WO2021177419A1 - Method for screening antisense oligonucleotide drug - Google Patents

Method for screening antisense oligonucleotide drug Download PDF

Info

Publication number
WO2021177419A1
WO2021177419A1 PCT/JP2021/008515 JP2021008515W WO2021177419A1 WO 2021177419 A1 WO2021177419 A1 WO 2021177419A1 JP 2021008515 W JP2021008515 W JP 2021008515W WO 2021177419 A1 WO2021177419 A1 WO 2021177419A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
gene
antisense oligonucleotide
cardiomyocytes
calmodulin
Prior art date
Application number
PCT/JP2021/008515
Other languages
French (fr)
Japanese (ja)
Inventor
武 牧山
山本 雄大
友輔 入山
嘉紀 近藤
夕貴 日高
龍太郎 石川
Original Assignee
国立大学法人京都大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 日産化学株式会社 filed Critical 国立大学法人京都大学
Priority to JP2022504464A priority Critical patent/JPWO2021177419A1/ja
Publication of WO2021177419A1 publication Critical patent/WO2021177419A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present application relates to a screening method for antisense oligonucleotide drugs.
  • Calmodulin is a calcium detection protein expressed in ubiquitous, and three different genes (CALM1 to 3) encode calmodulin protein having the same amino acid sequence. Calmodulin regulates various proteins including multiple ion channels and is involved in various processes such as inflammation, metabolism, apoptosis, muscle contraction, intracellular migration, short-term memory, long-term memory, nerve growth, and immune response. .. Calmodulin, a calcium-detecting protein, regulates the inactivation of L-type calcium channels (LTCCs) expressed in the heart (Non-Patent Document 1).
  • LTCCs L-type calcium channels
  • LQTS Long QT Syndrome
  • CPVT catecholaminergic polymorphic ventricular tachycardia
  • CPVT catecholaminergic polymorphic ventricular tachycardia
  • Non-Patent Document 2 the RYR2 gene related to the ryanodine receptor has been known as a cause of CPVT.
  • the calmodulin (CALM) gene is a causative gene such as certain CPVT (CPVT4).
  • Non-Patent Document 3 a new disease concept collectively called (Non-Patent Document 3) was proposed.
  • carmodulinopathy a missense mutation in one of the three different CALM genes is thought to exert a dominant negative effect and cause serious symptoms (Non-Patent Document 4).
  • Implantable cardioverter-defibrillator treatment is considered as a treatment method, for example, to prevent sudden death, but it is a symptomatic treatment, many patients are children and the burden on the body and mind is heavy, and after invasiveness or implantation. There is a problem in that the complications of the above occur (Non-Patent Document 5).
  • Non-Patent Document 6 describes that the action potential duration prolongation of iPS cell-differentiated cardiomyocytes prepared from LQT patients is shortened by non-specific knockdown of mutant alleles using the CRISPRi system. It has been shown that it can be a non-allelic gene therapy method.
  • Non-Patent Document 4 describes electrophysiological abnormalities of iPS cell-differentiated cardiomyocyte clones prepared from patients with carmodulinopathy by mutant allele-specific knockout using the CRISPR / Cas9 system (delayed inactivation of LTCC, Normalization of action potential duration) indicates that this method can be an effective gene therapy method for patients with carmodulinopathy due to the dominant negative effect of the CALM gene.
  • CRISPRi system the CRISPR / Cas9 system
  • ⁇ -blockers have been administered to carmodulinopathy, it has been reported that the therapeutic effect is low (Non-Patent Document 5).
  • ASOs antisense oligonucleotides
  • LQT1 which is a typical pathological condition of long QT syndrome (LQTS)
  • KCNQ1 gene is an expression gene for IKs channel protein, which is a potassium channel expressed in the myocardium.
  • Non-Patent Document 5 At least 28 amino acids are known for the possibility of amino acid mutation related to carmodulinopathy (Non-Patent Document 5), and it was unclear which amino acid is involved in the pathological condition to what extent. Therefore, the concept and design of ASO were also quite unknown.
  • Drug therapy has the potential to overcome the challenges of conventional surgical or gene therapy, so there is a need for drugs to treat carmodulinopathy.
  • the need for a therapeutic agent capable of preventing a fatal arrhythmia event and improving the prognosis is extremely high, and it is considered to have great clinical significance (Non-Patent Document 5). Therefore, the task of the present application is to provide a novel screening method for an antisense oligonucleotide drug, which makes it possible to provide a new drug for treating carmodulinopathy, as well as a novel antisense oligonucleotide drug. Is to provide.
  • the present inventors reduce CALM gene expression and prolong the duration of action potentials. It was also found that the ASO can be corrected and that the ASO can be applied to a living body. That is, the present application provides the gist and the following.
  • a method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides wherein: (1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene. The step of measuring the action potential duration of the contacted cardiomyocytes, and the case where the action potential duration measured in the step (3) step (2) is not contacted with the antisense oligonucleotide. A method comprising the step of comparing the action potential duration of cardiomyocytes. 2.
  • a method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides wherein: (1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene. (2) The step of measuring the expression level of the calmodulin gene in the contacted myocardial cells, and (3) the case where the expression level of the calmodulin gene measured in the step (2) was not contacted with the antisense oligonucleotide. A method comprising the step of comparing the expression level of the calmodulin gene in the myocardial cells. 3. 3.
  • a method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides wherein: (1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene. (2) The step of measuring the amount of calcium current in the contacted myocardial cells, and (3) the step (3) the amount of calcium current measured in the step (2) is not brought into contact with the antisense oligonucleotide. A method comprising a step of comparing with the amount of calcium current in. 4. 1. The pluripotent stem cells are iPS cells derived from patients with carmodulinopathy. ⁇ 3. The method described in any one of. 5.
  • a method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides wherein: (1) A step of contacting the antisense oligonucleotide with mammalian cells, (2) The step of measuring the expression level of the carmodulin gene in the contacted cells, and (3) the case where the expression level of the carmodulin gene measured in the step (2) was not contacted with the antisense oligonucleotide.
  • a method comprising the step of comparing the expression level of the carmodulin gene in the cell. 6. 5.
  • the mammalian cells are human liver cancer-derived cells or mouse fibroblasts. The method described in. 7. 1.
  • the calmodulin gene is at least one selected from the group consisting of CALM1, CALM2, and CALM3. ⁇ 6. The method described in any one of. 8. 1. The antisense oligonucleotide is a CALM2 antisense oligonucleotide. ⁇ 7. The method described in any one of. 9. The antisense oligonucleotide inhibits the expression of the calmodulin gene. ⁇ 8. The method described in any one of. 10. A therapeutic, prophylactic and / or ameliorating agent for calmodulinopathy, which comprises an antisense oligonucleotide that inhibits the expression of the calmodulin gene. 11. 10. The calmodulin gene is CALM2. Therapeutic, prophylactic and / or ameliorating agents described in.
  • the antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes. Or 11. Therapeutic, prophylactic and / or ameliorating agents described in. 13. 10. The antisense oligonucleotide shortens the action potential duration in cardiomyocytes. ⁇ 12. The therapeutic, prophylactic and / or ameliorating agents according to any one of the above. 14. 10. The antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes. ⁇ 13. The therapeutic, prophylactic and / or ameliorating agents according to any one of the above. 15.
  • a method for treating, preventing and / or ameliorating calmodulinopathy which comprises the step of administering to a patient with calmodulinopathy an effective amount of an antisense oligonucleotide that inhibits the expression of the calmodulin gene.
  • the calmodulin gene is CALM2, 15. The method described in. 17. 15. The antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes. Or 16. The method described in. 18. The antisense oligonucleotide shortens the action potential duration in cardiomyocytes, 15. ⁇ 17. The method described in any one of. 19. The antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes, 15. ⁇ 18.
  • the calmodulin gene is CALM2, 20.
  • the antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes, 20. Or 21.
  • the antisense oligonucleotide shortens the action potential duration in cardiomyocytes, 20. ⁇ 22.
  • the antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes, 20.
  • the compound according to any one of. 25 Use of antisense oligonucleotides that inhibit the expression of the calmodulin gene in the manufacture of drugs to treat, prevent and / or improve calmodulinopathy. 26.
  • the calmodulin gene is CALM2, 25. Use as described in. 27.
  • the antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes, 25. Or 26. Use as described in. 28.
  • the antisense oligonucleotide shortens the action potential duration in cardiomyocytes, 25. ⁇ 27. Use described in any one of. 29.
  • the antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes, 25. ⁇ 28. Use described in any one of.
  • a method of screening for antisense oligonucleotides that can prevent, treat, and / or improve carmodulinopathy is provided.
  • the screening method it is possible to provide a novel drug for the prevention, treatment and / or improvement of carmodulinopathy.
  • Nucleic acids in nature are most basically composed of adenosine (A), thymidine (T) (or uridine (U)), cytidine (C), and guanosine (G).
  • Those basic nucleic acids are often referred to as AT (U) GC and the like. Therefore, in the present specification, for example, with respect to the sequence of the CALM2 gene and the like, when the sequences are indicated by "nucleic acid base sequence" or "SEQ ID NO:”, they are basically sequences composed of A, G, C, T and U. Is.
  • the nucleic acids constituting the ASO of the present application include not only basic nucleic acids (AT (U) CG) but also those having undergone structural modification.
  • ASO and the like of the present application describe the nucleic acid base sequence by A, G, C, T and U in the description of "compound” or “compound numbered with compound number (P number)". If so, A, G, C, T and U also include those that have undergone structural modification.
  • the "antisense effect” means that the function of the target RNA is controlled by hybridizing the target RNA selected corresponding to the target gene and, for example, an oligonucleotide having a sequence complementary to the partial sequence thereof.
  • the target RNA is degraded by inhibiting the translation of the target RNA by hybridization, the splicing function conversion effect such as exon skipping, and the recognition of the hybridized portion. Etc.
  • Antisense oligonucleotide is an oligonucleotide that produces the antisense effect.
  • DNA, gapmer, mixmer and the like can be mentioned, but the present invention is not limited to these, and RNA or an oligonucleotide designed to normally produce an antisense effect may be used.
  • the ASO of the present application can be prepared by a person skilled in the art by appropriately selecting a known method.
  • a person skilled in the art designs a nucleoside sequence of ASO based on the information of the nucleoside sequence of the target RNA, and uses a commercially available nucleic acid automatic synthesizer (Applied Biosystems, Beckman, Genedesign, etc.). Can be synthesized. It can also be synthesized by a reaction using an enzyme. Examples of the enzyme include, but are not limited to, polymerases, ligases, restriction enzymes and the like.
  • Calmodulin is a calcium detection protein expressed in ubiquitous, and controls various proteins including multiple ion channels. Calmodulin is associated with various processes such as inflammation, metabolism, apoptosis, muscle contraction, intracellular migration, short-term memory, long-term memory, nerve growth, and immune response. In particular, it controls the inactivation of L-type calcium channels (LTCCs) expressed in the heart.
  • LTCCs L-type calcium channels
  • the "calmodulin gene” (CALM gene) is a gene encoding a calmodulin protein, and CALM1, CALM2 and CALM3 have been reported.
  • the base sequence of the human calmodulin gene and the amino acid sequence of the human calmodulin protein are known.
  • the base sequence of the calmodulin genes CALM1, CALM2, CALM3 and the amino acid sequence of the human calmodulin protein are registered in GenBank and published as follows. There is. Calmodulin protein: AAD45181 CALM1: NC_0000014 CALM2: NC_000002 CALM3: NC_0000019
  • Carmodulinopathy is an arrhythmia disease caused by a mutation in the CALM gene.
  • symptoms of carmodulinopathy include, for example, Long QT Syndrome (LQTS), catecholamine-induced polymorphic ventricular tachycardia (CPVT), and idiopathic ventricular fibrillation (IVF).
  • LQTS Long QT Syndrome
  • CPVT catecholamine-induced polymorphic ventricular tachycardia
  • IVF idiopathic ventricular fibrillation
  • Mutations in the calmodulin gene that cause calmodulinopathy include mutations in the coding region (CDS) of the calmodulin gene and mutations in the intron region that causes splicing abnormalities.
  • CDS coding region
  • CALM coding region
  • a gene mutation is known in which one amino acid of the calmodulin protein, which is a gene product of CALM, is replaced with another amino acid.
  • N98S is a mutation in which the 98th amino acid from the N-terminal of the calmodulin protein is changed from asparagine (N) to serine (S). That is, the number before the number indicates the type of amino acid before the mutation, the number indicates the position of the amino acid at which the mutation occurs from the N-terminal, and the number after the number indicates the type of the amino acid after the mutation.
  • N98S-CALM2 mutant in which the 98th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM2, is changed from asparagine (N) to serine (S)
  • D130G-CALM2 a mutation in which the 130th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM2, is changed from aspartic acid (D) to glycine (G)
  • N98S-CALM1 mutantation in which the 98th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM1, is changed from asparagine (N) to serine (S)
  • F90L-CALM1 mutantation in which the 90th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM1, is changed from phenylalanine (F) to leucine (L)
  • D130G-CALM1 mutant in which the 130th amino acid from the N-
  • a "carmodulinopathy patient” is a mammal that currently or may have symptoms due to a mutation in the CALM gene, preferably presently or in the future due to a mutation in the CALM gene. It is a human being who can have a gene.
  • LQTS Long-QT Syndrome
  • LQT15 is a congenital long QT syndrome caused by a mutation in CALM2.
  • LQT14 is a congenital long QT syndrome caused by a mutation in CALM1.
  • LQT16 is a congenital long QT syndrome caused by a mutation in CALM3.
  • Action potential is a transient change in membrane potential that occurs in the cell membrane in response to an excitatory stimulus. Because the distribution of ions is different inside and outside the cell, the intracellular potential of an unactivated quiescent cell is usually negative (ie, said to be polarized) compared to the outside of the cell. Action potentials are mainly generated by the passive diffusion of sodium ions, potassium ions, calcium ions, etc. through ion channels according to the difference in concentration inside and outside the cell.
  • APD 90 As the “action potential duration"(APD; Action Potential Duration), APD 90 , APD 50, or the like is usually used.
  • the average value of the potential level in the stationary state is set to the resting potential value Vm 0, and the potential value of the maximum amplitude is set to Vm max .
  • Vm 90 (Vm max- Vm 0 ) x 0.1
  • the time from Vm 90 at the time of depolarization to Vm 90 at the time of repolarization is APD 90 . (Biomedical Engineering 47 (6), pp.
  • Vm 50 (Vm max- Vm 0 ) x 0.5
  • Vm 50 (Vm max- Vm 0 ) x 0.5
  • Pluripotent stem cells is a well-known term in the art and is endoderm (eg, internal stomach wall, gastrointestinal tract, lung), mesodermal (eg, muscle, bone, blood, urogenital) or ectogerm (eg, muscle, bone, blood, urogenital) or ectodermal (eg, muscle, bone, blood, urogenital)
  • endoderm eg, internal stomach wall, gastrointestinal tract, lung
  • mesodermal eg, muscle, bone, blood, urogenital
  • ectogerm eg, muscle, bone, blood, urogenital
  • ectodermal eg, muscle, bone, blood, urogenital
  • it has both pluripotency that can differentiate into various types of cells that make up the living body, such as cells of the epidermal tissue or nervous system), and self-renewal ability that can maintain pluripotency even after division and proliferation. It is a cell.
  • Examples include artificial multipotent stem (iPS) cells, ES cells, embryonic reproductive (EG) cells derived from progenitor germ cells, and multipotent germanium isolated during the establishment and culture process of GS cells from testis tissue.
  • Examples include embryonic stem (mGS) cells, multipotent progenitor cells (MAPC) isolated from bone marrow, and the like.
  • ES cells are a well-known term in the art, and are pluripotent stem cells derived from embryos in the blastocyst stage, which is the early stage of animal development, and are ES cells generated by nuclear reprogramming from somatic cells. There may be.
  • iPS cells are a well-known term in the art, also called induced pluripotent stem cells or induced pluripotent stem cells, and are ES by introducing several types of nuclear reprogramming substances into somatic cells such as fibroblasts. It is a cell that has acquired pluripotency and self-renewal ability equivalent to that of a cell.
  • the pluripotent stem cells used in the present application are not particularly limited as long as they have an abnormality in the calmodulin gene that causes calmodulinopathy and have "pluripotency for differentiation" and "self-renewal ability".
  • the pluripotent stem cells used in the present application may have an abnormality in the calmodulin gene in a homozygous form, but are preferably a heterozygous form. Some of such pluripotent stem cells have already been established (eg, human iPS cells with abnormalities in the calmodulin gene).
  • the pluripotent stem cell may be any mammalian pluripotent stem cell, and examples thereof include pluripotent stem cells such as human, mouse, monkey, pig, rat, and dog, but human pluripotent is preferable. It is a sex stem cell. Pluripotent stem cells are preferably iPS cells or ES cells, and particularly preferably iPS cells. In another embodiment, mGS cells and MAPCs are also preferred in that they can be obtained from postnatal individuals.
  • pluripotent stem cells Examples of production of iPS cells suitable as pluripotent stem cells used in the present application are shown below, but the method for producing pluripotent stem cells is not limited thereto.
  • iPS cells can be produced by introducing a specific nuclear reprogramming substance into somatic cells in the form of DNA or protein (K. Takahashi and S. Yamanaka (K. Takahashi and S. Yamanaka). 2006) Cell, 126: 663-676; K. Takahashi et al. (2007) Cell, 131: 861-872; J. Yu et al. (2007) Science, 318: 1917-1920; M. Nakagawa et al. (2008) Nat. Biotechnol., 26: 101-106; International Publication No. 2007/069666).
  • the nuclear reprogramming substance may be a gene specifically expressed in ES cells, a gene that plays an important role in maintaining undifferentiated ES cells, or a gene product thereof, and is not particularly limited, but is, for example, Oct3 / 4, Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, L-Myc, N-Myc, TERT, SV40 Large Gene, HPV16 E6, HPV16 , Nanog, Esrr b and Esrrg. These nuclear reprogramming substances may be used in combination when establishing iPS cells.
  • the combination of the nuclear reprogramming substances is a combination containing at least one, two, three or four, preferably a combination containing five, and particularly preferably Oct3 / 4, Sox2, Klf4. , L-Myc and Lin28.
  • nucleotide sequences of the mouse and human cDNAs of each of the above nuclear reprogramming substances and the amino acid sequence information of the protein encoded by the cDNA refer to the NCBI deposit number described in International Publication No. 2007/069666.
  • a person skilled in the art can obtain the nucleotide sequence and the amino acid sequence information of each of the above nuclear reprogramming substances by referring to the NCBI deposit number.
  • One of ordinary skill in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
  • nuclear reprogrammers may be introduced into somatic cells in the form of proteins, for example by methods such as lipofection, binding to cell membrane permeable peptides, microinjection, or in the form of DNA, eg, It can be introduced into somatic cells by techniques such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, and microinjection.
  • viral vectors include retroviral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920.
  • adenovirus vector (Science, 322, 945-949, 2008), adeno-associated virus vector, Sendai virus vector (Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009) and the like.
  • the artificial chromosome vector include a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), and a bacterial artificial chromosome (BAC, PAC).
  • HAC human artificial chromosome
  • YAC yeast artificial chromosome
  • BAC bacterial artificial chromosome
  • plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that nuclear reprogrammers can be expressed, and if desired, drug resistance genes (eg, eg, drug resistance genes).
  • drug resistance genes eg, eg, drug resistance genes.
  • the LoxP sequences before and after them are used. May have.
  • the replication origin of the genomic DNA of EBNA-1 (Epstein-Barr virus nuclear antigen 1) and oriP (Epstein-Barr virus) is replicated even if it is not incorporated into the chromosome and is present episomatically.
  • Large T Seimian virus 40 large T antigen
  • SV40 ori osteoin of replication of the genomic DNA of Simian virus 40 in mammalian cells
  • HDAC histone deacetylase
  • VPA valproic acid
  • MC 1293 3- (4-toluoil-1-methyl-1H-2-pyrrolyl) -N-hydroxy-2-propenamide
  • M344 Low molecular weight HDAC inhibitors such as 4- (dimethylamino) -N- [7- (hydroxyamino) -7-oxoheptyl] benzamide]
  • siRNA and shRNA against HDAC eg, HDAC1 siRNA Smartpool® (Millipole)
  • DNA methyltransferase inhibitors eg, 5'-azacytide
  • G9a histone methyltransferase inhibitor eg, BIX-01294 [N- (1-benzylpiperidin-4-yl) -6,7-dimethoxy-2- (4-methyl-1,4-diazepan-1-) Il) quinazoline-4-amine] (Cell Stem Cell, 2: 525-528 (2008)) and other small molecule inhibitors, siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology), etc.), etc.
  • G9a histone methyltransferase inhibitor eg, BIX-01294 [N- (1-benzylpiperidin-4-yl) -6,7-dimethoxy-2- (4-methyl-1,4-diazepan-1-) Il) quinazoline-4-amine] (Cell Stem Cell, 2: 525-528 (2008)) and other small molecule inhibitors, siRNA and shRNA against G9a (eg, G9a siRNA (human)
  • L-type calcium channel agent for example, Bayk8644 [1,4-dihydro-2,6-dimethyl-5-nitro-4- [2- (trifluoromethyl) phenyl] -3- (trifluoromethyl) phenyl] -3- Ppyridinecarboxylic acid methyl ester]
  • cell Stem Cell 3, 568-574 (20 08)
  • p53 inhibitors eg siRNA and shRNA against p53
  • Wnt Signaling activator eg, soluble Wnt3a
  • LIF leukemia inhibitor
  • bFGF basic fiber
  • ALK5 inhibitors eg SB431542 [4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H-imidazole-
  • Examples of the culture medium for inducing iPS cells include the following (1) and (2).
  • the culture medium for inducing iPS cells is particularly preferably a medium for primate ES cell culture (medium for primate (human and monkey) ES cells, manufactured by Reprocell).
  • Examples of culturing methods for iPS cells include contacting somatic cells with a nuclear reprogramming substance (DNA or protein) in DMEM or DMEM / F12 medium containing 10% FBS in the presence of 5% carbon dioxide at 37 ° C. After culturing for about 4 to 7 days, the cells are sprinkled on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and bFGF-containing primates about 10 days after contact between the somatic cells and the nuclear reprogramming substance. It can be cultured in ES cell culture medium to give rise to iPS-like colonies about 30-45 days or more after contact.
  • feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • the cells may be cultured under the condition of an oxygen concentration as low as 5 to 10%.
  • DMEM medium containing 10% FBS in feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • LIF penicillin / threptomycin, puromycin, L-glutamine, etc.
  • Non-essential amino acids, ⁇ -mercaptoethanol and the like can be appropriately contained
  • ES cell-like colonies can be generated after about 25 to 30 days or more.
  • the fresh medium and the medium are exchanged once a day from the second day after the start of the culture.
  • the number of somatic cells used for nuclear reprogramming is not limited, but is in the range of about 5 ⁇ 10 3 to 5 ⁇ 10 6 cells per 100 cm 2 of the cultured dish.
  • a marker gene-expressing cell can be selected by culturing in a medium (selective medium) containing the corresponding drug. If the marker gene is a fluorescent protein gene, observe it with a fluorescence microscope, if it is a luciferase gene, add a luminescent substrate, or if it is a luciferase gene, add a chromogenic substrate to obtain marker gene-expressing cells. Can be detected.
  • “somatic cells” may be any cells other than germ cells derived from mammals (eg, humans, mice, monkeys, pigs, rats, dogs, etc.) and, for example, keratinize.
  • Epithelial cells eg, keratinized epidermal cells
  • mucosal epithelial cells eg, epithelial cells on the surface of the tongue
  • exocrine gland epithelial cells eg, mammary cells
  • hormone-secreting cells eg, adrenal medulla cells
  • for metabolism / storage Cells eg, hepatocytes
  • luminal epithelial cells that make up the interface eg, type I alveolar cells
  • luminal epithelial cells of the inner chain canal eg, vascular endothelial cells
  • Certain cells eg, airway epithelial cells
  • extracellular matrix secretory cells eg, fibroblasts
  • contractile cells eg, smooth muscle cells
  • blood and immune system cells
  • undifferentiated progenitor cells including somatic stem cells
  • final differentiated mature cells are similarly used as somatic cells in the present application.
  • undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • tissue stem cells sematic stem cells
  • the mammal from which the somatic cells are collected is not particularly limited, but is preferably human, more preferably a calmodulinopathy patient or an unaffected human having the same calmodulin gene mutation as the patient. be.
  • PGD preimplantation genetic diagnosis
  • ES human embryonic stem
  • ES cells for example, a method for culturing an internal cell mass at the blastocyst stage of a mammal (see, for example, Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994)).
  • somatic cell nuclear transfer the type of somatic cell and the animal from which the somatic cell is collected are the same as in the case of the above iPS cell.
  • EG cells can be induced by isolating primordial germ cells according to conventional methods and culturing them in the presence of LIF, bFGF and SCF.
  • mGS cells can be made from testicular cells according to the method described in WO 2005/100458.
  • Pluripotent adult progenitor cells (MAPCs) can be isolated from bone marrow according to the method described in J. Clin. Invest. 109: 337-346 (2002).
  • the pluripotent stem cell obtained as described above can be differentiated into cardiomyocyte by any known differentiation induction method.
  • a method for inducing differentiation into cardiomyocytes for example, a method using embryoid body (EB) formation, a method using a directional differentiation approach, and a two-dimensional differentiation induction method (GiWi method, etc.) have been reported ( For example, Nature 2008; 453: 524-8, J Clin Invest 2001; 108: 407-14, Circ Res 2002; 91: 501-8, Circ Res 2003; 93: 32-9, Nat Biotechnol 2007; 25: 1015- 24, Circulation 200 8; 118: 517, Circulation 2008; 118: 506, Nat Biotechnol 2005; 23: 611, Nat Protoc.
  • EB embryoid body
  • the medium can be used by adding an additive to the basal medium, and examples of the basal medium include Neurobasal (registered trademark) medium, NeuroProgenitor Basic medium, NeuroCult NS-A medium, and BME medium (Basal Medium for Eagle).
  • Basal medium include Neurobasal (registered trademark) medium, NeuroProgenitor Basic medium, NeuroCult NS-A medium, and BME medium (Basal Medium for Eagle).
  • BGJb medium CMRL 1066 medium, Glasgo MEM medium (Grasgo's minimum essential medium), Improved MEM Zinc Option medium, IMDM medium (Iscover's Modified Dulvecco's Medium), Medium Eagle's medium, Medium Eagle's Medium, Medium Eagle's Medium Animal cells such as ⁇ MEM medium (Eagle's minimum essential medium ⁇ modified type), DMEM medium, DMEM / F12 medium, ham medium, RPMI 1640 medium (Roswell Park Memorial Laboratory medium), Fisher's medium, and a mixed medium thereof.
  • the medium is not particularly limited as long as it can be used for culture. More preferably, it is RPMI 1640 medium.
  • serum As additives, serum, retinoic acid, ascorbic acid, BMP (bone morphogenetic factors; BMP2, BMP4), Nodal, TGF ⁇ 1, Activin A, Dkk1, IGFBP-4, bFGF, EGF, HGF, LIF, amino acids, vitamins, inter Leukins, insulin, transferase, heparin, heparan sulfate, collagen, fibronectin, progesterone, selenite, B27®-supplements, N2-supplements, ITS-supplements, antibiotics.
  • BMP2 bone morphogenetic factors
  • GSK-3 inhibitor for example, CHIR99021 [6- ⁇ 2- [4- (2,4-dichloro-phenyl) -5- (5-methyl-1H-imidazol-2-yl) ) -Pyrimidine-2-ylamino] -ethylamino ⁇ -nicotinonitrile]
  • Wnt inhibitors eg, IWP-2 [N- (6-methyl-2-benzothiazolyl) -2-[(3,4,6) , 7-Tetrahydro-4-oxo-3-phenylthieno [3,2-d] pyrimidin-2-yl) thio] -acetamide]
  • Additives are preferably B27®-supplements and insulin, and more preferably these are used in combination.
  • the incubator can be coated with a coating agent such as collagen, gelatin, matrigel, poly-L-lysine, poly-D-lysine, fibronectin, laminin and the like.
  • concentration of pluripotent stem cells at the start of culturing can be appropriately set so as to efficiently form cardiomyocytes, and is not particularly limited, but is, for example, about 1 ⁇ 10 3 to 1 ⁇ 10 6 cells / mL, preferably about. 1 ⁇ a 10 4 ⁇ 5 ⁇ 10 5 cells / mL.
  • Other culture conditions such as culture temperature and carbon dioxide concentration can be set as appropriate.
  • the culture temperature is not particularly limited, but is, for example, about 30 to 40 ° C, preferably about 36 to 38 ° C.
  • the carbon dioxide concentration is, for example, about 1 to 10%, preferably about 4 to 6%.
  • the cardiomyocytes obtained as described above are characterized by carmodulinopathy represented by expression of the causative mutant gene, prolongation of action potential duration and / or dysfunction of various ion channels, decrease in contractile force, and the like.
  • the prophylactic and / or therapeutic agents for carmodulinopathy can be screened using the improvement of these abnormalities as an index.
  • cardiomyocytes can be purified from embryoid bodies treated with ascorbic acid with Percoll gradient and myocardial tissue can be constructed in the presence of type I collagen and Matrigel (Circulation 2006; 1 13: 2237).
  • pathological conditions such as abnormal conduction of electrical signals and a decrease in muscle contraction force are reproduced. Therefore, using these as indicators, prophylactic and / or therapeutic agents for carmodulinopathy can be screened.
  • the test antisense oligonucleotide is brought into contact with the pluripotent stem cell-derived myocardial cells or tissues obtained as described above.
  • Each index is used to provide a method for screening candidate antisense oligonucleotides for the prevention and treatment of carmodulinopathy.
  • the preferred pluripotent stem cells used in the present application are pluripotent stem cells derived from patients who exhibit LQT and / or CPVT as phenotypes in carmodulinopathy, or pluripotency into which a mutant CALM is exogenously introduced. It is a stem cell.
  • the mutant CALM for example, CALM1-F90L, CALM1-N98S, CALM1-D130G, CALM2-N98S, CALM2-D130G, CALM3-D130G and the like are known.
  • the pluripotent stem cell used in the present application is an iPS cell in which an action potential duration and an increase in calcium current amount are confirmed in cardiomyocytes prepared from the iPS cell. desirable.
  • iPS cells iPS cells derived from patients whose LQT is shown as a phenotype in carmodulinopathy are exemplified.
  • a method including the following steps may be used to screen for a therapeutic, prophylactic and / or ameliorating agent for carmodulinopathy, including ASO.
  • a step of contacting ASO with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene for example, pluripotent stem cells prepared from somatic cells of calmodulinopathy patients.
  • ASO having an effect of shortening the duration of action potential is usually selected as a candidate for a therapeutic, prophylactic and / or ameliorating agent for carmodulinopathy.
  • the degree of shortening of the action potential duration is not particularly limited because it depends on the concentration of ASO, but for example, a shortening of 100 ms or more, preferably 200 ms or more, and more preferably 300 ms or more is observed. Those are preferred as candidates for the treatment, prevention and / or amelioration of carmodulinopathy.
  • the concentration of ASO is not particularly limited, but can be appropriately set from the range of 0.1 nM to 10 ⁇ M (for example, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 ⁇ M, 10 ⁇ M), and the action potential lasts at a lower concentration.
  • Time-saving ASOs are preferably selected as candidates for treatment, prevention and / or amelioration of carmodulinopathy.
  • the selected candidates may be subjected to further screening to confirm their therapeutic, preventive and / or ameliorating effects, if necessary.
  • Contact between ASO and pluripotent stem cell-derived cardiomyocytes may or may not use a transfection reagent, but it is preferable not to use a transfection reagent.
  • a transfection reagent examples include lipofectamine 3000.
  • the contact between the ASO and the pluripotent stem cell-derived cardiomyocytes is, for example, 30 to 40 ° C, preferably 35 to 40 ° C, and more preferably 36 to 38 ° C.
  • the culture period after contact until the action potential duration is measured is, for example, 1 day to 1 week, preferably 4 days to 6 days.
  • the culture temperature is, for example, 30-40 ° C, preferably 35-40 ° C, more preferably 36-38 ° C.
  • Examples of the method for measuring the action potential of cardiomyocytes include measurement by a patch clamp system, measurement by a multi-electrode array system, and measurement by imaging using a fluorescent dye probe.
  • measurement by imaging with a fluorescent dye probe is used.
  • the fluorescent dye probe include a fluorescent calsim dye (for example, Fluo-8 (registered trademark)) and a voltage-sensitive dye (for example, Fluvolt (registered trademark)), and Fluvolt is preferably used.
  • a high-speed optical measurement system manufactured by Brainvision (MiCAM02, MiCAM03, etc.) is preferably used, and MiCAM03 is particularly preferably used.
  • the action potential of cardiomyocytes is preferably measured at, for example, 30-40 ° C, preferably 35-40 ° C, more preferably 36-38 ° C.
  • the action potential of cardiomyocytes is preferably measured under constant rhythmic electrical stimulation, eg, 0.1-2.0 Hz, preferably 0.2-1.0 Hz, more preferably 0.4. It is preferably measured at pacing of ⁇ 0.6 Hz, particularly preferably 0.5 Hz.
  • an electrical stimulation by an Electrical Stimulator (SEN-3301) manufactured by Nihon Kohden Co., Ltd. can be used.
  • the action potential duration can be determined from the action potential measured as described above.
  • APD 90 is preferably used as the action potential duration.
  • a therapeutic, preventive and / or ameliorating agent for calmodulinopathy including ASO is screened by a method including the following steps. Can be done. (1) A step of contacting ASO with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene (for example, pluripotent stem cells prepared from somatic cells of calmodulinopathy patients).
  • the degree of decrease in the expression level of the calmodulin gene is not particularly limited because it depends on the concentration of ASO, but for example, a decrease of 20% or more, preferably 40% or more, and more preferably about 50% is observed.
  • ASO concentration of ASO is not particularly limited, but can be appropriately set from the range of 0.1 nM to 10 ⁇ M (for example, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 ⁇ M, 10 ⁇ M), and the concentration of the calmodulin gene can be set at a lower concentration.
  • ASOs that reduce expression are preferably selected as candidates for treatment, prevention and / or amelioration of calmodulinopathy.
  • the selected candidates may be subjected to further screening to confirm their therapeutic, preventive and / or ameliorating effects, if necessary.
  • transfection reagent may or may not use a transfection reagent. It is preferable not to use transfection reagents.
  • transfection reagent examples include lipofectamine 3000.
  • the contact between the ASO and the pluripotent stem cell-derived cardiomyocytes is, for example, 30 to 40 ° C, preferably 35 to 40 ° C, and more preferably 36 to 38 ° C.
  • the culture period after contact until the expression level of the calmodulin gene is measured is, for example, 1 day to 1 week, preferably 4 days to 6 days.
  • the culture temperature is, for example, 30-40 ° C, preferably 35-40 ° C, more preferably 36-38 ° C.
  • the expression level of the carmodulin gene can be measured by quantitative real-time PCR by the method.
  • screening for therapeutic, prophylactic and / or ameliorating agents for carmodulinopathy can be performed by methods involving the following steps.
  • ASO having an effect of reducing the amount of calcium current is usually selected as a candidate for a therapeutic, prophylactic and / or ameliorating agent for carmodulinopathy.
  • the degree of decrease in the amount of calcium current is not particularly limited because it depends on the concentration of ASO, but for example, a decrease of about 20%, preferably 40%, and more preferably about 50% is observed. Preferable as a candidate for treatment, prevention and / or amelioration of pachi.
  • the concentration of ASO is not particularly limited, but can be appropriately set from the range of 0.1 nM to 10 ⁇ M (for example, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 ⁇ M, 10 ⁇ M), and the calcium current amount can be set at a low concentration.
  • ASOs with a large degree of reduction are preferably selected as candidates for treatment, prevention and / or amelioration of calcium carmodulinopathy.
  • the selected candidates may be subjected to further screening to confirm their therapeutic, preventive and / or ameliorating effects, if necessary.
  • a manual patch clamp system or an auto patch clamp system is used as a method for measuring the amount of calcium current in cardiomyocytes.
  • a manual patch clamp device Multiclamp 700B amplifier, Digidata 1440 digitizer hardware, pclamp 10.4 software (manufactured by Molecular Devices), and as an auto patch clamp system device, QPatch system (manufactured by Sophion Bioscience) and System ) Is used.
  • pclamp 10.4 software manufactured by Molecular Devices
  • QPatch system manufactured by Sophion Bioscience
  • Sophion Bioscience Sophion Bioscience
  • Those skilled in the art can measure the amount of calcium current using the device.
  • a pipette is manufactured by using a borosilicate glass manufactured by World Precision Instruments Co., Ltd.
  • Extracellular fluid TEA ⁇ HCl [triethylamine hydrochloride] (140 mol / L), CsCl (5.4 mol / L), CaCl 2 [ Calcium chloride] (1.8 mol / L), MgCl 2 ⁇ 6H 2
  • An aqueous solution of 0 (1.2 mmol / L), HEPES (5 mmol / L), and glucose (10 mmol / L) can be used.
  • the amount of calcium current can be measured by the whole cell patch clamp method under fixed potential.
  • a -40 mV pulse stimulus is transiently applied, then a depolarizing pulse stimulus of 0 mV is applied for 0.3 seconds, and then a membrane potential of -80 mV is applied.
  • the amount of calsim current can be measured by returning to.
  • the expression level of the calmodulin gene can be similarly measured using mammalian cells such as human cells or mouse cells instead of pluripotent stem cells having a mutation in the calmodulin gene.
  • the mammalian cells are preferably human liver cancer-derived cells (eg, HepG2 cells) or mouse fibroblasts (eg, 3T3-L1 cells).
  • human liver cancer-derived cells eg, HepG2 cells
  • mouse fibroblasts eg, 3T3-L1 cells.
  • lipofectamine 3000 it is preferable to use, for example, lipofectamine 3000 as a transfection reagent.
  • mouse fibroblasts it is preferable not to use a transfection reagent.
  • the calmodulin gene is preferably at least one selected from the group consisting of CALM1, CALM2, and CALM3, and particularly preferably CALM2.
  • the ASO may be selected from CALM1, CALM2, and CALM3, but preferably the ASO is the ASO of CALM2.
  • the ASO selected using the above screening method inhibits the expression of the calmodulin gene.
  • the present application also provides therapeutic, prophylactic and / or ameliorating agents for calmodulinopathy, including ASO, which inhibits the expression of the calmodulin gene.
  • the calmodulin gene is CALM2.
  • the ASO is an ASO that inhibits the expression of the calmodulin gene in cardiomyocytes.
  • the ASO is an ASO that shortens the action potential duration in cardiomyocytes.
  • the ASO is an ASO that suppresses the amount of calcium current in cardiomyocytes.
  • the effective amount of ASO is an amount of a compound sufficient to bring about the desired pharmacological effect in a carmodulinopathy patient, and the age, body weight of the patient whose carmodolinopathy should be treated, prevented and / or improved. , Symptoms, health conditions, specific types of compounds used or pharmacologically acceptable salts thereof, amounts thereof to be blended in pharmaceutical compositions, etc., and are appropriately selected.
  • Each antisense oligonucleotide set forth in Table 1 is either a human CALM2 mRNA designated herein by SEQ ID NO: 1 and / or a human CALM2 pre-mRNA designated herein by SEQ ID NO: 2.
  • SEQ ID NO: 1 a human CALM2 mRNA designated herein by SEQ ID NO: 1
  • a human CALM2 pre-mRNA designated herein by SEQ ID NO: 2 Targeted at. Both "CALM2 mRNA” and “CALM2 pre-mRNA” have nucleosides linked to each other by phosphodiester bonds, and thymine is usually replaced by uracil. "CALM2 mRNA” and “CALM2 pre-mRNA” do not have any other modifications for sugar, nucleobase, or nucleoside linkage.
  • Table 2 shows the target position of each antisense oligonucleotide shown in Table 1 in the sequence of human CALM2 mRNA or pre-mRNA, the SEQ ID NO: and the nucleobase sequence corresponding to each antisense oligonucleotide.
  • SEQ1 START means "SEQ ID NO: 1 starting site” and the position number of the most 5'side nucleoside targeted by the antisense oligonucleotide in the human CALM2 mRNA sequence. show.
  • SEQ1 END means “SEQ ID NO: 1 termination site” and indicates the position number of the most 3'-side nucleoside targeted by the antisense oligonucleotide in the human CALM2 mRNA sequence.
  • SEQ2 START means “SEQ ID NO: 2 start site” and indicates the position number of the most 5'side nucleoside targeted by the antisense oligonucleotide in the sequence of pre-mRNA of human CALM2.
  • SEQ2 END means “SEQ ID NO: 2 termination site” and indicates the position number of the most 3'-side nucleoside targeted by the antisense oligonucleotide in the pre-mRNA sequence of human CALM2.
  • SEQ No indicates the SEQ ID NO: and "BASE SEQENCE” indicates the nucleic acid base sequence of the antisense oligonucleotide.
  • IWP-2 was added and cultured for 2 days, and after 7 days after the start of differentiation, the cells were cultured in RPMI 1640 supplemented with B-27 (registered trademark) supplement and insulin, and after 12 days. Cardiomyocytes that beat in insulin appeared.
  • the CALM2 gene expression level was measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific).
  • the mRNA amount of the housekeeping gene Peptidylprolyl isomerase A [PPIA] was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of PPIA mRNA was evaluated as the expression level of CALM2.
  • the results are shown in Table 3 as the percentage expression of CALM2 relative to untreated control cells.
  • the expression levels of CALM1, CALM2, and CALM3 genes were measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific).
  • real-time PCR the amount of mRNA of PPIA of the housekeeping gene was also quantified at the same time, and the amount of mRNA of CALM1, CALM2, and CALM3 with respect to the amount of mRNA of PPIA was evaluated as the expression level of CALM1, CALM2, and CALM3.
  • the results are shown in FIG. 1 as the percentage expression of CALM2 relative to untreated control cells (cntr GmbHl).
  • mouse CALM2 gene expression levels were measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific).
  • real-time PCR the amount of PPIA mRNA of the housekeeping gene was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of PPIA mRNA was evaluated as the expression level of CALM2.
  • the results are shown in Table 4 as the percentage expression of CALM2 relative to untreated control cells.
  • concentration indicates the concentration of P19710002.
  • PrimeScript registered trademark
  • RT Master Mix Perfect Real Time
  • real-time PCR the amount of PPIA mRNA of the housekeeping gene was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of PPIA mRNA was evaluated as the expression level of CALM2. The results are shown in FIG. In addition, ASO (-) shows the case where P19710002 was not added.
  • a method of screening for antisense oligonucleotides that can prevent, treat, and / or improve carmodulinopathy is provided.
  • the screening method it is possible to provide a novel drug for the prevention, treatment and / or improvement of carmodulinopathy.

