', respectively, the substrate 611, the heating element 61, and the protective layer 613. and a heat insulating material 615 and/or an adhesive layer 614 . At this time, the first heating element 61 and the second heating element 61 ′ are electrically connected to the power connector board 623 , and are connected in parallel with each other.
열전도 시트(65)는 복수의 발열체(61, 61')들 상면에 적층되어 열을 전도한다. 예를 들면, 열전도 시트(65)는 절연 재질의 수지층(651)과, 수지층(651) 내에 매립된 열전도 금속 와이어(652)를 포함할 수 있다. The heat conduction sheet 65 is laminated on the upper surfaces of the plurality of heating elements 61 and 61' to conduct heat. For example, the heat conductive sheet 65 may include a resin layer 651 made of an insulating material and a heat conductive metal wire 652 embedded in the resin layer 651 .
여기서 발열체(61)의 접착층(614)은 양면 테이프로서 수지층(651)의 상면에 도포된다. Here, the adhesive layer 614 of the heating element 61 is applied to the upper surface of the resin layer 651 as a double-sided tape.
또는 열전도 시트(65)는 접착층(614)의 상면에 적층될 수 있다. 이 경우 열전도 시트(65)는 별도의 양면 테이프에 의해 태양전지판(51)의 배면에 임시 접착된 후 지지수단(62)에 의해 완전 고정될 수 있다. Alternatively, the heat conductive sheet 65 may be laminated on the upper surface of the adhesive layer 614 . In this case, the heat conduction sheet 65 may be temporarily attached to the rear surface of the solar panel 51 by a separate double-sided tape and then completely fixed by the support means 62 .
수지층(651)은 절연 가능한 액상의 수지가 도포 및 경화되어 내측에 매립된 열전도 금속 와이어(652)를 절연시킨다. The resin layer 651 insulates the heat-conducting metal wire 652 embedded therein by applying and curing an insulating liquid resin.
열전도 금속 와이어(652)는 수지층(651)에 매립된 형태로 연장되어 발열체(61)들로부터 발생된 열을 태양전지판(51)의 배면 전체에 전도한다. 여기서 열전도 금속 와이어(652)는 가로 및 세로 방향으로 교차 연장됨에 따라 메쉬형으로 형성될 수 있다. 열전도 금속 와이어(652)는 태양전지판(51)의 배면 전체에 설치될 수 있는 면적으로 제조 됨이 바람직하다. The heat-conducting metal wire 652 extends in a form embedded in the resin layer 651 to conduct heat generated from the heating elements 61 to the entire rear surface of the solar panel 51 . Here, the heat-conducting metal wire 652 may be formed in a mesh shape as it cross-extends in the horizontal and vertical directions. The heat-conducting metal wire 652 is preferably manufactured in an area that can be installed on the entire rear surface of the solar panel 51 .
통상적으로 태양전지모듈(50)은 태양광의 위치에 따라 실시간으로 가변할 수 있다. 따라서 본 발명은 상기와 같은 태양의 위치에 따라 태양전지모듈(50)의 자세 변형이 가능한 태양광 트래킹 장치가 부가된 태양전지모듈에 적용함도 가능하다. 이는 도 11 및 도 12를 참조하여 설명한다. In general, the solar cell module 50 may vary in real time according to the position of sunlight. Therefore, the present invention can also be applied to a solar cell module to which a solar tracking device capable of changing the posture of the solar cell module 50 according to the position of the sun as described above is added. This will be described with reference to FIGS. 11 and 12 .
도 11 및 도 12는 본 발명에서 태양전지모듈의 다른 실시예를 도시한 도면이다. 11 and 12 are views showing another embodiment of the solar cell module in the present invention.
도 11과 도 12를 참조하면, 본 발명은 태양전지모듈(50)의 위치를 변형하는 회동부(80)와, 히터 컨트롤러(10)의 제어에 의하여 회동부(80)를 작동시키는 회동 구동부(70)를 포함할 수 있다. 또한, 회동부(80)는 일반적으로 공지된 태양전지모듈(50)의 트래킹 장치에 적용되는 기술을 적용함에 따라 주요 구성과 원리만으로 간략하게 설명한다. 다만, 이하에서 설명하는 회동부(80)는 본 발명을 한정하는 것이 아니며, 태양전지모듈(50)을 위치를 변형시킬 수 있는 모든 장치에 해당된다.11 and 12 , the present invention provides a rotational part 80 that deforms the position of the solar cell module 50 and a rotational driving part that operates the rotational part 80 under the control of the heater controller 10 ( 70) may be included. In addition, the rotating unit 80 will be briefly described with only the main configuration and principle as the technology applied to the tracking device of the generally known solar cell module 50 is applied. However, the rotation unit 80 to be described below does not limit the present invention, and corresponds to any device capable of changing the position of the solar cell module 50 .
회동 구동부(70)는 히터 컨트롤러(10) 또는 원격 제어부(90)의 제어에 의하여 태양전지모듈(50)에 설치된 회동부(80)를 구동시킨다. The rotation driving unit 70 drives the rotation unit 80 installed in the solar cell module 50 under the control of the heater controller 10 or the remote control unit 90 .
