WO2021177209A1 - Laminin cross-linked product, culture medium including laminin cross-linked product, three-dimensional culturing kit, culture substrate, composition, structure, and culturing method - Google Patents

Laminin cross-linked product, culture medium including laminin cross-linked product, three-dimensional culturing kit, culture substrate, composition, structure, and culturing method Download PDF

Info

Publication number
WO2021177209A1
WO2021177209A1 PCT/JP2021/007634 JP2021007634W WO2021177209A1 WO 2021177209 A1 WO2021177209 A1 WO 2021177209A1 JP 2021007634 W JP2021007634 W JP 2021007634W WO 2021177209 A1 WO2021177209 A1 WO 2021177209A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminin
collagen
cells
culture
crosslinked product
Prior art date
Application number
PCT/JP2021/007634
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 村澤
一乘 水野
和将 藤田
雄基 熊澤
志乃海 八木
暁艶 陽
Original Assignee
株式会社ニッピ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニッピ filed Critical 株式会社ニッピ
Priority to JP2022504342A priority Critical patent/JPWO2021177209A1/ja
Publication of WO2021177209A1 publication Critical patent/WO2021177209A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present disclosure relates to a laminin crosslinked product, a culture medium containing a laminin crosslinked product, a three-dimensional culture kit, a culture substrate, a composition, a structure, a culture method, and the like.
  • Patent Document 1 as a 3D scaffold, a porous alginate sponge, a biodegradable poly (urethane urea) polymer, an emulsion template polystyrene, a synthetic nanofiber composite material, and a porous sponge made of poly (L-lactic acid) are used. Is illustrated.
  • a collagen-binding molecule is bound to at least one of the N-terminal of the ⁇ chain, the N-terminal of the ⁇ chain, and the N-terminal of the ⁇ chain of the laminin fragment forming a laminin or a heterotrimer.
  • a modified laminin characterized by this, and it is used as a culture medium for pluripotent stem cells and the like (Patent Document 2).
  • Patent Document 2 As an extracellular matrix material that replaces Matrigel (registered trademark), it is an object of the present invention to provide an extracellular matrix material that is useful for constructing a three-dimensional tissue structure for regenerative medicine that is safe for humans.
  • collagen-binding molecule a fragment containing collagenase or a collagen-binding active site thereof is used, and in the examples, a modified human laminin to which the collagen-binding molecule is bound is produced by gene recombination.
  • Patent Document 3 there is also a medium composition containing a structure capable of suspending and culturing cells or tissues, which contains either collagen, hyaluronic acid or proteoglycan as an extracellular matrix. It provides a medium composition for culturing animal and plant cells and tissues in a three-dimensional or floating state, and according to the above medium composition, the cells and tissues are maintained in a floating state without increasing the viscosity in a liquid medium. It is said that it can grow, differentiate or maintain as it is.
  • the present disclosure describes laminin cross-linked products suitable for culturing epithelial cells, endothelial cells and other somatic cells, pluripotent stem cells and tissues containing them, culture media and structures suitable for three-dimensional culture containing laminin cross-linked products, and the like.
  • An object of the present invention is to provide related substances, a culture method, and the like.
  • hyaluronic acid and collagen which are extracellular matrix (ECM) components, can bind to laminin and its E8 fragment via a cross-linking agent to form a laminin cross-linked product.
  • ECM extracellular matrix
  • the present disclosure describes a laminin crosslinked product in which collagen and / or glycosaminoglycans having a molecular weight of 1 ⁇ 10 4 to 5 ⁇ 10 6 are bound to laminin or a laminin fragment having a partial structure of the laminin by a cross-linking agent. It is to provide.
  • the present disclosure also provides the laminin crosslinked product, wherein the laminin fragment is a laminin fragment having an integrin-binding activity of the laminin.
  • the present disclosure also provides the laminin crosslinked product in which the glycosaminoglycan is hyaluronic acid or chondroitin.
  • the laminin is any one or more of laminin 511, laminin 332, laminin 111, laminin 121, laminin 211, laminin 221 and laminin 311, laminin 321 and laminin 411, laminin 421, or laminin 521. It provides the laminin crosslinked product.