Abstract

The present invention provides: a method for screening a drug for treatment, prevention, and/or amelioration of calmodulinopathy that includes an antisense oligonucleotide; and a drug for treatment, prevention, and/or amelioration of calmodulinopathy that includes an antisense oligonucleotide for inhibiting expression of a calmodulin gene.

Description

アンチセンスオリゴヌクレオチド医薬のスクリーニング方法Screening method for antisense oligonucleotide drugs
 本願は、アンチセンスオリゴヌクレオチド医薬のスクリーニング方法に関する。 The present application relates to a screening method for antisense oligonucleotide drugs.
 カルモジュリンはユビキタスに発現しているカルシウム検知タンパクであり、異なる3つの遺伝子(CALM1から3)が同一のアミノ酸配列のカルモジュリンタンパクをコードしている。カルモジュリンは、複数のイオンチャネルを含め様々なタンパクを制御しており、炎症、代謝、アポトーシス、筋肉収縮、細胞内移動、短期記憶、長期記憶、神経成長、免疫反応などさまざまな過程とかかわっている。カルシウム検知タンパクであるカルモジュリンは、心臓に発現しているL型カルシウムチャネル(LTCC)の不活性化を制御する(非特許文献1)。 Calmodulin is a calcium detection protein expressed in ubiquitous, and three different genes (CALM1 to 3) encode calmodulin protein having the same amino acid sequence. Calmodulin regulates various proteins including multiple ion channels and is involved in various processes such as inflammation, metabolism, apoptosis, muscle contraction, intracellular migration, short-term memory, long-term memory, nerve growth, and immune response. .. Calmodulin, a calcium-detecting protein, regulates the inactivation of L-type calcium channels (LTCCs) expressed in the heart (Non-Patent Document 1).
 QT延長症候群(LQTS)は、心電図のQT間隔を延長させ、心室性不整脈による失神や突然死を引起こす不整脈疾患である。先天性LQTSの原因として、心臓に発現しているイオンチャネル又はその調節タンパクの遺伝子の変異が報告されている。
 カテコラミン誘発多形性心室頻拍(catecholaminergic polymorphic ventricular tachycardia: CPVT)は、運動、感情ストレスなどに伴って引き起こされる心筋細胞内のカルシウム過剰に伴う遅延後脱分極が不整脈の発生に関与し、乳幼児突然死症候群や特発性心室細動の一部の原因とされている。(非特許文献2)
 従来、CPVTの原因としては、リアノジン受容体に関するRYR2遺伝子などが知られていた。しかし近年、カルモジュリン(CALM)遺伝子が、ある種のCPVT(CPVT4)などの原因遺伝子であることが明らかとなってきた。
Long QT Syndrome (LQTS) is an arrhythmia disorder that prolongs the QT interval on the electrocardiogram, causing fainting and sudden death due to ventricular arrhythmia. Mutations in the genes of ion channels or their regulatory proteins expressed in the heart have been reported as the cause of congenital LQTS.
In catecholaminergic polymorphic ventricular tachycardia (CPVT), delayed depolarization due to excess calcium in myocardial cells caused by exercise, emotional stress, etc. is involved in the development of arrhythmia, and suddenly in infants It is considered to be a cause of death syndrome and idiopathic ventricular fibrillation. (Non-Patent Document 2)
Conventionally, the RYR2 gene related to the ryanodine receptor has been known as a cause of CPVT. However, in recent years, it has become clear that the calmodulin (CALM) gene is a causative gene such as certain CPVT (CPVT4).
 CALM遺伝子のヘテロミスセンス変異が、重症QT延長症候群やカテコラミン誘発多形性心室頻拍などの重症不整脈の発生に関連していることが報告されるようになり、“カルモジュリノパチー”(Calmodulinopathy)と総称される新しい疾患概念が提唱された(非特許文献3)。カルモジュリノパチーでは3つの異なるCALM遺伝子のうち、一つのCALM遺伝子のミスセンス変異がドミナントネガティブ作用を発揮し、重篤な症状を引き起こすと考えられている(非特許文献4)。 Heteromissense mutations in the CALM gene have been reported to be associated with the development of severe arrhythmias such as severe long QT syndrome and catecholamine-induced polymorphic ventricular tachycardia. A new disease concept collectively called (Non-Patent Document 3) was proposed. In carmodulinopathy, a missense mutation in one of the three different CALM genes is thought to exert a dominant negative effect and cause serious symptoms (Non-Patent Document 4).
 特に不整脈を症状とするカルモジュリノパチー患者の多くは、重症で小児期に突然死を起こし、成人まで生存できない症例も少なくない。治療方法として、例えば突然死予防のためには植込み型除細動器治療が考慮されるが、対処療法である点、患者の多くが小児であり心身への負担が大きい点、侵襲や植込み後の合併症が発生する点に問題がある(非特許文献5)。 In particular, many patients with carmodulinopathy who have arrhythmia as a symptom are severely ill and suddenly die in childhood, and there are many cases in which they cannot survive until adulthood. Implantable cardioverter-defibrillator treatment is considered as a treatment method, for example, to prevent sudden death, but it is a symptomatic treatment, many patients are children and the burden on the body and mind is heavy, and after invasiveness or implantation. There is a problem in that the complications of the above occur (Non-Patent Document 5).
 また、ゲノム編集技術を利用した遺伝子治療の可能性も報告されている。非特許文献6は、CRISPRiシステムを用いた変異アレル非特異的ノックダウンにより、LQT患者より作製したiPS細胞分化心筋細胞の活動電位持続時間延長を短縮すること、本方法がカルモジュリノパチー患者のアレル非特異的な遺伝子治療法となり得ることを示している。同様に、非特許文献4は、CRISPR/Cas9システムを用いた変異アレル特異的ノックアウトにより、カルモジュリノパチー患者より作製したiPS細胞分化心筋細胞クローンの電気生理学的異常(LTCCの不活性化遅延、活動電位持続時間延長)が正常化すること、本方法が、CALM遺伝子のドミナントネガティブ作用を原因とするカルモジュリノパチー患者に有効な遺伝子治療法となり得ることを示している。
 CRISPRiシステム、CRISPR/Cas9システムのいずれを用いる手法も臨床応用例はなく、臨床応用には課題が多いとされている。
 カルモジュリノパチーに対しては、β遮断薬が投薬されているが、治療効果は低いことが報告されている(非特許文献5)。
The possibility of gene therapy using genome editing technology has also been reported. Non-Patent Document 6 describes that the action potential duration prolongation of iPS cell-differentiated cardiomyocytes prepared from LQT patients is shortened by non-specific knockdown of mutant alleles using the CRISPRi system. It has been shown that it can be a non-allelic gene therapy method. Similarly, Non-Patent Document 4 describes electrophysiological abnormalities of iPS cell-differentiated cardiomyocyte clones prepared from patients with carmodulinopathy by mutant allele-specific knockout using the CRISPR / Cas9 system (delayed inactivation of LTCC, Normalization of action potential duration) indicates that this method can be an effective gene therapy method for patients with carmodulinopathy due to the dominant negative effect of the CALM gene.
There are no clinical application examples of methods using either the CRISPRi system or the CRISPR / Cas9 system, and it is said that there are many problems in clinical application.
Although β-blockers have been administered to carmodulinopathy, it has been reported that the therapeutic effect is low (Non-Patent Document 5).
 遺伝子変異が原因である先天性疾患の薬物治療としては、アンチセンスオリゴヌクレオチド(ASO)の使用が想定される。しかし、これまでカルモジュリノパチーの治療にASOを試みた例はなく、コンセプト、デザインそして評価系は全く知られていなかった。また、カルモジュリノパチーのメカニズムは、他の病態に比べて不明な点が多く、ASOが本病態に有効であるか自体が未知であり、また確たる成功確率も期待できなかった。
 例えば、QT延長症候群(LQTS)の代表的な病態であるLQT1では、KCNQ1遺伝子の変異が原因とされる。KCNQ1遺伝子は、心筋に発現するカリウムチャネルであるIKsチャネルタンパクの発現遺伝子である。KCNQ1遺伝子の変異は心筋カリウムチャネルタンパクの変異を導き、直接的に不整脈に影響する。
 これに対しカルモジュリノパチーでは、まずカルモジュリンタンパクが変異し、たとえばカルシウムイオンとの親和性が変化するか、タンパクの形状が微妙に変化するなどした結果として、その下流でカルシウムのシグナル伝達に影響を与える。したがって、ASOによる治療効果は間接的であり、ASOが実際に不整脈に関わるカルシウム電流量を変化させるかについては相当に未知であった。
 また、カルモジュリンにはカルシウム結合部位が4つあり、どの結合部位が病態に関与しているか不明であった。また、カルモジュリノパチーに関わるアミノ酸変異の可能性についても、少なくとも28アミノ酸が知られており(非特許文献5)、どのアミノ酸がどの程度病態に関与しているかは不明であった。したがって、ASOのコンセプトやデザインについても相当に未知であった。
The use of antisense oligonucleotides (ASOs) is envisioned as a drug treatment for congenital diseases caused by gene mutations. However, no ASO has ever been attempted to treat carmodulinopathy, and the concept, design and evaluation system were completely unknown. In addition, the mechanism of carmodulinopathy has many unclear points compared to other pathological conditions, and it is unknown whether ASO is effective for this pathological condition, and a certain probability of success could not be expected.
For example, in LQT1, which is a typical pathological condition of long QT syndrome (LQTS), a mutation in the KCNQ1 gene is the cause. The KCNQ1 gene is an expression gene for IKs channel protein, which is a potassium channel expressed in the myocardium. Mutations in the KCNQ1 gene lead to mutations in myocardial potassium channel proteins and directly affect arrhythmias.
On the other hand, in calmodulinopathy, the calmodulin protein is first mutated, and as a result, for example, the affinity with calcium ions changes or the shape of the protein changes subtly, and as a result, it affects calcium signal transduction downstream. give. Therefore, the therapeutic effect of ASO is indirect, and it is quite unknown whether ASO actually changes the amount of calcium current involved in arrhythmia.
In addition, calmodulin has four calcium-binding sites, and it was unclear which binding site is involved in the pathological condition. In addition, at least 28 amino acids are known for the possibility of amino acid mutation related to carmodulinopathy (Non-Patent Document 5), and it was unclear which amino acid is involved in the pathological condition to what extent. Therefore, the concept and design of ASO were also quite unknown.
 薬物治療によれば、従来の外科的療法又は遺伝子治療の課題を克服できる可能性があることから、カルモジュリノパチーを処置するための薬物が求められている。特に致死性不整脈イベントを予防し、予後の改善が可能な治療薬のニーズは非常に高く、臨床的意義も大きいと考えられている(非特許文献5)。
 したがって、本願の課題は、カルモジュリノパチーを処置するための新たな薬物を提供することを可能にする、アンチセンスオリゴヌクレオチド医薬の新規スクリーニング方法を提供すること、並びに、新規アンチセンスオリゴヌクレオチド医薬を提供することである。
Drug therapy has the potential to overcome the challenges of conventional surgical or gene therapy, so there is a need for drugs to treat carmodulinopathy. In particular, the need for a therapeutic agent capable of preventing a fatal arrhythmia event and improving the prognosis is extremely high, and it is considered to have great clinical significance (Non-Patent Document 5).
Therefore, the task of the present application is to provide a novel screening method for an antisense oligonucleotide drug, which makes it possible to provide a new drug for treating carmodulinopathy, as well as a novel antisense oligonucleotide drug. Is to provide.
 上記課題に鑑み、鋭意検討を行った結果、本発明者らは、
(1)適切な細胞と条件を明らかにすることによりカルモジュリノパチーに対するASOの評価系を初めて構築し、
(2)特にカルモジュリノパチー患者から作製された多能性幹細胞由来の病態モデルであるASO評価系を初めて構築し、
(3)ASOが、カルモジュリノパチーに関連する遺伝子発現を実際に抑制できることを初めて明らかとし、
(4)ASOが、カルモジュリノパチー病態モデルにおいて、心筋細胞の活動電位持続時間を実際に変化させられることを初めて明らかとした。
 また、本発明者らは、カルモジュリノパチー患者の体細胞から作製された多能性幹細胞由来の心筋細胞に、ASOを添加することで、CALM遺伝子発現を低下させ、活動電位持続時間の延長が是正されること、そして、前記ASOを生体へ応用することが可能であることも見出した。
 すなわち本願は、要旨、以下を提供するものである。
As a result of diligent studies in view of the above problems, the present inventors have determined.
(1) For the first time, we constructed an ASO evaluation system for carmodulinopathy by clarifying appropriate cells and conditions.
(2) For the first time, we constructed an ASO evaluation system, which is a pathological model derived from pluripotent stem cells prepared from patients with carmodulinopathy.
(3) For the first time, it was clarified that ASO can actually suppress gene expression related to carmodulinopathy.
(4) It was clarified for the first time that ASO can actually change the action potential duration of cardiomyocytes in a carmodulinopathy pathological model.
In addition, by adding ASO to cardiomyocytes derived from pluripotent stem cells prepared from somatic cells of carmodulinopathy patients, the present inventors reduce CALM gene expression and prolong the duration of action potentials. It was also found that the ASO can be corrected and that the ASO can be applied to a living body.
That is, the present application provides the gist and the following.
1.
 アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
(1)該アンチセンスオリゴヌクレオチドを、カルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
(2)接触させた該心筋細胞の活動電位持続時間を測定する工程、及び
(3)工程(2)で測定された活動電位持続時間を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該心筋細胞の活動電位持続時間と比較する工程
を含む、方法。
2.
 アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
(1)該アンチセンスオリゴヌクレオチドを、カルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
(2)接触させた該心筋細胞におけるカルモジュリン遺伝子の発現量を測定する工程、及び
(3)工程(2)で測定されたカルモジュリン遺伝子の発現量を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該心筋細胞におけるカルモジュリン遺伝子の発現量と比較する工程
を含む、方法。
3.
 アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
(1)該アンチセンスオリゴヌクレオチドをカルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
(2)接触させた該心筋細胞におけるカルシウム電流量を測定する工程、及び
(3)工程(2)で測定されたカルシウム電流量を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該心筋細胞におけるカルシウム電流量と比較する工程
を含む、方法。
4.
 前記多能性幹細胞が、カルモジュリノパチー患者に由来するiPS細胞である、1.~3.のいずれか一つに記載の方法。
5.
 アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
(1)該アンチセンスオリゴヌクレオチドを哺乳類の細胞と接触させる工程、
(2)接触させた該細胞におけるカルモジュリン遺伝子の発現量を測定する工程、及び
(3)工程(2)で測定されたカルモジュリン遺伝子の発現量を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該細胞におけるカルモジュリン遺伝子の発現量と比較する工程
を含む、方法。
6.
 前記哺乳類の細胞が、ヒト肝癌由来細胞又はマウス線維芽細胞である、5.に記載の方法。
7.
 前記カルモジュリン遺伝子が、CALM1、CALM2、及びCALM3からなる群より選択される少なくとも一つである、1.~6.のいずれか一つに記載の方法。
8.
 前記アンチセンスオリゴヌクレオチドが、CALM2のアンチセンスオリゴヌクレオチドである、1.~7.のいずれか一つに記載の方法。
9.
 前記アンチセンスオリゴヌクレオチドが、カルモジュリン遺伝子の発現を阻害する、1.~8.のいずれか一つに記載の方法。
10.
 カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドを含む、カルモジュリノパチーの治療、予防及び/又は改善薬。
11.
 前記カルモジュリン遺伝子が、CALM2である、10.に記載の治療、予防及び/又は改善薬。
12.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において前記カルモジュリン遺伝子の発現を阻害する、10.又は11.に記載の治療、予防及び/又は改善薬。
13.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において活動電位持続時間を短縮する、10.~12.のいずれか一つに記載の治療、予防及び/又は改善薬。
14.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞においてカルシウム電流量を抑制する、10.~13.のいずれか一つに記載の治療、予防及び/又は改善薬。
15.
 カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドの有効量を、カルモジュルノパチー患者に投与する工程を含む、カルモジュリノパチーを治療、予防及び/又は改善する方法。
16.
 前記カルモジュリン遺伝子が、CALM2である、15.に記載の方法。
17.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において前記カルモジュリン遺伝子の発現を阻害する、15.又は16.に記載の方法。
18.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において活動電位持続時間を短縮する、15.~17.のいずれか一つに記載の方法。
19.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞においてカルシウム電流量を抑制する、15.~18.のいずれか一つに記載の方法。
20.
 カルモジュリノパチーの治療、予防及び/又は改善に使用するための、カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドである化合物。
21.
 前記カルモジュリン遺伝子が、CALM2である、20.に記載の化合物。
22.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において前記カルモジュリン遺伝子の発現を阻害する、20.又は21.に記載の化合物。
23.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において活動電位持続時間を短縮する、20.~22.のいずれか一つに記載の化合物。
24.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞においてカルシウム電流量を抑制する、20.~23.のいずれか一つに記載の化合物。
25.
 カルモジュリノパチーを治療、予防及び/又は改善するための医薬の製造における、カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドの使用。
26.
 前記カルモジュリン遺伝子が、CALM2である、25.に記載の使用。
27.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において前記カルモジュリン遺伝子の発現を阻害する、25.又は26.に記載の使用。
28.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞において活動電位持続時間を短縮する、25.~27.のいずれか一つに記載の使用。
29.
 前記アンチセンスオリゴヌクレオチドが、心筋細胞においてカルシウム電流量を抑制する、25.~28.のいずれか一つに記載の使用。
1. 1.
A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
(1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene.
The step of measuring the action potential duration of the contacted cardiomyocytes, and the case where the action potential duration measured in the step (3) step (2) is not contacted with the antisense oligonucleotide. A method comprising the step of comparing the action potential duration of cardiomyocytes.
2.
A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
(1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene.
(2) The step of measuring the expression level of the calmodulin gene in the contacted myocardial cells, and (3) the case where the expression level of the calmodulin gene measured in the step (2) was not contacted with the antisense oligonucleotide. A method comprising the step of comparing the expression level of the calmodulin gene in the myocardial cells.
3. 3.
A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
(1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene.
(2) The step of measuring the amount of calcium current in the contacted myocardial cells, and (3) the step (3) the amount of calcium current measured in the step (2) is not brought into contact with the antisense oligonucleotide. A method comprising a step of comparing with the amount of calcium current in.
4.
1. The pluripotent stem cells are iPS cells derived from patients with carmodulinopathy. ~ 3. The method described in any one of.
5.
A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
(1) A step of contacting the antisense oligonucleotide with mammalian cells,
(2) The step of measuring the expression level of the carmodulin gene in the contacted cells, and (3) the case where the expression level of the carmodulin gene measured in the step (2) was not contacted with the antisense oligonucleotide. A method comprising the step of comparing the expression level of the carmodulin gene in the cell.
6.
5. The mammalian cells are human liver cancer-derived cells or mouse fibroblasts. The method described in.
7.
1. The calmodulin gene is at least one selected from the group consisting of CALM1, CALM2, and CALM3. ~ 6. The method described in any one of.
8.
1. The antisense oligonucleotide is a CALM2 antisense oligonucleotide. ~ 7. The method described in any one of.
9.
The antisense oligonucleotide inhibits the expression of the calmodulin gene. ~ 8. The method described in any one of.
10.
A therapeutic, prophylactic and / or ameliorating agent for calmodulinopathy, which comprises an antisense oligonucleotide that inhibits the expression of the calmodulin gene.
11.
10. The calmodulin gene is CALM2. Therapeutic, prophylactic and / or ameliorating agents described in.
12.
10. The antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes. Or 11. Therapeutic, prophylactic and / or ameliorating agents described in.
13.
10. The antisense oligonucleotide shortens the action potential duration in cardiomyocytes. ~ 12. The therapeutic, prophylactic and / or ameliorating agents according to any one of the above.
14.
10. The antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes. ~ 13. The therapeutic, prophylactic and / or ameliorating agents according to any one of the above.
15.
A method for treating, preventing and / or ameliorating calmodulinopathy, which comprises the step of administering to a patient with calmodulinopathy an effective amount of an antisense oligonucleotide that inhibits the expression of the calmodulin gene.
16.
The calmodulin gene is CALM2, 15. The method described in.
17.
15. The antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes. Or 16. The method described in.
18.
The antisense oligonucleotide shortens the action potential duration in cardiomyocytes, 15. ~ 17. The method described in any one of.
19.
The antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes, 15. ~ 18. The method described in any one of.
20.
A compound that is an antisense oligonucleotide that inhibits the expression of the calmodulin gene for use in the treatment, prevention and / or amelioration of calmodulinopathy.
21.
The calmodulin gene is CALM2, 20. The compound described in.
22.
The antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes, 20. Or 21. The compound described in.
23.
The antisense oligonucleotide shortens the action potential duration in cardiomyocytes, 20. ~ 22. The compound according to any one of.
24.
The antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes, 20. ~ 23. The compound according to any one of.
25.
Use of antisense oligonucleotides that inhibit the expression of the calmodulin gene in the manufacture of drugs to treat, prevent and / or improve calmodulinopathy.
26.
The calmodulin gene is CALM2, 25. Use as described in.
27.
The antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes, 25. Or 26. Use as described in.
28.
The antisense oligonucleotide shortens the action potential duration in cardiomyocytes, 25. ~ 27. Use described in any one of.
29.
The antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes, 25. ~ 28. Use described in any one of.
 カルモジュリノパチーの予防、治療、及び/又は改善を可能とするアンチセンスオリゴヌクレオチドをスクリーニングする方法が提供される。また、当該スクリーニング方法を用いることにより、カルモジュリノパチーの予防、治療、及び/又は改善用の新規な薬物を提供することができる。 A method of screening for antisense oligonucleotides that can prevent, treat, and / or improve carmodulinopathy is provided. In addition, by using the screening method, it is possible to provide a novel drug for the prevention, treatment and / or improvement of carmodulinopathy.