회동부(80)는 회동 구동부(70)의 제어에 의하여 작동되는 실린더(81)와, 실린더(81)에 연결되는 회동바(82)와, 태양전지모듈(50)과 회동바(82) 사이에서 회전가능하게 연결되는 연결바(83)와, 태양전지모듈(50)을 지지하는 지지바(84)를 포함한다. The rotation unit 80 is between the cylinder 81 operated by the control of the rotation driving unit 70 , the rotation bar 82 connected to the cylinder 81 , and the solar cell module 50 and the rotation bar 82 . It includes a connection bar 83 that is rotatably connected in the and a support bar 84 for supporting the solar cell module 50 .
실린더(81)는 회동 구동부(70)로부터 작동 명령이 입력되면, 회동바(82)를 전방 또는 후방으로 이동시킨다. When an operation command is inputted from the rotation driving unit 70 , the cylinder 81 moves the rotation bar 82 forward or backward.
지지바(84)는 회동바(82)와 태양전지모듈(50) 사이에 회전 가능하게 연결된다. 즉, 지지바(84)는 회동바(82)가 전방으로 이동되면, 태양전지모듈(50)을 반시계 방향 또는 시계 방향으로 회전시킨다. The support bar 84 is rotatably connected between the rotation bar 82 and the solar cell module 50 . That is, the support bar 84 rotates the solar cell module 50 counterclockwise or clockwise when the rotation bar 82 is moved forward.
따라서 히터 컨트롤러(10)는 적설센서(21)의 감지신호에 따라 적설량을 감지하고, 감지된 적설량이 설정된 기준을 초과하면, 회동 구동부(70)를 제어하여 태양전지모듈(50)을 직립된 자세로 유지하도록 제어한다. Therefore, the heater controller 10 detects the amount of snow according to the detection signal of the snow sensor 21, and when the detected amount of snow exceeds the set standard, controls the rotation driving unit 70 to set the solar cell module 50 in an upright position. control to keep
이는 발열체(61)에 의해 눈이 녹는 시간 대비 눈이 쌓이는 시간이 더 빠를 경우에 태양전지모듈(50)을 직립된 자세로 변형하여 눈이 쌓이는 것을 방지할 수 있다. This can prevent snow accumulation by deforming the solar cell module 50 to an upright posture when the snow accumulation time is faster than the snow melting time by the heating element 61 .
본 발명은 상기와 같은 구성을 포함하며, 이하에서는 상기와 같은 구성을 이용하는 발열체(61)가 구비된 태양광 발전 시스템의 제어방법을 설명한다. The present invention includes the configuration as described above, and below, a control method of a solar power generation system having the heating element 61 using the configuration as described above will be described.
도 13은 발열체가 구비된 태양광 발전 시스템의 제어방법을 도시한 순서도이다. 13 is a flowchart illustrating a control method of a solar power generation system provided with a heating element.
도 13을 참조하면, 본 발명은 히터 컨트롤러(10)가 센서부(20)로부터 감지 정보를 수집하는 S100 단계와, 설정된 기준과 감지정보를 비교하는 S200 단계와, 발열부(60) 그룹(A, B)별로 순차 작동시키는 S300 단계와, 비상 스위치(30)의 온오프를 감지하는 S400 단계와, 비상 스위치(30)가 온되면 전원을 차단하여 발열체(61)들을 오프시키는 S500 단계를 포함한다. 13, in the present invention, the heater controller 10 collects detection information from the sensor unit 20, step S100, comparing the detection information with a set standard, step S200, and the heating unit 60 group (A) , step S300 of sequentially operating each B), step S400 of detecting on/off of the emergency switch 30, and step S500 of turning off the heating elements 61 by cutting off the power when the emergency switch 30 is turned on. .
S100 단계는 히터 컨트롤러(10)가 센서부(20)의 감지 정보를 수집하는 단계이다. 히터 컨트롤러(10)는 적설센서(21)의 적설량 감지 정보와, 온도센서(22)의 온도 감지 정보와, 풍속센서(23)의 풍속 감지 정보와, 수량센서(24)의 강우량 감지 정보를 수신한다. Step S100 is a step in which the heater controller 10 collects detection information of the sensor unit 20 . The heater controller 10 receives snow amount detection information of the snow load sensor 21 , temperature detection information of the temperature sensor 22 , wind speed detection information of the wind speed sensor 23 , and rainfall detection information of the water quantity sensor 24 . do.
S200 단계는 히터 컨트롤러(10)가 감지 정보와 설정된 정보를 비교하는 단계이다. 예를 들면, 히터 컨트롤러(10)는 적설량과 온도와 풍속 및 강우량에 따라 발열체(61)를 작동시킬 수 있는 기준이 설정된다. 예를 들면, 발열체(61)는 눈이 오거나 눈이 그치더라도 온도가 설정 온도 이하이거나 풍속이 설정값을 초과할 경우와, 비가 오거나 그친 뒤에 설정 온도 이하 및/또는 설정된 풍속 이상이 감지되면 작동될 수 있다. Step S200 is a step in which the heater controller 10 compares detected information with set information. For example, the heater controller 10 sets a standard for operating the heating element 61 according to the amount of snow, temperature, wind speed, and rainfall. For example, the heating element 61 may be operated when the temperature is below the set temperature or the wind speed exceeds the set value even when it snows or snows stop, and when it is detected below the set temperature and/or the set wind speed or more after it rains or stops can
즉, 히터 컨트롤러(10)는 적설량과, 강우량, 온도 및 풍속이 조합되는 기준들이 설정될 수 있다. That is, the heater controller 10 may set criteria for combining the amount of snow, rainfall, temperature, and wind speed.
