WO2021177522A1 - Infectious respiratory virus-blocking composition and use thereof - Google Patents

Infectious respiratory virus-blocking composition and use thereof Download PDF

Info

Publication number
WO2021177522A1
WO2021177522A1 PCT/KR2020/012716 KR2020012716W WO2021177522A1 WO 2021177522 A1 WO2021177522 A1 WO 2021177522A1 KR 2020012716 W KR2020012716 W KR 2020012716W WO 2021177522 A1 WO2021177522 A1 WO 2021177522A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
filter
sodium phosphate
blocking
coated
Prior art date
Application number
PCT/KR2020/012716
Other languages
French (fr)
Korean (ko)
Inventor
전복실
이수화
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2021177522A1 publication Critical patent/WO2021177522A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/08Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Definitions

  • the present invention relates to a virus-blocking composition comprising sodium phosphate and a virus-blocking mask filter comprising the same.
  • Human infectious diseases include various diseases such as respiratory diseases, which are caused by bacteria, fungi, viruses, and the like. In particular, since most viruses have a size of 100 nm or less, it is not easy to completely filter them. Influenza caused by influenza virus infection occurs every year, and intermittent pandemics can kill millions of people. In 2009, a swine influenza outbreak occurred that killed tens of thousands of people worldwide.
  • Influenza viruses also infect animals, and birds and pigs act as intermediate host animals for influenza viruses. It is thought Inhalation of air containing the influenza virus can be a route of infection, especially for infected patients or persons working with animals. The air discharged from the breath, cough, or sputum of an infected patient contains countless viruses, and the virus is also emitted from animal feces. high.
  • a mask with an appropriate filter material is an effective means of preventing infection by airborne viruses.
  • a mask filter material a non-woven material including an air filter that removes viruses or other microorganisms, a filter having a small diameter and using an electrostatic principle to block fine particles, etc. have been used.
  • the conventionally known virus blocking mask is insufficient in protecting or blocking infectious respiratory viruses having a diameter of 80-300 nm or less.
  • Another object of the present invention is to provide a mask filter for virus blocking comprising the composition.
  • Another object of the present invention is to provide a method for manufacturing a mask filter for blocking viruses.
  • One aspect of the present invention relates to a composition for virus blocking comprising sodium phosphate.
  • sodium phosphate has a molecular formula of NaH 2 PO 4 , and is a chemical substance of colorless crystals and white powder. It is highly soluble in water, an aqueous solution is alkaline, and insoluble in alcohol. In general, sodium phosphate is one of the substances whose safety is ensured enough to be variously used in the food field, industrial field, other feed, medicine, toothpaste, and the like.
  • pH buffering agent In the food field, pH buffering agent, emulsification dispersant, food rancidity and fermentation inhibitor, noodle processing tissue improver, fish meat tenderizer elasticity enhancer, cheese emulsifier, canned food discoloration prevention, ion sequestrant, vermicelli noodles, pick-me-down immunity, nuts, tender meat, It is used for sugar pickling, grain processing, document processing, starch processing, sugar processing, quality improving agent (fish meat dough product, dairy product), volume increase of ice cream, food browning prevention and gloss.
  • the present invention intends to provide a virus-blocking composition containing sodium phosphate, which can easily obtain virus-blocking and protective effects by simply coating a virus-blocking article, such as a virus-blocking mask, with sodium phosphate.
  • the composition may include sodium phosphate in a concentration of 0.5M or more and 10M or less. More specifically, it may include 1M or more and 10M or less, and more specifically, it may include 1M or more and 5M or less.
  • the virus may be an influenza virus.
  • virus refers to small particles that are smaller than bacteria that depend on the host and that are composed of a small number of proteins and nucleic acids necessary for survival and cannot be separated even by a bacterial filter.
  • Viruses can be classified into plant viruses and animal viruses. Plant viruses include tobacco mosaic virus, cassava mosaic virus, potato Y virus, sugar beet yellow virus, cucumber mosaic virus, etc., and animal viruses include Japanese encephalitis virus, Dengue virus, yellow fever virus, polio virus, coxsackie virus, echo virus, hepatitis virus, rabies virus, influenza virus, adenovirus and the like.
  • “Byser blocking” refers to the action of inhibiting, preventing, or killing the virus, growth and/or activity of the virus. As a specific embodiment of the present invention, it may be to inhibit, prevent or kill the activity of a human respiratory infection virus, such as influenza.
  • influenza is RNA orthomyxoviruses and consists of three types A, B and C.
  • Influenza viruses of types B and C are mainly human pathogens, whereas influenza A viruses infect a variety of birds and mammals in the wild, including humans, horses, marine mammals, pigs, ferrets and chickens.
  • Influenza A viruses are subtyped based on allelic modifications in the antigenic regions of two genes encoding surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are required for virus attachment and cell release.
  • HA hemagglutinin
  • NA neuraminidase
  • HA nucleoproteins
  • M1 and M2 membrane proteins
  • PA polymerases
  • PB polymerases
  • NS1 and NS2 non-structural proteins
  • HA H1-H16
  • N1-N9 9 NA antigen variants
  • Phylogenetic analysis discloses that the subdivision of HA is divided into two main groups: H1, H2, H5 and H9 subtypes of phylogenetic group 1 and H3, H4 and H7 of phylogenetic group 2.
  • the virus may be an influenza virus of subtype H3N2 or H5N1.
  • the H3N2 subtype influenza may be A/Hong Kong/68 (H3N2).
  • the A/Hong Kong/68 (H3N2) is an influenza A virus isolated from Hong Kong and has serotypes of H3 and N2.
  • the H5N1 subtype influenza may be A/Viet Nam/1203/2004 (H5N1).
  • the A/Viet Nam/1203/2004 (H5N1) is an influenza A virus that was isolated in Vietnam in 2004 as the 1203th virus and has H5 and N1 serotypes.
  • the amount of influenza virus that passed without being attached to the sodium phosphate-coated filter was small, and it was confirmed that a significant number of influenza viruses that passed were inactivated (FIG. 4).
  • composition containing sodium phosphate of the present invention has an excellent effect on blocking viruses having a small size such as influenza virus.
  • Another aspect of the present invention relates to a virus-blocking mask filter comprising the virus-blocking composition.
  • mask refers to an object that covers the mouth and nose to prevent foreign substances such as germs or dust from penetrating into the body, and there may be a virus blocking mask for blocking and defending infectious viruses.
  • the antiviral mask generally includes means to hold it in place over the user's face, a mask filter to block the virus, and through which the user's inhaled and/or exhaled air can pass through the filter material.
  • mask filter refers to the function of effectively protecting the user's respiratory system by effectively blocking the intrusion of various viruses through the respiratory tract.
  • Materials that can be used in the filter of the present invention can be used without limitation as long as it is a material for manufacturing a filter known in the art.
  • fabrics such as cotton, cellulose, wool, polyolefin, polyester, polyamide, rayon, polyacrylonitrile, cellulose, acetate, polystyrene, polyvinyl, and any synthetic polymer that can be processed into fibers. and may include non-woven fabrics such as polypropylene, polyethylene, polyester, nylon, PET and PLA.
  • virus blocking composition may be coated on the surface of the mask filter.
  • the coating includes an act of coating a thin film on the surface of an object with a resin or the like, or applying a thin film by dropping a solution or a liquid substance and the like. Specifically, by dispensing sodium phosphate to the mask filter and drying it, it may be a mask filter in which sodium phosphate is thinly coated.
  • a mask filter coated with sodium phosphate can effectively block an infectious respiratory virus of a small size, and thus can be used as a mask filter for influenza virus blocking.
  • Another aspect of the present invention relates to a method for manufacturing a mask filter for virus blocking, comprising the step of coating sodium phosphate (sodium phosphate) on the mask filter.
  • the sodium phosphate may be coated on the mask filter at a concentration of 0.5 M or more and 10 M or less. More specifically, it may include 1M or more and 10M or less, and more specifically 1M or more and 5M or less.
  • sodium phosphate was sprayed on a filter having a small diameter used as a conventional mask filter, and a mask filter for blocking virus coated with sodium phosphate was manufactured.
  • the virus may be influenza of H3N2 or H5N1 subtype. That is, the method may be a method of manufacturing a mask filter for blocking influenza of H3N2 or H5N1 subtype.
  • the H3N2 subtype virus may be A/Hong Kong/68 (H3N2).
  • the A/Hong Kong/68 (H3N2) is an influenza A virus isolated from Hong Kong and has serotypes of H3 and N2.
  • the H5N1 subtype influenza may be A/Viet Nam/1203/2004 (H5N1).
  • the A/Viet Nam/1203/2004 (H5N1) is an influenza A virus that was isolated in Vietnam in 2004 as the 1203th virus and has H5 and N1 serotypes.
  • the antiviral composition comprising sodium phosphate of the present invention is effective in blocking and defending a small-sized infectious respiratory virus, and furthermore, it is harmless to the human body, so it can be used in various ways as a virus blocking application.
  • FIG. 1 shows an experimental design for confirming the virus blocking effect of a mask material coated with sodium phosphate.
  • FIG. 2 shows the results of observing the mask filter coated with sodium phosphate under a microscope (A: control, B: 1M sodium chloride coating, C: 3M sodium chloride coating, D: 5M sodium chloride coating, E: mask filter pore size, F: pore counts of the mask filter, G: breathability of the mask filter).
  • FIG. 3 shows the results of measuring the activity (Plaque assay) of the H3N2 virus attached to the sodium phosphate-coated filter (A: measurement of the activity of the virus attached to the filter, B: the result of the HA titer of the virus attached to the filter, C : Virus blocking rate of filter after spraying on filter with virus aerosolization).
  • FIG. 4 shows the results of measuring the H3N2 virus activity that passed through the sodium phosphate-coated filter (A: measurement of the activity of the virus that passed the filter, B: After the virus that passed the filter was infected in the mouse, the lungs were collected to measure the amount of virus).
  • FIG. 5 shows the results of measuring the inflammatory response and survival rate of mice infected with H3N2 virus that passed through the sodium phosphate-coated filter (A: measurement of inflammatory cytokines, B: survival rate of mice infected with H3N2 virus).
  • FIG. 6 shows the results of measuring the activity of low concentration (2 mg/ml) H3N2 and H5N1 viruses attached to a sodium phosphate-coated filter (A: activity of H3N2 virus attached to filter, B: H3N2 virus passing through filter activity, C: H3N2 virus blocking rate by the filter, D: H5N1 virus activity attached to the filter, E: H5N1 virus activity through the filter, F: H5N1 virus blocking rate by the filter).
  • A activity of H3N2 virus attached to filter
  • B H3N2 virus passing through filter activity
  • C H3N2 virus blocking rate by the filter
  • D H5N1 virus activity attached to the filter
  • E H5N1 virus activity through the filter
  • F H5N1 virus blocking rate by the filter
  • FIG. 7 shows the results of measuring the activity of low-concentration H3N2 and H5N1 viruses passing through a sodium phosphate-coated filter (A: H3N2 virus, B: H5N1 virus).
  • mice 8 shows the weight change and survival rate measurement results of mice infected with low-concentration H3N2 and H5N1 viruses passed through a sodium phosphate-coated filter (A: H3N2 mouse weight change rate, B: H3N2 mouse survival rate, C: H5N1 virus-infected mouse weight change rate) , D: survival of mice infected with H5N1 virus).
  • A H3N2 mouse weight change rate
  • B H3N2 mouse survival rate
  • C H5N1 virus-infected mouse weight change rate
  • D survival of mice infected with H5N1 virus
  • 1M, 3M, 5M sodium phosphate solutions (sodium phosphate and 1% Tween-20 in D.W) were prepared. After dispensing 2 ml of the sodium phosphate solution into a mask filter having a 100 mm dish size, it was incubated at 37° C. overnight. and dried overnight at 37°C.
  • the manufactured ring mask filter was observed with a scanning electron microscope, and the pore size and counts of the mask filter were measured.
  • H3N2 After preparing 8 mg/ml of A/Hong Kong/68 (H3N2), 10 ⁇ l of A/Hong Kong/68 (H3N2) was dispensed into an aerosol machine to prepare an aerosolized virus.
  • the aerosol was applied to a filter without salt coating (Bare), a filter coated with 1M sodium phosphate (1M SP), a filter coated with 3M sodium phosphate (3M SP), and a filter coated with 5M sodium phosphate (5M SP).
  • the infected virus was sprayed. Thereafter, each virus adhering to the filter was collected.
  • MDCK cells were infected and a plaque assay was performed. Specifically, after culturing MDCK cells to about 150% in a 12-well plate, the virus suspension to be specifically quantified was diluted 10-fold from 10 -1 to 10 6 and the diluted solution was inoculated by 0.25 mL per well. . After adsorbing the virus for about 30 minutes, overlay media was added. In this state, the plaques were counted after 2-3 days at 37° C. and 5% CO 2 into a cell incubator. At the same time as supplying nutrients, the overlay media made the medium in a gel state to prevent the virus propagated in the first infected cells from spreading through the medium and infecting the surrounding cells.
  • plaque counting 300 ⁇ l/well of 0.25% glutarahldehyde was added to fix the cells, and after removing the overlay media, 400 ⁇ l of 1% cyristal violet was added per well. The number of plaques was counted, and the titer of the virus stock was expressed in plaque forming units per milliliter (PFU/mL), taking into account the inoculum and dilution factor. At this time, several dilution multiples were used to minimize errors in calculation. was used, and the titer was calculated by counting as a plate in which about 10 to 40 plaques were formed.
  • PFU/mL plaque forming units per milliliter
  • the virus attached to the filter was recovered and reacted with 0.5% chicken red blood cells (cRBC) to observe a hemagglutination reaction.
  • cRBC chicken red blood cells
  • 50 ul of a 2-fold diluted sample of virus stock was dispensed on a U-bottom-shaped 96-well microplate, 50 ul of red blood cell solution was added, and reacted at room temperature for about 1 hour.
  • the erythrocytes in the wells where lysis did not occur were submerged and appeared in the form of distinct small dots, and the erythrocytes in the wells in which lysis had not occurred formed lattices and did not sink, showing a red color solution as a whole.
  • the highest dilution factor at which dissolution occurred was determined as the HA titer. As a result, it was confirmed that the higher the concentration of sodium phosphate, the lower the hemagglutinin activity of the influenza virus (FIG. 3B).
  • the virus blocking rate of the filter was measured by measuring the amount of virus attached to the filter after aerosolizing the virus and spraying it on the filter. As a result, it was confirmed that the virus blocking rate increased as the filter was coated with high concentration of sodium phosphate (Fig. 3C). ).
  • A/Hong Kong/68 H3N2
  • 10 ⁇ l was dispensed in an aerosol machine to prepare an aerosolized virus.
  • the aerosol was applied to a filter without salt coating (Bare), a filter coated with 1M sodium phosphate (1M SP), a filter coated with 3M sodium phosphate (3M SP), and a filter coated with 5M sodium phosphate (5M SP).
  • the infected virus was sprayed.
  • 300 ⁇ l of the virus passed through the filter was dissolved in 0.1M PBS, and virus activity was measured in all groups under the same conditions.
  • the measurement of the activity of the virus passing through the filter refer to the method of Experimental Example 1-1.
  • the aerosolized virus in Experimental Example 1-1 and the virus that passed through a filter coated with 1M, 3M, and 5M sodium phosphate were collected, infected with 100 ⁇ l of each mouse, sacrificed on the 4th day of infection, and the lungs were collected. The amount of virus was observed.
  • mice were sacrificed and spleens were collected to observe the inflammatory response.
  • 96-well plates were coated with 400 ng/well of anti-mouse gamma interferon (IFN- ⁇ capture antibody (BD Bioscience) in 100 ⁇ L of PBS overnight at 4° C.
  • Assay diluent BD bioscience, CA, USA
  • 100 ⁇ L of 1 After blocking at 25°C for a period of time, the plate was washed 3 times with PBS 0.01% Tween 20. Then, 100 ⁇ L of a medium solution from which splenocytes were isolated was added per well (1:1, 1:5, 1:10 in assay diluent). ratio), and incubated for 2 hours at 25° C.
  • mice from which the spleen was collected in Experimental Example 2-1 survival rates were observed in the remaining mice.
  • mice treated with the virus of the control group (Bar) that passed through the filter uncoated with salt all died within 6 days, whereas in mice treated with the virus that passed through the filter coated with 3M and 5M sodium phosphate, It was confirmed that the survival rates of 20% and 80% or more, respectively, were significantly increased (FIG. 5B).
  • the aerosolized H3N2 virus and the H3N2 virus that adhered to and passed through the 5M sodium phosphate-coated filter were collected in the same manner as in Experimental Example 1, respectively, and the virus activity was evaluated. However, a low concentration of 2 mg/ml of virus was used.
  • the virus was aerosolized and sprayed on the filter, and then the amount of virus attached to the filter was measured, confirming that the filter had an excellent virus blocking rate (FIG. 6C).
  • the aerosolized H5N1 virus and the H5N1 virus that adhered to and passed through the filter coated with 5M sodium phosphate were collected in the same manner as in Experimental Example 1, respectively, and the virus activity was evaluated. However, a low concentration of 2 mg/ml of virus was used.
  • mice sacrificed to collect lungs in Experimental Example 3-3 body weight change and survival rates were observed in the remaining mice.
  • mice treated with the low-concentration H3N2 virus of the control group (Bar) passed through the filter uncoated with salt showed 100% lethality, but mice treated with the low-concentration H3N2 virus that passed through the filter coated with 5M sodium phosphate showed 100% survival rate ( FIGS. 8A and 8B ).
  • mice treated with a low-concentration H5N1 virus of the control group (Bar) that passed through a filter uncoated with salt weight loss due to virus infection appeared, while H5N1 virus that passed through a filter coated with 5M sodium phosphate was treated. There was almost no weight loss in mice, and it was confirmed that 100% survival rate was shown ( FIGS. 8C and 8D ).
  • the above results show that the virus blocking effect on the filter coated with sodium phosphate is excellent, so the composition containing the sodium phosphate can be used as an infectious respiratory virus blocking and protective purpose, and it is possible to block viruses as well as mask filters. It can be used by coating various materials, articles, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Textile Engineering (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Filtering Materials (AREA)