  • the present disclosure also provides the laminin crosslinked product, wherein the laminin fragment is a laminin E8 fragment.
  • the present disclosure also provides a culture medium containing the laminin crosslinked product and a temperature-responsive substrate that remains in a solution state at 10 ° C. or lower and becomes a gel at 20 to 45 ° C.
  • the present disclosure also provides the culture medium, which is characterized in that the temperature-responsive substrate is collagen.
  • the present disclosure also provides a three-dimensional culture kit containing the culture medium and a pH adjuster.
  • the present disclosure further provides the above-mentioned three-dimensional culture kit containing a culture solution.
  • the present disclosure also provides a culture medium, characterized in that the laminin crosslinked product is coated with collagen and / or gelatin.
  • the present disclosure also provides a composition containing the laminin crosslinked product and collagen and / or gelatin.
  • the present disclosure also provides a structure composed of the laminin crosslinked product and collagen and / or gelatin.
  • the present disclosure also provides a method for culturing cells or tissues, which comprises culturing in the presence of the laminin crosslinked product.
  • the present disclosure also provides a three-dimensional culture method for cells or tissues, which comprises burying cells or tissues in the culture medium and culturing the cells or tissues.
  • the present disclosure also provides the culture method in which the cells are pluripotent stem cells or somatic stem cells.
  • a laminin crosslinked product obtained by cross-linking laminin to collagen or glycosaminoglycan, a culture medium containing the laminin cross-linked product, or the like is provided.
  • FIG. A pH 7.5 collagen- (hyaluronic acid-laminin crosslinked product) mixture containing a hyaluronic acid-laminin crosslinked product and collagen is liquid at a temperature of 4 to 10 ° C., but maintains a gel state at a temperature of 20 to 35 ° C. It is a figure which shows that.
  • Example 3 using the collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared in Example 2, ureteral buds diverged in the gel in the developing kidney tissue as compared with the case of using the Matrigel of Comparative Example 1. It was confirmed that the formation of ureters was excellent, and that the formation of nephron precursor cells, which are the precursor tissues of glomeruli, was excellent at the tips of ureteral buds. It is a figure which shows the result of Example 6, and is the figure which shows the number of ureteral bud branching and the ureteral bud branching area at the time of culturing the renal tissue in the mixture gel with different final concentrations of laminin 511E8. It is a figure which shows the result of Example 7.
  • FIG. 5A is a stained image using a type I collagen antibody
  • FIG. 5B is a HABP
  • FIG. 5C is a stained image using a laminin 511E8 antibody.
  • FIGS. 5D and 5E are images obtained by freeze-drying the mixture gel and collagen gel, depositing platinum on them, and capturing the images with a scanning electron microscope.
  • Example 9 It is a figure which shows the result of Example 9, and is the figure which shows the result of having evaluated the gelation ability of a collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared using various collagens. It is a figure which shows the result of Example 10, and is the result of embedding culture of collagen- (hyaluronic acid-laminin crosslinked product) mixture, collagen- (hyaluronic acid-laminin uncrosslinked product) mixture, and cells derived from the developing kidney by Matrigel. It is a figure which shows.
  • Example 11 It is a figure which shows the result of Example 11, and is the figure which shows the result of embedding and culturing the cells derived from the developing kidney with collagen- (hyaluronic acid-laminin crosslinked product) mixture and Matrigel for 1 week. It is a figure which shows the result of Example 11, and is the figure which shows the result of embedding and culturing the cell derived from the developing kidney with a collagen- (hyaluronic acid-laminin crosslinked product) mixture and Matrigel.
  • Example 12 It is a figure which shows the result of Example 12, and the molecular weight of hyaluronic acid is changed to prepare the collagen- (hyaluronic acid-laminin cross-linked product) mixture, and this mixture is used for the cell derived from the developmental kidney cell for 7 days. It is a figure which showed that the difference in the molecular weight of hyaluronic acid causes a difference in renal tissue organization. It is a figure which shows the result of Example 13. It is a figure which shows the result of culturing the cell of the developmental kidney origin on the gel on the upper surface of the type I + type IV mixture gel and the type I mixture gel. It is a figure which shows the result of Example 14.