S300 단계는 히터 컨트롤러(10)가 S200 단계에서 감지 정보가 설정된 조건에 해당되면, 발열체(61)들을 순차 작동시키는 단계이다. 여기서 발열체(61)를 포함하는 발열부(60)들은 복수의 그룹(A, B)으로 설정되고, 각 발열부(60) 그룹(A, B)은 히터 컨트롤러(10)에 직렬 연결된다. 또한 동일 그룹(A, B)내에 속한 발열체(61)들은 병렬 연결된다. Step S300 is a step in which the heater controller 10 sequentially operates the heating elements 61 when the detection information corresponds to the condition set in step S200 . Here, the heating units 60 including the heating element 61 are set in a plurality of groups A and B, and each of the heating units 60 groups A and B is connected in series to the heater controller 10 . In addition, the heating elements 61 belonging to the same group (A, B) are connected in parallel.
그러므로 히터 컨트롤러(10)는, 예를 들면, 제1발열부(60) 그룹(A)을 작동시킨 후 설정된 지연시간이 경과된 후 제2발열부(60) 그룹(B)을 작동시킨다. 이와 같이 히터 컨트롤러(10)는 설정된 지연시간을 주기로 발열부(60) 그룹(A, B)들을 순차 작동시킨다. Therefore, the heater controller 10, for example, operates the second heat generating unit 60 group (B) after a set delay time elapses after operating the first heat generating unit (60) group (A). As described above, the heater controller 10 sequentially operates the groups A and B of the heating unit 60 at a set delay time period.
여기서 히터 컨트롤러(10)의 스위칭모듈(140)은 전원부(40)의 출력 전원라인과, 해당 발열부(60) 그룹(A, B)에 연결되는 전원라인을 순차 연결시킨다. 따라서 전원부(40)에서 출력되는 공급전원은 전체 발열부(60) 그룹(A, B)을 동시 작동시키기 위한 것이 아니라 발열부(60) 그룹(A, B)별로 순차 공급됨에 따라 절감될 수 있다. Here, the switching module 140 of the heater controller 10 sequentially connects the output power line of the power supply unit 40 and the power line connected to the corresponding heating unit 60 groups A and B. Therefore, the supply power output from the power supply unit 40 is not for simultaneously operating the entire heating unit 60 group (A, B), but can be reduced as it is sequentially supplied for each heating unit 60 group (A, B). .
S400 단계는 히터 컨트롤러(10)가 비상 스위치(30)의 온오프를 감지하는 단계이다. 여기서 비상 스위치(30)는 관리자가 수동 조작이 가능한 것으로서 히터 컨트롤러(10)와 일체로 구비됨도 가능하다. Step S400 is a step in which the heater controller 10 detects on/off of the emergency switch 30 . Here, the emergency switch 30 may be manually operated by an administrator and may be provided integrally with the heater controller 10 .
또는 원격 제어부(90)에서 원격으로 비상 스위치(30)를 제어하거나, 비상 정지 명령을 송신함도 가능하다. Alternatively, the remote control unit 90 may remotely control the emergency switch 30 or transmit an emergency stop command.
따라서 히터 컨트롤러(10)는 발열체(61)가 작동된 이후에 비상 스위치(30)가 온 또는 원격 제어부(90)의 비상 정지 명령의 수신 여부를 감지한다. Accordingly, the heater controller 10 detects whether the emergency switch 30 is turned on or an emergency stop command from the remote control unit 90 is received after the heating element 61 is operated.
S500 단계는 히터 컨트롤러(10)는 비상 정지 명령이 수신되면, 발열부(60) 그룹(A, B)을 오프시키는 단계이다. 예를 들면, 스위칭모듈(140)은 비상 스위치(30)가 온 또는 원격 제어부(90)에서 비상 정지 명령이 수신되면, 전원부(40)와 발열부(60) 그룹(A, B)별로 직렬 연결되는 전원라인을 차단한다. Step S500 is a step in which the heater controller 10 turns off the groups A and B of the heating unit 60 when an emergency stop command is received. For example, when the emergency switch 30 is turned on or an emergency stop command is received from the remote control unit 90 , the switching module 140 is connected in series with the power supply unit 40 and the heating unit 60 for each group (A, B). cut off the power line.
이중 S300 단계는 적설량에 따른 태양전지모듈(50)을 직립제어하는 S310 단계와, 발열부(60) 그룹(A, B)들의 고장 여부를 감지하는 S320 단계를 포함할 수 있다. 이는 도 14와 15를 참조하여 설명한다. Of these, step S300 may include a step S310 for vertically controlling the solar cell module 50 according to the amount of snow, and a step S320 for detecting whether or not the groups A and B of the heating unit 60 are faulty. This will be described with reference to FIGS. 14 and 15 .
도 14는 S310 단계를 도시한 순서도이다. 14 is a flowchart illustrating step S310.
도 14를 참조하면, S310 단계는 적설을 감지하는 S311 단계와, 발열부(60) 그룹(A, B)별로 순차 구동시키는 S312 단계와, 설정된 제1 적설량과 감지된 적설량을 비교하는 S313 단계와, 설정된 제1적설량을 초과한 적설량이 감지되면 시간 기준을 비교하는 S314 단계와, 설정 시간기준에 해당되지 않으면 감지된 적설량과 설정된 제2적설량을 비교하는 S315 단계와, 설정 시간 기준 또는 설정 제2적설량에 해당되면 태양전지모듈(50)을 직립 제어하는 S316 단계와, 온도 및/또는 풍속 기준에 따라 차등 주기로 발열부(60) 그룹(A, B)을 제어하는 S317 단계를 포함한다. Referring to FIG. 14 , step S310 includes step S311 of detecting snow load, step S312 of sequentially driving for each group (A, B) of the heat generating unit 60, step S313 of comparing the set first snow load amount with the detected snow amount, and , a step S314 of comparing a time reference when a snow load exceeding the set first snow load is detected, a step S315 of comparing the detected snow amount with a set second snow amount if it does not correspond to a set time standard, a set time standard or a set second When the amount of snow falls, a step S316 of controlling the solar cell module 50 upright, and a step S317 of controlling the groups (A, B) of the heat generating units 60 at a differential cycle according to the temperature and/or wind speed standard are included.
