WO2021177232A1 - 風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体 - Google Patents

風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体 Download PDF

Info

Publication number
WO2021177232A1
WO2021177232A1 PCT/JP2021/007711 JP2021007711W WO2021177232A1 WO 2021177232 A1 WO2021177232 A1 WO 2021177232A1 JP 2021007711 W JP2021007711 W JP 2021007711W WO 2021177232 A1 WO2021177232 A1 WO 2021177232A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
control
rotation speed
rotor rotation
control unit
Prior art date
Application number
PCT/JP2021/007711
Other languages
English (en)
French (fr)
Inventor
鈴木 潤
鈴木 孝
Original Assignee
日本製鋼所M&E株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鋼所M&E株式会社 filed Critical 日本製鋼所M&E株式会社
Priority to EP21765163.7A priority Critical patent/EP4116578A4/en
Priority to CN202180017977.2A priority patent/CN115210465A/zh
Priority to BR112022017150A priority patent/BR112022017150A2/pt
Publication of WO2021177232A1 publication Critical patent/WO2021177232A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1032Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to a control unit of a wind power generation device that operates while controlling the power generation output, a wind power generation device, a control method of the wind power generation device, a control program, and a storage medium.
  • the power generation output is controlled by pitch control that adjusts the blade mounting angle of the wind turbine, yaw control that changes the direction of the wind turbine, torque control of the generator, etc., and generally the target rated output is achieved.
  • the rated output is set and the rated output is controlled aiming at this rated output.
  • the pitch control is used to control the rotor rotation speed of the wind turbine so that it does not exceed the rated rotor rotation speed, and the wind speed is higher than the rated wind speed.
  • the rotor rotation speed of the wind turbine is controlled so as not to fall below the rated rotor rotation speed by pitch control and torque control, and more efficient control is desired.
  • Patent Document 1 when the mechanical load of the wind turbine is reduced, the rotor rotation speed adjustment program is started. In the rotor rotation speed adjustment program, an adjustment rotor rotation speed setting value larger than the initial rotor rotation speed setting value is determined, and the maximum rotor rotation speed setting value of the wind turbine is increased. This increases the amount of energy captured.
  • Patent Document 1 it is possible to increase the rated power generation output of the wind power generation system to obtain a larger power generation output, but each element such as an electric device including a generator and a power converter is rated power generation.
  • each element such as an electric device including a generator and a power converter is rated power generation.
  • Patent Document 2 is a method of increasing the target rotor rotation speed when the rotor rotation speed of the wind turbine has not reached the rated rotor rotation speed, and the rotor rotation speed is temporarily (instantaneously) rated. Since the rotor speed will be exceeded, a load higher than the original design may be applied. Furthermore, when a wind power generator is installed in a mountainous area such as a mountainous terrain, a large fluctuation in the rotor rotation speed occurs due to a fluctuation in the wind speed due to complicated terrain undulations.
  • the target rotor rotation speed is temporarily set high to increase the power generation amount.
  • the rotor rotation speed exceeds a certain allowable value (threshold value)
  • the wind turbine is urgently stopped from the viewpoint of protecting the wind turbine device.
  • the method of increasing the target rotor rotation speed induces an over-rotation state, which may result in a decrease in the operating rate of the wind turbine, which is not desirable in terms of operation.
  • FIG. 3 shows the relationship between the rotation speed of the rotor and the set torque.
  • FIG. 3 shows a control value of a normal set torque.
  • the set torque in proportion to the square of the rotor rotation speed, it is possible to maintain the optimum aerodynamic characteristics of the windmill rotor, and when the rotor rotation speed is low, this set torque is followed (optimal torque). curve).
  • generators and other equipment have restrictions on rotor speed and torque for device protection. Due to this limitation, it is difficult to maintain the optimum torque curve at all rotor speeds. Therefore, the rated rotor speed and rated torque are set according to the requirements of equipment such as a generator. The power generation output at this setting is called the rated output.
  • the wind speed that achieves the rated output is called the rated wind speed. Since the rated rotor rotation speed and the maximum rotor rotation speed that can maintain the optimum torque curve generally deviate from each other, a region in which the torque suddenly increases occurs.
  • the power generation output is controlled to be increased by widening the rotor rotation speed region in which power can be generated along the optimum torque curve.
  • the rotor rotation speed of the device has an upper limit for device protection.
  • the conventional control the case where the wind speed increases with time is shown, and the setting when the wind speed decreases is not described. It is considered that the conventional control when the wind speed decreases follows the normal torque control (corresponding to the solid line in FIG. 3). Therefore, when operating between the rated rotor speed and the maximum rotor speed at which the optimum torque curve can be maintained, a decrease in power generation efficiency is unavoidable.
  • the present disclosure is a reduction in the amount of power generated under the condition of time-varying wind speed, especially when the wind power generator is operated near the rated rotor speed and the wind speed decreases temporally (temporarily).
  • the purpose is to provide control contents that can suppress.
  • the control unit is A control unit that controls the power generation output of a wind power generator including a wind turbine and a generator that generates electricity by rotating the rotor of the wind turbine.
  • the control unit has a rated output mode that controls the power generation output of the generator so as to aim at the rated value.
  • the first control that reduces the torque applied to the generator to suppress the decrease in the rotor rotation speed
  • a second control in which the torque is increased to temporarily increase the power generation output while the decrease in the rotor rotation speed is suppressed. It is configured to perform temporary power generation output increase processing having.
  • control unit may be configured to perform pitch control for changing the mounting angle of the blade of the wind turbine.
  • control unit may be able to set the pitch control to something different from the normal pitch control during the execution of the temporary power generation output increase processing.
  • the above-mentioned predetermined rotor rotation speed decrease state is a state in which the rotor rotation speed decreases to a predetermined number or the rotor rotation speed decreases at a predetermined ratio with respect to the rotor rotation speed in the rated output mode. good.
  • the state of the predetermined rotor rotation speed decrease described above may be determined by the value of the pitch angle.
  • the predetermined rotor rotation speed decrease state may be a state in which the rated output decrease state continues for a predetermined time.
  • the time for performing the first control may be predetermined.
  • control unit may perform control to return to the normal control after executing the temporary power generation output increasing process and after a predetermined standby time.
  • the decrease in the rotor rotation speed may be suppressed by at least one of a decrease in the decrease in the rotor rotation speed, a maintenance of the rotor rotation speed, and an increase in the rotor rotation speed.
  • the reduction of the torque in the first control may be executed according to the reduction of the target power generation output.
  • the second control may be controlled so as to increase the torque according to the target power generation output below the rated output mode.
  • control unit performs the first control so that when the rotor rotation speed increases in the second control, the increased rotor rotation speed becomes equal to or less than the rated rotor rotation speed in the rated output mode.
  • the amount of decrease in torque and the amount of increase in torque in the second control may be determined.
  • the wind power generator includes a wind turbine, a generator that generates electricity by rotating the rotor of the wind turbine, and a control unit according to any one of the above embodiments.
  • the control method is a control method for a wind power generator that controls the power generation output of a wind turbine including a wind turbine, a generator that generates electricity by rotating the rotor of the wind turbine, and the power generation. It has a rated output mode that controls the power generation output of the machine so that it aims at the rated value.
  • the rotor rotation speed in the rated output mode is in a state of a predetermined rotor rotation speed decrease, the torque applied to the generator is reduced to suppress the decrease in the rotor rotation speed, and then the rotor rotation speed is suppressed.
  • Temporary power generation output increase processing is performed to temporarily increase the power generation output by increasing the torque applied to the generator in a state where the decrease in the power generation speed is suppressed.