Abstract

The present invention relates to a virus-blocking composition comprising sodium phosphate, and a virus-blocking mask filter comprising the composition.

Description

감염성 호흡기 바이러스 차단용 조성물 및 이의 용도 Composition for blocking infectious respiratory virus and use thereof
본 발명은 인산 나트륨(sodium phosphate)을 포함하는 바이러스 차단용 조성물 및 이를 포함하는 바이러스 차단용 마스크 필터에 관한 것이다.The present invention relates to a virus-blocking composition comprising sodium phosphate and a virus-blocking mask filter comprising the same.
사람의 전염성 질환에는 호흡기 질환 등의 다양한 질환이 있는데, 이들은 세균이나 진균, 바이러스 등에 의해 유발된다. 특히 바이러스는 100 nm 이하의 크기를 가지고 있는 경우가 대다수이어서, 이를 완전하게 여과할 수 있는 방법은 쉽지 않다. 인플루엔자 바이러스 감염에 의한 독감은 매년 발생하며 간헐적으로 대유행이 일어나 수백만 명이 생명을 잃기도 한다. 2009년에는 돼지 인플루엔자가 발생하여 전세계적으로 수만 명이 사망하기도 하였다. Human infectious diseases include various diseases such as respiratory diseases, which are caused by bacteria, fungi, viruses, and the like. In particular, since most viruses have a size of 100 nm or less, it is not easy to completely filter them. Influenza caused by influenza virus infection occurs every year, and intermittent pandemics can kill millions of people. In 2009, a swine influenza outbreak occurred that killed tens of thousands of people worldwide.
인플루엔자 바이러스는 동물에도 감염되는데 조류나 돼지 등은 인플루엔자 바이러스의 중간 숙주 동물로 작용하기도 하며, 특히 조류는 모든 형의 인플루엔자 바이러스의 유전형을 포함하고 있어서 새로운 인플루엔자 바이러스 변종을 발생시키는데 주요한 역할을 하고 있는 것으로 생각되고 있다. 인플루엔자 바이러스가 포함된 공기의 흡입은 특히 감염된 환자 또는 동물과 함께 일하는 사람에게 감염의 경로가 될 수 있다. 감염된 환자의 호흡이나 기침, 가래에서 배출되는 공기에는 무수히 많은 바이러스를 포함하고 있으며, 동물의 분변 등에서도 바이러스가 배출되어 이러한 환경에서 같이 작업을 하거나 생활을 같이 할 경우에는 인플루엔자 바이러스에 감염될 확률이 높다.Influenza viruses also infect animals, and birds and pigs act as intermediate host animals for influenza viruses. it is thought Inhalation of air containing the influenza virus can be a route of infection, especially for infected patients or persons working with animals. The air discharged from the breath, cough, or sputum of an infected patient contains countless viruses, and the virus is also emitted from animal feces. high.
적절한 필터물질이 혼합되어 있는 마스크는 공기로 전파되는 바이러스의 감염으로부터 예방할 수 있는 효과적인 수단이다. 최근에는 마스크 필터 소재로 바이러스나 기타 미생물을 제거하는 공기필터를 포함하는 부직포 소재, 직경이 작고 정전기적 원리를 이용하여 미세 입자를 차단하는 필터 등이 사용되고 있다. 한편, 종래 공지된 바이러스 차단용 마스크는 직경 80-300 nm 이하의 감염성 호흡기 바이러스를 방어 또는 차단하는 효과가 미흡하다는 문제가 있어왔다.A mask with an appropriate filter material is an effective means of preventing infection by airborne viruses. Recently, as a mask filter material, a non-woven material including an air filter that removes viruses or other microorganisms, a filter having a small diameter and using an electrostatic principle to block fine particles, etc. have been used. On the other hand, there has been a problem that the conventionally known virus blocking mask is insufficient in protecting or blocking infectious respiratory viruses having a diameter of 80-300 nm or less.
이에, 작은 크기의 감염성 호흡기 바이러스 까지도 효과적으로 차단 및 방어할 수 있는 마스크 필터, 마스크 소재 개발이 필요한 실정이다.Accordingly, there is a need to develop a mask filter and mask material that can effectively block and defend even a small-sized infectious respiratory virus.
본 발명의 목적은 인산 나트륨(sodium phosphate)을 포함하는 바이러스 차단용 조성물을 제공하는 것이다.It is an object of the present invention to provide a composition for virus blocking comprising sodium phosphate.
본 발명의 다른 목적은 상기 조성물을 포함하는 바이러스 차단용 마스크 필터를 제공하는 것이다.Another object of the present invention is to provide a mask filter for virus blocking comprising the composition.
본 발명의 또 다른 목적은 바이러스 차단용 마스크 필터 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a mask filter for blocking viruses.
본 발명의 일 측면은, 인산 나트륨(sodium phosphate)을 포함하는 바이러스 차단용 조성물에 관한 것이다.One aspect of the present invention relates to a composition for virus blocking comprising sodium phosphate.
본 발명에서 “인산 나트륨(sodium phosphate)”은 분자식이 NaH 2PO 4이고, 무색결정 및 백색분말의 화학물질이다. 물에 잘녹고, 수용액은 알칼리성이며 알코올에는 불용성인 특징을 가지고 있다. 일반적으로 인산 나트륨은 식품분야, 공업분야, 기타 사료, 의약, 치약 등에 다양하게 활용될 수 있을 정도로 안전성이 보장된 물질 중 하나이다. 식품 분야에서는 pH완충제, 유화분산제, 식품의 산패 및 발효 억제제, 면류가공 조직개량제, 어육연제품의 탄력증강제, 치즈유화제, 통조림변색방지, 이온봉쇄제, 당면 국수, 픽품결면제, 견과류, 연육, 당절임, 곡류가공, 서류가공, 전분가공, 당류가공, 품질개량제(어육 반죽제품, 유제품), 아이스크림의 부피증가, 식품 갈변방지 및 광택 등을 위한 용도로 활용된다. 공업분야에서는 청관제, 경수연화제, 금속표면처리제, 합성고무제조, EPS 팽창제, 염료분산(침투제), 농약, 시약, 인쇄, 세척제, 세제, 수처리제, 금속이온 봉쇄제 등에 활용되고 있다.In the present invention, “sodium phosphate” has a molecular formula of NaH 2 PO 4 , and is a chemical substance of colorless crystals and white powder. It is highly soluble in water, an aqueous solution is alkaline, and insoluble in alcohol. In general, sodium phosphate is one of the substances whose safety is ensured enough to be variously used in the food field, industrial field, other feed, medicine, toothpaste, and the like. In the food field, pH buffering agent, emulsification dispersant, food rancidity and fermentation inhibitor, noodle processing tissue improver, fish meat tenderizer elasticity enhancer, cheese emulsifier, canned food discoloration prevention, ion sequestrant, vermicelli noodles, pick-me-down immunity, nuts, tender meat, It is used for sugar pickling, grain processing, document processing, starch processing, sugar processing, quality improving agent (fish meat dough product, dairy product), volume increase of ice cream, food browning prevention and gloss. In the industrial field, it is used as a cleaning agent, water softener, metal surface treatment agent, synthetic rubber manufacturing, EPS expander, dye dispersion (penetrating agent), pesticide, reagent, printing, cleaning agent, detergent, water treatment agent, metal ion sequestrant, etc.
본 발명에서는 이미 다양한 용도로 활용되고 있는 인산 나트륨이 직경 200 nm 이하, 보다 자세하게는 80 nm 의 크기가 아주 작은 감염성 호흡기 바이러스 방어 또는 차단에 상당한 효과가 있음을 구체적인 실험을 통해 규명하였다. 이에 본 발명에서는 바이러스 차단 용품 예컨대, 바이러스 차단용 마스크 등에 간단하게 인산 나트륨으로 코팅하여 바이러스 차단 및 방어 효과를 쉽게 얻을 수 있는, 인산 나트륨을 포함하는 바이러스 차단용 조성물을 제공하고자 한다. In the present invention, it was confirmed through specific experiments that sodium phosphate, which is already used for various purposes, has a significant effect in defense or blocking of an infectious respiratory virus having a diameter of 200 nm or less, more specifically, a size of 80 nm or less. Accordingly, the present invention intends to provide a virus-blocking composition containing sodium phosphate, which can easily obtain virus-blocking and protective effects by simply coating a virus-blocking article, such as a virus-blocking mask, with sodium phosphate.
구체적으로, 상기 조성물은 인산 나트륨을 0.5M 이상 10M 이하의 농도로 포함할 수 있다. 보다 구체적으로, 1M 이상 10M 이하로 포함할 수 있으며, 보다 더 구체적으로는 1M 이상 5M 이하로 포함할 수 있다. Specifically, the composition may include sodium phosphate in a concentration of 0.5M or more and 10M or less. More specifically, it may include 1M or more and 10M or less, and more specifically, it may include 1M or more and 5M or less.
상기 바이러스는 인플루엔자 바이러스일 수 있다. The virus may be an influenza virus.
본 발명에서 “바이러스”는 생존에 필요한 핵산과 소수의 단백질로 구성되어 숙주에 의존하며 살아가는 세균보다 작아 세균 여과기로도 분리할 수 없는 작은 입자를 말한다. 바이러스는 식물 바이러스와 동물 바이러스로 분류할 수 있고, 식물 바이러스에는 담배모자이크병 바이러스, 카사바모자이크병 바이러스, 감자Y 바이러스, 사탕무황색병 바이러스, 오이모자이크병 바이러스 등이 있으며, 동물 바이러스에는 일본 뇌염 바이러스, 뎅기 바이러스, 황열 바이러스, 폴리오 바이러스, 콕사키 바이러스, 에코 바이러스, 간염 바이러스, 광견병 바이러스, 인플루엔자 바이러스, 아데노 바이러스 등이 포함된다. In the present invention, “virus” refers to small particles that are smaller than bacteria that depend on the host and that are composed of a small number of proteins and nucleic acids necessary for survival and cannot be separated even by a bacterial filter. Viruses can be classified into plant viruses and animal viruses. Plant viruses include tobacco mosaic virus, cassava mosaic virus, potato Y virus, sugar beet yellow virus, cucumber mosaic virus, etc., and animal viruses include Japanese encephalitis virus, Dengue virus, yellow fever virus, polio virus, coxsackie virus, echo virus, hepatitis virus, rabies virus, influenza virus, adenovirus and the like.
본 발명에서 “바이라서 차단”은 바이러스의 성장 및/또는 활성을 억제, 방지 또는 바이러스를 사멸시키는 작용을 일컫는다. 본 발명의 구체적 일 실시예로서 인간 호흡기 감염 바이러스 예컨대, 인플루엔자의 활성을 억제, 방지 또는 사멸시키는 것일 수 있다. In the present invention, "Byser blocking" refers to the action of inhibiting, preventing, or killing the virus, growth and/or activity of the virus. As a specific embodiment of the present invention, it may be to inhibit, prevent or kill the activity of a human respiratory infection virus, such as influenza.