S311 단계는 히터 컨트롤러(10)가 적설센서(21)의 감지 정보를 수신하는 단계이다. 히터 컨트롤러(10)는 실시간으로 센서부(20)의 감지 정보를 수신한다.Step S311 is a step in which the heater controller 10 receives detection information of the snow load sensor 21 . The heater controller 10 receives sensing information of the sensor unit 20 in real time.
S312 단계는 히터 컨트롤러(10)는 적설이 감지되면, 발열부(60) 그룹(A, B)별로 순차 작동시키는 단계이다. 히터 컨트롤러(10)는 눈이 내리기 시작하면, 발열부(60) 그룹(A, B)별로 순차 작동시킨다. 이때 히터 컨트롤러(10)는 복수의 발열부(60) 그룹(A, B) 중 어느 하나가 작동된 이후에 설정된 지연시간이 경과되면 다음 차순의 발열부(60) 그룹(A, B)에 전원을 공급하도록 제어한다. Step S312 is a step in which the heater controller 10 sequentially operates for each group (A, B) of the heating unit 60 when snow is detected. When the snow starts to fall, the heater controller 10 sequentially operates the heating unit 60 for each group (A, B). At this time, when the set delay time elapses after any one of the plurality of heat generating units 60 groups A and B is operated, the heater controller 10 supplies power to the next heat generating unit 60 groups A and B. control to supply
S313 단계는 히터 컨트롤러(10)는 적설센서(21)로부터 적설량 감지 정보를 수신하여 설정된 제1 적설량과 비교한다. 여기서 히터 컨트롤러(10)는 발열체(61)가 작동된 이후라도 적설센서(21)의 감지정보를 계속적으로 수신하여 감지된 눈의 적설량과 설정된 제1적설량을 비교한다. In step S313 , the heater controller 10 receives the snow load amount detection information from the snow load sensor 21 and compares it with a set first snow load amount. Here, the heater controller 10 continuously receives the detection information of the snow load sensor 21 even after the heating element 61 is operated and compares the sensed snow load amount with the set first snow load amount.
S314 단계는 히터 컨트롤러(10)가 설정된 제1적설량이 감지되면, 설정된 시간 기준의 해당 여부를 감지하는 단계이다. 예를 들면, 시간 기준은 일몰 후 부터 일출 이전의 시간 대를 포함할 수 있다. 따라서 히터 컨트롤러(10)는 자체 타이머를 통하여 현재 시간과 시간 기준을 비교한다.Step S314 is a step in which the heater controller 10 detects whether the set first snowfall amount corresponds to the set time reference. For example, the time reference may include a time zone from after sunset to before sunrise. Accordingly, the heater controller 10 compares the current time with the time reference through its own timer.
S315 단계는 히터 컨트롤러(10)가 현재 시간이 시간 기준에 해당되지 않으면, 적설센서(21)로부터 감지된 적설량이 설정된 제2적설량에 해당되는 지를 감지하는 단계이다. 여기서 제2적설량은 제1적설량 보다 큰 값으로 설정된다. In step S315 , if the current time does not correspond to the time reference, the heater controller 10 detects whether the snow load amount detected by the snow load sensor 21 corresponds to the set second snow load amount. Here, the second snow load is set to be larger than the first snow load.
S316 단계는 히터 컨트롤러(10)가 시간 기준 또는 제2적설량이 감지되면 태양전지모듈(50)을 직립 제어하는 단계이다. 히터 컨트롤러(10)는 적설센서(21)의 감지정보에 따라 설정된 적설량에 해당되면, 회동 구동부(70)에 작동명령을 출력한다. Step S316 is a step in which the heater controller 10 controls the solar cell module 50 upright when the time reference or the second snow load is sensed. The heater controller 10 outputs an operation command to the rotation driving unit 70 when it corresponds to the snow load amount set according to the detection information of the snow load sensor 21 .
따라서 회동 구동부(70)는 회동부(80)를 작동시켜 태양전지모듈(50)을 직립된 자세로 변형시킨다. 그러므로 태양전지모듈(50)은 직립된 자세를 유지함에 따라 기존에 쌓인 눈을 모두 지면으로 낙하시키고, 이후에 적설되는 눈의 양을 최소화할 수 있다. Therefore, the rotation driving unit 70 operates the rotation unit 80 to transform the solar cell module 50 into an upright posture. Therefore, as the solar cell module 50 maintains an upright posture, all of the previously accumulated snow may fall to the ground, and the amount of snow accumulated thereafter may be minimized.