カルモジュリン遺伝子のASOのヒト肝癌由来細胞におけるCALM1、CALM2及びCALM3の発現レベルへの影響を示すグラフである。It is a graph which shows the influence of ASO of calmodulin gene on the expression level of CALM1, CALM2 and CALM3 in human liver cancer-derived cells. カルモジュリン遺伝子のASOの存在下及び非存在下でのカルモジュリノパチー患者由来ヒトiPS細胞分化心筋細胞における活動電位の測定結果である。It is a measurement result of the action potential in the human iPS cell differentiated cardiomyocyte derived from the calmodulinopathy patient in the presence and absence of ASO of the calmodulin gene. カルモジュリン遺伝子のASOのカルモジュリノパチー患者由来ヒトiPS細胞分化心筋細胞における活動電位持続時間への影響を示すグラフである。It is a graph which shows the influence of the calmodulin gene of ASO on the action potential duration in the human iPS cell differentiation cardiomyocyte derived from the calmodulinopathy patient. カルモジュリン遺伝子のASOのカルモジュリノパチー患者由来ヒトiPS細胞分化心筋細胞におけるCALM2の発現レベルへの影響を示すグラフである。It is a graph which shows the influence of the calmodulin gene on the expression level of CALM2 in the differentiated cardiomyocytes of human iPS cells derived from the calmodulinopathy patient of ASO. カルモジュリン遺伝子のASOを投与したC57BL/6Jマウスの心臓におけるCALM2の発現レベルへの影響を示すグラフである。It is a graph which shows the influence on the expression level of CALM2 in the heart of the C57BL / 6J mouse which administered the ASO of the calmodulin gene.
 上記した概要及び下記する詳細な説明の両方は、例示的及び説明的なものにすぎず、特許請求される発明を何ら限定するものではないことが理解される。本明細書において、単数形で示される事項は、文脈から明らかに異なっているか又は別途具体的に記述されない限り、複数形での例示を含む。
 また本明細書において、アンチセンスオリゴヌクレオチドは「ASO」と記載することがある。
It is understood that both the above overview and the detailed description below are merely exemplary and descriptive and do not limit the claimed invention in any way. In the present specification, the matters indicated in the singular form include examples in the plural form unless the matter is clearly different from the context or otherwise specifically stated.
Also, in the present specification, the antisense oligonucleotide may be referred to as "ASO".
 自然界における核酸は、もっとも基本的には、アデノシン(A)、チミジン(T)(又はウリジン(U))、シチジン(C)、グアノシン(G)で構成される。それらの基本的な核酸はしばしばAT(U)GC等と言及される。したがって、本明細書において、例えばCALM2遺伝子の配列等に関し、「核酸塩基配列」や「配列番号」で配列を示す場合、それらは基本的にA、G、C、T及びUから構成される配列である。
 一方、本願のASOを構成する核酸は、基本的な核酸(AT(U)CG)のほか、それらが構造修飾を受けたものも含む。修飾の詳細については後述されるが、糖部分、ヌクレオシド間結合、及び/又は核酸塩基への修飾等が含まれる。
 したがって、本明細書において、例えば本願のASO等が、「化合物」又は「化合物番号(P番号)が付与された化合物」の説明において、A、G、C、T及びUにより核酸塩基配列が記載された場合、A、G、C、T及びUは、それらが構造修飾を受けたものをも包含する。
Nucleic acids in nature are most basically composed of adenosine (A), thymidine (T) (or uridine (U)), cytidine (C), and guanosine (G). Those basic nucleic acids are often referred to as AT (U) GC and the like. Therefore, in the present specification, for example, with respect to the sequence of the CALM2 gene and the like, when the sequences are indicated by "nucleic acid base sequence" or "SEQ ID NO:", they are basically sequences composed of A, G, C, T and U. Is.
On the other hand, the nucleic acids constituting the ASO of the present application include not only basic nucleic acids (AT (U) CG) but also those having undergone structural modification. Details of the modification will be described later, but include modification to a sugar moiety, an internucleoside bond, and / or a nucleobase.
Therefore, in the present specification, for example, ASO and the like of the present application describe the nucleic acid base sequence by A, G, C, T and U in the description of "compound" or "compound numbered with compound number (P number)". If so, A, G, C, T and U also include those that have undergone structural modification.
 以下、更に詳細に説明する。
 別途示されない限り、以下の用語は、以下の意味を有する。
Hereinafter, it will be described in more detail.
Unless otherwise indicated, the following terms have the following meanings:
 「アンチセンス効果」とは、標的遺伝子に対応して選択される標的RNAと、例えば、その部分配列に相補的な配列を有するオリゴヌクレオチドとがハイブリダイズすることによって、標的RNAの機能が制御されることを意味する。例えば、標的RNAがmRNAの場合、ハイブリダイゼーションにより前記標的RNAの翻訳が阻害されること、エキソンスキッピング等のスプライシング機能変換効果、ハイブリダイズした部分が認識されることにより前記標的RNAが分解されること等を意味する。 The "antisense effect" means that the function of the target RNA is controlled by hybridizing the target RNA selected corresponding to the target gene and, for example, an oligonucleotide having a sequence complementary to the partial sequence thereof. Means that. For example, when the target RNA is mRNA, the target RNA is degraded by inhibiting the translation of the target RNA by hybridization, the splicing function conversion effect such as exon skipping, and the recognition of the hybridized portion. Etc.
 「アンチセンスオリゴヌクレオチド」(ASO)は、前記アンチセンス効果が生じるオリゴヌクレオチドである。例えば、DNA、ギャップマー、ミックスマー等が挙げられるが、これらに限定されず、RNA又はアンチセンス効果が通常生じるように設計されたオリゴヌクレオチド等でもよい。 "Antisense oligonucleotide" (ASO) is an oligonucleotide that produces the antisense effect. For example, DNA, gapmer, mixmer and the like can be mentioned, but the present invention is not limited to these, and RNA or an oligonucleotide designed to normally produce an antisense effect may be used.
 本願のASOは、当業者であれば公知の方法を適宜選択することにより調製することができる。例えば、当業者は、標的RNAのヌクレオシド配列の情報に基づいて、ASOのヌクレオシド配列を設計し、市販の核酸自動合成機(アプライドバイオシステムズ社製、ベックマン社製、ジーンデザイン社製等)を用いて合成することができる。また、酵素を用いた反応によって合成することもできる。前記酵素としては、ポリメラーゼ、ライゲース及び制限酵素等が挙げられるが、これらに限定されない。 The ASO of the present application can be prepared by a person skilled in the art by appropriately selecting a known method. For example, a person skilled in the art designs a nucleoside sequence of ASO based on the information of the nucleoside sequence of the target RNA, and uses a commercially available nucleic acid automatic synthesizer (Applied Biosystems, Beckman, Genedesign, etc.). Can be synthesized. It can also be synthesized by a reaction using an enzyme. Examples of the enzyme include, but are not limited to, polymerases, ligases, restriction enzymes and the like.
 「カルモジュリン」は、ユビキタスに発現しているカルシウム検知タンパクであり、複数のイオンチャネルを含め様々なタンパクを制御している。カルモジュリンは、炎症、代謝、アポトーシス、筋肉収縮、細胞内移動、短期記憶、長期記憶、神経成長、免疫反応などさまざまな過程と関連している。特に、心臓に発現しているL型カルシウムチャネル(LTCC)の不活性化を制御している。 "Calmodulin" is a calcium detection protein expressed in ubiquitous, and controls various proteins including multiple ion channels. Calmodulin is associated with various processes such as inflammation, metabolism, apoptosis, muscle contraction, intracellular migration, short-term memory, long-term memory, nerve growth, and immune response. In particular, it controls the inactivation of L-type calcium channels (LTCCs) expressed in the heart.
 「カルモジュリン遺伝子」(CALM遺伝子)は、カルモジュリンタンパクをコードする遺伝子であり、CALM1、CALM2及びCALM3が報告されている。ヒトカルモジュリン遺伝子の塩基配列及びヒトカルモジュリンタンパクのアミノ酸配列は公知であり、例えばカルモジュリン遺伝子のCALM1、CALM2、CALM3の塩基配列及びヒトカルモジュリンタンパクのアミノ酸配列は、以下の通りGenBankに登録され、公開されている。
カルモジュリンタンパク:AAD45181
CALM1:NC_000014
CALM2:NC_000002
CALM3:NC_000019
The "calmodulin gene" (CALM gene) is a gene encoding a calmodulin protein, and CALM1, CALM2 and CALM3 have been reported. The base sequence of the human calmodulin gene and the amino acid sequence of the human calmodulin protein are known. For example, the base sequence of the calmodulin genes CALM1, CALM2, CALM3 and the amino acid sequence of the human calmodulin protein are registered in GenBank and published as follows. There is.
Calmodulin protein: AAD45181
CALM1: NC_0000014
CALM2: NC_000002
CALM3: NC_0000019
 「カルモジュリノパチー」は、CALM遺伝子の変異を原因とする不整脈疾患である。例えば、カルモジュリノパチーの症状としては、例えば、QT延長症候群(LQTS)、カテコラミン誘発多形性心室頻拍(CPVT)、突発性心室細動(IVF)などが挙げられる。 "Carmodulinopathy" is an arrhythmia disease caused by a mutation in the CALM gene. For example, symptoms of carmodulinopathy include, for example, Long QT Syndrome (LQTS), catecholamine-induced polymorphic ventricular tachycardia (CPVT), and idiopathic ventricular fibrillation (IVF).
 カルモジュリノパチーを引き起こすカルモジュリン遺伝子の変異としては、カルモジュリン遺伝子のコーディング領域(CDS)の変異やスプライシング異常を引き起こすイントロン領域の変異が挙げられる。CALM遺伝子の変異としては、CALMの遺伝子産物であるカルモジュリンタンパク質の1つのアミノ酸が別のアミノ酸に置き換わってしまうような遺伝子変異が知られている。このような遺伝子変異として、現在のところ、以下の28種が報告されている:
F46K、N54I、F90L、D94N、D96H、D96V、D96G、N98I、N98S、A103V、E105K、E105A、G114W、D130A、D130G,D130V、D132E,D132F、D132H、D132G、D134H、D134N、Q136P、N138K、E141G、E141V、E141K、F142L。
 しかしながら、カルモジュリノパチーを引き起こすカルモジュリン遺伝子変異であれば、本願における遺伝子変異は、上記28種に限定されるわけではない。
 また、CALM1、CALM2、CALM3のいずれか1つ又は2つでのみ報告されている変異であっても、残りの2つ又は1つの遺伝子でも起こり得る可能性があることは当業者にとり明らかである。例えば、現在までにも、D130Gは、CALM1、CALM2、CALM3のいずれの遺伝子でも起きることが報告されている。
 上記例示した変異は、例えば、N98Sは、カルモジュリンタンパク質のN末端から98番目のアミノ酸がアスパラギン(N)からセリン(S)に変化した変異を意味する。すなわち、数字の前が変異前のアミノ酸の種類を表し、数字が変異が起きるアミノ酸のN末端からの位置、数字の後が変異後のアミノ酸の種類を表す。
Mutations in the calmodulin gene that cause calmodulinopathy include mutations in the coding region (CDS) of the calmodulin gene and mutations in the intron region that causes splicing abnormalities. As a mutation of the CALM gene, a gene mutation is known in which one amino acid of the calmodulin protein, which is a gene product of CALM, is replaced with another amino acid. Currently, the following 28 types of such gene mutations have been reported:
F46K, N54I, F90L, D94N, D96H, D96V, D96G, N98I, N98S, A103V, E105K, E105A, G114W, D130A, D130G, D130V, D132E, D132F, D132H, D132G, D134H, D134N, Q136P, N138 E141V, E141K, F142L.
However, as long as it is a calmodulin gene mutation that causes calmodulinopathy, the gene mutation in the present application is not limited to the above 28 species.
It is also apparent to those skilled in the art that mutations reported in only one or two of CALM1, CALM2, and CALM3 can occur in the remaining two or one gene. .. For example, to date, D130G has been reported to occur in any of the CALM1, CALM2, and CALM3 genes.
The above-exemplified mutation means, for example, N98S is a mutation in which the 98th amino acid from the N-terminal of the calmodulin protein is changed from asparagine (N) to serine (S). That is, the number before the number indicates the type of amino acid before the mutation, the number indicates the position of the amino acid at which the mutation occurs from the N-terminal, and the number after the number indicates the type of the amino acid after the mutation.
 例えば、
N98S-CALM2(CALM2の遺伝子産物であるカルモジュリンタンパク質のN末端から98番目のアミノ酸がアスパラギン(N)からセリン(S)に変化した変異)、
D130G-CALM2(CALM2の遺伝子産物であるカルモジュリンタンパク質のN末端から130番目のアミノ酸がアスパラギン酸(D)からグリシン(G)に変化した変異)、
N98S-CALM1(CALM1の遺伝子産物であるカルモジュリンタンパク質のN末端から98番目のアミノ酸がアスパラギン(N)からセリン(S)に変化した変異)、
F90L-CALM1(CALM1の遺伝子産物であるカルモジュリンタンパク質のN末端から90番目のアミノ酸がフェニルアラニン(F)からロイシン(L)に変化した変異)、
D130G-CALM1(CALM1の遺伝子産物であるCALM2タンパク質のN末端から130番目のアミノ酸がアスパラギン酸(D)からグリシン(G)に変化した変異)
D134H-CALM1(CALM1の遺伝子産物であるCALM2タンパク質のN末端から134番目のアミノ酸がアスパラギン酸(D)からヒスチジン(H)に変化した変異)
である。
for example,
N98S-CALM2 (mutation in which the 98th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM2, is changed from asparagine (N) to serine (S)),
D130G-CALM2 (a mutation in which the 130th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM2, is changed from aspartic acid (D) to glycine (G)),
N98S-CALM1 (mutation in which the 98th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM1, is changed from asparagine (N) to serine (S)),
F90L-CALM1 (mutation in which the 90th amino acid from the N-terminus of the calmodulin protein, which is the gene product of CALM1, is changed from phenylalanine (F) to leucine (L)),
D130G-CALM1 (mutation in which the 130th amino acid from the N-terminus of the CALM2 protein, which is the gene product of CALM1, is changed from aspartic acid (D) to glycine (G))
D134H-CALM1 (mutation in which the 134th amino acid from the N-terminus of the CALM2 protein, which is the gene product of CALM1, is changed from aspartic acid (D) to histidine (H))
Is.
 「カルモジュリノパチー患者」は、CALM遺伝子の変異に起因する症状を現在有するか又は将来的に有し得る哺乳動物であり、好ましくは、CALM遺伝子の変異に起因する症状を現在有するか又は将来的に有し得るヒトである。 A "carmodulinopathy patient" is a mammal that currently or may have symptoms due to a mutation in the CALM gene, preferably presently or in the future due to a mutation in the CALM gene. It is a human being who can have a gene.
 「QT延長症候群」(Long-QT Syndrome;LQTS)は、心電図のQT間隔が健常人よりも延長した、不整脈疾患である。LQTSは、心室性不整脈による失神や突然死を引起こす。QT間隔とは、心電図におけるQRS波のはじまりからT波の終わりまでの時間であり、心室の収縮弛緩時間を示している。QT間隔の正常値は心拍数によって変化するため、通常、Bazettの式で心拍数により補正された、補正QT間隔(QTc=QT/√RR)が使用される。補正QT間隔の正常値は、360ミリ秒から440ミリ秒である。QT延長は、補正QT間隔が正常値より延長することである。
 「LQT15」は、CALM2の変異が原因の先天性QT延長症候群である。
 「LQT14」は、CALM1の変異が原因の先天性QT延長症候群である。
 「LQT16」は、CALM3の変異が原因の先天性QT延長症候群である。
"Long-QT Syndrome" (LQTS) is an arrhythmic disorder in which the QT interval of the electrocardiogram is longer than that of a healthy person. LQTS causes fainting and sudden death due to ventricular arrhythmia. The QT interval is the time from the start of the QRS complex to the end of the T wave on the electrocardiogram, and indicates the contraction / relaxation time of the ventricle. Since the normal value of the QT interval changes with the heart rate, the corrected QT interval (QTc = QT / √RR), which is usually corrected by the heart rate in the Bazett equation, is used. The normal value of the correction QT interval is 360 ms to 440 ms. QT prolongation is the extension of the corrected QT interval from the normal value.
"LQT15" is a congenital long QT syndrome caused by a mutation in CALM2.
"LQT14" is a congenital long QT syndrome caused by a mutation in CALM1.
"LQT16" is a congenital long QT syndrome caused by a mutation in CALM3.
 「活動電位」は、興奮刺激に応じて細胞膜に生じる一過性の膜電位の変化である。イオンの分布が細胞内外で異なるため、活性化していない静止状態の細胞では通常、細胞外と比べ細胞内の電位がマイナスである(すなわち、分極しているという)。活動電位は、主としてナトリウムイオン、カリウムイオン、カルシウムイオン等が、細胞内外の濃度差に従い、イオンチャネルを通じて受動的拡散を起こすことにより発生する。 "Action potential" is a transient change in membrane potential that occurs in the cell membrane in response to an excitatory stimulus. Because the distribution of ions is different inside and outside the cell, the intracellular potential of an unactivated quiescent cell is usually negative (ie, said to be polarized) compared to the outside of the cell. Action potentials are mainly generated by the passive diffusion of sodium ions, potassium ions, calcium ions, etc. through ion channels according to the difference in concentration inside and outside the cell.
 「活動電位持続時間」(APD;Action Potential Duration)としては、通常APD90や、APD50などが用いられる。静止状態の電位レベルの平均値を静止電位値Vmとし、最大振幅の電位値をVmmaxとして、
Vm90=(Vmmax-Vm)×0.1
で得られるVm90を元に、脱分極時のVm90から再分極時のVm90までの時間がAPD90である。(生体医工学 47(6), 514-521頁、2009年)
同様に、
Vm50=(Vmmax-Vm)×0.5
で得られるVm50を元に、脱分極時のVm50から再分極時のVm50までの時間がAPD50である。
As the "action potential duration"(APD; Action Potential Duration), APD 90 , APD 50, or the like is usually used. The average value of the potential level in the stationary state is set to the resting potential value Vm 0, and the potential value of the maximum amplitude is set to Vm max .
Vm 90 = (Vm max- Vm 0 ) x 0.1
Based on the Vm 90 obtained in the above, the time from Vm 90 at the time of depolarization to Vm 90 at the time of repolarization is APD 90 . (Biomedical Engineering 47 (6), pp. 514-521, 2009)
Similarly
Vm 50 = (Vm max- Vm 0 ) x 0.5
Based on the Vm 50 obtained in the above, the time from Vm 50 at the time of depolarization to Vm 50 at the time of repolarization is APD 50 .
 「多能性幹細胞」は、当技術分野で周知の用語であり、内胚葉(例えば、内部胃壁、消化管、肺)、中胚葉(例えば、筋肉、骨、血液、泌尿生殖器)又は外胚葉(例えば、表皮組織又は神経系)系の細胞など、生体を構成する多種類の細胞に分化できる分化多能性(pluripotency)と、分裂増殖を経ても分化多能性を維持できる自己複製能を併せ持つ細胞である。その例としては、人工多能性幹(iPS)細胞、ES細胞の他、始原生殖細胞に由来する胚性生殖(EG)細胞、精巣組織からのGS細胞の樹立培養過程で単離されるmultipotent germline stem(mGS)細胞、骨髄から単離されるmultipotent adult progenitor cell(MAPC)等が挙げられる。
 ES細胞は、当技術分野で周知の用語であり、動物の発生初期段階である胚盤胞期の胚に由来する多能性幹細胞であり、体細胞から核初期化されて生じたES細胞であってもよい。
 iPS細胞は、当技術分野で周知の用語であり、人工多能性幹細胞若しくは誘導多能性幹細胞とも称され、線維芽細胞などの体細胞へ数種類の核初期化物質を導入することにより、ES細胞と同等の分化多能性と自己複製能を獲得した細胞である。
"Pluripotent stem cells" is a well-known term in the art and is endoderm (eg, internal stomach wall, gastrointestinal tract, lung), mesodermal (eg, muscle, bone, blood, urogenital) or ectogerm (eg, muscle, bone, blood, urogenital) or ectodermal (eg, muscle, bone, blood, urogenital) For example, it has both pluripotency that can differentiate into various types of cells that make up the living body, such as cells of the epidermal tissue or nervous system), and self-renewal ability that can maintain pluripotency even after division and proliferation. It is a cell. Examples include artificial multipotent stem (iPS) cells, ES cells, embryonic reproductive (EG) cells derived from progenitor germ cells, and multipotent germanium isolated during the establishment and culture process of GS cells from testis tissue. Examples include embryonic stem (mGS) cells, multipotent progenitor cells (MAPC) isolated from bone marrow, and the like.
ES cells are a well-known term in the art, and are pluripotent stem cells derived from embryos in the blastocyst stage, which is the early stage of animal development, and are ES cells generated by nuclear reprogramming from somatic cells. There may be.
iPS cells are a well-known term in the art, also called induced pluripotent stem cells or induced pluripotent stem cells, and are ES by introducing several types of nuclear reprogramming substances into somatic cells such as fibroblasts. It is a cell that has acquired pluripotency and self-renewal ability equivalent to that of a cell.
 本願で用いられる多能性幹細胞は、カルモジュリノパチーを引き起こすカルモジュリン遺伝子の異常を有し、「分化多能性」及び「自己複製能」を有する細胞であれば特に制限されない。本願で用いられる多能性幹細胞は、カルモジュリン遺伝子の異常をホモ接合型で有していてもよいが、好ましくはヘテロ接合型である。そのような多能性幹細胞のいくつかは、既に樹立されている(例えば、カルモジュリン遺伝子の異常を有するヒトiPS細胞など)。多能性幹細胞は、任意の哺乳動物の多能性幹細胞であってよく、例えば、ヒト、マウス、サル、ブタ、ラット、イヌ等の多能性幹細胞が挙げられるが、好ましくはヒトの多能性幹細胞である。多能性幹細胞は、好ましくはiPS細胞またES細胞であり、特に好ましくはiPS細胞である。別の態様として、出生後の個体から取得できる点でmGS細胞やMAPCもまた好ましい。 The pluripotent stem cells used in the present application are not particularly limited as long as they have an abnormality in the calmodulin gene that causes calmodulinopathy and have "pluripotency for differentiation" and "self-renewal ability". The pluripotent stem cells used in the present application may have an abnormality in the calmodulin gene in a homozygous form, but are preferably a heterozygous form. Some of such pluripotent stem cells have already been established (eg, human iPS cells with abnormalities in the calmodulin gene). The pluripotent stem cell may be any mammalian pluripotent stem cell, and examples thereof include pluripotent stem cells such as human, mouse, monkey, pig, rat, and dog, but human pluripotent is preferable. It is a sex stem cell. Pluripotent stem cells are preferably iPS cells or ES cells, and particularly preferably iPS cells. In another embodiment, mGS cells and MAPCs are also preferred in that they can be obtained from postnatal individuals.
多能性幹細胞の製造方法
 本願に使用する多能性幹細胞として好適なiPS細胞の製造例を以下に示すが、多能性幹細胞の製造法はこれらに限定されない。
Method for producing pluripotent stem cells Examples of production of iPS cells suitable as pluripotent stem cells used in the present application are shown below, but the method for producing pluripotent stem cells is not limited thereto.
iPS細胞の製造方法
 人工多能性幹(iPS)細胞は、ある特定の核初期化物質を、DNA又はタンバク質の形態で体細胞に導入することによって作製できる(K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al. (2007) Cell, 131: 861-872; J. Yu et al. (2007) Science, 318: 1917-1920; M. Nakagawa et al. (2008) Nat. Biotechnol., 26: 101-106; 国際公開第2007/069666号)。核初期化物質は、ES細胞に特異的に発現している遺伝子又はES細胞の未分化維持に重要な役割を果たす遺伝子若しくはその遺伝子産物であれば良く、特に限定されないが、例えばOct3/4、Klf4、Klf1、Klf2、Klf5、Sox2、Sox1、Sox3、Sox15、Sox17、Sox18、c-Myc、L-Myc、N-Myc、TERT、SV40 Large T antigen、HPV16 E6、HPV16 E7、Bmil、Lin28、Lin28b、Nanog、Esrr b及びEsrrgが挙げられる。これらの核初期化物質は、iPS細胞樹立の際には、組み合わされて使用されてもよい。例えば、前記核初期化物質の組合せは、少なくとも1つ、2つ、3つ若しくは4つを含む組み合わせであり、好ましくは5つを含む組み合わせであり、特に好ましくは、Oct3/4、Sox2、Klf4、L-Myc及びLin28の組み合わせである。上記の各核初期化物質のマウス及びヒトcDNAのヌクレオチド配列並びに該cDNAにコードされるタンバク質のアミノ酸配列情報は、国際公開第2007/069666号に記載のNCBI寄託番号を参照。当業者は、NCBI寄託番号を参照することにより、上記の各核初期化物質の該ヌクレオチド配列並びに該アミノ酸配列情報を取得できる。当業者は、当該cDNA配列又はアミノ酸配列情報に基づいて、常法により所望の核初期化物質を調製することができる。
Method for producing iPS cells Induced pluripotent stem (iPS) cells can be produced by introducing a specific nuclear reprogramming substance into somatic cells in the form of DNA or protein (K. Takahashi and S. Yamanaka (K. Takahashi and S. Yamanaka). 2006) Cell, 126: 663-676; K. Takahashi et al. (2007) Cell, 131: 861-872; J. Yu et al. (2007) Science, 318: 1917-1920; M. Nakagawa et al. (2008) Nat. Biotechnol., 26: 101-106; International Publication No. 2007/069666). The nuclear reprogramming substance may be a gene specifically expressed in ES cells, a gene that plays an important role in maintaining undifferentiated ES cells, or a gene product thereof, and is not particularly limited, but is, for example, Oct3 / 4, Klf4, Klf1, Klf2, Klf5, Sox2, Sox1, Sox3, Sox15, Sox17, Sox18, c-Myc, L-Myc, N-Myc, TERT, SV40 Large Gene, HPV16 E6, HPV16 , Nanog, Esrr b and Esrrg. These nuclear reprogramming substances may be used in combination when establishing iPS cells. For example, the combination of the nuclear reprogramming substances is a combination containing at least one, two, three or four, preferably a combination containing five, and particularly preferably Oct3 / 4, Sox2, Klf4. , L-Myc and Lin28. For the nucleotide sequences of the mouse and human cDNAs of each of the above nuclear reprogramming substances and the amino acid sequence information of the protein encoded by the cDNA, refer to the NCBI deposit number described in International Publication No. 2007/069666. A person skilled in the art can obtain the nucleotide sequence and the amino acid sequence information of each of the above nuclear reprogramming substances by referring to the NCBI deposit number. One of ordinary skill in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