  • the control program according to one aspect of the present disclosure is a power generation output of a wind power generator including a wind turbine, a generator that generates power by rotating the rotor of the wind turbine, and a control unit according to any one of the above embodiments.
  • a control program executed by the control unit that controls The control unit is made to execute the control or temporary power generation output increasing process according to any one of the above embodiments.
  • the storage medium is a computer-readable storage medium in which the control program is stored.
  • the present disclosure it has the following effects. (1) By applying the present disclosure, the amount of power generation that can be obtained within a certain period can be increased. (2) In the present disclosure, it is possible to use a method of increasing the amount of power generation obtained by not increasing the target rotor rotation speed or the actual rotor rotation speed, but rather temporarily reducing the torque applied to the generator. , There is no risk of increasing the wind turbine load generated by increasing the target rotor speed or the actual rotor speed, or causing the wind turbine to stop, which is likely to occur due to an over-rotation state. (3) By applying this disclosure, it is possible to suppress the decrease in electric power when the power generation output is reduced, and as a result, the power quality of wind power generation equipment can be improved by mitigating fluctuations in the generated power during the period. Can be improved.
  • FIG. 1 is a diagram showing an outline of a wind power generation device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a functional block of a control unit that controls a wind power generation device.
  • FIG. 3 is a graph showing the relationship between the torque and the rotor rotation speed of the wind turbine.
  • FIG. 4A is a diagram for explaining the set torque when the target power generation output is reduced by using a graph showing the relationship between the torque and the rotor rotation speed of the wind turbine.
  • FIG. 4B is a diagram for explaining the set torque when the target power generation output is reduced by using a graph showing the relationship between the torque and the rotor rotation speed of the wind turbine.
  • FIG. 5 is a flowchart showing a control method of an example of the present embodiment.
  • FIG. 5 is a flowchart showing a control method of an example of the present embodiment.
  • FIG. 6 is a graph showing changes over time in hub height wind speed, wind turbine rotor speed, pitch angle, power generation output, and torque showing simulation results.
  • FIG. 7 is a graph showing changes over time in hub height wind speed, wind turbine rotor speed, pitch angle, power generation output, and torque showing other simulation results.
  • FIG. 8 is a table showing the conditions of the simulation.
  • the nacelle 3 is rotatably attached to the tower 2 by a vertical axis perpendicular to the ground, and the hub 4 is attached to the nacelle 3. ..
  • a blade 5 is attached to the hub 4.
  • the rotor including the hub 4 and the blade 5 is rotatable by a horizontal axis.
  • the rotor is connected to the generator 6 installed in the nacelle 3 by a speed increaser or the like (not shown).
  • the wind power generation device 1 has a control unit 10 that controls the power generation output of the wind power generation device 1.
  • a control unit 10 that controls the power generation output of the wind power generation device 1.
  • an anemometer (not shown) that measures the wind speed of the hub 4 is installed. The measurement result of the anemometer is transmitted to the control unit 10.
  • the location where the anemometer is installed is not particularly limited. Further, the wind power generation device 1 may not be provided with an anemometer, and the wind speed information may be obtained from external measurement data or the like.
  • the control unit 10 may be installed outside the nacelle 3, may be installed inside the nacelle 3 or inside the tower 2, and is connected to the equipment inside the nacelle 3 via a network. It may be a thing.
  • the control unit 10 corresponds to the control unit of the wind power generation device of the present disclosure.
  • the wind power generation device 1 is a horizontal axis wind power generation device, but the wind power generation device of the present disclosure is not limited to the horizontal axis device.
  • the control unit 10 has a CPU 11 and a storage unit 12.
  • a computer-readable storage medium such as a ROM, RAM, non-volatile memory, HDD, or SSD is used in the storage unit 12, and a control program for controlling the wind power generation device 1, operating parameters of the wind power generation device 1, and various setting data are used. Etc. are stored.
  • the control program of the present embodiment is stored in the storage unit 12, but the control program of the present disclosure may be stored in a storage unit such as a removable USB memory.
  • the wind power generation control program is read from the storage unit 12 and the like.
  • the read program is expanded on the RAM or the like and executed in collaboration with the CPU 11 and the RAM or the like.
  • the storage unit 12 contains parameters such as pitch control, torque control, torque-windmill rotor rotation speed adjustment curve in the rated operation mode, and a decrease in the rotor rotation speed for shifting to the first control in the temporary power generation output increase processing.
  • torque decrease amount in the first control, predetermined first control time, torque increase amount in the second control, second control time, temporary power generation output increase processing Data such as the amount of reduction in the target power generation output and the standby time after the reduction in the target power generation output are stored. These data may be changeable by the operator.
  • the control unit 10 can control the entire wind power generation device 1, and as power generation output control in the generator 6, pitch control for changing the mounting angle of the blade 5, yaw control for the nacelle 3, and torque for the generator 6 Control etc. can be performed.
  • the wind turbine generator 1 is usually operated in the rated output mode.
  • the rated output mode is a mode in which the power generation output of the generator 6 is controlled so as to aim at the rated value.
  • the control of the rated output mode in the wind power generation device 1 will be described.
  • the control unit 10 acquires the rotor rotation speed of the current wind turbine and controls the rated output (rotor rotation speed) mainly based on the current rotor rotation speed.
  • the rated output whose target is the power generation output of the wind power generation device 1 by pitch control for changing the mounting angle of the blade 5, yaw control for adjusting the direction of the nacelle 3, torque control for the generator 6, and the like. Control to be a value.
  • the power generation output can be controlled according to the torque-rotor rotation speed adjustment curve shown in FIG.
  • the temporary power generation output increase processing in the present embodiment will be described.
  • the wind power generator 1 When the wind power generator 1 is operated near the rated wind speed (however, above the rated wind speed), the rotor rotation speed is operated at the operating point corresponding to the rated rotor rotation speed, and the load torque is operated at the operating point corresponding to the rated torque. Driven by.
  • the wind speed decreases as time elapses from this operating state, the aerodynamic torque obtained from the wind decreases, so that the operating point of the load torque decreases according to the torque curve of FIG.
  • the load torque is greatly reduced with respect to the rotor rotation speed, the power generation output is greatly reduced.
  • the decrease in wind speed is often temporary, but when the wind power generation device 1 is controlled according to the torque curve shown in FIG. 3, the wind speed is reduced.
  • the power generation output will fluctuate drastically according to the increase or decrease.
  • the maximum power generation output is controlled so as not to exceed the rated output, so that the maximum power generation output is generally adjusted to the rated output.
  • the power generation output follows the wind speed. Therefore, the higher the turbulent flow intensity at the wind turbine installation site, the lower the amount of power generation in this operating area (the total power generation output obtained during a certain period). Will be done.
  • the target power generation output of the wind turbine is generally set to the target power generation output reduction function provided in the wind turbine. It is possible to increase the amount of power generation by the ⁇ estimation principle> described later by reducing the amount instantaneously by using. Further, in the present embodiment, a reference regarding the state of decrease in the rotor rotation speed can be set in advance, and control can be performed according to this reference. Further, in a large variable speed wind turbine having a general variable pitch system, it has a function of changing the target power generation output. This function is usually achieved by lowering the target rotor speed and set torque.
  • the target rotor speed and set torque can often be changed not only by the wind turbine control manufacturer (manufacturer) but also by the owner.
  • the present embodiment has a feature that the target power generation output can be easily controlled by a person other than the manufacturer by enabling this function to be used during operation. It also has the feature that the control of the target power generation output can be applied without changing the existing control system.