S317 단계는 히터 컨트롤러(10)가 센서부(20)의 감지정보에 따라서 발열부(60) 그룹(A, B)들을 차등 주기로 작동되도록 제어하는 단계이다. 예를 들면, 히터 컨트롤러(10)는 태양전지모듈(50)의 직립 후에 온도와 풍속, 시간에 따라서 발열부(60) 그룹(A, B)이 설정된 시간동안 온과 오프를 교번적으로 진행할 수 있도록 제어한다. Step S317 is a step in which the heater controller 10 controls the groups A and B of the heating units 60 to operate in a differential cycle according to the sensing information of the sensor unit 20 . For example, after the solar cell module 50 is erected, the heater controller 10 may alternately turn on and off for a set period of time for which the heating unit 60 groups A and B are set according to temperature, wind speed, and time. control so that
예를 들면, 히터 컨트롤러(10)는 온도가 낮고 풍속이 강할 수록 발열부(60) 그룹(A, B)들의 온되는 시간이 길고, 오프 시간이 짧아지도록 제어한다. For example, the heater controller 10 controls so that the on time of the groups A and B of the heating unit 60 is longer and the off time is shorter as the temperature is lower and the wind speed is stronger.
또한, 히터 컨트롤러(10)는 S317 단계에서 발열체(61) 오프 기준 및/또는 직립 해제 조건에 해당되면 발열체(61)를 오프 및/또는 직립을 해제할 수 있다. Also, the heater controller 10 may turn the heating element 61 off and/or release the upright position when the heating element 61 off criterion and/or the upright release condition are met in step S317 .
발열체(61)의 오프 기준은 온도(예를 들면, 20℃ 이상)와 풍속과 강우량 중 어느 하나 또는 하나 이상이 조합되도록 설정될 수 있고, 직립 해제 조건은 시간과 적설량 및 온도 중 하나 이상이 조합될 수 있다. The off criterion of the heating element 61 may be set such that any one or more of temperature (eg, 20° C. or higher), wind speed, and rainfall are combined, and the upright release condition is a combination of time, snow load, and temperature. can be
S320 단계는 도 15를 참조하여 설명한다. 도 15는 S320 단계에서 고장 감지 단계를 도시한 순서도이다. Step S320 will be described with reference to FIG. 15 . 15 is a flowchart illustrating a failure detection step in step S320.
도 15를 참조하면, S320 단계는 히터 컨트롤러(10)에서 각 발열부(60) 그룹(A, B)별 소비전력을 측정하는 S321 단계와, 발열부(60) 그룹(A, B) 중 소비전력과 설정된 소비전력에 차이 여부에 따른 발열부(60) 그룹(A, B)의 이상을 감지하는 S322 단게와, 이상이 있는 것으로 감지되면 설정 시간 동안 대기하는 S323 단계와, 대기시간 이후에 소비전력을 재측정하는 S324 단계와, 재측정 이후에 고장을 감지하는 S325 단계와, 고장 경보를 출력 및 송신하는 S326 단계를 포함한다. Referring to FIG. 15 , step S320 includes a step S321 of measuring power consumption for each group (A, B) of each heating unit 60 in the heater controller 10, and a consumption among groups (A, B) of the heating unit 60 Step S322 for detecting an abnormality in the group (A, B) of the heating unit 60 according to whether there is a difference between power and set power consumption, and step S323 for waiting for a set time when an abnormality is detected, and consumption after the standby time Step S324 of re-measuring power, step S325 of detecting a failure after re-measurement, and step S326 of outputting and transmitting a failure alert.
S321 단계는 히터 컨트롤러(10)가 각 발열부(60) 그룹(A, B)별 소비전력을 측정하는 단계이다. 연산모듈(120)은 스위칭모듈(140)에 의해 전원이 공급되는 각 발열부(60) 그룹(A, B)별로 소비전력을 산출한다. 여기서 연산 모듈은 설정된 시간 주기별로 소비전력을 측정하고, 제어모듈(130)은 연산모듈(120)에서 산출된 각 발열부(60) 그룹(A, B)의 소비전력과 설정된 소비전력 기준을 비교하여 이상 여부를 감지한다. Step S321 is a step in which the heater controller 10 measures the power consumption for each heat generating unit 60 group (A, B). The operation module 120 calculates power consumption for each group (A, B) of each heat generating unit 60 supplied with power by the switching module 140 . Here, the arithmetic module measures power consumption for each set time period, and the control module 130 compares the set power consumption standard with the power consumption of each heat generating unit 60 group (A, B) calculated by the arithmetic module 120 . to detect any abnormality.
예를 들면, 제1발열부(60) 그룹(A)은 제1발열체(61)와 제2발열체(61')를 포함하고, 이중 제1발열체(61)가 고장으로 작동되지 않고, 제2발열체(61')만 작동될 수 있다. 그러므로 제1발열부(60) 그룹(A)은 하나의 발열체(61, 61')만 작동됨에 따라 소비전력이 정상 작동에 비하여 반값으로 떨어진다. For example, the first heating unit 60 group (A) includes a first heating element 61 and a second heating element 61 ′, among which the first heating element 61 is not operated due to a failure, and the second Only the heating element 61' can be operated. Therefore, in the group (A) of the first heating unit 60, as only one heating element (61, 61') is operated, the power consumption is reduced to half compared to the normal operation.
그리고 소비전력 기준은 발열부(60) 그룹(A, B)이 작동될 경우에 사용되는 소비전력의 범위로 설정된다. And the power consumption standard is set to the range of power consumption used when the heating unit 60 group (A, B) is operated.
따라서 제어모듈(130)은 연산모듈(120)에서 산출된 실제 소비전력과 설정된 소비전력 기준을 통하여 이상 여부를 감지할 수 있다. Accordingly, the control module 130 may detect whether there is an abnormality based on the actual power consumption calculated by the operation module 120 and the set power consumption standard.