 これらの核初期化物質は、タンパクの形態で、例えばリポフェクション、細胞膜透過性ペプチドとの結合、マイクロインジェクションなどの手法によって体細胞内に導入してもよいし、あるいは、DNAの形態で、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、例えば、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861 -872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009)などが挙げられる。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが挙げられる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。 These nuclear reprogrammers may be introduced into somatic cells in the form of proteins, for example by methods such as lipofection, binding to cell membrane permeable peptides, microinjection, or in the form of DNA, eg, It can be introduced into somatic cells by techniques such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, and microinjection. Examples of viral vectors include retroviral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920. , 2007), adenovirus vector (Science, 322, 945-949, 2008), adeno-associated virus vector, Sendai virus vector (Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009) and the like. Examples of the artificial chromosome vector include a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), and a bacterial artificial chromosome (BAC, PAC). As the plasmid, a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
 ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができ、更に、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク(GFP)、β-グルクロニダーゼ(GUS)、FLAG(登録商標)などのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、核初期化物質をコードする遺伝子若しくはプロモーターとそれに結合する核初期化物質をコードする遺伝子の両方を切除するために、それらの前後にLoxP配列を有してもよい。更に、上記ベクターには、染色体への取り込みされなくとも複製されて、エピソーマルに存在するように、EBNA-1(Epstein-Barrウイルス核抗原1)及びoriP(Epstein-BarrウイルスのゲノムDNAの複製起点)若しくはLarge T(シミアンウイルス40ラージT抗原)及びSV40ori(シミアンウイルス40のゲノムDNAの哺乳動物細胞での複製起点)などの配列を含むこともできる。 The vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that nuclear reprogrammers can be expressed, and if desired, drug resistance genes (eg, eg, drug resistance genes). Canamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidine kinase gene, diphtheriatoxin gene and other selective marker sequences, green fluorescent protein (GFP), β-glucuronidase (GUS), FLAG® and other reporters It can include gene sequences and the like. In addition, in the above vector, after introduction into somatic cells, in order to excise both the gene encoding the nuclear reprogramming substance or the promoter and the gene encoding the nuclear reprogramming substance that binds to the promoter, the LoxP sequences before and after them are used. May have. Furthermore, in the above vector, the replication origin of the genomic DNA of EBNA-1 (Epstein-Barr virus nuclear antigen 1) and oriP (Epstein-Barr virus) is replicated even if it is not incorporated into the chromosome and is present episomatically. ) Or Large T (Simian virus 40 large T antigen) and SV40 ori (origin of replication of the genomic DNA of Simian virus 40 in mammalian cells) can also be included.
 核初期化に際して、iPS細胞の誘導効率を高めるために、上記の因子の他に、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルブロ酸(VPA)(Nat. Biotechnol., 2 6(7): 795-797 (2008))、トリコスタチンA、酪酸ナトリウム、MC 1293[3-(4-トルオイル-1-メチル-1H-2-ピロリル)-N-ヒドロキシ-2-プロペナミド]、M344[4-(ジメチルアミノ)-N-[7-(ヒドロキシアミノ)-7-オキソヘプチル]ベンズアミド]等の低分子HDAC阻害剤、HDACに対するsiRNA及びshRNA(例、HDAC1 siRNA Smartpool(登録商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、DNAメチルトランスフェラーゼ阻害剤(例えば5’-azacytidine)(Nat. Biotechnol., 26(7): 795-797 (2008))、G9aヒストンメチルトランスフェラーゼ阻害剤[例えば、BIX-01294[N-(1-ベンジルピペリジン-4-イル)-6,7-ジメトキシ-2-(4-メチル-1,4-ジアゼパン-1-イル)キナゾリン-4-アミン] (Cell Stem Cell, 2: 525-528 (2008))等の低分子阻害剤、G9aに対するsiRNA及びshRNA(例、G9a siRNA(human) (Santa Cruz Biotechnology)等)等の核酸の発現阻害剤など]、L-type calcium channel agonist(例えばBayk8644[1,4-ジヒドロ-2,6-ジメチル-5-ニトロ-4-[2-(トリフルオロメチル)フェニル]-3-ピリジンカルボン酸 メチルエステル])(Cell Stem Cell, 3, 568-574 (20 08))、p53阻害剤(例えばp53に対するsiRNA及びshRNA)(Cell Stem Cell, 3, 475-479 (2008))、Wnt Signalling賦活化剤(例えばsoluble Wnt3a)(Cell Stem Cell, 3, 132-135 (2008))、LIF(白血病抑制因子)及びbFGF(塩基性線維芽細胞増殖因子)などのサイトカイン、ALK5阻害剤(例えば、SB431542[4-[4-(1,3-ベンゾジオキソール-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]-ベンズアミド])(Nat Methods , 6: 805-8 (2009))、mitogen-activated protein kinase signalling阻害剤、glycogen synthase kinase-3阻害剤(PloS Biology, 6(10), 2237-2247 (2008))、miR-291-3p、miR-294、miR-295などのmiRNA(R.L. Judson et al., Nat. Biotech., 27:459-461 (2009))等を使用することができる。 In addition to the above factors, for example, histone deacetylase (HDAC) inhibitors [eg, valproic acid (VPA) (Nat. Biotechnol., 2 6) 7): 795-797 (2008)), Tricostatin A, sodium butyrate, MC 1293 [3- (4-toluoil-1-methyl-1H-2-pyrrolyl) -N-hydroxy-2-propenamide], M344 [ Low molecular weight HDAC inhibitors such as 4- (dimethylamino) -N- [7- (hydroxyamino) -7-oxoheptyl] benzamide], siRNA and shRNA against HDAC (eg, HDAC1 siRNA Smartpool® (Millipole)) , HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.), DNA methyltransferase inhibitors (eg, 5'-azacytide) (Nat. Biotechnol., 26 (7): 795-797 (2008): 795-797 )), G9a histone methyltransferase inhibitor [eg, BIX-01294 [N- (1-benzylpiperidin-4-yl) -6,7-dimethoxy-2- (4-methyl-1,4-diazepan-1-) Il) quinazoline-4-amine] (Cell Stem Cell, 2: 525-528 (2008)) and other small molecule inhibitors, siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology), etc.), etc. Inhibitors of nucleic acid expression, etc.], L-type calcium channel agent (for example, Bayk8644 [1,4-dihydro-2,6-dimethyl-5-nitro-4- [2- (trifluoromethyl) phenyl] -3- (trifluoromethyl) phenyl] -3- Ppyridinecarboxylic acid methyl ester]) (Cell Stem Cell, 3, 568-574 (20 08)), p53 inhibitors (eg siRNA and shRNA against p53) (Cell Stem Cell, 3, 475-479 (2008)), Wnt Signaling activator (eg, soluble Wnt3a) (Cell Stem Cell, 3, 132-135 (2008)), LIF (leukemia inhibitor) and bFGF (basic fiber) Kinases such as blastogenic factor), ALK5 inhibitors (eg SB431542 [4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H-imidazole-2) -Il] -Benzamide]) (Nat Methods, 6: 805-8 (2009)), mitogen-activated protein kinase sinalling inhibitor, glycogen kinase kinase-3 inhibitor (PloS Biology, 6 (10), 2 2008)), miRNAs such as miR-291-3p, miR-294, and miR-295 (RL Judson et al., Nat. Biotech., 27: 459-461 (2009)) and the like can be used.
 iPS細胞を誘導するための培養培地としては、例えば、以下(1)及び(2)などが挙げられる。
(1)10~15% FBS[ウシ胎児血清]を含有するDMEM[ダルベッコ改変イーグル培地]、DMEM/F12[DMEM栄養混合物]及びDME培地[ダルベッコ改変イーグル培地](ここで、これらの培地には更に、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)
(2) bFGF[塩基性線維芽細胞増殖因子]又はSCF[幹細胞因子]を含有するES細胞培養用培地、マウスES細胞培養用培地(例えばTX-WES培地、トロンボX社)及び霊長類ES細胞培養用培地(例えば霊長類(ヒト及びサル)ES細胞用培地、リプロセル製)
 iPS細胞へと誘導するための培養培地は、特に好ましくは、霊長類ES細胞培養用培地(霊長類(ヒト及びサル)ES細胞用培地、リプロセル製)である。
Examples of the culture medium for inducing iPS cells include the following (1) and (2).
(1) DMEM [Dulbecco-modified Eagle's medium], DMEM / F12 [DMEM nutritional mixture] and DME medium [Dulbecco-modified Eagle's medium] containing 10 to 15% FBS [fetal bovine serum] (where, these media include Further, LIF, penicillin / streptomycin, puromycin, L-glutamine, non-essential amino acids, β-mercaptoethanol and the like can be appropriately contained.)
(2) ES cell culture medium containing bFGF [basic fibroblast growth factor] or SCF [stem cell factor], mouse ES cell culture medium (for example, TX-WES medium, Thrombo X) and primate ES cells. Culture medium (eg, primate (human and monkey) ES cell medium, manufactured by Reprocell)
The culture medium for inducing iPS cells is particularly preferably a medium for primate ES cell culture (medium for primate (human and monkey) ES cells, manufactured by Reprocell).
 iPS細胞への培養法の例としては、例えば、37℃、5%二酸化炭素存在下にて、10% FBS含有DMEM又はDMEM/F12培地で体細胞と核初期化物質(DNA又はタンパク)を接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上にまき、体細胞と核初期化物質の接触から約10日後からbFGF含有霊長類ES細胞培養用培地で培養し、該接触から約30~45日又はそれ以上ののちにiPS様コロニーを生じさせることができる。また、iPS細胞の作製効率を高めるために、5~10%と低い酸素濃度の条件下で培養してもよい。あるいは、その代替培養法として、フィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)で10% FBS含有DMEM培地(これには更に、LIF、ペニシリン/スレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~30日又はそれ以上の後にES細胞様コロニーを生じさせることができる。上記培養の間には、培養開始2日目以降から毎日1回新鮮な培地と培地を交換する。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cmあたり約5×10~5×10細胞の範囲である。 Examples of culturing methods for iPS cells include contacting somatic cells with a nuclear reprogramming substance (DNA or protein) in DMEM or DMEM / F12 medium containing 10% FBS in the presence of 5% carbon dioxide at 37 ° C. After culturing for about 4 to 7 days, the cells are sprinkled on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and bFGF-containing primates about 10 days after contact between the somatic cells and the nuclear reprogramming substance. It can be cultured in ES cell culture medium to give rise to iPS-like colonies about 30-45 days or more after contact. Further, in order to increase the production efficiency of iPS cells, the cells may be cultured under the condition of an oxygen concentration as low as 5 to 10%. Alternatively, as an alternative culture method, DMEM medium containing 10% FBS in feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.) (in addition, LIF, penicillin / threptomycin, puromycin, L-glutamine, etc.) , Non-essential amino acids, β-mercaptoethanol and the like can be appropriately contained), and ES cell-like colonies can be generated after about 25 to 30 days or more. During the above culture, the fresh medium and the medium are exchanged once a day from the second day after the start of the culture. The number of somatic cells used for nuclear reprogramming is not limited, but is in the range of about 5 × 10 3 to 5 × 10 6 cells per 100 cm 2 of the cultured dish.
 マーカー遺伝子として薬剤耐性遺伝子を含む遺伝子を用いた場合は、対応する薬剤を含む培地(選択培地)で培養することによりマーカー遺伝子発現細胞を選択することができる。またマーカー遺伝子が蛍光タンパク遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、マーカー遺伝子発現細胞を検出することができる。 When a gene containing a drug resistance gene is used as a marker gene, a marker gene-expressing cell can be selected by culturing in a medium (selective medium) containing the corresponding drug. If the marker gene is a fluorescent protein gene, observe it with a fluorescence microscope, if it is a luciferase gene, add a luminescent substrate, or if it is a luciferase gene, add a chromogenic substrate to obtain marker gene-expressing cells. Can be detected.
 本明細書中で使用する「体細胞」は、哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット、イヌ等)由来の生殖細胞以外のいかなる細胞であってもよく、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝/貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、及びそれらの前駆細胞(組織前駆細胞)等が挙げられる。細胞の分化の程度や細胞を採取する動物の年齢などに特に制限はなく、未分化な前駆細胞(体性幹細胞も含む)、最終分化した成熟細胞のいずれも、同様に本願における体細胞として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。本願において、体細胞を採取する由来となる哺乳動物は特に制限されないが、好ましくはヒトであり、より好ましくは、カルモジュリノパチー患者又は当該患者と同一のカルモジュリン遺伝子変異を有する未発症のヒトである。 As used herein, "somatic cells" may be any cells other than germ cells derived from mammals (eg, humans, mice, monkeys, pigs, rats, dogs, etc.) and, for example, keratinize. Epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells on the surface of the tongue), exocrine gland epithelial cells (eg, mammary cells), hormone-secreting cells (eg, adrenal medulla cells), for metabolism / storage Cells (eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells of the inner chain canal (eg, vascular endothelial cells), Certain cells (eg, airway epithelial cells), extracellular matrix secretory cells (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system cells (eg, T lymphocytes), sensation Cells (eg, rod cells), autonomic nervous system neurons (eg, cholinergic neurons), sensory organ and peripheral neuronal support cells (eg, companion cells), central nervous system nerve cells and glial cells (eg, stars) Glya cells), pigment cells (eg, retinal pigment epithelial cells), and their precursor cells (tissue precursor cells) and the like. There are no particular restrictions on the degree of cell differentiation or the age of the animal from which the cells are collected, and both undifferentiated progenitor cells (including somatic stem cells) and final differentiated mature cells are similarly used as somatic cells in the present application. can do. Examples of undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells. In the present application, the mammal from which the somatic cells are collected is not particularly limited, but is preferably human, more preferably a calmodulinopathy patient or an unaffected human having the same calmodulin gene mutation as the patient. be.
他の多能性幹細胞の製造方法
 不妊治療における体外受精では、病原性変異が同定されている家系に対して着床前診断(PGD)を行い、受精卵が病原性変異を有する場合は余剰胚として処理される場合がある。海外ではこのような病原性変異を有する余剰胚から樹立したヒト胚性幹(ES)細胞が、疾患特異的ES細胞として研究に利用されている。従って、PGDによりカルモジュリン遺伝子異常が発見され、余剰胚となった初期胚から、疾患特異的ES細胞を取得することができる。ES細胞の作製方法としては、例えば、哺乳動物の胚盤胞ステージにおける内部細胞塊を培養する方法(例えば、Manipulating the Mouse Embryo A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press (1994)を参照)、体細胞核移植によって作製された初期胚を培養する方法(Wilmut et al., Nature, 385, 810 (1997); Cibel li et al., Science, 280, 1256 (1998); 入谷明ら, 蛋白質核酸酵素, 44, 892 (1999); Baguisi et al., Nature Biotechnology,17, 456 (1999); Wakayama et al., Nature, 3 94, 369 (1998); Wakayama et al., Nature Genetics, 22, 127 (1999); Wakayama et al ., Proc. Natl. Acad. Sci. USA, 96, 14984 (1999); RideoutIII et al., Nature Genet ics, 24, 109 (2000))などが挙げられるが、これらに限定されない。
 体細胞核移植による場合、体細胞の種類や体細胞を採取する動物は上記iPS細胞の場合に準ずる。
 EG細胞は、常法に従って始原生殖細胞を単離し、これをLIF、bFGF及びSCFの存在下で培養することにより誘導することができる。
 mGS細胞は国際公開第2005/100548号に記載される方法に従って、精巣細胞から作製することができる。
 多能性成体前駆細胞(MAPC)はJ. Clin. Invest. 109:337-346 (2002)に記載される方法に従って、骨髄から単離することができる。
Other methods of producing pluripotent stem cells In in vitro fertilization in fertility treatment, preimplantation genetic diagnosis (PGD) is performed on a family in which a pathogenic mutation has been identified, and if the fertilized egg has a pathogenic mutation, a surplus embryo is performed. May be treated as. Overseas, human embryonic stem (ES) cells established from surplus embryos having such pathogenic mutations are used in research as disease-specific ES cells. Therefore, disease-specific ES cells can be obtained from early embryos that have become surplus embryos due to the discovery of calmodulin gene abnormalities by PGD. As a method for producing ES cells, for example, a method for culturing an internal cell mass at the blastocyst stage of a mammal (see, for example, Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994)). , Method of culturing early embryos produced by somatic cell nuclear transfer (Wilmut et al., Nature, 385, 810 (1997); Cibel li et al., Science, 280, 1256 (1998); Akira Iriya et al., Protein nucleic acid Enzymes, 44, 892 (1999); Baguisi et al., Nature Biotechnology, 17, 456 (1999); Wakayama et al., Nature, 3 94, 369 (1998); Wakayama et al., Nature Genetics, 22, 127 (1999); Wakayama et al., Proc. Natl. Acad. Sci. USA, 96, 14984 (1999); RideoutIII et al., Nature Genetics, 24, 109 (2000)). Not limited.
In the case of somatic cell nuclear transfer, the type of somatic cell and the animal from which the somatic cell is collected are the same as in the case of the above iPS cell.
EG cells can be induced by isolating primordial germ cells according to conventional methods and culturing them in the presence of LIF, bFGF and SCF.
mGS cells can be made from testicular cells according to the method described in WO 2005/100458.
Pluripotent adult progenitor cells (MAPCs) can be isolated from bone marrow according to the method described in J. Clin. Invest. 109: 337-346 (2002).
多能性幹細胞からの心筋細胞への分化誘導法
 上記のようにして得られる多能性幹細胞は、公知の任意の分化誘導法により心筋細胞へと分化させることができる。心筋細胞への分化誘導法としては、例えば、胚様体(EB)形成を利用する方法や、指向的な分化アプローチを用いる方法、二次元分化誘導法(GiWi法など)が報告されている(例、Nature 2008;453:524-8, J Clin Invest 2001;108:407-14, Circ Res 2002; 91:501-8, Circ Res 2003;93:32-9, Nat Biotechnol 2007;25:1015-24, Circulation 200 8;118:517, Circulation 2008;118:506, Nat Biotechnol 2005;23:611, Nat Protoc. 2013 Jan;8 (1): 162-75等)。培地は、基本培地へ添加剤を加えて用いることができ、基本培地としては、例えば、Neurobasal(登録商標)培地、Neural Progenitor Basal培地、NeuroCult NS-A培地、BME培地(Basal Medium for Eagle)、BGJb培地、CMRL 1066培地、Glasgow MEM培地(グラスゴー最少必須培地)、Improved MEM Zinc Option培地、IMDM培地(Iscove’s Modified Dulbecco’s Medium)、Medium 199培地、Eagle MEM培地(イーグル最小必須培地)、αMEM培地(イーグル最小必須培地α改変型)、DMEM培地、DMEM/F12培地、ハム培地、RPMI 1640培地(ロズウェルパーク記念研究所培地)、Fischer’s培地、及びこれらの混合培地など、動物細胞の培養に用いることのできる培地であれば特に限定されない。より好ましくは、RPMI 1640培地である。添加剤として、血清、レチノイン酸、アスコルビン酸、BMP(骨形成因子;BMP2、BMP4)、Nodal、TGFβ1、Activin A、Dkk1、IGFBP-4、bFGF、EGF、HGF、LIF、アミノ酸、ビタミン類、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、B27(登録商標)-サプリメント、N2-サプリメント、ITS-サプリメント、抗生物質が挙げられる。また、分化誘導初期においては、GSK-3阻害剤(例えば、CHIR99021[6-{2-[4-(2,4-ジクロロ-フェニル)-5-(5-メチル-1H-イミダゾール-2-イル)-ピリミジン-2-イルアミノ]-エチルアミノ}-ニコチノニトリル])やWnt阻害剤(例えば、IWP-2[N-(6-メチル-2-ベンゾチアゾリル)-2-[(3,4,6,7-テトラヒドロ-4-オキソ-3-フェニルチエノ[3,2-d]ピリミジン-2-イル)チオ]-アセトアミド])を添加することも好ましい。添加剤は、好ましくは、B27(登録商標)-サプリメントやインスリンであり、より好ましくは、これらを組み合わせて使用される。
Method for Inducing Differentiation from Pluripotent Stem Cell to Cardiomyocyte The pluripotent stem cell obtained as described above can be differentiated into cardiomyocyte by any known differentiation induction method. As a method for inducing differentiation into cardiomyocytes, for example, a method using embryoid body (EB) formation, a method using a directional differentiation approach, and a two-dimensional differentiation induction method (GiWi method, etc.) have been reported ( For example, Nature 2008; 453: 524-8, J Clin Invest 2001; 108: 407-14, Circ Res 2002; 91: 501-8, Circ Res 2003; 93: 32-9, Nat Biotechnol 2007; 25: 1015- 24, Circulation 200 8; 118: 517, Circulation 2008; 118: 506, Nat Biotechnol 2005; 23: 611, Nat Protoc. 2013 Jan; 8 (1): 162-75 etc.). The medium can be used by adding an additive to the basal medium, and examples of the basal medium include Neurobasal (registered trademark) medium, NeuroProgenitor Basic medium, NeuroCult NS-A medium, and BME medium (Basal Medium for Eagle). BGJb medium, CMRL 1066 medium, Glasgo MEM medium (Grasgo's minimum essential medium), Improved MEM Zinc Option medium, IMDM medium (Iscover's Modified Dulvecco's Medium), Medium Eagle's medium, Medium Eagle's Medium, Medium Eagle's Medium Animal cells such as αMEM medium (Eagle's minimum essential medium α modified type), DMEM medium, DMEM / F12 medium, ham medium, RPMI 1640 medium (Roswell Park Memorial Laboratory medium), Fisher's medium, and a mixed medium thereof. The medium is not particularly limited as long as it can be used for culture. More preferably, it is RPMI 1640 medium. As additives, serum, retinoic acid, ascorbic acid, BMP (bone morphogenetic factors; BMP2, BMP4), Nodal, TGFβ1, Activin A, Dkk1, IGFBP-4, bFGF, EGF, HGF, LIF, amino acids, vitamins, inter Leukins, insulin, transferase, heparin, heparan sulfate, collagen, fibronectin, progesterone, selenite, B27®-supplements, N2-supplements, ITS-supplements, antibiotics. In addition, in the early stage of induction of differentiation, a GSK-3 inhibitor (for example, CHIR99021 [6- {2- [4- (2,4-dichloro-phenyl) -5- (5-methyl-1H-imidazol-2-yl) ) -Pyrimidine-2-ylamino] -ethylamino} -nicotinonitrile]) and Wnt inhibitors (eg, IWP-2 [N- (6-methyl-2-benzothiazolyl) -2-[(3,4,6) , 7-Tetrahydro-4-oxo-3-phenylthieno [3,2-d] pyrimidin-2-yl) thio] -acetamide]) is also preferred. Additives are preferably B27®-supplements and insulin, and more preferably these are used in combination.