  • the power generation output drops once in the control process of lowering the target power generation output, but this is when the existing target power generation output reduction function is used. Since it is important to temporarily increase the actual rotor speed (within the range that does not exceed the rated rotor speed) without increasing the target rotor speed above the rated rotor speed, the target power output is rated. A function may be provided to increase the rotor rotation speed by temporarily reducing the load torque while maintaining the output.
  • the function for reducing the target power generation output will be described below.
  • the function of reducing the target power generation output will be described with reference to FIGS. 4A and 4B.
  • the target power generation output reduction function is a function generally used for general pitch control and variable speed large wind turbine control, and the target power generation output is usually set to the rated output.
  • the target power generation output can be changed in the direction of arbitrary reduction depending on the system requirements, operation control, and operating conditions. When the target power generation output is reduced, the rotor speed and torque are controlled (operated) in the direction of being reduced at the same time (FIGS. 4A and 4B).
  • the wind power generation device when a command (control) is given to reduce the target power generation output while operating at the rated output, the wind power generation device tries to reduce the rotor rotation speed by pitch control, and at the same time, adjusts to the target power generation output. It is controlled to reduce the set torque in order to reduce the current power generation output. At this time, since it takes time for the pitch control to obtain the control effect as compared with the torque control, the rotor rotation speed is temporarily increased. However, since this operation (control) is performed when the rotor rotation speed is lower than the rated rotor rotation speed, the increase in the rotor rotation speed due to this operation is controlled to the extent that the rated rotor rotation speed is not exceeded.
  • the target rotor rotation speed is always equal to or less than the rated rotor rotation speed during this control operation, when the rotor rotation speed exceeds the target value, the rotor rotation speed is controlled so as to be immediately below the target value.
  • NS The graphs shown in FIGS. 3, 4A and 4B are examples, and the relationship between the rotor rotation speed and the torque in the present disclosure is not limited to the illustrated one.
  • the wind speed at a specific site is determined by the pressure distribution, temperature, etc., so it is considered that the wind speed is generally constant within the time (about 10 minutes to 1 hour) that can be regarded as the same.
  • the wind power generation device 1 is installed in a place where the terrain shape is complicated, such as a mountainous area, the wind turbulence (turbulence) becomes high due to the terrain shape.
  • control method of the temporary power generation output increase processing in the present embodiment will be described with reference to the flowchart of FIG.
  • the following control method can be executed by a program operated by the control unit 10.
  • the pitch angle is acquired in order to determine that the wind turbine is operating in the vicinity of the rated wind speed.
  • the control unit 10 determines that the acquired pitch angle is the control target region (step s1).
  • the threshold value in the effective pitch angle range is, for example, the maximum opening angle + 3 deg or less. This threshold value is preset and stored in the storage unit 12 or the like, and is read out from the storage unit 12 or the like as needed.
  • step s1 the determination (step s1) of whether or not the value of the pitch angle is equal to or less than the threshold value is repeated. If the acquired pitch angle value is equal to or less than the threshold value (Yes in step s1), the control unit 10 determines that the rotation speed of the rotor tends to decrease (step s2).
  • the condition for determining whether or not the rotor rotation speed is low is set in advance and stored in the storage unit 12 or the like, and is read out from the storage unit 12 or the like as needed.
  • the state of the rotor rotation speed decrease can be determined to be the state of the rotor rotation speed decrease, for example, when the state of the rotor rotation speed decrease continues for a predetermined time.
  • the determination as to whether or not the rotor rotation speed is in a reduced state is made based on the pitch angle state, but the determination is not limited to this embodiment, and even if the determination is made based on the measured wind speed measurement result. good.
  • the determination as to whether or not the rotor rotation speed has decreased is made based on the amount of decrease or the reduction ratio with respect to the rated rotor rotation speed, the state in which the rated output has decreased continues for a predetermined time, and the like.
  • the present disclosure is not limited to specific conditions.
  • the 1-second average rotor speed and the instantaneous rotor speed are used to determine the 1-second average rotor speed (for example, 18.7 rpm or more) and the instantaneous rotor speed.
  • the power generation output is set to be reduced to a specified amount (step s3).
  • step s3 for example, the power generation output is set to be reduced from the rated output (for example, 2000 kW) to the reduced target power generation output (for example, 1800 kW).
  • control of the generation output limit is maintained.
  • step s4 the state in which the target power generation output is lowered is maintained (step s4).
  • step s5 it is determined whether the reduction of the target power generation output is maintained for the specified time (1 second in this example) (step s5).
  • the specified time in step s5 is preset and stored in the storage unit 12 or the like, and is read out from the storage unit 12 or the like as needed.
  • step s5 If the suppression time for suppressing the target power generation output does not reach the specified time (specified value) (No in step s5), the control unit 10 maintains the limit of the target power generation output (step s4) and suppresses the target power generation output. The determination of whether the time is equal to or longer than the specified time (specified value) (step s5) is repeated. This limitation of the target power generation output corresponds to the first control of the present disclosure.
  • the control unit 10 releases the restriction on the target power generation output (step s6).
  • the target power generation output is returned to the monitoring state again.
  • the process of returning to the monitoring state after limiting the target power generation output corresponds to the second control of the present disclosure. That is, the second control is a control for temporarily increasing the power generation output by increasing the torque while the decrease in the rotor rotation speed is suppressed, and can be performed by returning the torque so as to return to the rated state. ..
  • the torque may be increased to a torque different from the rated torque.
  • the control to return to the normal control is performed, and this "control to return to the normal control" is the original control of the wind power generation device. The operation to return.
  • the reduction of the target power generation output is controlled to reduce the torque
  • the pitch control is used to reduce the rotor rotation speed of the wind turbine.
  • the pitch control may not be performed, the adjustment amount of the pitch control may be reduced, or the pitch control may be different from the normal pitch control. It may be possible to set whether to perform different pitch control.
  • the pitch control in the normal state is the pitch control at the rated output.
  • the pitch is controlled in advance in the feather direction (direction that reduces the power generation output) when the wind speed drops, so when the wind speed rises sharply later, the rotor speed increases. It becomes difficult to increase rapidly. Therefore, the risk of stopping the operation of the wind turbine due to over-rotation can be reduced.
  • FIG. 6 shows the results of verifying the effects of the present disclosure by simulation.
  • the simulation was performed under the conditions shown in FIG. Bladed Ver4.7 (trademark) was used as the analysis software.
  • FIG. 6 the behavior of the wind turbine for the same inflow wind (three-dimensional turbulent wind) is analyzed, and the difference in behavior between the conventional control and the control state of the present embodiment is shown.
  • the behavior of about 20 seconds in the control operation of the present embodiment, the decrease in the rotor rotation speed is detected and the reduction of the target power generation output is controlled. Therefore, the power generation output is decreased and the rotor rotation speed is slightly increased. .. It can be confirmed that the subsequent power generation output is increased by this control of the present embodiment.
  • FIG. 7 is a diagram showing other simulation results. Similar to FIG. 6, in FIG. 7, it can be confirmed that the reduction state of the target power generation output has changed (operated) around the time of about 10 seconds. In the example shown in FIG. 7, the maximum rotor rotation speed is reached at about 17 seconds, but the maximum rotor rotation speed is lower in the control operation of the present embodiment than in the conventional control. From FIG. 7, it can be seen that the control of the present embodiment has the effect of suppressing not only the increase in the amount of power generation but also the rotation speed of the reaching rotor against the gust generated thereafter. As a result, fluctuations in the electric power in the wind power generation device 1 can be alleviated, and the risk of stopping the operation of the wind turbine due to over-rotation can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