S323 단계는 히터 컨트롤러(10)에서 설정된 시간동안 대기하는 단계이다. Step S323 is a step of waiting for a time set in the heater controller 10 .
S324 단계는 히터 컨트롤러(10)에서 S322 단계에서 이상이 감지된 발열부(60) 그룹(A, B)의 소비전력을 대기시간 이후에 재측정하는 단계이다. 연산모듈(120)은 대기시간 이후에 설정된 시간동안 해당 발열부(60) 그룹(A, B)의 소비전력을 재측정하여 그 결과를 출력한다.Step S324 is a step in which the heater controller 10 re-measures the power consumption of the groups A and B of the heating unit 60 for which the abnormality is detected in step S322 after the standby time. The operation module 120 re-measures the power consumption of the group (A, B) of the heating unit 60 for a set time after the standby time, and outputs the result.
S325 단계는 히터 컨트롤러(10)에서 재측정된 소비전력과 설정된 소비전력 기준을 비교하여 고장여부를 감지하는 단계이다. 제어모듈(130)은 연산모듈(120)의 재측정된 소비전력과 설정된 소비전력 기준과의 차이 여부를 통하여 고장을 감지한다. Step S325 is a step of detecting whether there is a failure by comparing the re-measured power consumption by the heater controller 10 with a set power consumption standard. The control module 130 detects a failure based on whether there is a difference between the re-measured power consumption of the operation module 120 and the set power consumption standard.
S326 단계는 히터 컨트롤러(10)에서 재측정된 소비전력이 설정된 소비전력 기준과 상이할 경우에 고장을 경보하는 단계이다. 고장경보는 원격 제어부(90)와, 모바일 단말(도시되지 않음)에 직접 송신될 수 있다. 또는 히터 컨트롤러(10)는 표시모듈(150)을 작동시켜 고장 여부를 발광 표시함도 가능하다. Step S326 is a step of alerting a failure when the power consumption re-measured by the heater controller 10 is different from the set power consumption standard. The failure alarm may be transmitted directly to the remote control unit 90 and a mobile terminal (not shown). Alternatively, the heater controller 10 may operate the display module 150 to display whether there is a malfunction or not.
본 발명은 상술한 바와 같이 하나 또는 그 이상의 발열체(61, 61')가 구비된 복수의 발열부(60)들을 하나의 발열부(60) 그룹(A, B)으로 설정하고, 각 발열부(60) 그룹(A, B)들을 설정된 지연시간 간격으로 순차 작동시킬 수 있어 공급전력을 줄일 수 있고, 적설량에 따라 태양전지모듈(50)을 직립된 자세로 변형시킴에 따라 폭설에 따른 피해와, 발열체(61)의 발열시간을 단축시킬 수 있어 에너지를 절약할 수 있다. As described above, the present invention sets a plurality of heating units 60 provided with one or more heating elements 61 and 61' as one heating unit 60 group (A, B), and each heating unit ( 60) Groups (A, B) can be operated sequentially at a set delay time interval to reduce supply power, Since the heating time of the heating element 61 can be shortened, energy can be saved.

Claims (8)

  1. 태양전지판(51) 및 태양전지판(51)을 지지하는 지지 프레임(52)을 각각 구비한 복수의 태양전지모듈(50);a plurality of solar cell modules 50 each having a solar panel 51 and a support frame 52 supporting the solar panel 51;
    하나 이상의 발열체(61, 61')를 구비하여 태양전지판(51)의 배면에 설치되어 발열하는 발열부(60);a heating unit 60 having one or more heating elements 61 and 61 ′ and installed on the rear surface of the solar panel 51 to generate heat;
    적설량 및 온도를 감지하는 센서부(20); 및The sensor unit 20 for detecting the amount of snow and temperature; and
    센서부(20)의 감지 정보에 따라 발열부(60)를 제어하는 히터 컨트롤러(10);를 포함하고, Includes; heater controller 10 for controlling the heating unit 60 according to the sensing information of the sensor unit 20;
    발열부(60)는 The heating part 60 is
    복수로서 하나의 그룹(A, B)을 형성하고, 각 그룹(A, B)은 히터 컨트롤러(10)에 직렬 연결되고, Form one group (A, B) as a plurality, each group (A, B) is connected in series to the heater controller (10),
    히터 컨트롤러(10)는 센서부(20)의 감지 정보에 따라서 발열부(60)의 그룹(A, B)별로 설정된 지연시간을 사이에 두고 순차 작동시키는 것;을 특징으로 하는 발열체(61)를 구비한 태양광 발전 시스템.The heater controller 10 sequentially operates the heating element 61 according to the detection information of the sensor unit 20 with a delay time set for each group (A, B) of the heating unit 60 therebetween; Equipped with solar power system.
  2. 청구항 1에 있어서, The method according to claim 1,
    히터 컨트롤러(10)에 비상 정지 명령을 출력하는 비상 스위치(30);를 더 포함하는 발열체(61)를 구비한 태양광 발전 시스템. An emergency switch 30 for outputting an emergency stop command to the heater controller 10; Solar power generation system having a heating element 61 further comprising.