 培養器は、例えば、コラーゲン、ゼラチン、マトリゲル、ポリ-L-リジン、ポリ-D-リジン、フィブロネクチン、ラミニンなどのコーティング剤でコーティングすることができる。培養開始時の多能性幹細胞の濃度は、効率的に心筋細胞を形成させるように適宜設定でき、特に限定されないが、例えば、約1×10~1×10細胞/mL、好ましくは約1×10~5×10細胞/mLである。培養温度、二酸化炭素濃度等の他の培養条件は適宜設定できる。培養温度は、特に限定されるものではないが、例えば約30~40℃、好ましくは約36~38℃である。また、二酸化炭素濃度は、例えば約1~10%、好ましくは約4~6%である。上記のようにして得られた心筋細胞は、原因の変異遺伝子の発現、活動電位持続時間の延長及び/又は各種イオンチャネルの機能異常、収縮力の低下等に代表されるカルモジュリノパチーに特徴的な形質を発現するので、これらの異常の改善を指標として、カルモジュリノパチーの予防及び/又は治療薬をスクリーニングすることができる。 The incubator can be coated with a coating agent such as collagen, gelatin, matrigel, poly-L-lysine, poly-D-lysine, fibronectin, laminin and the like. The concentration of pluripotent stem cells at the start of culturing can be appropriately set so as to efficiently form cardiomyocytes, and is not particularly limited, but is, for example, about 1 × 10 3 to 1 × 10 6 cells / mL, preferably about. 1 × a 10 4 ~ 5 × 10 5 cells / mL. Other culture conditions such as culture temperature and carbon dioxide concentration can be set as appropriate. The culture temperature is not particularly limited, but is, for example, about 30 to 40 ° C, preferably about 36 to 38 ° C. The carbon dioxide concentration is, for example, about 1 to 10%, preferably about 4 to 6%. The cardiomyocytes obtained as described above are characterized by carmodulinopathy represented by expression of the causative mutant gene, prolongation of action potential duration and / or dysfunction of various ion channels, decrease in contractile force, and the like. The prophylactic and / or therapeutic agents for carmodulinopathy can be screened using the improvement of these abnormalities as an index.
 また、上記のようにして得られる心筋細胞から心筋組織を構築することもできる。例えば、アスコルビン酸で処理した胚様体からPercollグラジエントにて心筋細胞を純化し、I型コラーゲンとマトリゲル存在下に心筋組織を構築することができる(Circulation 2006;1 13:2237)。このようにして得られる心筋組織では、電気シグナルの伝導異常や筋収縮力の低下等の病態が再現される。従って、これらを指標として、カルモジュリノパチーの予防及び/又は治療薬をスクリーニングすることができる。 It is also possible to construct myocardial tissue from the cardiomyocytes obtained as described above. For example, cardiomyocytes can be purified from embryoid bodies treated with ascorbic acid with Percoll gradient and myocardial tissue can be constructed in the presence of type I collagen and Matrigel (Circulation 2006; 1 13: 2237). In the myocardial tissue thus obtained, pathological conditions such as abnormal conduction of electrical signals and a decrease in muscle contraction force are reproduced. Therefore, using these as indicators, prophylactic and / or therapeutic agents for carmodulinopathy can be screened.
カルモジュリノパチーの予防及び/又は治療に有効なアンチセンスオリゴヌクレオチドのスクリーニング方法
 本願は、前述のように得られた多能性幹細胞由来の心筋細胞若しくは組織と被験アンチセンスオリゴヌクレオチドとを接触させ、各指標を用いて、カルモジュリノパチーの予防及び治療薬の候補アンチセンスオリゴヌクレオチドをスクリーニングする方法を提供する。本願において使用される、好ましい多能性幹細胞は、カルモジュリノパチーでLQT又はCPVTあるいはその両方を表現型として示す患者由来の多能性幹細胞又は、外来的に変異型CALMを導入した多能性幹細胞である。変異型CALMとは、例えば、CALM1-F90L、CALM1-N98S、CALM1-D130G、CALM2-N98S、CALM2-D130G、CALM3-D130Gなどが知られている。
Screening Method for Antisense Oligonucleotides Effective for Prevention and / or Treatment of Carmodulinopathy In the present application, the test antisense oligonucleotide is brought into contact with the pluripotent stem cell-derived myocardial cells or tissues obtained as described above. , Each index is used to provide a method for screening candidate antisense oligonucleotides for the prevention and treatment of carmodulinopathy. The preferred pluripotent stem cells used in the present application are pluripotent stem cells derived from patients who exhibit LQT and / or CPVT as phenotypes in carmodulinopathy, or pluripotency into which a mutant CALM is exogenously introduced. It is a stem cell. As the mutant CALM, for example, CALM1-F90L, CALM1-N98S, CALM1-D130G, CALM2-N98S, CALM2-D130G, CALM3-D130G and the like are known.
 他の態様として、本願において使用される多能性幹細胞としては、当該iPS細胞から作製された心筋細胞において、活動電位持続時間の延長やカルシウム電流量の増大が確認されるiPS細胞であることが望ましい。本願では、このようなiPS細胞として、カルモジュリノパチーでLQTが表現型として示されている患者由来のiPS細胞を例示している。 As another aspect, the pluripotent stem cell used in the present application is an iPS cell in which an action potential duration and an increase in calcium current amount are confirmed in cardiomyocytes prepared from the iPS cell. desirable. In the present application, as such iPS cells, iPS cells derived from patients whose LQT is shown as a phenotype in carmodulinopathy are exemplified.
 本願の一つの実施態様として、指標として心筋細胞の活動電位持続時間を用いる場合、次の工程を含む方法によって、ASOを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングすることができる。
(1)ASOを、カルモジュリン遺伝子の変異を有する多能性幹細胞(例えば、カルモジュリノパチー患者の体細胞から作製された多能性幹細胞)由来の心筋細胞と接触させる工程、
(2)接触させた上記心筋細胞の活動電位持続時間を測定する工程、及び
(3)工程(2)で測定された活動電位持続時間を、該ASOと接触させなかった場合の該心筋細胞の活動電位持続時間(対照)と比較する工程。
 そして、通常、活動電位持続時間を短縮させる効果を有するASOが、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として選択される。
 活動電位持続時間の短縮の程度は、ASOの濃度によるため特段限定される訳ではないが、例えば、100ミリ秒以上、好ましくは200ミリ以上、更に好ましくは300ミリ秒程度の短縮が観察されるものが、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として好ましい。ASOの濃度は、特段限定される訳ではないが、0.1nM~10μMの範囲(例えば、0.1nM、1nM、10nM、100nM、1μM、10μM)から適宜設定でき、より低い濃度で活動電位持続時間を短縮させるASOを、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として選択することが好ましい。
 また、選択された候補物は、必要に応じて、その治療、予防及び/又は改善効果を確認するための更なるスクリーニングに供してもよい。
As one embodiment of the present application, when the action potential duration of cardiomyocytes is used as an index, a method including the following steps may be used to screen for a therapeutic, prophylactic and / or ameliorating agent for carmodulinopathy, including ASO. can.
(1) A step of contacting ASO with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene (for example, pluripotent stem cells prepared from somatic cells of calmodulinopathy patients).
(2) The step of measuring the action potential duration of the cardiomyocytes that have been contacted, and (3) the action potential duration measured in step (2) of the cardiomyocytes when they are not contacted with the ASO. The step of comparing the action potential duration (control).
Then, ASO having an effect of shortening the duration of action potential is usually selected as a candidate for a therapeutic, prophylactic and / or ameliorating agent for carmodulinopathy.
The degree of shortening of the action potential duration is not particularly limited because it depends on the concentration of ASO, but for example, a shortening of 100 ms or more, preferably 200 ms or more, and more preferably 300 ms or more is observed. Those are preferred as candidates for the treatment, prevention and / or amelioration of carmodulinopathy. The concentration of ASO is not particularly limited, but can be appropriately set from the range of 0.1 nM to 10 μM (for example, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, 10 μM), and the action potential lasts at a lower concentration. Time-saving ASOs are preferably selected as candidates for treatment, prevention and / or amelioration of carmodulinopathy.
In addition, the selected candidates may be subjected to further screening to confirm their therapeutic, preventive and / or ameliorating effects, if necessary.
 ASOと多能性幹細胞由来心筋細胞との接触は、トランスフェクション試薬を用いてもよく、用いなくてもよいが、トランスフェクション試薬を用いないことが好ましい。トランスフェクション試薬を用いる場合、トランスフェクション試薬として、例えばlipofectamine 3000が挙げられる。 Contact between ASO and pluripotent stem cell-derived cardiomyocytes may or may not use a transfection reagent, but it is preferable not to use a transfection reagent. When a transfection reagent is used, examples of the transfection reagent include lipofectamine 3000.
 ASOと多能性幹細胞由来心筋細胞との接触は、例えば30~40℃、好ましくは35~40℃、より好ましくは36~38℃である。接触後、活動電位持続時間を測定するまでの培養期間は、例えば1日~1週間であり、好ましくは4日~6日である。培養の温度は、例えば、30~40℃、好ましくは35~40℃、より好ましくは36~38℃である。 The contact between the ASO and the pluripotent stem cell-derived cardiomyocytes is, for example, 30 to 40 ° C, preferably 35 to 40 ° C, and more preferably 36 to 38 ° C. The culture period after contact until the action potential duration is measured is, for example, 1 day to 1 week, preferably 4 days to 6 days. The culture temperature is, for example, 30-40 ° C, preferably 35-40 ° C, more preferably 36-38 ° C.
 心筋細胞の活動電位を測定する方法として、例えばパッチクランプシステムによる測定、マルチ電極アレイシステムによる測定、蛍光色素プローブを用いたイメージングによる測定が挙げられる。好ましくは、蛍光色素プローブを用いたイメージングによる測定が用いられる。蛍光色素プローブとしては、例えば蛍光カルシム色素(例えば、Fluo-8(登録商標))や膜電位感受性色素(例えば、Fluvolt(登録商標))が挙げられ、好ましくはFluvoltが用いられる。イメージングシステムとしては、好ましくは、ブレインビジョン社製高速光計測システム(MiCAM02、MiCAM03など)が用いられ、特に好ましくは、MiCAM03が用いられる。
 心筋細胞の活動電位は、例えば30~40℃、好ましくは35~40℃、より好ましくは36~38℃で測定されることが好ましい。
 心筋細胞の活動電位は、一定のリズムの電気刺激下で、測定されることが好ましく、例えば、0.1~2.0Hz、好ましくは、0.2~1.0Hz、より好ましくは0.4~0.6Hz、特に好ましくは、0.5Hzのペーシング下で測定されることが好ましい。一定のリズムの電気刺激としては、例えば、日本光電社製Electronic Stimulator(SEN-3301)による電気刺激を用いることができる。
Examples of the method for measuring the action potential of cardiomyocytes include measurement by a patch clamp system, measurement by a multi-electrode array system, and measurement by imaging using a fluorescent dye probe. Preferably, measurement by imaging with a fluorescent dye probe is used. Examples of the fluorescent dye probe include a fluorescent calsim dye (for example, Fluo-8 (registered trademark)) and a voltage-sensitive dye (for example, Fluvolt (registered trademark)), and Fluvolt is preferably used. As the imaging system, a high-speed optical measurement system manufactured by Brainvision (MiCAM02, MiCAM03, etc.) is preferably used, and MiCAM03 is particularly preferably used.
The action potential of cardiomyocytes is preferably measured at, for example, 30-40 ° C, preferably 35-40 ° C, more preferably 36-38 ° C.
The action potential of cardiomyocytes is preferably measured under constant rhythmic electrical stimulation, eg, 0.1-2.0 Hz, preferably 0.2-1.0 Hz, more preferably 0.4. It is preferably measured at pacing of ~ 0.6 Hz, particularly preferably 0.5 Hz. As the electrical stimulation of a constant rhythm, for example, an electrical stimulation by an Electrical Stimulator (SEN-3301) manufactured by Nihon Kohden Co., Ltd. can be used.
 活動電位持続時間は、前記の通り測定された活動電位から求めることができる。本スクリーニング方法では、活動電位持続時間として、好ましくは、APD90が用いられる。 The action potential duration can be determined from the action potential measured as described above. In this screening method, APD 90 is preferably used as the action potential duration.
 本願の別の実施態様において、指標として心筋細胞におけるカルモジュリン遺伝子の発現量を用いる場合、次の工程を含む方法によって、ASOを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングすることができる。
(1)ASOを、カルモジュリン遺伝子の変異を有する多能性幹細胞(例えば、カルモジュリノパチー患者の体細胞から作製された多能性幹細胞)由来の心筋細胞と接触させる工程、
(2)接触させた上記心筋細胞におけるカルモジュリン遺伝子の発現量を測定する工程、及び
(3)工程(2)で測定されたカルモジュリン遺伝子の発現量を、該ASOと接触させなかった場合の上記心筋細胞におけるカルモジュリン遺伝子の発現量と比較する工程。
 そして、通常、カルモジュリン遺伝子の発現量を減少させる効果を有するASOが、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として選択される。
 カルモジュリン遺伝子の発現量の減少の程度は、ASOの濃度によるため特段限定される訳ではないが、例えば20%以上、好ましくは40%以上、更に好ましくは50%程度の減少が観察されるものが、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として好ましい。ASOの濃度は、特段限定される訳ではないが、0.1nM~10μMの範囲(例えば、0.1nM、1nM、10nM、100nM、1μM、10μM)から適宜設定でき、より低い濃度でカルモジュリン遺伝子の発現量を減少させるASOを、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として選択することが好ましい。
 また、選択された候補物は、必要に応じて、その治療、予防及び/又は改善効果を確認するための更なるスクリーニングに供してもよい。
In another embodiment of the present application, when the expression level of the calmodulin gene in cardiomyocytes is used as an index, a therapeutic, preventive and / or ameliorating agent for calmodulinopathy including ASO is screened by a method including the following steps. Can be done.
(1) A step of contacting ASO with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene (for example, pluripotent stem cells prepared from somatic cells of calmodulinopathy patients).
The step of measuring the expression level of the calmodulin gene in the contacted cardiomyocytes, and the step of measuring the expression level of the calmodulin gene in the step (3) step (2), when the calmodulin gene expression level was not contacted with the ASO, the myocardium A step of comparing the expression level of the calmodulin gene in cells.
Then, ASO having an effect of reducing the expression level of the calmodulin gene is usually selected as a candidate for a therapeutic, prophylactic and / or ameliorating drug for calmodulinopathy.
The degree of decrease in the expression level of the calmodulin gene is not particularly limited because it depends on the concentration of ASO, but for example, a decrease of 20% or more, preferably 40% or more, and more preferably about 50% is observed. , Preferred as a candidate for treatment, prevention and / or amelioration of calmodulinopathy. The concentration of ASO is not particularly limited, but can be appropriately set from the range of 0.1 nM to 10 μM (for example, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, 10 μM), and the concentration of the calmodulin gene can be set at a lower concentration. ASOs that reduce expression are preferably selected as candidates for treatment, prevention and / or amelioration of calmodulinopathy.
In addition, the selected candidates may be subjected to further screening to confirm their therapeutic, preventive and / or ameliorating effects, if necessary.
 ASOと多能性幹細胞由来由来心筋細胞との接触は、トランスフェクション試薬を用いてもよく、用いなくてもよい。トランスフェクション試薬を用いないことが好ましい。トランスフェクション試薬を用いる場合、トランスフェクション試薬として、例えばlipofectamine 3000が挙げられる。 Contact between ASO and pluripotent stem cell-derived cardiomyocytes may or may not use a transfection reagent. It is preferable not to use transfection reagents. When a transfection reagent is used, examples of the transfection reagent include lipofectamine 3000.
 ASOと多能性幹細胞由来心筋細胞との接触は、例えば30~40℃、好ましくは35~40℃、より好ましくは36~38℃である。接触後、カルモジュリン遺伝子の発現量を測定するまでの培養期間は、例えば、1日~1週間であり、好ましくは4日~6日である。培養の温度は、例えば30~40℃、好ましくは35~40℃、より好ましくは36~38℃である。 The contact between the ASO and the pluripotent stem cell-derived cardiomyocytes is, for example, 30 to 40 ° C, preferably 35 to 40 ° C, and more preferably 36 to 38 ° C. The culture period after contact until the expression level of the calmodulin gene is measured is, for example, 1 day to 1 week, preferably 4 days to 6 days. The culture temperature is, for example, 30-40 ° C, preferably 35-40 ° C, more preferably 36-38 ° C.
 遺伝子の発現量を測定する方法として、リアルタイムPCR法が挙げられる。
 まず、NucleoSpin RNA Plus XS(タカラバイオ)を用いて、細胞からRNAを抽出した後、Transcriptor First Strand cDNA Synthesis Kit(Roche)により逆転写にてcDNAを作製し、作製されたcDNAを用いて、TaqMan法による定量リアルタイムPCRでカルモジュリン遺伝子の発現レベルを測定することができる。
As a method for measuring the expression level of a gene, a real-time PCR method can be mentioned.
First, RNA was extracted from cells using NucleoSpin RNA Plus XS (Takarabio), and then cDNA was prepared by reverse transcription using Transscriptor First Strand cDNA Synthesis Kit (Roche), and TaqMan was used using the prepared cDNA. The expression level of the carmodulin gene can be measured by quantitative real-time PCR by the method.
 本願の更に別の実施態様において、指標として心筋細胞におけるカルシウム電流量を用いる場合、次の工程を含む方法によって、ASOを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングすることができる。
(1)ASOをカルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
(2)接触させた上記心筋細胞におけるカルシウム電流量を測定する工程、及び
(3)工程(2)で測定されたカルシウム電流量を、上記ASOと接触させなかった場合の上記心筋細胞におけるカルシウム電流量と比較する工程。
 そして、通常、カルシウム電流量を減少させる効果を有するASOが、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として選択される。
 カルシウム電流量の減少の程度は、ASOの濃度によるため特段限定される訳ではないが、例えば20%、好ましくは40%、更に好ましくは50%程度の減少が観察されるものが、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として好ましい。ASOの濃度は、特段限定される訳ではないが、0.1nM~10μMの範囲(例えば、0.1nM、1nM、10nM、100nM、1μM、10μM)から適宜設定でき、低い濃度でカルシウム電流量の減少の程度が大きいASOを、カルモジュリノパチーの治療、予防及び/又は改善薬の候補物として選択することが好ましい。
 また、選択された候補物は、必要に応じて、その治療、予防及び/又は改善効果を確認するための更なるスクリーニングに供してもよい。
In yet another embodiment of the present application, when calcium current levels in cardiomyocytes are used as indicators, screening for therapeutic, prophylactic and / or ameliorating agents for carmodulinopathy, including ASO, can be performed by methods involving the following steps. can.
(1) A step of contacting ASO with pluripotent stem cell-derived cardiomyocytes having a mutation in the calmodulin gene,
(2) The step of measuring the calcium current amount in the cardiomyocytes that have been contacted, and (3) the calcium current amount in the cardiomyocytes when the calcium current amount measured in step (2) is not contacted with the ASO. The process of comparing with quantity.
Then, ASO having an effect of reducing the amount of calcium current is usually selected as a candidate for a therapeutic, prophylactic and / or ameliorating agent for carmodulinopathy.
The degree of decrease in the amount of calcium current is not particularly limited because it depends on the concentration of ASO, but for example, a decrease of about 20%, preferably 40%, and more preferably about 50% is observed. Preferable as a candidate for treatment, prevention and / or amelioration of pachi. The concentration of ASO is not particularly limited, but can be appropriately set from the range of 0.1 nM to 10 μM (for example, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, 10 μM), and the calcium current amount can be set at a low concentration. ASOs with a large degree of reduction are preferably selected as candidates for treatment, prevention and / or amelioration of calcium carmodulinopathy.
In addition, the selected candidates may be subjected to further screening to confirm their therapeutic, preventive and / or ameliorating effects, if necessary.
 心筋細胞のカルシウム電流量を測定する方法として、マニュアルパッチクランプシステムやオートパッチクランプシステムが使用される。マニュアルパッチクランプ装置として、Multiclamp 700B amplifier、Digidata 1440 digitizerハードウェア、pClamp 10.4ソフトウェア(Molecular Devices社製)、オートパッチクランプシステム装置として、QPatchシステム(Sophion Bioscience社製)やSyncroPatchシステム(Nanion社製)が用いられる。当業者は、前記装置を用いて、カルシウム電流量を測定することができる。例えば、マニュアルパッチクランプの方法として、ピペットはworld Precision Instrments社製のホウケイ酸グラスを使用し、株式会社成茂科学器械研究所製品のSingle Stage Glass Microelectrode Pullerを用いて作製する。ピペット内液は、CsCl[塩化セシウム](120 mmol/L)、MgCl・6H0[塩化マグネシウム6水和物](3 mmol/L)、TEA・Chloride[テトラエチルアンモニウムクロリド](20 mol/L)、EGTA[グリコールエーテルジアミン四酢酸](10 mmol/L)、MgATP[アデノシン三リン酸マグネシウム](5 mmol/L)、HEPES[ヒドロキシエチルピペラジンエタンスルホン酸](5 mmol/L)の水溶液を用いることができる。細胞外液は、TEA・HCl[トリエチルアミン塩酸塩](140 mol/L)、CsCl(5.4 mol/L)、CaCl[塩化カルシウム](1.8 mol/L)、MgCl・6H0(1.2 mmol/L)、HEPES(5 mmol/L)、グルコース(10 mmol/L)の水溶液を用いることができる。電位固定下でホールセルパッチクランプ法により、カルシウム電流量を測定することができる。例えば、膜電位を-80 mVに保持した状態で、一過性に-40 mVパルス刺激を与えたのちに、0.3秒間0 mVの脱分極パルス刺激を与え、その後-80 mVの膜電位に戻すことでカルシム電流量を測定することができる。 A manual patch clamp system or an auto patch clamp system is used as a method for measuring the amount of calcium current in cardiomyocytes. As a manual patch clamp device, Multiclamp 700B amplifier, Digidata 1440 digitizer hardware, pclamp 10.4 software (manufactured by Molecular Devices), and as an auto patch clamp system device, QPatch system (manufactured by Sophion Bioscience) and System ) Is used. Those skilled in the art can measure the amount of calcium current using the device. For example, as a method of manual patch clamp, a pipette is manufactured by using a borosilicate glass manufactured by World Precision Instruments Co., Ltd. and using a Single Stage Glass Microeleductorode Puller manufactured by Narishige Scientific Instruments Research Institute Co., Ltd. Pipette solution, CsCl [cesium chloride] (120 mmol / L), MgCl 2 · 6H 2 0 [ magnesium chloride hexahydrate] (3 mmol / L), TEA · Chloride [ tetraethylammonium chloride] (20 mol / L), EGTA [glycol ether diamine tetraacetic acid] (10 mmol / L), MgATP [magnesium adenosine triphosphate] (5 mmol / L), HEPES [hydroxyethylpiperazine ethanesulfonic acid] (5 mmol / L) Can be used. Extracellular fluid, TEA · HCl [triethylamine hydrochloride] (140 mol / L), CsCl (5.4 mol / L), CaCl 2 [ Calcium chloride] (1.8 mol / L), MgCl 2 · 6H 2 An aqueous solution of 0 (1.2 mmol / L), HEPES (5 mmol / L), and glucose (10 mmol / L) can be used. The amount of calcium current can be measured by the whole cell patch clamp method under fixed potential. For example, while the membrane potential is held at -80 mV, a -40 mV pulse stimulus is transiently applied, then a depolarizing pulse stimulus of 0 mV is applied for 0.3 seconds, and then a membrane potential of -80 mV is applied. The amount of calsim current can be measured by returning to.