風車と、風車のロータの回転によって発電を行う発電機と、を備える風力発電装置の発電出力を制御する制御部である。制御部は、発電機による発電出力が定格値を目指すように制御する定格出力モードを有し、定格出力モードにおける風車のロータ回転数が、所定のロータ回転数低下の状態となった場合、発電機にかかるトルクを低下させてロータ回転数の低下を抑制する第1制御と、次いで、ロータ回転数の低下が抑制された状態でトルクを増加させて発電出力を一時的に増加させる第2制御と、を有する一時発電出力増加処理を行うように構成されている。

Description

風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体
 本開示は、発電出力を制御しつつ動作させる風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体に関するものである。
 風力発電装置では、風車のブレード取り付け角度を調整するピッチ制御、風車の向きを変えるヨー制御、発電機のトルク制御などにより、発電出力を制御しており、一般的には目標とする定格出力を設定し、この定格出力を目指した定格出力制御を行っている。
 この定格出力制御では、風速が定格風速よりも高く、定格出力を超える状態において、ピッチ制御によって、風車のロータ回転数が定格ロータ回転数を超過しないような制御を行い、風速が定格風速よりも高く、定格出力を下回る状態において、ピッチ制御およびトルク制御によって、風車のロータ回転数が定格ロータ回転数を下回らないような制御を行っており、さらに効率的な制御が望まれている。
 例えば、特許文献1では、風力タービンの機械的負荷が低下した場合に、ロータ回転速度調整プログラムが起動される。ロータ回転速度調整プログラムでは、初期ロータ回転速度設定値よりも大きい調整ロータ回転速度設定値を決定し、風力タービンの最大ロータ回転速度設定値が増加される。これによりエネルギー捕捉量が増加される。
 また、特許文献2では、定格発電出力に至る風速である第1の風速以上である場合に、ロータ回転速度を定格値に保持するとともに、第1の風速未満かつロータ回転速度が定格ロータ回転速度に至る風速である第2の風速以上の場合に、風速の増加に従ってロータ回転速度の目標値であるロータ回転速度目標値を、定格ロータ回転速度より大きい値に上昇させる第1の運転モードと、風速の増加に従ってロータ回転速度目標値を定格ロータ回転速度より大きい値から定格ロータ回転速度まで減少させる第2の運転モードとを実行可能である。
日本国特開2009-287564号公報 日本国特開2018-119427号公報
 特許文献1の技術では、風力発電システムの定格発電出力を上昇させ、より大きな発電出力を得ることが可能であるが、発電機や電力変換器等を含めた電機機器等の各要素が定格発電出力以上の運転を実施することになり、当初の設計値を上回る負荷が加わる場合には、その容量等に大きなマージンを備えている必要があるなどの課題がある。
 また、特許文献2の技術は、風車のロータ回転数が定格ロータ回転数に到達していない場合に,目標ロータ回転数を増加させる手法であり、ロータ回転数が一時的(瞬間的)に定格ロータ回転数を超過することとなるため,当初設計以上の荷重が負荷される可能性がある。さらには,山岳地形等、風力発電装置が山間部等に設置される場合、複雑な地形起伏に起因する風速の変動に伴い、ロータ回転数の大きな変動が発生する。
 以上のように、特許文献1~2では、高い発電量を得るために、一時的に目標ロータ回転数を高く設定することで発電量の増加を図っている。一般の風力発電装置においては、ロータ回転数が一定の許容値(閾値)を超過した場合、風車装置保護の観点から風車が緊急停止する。目標ロータ回転数を増加させる手法は過回転状態を誘発し、結果的に風車の稼働率を低下させるおそれがあり、運用上望ましくない。
 図3にロータの回転数と設定トルクの関係を示す。図3には、通常の設定トルクの制御値を示している。一般に、設定トルクはロータ回転数の2乗に比例させて付与することで、風車ロータの空力特性を最適に保つことが可能であり、ロータ回転数が低い場合にはこの設定トルクに従う(最適トルクカーブ)。
 一方、発電機およびその他の機器には、装置保護上、ロータ回転数とトルクに制限がある。この制限のため、すべてのロータ回転数で、最適トルクカーブを維持することは困難である。したがって、発電機等の機器要求により、定格ロータ回転数、定格トルクが設定される。この設定のときの発電出力を定格出力という。また、定格出力を達成する風速を定格風速という。定格ロータ回転数と、最適トルクカーブを維持できる最大ロータ回転数とは、一般に乖離するため、トルクが急激に増加する領域が発生する。
 ここで、従来の制御装置においては、最適トルクカーブに沿って発電できるロータ回転数領域を広くすることで、発電出力を増加させるように制御している。しかし、一般に装置のロータ回転数には装置保護のための上限がある。さらに、従来の制御においては、特に風速が時間的に増加する場合について示されており、風速が低下する場合の設定について記載がない。風速が低下する場合の従来の制御は、通常のトルク制御(図3中の実線に対応)に従うものと考えられる。このため、定格ロータ回転数から最適トルクカーブを維持できる最大ロータ回転数の間で運転される場合、発電効率の低下は避けられない。
 本開示は、時間的に変化する風速という条件下において、特に定格ロータ回転数の近傍で風力発電装置が運転され、風速が時間的(一時的)に減少する場合に、発生する発電量の減少を抑制できる制御内容を提供することを目的としている。
 本開示の一態様に係る制御部は、
 風車と、前記風車のロータの回転によって発電を行う発電機と、を備える風力発電装置の発電出力を制御する制御部であって、
 前記制御部は、前記発電機による発電出力が定格値を目指すように制御する定格出力モードを有し、
 前記定格出力モードにおける前記風車のロータ回転数が、所定のロータ回転数低下の状態となった場合、
  前記発電機にかかるトルクを低下させて前記ロータ回転数の低下を抑制する第1制御と、
  次いで、前記ロータ回転数の低下が抑制された状態で前記トルクを増加させて前記発電出力を一時的に増加させる第2制御と、
 を有する一時発電出力増加処理を行うように構成されている。
 また、前記制御部は、前記風車のブレードの取り付け角度を変更するピッチ制御を行うように構成されていてもよい。
 また、前記制御部は、前記一時発電出力増加処理の実行中に、前記ピッチ制御を通常時のピッチ制御と異なるものに設定可能としてもよい。
 また、前記した所定のロータ回転数低下の状態は、前記定格出力モードにおける前記ロータ回転数に対し、ロータ回転数が所定数に低下または所定の比率でロータ回転数が低下した状態であってもよい。
 また、前記した所定のロータ回転数低下の状態は、ピッチ角度の値によって判断されてもよい。
 また、前記した所定のロータ回転数低下の状態は、前記定格出力が低下した状態が所定時間継続した状態であってもよい。
 また、前記第1制御を行う時間が予め定められていてもよい。
 また、前記制御部は、前記一時発電出力増加処理を実行した後、かつ、所定の待機時間の後に、通常の制御に戻す制御を行ってもよい。
 また、前記ロータ回転数の低下が、前記ロータ回転数の低下量の減少、前記ロータ回転数の維持または前記ロータ回転数の増加の少なくともいずれかにより抑制されてもよい。
 また、前記第1制御におけるトルクの低下が、目標発電出力の低減に応じて実行されてもよい。
 また、前記第2制御は、定格出力モード以下の目標発電出力に応じてトルクを増加させるように制御されてもよい。
 また、前記制御部は、前記第2制御において前記ロータ回転数が増加する際に、増加した前記ロータ回転数が、前記定格出力モードにおける定格ロータ回転数以下となるように、前記第1制御における前記トルクの低下量および第2制御におけるトルクの増加量を定めてもよい。
 本開示の一態様に係る風力発電装置は、風車と、前記風車のロータの回転によって発電を行う発電機と、前記形態のいずれか一つに記載の制御部と、を備える。
 本開示の一態様に係る制御方法は、風車と、前記風車のロータの回転によって発電を行う発電機と、を備える風力発電装置の発電出力を制御する風力発電装置の制御方法であって
 前記発電機による発電出力が定格値を目指すように制御する定格出力モードを有し、
 前記定格出力モードにおける前記ロータ回転数が、所定のロータ回転数低下の状態となった場合、前記発電機にかかるトルクを低下させて前記ロータ回転数の低下を抑制し、次いで、前記ロータ回転数の低下が抑制された状態で前記発電機にかかる前記トルクを増加させて発電出力を一時的に増加させる一時発電出力増加処理を行う。 
 本開示の一態様に係る制御プログラムは、風車と、前記風車のロータの回転によって発電を行う発電機と、前記形態のいずれか一つに記載の制御部と、を備える風力発電装置の発電出力を制御する前記制御部で実行される制御プログラムであって、