본 발명에서 “인플루엔자”는 RNA 오르토믹소바이러스(orthomyxoviruses)이고 세가지 유형 A, B 및 C로 이루어진다. B형과 C형의 인플루엔자 바이러스는 주로 인간 병원균인 반면, 인플루엔자 A 바이러스는 인간, 말, 해양 포유류, 돼지, 흰족제비 및 닭을 포함하며, 야생의 다양한 조류 및 포유류를 감염시킨다. 인플루엔자 A 바이러스는 표면 글리코단백질을 암호화하는 2개의 유전자, 즉 바이러스 부착 및 세포 방출에 요구되는 헤마글루티닌(HA) 및 뉴라미니다아제(NA)의 항원 영역에서의 대립 변형을 기준으로 서브 유형으로 분류될 수 있다. 기타의 주요 바이러스 단백질은 뉴클레오단백질, 뉴클레오캡시드 구조 단백질, 막단백질(M1 및 M2), 폴리머라제(PA, PB 및 PB2) 및 비-구조 단백질(NS1 및 NS2)을 포함한다. 현재 인플루엔자 A 바이러스에서 HA의 16가지 서브타입 (H1-H16) 및 9가지의 NA(N1-N9) 항원 변이체가 알려져 있다. 인플루엔자 바이러스 서브타입은 추가로 그들의 계통적 그룹을 참조하여 분류될 수 있다. 계통적 분석(Fouchier et al., 2005)은 HA의 세분화가 두 개의 주요 그룹으로 나누어짐을 개시한다: 계통적 그룹 1의 H1, H2, H5 및 H9 서브타입 및 계통적 그룹 2의 H3, H4 및 H7. In the present invention, “influenza” is RNA orthomyxoviruses and consists of three types A, B and C. Influenza viruses of types B and C are mainly human pathogens, whereas influenza A viruses infect a variety of birds and mammals in the wild, including humans, horses, marine mammals, pigs, ferrets and chickens. Influenza A viruses are subtyped based on allelic modifications in the antigenic regions of two genes encoding surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are required for virus attachment and cell release. can be classified as Other major viral proteins include nucleoproteins, nucleocapsid structural proteins, membrane proteins (M1 and M2), polymerases (PA, PB and PB2) and non-structural proteins (NS1 and NS2). Currently, 16 subtypes of HA (H1-H16) and 9 NA (N1-N9) antigen variants are known in influenza A virus. Influenza virus subtypes can be further classified with reference to their phylogenetic groups. Phylogenetic analysis (Fouchier et al., 2005) discloses that the subdivision of HA is divided into two main groups: H1, H2, H5 and H9 subtypes of phylogenetic group 1 and H3, H4 and H7 of phylogenetic group 2.
구체적으로, 상기 바이러스는 H3N2 또는 H5N1 아형의 인플루엔자 바이러스일 수 있다. Specifically, the virus may be an influenza virus of subtype H3N2 or H5N1.
보다 구체적으로, 상기 H3N2 아형의 인플루엔자는 A/Hong Kong/68 (H3N2)일 수 있다. 상기 A/Hong Kong/68 (H3N2)는 인플루엔자 A형 바이러스로 홍콩에서 분리된 바이러스로서 H3와 N2의 항원형을 갖는 바이러스이다. More specifically, the H3N2 subtype influenza may be A/Hong Kong/68 (H3N2). The A/Hong Kong/68 (H3N2) is an influenza A virus isolated from Hong Kong and has serotypes of H3 and N2.
또한, 상기 H5N1 아형의 인플루엔자는 A/Viet Nam/1203/2004 (H5N1)일 수 있다. 상기 A/Viet Nam/1203/2004 (H5N1)는 인플루엔자 A형 바이러스로서 베트남에서 2004년에 1203번째로 분리된 바이러스로 H5와 N1의 항원형을 갖는 바이러스이다.In addition, the H5N1 subtype influenza may be A/Viet Nam/1203/2004 (H5N1). The A/Viet Nam/1203/2004 (H5N1) is an influenza A virus that was isolated in Vietnam in 2004 as the 1203th virus and has H5 and N1 serotypes.
본 발명의 일 실시예에서 상기 인산 나트륨을 포함하는 조성물이 코팅된 필터에 부착된 인플루엔자 바이러스의 활성도를 측정한 결과, 99.9% 이상 인플루엔자 바이러스가 비활성화됨을 확인하였다(도 3). As a result of measuring the activity of the influenza virus attached to the filter coated with the composition containing the sodium phosphate in an embodiment of the present invention, it was confirmed that more than 99.9% of the influenza virus was inactivated (FIG. 3).
본 발명의 일 실시예에서 상기 인산 나트륨이 코팅된 필터에 부착되지 않고 통과한 인플루엔자 바이러스의 양은 적으며, 통과한 인플루엔자 바이러스의 상당수가 비활성화되었음을 확인하였다(도 4).In one embodiment of the present invention, the amount of influenza virus that passed without being attached to the sodium phosphate-coated filter was small, and it was confirmed that a significant number of influenza viruses that passed were inactivated (FIG. 4).
상기와 같은 결과는 상당 수준의 인플루엔자 바이러스가 인산 나트륨이 코팅된 필터는 통과하지 않으며, 통과하더라도 대부분 비활성화됨을 보여준다. The above results show that a significant level of influenza virus does not pass through a filter coated with sodium phosphate, and is mostly inactivated even if it passes.
또한 본 발명의 일 실시예에서는 상기 인산 나트륨이 코팅된 필터를 통과한 바이러스를 마우스에 처리한 결과, 마우스의 폐에서 현저히 적은 양의 바이러스 검출되었으며, 마우스의 생존율 또한 증가함을 확인하였다(도 5).In addition, in one embodiment of the present invention, as a result of treating the mouse with the virus that passed through the sodium phosphate-coated filter, a significantly lower amount of virus was detected in the lungs of the mouse, and it was confirmed that the survival rate of the mouse also increased (Fig. 5). ).
상기와 같은 결과는 본 발명의 인산 나트륨을 포함하는 조성물이 인플루엔자 바이러스와 같이 작은 크기를 가진 바이러스 차단에 우수한 효과가 있음음을 보여준다.The above results show that the composition containing sodium phosphate of the present invention has an excellent effect on blocking viruses having a small size such as influenza virus.
본 발명의 다른 측면은 상기 바이러스 차단용 조성물을 포함하는 바이러스 차단용 마스크 필터에 관한 것이다.Another aspect of the present invention relates to a virus-blocking mask filter comprising the virus-blocking composition.
본 발명에서 “마스크”는 병균이나 먼지 등의 이물질이 체내로 침투하지 못하도록 입과 코를 가리는 물건을 일컬으며, 감염성 바이러스를 차단 및 방어하기 위한 바이러스 차단용 마스크 등이 있을 수 있다. 일반적으로 상기 바이러스 차단용 마스크는 사용자의 안면 위 제위치에 유지하도록 하는 수단, 바이러스를 차단하고, 사용자의 흡입 및/또는 흡출 공기가 필터 물질이 통과할 수 있는 마스크 필터를 포함한다.In the present invention, "mask" refers to an object that covers the mouth and nose to prevent foreign substances such as germs or dust from penetrating into the body, and there may be a virus blocking mask for blocking and defending infectious viruses. The antiviral mask generally includes means to hold it in place over the user's face, a mask filter to block the virus, and through which the user's inhaled and/or exhaled air can pass through the filter material.
본 발명에서 “마스크 필터”는 호흡기를 통해 각종 바이러스들 침입을 효과적으로 차단하여 사용자의 호흡기를 효과적으로 보하하는 기능을 하는 것을 말한다. In the present invention, "mask filter" refers to the function of effectively protecting the user's respiratory system by effectively blocking the intrusion of various viruses through the respiratory tract.
본 발명의 필터에 사용 가능한 물질은 당업계에 공지된 필터 제조용 물질이면 제한없이 사용 가능하다. 예컨대 면직물, 셀룰로스, 울(wool), 폴리올레핀, 폴리에스테르, 폴리아미드, 레이온, 폴리아크릴로니트릴, 셀룰로스, 아세테이트, 폴리스티렌, 폴리비닐 및 섬유로 가공될 수 있는 임의의 합성 중합체 등의 직물을 포함할 수 있으며, 폴리프로필렌, 폴리에틸렌, 폴리에스테르, 나일론, PET 및 PLA 등의 부직포 직물을 포함할 수 있다.Materials that can be used in the filter of the present invention can be used without limitation as long as it is a material for manufacturing a filter known in the art. fabrics such as cotton, cellulose, wool, polyolefin, polyester, polyamide, rayon, polyacrylonitrile, cellulose, acetate, polystyrene, polyvinyl, and any synthetic polymer that can be processed into fibers. and may include non-woven fabrics such as polypropylene, polyethylene, polyester, nylon, PET and PLA.
구체적으로, 상기 바이러스 차단용 조성물은 마스크 필터 표면에 코팅된 것일 수 있다.Specifically, the virus blocking composition may be coated on the surface of the mask filter.
상기 코팅은 물체 겉면에 수지 등으로 얇은 막을 입히거나, 용액이나 액체 물질 등을 떨어트리고 얇게 펴 막을 씌우는 행위 등을 포함한다. 구체적으로, 마스크 필터에 인산 나트륨을 분주하여 건조시킴으로써, 인산 나트륨이 얇게 코팅되어 있는 형태의 마스크 필터일 수 있다.The coating includes an act of coating a thin film on the surface of an object with a resin or the like, or applying a thin film by dropping a solution or a liquid substance and the like. Specifically, by dispensing sodium phosphate to the mask filter and drying it, it may be a mask filter in which sodium phosphate is thinly coated.
본 발명의 일 실시예에서 인산 나트륨으로 코팅된 마스크 필터의 경우 기존 시판되는 마스크 필터와 비교하여 필터 내 구멍(pore) 크기 및 개수가 감소되고, 반면 마스크 필터의 저항성은 높아짐을 확인하였다(도 2).In the case of the mask filter coated with sodium phosphate in an embodiment of the present invention, it was confirmed that the size and number of pores in the filter were reduced, while the resistance of the mask filter was increased (FIG. ).
본 발명의 일 실시예에서 마스크 필터에 인산 나트륨을 코팅시킨 뒤 그 위에 에어로졸화시킨 인플루엔자 바이러스를 분주한 결과, 상당수의 바이러스가 필터에 부착되어 불활성화되고, 일부 필터를 통과한 바이러스를 마우스에 처리한 결과에서도 마우스의 폐 내 바이러스의 활성 및 염증성 사이토카인의 발현량이 인산 나트륨을 코팅시키지 않은 필터와 비교하여 현저히 감소됨을 확인하였다(도 6 및 도 7).In one embodiment of the present invention, as a result of dispensing an aerosolized influenza virus on the mask filter after coating sodium phosphate, a significant number of viruses are attached to the filter and inactivated, and the virus that has passed through some filters is treated in mice In one result, it was confirmed that the activity of virus and the expression of inflammatory cytokines in the lungs of mice were significantly reduced compared to the filter not coated with sodium phosphate ( FIGS. 6 and 7 ).
또한, 본 발명의 일 실시예에서는 인산 나트륨이 코팅된 마스크 필터를 통과한 바이러스를 마우스에 처리한 결과, 적은 농도의 바이러스 처리에도 높은 치사율을 보이는 마우스에서 100% 생존율이 나타나며, 몸무게의 변화도 거의 없음을 확인하였는 바(도 8), 이는 본 발명의 인산 나트륨을 활용한 코팅재가 우수한 바이러스 차단 효과가 있음을 보여준다. In addition, in one embodiment of the present invention, as a result of treating the mouse with the virus that has passed through the sodium phosphate-coated mask filter, 100% survival rate appears in the mouse showing a high lethality rate even with a low concentration of virus treatment, and the change in body weight is almost It was confirmed that there is no (FIG. 8), which shows that the coating material using sodium phosphate of the present invention has an excellent virus blocking effect.