  3. 청구항 1에 있어서, 발열체(61)는 The method according to claim 1, The heating element (61)
    기판(611)에 전도성 잉크로 인쇄되는 패턴(612);a pattern 612 printed on the substrate 611 with conductive ink;
    패턴(612)의 상면에 적층되는 보호층(613);a protective layer 613 laminated on the upper surface of the pattern 612 ;
    보호층(613)의 상면에서 태양전지판(51)의 배면에 접착되는 접착층(614); 및an adhesive layer 614 adhered to the rear surface of the solar panel 51 on the upper surface of the protective layer 613 ; and
    기판(611)의 하면에서 열을 차단하는 단열재(615); 포함하는 발열체를 구비한 태양광 발전 시스템. an insulator 615 for blocking heat from the lower surface of the substrate 611; Solar power generation system having a heating element comprising a.
  4. 청구항 1에 있어서, The method according to claim 1,
    태양전지판(51)의 배면에 발열체(61)를 지지하는 지지수단(62); 을 포함하고,Support means 62 for supporting the heating element 61 on the rear surface of the solar panel 51; including,
    지지수단(62)은 The support means 62 is
    일방향으로 연장되어 상면에 적층된 발열체(61)를 지지하는 것;을 특징으로 하는 발열체를 구비한 태양광 발전 시스템.A solar power generation system having a heating element, characterized in that extending in one direction to support the heating element 61 stacked on the upper surface.
  5. 청구항 4에 있어서, 지지 프레임(52)의 하단에서 연장되는 하부 체결단(522)이 인입되도록 내향되는 단홈(631)과, 양측면에서 내향되어 지지수단(62)의 양측에서 하향 연장 및 절곡되는 절곡단(622)에 끼움되는 장홈(632)과, 고정수단(64)과 나사 체결되는 하나 이상의 고정홀(633)을 포함하는 체결수단(63);을 더 포함하고,The method according to claim 4, wherein the lower fastening end (522) extending from the lower end of the support frame (52) is directed inward to enter the short groove (631), both sides are inwardly extended and bent from both sides of the support means (62) downwardly extending and bending It further includes; a long groove 632 fitted to the end 622, and a fastening means 63 including one or more fixing holes 633 screwed to the fixing means 64;
    단홈(631)은 The short groove 631 is
    고정홀(633)에 나사 체결된 고정수단(64)이 회전되면서 가압되어 지지 프레임(52)의 하부 체결단(522)을 가압하는 것;을 특징으로 하는 발열체를 구비한 태양광 발전 시스템. The fixing means 64 screwed into the fixing hole 633 is pressed while rotating to press the lower fastening end 522 of the support frame 52; a photovoltaic system with a heating element, characterized in that.
  6. 청구항 4에 있어서, 발열체(61)는The method according to claim 4, The heating element (61)
    상호 이격된 복수로 설치되는 것;을 특징으로 하는 발열체(61)를 구비한 태양광 발전 시스템. A solar power generation system having a heating element (61), characterized in that;
  7. a)히터 컨트롤러(10)에서 센서부(20)로부터 적설량, 온도 중 하나 이상의 감지 정보를 수집하는 단계;a) collecting information detected from the sensor unit 20 in the heater controller 10 , at least one of snow load and temperature;
    b)히터 컨트롤러(10)에서 설정된 기준과 수신된 감지 정보를 비교하는 단계;b) comparing the criteria set by the heater controller 10 with the received sensing information;
    c)히터 컨트롤러(10)에서 복수의 발열체(61)를 하나의 그룹(A, B)으로 분할 설정하고, 복수의 그룹(A, B)들을 설정된 지연시간을 사이에 두고 순차적으로 작동시키는 단계;c) dividing the plurality of heating elements 61 into one group (A, B) in the heater controller 10 and sequentially operating the plurality of groups (A, B) with a set delay time therebetween;
    d)히터 컨트롤러(10)에서 비상 스위치(30)의 온오프를 감지하는 단계; 및 d) detecting on/off of the emergency switch 30 in the heater controller 10; and
    e)비상 스위치(30)가 온되면 전원을 차단하여 발열체(61)들을 오프시키는 단계를 포함하는 발열체(61)를 구비한 태양광 발전 시스템의 제어방법. e) When the emergency switch 30 is turned on, the control method of a solar power generation system having a heating element 61 comprising the step of turning off the heating elements 61 by cutting off the power.
  8. 청구항 7에 있어서, c)단계는The method according to claim 7, c) step
    c-1)히터 컨트롤러(10)에서 적설이 감지되면, 복수의 발열부(60) 그룹(A, B) 중 어느 하나가 작동된 이후에 설정된 지연시간이 경과되면 다음 차순의 발열부(60) 그룹(A, B)에 전원을 공급하도록 제어하는 단계;. c-1) When snow is detected by the heater controller 10, when a set delay time elapses after any one of the plurality of heat generating units 60 groups (A, B) is operated, the next heat generating unit 60 controlling to supply power to the groups (A, B);
    c-2)히터 컨트롤러(10)에서 감지된 적설량과 설정된 제1 적설량과 비교하는 단계;c-2) comparing the amount of snow detected by the heater controller 10 with a set first snow amount;
    c-3)히터 컨트롤러(10)가 설정된 제1적설량이 감지되면, 설정된 시간 기준에 해당되는 지를 감지하는 단계;c-3) when the heater controller 10 detects a set first snow load, detecting whether it corresponds to a set time standard;
    c-4)히터 컨트롤러(10)가 현재 시간이 시간 기준에 해당되지 않으면, 감지 적설량이 설정된 제2적설량(제2적설량>제1적설량)에 해당되는 지를 감지하는 단계;c-4) detecting, by the heater controller 10, if the current time does not correspond to the time reference, whether the detected snow load corresponds to a set second snow load (second snow load > first snow load);
    c-5)히터 컨트롤러(10)가 시간 기준 또는 제2적설량이 감지되면 태양전지모듈(50)을 직립 제어하는 단계; 및 c-5) controlling the solar cell module 50 upright when the heater controller 10 detects a time reference or a second snow load; and
    c-6)히터 컨트롤러(10)가 태양전지모듈(50)의 직립 이후에 온도와 풍속, 시간에 따라서 발열부(60) 그룹(A, B)이 설정된 시간동안 교번적으로 온, 오프되되도록 제어하는 단계;를 포함하고, c-6) so that the heater controller 10 is alternately turned on and off for a set time according to the temperature, wind speed, and time after the heater controller 10 is erected by the solar cell module 50 Controlling; including;
    c-6)단계는 온도가 낮고 풍속이 강할 수록 발열부(60) 그룹(A, B)들의 온되는 시간이 길고, 오프 시간이 짧아지도록 제어하는 것;을 특징을 하는 발열체(61)가 구비된 태양광 발전시스템의 제어방법. In step c-6), the lower the temperature and the stronger the wind speed, the longer the on time of the groups (A, B) of the heat generating part 60 is, and the shorter the off time; a heating element 61 is provided A control method of a solar power generation system.