 前記形態のいずれか一つに記載の制御または一時発電出力増加処理を前記制御部に実行させる。
 また、本開示の一態様に係る記憶媒体は、前記制御プログラムが記憶されたコンピュータ読取可能な記憶媒体である。
 本開示によれば、以下の効果を有している。
(1)本開示を適用することで、一定期間内に得られる発電量を増加できる。
(2)本開示において、目標ロータ回転数や実際のロータ回転数を増加させず、むしろ一時的に発電機にかかるトルクを低下させることで、得られる発電量を増加させる手法とすることができ、目標ロータ回転数や実際のロータ回転数を増加させることで発生する風車荷重の増加や、過回転状態に陥ることで発生しやすくなる風車停止を招くおそれがない。
(3)本開示を適用することで、発電出力低減時の電力の低下を抑制することが可能であり、結果的に期間内の発電電力の変動を緩和することで風力発電設備の電力品質を改善できる。
図1は、本開示の一実施形態における風力発電装置の概略を示す図である。 図2は、風力発電装置を制御する制御部の機能ブロックを示す図である。 図3は、トルクと風車のロータ回転数の関係を示すグラフである。 図4Aは、トルクと風車のロータ回転数の関係を示すグラフを利用した目標発電出力の低減時の設定トルクを説明する図である。 図4Bは、トルクと風車のロータ回転数の関係を示すグラフを利用した目標発電出力の低減時の設定トルクを説明する図である。 図5は、本実施形態の一例の制御方法を示すフローチャートである。 図6は、シミュレーション結果を示すハブ高さ風速、風車のロータ回転数、ピッチ角度、発電出力およびトルクの時間的変化を示すグラフである。 図7は、他のシミュレーション結果を示すハブ高さ風速、風車のロータ回転数、ピッチ角度、発電出力およびトルクの時間的変化を示すグラフである。 図8は、シミュレーションの条件を示す表である。
 以下に、本開示の一実施形態を説明する。
 本開示の一実施形態である風力発電装置1は、図1に示すように、タワー2にナセル3が地面に垂直な縦軸によって回転可能に取り付けられ、ナセル3にハブ4が取り付けられている。ハブ4にはブレード5が取り付けられている。ハブ4とブレード5からなるロータは、水平軸によって回転可能となっている。ロータは、ナセル3内に設置した発電機6に、図示しない増速機などによって連結されている。
 さらに、風力発電装置1は、風力発電装置1の発電出力を制御する制御部10を有している。ナセル3の上方には、ハブ4の風速を測定する図示しない風速計が設置されている。風速計の測定結果は、制御部10に送信される。風速計の設置箇所は特に限定されない。さらに、風力発電装置1に風速計を備えず、外部の計測データなどから風速の情報を入手するようにしてもよい。
 また、制御部10は、ナセル3の外部に設置されるものでもよく、ナセル3の内部またはタワー2の内部に設置されるものでもよく、ネットワークを介してナセル3の内部の機器と接続されるものであってもよい。制御部10は、本開示の風力発電装置の制御部に相当する。この実施形態では、風力発電装置1は水平軸風力発電装置となっているが、本開示の風力発電装置は水平軸の装置に限定されない。
 制御部10は、図2に示すように、CPU11と、記憶部12とを有している。記憶部12には、ROMやRAM、不揮発メモリ、HDD、SSDなどのコンピュータ読取可能な記憶媒体が用いられ、風力発電装置1を制御する制御プログラムや、風力発電装置1の動作パラメータ、各種設定データなどが格納されている。本実施形態の制御プログラムは記憶部12に格納されるが、本開示の制御プログラムは取り外し可能なUSBメモリなどの記憶部に格納されているものであってもよい。
 CPU11では、風力発電の制御プログラムが記憶部12などから読み出される。読み出されたプログラムは、RAM上等に展開され、CPU11とRAM等との協働などにより実行される。
 記憶部12には、定格動作モード時のピッチ制御、トルク制御、トルク-風車のロータ回転数の調整カーブなどのパラメータや、一時発電出力増加処理における第1制御に移行するためのロータ回転数低下状態の基準や、第1制御におけるトルクの低下量、予め定められた第1制御を行う時間、第2制御におけるトルクの増加量、第2制御を行う時間、一時発電出力増加処理を行う際の目標発電出力の低減量、目標発電出力の低減後の待機時間などのデータが格納される。これらのデータはオペレータによって変更可能としてもよい。
 制御部10は、風力発電装置1全体の制御を行うことができ、発電機6における発電出力制御として、ブレード5の取り付け角度を変更するピッチ制御や、ナセル3のヨー制御、発電機6のトルク制御などを行うことができる。
 風力発電装置1では、通常、定格出力モードによって運転が行われる。定格出力モードは、発電機6による発電出力が定格値を目指すように制御するモードである。風力発電装置1における定格出力モードの制御を説明する。
 定格出力モードの開始に伴って、制御部10は、現況の風車のロータ回転数を取得し、主として現況のロータ回転数に基づいて定格出力(ロータ回転数)の制御を行う。発電出力制御では、ブレード5の取り付け角度を変更するピッチ制御や、ナセル3の向きを調整するヨー制御や、発電機6のトルク制御などによって、風力発電装置1の発電出力が目標である定格出力値となるように制御する。風力発電装置1の発電出力が定格出力を維持できない場合には、図3に示すトルク-ロータ回転数の調整カーブに従って発電出力の制御を行うことができる。
 次に、本実施形態における一時発電出力増加処理について説明する。
 風力発電装置1が定格風速の近傍(ただし、定格風速以上)で運転されている場合、ロータ回転数は定格ロータ回転数に対応する運転点で運転され、負荷トルクは定格トルクに対応する運転点で運転される。この運転状態から時間が経過することに伴って風速が減少する場合、風から得られる空力トルクが減少するため、図3のトルク曲線に従って負荷トルクの運転点が低下していく。このとき、ロータ回転数に対して負荷トルクが大きく減少することから、発電出力が大きく低下する。
 後述する<風速の低下が一時的である理由>により、風速の低下は一時的であることが多いが、図3に示すトルクカーブに従った風力発電装置1の制御を行った場合、風速の増減に合わせて発電出力は激しく変動することになる。このような定格風速の近傍の運転状態において、風速の増加時は、最大発電出力が定格出力を超過しないよう制御されるため、最大発電出力は定格出力におおむね調整される。しかし、風速の減少時は、風速にしたがった発電出力となるため、風車設置サイトにおける乱流強度が高いほど、この運転領域での発電量(一定期間中に得られる発電出力の総和)は低下することとなる。
 そこで本実施形態においては、風速の低下に伴い、ロータ回転数が定格ロータ回転数よりも(わずかに)低下した場合に、風車の目標発電出力を一般に風車に備えられた目標発電出力の低減機能を利用して瞬間的に低下させることで、後述する<推定原理>により発電量の増加が可能である。
 また、本実施形態において、ロータ回転数の低下状態に関する基準を予め定めておき、この基準に従って制御を行うことができる。
 また、一般的な可変ピッチシステムを有する可変速の大型風車においては、目標発電出力を変更できる機能を有する。この機能は、通常、目標ロータ回転数と設定トルクを低下させることで実現される。この目標ロータ回転数と設定トルクは、風車制御製作者(製作メーカ)だけでなく、所有者が変更できることが多い。本実施形態では、動作中にこの機能を使用できるようにすることで、製作メーカ以外が容易に目標発電出力の制御を実施できる特徴を有する。また既存の制御システムを変更することなく目標発電出力の制御を適用できる特徴を有する。
 なお、目標発電出力を低下させる制御の過程で発電出力が一度低下するが、これは、既存の目標発電出力の低減機能を利用した場合である。目標ロータ回転数を定格ロータ回転数よりも増加させずに、実際のロータ回転数を一時的に(定格ロータ回転数を超過しない範囲で)増加させることが重要であるため、目標発電出力を定格出力のまま、負荷トルクを一時的に低下させることでロータ回転数を増加させる機能を設けてもよい。
 以下に、目標発電出力の低減機能について説明する。
 目標発電出力の低減機能について、図4A及び図4Bを用いて説明する。目標発電出力の低減機能は、一般のピッチ制御、可変速の大型風車の制御に一般的に用いられている機能であり、通常、目標発電出力は定格出力に設定される。目標発電出力は系統要求や運転制御、運転状態により任意に低減する方向に変更が可能である。目標発電出力を低下させた場合、ロータ回転数とトルクを同時に低下させる方向に制御(動作)する(図4A、図4B)。