  • the results of embedding and culturing cells derived from developing kidney using a type I mixture, a type I + type III mixture, and a type I + V type mixture are shown. It is a figure which shows the result of Example 14, and shows the result of embedding culture of the cell derived from the developmental kidney using the type I + type IV mixture. It is a figure which shows the result of Example 15.
  • the results of embedding and culturing cells derived from the developing liver and cells derived from the intestinal tract using a collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared by using laminin 332E8 and laminin 111E8 instead of laminin 511E8 are shown. .. It is a figure which shows the result of Example 16.
  • the results of embedding and culturing cells derived from the developing kidney using a collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared using DSG instead of genipin are shown.
  • the first of the present disclosure is laminin cross-linking in which collagen and / or glycosaminoglycans having a molecular weight of 1 ⁇ 10 4 to 5 ⁇ 10 6 are bound to laminin or a laminin fragment having a partial structure of the laminin by a cross-linking agent. It is a thing.
  • Glycosaminoglycans are long-chain, normally unbranched polysaccharides that are ubiquitous in all tissues, especially connective tissues in animals. In their natural form, hyaluronic acid, chondroitin, heparin, keratan sulfate, etc. There is.
  • hyaluronic acid and chondroitin which are ECM components, can be preferably used.
  • the molecular weight of the glycosaminoglycan used is 1 ⁇ 10 4 to 5 ⁇ 10 6 , preferably 2 ⁇ 10 4 to 4 ⁇ 10 6 , and more preferably 3 ⁇ 10 4 to 4 ⁇ 10 6 . Within this range, the gel can be maintained after being mixed with collagen and heated to a temperature of 20 to 45 ° C.
  • Collagen is one of the proteins that mainly make up the dermis, ligaments, tendons, bones, cartilage, etc. of vertebrates, and is contained in crustaceans, mollusks, etc.
  • the collagen used in the present disclosure may be derived from any animal, and the animal species is not limited.
  • enzyme-treated solubilized collagen in which collagen tissue contained in raw materials such as animal skin and bone is solubilized by adding protease such as pepsin, alkali-treated solubilized collagen solubilized by adding alkali, and acid are added. Solubleized acid-treated solubilized collagen can be used.
  • a salting out method or an isoelectric point precipitation method is generally adopted.
  • Collagen includes fibrous collagen that forms fibers and non-fibrotic collagen that does not form fibers, and is named by Roman numerals such as type I, type II, type III, IV, and V.
  • the collagen used in the present disclosure is not particularly limited as long as it has a triple helix structure at least in part, is a solution at a temperature of 10 ° C. or lower, and can be gelled at a temperature of 20 to 45 ° C. Further, asparagine residue, glutamine residue and the like may be deamidated and changed to aspartic acid residue and glutamic acid residue at the time of alkali solubilization of collagen.
  • the animal species from which it is derived does not matter.
  • the extract is not limited to an extract from animal tissue, and may be purified from collagen high-expressing cells using a known technique or produced as a recombinant protein.
  • CHO cells or tobacco cells may be synthesized by genetic recombination technology.
  • Laminin is an ECM component that interacts with the cell surface receptor "integrin” and transmits signals necessary for maintaining cell function and controlling proliferation and differentiation induction. Its structure is a cross-shaped molecule in which ⁇ , ⁇ , and ⁇ chains are associated in a coiled coil region, and there are several types in each chain. Therefore, 5 types of ⁇ chains (LAMA1 to 5), 4 types of ⁇ chains (LAMB1 to 4), and 3 types of ⁇ chains (LAMC1 to 3) are combined and called, and laminin 511 means laminin ⁇ 5 ⁇ 1 ⁇ 1. Each laminin has its own unique effect.
  • laminin 511 As the laminin used in the present disclosure, it is preferable to use laminin 511, laminin 332, laminin 111, laminin 121, laminin 211, laminin 221 or laminin 311, laminin 321 or laminin 411, laminin 421 or laminin 521.