이와 같은 결과는 인산 나트륨이 코팅된 마스크 필터가 작은 크기의 감염성 호흡기 바이러스를 효과적으로 차단할 수 있으므로, 인플루엔자 바이러스 차단 용도의 마스크 필터로서 활용이 가능함을 시사한다.These results suggest that a mask filter coated with sodium phosphate can effectively block an infectious respiratory virus of a small size, and thus can be used as a mask filter for influenza virus blocking.
본 발명의 또 다른 측면은 인산 나트륨(sodium phosphate)을 마스크 필터에 코팅하는 단계;를 포함하는, 바이러스 차단용 마스크 필터 제조방법에 관한 것이다.Another aspect of the present invention relates to a method for manufacturing a mask filter for virus blocking, comprising the step of coating sodium phosphate (sodium phosphate) on the mask filter.
상기 '인산 나트륨', '마스크 필터', '바이러스' 등에 관한 설명은 전술한 바와 동일하다.The descriptions of 'sodium phosphate', 'mask filter', 'virus' and the like are the same as described above.
구체적으로, 상기 인산 나트륨은 0.5M 이상 10M 이하의 농도로 마스크 필터에 코팅되는 것일 수 있다. 보다 구체적으로, 1M 이상 10M 이하로 포함할 수 있으며, 보다 더 구체적으로 1M 이상 5M 이하로 포함할 수 있다. Specifically, the sodium phosphate may be coated on the mask filter at a concentration of 0.5 M or more and 10 M or less. More specifically, it may include 1M or more and 10M or less, and more specifically 1M or more and 5M or less.
본 발명의 일 실시예에서는 인산 나트륨을 종래 마스크 필터로 사용되는 작은 직경을 가진 필터에 분사하여, 인산 나트륨으로 코팅된 바이러스 차단용 마스크 필터를 제조하였다.In one embodiment of the present invention, sodium phosphate was sprayed on a filter having a small diameter used as a conventional mask filter, and a mask filter for blocking virus coated with sodium phosphate was manufactured.
또한 구체적으로, 상기 바이러스는 H3N2 또는 H5N1 아형의 인플루엔자인 것일 수 있다. 즉, 상기 방법은 H3N2 또는 H5N1 아형의 인플루엔자 차단용 마스크 필터 제조방법일 수 있다. Also, specifically, the virus may be influenza of H3N2 or H5N1 subtype. That is, the method may be a method of manufacturing a mask filter for blocking influenza of H3N2 or H5N1 subtype.
보다 구체적으로, 상기 H3N2 아형의 바이러스는 A/Hong Kong/68 (H3N2)일 수 있다. 상기 A/Hong Kong/68 (H3N2)는 인플루엔자 A형 바이러스로 홍콩에서 분리된 바이러스로서 H3와 N2의 항원형을 갖는 바이러스이다. More specifically, the H3N2 subtype virus may be A/Hong Kong/68 (H3N2). The A/Hong Kong/68 (H3N2) is an influenza A virus isolated from Hong Kong and has serotypes of H3 and N2.
또한, 상기 H5N1 아형의 인플루엔자는 A/Viet Nam/1203/2004 (H5N1)일 수 있다. 상기 A/Viet Nam/1203/2004 (H5N1)는 인플루엔자 A형 바이러스로서 베트남에서 2004년에 1203번째로 분리된 바이러스로 H5와 N1의 항원형을 갖는 바이러스이다.In addition, the H5N1 subtype influenza may be A/Viet Nam/1203/2004 (H5N1). The A/Viet Nam/1203/2004 (H5N1) is an influenza A virus that was isolated in Vietnam in 2004 as the 1203th virus and has H5 and N1 serotypes.
본 발명의 일 실시예에서는 마스크 필터에 인산 나트륨을 처리하여 코팅시킨 후 에어로졸화된 인플루엔자 바이러스를 처리한 결과, 대부분의 바이러스가 필터에 부착되어 비활성화 되고, 일부 필터를 통과된 바이러스도 인산 나트륨의 농도 의존적으로 비활성화되거나, 또는 치명적이지 않은 정도의 바이러스가 관찰됨을 확인하였다(도 3 내지 도 8).In an embodiment of the present invention, as a result of treating the aerosolized influenza virus after coating the mask filter with sodium phosphate, most viruses are attached to the filter and inactivated, and some viruses that have passed through the filter also have a concentration of sodium phosphate It was confirmed that the virus was either inactivated or non-lethal in a dependent manner ( FIGS. 3 to 8 ).
본 발명의 인산 나트륨을 포함하는 바이러스 차단용 조성물은 작은 크기의 감염성 호흡기 바이러스 차단 및 방어에 효과적이면서 나아가 인체에 무해하여, 바이러스 차단 용도로서 다양하게 활용될 수 있다. The antiviral composition comprising sodium phosphate of the present invention is effective in blocking and defending a small-sized infectious respiratory virus, and furthermore, it is harmless to the human body, so it can be used in various ways as a virus blocking application.
본 발명의 효과는 상기한 효과로 제한되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 인산 나트륨(sodium phosphate)이 코팅된 마스크 소재의 바이러스 차단 효과를 확인하기 위한 실험 설계도를 나타낸 것이다.1 shows an experimental design for confirming the virus blocking effect of a mask material coated with sodium phosphate.
도 2는 인산 나트륨이 코팅된 마스크 필터를 현미경으로 관찰한 결과를 나타낸 것이다 (A: 대조군, B: 1M의 염화나트륨 코팅, C: 3M의 염화나트륨 코팅, D: 5M의 염화나트륨 코팅, E: 마스크 필터의 pore size, F: 마스크 필터의 pore counts, G: 마스크 필터의 통기성).2 shows the results of observing the mask filter coated with sodium phosphate under a microscope (A: control, B: 1M sodium chloride coating, C: 3M sodium chloride coating, D: 5M sodium chloride coating, E: mask filter pore size, F: pore counts of the mask filter, G: breathability of the mask filter).
도 3은 인산 나트륨 코팅된 필터에 묻은 H3N2 바이러스의 활성도(Plaque assay)를 측정한 결과를 나타낸 것이다 (A: 필터에 부착된 바이러스의 활성도 측정, B: 필터에 부착된 바이러스의 HA titer 결과, C: 바이러스 에어로졸화 시켜 필터에 분사후 필터의 바이러스 차단율).3 shows the results of measuring the activity (Plaque assay) of the H3N2 virus attached to the sodium phosphate-coated filter (A: measurement of the activity of the virus attached to the filter, B: the result of the HA titer of the virus attached to the filter, C : Virus blocking rate of filter after spraying on filter with virus aerosolization).
도 4는 인산 나트륨 코팅된 필터를 통과한 H3N2 바이러스 활성도를 측정한 결과를 나타낸 것이다 (A: 필터를 통과한 바이러스의 활성도 측정, B: 필터를 통과한 바이러스를 마우스 내 감염시킨 후, 폐를 수집하여 바이러스 양 측정).4 shows the results of measuring the H3N2 virus activity that passed through the sodium phosphate-coated filter (A: measurement of the activity of the virus that passed the filter, B: After the virus that passed the filter was infected in the mouse, the lungs were collected to measure the amount of virus).
도 5는 인산 나트륨 코팅된 필터를 통과한 H3N2 바이러스에 감염된 마우스의 염증 반응 및 생존율을 측정한 결과를 나타낸 것이다 (A: 염증성 사이토카인 측정, B: H3N2 바이러스 감염 마우스의 생존율).5 shows the results of measuring the inflammatory response and survival rate of mice infected with H3N2 virus that passed through the sodium phosphate-coated filter (A: measurement of inflammatory cytokines, B: survival rate of mice infected with H3N2 virus).
도 6은 인산 나트륨 코팅된 필터에 부착한 저농도 (2 mg/ml) H3N2 및 H5N1 바이러스 활성도를 측정한 결과를 나타낸 것이다 (A: 필터에 부착된 H3N2 바이러스의 활성도, B: 필터를 통과한 H3N2 바이러스의 활성도, C: 필터에 의한 H3N2 바이러스 차단율, D: 필터에 부착된 H5N1 바이러스 활성도, E: 필터를 통과한 H5N1 바이러스 활성도, F: 필터에 의한 H5N1 바이러스 차단율).6 shows the results of measuring the activity of low concentration (2 mg/ml) H3N2 and H5N1 viruses attached to a sodium phosphate-coated filter (A: activity of H3N2 virus attached to filter, B: H3N2 virus passing through filter activity, C: H3N2 virus blocking rate by the filter, D: H5N1 virus activity attached to the filter, E: H5N1 virus activity through the filter, F: H5N1 virus blocking rate by the filter).
도 7은 인산 나트륨 코팅된 필터를 통과한 저농도 H3N2 및 H5N1 바이러스 활성도를 측정한 결과를 나타낸 것이다 (A: H3N2 바이러스, B: H5N1 바이러스).7 shows the results of measuring the activity of low-concentration H3N2 and H5N1 viruses passing through a sodium phosphate-coated filter (A: H3N2 virus, B: H5N1 virus).
도 8은 인산 나트륨 코팅된 필터를 통과한 저농도 H3N2 및 H5N1 바이러스 감염된 마우스 몸무게 변화 및 생존율 측정 결과를 나타낸 것이다(A: H3N2 마우스 몸무게 변화율, B: H3N2 마우스 생존율, C: H5N1 바이러스 감염 마우스의 몸무게 변화율, D: H5N1 바이러스 감염 마우스의 생존율).8 shows the weight change and survival rate measurement results of mice infected with low-concentration H3N2 and H5N1 viruses passed through a sodium phosphate-coated filter (A: H3N2 mouse weight change rate, B: H3N2 mouse survival rate, C: H5N1 virus-infected mouse weight change rate) , D: survival of mice infected with H5N1 virus).
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited by the following examples.
실시예 1. 인산 나트륨(sodium phosphate) 코팅된 마스크 필터 제조Example 1. Preparation of Sodium Phosphate Coated Mask Filter
1M, 3M, 5M의 인산 나트륨 용액(인산 나트륨 및 1% Tween-20 in D.W)을 준비하였다. 100 mm dish 사이즈를 가진 마스크 필터에 상기 인산 나트륨 용액 2 ml을 분주한 뒤, 37℃에서 밤새 배양하였다. 그리고 37℃에서 밤새 건조시켰다.1M, 3M, 5M sodium phosphate solutions (sodium phosphate and 1% Tween-20 in D.W) were prepared. After dispensing 2 ml of the sodium phosphate solution into a mask filter having a 100 mm dish size, it was incubated at 37° C. overnight. and dried overnight at 37°C.
상기 방법으로 제조환 마스크 필터를 주사전자현미경(scanning electron microscope)으로 관찰하였으며, 마스크 필터의 구멍 크기(pore size) 및 개수(counts)를 측정하였다.In this way, the manufactured ring mask filter was observed with a scanning electron microscope, and the pore size and counts of the mask filter were measured.
그 결과, 인산 나트륨으로 코팅된 마스크의 구멍 크기(pore size)는 기존 시판되고 있는 대조군 마스크 필터에 비해 작았으며, 높은 염을 코팅할수록 마스크 필터의 구멍 개수가 줄어듬을 확인하였다. 반면, 마스크 필터의 저항성은 높아졌으며 국내 시판되는 KF94 정도의 저항성을 가짐을 확인하였다(도 2). As a result, it was confirmed that the pore size of the mask coated with sodium phosphate was smaller than that of the conventional commercially available control mask filter, and the number of pores of the mask filter decreased as the high salt was coated. On the other hand, the resistance of the mask filter was increased, and it was confirmed that it had a resistance of about KF94 commercially available in Korea (FIG. 2).