 カルモジュリン遺伝子に変異を有する多能性幹細胞の代わりに、ヒト細胞又はマウス細胞などの哺乳類の細胞を用いて、同様にカルモジュリン遺伝子の発現量を測定することができる。前記哺乳類の細胞は、好ましくは、ヒト肝癌由来細胞(例えば、HepG2細胞)又はマウス線維芽細胞(例えば、3T3-L1細胞)である。ヒト肝癌由来細胞を用いる場合には、トランスフェクション試薬として、例えばlipofectamine 3000を用いることが好ましい。マウス線維芽細胞を用いる場合には、トランスフェクション試薬を用いないことが好ましい。 The expression level of the calmodulin gene can be similarly measured using mammalian cells such as human cells or mouse cells instead of pluripotent stem cells having a mutation in the calmodulin gene. The mammalian cells are preferably human liver cancer-derived cells (eg, HepG2 cells) or mouse fibroblasts (eg, 3T3-L1 cells). When human liver cancer-derived cells are used, it is preferable to use, for example, lipofectamine 3000 as a transfection reagent. When mouse fibroblasts are used, it is preferable not to use a transfection reagent.
 上記スクリーニング方法において、好ましくは、カルモジュリン遺伝子は、CALM1、CALM2、及びCALM3からなる群より選択される少なくとも一つであり、特に好ましくは、CALM2である。
 上記スクリーニング方法において、ASOは、CALM1、CALM2、及びCALM3から選択されるいずれであってもよいが、好ましくは、ASOは、CALM2のASOである。
In the above screening method, the calmodulin gene is preferably at least one selected from the group consisting of CALM1, CALM2, and CALM3, and particularly preferably CALM2.
In the above screening method, the ASO may be selected from CALM1, CALM2, and CALM3, but preferably the ASO is the ASO of CALM2.
 好ましい実施態様において、上記スクリーニング方法を用いて選別されるASOは、カルモジュリン遺伝子の発現を阻害するものである。 In a preferred embodiment, the ASO selected using the above screening method inhibits the expression of the calmodulin gene.
 本願はまた、カルモジュリン遺伝子の発現を阻害するASOを含むカルモジュリノパチーの治療、予防及び/又は改善薬を提供する。
 好ましくは、上記カルモジュリン遺伝子は、CALM2である。
 好ましくは、上記ASOは心筋細胞においてカルモジュリン遺伝子の発現を阻害するASOである。
 好ましくは、上記ASOは心筋細胞において活動電位持続時間を短縮するASOである。
 好ましくは、上記ASOは心筋細胞においてカルシウム電流量を抑制するASOである。
 上記ASOの有効量は、カルモジュリノパチー患者における所望の薬理学的効果をもたらすために十分な化合物の量であり、カルモジュリノパチーを治療、予防及び/又は改善すべき患者の年齢、体重、症状、健康状態、具体的に使用される化合物又はその薬理学上許容される塩の種類や医薬組成物中へのその配合量等に応じて変動し、適宜選択される。
The present application also provides therapeutic, prophylactic and / or ameliorating agents for calmodulinopathy, including ASO, which inhibits the expression of the calmodulin gene.
Preferably, the calmodulin gene is CALM2.
Preferably, the ASO is an ASO that inhibits the expression of the calmodulin gene in cardiomyocytes.
Preferably, the ASO is an ASO that shortens the action potential duration in cardiomyocytes.
Preferably, the ASO is an ASO that suppresses the amount of calcium current in cardiomyocytes.
The effective amount of ASO is an amount of a compound sufficient to bring about the desired pharmacological effect in a carmodulinopathy patient, and the age, body weight of the patient whose carmodolinopathy should be treated, prevented and / or improved. , Symptoms, health conditions, specific types of compounds used or pharmacologically acceptable salts thereof, amounts thereof to be blended in pharmaceutical compositions, etc., and are appropriately selected.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明の実施形態は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the embodiments of the present invention are not limited to the following Examples.
 実施例中の表(1)において、「Compd No」は化合物番号を、「Chemical structure」は、対応する化合物の化学構造を意味する。
 実施例中の配列表記において、特に記載がない限り、「(L)」はLNAを、小文字のアルファベットはデオキシリボヌクレオシドを、「^」はホスホロチオエート結合を、「5(x)」は、そのデオキシリボヌクレオシドの核酸塩基が5-メチルシトシンであることを、「5(L)」における「5」は、そのヌクレオシドの核酸塩基が5-メチルシトシンであることを意味する。
In Table (1) in the examples, "Compd No" means the compound number and "Chemical structure" means the chemical structure of the corresponding compound.
In the sequence notation in the examples, unless otherwise specified, "(L)" is LNA, lower alphabet is deoxyribonucleoside, "^" is phosphorothioate bond, and "5 (x)" is its deoxyribonucleoside. The nucleobase of the nucleoside is 5-methylcytosine, and the "5" in "5 (L)" means that the nucleobase of the nucleoside is 5-methylcytosine.
[製造例1]
 表1に記載されたアンチセンスオリゴヌクレオチドを、核酸自動合成機nS-8II(ジーンデザイン社製)を使用して調製した。
[Manufacturing Example 1]
The antisense oligonucleotides shown in Table 1 were prepared using an automatic nucleic acid synthesizer nS-8II (manufactured by Gene Design).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載された各アンチセンスオリゴヌクレオチドは、本明細書において配列番号1と指定されるヒトCALM2 mRNA、及び/又は本明細書において配列番号2と指定されるヒトCALM2 pre-mRNAのいずれかに標的化される。
 「CALM2 mRNA」及び「CALM2 pre-mRNA」のいずれも、互いにホスホジエステル結合で連結されたヌクレオシドを有し、通常チミンは、ウラシルに置き換えられている。「CALM2 mRNA」及び「CALM2 pre-mRNA」は、その他に、糖、核酸塩基、ヌクレオシド間結合についていずれの修飾も有さない。
Each antisense oligonucleotide set forth in Table 1 is either a human CALM2 mRNA designated herein by SEQ ID NO: 1 and / or a human CALM2 pre-mRNA designated herein by SEQ ID NO: 2. Targeted at.
Both "CALM2 mRNA" and "CALM2 pre-mRNA" have nucleosides linked to each other by phosphodiester bonds, and thymine is usually replaced by uracil. "CALM2 mRNA" and "CALM2 pre-mRNA" do not have any other modifications for sugar, nucleobase, or nucleoside linkage.
 表1に示された各アンチセンスオリゴヌクレオチドがヒトCALM2のmRNA又はpre-mRNAの配列中で標的とする位置、各アンチセンスオリゴヌクレオチドに対応する配列番号及び核酸塩基配列を、表2に示す。
 表2の配列表記において、「SEQ1 START」は、「配列番号1 開始部位」を意味し、ヒトCALM2のmRNA配列中でアンチセンスオリゴヌクレオチドにより標的化される最も5’側のヌクレオシドの位置番号を示す。「SEQ1 END」は、「配列番号1 終止部位」を意味し、ヒトCALM2のmRNA配列中でアンチセンスオリゴヌクレオチドにより標的化される最も3’側のヌクレオシドの位置番号を示す。
 「SEQ2 START」は、「配列番号2 開始部位」を意味し、ヒトCALM2のpre-mRNAの配列中でアンチセンスオリゴヌクレオチドにより標的化される最も5’側のヌクレオシドの位置番号を示す。「SEQ2 END」は、「配列番号2 終止部位」を意味し、ヒトCALM2のpre-mRNA配列中でアンチセンスオリゴヌクレオチドにより標的化される最も3’側のヌクレオシドの位置番号を示す。
 「SEQ No」は、配列番号を、「BASE SEQUENCE」は、アンチセンスオリゴヌクレオチドの核酸塩基配列を示す。
Table 2 shows the target position of each antisense oligonucleotide shown in Table 1 in the sequence of human CALM2 mRNA or pre-mRNA, the SEQ ID NO: and the nucleobase sequence corresponding to each antisense oligonucleotide.
In the sequence notation of Table 2, "SEQ1 START" means "SEQ ID NO: 1 starting site" and the position number of the most 5'side nucleoside targeted by the antisense oligonucleotide in the human CALM2 mRNA sequence. show. "SEQ1 END" means "SEQ ID NO: 1 termination site" and indicates the position number of the most 3'-side nucleoside targeted by the antisense oligonucleotide in the human CALM2 mRNA sequence.
"SEQ2 START" means "SEQ ID NO: 2 start site" and indicates the position number of the most 5'side nucleoside targeted by the antisense oligonucleotide in the sequence of pre-mRNA of human CALM2. "SEQ2 END" means "SEQ ID NO: 2 termination site" and indicates the position number of the most 3'-side nucleoside targeted by the antisense oligonucleotide in the pre-mRNA sequence of human CALM2.
"SEQ No" indicates the SEQ ID NO: and "BASE SEQENCE" indicates the nucleic acid base sequence of the antisense oligonucleotide.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[参考例1]
iPS細胞の樹立
 非特許文献4と同様に、カルモジュリン遺伝子変異(c.293A >G, p. N98S)が同定されているカルモジュリノパチー患者より血液を採取し、エピソーマルベクターを用いる方法(Stem Cells 31: 458-466(2013))により、核初期化物質として、Oct3/4、Sox2、Klf4、L-Myc、Lin28を用い、カルモジュリノパチー患者由来のiPS細胞を樹立した。樹立に際しては、霊長類ES細胞培養用培地(霊長類(ヒト及びサル)ES細胞用培地、リプロセル製)を用いた。
[Reference example 1]
Establishment of iPS cells Similar to Non-Patent Document 4, a method of collecting blood from a calmodulinopathy patient in which a calmodulin gene mutation (c.293A> G, p.N98S) has been identified and using an episomal vector (Stem). According to Cells 31: 458-466 (2013)), iPS cells derived from calmodulinopathy patients were established using Oct3 / 4, Sox2, Klf4, L-Myc, and Lin28 as nuclear reprogramming substances. At the time of establishment, a medium for primate ES cell culture (medium for primate (human and monkey) ES cells, manufactured by Reprocell) was used.
[参考例2]
心筋細胞への分化
 GiWi法と呼ばれる二次元分化誘導法を用いて、参考例1で樹立したiPS細胞を心筋へ分化させた(Lian et al, Nat Protoc. 2013 Jan;8 (1): 162-75)。IMDM(Iscove’s Modified Dulbecco’s Media)培地で希釈したマトリゲル グロースファクター リデュースト(登録商標)を用いてコートしたプレート上で培養したiPS細胞をRPMI 1640にB-27(登録商標)サプリメントを添加した培地(インスリン(-))にCHIR99021を添加し1日培養した。分化開始から3日目よりIWP-2を添加し2日間培養し、分化開始後7日以降はRPMI 1640にB-27(登録商標)サプリメント及びインスリンを添加した培地にて培養し、12日以降に拍動する心筋細胞が出現した。
[Reference example 2]
Differentiation into cardiomyocytes The iPS cells established in Reference Example 1 were differentiated into myocardium using a two-dimensional differentiation induction method called the GiWi method (Lian et al, Nat Protoc. 2013 Jan; 8 (1): 162- 75). IPS cells cultured on plates coated with Matrigel Growth Factor Reduce® diluted in IMDM (Insulin Modified Dulvecco's Media) medium were added to RPMI 1640 with a B-27® supplement. CHIR99021 was added to the medium (insulin (−)) and cultured for 1 day. From the 3rd day after the start of differentiation, IWP-2 was added and cultured for 2 days, and after 7 days after the start of differentiation, the cells were cultured in RPMI 1640 supplemented with B-27 (registered trademark) supplement and insulin, and after 12 days. Cardiomyocytes that beat in insulin appeared.
[評価例1]HepG2細胞中のヒトCALM2のアンチセンス抑制
 10,000細胞/ウェルの密度で96ウェルプレートに播種したHepG2細胞に、約24時間後、Lipofectamine(登録商標)3000(Thermo Fisher Scientific)を用いて、その最終濃度が50nMとなるようにアンチセンスオリゴヌクレオチド(製造例1で製造)を添加した(トランスフェクション)。24時間後、RNeasy Mini Kit(QIAGEN)を用いて、RNAを細胞から単離した後に、PrimeScript(登録商標) RT Master Mix(Perfect Real Time)(タカラバイオ)により逆転写してcDNAを作製した。作製したcDNAを用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでCALM2遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のPeptidylprolyl isomerase A[PPIA]のmRNA量も同時に定量し、PPIAのmRNA量に対するCALM2のmRNA量を、CALM2の発現レベルとして評価した。結果を未処理対照細胞に対する、CALM2のパーセント発現として表3に表した。
[Evaluation Example 1] Antisense suppression of human CALM2 in HepG2 cells HepG2 cells seeded on a 96-well plate at a density of 10,000 cells / well were subjected to Lipofectamine (registered trademark) 3000 (Thermo Fisher Scientific) after about 24 hours. Was added (transfection) to an antisense oligonucleotide (produced in Production Example 1) so that the final concentration was 50 nM. Twenty-four hours later, RNA was isolated from cells using RNeasy Mini Kit (QIAGEN) and then reverse transcribed with PrimeScript® RT Master Mix (Perfect Real Time) (Takara Bio) to prepare cDNA. Using the prepared cDNA, the CALM2 gene expression level was measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the mRNA amount of the housekeeping gene Peptidylprolyl isomerase A [PPIA] was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of PPIA mRNA was evaluated as the expression level of CALM2. The results are shown in Table 3 as the percentage expression of CALM2 relative to untreated control cells.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[評価例2]HepG2細胞中のヒトCALM1/CALM2/CALM3の用量依存性アンチセンス抑制
 10,000細胞/ウェルの密度で96ウェルプレートに播種したHepG2細胞に、約24時間後、Lipofectamine(登録商標)3000(Thermo Fisher Scientific)を用いて、その最終濃度が0.1nM、1nM、10nM、100nMとなるようにP19710002を添加した(トランスフェクション)。24時間後、RNeasy Mini Kit(QIAGEN)を用いて、RNAを細胞から単離した後に、PrimeScript(登録商標) RT Master Mix(Perfect Real Time)(タカラバイオ)により逆転写してcDNAを作製した。作製したcDNAを用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでCALM1、CALM2、及びCALM3の各遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のPPIAのmRNA量も同時に定量し、PPIAのmRNA量に対するCALM1、CALM2、及びCALM3のmRNA量を、CALM1、CALM2、及びCALM3の発現レベルとして評価した。結果を未処理対照細胞(cоntrоl)に対する、CALM2のパーセント発現として図1に表した。
[Evaluation Example 2] Dose-dependent antisense suppression of human CALM1 / CALM2 / CALM3 in HepG2 cells HepG2 cells seeded on a 96-well plate at a density of 10,000 cells / well were subjected to Lipofectamine (registered trademark) after about 24 hours. ) 3000 (Thermo Fisher Scientific) was used to add P19710002 to a final concentration of 0.1 nM, 1 nM, 10 nM, 100 nM (transfection). Twenty-four hours later, RNA was isolated from cells using RNeasy Mini Kit (QIAGEN) and then reverse transcribed with PrimeScript® RT Master Mix (Perfect Real Time) (Takara Bio) to prepare cDNA. Using the prepared cDNA, the expression levels of CALM1, CALM2, and CALM3 genes were measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of PPIA of the housekeeping gene was also quantified at the same time, and the amount of mRNA of CALM1, CALM2, and CALM3 with respect to the amount of mRNA of PPIA was evaluated as the expression level of CALM1, CALM2, and CALM3. The results are shown in FIG. 1 as the percentage expression of CALM2 relative to untreated control cells (cntrоl).
 図1から明らかなように、P19710002は用量依存的にCALM2の発現を抑制した。一方で、ファミリー遺伝子であるCALM1及びCALM3の発現は抑制しないことが示された。 As is clear from FIG. 1, P19710002 suppressed the expression of CALM2 in a dose-dependent manner. On the other hand, it was shown that the expression of the family genes CALM1 and CALM3 was not suppressed.
[評価例3]3T3-L1細胞中のマウスCALM2のアンチセンス抑制
 10,000細胞/ウェルの密度で96ウェルプレートに播種した3T3-L1細胞に、約24時間後、その最終濃度が0.1nM、1nM、10nM、100nMとなるようにP19710002を添加した(Free-Uptake)。5日後、RNeasy Mini Kit(QIAGEN)を用いて、RNAを細胞から単離した後に、PrimeScript(登録商標) RT Master Mix(Perfect Real Time)(タカラバイオ)により逆転写してcDNAを作製した。作製したcDNAを用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスCALM2遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のPPIAのmRNA量も同時に定量し、PPIAのmRNA量に対するCALM2のmRNA量を、CALM2の発現レベルとして評価した。結果を未処理対照細胞に対する、CALM2のパーセント発現として表4に表した。なお、表4中、「concentration」は、P19710002の濃度を示す。
[Evaluation Example 3] Antisense suppression of mouse CALM2 in 3T3-L1 cells The final concentration of 3T3-L1 cells seeded on a 96-well plate at a density of 10,000 cells / well was 0.1 nM after about 24 hours. P19710002 was added so as to be 1, 1 nM, 10 nM, and 100 nM (Free-Uptake). Five days later, RNA was isolated from cells using RNeasy Mini Kit (QIAGEN) and then reverse transcribed with PrimeScript® RT Master Mix (Perfect Real Time) (Takara Bio) to prepare cDNA. Using the prepared cDNA, mouse CALM2 gene expression levels were measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of PPIA mRNA of the housekeeping gene was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of PPIA mRNA was evaluated as the expression level of CALM2. The results are shown in Table 4 as the percentage expression of CALM2 relative to untreated control cells. In Table 4, "concentration" indicates the concentration of P19710002.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[評価例4]
iPS細胞分化心筋細胞におけるアンチセンスオリゴヌクレオチドによる活動電位持続時間への影響評価
 参考例2で分化させた50,000細胞の心筋細胞を4μLの培養液に懸濁し、4μLのIMDM(Iscove’s Modified Dulbecco’s Media)培地で希釈したマトリゲル グロースファクター リデュースト(登録商標)を用いてコートした96ウェルプレートに播種し、シート状のiPS細胞由来心筋を作製した。約24時間後に、その最終濃度が1μM(Free-uptake)になるようにP19710002を添加した。約120時間後、膜電位感受性色素の一つであるFluovolt(Thermo Fisher Scientific)を37℃で30分間loadingを行い、イメージングシステム(顕微鏡:ニコン、高速光計測システム:ブレインビジョン)を用い、37℃、0.5Hzのペーシング下にて活動電位を測定した。結果を図2及び3に示す。なお、P19710002を添加しなかった場合も同時に測定し、ASO(-)として図2及び3に示す。図2及び3中、「ms」は、ミリ秒を示す。
[Evaluation example 4]
Evaluation of the effect of antisense oligonucleotides on action potential duration in iPS cell-differentiated cardiomyocytes Suspend 50,000 cardiomyocytes differentiated in Reference Example 2 in 4 μL of culture medium and 4 μL of IMDM (Iscover's Modified). Sheet-shaped iPS cell-derived cardiomyocytes were prepared by seeding on 96-well plates coated with Matrigel Growth Factor Reduce (registered trademark) diluted in Dulvecco's Media) medium. After about 24 hours, P19710002 was added to a final concentration of 1 μM (Free-uptake). After about 120 hours, Fluovolt (Thermo Fisher Scientific), which is one of the voltage-sensitive dyes, was loaded at 37 ° C. for 30 minutes, and at 37 ° C. using an imaging system (microscope: Nikon, high-speed optical measurement system: Brainvision). The action potential was measured under 0.5 Hz pacing. The results are shown in FIGS. 2 and 3. In addition, even when P19710002 was not added, it was measured at the same time and shown in FIGS. 2 and 3 as ASO (−). In FIGS. 2 and 3, "ms" indicates milliseconds.
 図2及び3から明らかなように、CALM2のアンチセンスオリゴヌクレオチドによる活動電位持続時間の短縮を測定できた。また、P19710002は、90%活動電位持続時間(APD90)を短縮することが示された。 As is clear from FIGS. 2 and 3, the shortening of the action potential duration by the antisense oligonucleotide of CALM2 could be measured. P1971002 was also shown to reduce action potential duration (APD 90) by 90%.
[評価例5]
 iPS細胞分化心筋細胞におけるアンチセンスオリゴヌクレオチドによるCALM2遺伝子発現量評価
 参考例2で分化させた心筋細胞を1ウェルあたり200,000細胞の密度で96ウェルプレートに播種した。約24時間後、その最終濃度が1μM(Free-uptake)になるようにP19710002を添加した。約120時間後、NucleoSpin RNA Plus XS(タカラバイオ)を用いて、細胞からRNAを抽出した後、Transcriptor First Strand cDNA Synthesis Kit(Roche)により逆転写にてcDNAを作製した。作製したcDNAを用いて、TaqMan法による定量リアルタイムPCRでマウスCALM2遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のGAPDH(Glyceraldehyde-3-Phosphate Dehydrogenase)のmRNA量も同時に定量し、GAPDHのmRNA量に対するCALM2のmRNA量を、CALM2の発現レベルとして評価した。結果を図4に示す。なお、ASO(-)は、P19710002を添加しなかった場合を示す。
[Evaluation example 5]
Evaluation of CALM2 Gene Expression Level by Antisense Oligonucleotide in iPS Cell Differentiated Cardiomyocytes The cardiomyocytes differentiated in Reference Example 2 were seeded on a 96-well plate at a density of 200,000 cells per well. After about 24 hours, P19710002 was added to a final concentration of 1 μM (Free-uptake). After about 120 hours, RNA was extracted from the cells using NucleoSpin RNA Plus XS (Takara Bio), and then cDNA was prepared by reverse transcription by Transscriptor First Strand cDNA Synthesis Kit (Roche). Using the prepared cDNA, the mouse CALM2 gene expression level was measured by quantitative real-time PCR by the TaqMan method. In real-time PCR, the amount of mRNA of the housekeeping gene GAPDH (Glyceraldehyde-3-phosphate Dehydogenase) was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of GAPDH mRNA was evaluated as the expression level of CALM2. The results are shown in FIG. In addition, ASO (-) shows the case where P19710002 was not added.
[評価例6]
マウス生体におけるアンチセンスオリゴヌクレオチドによる心臓内CALM2遺伝子発現量評価
 C57BL/6Jマウス(オス6週齢、日本チャールス・リバー社)へ、生理食塩水(大塚生食注、大塚製薬工場)に溶解したP19710002を、マウス個体あたりの投与量がアンチセンスオリゴヌクレオチド量換算で1.9μmol/kg又は9.5μmol/kgとなるように静脈投与した。コントロールとして、生理食塩水(大塚生食注、大塚製薬工場)のみを投与した。投与5日後にイソフルラン麻酔下で全採血による安楽殺後に心臓を採取した。各臓器からRNeasy Mini Kit(Qiagen社製)を用いてRNAを単離した後に、PrimeScript(登録商標) RT Master Mix(Perfect Real Time)(タカラバイオ)を用いてcDNAを得た。作製したcDNAを用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスCALM2遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のPPIAのmRNA量も同時に定量し、PPIAのmRNA量に対するCALM2のmRNA量を、CALM2の発現レベルとして評価した。結果を図5に示す。なお、ASO(-)は、P19710002を添加しなかった場合を示す。
[Evaluation example 6]
Evaluation of intracardiac CALM2 gene expression level by antisense oligonucleotide in a mouse body P1971002 dissolved in physiological saline (Otsuka saline, Otsuka Pharmaceutical Factory) was added to C57BL / 6J mice (male 6 weeks old, Charles River Japan). , The dose per mouse was intravenously administered so as to be 1.9 μmol / kg or 9.5 μmol / kg in terms of antisense oligonucleotide amount. As a control, only physiological saline (Otsuka Raw Food Injection, Otsuka Pharmaceutical Factory) was administered. Five days after administration, the heart was collected after euthanasia by total blood sampling under isoflurane anesthesia. RNA was isolated from each organ using RNeasy Mini Kit (manufactured by Qiagen), and then cDNA was obtained using PrimeScript (registered trademark) RT Master Mix (Perfect Real Time) (Takara Bio). Using the prepared cDNA, mouse CALM2 gene expression levels were measured by quantitative real-time PCR using TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of PPIA mRNA of the housekeeping gene was also quantified at the same time, and the amount of CALM2 mRNA relative to the amount of PPIA mRNA was evaluated as the expression level of CALM2. The results are shown in FIG. In addition, ASO (-) shows the case where P19710002 was not added.
 カルモジュリノパチーの予防、治療、及び/又は改善を可能とするアンチセンスオリゴヌクレオチドをスクリーニングする方法が提供される。また、当該スクリーニング方法を用いることにより、カルモジュリノパチーの予防、治療、及び/又は改善用の新規な薬物を提供することができる。 A method of screening for antisense oligonucleotides that can prevent, treat, and / or improve carmodulinopathy is provided. In addition, by using the screening method, it is possible to provide a novel drug for the prevention, treatment and / or improvement of carmodulinopathy.
 本出願は、日本で出願された特願2020-036716号を基礎としており、その内容は本明細書にすべて包含される。 This application is based on Japanese Patent Application No. 2020-036716 filed in Japan, the contents of which are all included in the present specification.