  • the origin of laminin is not particularly limited, and laminin derived from various organisms can be used. It is preferably a mammalian-derived laminin. Examples of mammals include, but are not limited to, humans, mice, rats, cows, pigs and the like. Further, it may be produced by the gene recombination technique by appropriately using a known gene recombination technique. Nucleotide sequence information of genes encoding ⁇ -chain, ⁇ -chain, and ⁇ -chain constituting laminin of major mammals and amino acid sequence information of each chain can be obtained from a known database (GenBank, etc.).
  • laminin fragment having a partial structure of the laminin there is a laminin fragment having an integrin-binding activity.
  • a laminin fragment having integrin-binding activity can bind to integrin and exert the same effect as full-length laminin.
  • the integrin binding site of laminin 511 consists of three spherical domains (LG1-3) on the ⁇ -chain C-terminal side of the laminin molecule and a ⁇ -chain C-terminal region ( ⁇ -tail).
  • laminin E8 fragment is a fragment forming a heterotrimer obtained by digesting mouse laminin 111 with elastase and identified as a fragment having strong cell adhesion activity (Edgar D et). al., J.Cell Biol., 105: 589-598, 1987).
  • the "laminin E8 fragment” in the present disclosure broadly includes a fragment of laminin having a site capable of binding to integrin, and may be derived from any animal species or laminin species. Furthermore, the "laminin E8 fragment” does not need to be a digested product of laminin elastase, but may be produced by genetic recombination or the like.
  • the integrin binding site of laminin 511 consists of three spherical domains (LG1-3) on the ⁇ -chain C-terminal side of the laminin molecule and the ⁇ -chain C-terminal region ( ⁇ -tail), and N of the ⁇ -chain.
  • the laminin fragment having an integrin-binding activity is not limited to a laminin fragment having a heterotrimer on condition that it has an integrin-binding activity.
  • the fact that the laminin fragment has integrin-binding activity can be confirmed by a solid-phase binding assay or the like, and the fact that the laminin fragment forms a heterotrimer indicates that the laminin fragment forms SDS-PAGE. It can be confirmed by detecting the number of bands and the like.
  • laminin fragments having integrin-binding activity can also be used.
  • a laminin fragment include iMatrix-511, iMatrix-411, and iMatrix-221 manufactured by Nippi Co., Ltd.
  • a laminin crosslinked product composed of laminin or a laminin fragment having integrin-binding activity is excellent in integrin-binding ability. Therefore, this laminin crosslinked product can be used in place of or in addition to collagen, glycosaminoglycan, and laminin in the conventional culture medium.
  • the laminin fragment used in the present disclosure is not limited to those having integrin-binding activity.
  • Laminin is known to have various functions other than integrin binding.
  • the LG domain of the laminin ⁇ chain has binding sites such as lutelan and syndecane and is involved in the regulation of cell adhesion.
  • Such a laminin fragment may be used as long as it has a partial structure of laminin.
  • cross-linking such a laminin fragment with collagen or glycosaminoglycan the activity of laminin can be utilized.
  • the amount of laminin and laminin fragment used is 0.01 to 1000 parts by weight, more preferably 0.05 to 500 parts by weight, particularly preferably 0.05 to 500 parts by weight, based on 100 parts by weight of the total amount of collagen and glycosaminoglycan constituting the laminin crosslinked product. It is preferably 1 to 10 parts by weight. This is because cell culture using a laminin crosslinked product prepared in this range is excellent in tissue formation that mimics the in vivo of monodisperse cells derived from a living body.
  • cross-linking agent used in the present disclosure those capable of cross-linking glycosaminoglycan with laminin or the laminin fragment, or those capable of cross-linking collagen with laminin or the laminin fragment can be widely used.
  • Glycosaminoglycans, collagen, and laminin contain hydroxyl groups, carboxyl groups, amino groups, amide bonds, and the like, and can be crosslinked by a cross-linking agent that binds these.