실험예 1. 인산 나트륨(sodium phosphate) 코팅된 마스크의 바이러스 차단 효과 확인Experimental Example 1. Confirmation of virus blocking effect of sodium phosphate coated mask
1-1. 필터에 부착한 H3N2 인플루엔자 바이러스 차단 효과1-1. H3N2 influenza virus blocking effect attached to the filter
A/Hong Kong/68 (H3N2) 8 mg/ml을 준비한 후, 에어로졸(Aerosol) 기계에 10 μl 분주하여 에어로졸화된 바이러스를 준비하였다. 염 코팅되지 않은 필터(Bare), 1M의 인산 나트륨이 코팅된 필터(1M SP), 3M의 인산 나트륨이 코팅된 필터(3M SP), 5M의 인산 나트륨이 코팅된 필터(5M SP)에 상기 에어로졸화된 바이러스를 분사하였다. 이후, 필터에 부착되어있는 바이러스를 각각 수집하였다.After preparing 8 mg/ml of A/Hong Kong/68 (H3N2), 10 μl of A/Hong Kong/68 (H3N2) was dispensed into an aerosol machine to prepare an aerosolized virus. The aerosol was applied to a filter without salt coating (Bare), a filter coated with 1M sodium phosphate (1M SP), a filter coated with 3M sodium phosphate (3M SP), and a filter coated with 5M sodium phosphate (5M SP). The infected virus was sprayed. Thereafter, each virus adhering to the filter was collected.
필터에 부착되어 있는 바이러스의 양을 측정하기 위하여 MDCK cell에 감염시켜 플라크 에세이(plaque assay)를 수행하였다. 구체적으로, MDCK cell을 12 웰 플레이트에 약 150%가 되도록 배양한 후, 바이러스를 구체적으로 상기 정량하고자 하는 바이러스 부유액을 10 -1에서 10 6까지 10배수로 희석시켜 희석액을 웰 당 0.25 mL씩 접종시켰다. 30분 정도 바이러스를 흡착시킨 후, overlay media를 가하였다. 이 상태에서 세포 배양기에 넣고 37℃, 5% CO 2 조건에서 2-3일 후 plaque를 카운팅 하였다. overlay media는 영양을 공급함과 동시에, 최초의 감염 세포에서 증식된 바이러스가 배지를 통하여 퍼져나가 주위 세포를 이차 감염시키는 것을 방지하는 역할을 하도록 겔(gel) 상태로 배지를 만들었다. 플라크 카운팅(plaque counting)을 용이하게 하기 위하여 0.25% 글루타르알데하이드(glutarahldehyde)를 300 μl/well를 첨가하여 세포를 고정하고, overlay media를 제거한 뒤 1% 크리스탈 바이올렛(cyristal violet을 웰 당 400 μl 첨가하여 세포단층을 염색하였다. 플라크 수를 세고, 접종량과 희석배수를 감안하여 바이러스 stock의 titer는 plaque forming units per milliliter (PFU/mL)로 나타내었다. 이때 계산시 오류를 최소화 하기 위하여 여러 희석 배수를 사용하였으며, plaque가 10~40개 정도 형성되는 플레이트(plate)로 카운팅하여 titer를 계산하였다.In order to measure the amount of virus attached to the filter, MDCK cells were infected and a plaque assay was performed. Specifically, after culturing MDCK cells to about 150% in a 12-well plate, the virus suspension to be specifically quantified was diluted 10-fold from 10 -1 to 10 6 and the diluted solution was inoculated by 0.25 mL per well. . After adsorbing the virus for about 30 minutes, overlay media was added. In this state, the plaques were counted after 2-3 days at 37° C. and 5% CO 2 into a cell incubator. At the same time as supplying nutrients, the overlay media made the medium in a gel state to prevent the virus propagated in the first infected cells from spreading through the medium and infecting the surrounding cells. To facilitate plaque counting, 300 μl/well of 0.25% glutarahldehyde was added to fix the cells, and after removing the overlay media, 400 μl of 1% cyristal violet was added per well. The number of plaques was counted, and the titer of the virus stock was expressed in plaque forming units per milliliter (PFU/mL), taking into account the inoculum and dilution factor. At this time, several dilution multiples were used to minimize errors in calculation. was used, and the titer was calculated by counting as a plate in which about 10 to 40 plaques were formed.
[식 1][Equation 1]
Plaque 수 x 희석배수 x mL로 환산한 접종량 = PFU/mLPlaque number x dilution factor x inoculum converted to mL = PFU/mL
그 결과, 인산 나트륨이 코팅된 필터에 부착된 바이러스의 활성도는 인산 나트륨의 농도가 높아짐에 따라 현저히 줄어드는 것을 확인하였으며, 인산화 나트륨이 코팅되지 않은 대조군(Bar)에 비해 1M, 3M, 5M의 인산 나트륨이 코팅된 필터의 바이러스가 각각 99.997%(1M SP), 99.999%(3M SP), 100%(5M SP) 비활성화됨을 확인하였다(도 3A).As a result, it was confirmed that the activity of the virus attached to the filter coated with sodium phosphate was significantly reduced as the concentration of sodium phosphate increased, and 1M, 3M, and 5M sodium phosphate compared to the control (Bar) uncoated with sodium phosphate. It was confirmed that the viruses of this coated filter were inactivated by 99.997% (1M SP), 99.999% (3M SP), and 100% (5M SP), respectively (FIG. 3A).
필터에 부착된 바이러스를 회수하여 0.5% 닭의 적혈구(chicken red blood cell, cRBC)와 반응시켜 혈구응집 반응을 관찰하였다. 구체적으로 U-바닥 모양의 96 웰 마이크로플레이트에 바이러스 stock을 2 배수 희석한 샘플을 50 ul 분주한 후, 50 ul의 적혈구 용액을 가하고, 실온에서 약 1시간 반응시켰다. 용해가 일어나지 않은 웰의 적혈구는 가라앉아서 뚜렷한 작은 점(dot)의 형태로 나타났으며, 용해가 일어난 웰의 적혈구는 lattic를 형성하여 가라앉지 않아 전체적으로 붉은 색의 용액으로 보였다. 용해가 일어난 가장 높은 희석배수를 HA titer로 정하였다. 그 결과, 인산 나트륨의 농도가 높을수록 인플루엔자 바이러스의 헤마글루티닌 활성(Hemagglutinin activity)이 감소됨을 확인하였다(도 3B).The virus attached to the filter was recovered and reacted with 0.5% chicken red blood cells (cRBC) to observe a hemagglutination reaction. Specifically, 50 ul of a 2-fold diluted sample of virus stock was dispensed on a U-bottom-shaped 96-well microplate, 50 ul of red blood cell solution was added, and reacted at room temperature for about 1 hour. The erythrocytes in the wells where lysis did not occur were submerged and appeared in the form of distinct small dots, and the erythrocytes in the wells in which lysis had not occurred formed lattices and did not sink, showing a red color solution as a whole. The highest dilution factor at which dissolution occurred was determined as the HA titer. As a result, it was confirmed that the higher the concentration of sodium phosphate, the lower the hemagglutinin activity of the influenza virus (FIG. 3B).
또한, 바이러스를 에어로졸화시켜 필터에 분사한 후 필터에 부착된 바이러스 양을 측정하여 필터의 바이러스 차단율을 측정한 결과, 높은 농도의 인산 나트륨으로 필터를 코팅할수록 바이러스 차단율이 증가됨을 확인하였다(도 3C).In addition, the virus blocking rate of the filter was measured by measuring the amount of virus attached to the filter after aerosolizing the virus and spraying it on the filter. As a result, it was confirmed that the virus blocking rate increased as the filter was coated with high concentration of sodium phosphate (Fig. 3C). ).
1-2. 필터를 통과한 H3N2 인플루엔자 바이러스 차단 효과1-2. H3N2 influenza virus blocking effect through filter
A/Hong Kong/68 (H3N2) 8 mg/ml을 준비한 후, 에어로졸(Aerosol) 기계에 10 μl 분주하여, 에어로졸화된 바이러스를 준비하였다. 염 코팅되지 않은 필터(Bare), 1M의 인산 나트륨이 코팅된 필터(1M SP), 3M의 인산 나트륨이 코팅된 필터(3M SP), 5M의 인산 나트륨이 코팅된 필터(5M SP)에 상기 에어로졸화된 바이러스를 분사하였다. 이후, 필터를 통과한 바이러스 300 μl의 0.1M PBS에 녹였으며 모든 그룹을 동일한 조건하에 실험하에 바이러스의 활성도를 측정하였다. 필터를 통과한 바이러스의 활성 측정은 상기 실험예 1-1의 방법을 참고한다.After preparing A/Hong Kong/68 (H3N2) 8 mg/ml, 10 μl was dispensed in an aerosol machine to prepare an aerosolized virus. The aerosol was applied to a filter without salt coating (Bare), a filter coated with 1M sodium phosphate (1M SP), a filter coated with 3M sodium phosphate (3M SP), and a filter coated with 5M sodium phosphate (5M SP). The infected virus was sprayed. Then, 300 μl of the virus passed through the filter was dissolved in 0.1M PBS, and virus activity was measured in all groups under the same conditions. For the measurement of the activity of the virus passing through the filter, refer to the method of Experimental Example 1-1.
그 결과, 인산 나트륨이 코팅된 필터를 통과한 바이러스의 활성은 인산 나트륨의 농도 의존적으로 현저히 감소됨을 확인하였다(도 4A).As a result, it was confirmed that the activity of the virus passing through the filter coated with sodium phosphate was significantly reduced in a concentration-dependent manner of sodium phosphate (Fig. 4A).
또한, 상기 실험예 1-1에서 에어로졸화시킨 바이러스와 1M, 3M, 5M 인산 나트륨 코팅된 필터를 통과한 바이러스를 수집하여 마우스에 100 μl씩 감염시킨 후 감염 4일째에 희생시키고, 폐를 수집하여 바이러스 양을 관찰하였다.In addition, the aerosolized virus in Experimental Example 1-1 and the virus that passed through a filter coated with 1M, 3M, and 5M sodium phosphate were collected, infected with 100 μl of each mouse, sacrificed on the 4th day of infection, and the lungs were collected. The amount of virus was observed.
그 결과, 대조군(Bar)에 비해 1M, 3M, 5M의 인산 나트륨이 코팅된 필터를 통과한 바이러스 수치가 현저히 적게 검출되었다. 구체적으로 대조군(Bar)과 비교하여 바이러스가 각각 12%(1M SP), 53.43%(3. SP), 73%(5M SP) 적게 검출됨을 확인하였다(도 4B).As a result, the number of viruses passing through the filter coated with 1M, 3M, and 5M sodium phosphate was significantly lower than that of the control group (Bar). Specifically, it was confirmed that 12% (1M SP), 53.43% (3. SP), and 73% (5M SP) less viruses were detected compared to the control group (Bar), respectively (FIG. 4B).
실험예 2. 바이러스 감염된 마우스의 염증 반응 및 생존율 확인Experimental Example 2. Confirmation of inflammatory response and survival rate of virus-infected mice
2-1. H3N2 바이러스 감염 마우스의 염증 반응 확인2-1. Confirmation of Inflammatory Response in H3N2 Virus Infected Mice
상기 실험예 1에서 에어로졸화시킨 바이러스와 1M, 3M, 5M 인산 나트륨 코팅된 필터를 통과한 바이러스를 수집하여 마우스에 감염시켰다. 감염 4일째에 마우스를 희생시키고 비장을 수집하여 염증 반응을 관찰하였다.The virus that was aerosolized in Experimental Example 1 and the virus that passed through a filter coated with 1M, 3M, or 5M sodium phosphate were collected and infected with mice. On day 4 of infection, mice were sacrificed and spleens were collected to observe the inflammatory response.