 したがって、定格出力で運転されている状態で目標発電出力を低減させるよう指令(制御)した場合、風力発電装置は、ピッチ制御によりロータ回転数を低下させようとすると同時に、目標発電出力にあわせて現在の発電出力を低下させるために、設定トルクを低減させるように制御される。このとき、ピッチ制御はトルク制御に比べて制御効果が得られるまでに時間を要するために、一時的にロータ回転数が僅かに増加することとなる。ただし、この動作(制御)は、ロータ回転数が定格ロータ回転数よりも低下した場合に実施するため、この動作によるロータ回転数の増加は、定格ロータ回転数を超過しない程度に制御される。ここで、この制御動作の期間中、目標ロータ回転数は常に定格ロータ回転数以下であるため、ロータ回転数が目標値を超過した場合は直ちに目標値以下になるようにロータ回転数が制御される。
 なお、図3、図4A及び図4Bに示したグラフは一例であり、本開示におけるロータ回転数とトルクの関係は図示したものに限定されない。
<推定原理>
 風速が低下していく場合、ロータの回転数が下がってしまうと、ロータは運動エネルギーを失うため、次に風速が増加した場合に、得られる空力トルクは、ロータの加速と発電の両方に使用される。一方で、風速の低下が僅かな場合は、ロータ回転数を高く保っておくことで、ロータの運動エネルギーを高く維持することができるため、次に風速が増加した場合に直ちに発電エネルギーを得ることが可能であると推定される。風速の変動が激しい場合、風速が低下した後すぐに風速が増加する状態が頻発する。
<風速の低下が一時的である理由>
 一般に特定サイトにおける風速は、気圧配置や温度等により決定されるため、それらが同一程度とみなせる時間内(10分から1時間程度)では風速は概ね一定と考えられる。一方、山岳地等、地形形状が複雑な場所に風力発電装置1が設置される場合、地形形状に起因して風の乱れ(乱流)が高くなる。これにより、地形形状が複雑な場所に設置される風力発電装置1では、平坦地形に設置される場合に比較して、一定時間の平均の風速(平均風速)が同程度であっても、風速の変動(乱流強度)が大きくなることが知られている。このような風速変動は、上流に位置する地形(山岳)の剥離流れが起因しており、剥離に伴い発生する大規模剥離渦や、地形せん断による細かい渦系が混合して連続的に対象地点に流入して変動する(数秒程度の間隔で変動する)。この風速変動は、減少と増加を繰り返すことになるため、風速が低下した場合は数秒から数十秒の間に風速の低下から復帰することが多い。
 以下に、本実施形態における一時発電出力増加処理の制御方法を、図5のフローチャートにより説明する。なお、以下の制御方法は、制御部10で動作するプログラムによって実行することができる。
 風力発電装置1の制御開始に伴い、風車が定格風速の近傍で運転されていることを判断するためにピッチ角度を取得する。取得したピッチ角度の値が閾値以下である場合、制御部10は、取得したピッチ角度が制御対象領域であると判断する(ステップs1)。有効ピッチ角度範囲である閾値は、例えば最大開き角度+3deg以下である。この閾値は、予め設定されて、記憶部12などに格納されており、必要に応じて記憶部12などから読み出される。
 取得したピッチ角度の値が閾値以下でなければ(ステップs1でNo)、待機する。すなわち、ピッチ角度の値が閾値以下であるかどうかの判断(ステップs1)を繰り返す。
 取得したピッチ角度の値が閾値以下であれば(ステップs1でYes)、制御部10は、ロータの回転数が低下する傾向であると判断する(ステップs2)。ロータ回転数低下の状態であるかどうかの判断条件は、予め設定されて、記憶部12などに格納されており、必要に応じて記憶部12などから読み出される。ロータ回転数低下の状態であることは、例えば、ロータ回転数低下の状態が所定時間継続した場合に、ロータ回転数低下の状態であると判断することができる。
 ロータ回転数が低下した状態であるかどうかの判断については、上記実施形態ではピッチ角度の状態で判断したが、この態様に限らず、測定された風速の測定結果によって判断するものであってもよい。ロータ回転数が低下した状態であるかどうかの判断は、本実施形態では定格ロータ回転数に対する減少量や減少比率、定格出力が低下した状態が所定時間継続した状態であることなどによって判断することができるが、本開示としては特定の条件に限定されるものではない。
 一時発電出力増加処理のプロセスにおいては、ロータ回転数の1秒平均値と瞬時値を用いて、1秒平均ロータ回転数が所定回転数以上(例えば18.7rpm以上)かつ瞬時ロータ回転数が所定ロータ回転数(例えば18.7rpm)を下回ったときに、ロータ回転数が低下する傾向であると判断する(ステップs2でYes)。その後、発電出力を規定量に低下させるように設定する(ステップs3)。ステップs3では、例えば、発電出力を、定格出力(例えば2000kW)から低下した目標発電出力(例えば1800kW)に低減するように設定する。次に、発電出力制限の制御を維持する。すなわち、目標発電出力が低下した状態を維持する(ステップs4)。次に、規定時間(この例において1秒)、目標発電出力の低減が維持されたかを判断する(ステップs5)。ステップs5における規定時間は、予め設定されて、記憶部12などに格納されており、必要に応じて記憶部12などから読み出される。
 制御部10は、目標発電出力を抑制する抑制時間が規定時間(規定値)に至らなければ(ステップs5でNo)、目標発電出力の制限を維持し(ステップs4)、目標発電出力を抑制する時間が規定時間(規定値)以上であるか(ステップs5)の判断を繰り返す。この目標発電出力の制限は、本開示の第1制御に相当する。
 制御部10は、目標発電出力を抑制する抑制時間が規定時間(規定値)以上である場合(ステップs5でYes)、目標発電出力の制限を解除する(ステップs6)。さらに連続して目標発電出力が制御されることが無いように、一定の規定時間(この例において10秒)経過(ステップs6)した後、再度、目標発電出力の監視状態に戻る。目標発電出力の制限後、監視状態に戻る過程は、本開示の第2制御に相当する。すなわち、第2制御は、ロータ回転数の低下が抑制された状態でトルクを増加させて発電出力を一時的に増加させる制御であり、定格状態に戻るようにトルクを戻すことによって行うことができる。ただし、第2制御では、定格トルクとは異なるトルクに増加させるものであってもよい。なお、一時発電出力増加処理を実行した後、かつ、所定の待機時間の後に、通常の制御に戻す制御を行うが、この「通常の制御に戻す制御」とは風力発電装置の本来の制御に戻す操作をいう。
 なお、本実施形態では、目標発電出力の低減を制御することで、トルクの低減とともに、ピッチ制御により風車のロータ回転数を低下させるものとしている。しかし、目標発電出力の低減では、ピッチ制御を行わないようにしたり、ピッチ制御の調整量を小さくするようにしたり、通常時のピッチ制御とは異なるようにしたりしてもよく、予め通常時と異なるピッチ制御を行うかを設定可能にできるものとしてもよい。ここで、通常時のピッチ制御とは、定格出力におけるピッチ制御である。
 ただし、目標発電出力の低減においてピッチ制御を行うことで、風速の低下時にピッチがフェザー方向(発電出力を低下させる方向)にあらかじめ制御されるので、風速が後に急上昇した際に、ロータ回転数が急増しにくくなる。このため、過回転による風車運転停止リスクを低減できる。
 図6に、本開示の効果をシミュレーションにより検証した結果について示す。
 シミュレーションは、図8に示す条件で行った。解析ソフトには、Bladed Ver4.7(商標)を用いた。
 図6に示すシミュレーションでは、同一の流入風(3次元乱流風)に対する風車挙動を解析しており、従来制御と本実施形態の制御状態について挙動の違いを示している。時間20秒頃の挙動において、本実施形態の制御作動ではロータ回転数の低下を検知して目標発電出力の低減の制御を行うため、発電出力が減少するとともに、ロータ回転数が僅かに増加した。本実施形態のこの制御により、その後の発電出力は増加したことが確認できる。
 図7は、他のシミュレーション結果を示す図である。図6と同様に、図7において、時間10秒頃に目標発電出力の低減状態が変化した(作動した)様子が確認できる。図7に示す例においては、時間17秒頃において最大ロータ回転数に到達するが、従来制御に比べて本実施形態の制御作動では最大ロータ回転数が低下した。この図7から、本実施形態の制御においては、発電量の増加だけでなく、その後に発生する突風に対して到達ロータ回転数を抑制する効果もあることが分かる。これにより、風力発電装置1における電力の変動が緩和されるとともに、過回転による風車運転停止のリスクを低減できる。
 以上、本開示について、上記実施形態に基づく説明を行ったが、本開示の範囲は上記の説明の内容に限定されるものではない。上記実施形態は、本開示の範囲を逸脱しない限りは適宜の変更が可能である。
 本出願は、2020年3月3日出願の日本特許出願(特願2020-035737号)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (16)