  • cross-linking agents examples include N- (6-Maleimidocaproyloxy) sullfosuccinimide, sodium salt, N-[(4-Maleimidomethyl) cyclohexyl carbonyloxy] sulfosuccinimide, sodium salt, N- (4-Maleimidobutyryloxy) sulfosuccinimide, sodium salt, N- ⁇ 6-[3- (2-Pyridyldithio) propionamido] hexanoyloxy ⁇ sulfosuccinimide, sodium salt, N- (8-Maleimidocapryloxy) sulfosuccinimide, sodium salt, Methyl (1S, 2R, 6S) -2-Hydroxy-9-(hydroxymethyl)- There are 3-oxabicyclo [4.3.0] nona-4,8-diene-5-carboxylate (genipin).
  • the blending amount of the cross-linking agent can be appropriately selected depending on the cross-linking agent used. Generally, it is 0.1 to 1000 parts by mass, more preferably 0.5 to 500 parts by mass, and particularly preferably 1 to 300 parts by mass with respect to 100 parts by mass of the total mass of laminin and the laminin fragment.
  • glycosaminoglycan, collagen, laminin or the laminin fragment are each dissolved in a solvent, and for example, a lycosaminoglycan lysate and a laminin lysate are mixed, and a cross-linking agent is added thereto.
  • a solvent include water, PBS, physiological saline, trishydroxymethylaminomethane, or physiological saline having a neutral pH of 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid.
  • the reaction is at a temperature of 4 ° C. to 24 ° C. for 0.5 to 30 hours, more preferably 1 to 20 hours.
  • a quenching agent that binds to the reactive group of the crosslinking agent can be included.
  • the addition of the quenching agent can reduce the influence of the unreacted cross-linking agent without affecting the gel strength using the laminin cross-linked product.
  • the quenching agent can be appropriately selected depending on the cross-linking agent used. For example, when the cross-linking agent is genipin, glycine, trishydroxymethylaminomethane (tris (hydroxymethyl) aminomethane, THAM), or the like can be preferably used as the quenching agent.
  • the quenching agent may be added and mixed at the time of mixing the glycosaminoglycan solution and the laminin solution, or the quenching agent may be mixed after the cross-linking reaction.
  • the blending amount is, for example, 1 to 10000 mol times, preferably 10 to 5000 mol times, and more preferably 100 to 2000 mol times with respect to genipin.
  • the obtained laminin cross-linked product can be purified by dialysis, chromatography, or the like.
  • the purified laminin crosslinked product may be dried and crushed into a powder, or may be used as it is dissolved or dispersed in a solution.
  • heat treatment may be appropriately performed as long as laminin, collagen and glycosaminoglycan are not deteriorated.
  • the cells that can be cultured with the laminin crosslinked product of the present disclosure are mammalian cells such as humans, mice, rats, cows, and pigs, and epithelial cells, endothelial cells, myocardial cells, smooth muscle cells, skeletal muscle cells, and muscle satellites.
  • Cells that are in contact with the basal membrane in vivo such as cells, nerve schwan cells, fat cells, and pluripotent stem cells; somatic stem cells such as nerve stem cells, mesenchymal stem cells, hematopoietic stem cells, heart stem cells, liver stem cells, and small intestinal stem cells.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • mGS cells pluripotent reproductive stem cells
  • pluripotent stem cells such as fusion cells of ES cells and somatic cells, tissues containing these cells Suitable for culturing.
  • the cells may be cancer cells, fusion cells, or the like, in addition to normal cells.
  • the second aspect of the present disclosure is to maintain a solution state with the laminin crosslinked product at 10 ° C. or lower, more preferably 1 to 10 ° C., particularly preferably 1 to 7 ° C., and 20 to 45 ° C., preferably 25 to 40 ° C. , More preferably a culture medium containing a temperature-responsive substrate that gels at 30-40 ° C.
  • the temperature-responsive substrate include poly (N-alkylacrylamide), poly (N-vinylalkylamide), polyvinylalkyl ether, polyethylene glycol / polypropylene glycol block copolymer, poly (N-isopropylacrylamide), collagen and the like. be.
  • collagen or poly (N-isopropylacrylamide) having a lower limit critical solution temperature near the body temperature can be preferably used.