PBS 100 μL 내의 항-마우스 감마 인터페론(IFN-γ포획 항체(BD Bioscience) 400 ng/well로 96 웰 플레이트를 4℃에서 하룻밤 동안 코팅하였다. Assay diluent (BD bioscience, CA, USA) 100 μL로 1시간 동안 25℃에서 블록킹한 후 PBS 0.01% Tween 20으로 플레이트를 3회 세척하였다. 이어, 비장세포를 분리한 배지 용액을 웰 당 100 μL (assay diluent에 1:1, 1:5, 1:10 비율로 희석) 첨가한 후 25℃에서 2시간 동안 인큐베이션 하였다. PBS 0.1% Tween 20으로 플레이트를 3회 세척한 후, detection antibody와 SAv-HRP conjugated 항체를 웰 당 100 μL 첨가하고 25℃에서 1시간 동안 인큐베이션 하였다. PBS 0.05% Tween 20로 5회 세척한 후, 플레이트에 TMB 기질 시약(BD Biosciences, CA, USA) 100 μl를 첨가하고 10분 동안 반응시켰다. 플레이트에 50 μL의 2N 황산을 첨가하여 반응을 정지시켰다. 플레이트는 ELISA 리더에서 450 nm에서 측정하였다.96-well plates were coated with 400 ng/well of anti-mouse gamma interferon (IFN-γ capture antibody (BD Bioscience) in 100 μL of PBS overnight at 4° C. Assay diluent (BD bioscience, CA, USA) with 100 μL of 1 After blocking at 25°C for a period of time, the plate was washed 3 times with PBS 0.01% Tween 20. Then, 100 μL of a medium solution from which splenocytes were isolated was added per well (1:1, 1:5, 1:10 in assay diluent). ratio), and incubated for 2 hours at 25° C. After washing the plate 3 times with PBS 0.1 % Tween 20, 100 μL of detection antibody and SAv-HRP conjugated antibody were added per well and incubated at 25° C. for 1 hour After washing 5 times with PBS 0.05 % Tween 20, 100 μl of TMB substrate reagent (BD Biosciences, CA, USA) was added to the plate and reacted for 10 minutes. 50 μL of 2N sulfuric acid was added to the plate The reaction was stopped The plate was measured at 450 nm in an ELISA reader.
그 결과, 대조군(Bar)에 비해 3M, 5M의 인산 나트륨이 코팅된 필터를 통과한 바이러스로 감염된 마우스의 비장세포에서 IFN-γ의 발현이 현저히 감소됨을 확인하였다(도 5A).As a result, it was confirmed that the expression of IFN-γ in the splenocytes of mice infected with the virus passing through the filter coated with 3M and 5M sodium phosphate was significantly reduced compared to the control group (Bar) (FIG. 5A).
2-2. H3N2 바이러스 감염 마우스의 생존율 확인2-2. Confirmation of survival rate of H3N2 virus-infected mice
상기 실험예 2-1에서 비장을 수집한 마우스 외에 나머지 마우스에서 생존율을 관찰하였다.In addition to the mice from which the spleen was collected in Experimental Example 2-1, survival rates were observed in the remaining mice.
그 결과, 염이 코팅되지 않은 필터를 통과한 대조군(Bar)의 바이러스를 처리한 마우스는 6일 이내에 전부 사망한 반면, 3M, 5M의 인산 나트륨이 코팅된 필터를 통과한 바이러스를 처리한 마우스에서는 각각 20%, 80% 이상 생존율이 현저히 증가함을 확인하였다(도 5B).As a result, mice treated with the virus of the control group (Bar) that passed through the filter uncoated with salt all died within 6 days, whereas in mice treated with the virus that passed through the filter coated with 3M and 5M sodium phosphate, It was confirmed that the survival rates of 20% and 80% or more, respectively, were significantly increased (FIG. 5B).
실험예 3. 인산나트륨 코팅된 필터에 부착된 저농도 바이러스의 차단 효과Experimental Example 3. Blocking effect of low-concentration virus attached to sodium phosphate-coated filter
3-1. 필터에 부착 및 통과한 H3N2 인플루엔자 바이러스의 활성 측정3-1. Measurement of the activity of H3N2 influenza virus attached to and passed through the filter
상기 실험예 1의 방법과 동일한 방법으로 에어로졸화시킨 H3N2 바이러스와 5M 인산 나트륨 코팅된 필터에 부착 및 통과한 H3N2 바이러스를 각각 수집하여, 바이러스의 활성도를 평가하였다. 다만, 바이러스의 농도는 2 mg/ml의 저농도를 사용하였다.The aerosolized H3N2 virus and the H3N2 virus that adhered to and passed through the 5M sodium phosphate-coated filter were collected in the same manner as in Experimental Example 1, respectively, and the virus activity was evaluated. However, a low concentration of 2 mg/ml of virus was used.
그 결과, 인산 나트륨이 코팅된 필터에 부착된 H3N2 바이러스는 인산화 나트륨이 코팅되지 않은 대조군(Bare)에 비해 바이러스가 현저히 비활성화되며, 필터에 부착되지 않고 통과한 바이러스에서도 99% 이상 바이러스가 비활성화됨을 확인하였다(도 6A 및 6B).As a result, the H3N2 virus attached to the filter coated with sodium phosphate was significantly inactivated compared to the control (Bare) that was not coated with sodium phosphate. (Figs. 6A and 6B).
아울러, 바이러스를 에어로졸화시켜 필터에 분사한 후 필터에 부착된 바이러스 양을 측정하여, 필터의 바이러스 차단율이 뛰어남을 확인하였다(도 6C).In addition, the virus was aerosolized and sprayed on the filter, and then the amount of virus attached to the filter was measured, confirming that the filter had an excellent virus blocking rate (FIG. 6C).
3-2. 필터에 부착 및 통과한 H5N1 인플루엔자 바이러스의 활성도 측정3-2. Measurement of the activity of H5N1 influenza virus attached to and passed through the filter
상기 실험예 1의 방법과 동일한 방법으로 에어로졸화시킨 H5N1 바이러스와 5M 인산 나트륨 코팅된 필터에 부착 및 통과한 H5N1 바이러스를 각각 수집하여, 바이러스의 활성도를 평가하였다. 다만, 바이러스의 농도는 2 mg/ml의 저농도를 사용하였다.The aerosolized H5N1 virus and the H5N1 virus that adhered to and passed through the filter coated with 5M sodium phosphate were collected in the same manner as in Experimental Example 1, respectively, and the virus activity was evaluated. However, a low concentration of 2 mg/ml of virus was used.
그 결과, 인산 나트륨이 코팅된 필터에 부착된 H5N1 바이러스는 대조군(Bar)에 비해 현저히 비활성화되며, 필터에 부착되지 않고 통과한 바이러스에서도 99% 이상 바이러스가 비활성화되었음을 확인하였다(도 6D 및 6E). 아울러, 필터에 부착된 바이러스 양을 통해 바이러스 차단율이 뛰어남을 확인하였다(도 6F).As a result, it was confirmed that the H5N1 virus attached to the sodium phosphate-coated filter was significantly inactivated compared to the control (Bar), and 99% or more of the virus was inactivated even in the virus that passed without being attached to the filter ( FIGS. 6D and 6E ). In addition, it was confirmed that the virus blocking rate was excellent through the amount of virus attached to the filter (FIG. 6F).
3-3. 필터를 통과한 H3N2 및 H5N1 인플루엔자 바이러스 차단 효과3-3. H3N2 and H5N1 influenza virus blocking effect through filter
상기 실험예 3-1 및 3-2에서 에어로졸화시킨 바이러스와 5M 인산 나트륨 코팅된 필터를 통과한 H3N2 바이러스 및 H5N1 바이러스를 각각 수집하여 마우스에 100 μl씩 감염시켰다. 감염 4일째에 마우스를 희생시키고 폐를 수집하여 바이러스 양을 관찰하였다.The aerosolized virus in Experimental Examples 3-1 and 3-2 and the H3N2 virus and H5N1 virus that passed through a filter coated with 5M sodium phosphate were collected, respectively, and 100 μl of each of the mice was infected. On day 4 of infection, mice were sacrificed and lungs were collected to observe the amount of virus.
그 결과, 대조군(Bar)에 비해 5M의 인산 나트륨이 코팅된 필터를 통과한 바이러스 수치가 현저히 적게 검출되었다. 구체적으로 대조군(Bar)과 비교하여 H3N2 바이러스, H5N1 바이러스 각각 92%, 96% 적게 검출됨을 확인하였다(도 7).As a result, the number of viruses passing through the filter coated with 5M sodium phosphate was significantly lower than that of the control group (Bar). Specifically, it was confirmed that 92% and 96% less H3N2 virus and H5N1 virus were detected, respectively, compared to the control group (Bar) (FIG. 7).
실험예 4. 저농도 H3N2 및 H5N1 인플루엔자 바이러스 감염 마우스의 생존율 확인Experimental Example 4. Confirmation of survival rate of mice infected with low-concentration H3N2 and H5N1 influenza virus
상기 실험예 3-3에서 폐를 수집하기 위하여 희생시킨 마우스 외에 나머지 마우스에서는 몸무게 변화율 및 생존율을 관찰하였다.In addition to the mice sacrificed to collect lungs in Experimental Example 3-3, body weight change and survival rates were observed in the remaining mice.
그 결과, 염이 코팅되지 않은 필터를 통과한 대조군(Bar)의 저농도 H3N2 바이러스를 처리한 마우스에서는 100% 치사율을 보였으나, 5M의 인산나트륨이 코팅된 필터를 통과한 저농도 H3N2 바이러스를 처리한 마우스에서는 100% 생존율을 보였다(도 8A 및 8B).As a result, the mice treated with the low-concentration H3N2 virus of the control group (Bar) passed through the filter uncoated with salt showed 100% lethality, but mice treated with the low-concentration H3N2 virus that passed through the filter coated with 5M sodium phosphate showed 100% survival rate ( FIGS. 8A and 8B ).
아울러, 염이 코팅되지 않은 필터를 통과한 대조군(Bar)의 저농도 H5N1 바이러스를 처리한 마우스에서는 바이러스 감염으로 인한 몸무게 감소가 나타나는 반면, 5M의 인산나트륨이 코팅된 필터를 통과한 H5N1 바이러스를 처리한 마우스에서는 몸무게 감소가 거의 없었으며, 100% 생존율을 나타냄을 확인하였다(도 8C 및 8D).In addition, in mice treated with a low-concentration H5N1 virus of the control group (Bar) that passed through a filter uncoated with salt, weight loss due to virus infection appeared, while H5N1 virus that passed through a filter coated with 5M sodium phosphate was treated. There was almost no weight loss in mice, and it was confirmed that 100% survival rate was shown ( FIGS. 8C and 8D ).
상기와 같은 결과는 인산 나트륨으로 코팅한 필터에 대한 바이러스의 차단 효과가 우수함을 보여주므로, 상기 인산 나트륨을 포함하는 조성물을 감염성 호흡기 바이러스 차단 및 방어 용도로서 활용할 수 있으며, 마스크 필터뿐만 아니라 바이러스 차단을 위한 다양한 소재, 용품 등에 코팅하여 사용할 수 있다.The above results show that the virus blocking effect on the filter coated with sodium phosphate is excellent, so the composition containing the sodium phosphate can be used as an infectious respiratory virus blocking and protective purpose, and it is possible to block viruses as well as mask filters. It can be used by coating various materials, articles, etc.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.