PCT/KR2020/015856 2020-03-05 2020-11-12 Solar power generation system with heating element and method for controlling same WO2021177545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0027597 2020-03-05
KR1020200027597A KR102144290B1 (en) 2020-03-05 2020-03-05 Photovoltaic generator system with heating element and control method thereof

Publications (1)

Publication Number Publication Date
WO2021177545A1 true WO2021177545A1 (en) 2021-09-10

Family

ID=72291882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015856 WO2021177545A1 (en) 2020-03-05 2020-11-12 Solar power generation system with heating element and method for controlling same

Country Status (2)

Country Link
KR (1) KR102144290B1 (en)
WO (1) WO2021177545A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419330B1 (en) * 2020-09-07 2022-07-12 (주)파인디어칩 Apparatus and method for diagnosing error of the solar module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311635A (en) * 2006-05-19 2007-11-29 Ecomode:Kk Snow melting type solar cell module
KR20150111019A (en) * 2014-03-24 2015-10-05 주식회사 탑선 Solar cell module with snow melting function
KR101603782B1 (en) * 2014-09-26 2016-03-28 주식회사 탑선 Solar power system with the snow melting and cooling function
KR101751254B1 (en) * 2016-10-10 2017-06-29 주식회사 에코그린텍 Photovoltaic system
KR102066873B1 (en) * 2019-03-11 2020-01-16 주식회사 넥서스에너텍 Solar power system with snow melting function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311635A (en) * 2006-05-19 2007-11-29 Ecomode:Kk Snow melting type solar cell module
KR20150111019A (en) * 2014-03-24 2015-10-05 주식회사 탑선 Solar cell module with snow melting function
KR101603782B1 (en) * 2014-09-26 2016-03-28 주식회사 탑선 Solar power system with the snow melting and cooling function
KR101751254B1 (en) * 2016-10-10 2017-06-29 주식회사 에코그린텍 Photovoltaic system
KR102066873B1 (en) * 2019-03-11 2020-01-16 주식회사 넥서스에너텍 Solar power system with snow melting function

Also Published As

Publication number Publication date
KR102144290B1 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2019059525A1 (en) Photovoltaic lighting system having integrated control board, and monitoring system using same
WO2014109541A1 (en) Solar cell module-equipped panel and exterior building material using same
WO2019103230A1 (en) Solar light power generation management system
WO2015199308A1 (en) Roof-integrated photovoltaic module having devices for enhancing and optimizing photovoltaic efficiency
JP3239035B2 (en) Solar cell module with snow melting function and solar power generation system with snow melting function
US20090182532A1 (en) Monitoring unit for photovoltaic modules
WO2013032099A1 (en) Solar power generating apparatus
WO2012070741A1 (en) Robot-type solar tracking apparatus
WO2021177545A1 (en) Solar power generation system with heating element and method for controlling same
WO2015027653A1 (en) Solar power supply device and solar illumination device
WO2018052222A1 (en) Flexible solar panels
WO2013094838A1 (en) Photovoltaic power generation system performing maximum power point tracking for each unit group
US4957012A (en) Predictive aging of polymers
WO2018199556A1 (en) Photovoltaic power generation device employing light-collecting plate
WO2012165706A1 (en) Support frame for building-integrated photovoltaic cell window and building-integrated photovoltaic cell window using same
KR101317868B1 (en) Building integrated photovoltaic glass panel
WO2016125938A1 (en) Solar light detection device and solar light tracker having same
JP2004039753A (en) Solar battery module with function for melting snow and controlling apparatus therefor
WO2010114268A2 (en) Solar cell panel having a bypass unit
JP3995395B2 (en) Solar panel mounting structure and coloring plate
WO2013180339A1 (en) Solar cell module and manufacturing method therefor
WO2021085744A1 (en) Apparatus for preventing accumulation of foreign bodies, having function of controlling output according to detection of foreign bodies
WO2020222376A1 (en) Solar panel condition diagnosis system and diagnosis method using same
CN205090315U (en) Green energy -conserving road lighting system of intelligence
CN219980499U (en) Integrated flood alarm device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922756

Country of ref document: EP

Kind code of ref document: A1