  1.  風車と、前記風車のロータの回転によって発電を行う発電機と、を備える風力発電装置の発電出力を制御する制御部であって、
     前記制御部は、前記発電機による発電出力が定格値を目指すように制御する定格出力モードを有し、
     前記定格出力モードにおける前記風車のロータ回転数が、所定のロータ回転数低下の状態となった場合、
      前記発電機にかかるトルクを低下させて前記ロータ回転数の低下を抑制する第1制御と、
      次いで、前記ロータ回転数の低下が抑制された状態で前記トルクを増加させて前記発電出力を一時的に増加させる第2制御と、
     を有する一時発電出力増加処理を行うように構成されている、制御部。
  2.  前記制御部は、前記風車のブレードの取り付け角度を変更するピッチ制御を行うように構成されている、請求項1記載の制御部。
  3.  前記制御部は、前記一時発電出力増加処理の実行中に、前記ピッチ制御を通常時のピッチ制御と異なるものに設定可能とする、請求項2記載の制御部。
  4.  前記した所定のロータ回転数低下の状態は、前記定格出力モードにおける前記ロータ回転数に対し、ロータ回転数が所定数に低下または所定の比率でロータ回転数が低下した状態であることをいう、請求項1~3のいずれか1項に記載の制御部。
  5.  前記した所定のロータ回転数低下の状態は、ピッチ角度の値によって判断することをいう、請求項1~3のいずれか1項に記載の制御部。
  6.  前記した所定のロータ回転数低下の状態は、定格出力が低下した状態が所定時間継続した状態であることをいう、請求項1~5のいずれか1項に記載の制御部。
  7.  前記第1制御を行う時間が予め定められている、請求項1~6のいずれか1項に記載の制御部。
  8.  前記制御部は、前記一時発電出力増加処理を実行した後、かつ、所定の待機時間の後に、通常の制御に戻す制御を行う、請求項1~7のいずれか1項に記載の制御部。
  9.  前記ロータ回転数の低下が、前記ロータ回転数の低下量の減少、前記ロータ回転数の維持または前記ロータ回転数の増加の少なくともいずれかにより抑制される、請求項1~8のいずれか1項に記載の制御部。
  10.  前記第1制御における前記トルクの低下が、目標発電出力の低減に応じて実行される請求項1~9のいずれか1項に記載の制御部。
  11.  前記第2制御は、定格出力モード以下の目標発電出力に応じて前記トルクを増加させるように制御する、請求項10に記載の制御部。
  12.  前記制御部は、前記第2制御において前記ロータ回転数が増加する際に、増加した前記ロータ回転数が、前記定格出力モードにおける定格ロータ回転数以下となるように、前記第1制御における前記トルクの低下量および第2制御におけるトルクの増加量を定める、請求項1~11のいずれか1項に記載の制御部。
  13.  風車と、前記風車のロータの回転によって発電を行う発電機と、請求項1~12のいずれか1項に記載の制御部と、を備える風力発電装置。
  14.  風車と、前記風車のロータの回転によって発電を行う発電機と、を備える風力発電装置の発電出力を制御する風力発電装置の制御方法であって
     前記発電機による発電出力が定格値を目指すように制御する定格出力モードを有し、
     前記定格出力モードにおける前記風車のロータ回転数が、所定のロータ回転数低下の状態となった場合、前記発電機にかかるトルクを低下させて前記ロータ回転数の低下を抑制し、次いで、前記ロータ回転数の低下が抑制された状態で前記発電機にかかる前記トルクを増加させて発電出力を一時的に増加させる一時発電出力増加処理を行う、制御方法。
  15.  風車と、前記風車のロータの回転によって発電を行う発電機と、請求項1~12のいずれか1項に記載の制御部と、を備える風力発電装置の発電出力を制御する前記制御部で実行される制御プログラムであって、
     請求項1~12のいずれか1項に記載の制御または一時発電出力増加処理を前記制御部に実行させる、制御プログラム。
  16.  請求項15に記載の制御プログラムが記憶されたコンピュータ読取可能な記憶媒体。
PCT/JP2021/007711 2020-03-03 2021-03-01 風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体 WO2021177232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21765163.7A EP4116578A4 (en) 2020-03-03 2021-03-01 CONTROL UNIT FOR WIND POWER GENERATING DEVICE, WIND POWER GENERATING DEVICE, CONTROL METHOD AND CONTROL PROGRAM FOR WIND POWER GENERATING DEVICE, AND RECORDING MEDIUM
CN202180017977.2A CN115210465A (zh) 2020-03-03 2021-03-01 风力发电装置的控制部、风力发电装置、风力发电装置的控制方法、控制程序及存储介质
BR112022017150A BR112022017150A2 (pt) 2020-03-03 2021-03-01 Unidade de controle para dispositivo de geração de energia eólica, dispositivo de geração de energia eólica, método de controle e programa de controle para dispositivo de geração de energia eólica e meio de armazenamento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-035737 2020-03-03
JP2020035737A JP2021139306A (ja) 2020-03-03 2020-03-03 風力発電装置制御部、風力発電装置、風力発電装置制御方法および制御プログラム