Claims (10)

  1. 인산 나트륨(sodium phosphate)을 포함하는 바이러스 차단용 조성물.A composition for virus blocking comprising sodium phosphate.
  2. 제1항에 있어서,According to claim 1,
    상기 조성물은 인산 나트륨 0.5M 이상 10M 이하의 농도로 포함하는 것인, 바이러스 차단용 조성물.The composition is sodium phosphate 0.5M or more and 10M or less of the concentration of the composition for virus blocking.
  3. 제1항에 있어서,According to claim 1,
    상기 바이러스는 H3N2 또는 H5N1 아형의 인플루엔자인 것인, 바이러스 차단용 조성물. Wherein the virus is influenza of H3N2 or H5N1 subtype, virus blocking composition.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 H3N2 아형의 인플루엔자는 A/Hong Kong/68 (H3N2)인, 바이러스 차단용 조성물.Influenza of the H3N2 subtype is A/Hong Kong/68 (H3N2), a composition for virus blocking.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 H5N1 아형의 인플루엔자는 A/Viet Nam/1203/2004 (H5N1)인, 바이러스 차단용 조성물.Influenza of the H5N1 subtype is A/Viet Nam/1203/2004 (H5N1), a composition for virus blocking.
  6. 제1항 내지 제5항 중 어느 한 항의 바이러스 차단용 조성물을 포함하는 바이러스 차단용 마스크 필터.A mask filter for virus blocking comprising the composition for blocking any one of claims 1 to 5.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 바이러스 차단용 조성물은 마스크 필터 표면에 코팅된 것인, 바이러스 차단용 마스크 필터.The virus-blocking composition is coated on the mask filter surface, the virus-blocking mask filter.
  8. 인산 나트륨(sodium phosphate)을 마스크 필터에 코팅하는 단계;를 포함하는, 바이러스 차단용 마스크 필터 제조방법.A method of manufacturing a mask filter for virus blocking, including; coating the mask filter with sodium phosphate.
  9. 제8항에 있어서, 9. The method of claim 8,
    상기 인산 나트륨은 0.5M 이상 10M 이하의 농도로 마스크 필터에 코팅되는 것인, 바이러스 차단용 마스크 필터 제조방법.The method of manufacturing a mask filter for virus blocking, wherein the sodium phosphate is coated on the mask filter at a concentration of 0.5M or more and 10M or less.
  10. 제8항에 있어서, 9. The method of claim 8,
    상기 바이러스는 H3N2 또는 H5N1 아형의 인플루엔자인 것인, 바이러스 차단용 마스크 필터 제조방법.The virus is H3N2 or H5N1 subtype influenza, the method for manufacturing a mask filter for virus blocking.
PCT/KR2020/012716 2020-03-02 2020-09-21 Infectious respiratory virus-blocking composition and use thereof WO2021177522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0025815 2020-03-02
KR1020200025815A KR102330342B1 (en) 2020-03-02 2020-03-02 Infectious respiratory virus blocking composition and uses thereof