Claims (17)

  1.  アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
    (1)該アンチセンスオリゴヌクレオチドを、カルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
    (2)接触させた該心筋細胞の活動電位持続時間を測定する工程、及び
    (3)工程(2)で測定された活動電位持続時間を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該心筋細胞の活動電位持続時間と比較する工程
    を含む、方法。
    A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
    (1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene.
    The step of measuring the action potential duration of the contacted cardiomyocytes, and the case where the action potential duration measured in the step (3) step (2) is not contacted with the antisense oligonucleotide. A method comprising the step of comparing the action potential duration of cardiomyocytes.
  2.  アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
    (1)該アンチセンスオリゴヌクレオチドを、カルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
    (2)接触させた該心筋細胞におけるカルモジュリン遺伝子の発現量を測定する工程、及び
    (3)工程(2)で測定されたカルモジュリン遺伝子の発現量を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該心筋細胞におけるカルモジュリン遺伝子の発現量と比較する工程
    を含む、方法。
    A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
    (1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene.
    (2) The step of measuring the expression level of the calmodulin gene in the contacted myocardial cells, and (3) the case where the expression level of the calmodulin gene measured in the step (2) was not contacted with the antisense oligonucleotide. A method comprising the step of comparing the expression level of the calmodulin gene in the myocardial cells.
  3.  アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
    (1)該アンチセンスオリゴヌクレオチドをカルモジュリン遺伝子に変異を有する多能性幹細胞由来の心筋細胞と接触させる工程、
    (2)接触させた該心筋細胞におけるカルシウム電流量を測定する工程、及び
    (3)工程(2)で測定されたカルシウム電流量を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該心筋細胞におけるカルシウム電流量と比較する工程
    を含む、方法。
    A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
    (1) A step of contacting the antisense oligonucleotide with cardiomyocytes derived from pluripotent stem cells having a mutation in the calmodulin gene.
    (2) The step of measuring the calcium current amount in the contacted cardiomyocyte, and (3) the cardiomyocyte when the calcium current amount measured in step (2) is not contacted with the antisense oligonucleotide. A method comprising a step of comparing with the amount of calcium current in.
  4.  前記多能性幹細胞が、カルモジュリノパチー患者に由来するiPS細胞である、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the pluripotent stem cell is an iPS cell derived from a carmodulinopathy patient.
  5.  アンチセンスオリゴヌクレオチドを含むカルモジュリノパチーの治療、予防及び/又は改善薬をスクリーニングする方法であって、以下の工程:
    (1)該アンチセンスオリゴヌクレオチドを哺乳類の細胞と接触させる工程、
    (2)接触させた該細胞におけるカルモジュリン遺伝子の発現量を測定する工程、及び
    (3)工程(2)で測定されたカルモジュリン遺伝子の発現量を、該アンチセンスオリゴヌクレオチドと接触させなかった場合の該細胞におけるカルモジュリン遺伝子の発現量と比較する工程
    を含む、方法。
    A method of screening for therapeutic, prophylactic and / or ameliorating agents of carmodulinopathy containing antisense oligonucleotides, wherein:
    (1) A step of contacting the antisense oligonucleotide with mammalian cells,
    (2) The step of measuring the expression level of the carmodulin gene in the contacted cells, and (3) the case where the expression level of the carmodulin gene measured in the step (2) was not contacted with the antisense oligonucleotide. A method comprising the step of comparing the expression level of the carmodulin gene in the cell.
  6.  前記哺乳類の細胞が、ヒト肝癌由来細胞又はマウス線維芽細胞である、請求項5に記載の方法。 The method according to claim 5, wherein the mammalian cell is a human liver cancer-derived cell or a mouse fibroblast.
  7.  前記カルモジュリン遺伝子が、CALM1、CALM2、及びCALM3からなる群より選択される少なくとも一つである、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the calmodulin gene is at least one selected from the group consisting of CALM1, CALM2, and CALM3.
  8.  前記アンチセンスオリゴヌクレオチドが、CALM2のアンチセンスオリゴヌクレオチドである、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the antisense oligonucleotide is a CALM2 antisense oligonucleotide.
  9.  前記アンチセンスオリゴヌクレオチドが、カルモジュリン遺伝子の発現を阻害する、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the antisense oligonucleotide inhibits the expression of the calmodulin gene.
  10.  カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドを含む、カルモジュリノパチーの治療、予防及び/又は改善薬。 A therapeutic, prophylactic and / or ameliorating agent for calmodulinopathy, which comprises an antisense oligonucleotide that inhibits the expression of the calmodulin gene.
  11.  前記カルモジュリン遺伝子が、CALM2である、請求項10に記載の治療、予防及び/又は改善薬。 The therapeutic, prophylactic and / or ameliorating agent according to claim 10, wherein the calmodulin gene is CALM2.
  12.  前記アンチセンスオリゴヌクレオチドが、心筋細胞において前記カルモジュリン遺伝子の発現を阻害する、請求項10又は11に記載の治療、予防及び/又は改善薬。 The therapeutic, prophylactic and / or ameliorating agent according to claim 10 or 11, wherein the antisense oligonucleotide inhibits the expression of the calmodulin gene in cardiomyocytes.
  13.  前記アンチセンスオリゴヌクレオチドが、心筋細胞において活動電位持続時間を短縮する、請求項10~12のいずれか一項に記載の治療、予防及び/又は改善薬。 The therapeutic, prophylactic and / or ameliorating agent according to any one of claims 10 to 12, wherein the antisense oligonucleotide shortens the duration of action potential in cardiomyocytes.
  14.  前記アンチセンスオリゴヌクレオチドが、心筋細胞においてカルシウム電流量を抑制する、請求項10~13のいずれか一項に記載の治療、予防及び/又は改善薬。 The therapeutic, prophylactic and / or ameliorating agent according to any one of claims 10 to 13, wherein the antisense oligonucleotide suppresses the amount of calcium current in cardiomyocytes.
  15.  カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドの有効量を、カルモジュルノパチー患者に投与する工程を含む、カルモジュリノパチーを治療、予防及び/又は改善する方法。 A method for treating, preventing and / or ameliorating calmodulinopathy, which comprises the step of administering to a patient with calmodulinopathy an effective amount of an antisense oligonucleotide that inhibits the expression of the calmodulin gene.
  16.  カルモジュリノパチーの治療、予防及び/又は改善に使用するための、カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドである化合物。 A compound that is an antisense oligonucleotide that inhibits the expression of the calmodulin gene for use in the treatment, prevention and / or amelioration of calmodulinopathy.
  17.  カルモジュリノパチーを治療、予防及び/又は改善するための医薬の製造における、カルモジュリン遺伝子の発現を阻害するアンチセンスオリゴヌクレオチドの使用。 Use of antisense oligonucleotides that inhibit the expression of the calmodulin gene in the manufacture of drugs to treat, prevent and / or improve calmodulinopathy.
PCT/JP2021/008515 2020-03-04 2021-03-04 Method for screening antisense oligonucleotide drug WO2021177419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022504464A JPWO2021177419A1 (en) 2020-03-04 2021-03-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-036716 2020-03-04
JP2020036716 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177419A1 true WO2021177419A1 (en) 2021-09-10