Publications (1)

Publication Number Publication Date
WO2021177232A1 true WO2021177232A1 (ja) 2021-09-10

Family

ID=77613462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007711 WO2021177232A1 (ja) 2020-03-03 2021-03-01 風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体

Country Status (5)

Country Link
EP (1) EP4116578A4 (ja)
JP (1) JP2021139306A (ja)
CN (1) CN115210465A (ja)
BR (1) BR112022017150A2 (ja)
WO (1) WO2021177232A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296189A (ja) * 2005-03-18 2006-10-26 Yaskawa Electric Corp 風力発電装置の発電機制御方法およびその装置
JP2010200533A (ja) * 2009-02-26 2010-09-09 Sinfonia Technology Co Ltd 風力発電システム、及び風力発電システムの失速制御方法
US20150233349A1 (en) * 2012-10-02 2015-08-20 Vestas Wind Systems A/S Wind turbine control
JP2017180151A (ja) * 2016-03-29 2017-10-05 株式会社日立製作所 風力発電装置、ウィンドファームまたは風力発電装置の運転方法
JP2020035737A (ja) 2018-06-15 2020-03-05 フルークコーポレイションFluke Corporation エンクロージャ内の電気信号へのパススルーアクセスを提供する電気パネルアダプタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420289B2 (en) * 2006-12-06 2008-09-02 General Electric Company Method for predicting a power curve for a wind turbine
EP2594786B1 (en) * 2011-11-17 2017-01-11 ALSTOM Renewable Technologies Method of operating a wind turbine
US9115695B2 (en) * 2013-07-16 2015-08-25 Siemens Aktiengesellschaft Method and arrangement for controlling a wind turbine
JP6559559B2 (ja) * 2015-12-11 2019-08-14 株式会社日立製作所 風力発電システムおよび風力発電システムの運転方法
EP3575595B8 (en) * 2018-05-31 2023-07-26 GE Renewable Technologies Wind B.V. Methods and systems for operating a wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296189A (ja) * 2005-03-18 2006-10-26 Yaskawa Electric Corp 風力発電装置の発電機制御方法およびその装置
JP2010200533A (ja) * 2009-02-26 2010-09-09 Sinfonia Technology Co Ltd 風力発電システム、及び風力発電システムの失速制御方法
US20150233349A1 (en) * 2012-10-02 2015-08-20 Vestas Wind Systems A/S Wind turbine control
JP2017180151A (ja) * 2016-03-29 2017-10-05 株式会社日立製作所 風力発電装置、ウィンドファームまたは風力発電装置の運転方法
JP2020035737A (ja) 2018-06-15 2020-03-05 フルークコーポレイションFluke Corporation エンクロージャ内の電気信号へのパススルーアクセスを提供する電気パネルアダプタ

Also Published As

Publication number Publication date
JP2021139306A (ja) 2021-09-16
EP4116578A4 (en) 2023-08-16
BR112022017150A2 (pt) 2022-10-18
EP4116578A1 (en) 2023-01-11
CN115210465A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US8380357B2 (en) Wind turbine control
EP2022981B1 (en) Method of functioning of aerogenerator
DK3112676T3 (en) PROCEDURE FOR OPERATING A WINDOW ENERGY INSTALLATION AND A WINDOW ENERGY INSTALLATION
EP2249029B1 (en) A wind turbine
US8128362B2 (en) Method of operating a wind turbine, a wind turbine and a cluster of wind turbines
JP5204307B2 (ja) 風力発電装置の制御装置、風力発電装置、及び風力発電装置の制御方法
KR20030045197A (ko) 풍력 발전 설비 제어 방법
EP2886854A1 (en) Wind turbine control method
EP2762722B1 (en) Methods and system for operating a wind turbine coupled to a power grid
EP4033092A1 (en) Method for controlling an offshore floating tower wind turbine, and control system and wind turbine that use the method
JP6756489B2 (ja) 風力発電装置の制御方法
EP3764503B1 (en) Power converter control and operation
JP2018135772A (ja) 複数の風力発電装置の制御装置、ウィンドファームまたは複数の風力発電装置の制御方法
JP6227490B2 (ja) ダウンウインド型風車及びその停止方法
KR101475274B1 (ko) 풍력발전기의 피치 제어 시스템 및 그 방법
WO2021177232A1 (ja) 風力発電装置の制御部、風力発電装置、風力発電装置の制御方法、制御プログラムおよび記憶媒体
US11965483B2 (en) Method for operating a wind farm, wind power installation and wind farm
TW201938904A (zh) 風力發電裝置的控制方法
CN113090457A (zh) 用于运行风能设备的方法,风能设备和风电场
TWI753664B (zh) 風力發電裝置
US20240026857A1 (en) Method for operating a wind turbine, wind turbine, and wind park
WO2013108484A1 (ja) 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
EP4055269A1 (en) Pivot angle control of blades of a wind turbine with hinged blades
Hansen Control/regulation and safety systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765163

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017150

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021765163

Country of ref document: EP

Effective date: 20221004

ENP Entry into the national phase

Ref document number: 112022017150

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220826