Publications (1)

Publication Number Publication Date
WO2021177522A1 true WO2021177522A1 (en) 2021-09-10

Family

ID=77613437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012716 WO2021177522A1 (en) 2020-03-02 2020-09-21 Infectious respiratory virus-blocking composition and use thereof

Country Status (2)

Country Link
KR (1) KR102330342B1 (en)
WO (1) WO2021177522A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020065900A (en) * 1999-12-10 2002-08-14 가오가부시끼가이샤 Microbicide compositions
US20060193745A1 (en) * 2005-01-28 2006-08-31 Andreas Arndt Virucidal disinfectant
JP2008507583A (en) * 2004-07-23 2008-03-13 シノフレッシュ ヘルスケアー,インク. Methods and compositions for inhibiting, destroying and / or inactivating viruses
CN101829413A (en) * 2010-05-06 2010-09-15 上海大胜卫生用品制造有限公司 Sterilizing and anti-virus type mask
JP2018027916A (en) * 2016-08-18 2018-02-22 株式会社Adeka Bacteria removing sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2012DN02357A (en) 2009-09-30 2015-08-21 Nbc Meshtec Inc
KR102251918B1 (en) 2016-08-19 2021-05-14 최효직 Substances, devices and methods for inactivating pathogens of aerosols, and methods for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020065900A (en) * 1999-12-10 2002-08-14 가오가부시끼가이샤 Microbicide compositions
JP2008507583A (en) * 2004-07-23 2008-03-13 シノフレッシュ ヘルスケアー,インク. Methods and compositions for inhibiting, destroying and / or inactivating viruses
US20060193745A1 (en) * 2005-01-28 2006-08-31 Andreas Arndt Virucidal disinfectant
CN101829413A (en) * 2010-05-06 2010-09-15 上海大胜卫生用品制造有限公司 Sterilizing and anti-virus type mask
JP2018027916A (en) * 2016-08-18 2018-02-22 株式会社Adeka Bacteria removing sheet

Also Published As

Publication number Publication date
KR20210110937A (en) 2021-09-10
KR102330342B1 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
Ren et al. N-halamine incorporated antimicrobial nonwoven fabrics for use against avian influenza virus
CN110438091B (en) Novel Klebsiella pneumoniae phage and application thereof
Brooks et al. Antiviral activity of arbidol, a broad‐spectrum drug for use against respiratory viruses, varies according to test conditions
Hayden et al. Plaque inhibition assay for drug susceptibility testing of influenza viruses
Yen et al. Pandemic influenza as a current threat
Shi et al. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo
Leneva et al. The neuraminidase inhibitor GS4104 (oseltamivir phosphate) is efficacious against A/Hong Kong/156/97 (H5N1) and A/Hong Kong/1074/99 (H9N2) influenza viruses
Imai et al. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials
US8603227B2 (en) Composition for prevention of influenza viral infection comprising tannic acid, air filter comprising the same and air cleaning device comprising the filter
EP2314303B1 (en) Composition for prevention of influenza viral infection comprising sumac extract, air filter comprising the same and air cleaning device comprising the filter
Sergeev et al. Infection of chickens caused by avian influenza virus A/H5N1 delivered by aerosol and other routes
Lv et al. Aerosol transmission of coronavirus and influenza virus of animal origin
Gubareva et al. Inhibition of replication of avian influenza viruses by the neuraminidase inhibitor 4-guanidino-2, 4-dideoxy-2, 3-dehydro-N-acetylneuraminic acid
WO2021177522A1 (en) Infectious respiratory virus-blocking composition and use thereof
Nerome et al. Functional growth inhibition of influenza A and B viruses by liquid and powder components of leaves from the subtropical plant Melia azedarach L.
Fiszon et al. Comparison of biological and physical properties of human and animal A (H1N1) influenza viruses
Patil et al. The origin of novel coronavirus: COVID-19
RU2401263C2 (en) Adamantane amino-derivatives having influenza virus inhibiting activity
RU2563351C2 (en) INFLUENZA VIRUS STRAIN A/17/Anui/2013/61 (H7N9) FOR PRODUCTION OF LIVE INTRANASAL INFLUENZA VACCINE
Nagayama Inactivation of influenza A virus by gentian violet (GV) and GV-dyed cotton cloth, and bactericidal activities of these agents
Conly et al. Ode to oseltamivir and amantadine?
CN109453174A (en) A kind of effective inhibitor of III type diphosphoinositide kinases treats or prevents the application in influenza infection drug in preparation
Tessaro et al. Nanotechnology advancements in antiviral coatings to combat viral infection surfaces
CN116370467B (en) Application of small molecular compound in inhibiting influenza virus
Muhammad et al. SARS-CoV-2 induced Covid 19 and Influenza: The Dual overwhelming infection: Rising Attentions for Similarities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922683

Country of ref document: EP

Kind code of ref document: A1