Family

ID=77612887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008515 WO2021177419A1 (en) 2020-03-04 2021-03-04 Method for screening antisense oligonucleotide drug

Country Status (2)

Country Link
JP (1) JPWO2021177419A1 (en)
WO (1) WO2021177419A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500556A (en) * 1990-08-28 1994-01-20 エポック・ファーマシューティカルズ・インコーポレイテッド Solid-support synthesis of 3'-tailed oligonucleotides via linking molecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500556A (en) * 1990-08-28 1994-01-20 エポック・ファーマシューティカルズ・インコーポレイテッド Solid-support synthesis of 3'-tailed oligonucleotides via linking molecules

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARRUDA LIGIA H., CESTARI IDÁGENE A., LEIRNER ADOLFO A., CESTARI ISMAR N.: "Adenoviral Expression of Calmodulin Antisense Reduces Hypertrophy in Cultured Cardiomyocytes", ARTIFICIAL ORGANS, vol. 31, no. 4, April 2007 (2007-04-01), pages 274 - 277, XP055852470 *
LIEBERT MARY ANN, INC, HOU WANG-FANG, ZHANG SUI-PO, DAVIDKOVA GENOVEVA, NICHOLS ROBERT A, WEISS BENJAMIN: "Effect of Antisense Oligodeoxynucleotides Directed to Individual Calmodulin Gene Transcripts on the Proliferation and Differentiation of PC12 Cells", ANTISENSE AND NUCLEIC ACID DRUG DEVELOPMENT, vol. 8, no. 4, 1998, pages 295 - 308, XP055852472 *
LIMPITIKUL WORAWAN B., DICK IVY E., TESTER DAVID J., BOCZEK NICOLE J., LIMPHONG PATTRARANEE, YANG WANJUN, CHOI MYOUNG HYUN, BABICH: "A Precision Medicine Approach to the Rescue of Function on Malignant Calmodulinopathic Long-QT Syndrome", CIRCULATION RESEARCH, vol. 120, no. 1, 6 January 2017 (2017-01-06), pages 39 - 48, XP055852475 *
YAMAMOTO YUTA, MAKIYAMA TAKERU, HARITA TAKESHI, SASAKI KENICHI, WURIYANGHAI YIMIN, HAYANO MAMORU, NISHIUCHI SUGURU, KOHJITANI HIRO: "Allele-specific; ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation", HUMAN MOLECULAR GENETICS, vol. 26, no. 9, 1 May 2017 (2017-05-01), pages 1670 - 1677, XP055852474 *
YAMAMOTO, YUTA ET AL.: "Calmodulinopathy-Analysis of Human iPS Cell Model of Long-QT Syndrome with a CALM2 Mutation and Therapeutic Approach Using Genome Editing Technology", JAPANESE JOURNAL OF ELECTROCARDIOLOGY, vol. 39, no. 4, 2019, pages 273 - 282 *

Also Published As

Publication number Publication date
JPWO2021177419A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
JP6756786B2 (en) Midbrain dopamine (DA) neurons for transplantation
Hernández et al. Electrical stimulation promotes cardiac differentiation of human induced pluripotent stem cells
Le et al. Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells
Acimovic et al. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools
JP6316938B2 (en) Method for preparing induced neural stem cells reprogrammed from non-neuronal cells using HMGA2
Xia et al. Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro
KR20200010279A (en) Induction method of differentiation from intermediate mesoderm cells into renal progenitor cells and method of induction of differentiation of pluripotent stem cells into renal progenitor cells
EP3305889B1 (en) Method for inducing differentiation of neural crest cells into autonomic nervous system cells
JP5995086B2 (en) Cardiomyopathy-specific pluripotent stem cells and uses thereof
AU2017357076A1 (en) Methods for drug discovery using stem cell-derived schwann cells
JP2019528057A (en) Method for producing mesodermal cells and / or vascular endothelial colony-forming cell-like cells having angiogenic ability in vivo
EP3613848A1 (en) Method for producing dopaminergic neurons
Martínez‐Fernandez et al. Pitx2c overexpression promotes cell proliferation and arrests differentiation in myoblasts
US20230042917A1 (en) Direct reprogramming of somatic cells into myogenic cells
WO2021177419A1 (en) Method for screening antisense oligonucleotide drug
JP7165979B2 (en) Skeletal muscle cell and its induction method
Zhang et al. Immortalized human neural progenitor cells from the ventral telencephalon with the potential to differentiate into GABAergic neurons
JP6083874B2 (en) Mitochondrial disease-specific induced pluripotent stem cells, production method thereof and use
Lebrin Modeling human genetic disorders using induced pluripotent stem cells
Bianco et al. Rapid serum-free isolation of oligodendrocyte progenitor cells from adult rat spinal cord
Ojala et al. Modeling Hypertrophic Cardiomyopathy with Human Induced Pluripotent Stem Cells
Ruiz-Lozano et al. Stem cells as in vitro models of disease
JP6194517B2 (en) Neuronal differentiation promoter
US20230081881A1 (en) Transposon-based modulation of gba1 and related compositions and uses thereof
WO2020190939A1 (en) Methods of promoting cellular maturation with ampk activators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764269

Country of ref document: EP

Kind code of ref document: A1