  • an acidic collagen solution is neutralized and then heated, a plurality of collagen molecules are displaced by 65 nm to form fibrosis and form a collagen gel.
  • a liquid collagen solution with cells and medium and then adding it to various culture equipment, tertiary in the collagen gel and on the collagen gel according to the shape of the culture equipment. Original culture becomes possible.
  • G a crosslinked product of glycosaminoglycan and laminin or the laminin fragment
  • G a crosslinked product of glycosaminoglycan and laminin or the laminin fragment
  • G a crosslinked product of glycosaminoglycan and laminin or the laminin fragment
  • G a crosslinked product of glycosaminoglycan and laminin or the laminin fragment
  • G for collagen
  • the blending ratio of the laminin crosslinked product is not particularly limited. It is 0.01 to 500 parts by weight, more preferably 0.1 to 100 parts by weight, and particularly preferably 10 to 50 parts by weight with respect to 100 parts by weight of collagen. Within this range, the solution of the mixture of G-laminin crosslinked product and collagen can maintain a gel state under neutral and heating conditions at a temperature of 20 to 45 ° C.
  • a collagen concentration suitable for cell culture can be selected within the above range.
  • Other components that can be used for cell culture such as gelatin, fibronectin, vitronectin, proteoglycan, tenascin, elastin, heparin, laminin, fibrinogen (fibrin), alginate, thrombin, xanthan gum, etc., are added to this culture medium. May be good.
  • the blending ratio of the Col-laminin crosslinked product to collagen is particularly high.
  • the Col-laminin crosslinked product also gels by neutralization and heating, so that the blending amount of the laminin crosslinked product and collagen suitable for cell culture can be selected in the above range.
  • the culture medium of the present disclosure contains G-laminin cross-linked product and / or Col-laminin cross-linked product and collagen.
  • a culture medium can be prepared, for example, by dissolving or dispersing laminin crosslinked product and collagen in a solvent, respectively, and mixing them so that the blending ratio of collagen and laminin crosslinked product is within the above range. ..
  • a solvent include water, acetic acid, hydrochloric acid, PBS, physiological saline, trishydroxymethylaminomethane or physiological saline having a neutral pH of 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid. There is.
  • acetic acid or the like may be added to adjust the pH to 2 to 5.
  • concentration of the laminin crosslinked product when dissolved in the solvent is 0.000000001 to 0.003 g / mL, preferably 0.000001 to 0.003 g / mL, and more preferably 0.000004 to 0.001 g / mL.
  • the culture medium thus obtained is liquid at a temperature of 1 to 10 ° C.
  • the collagen concentration contained in the culture medium is 0.00005 to 0.005 g / mL, preferably 0.0001 to 0.003 g / mL, and more preferably 0.0004 to 0.001 g / mL.
  • the culture medium is a mixture of G-laminin crosslinked product and / or Col-laminin crosslinked product and collagen, and a pH adjuster such as Tris-HCl, sodium hydroxide, or potassium hydroxide is further added thereto.
  • the pH can be adjusted to 6.5 to 8.5 and heated to a temperature of 20 to 45 ° C. By neutralization and heating, collagen molecules associate in the mixture to become fibrous and gel-like.
  • the laminin crosslinked product contained in the mixture uniformly disperses laminin and the laminin fragment in the gel. Therefore, three-dimensional culture can be performed by seeding, embedding, and suspending cells and tissues in this gel.
  • pluripotent stem cells, somatic stem cells, or tissues containing these cells can be stably cultured in three dimensions for a long period of time.
  • concentration of laminin contained in the culture medium or the laminin fragment having a partial structure of the laminin can be appropriately selected depending on the cells and tissues used. For example, when performing three-dimensional culture of developing kidney, as shown in the examples described later, if the content is 4 ⁇ g / mL or more in the medium, the number of ureteral buds and the ureteral bud branching area should be significantly increased as compared with Matrigel. Can be done. It is preferably 1.5 to 100 ⁇ g / mL.
  • the collagen concentration of the mixed solution of collagen and the laminin crosslinked product is preferably 0.00005 to 0.005 g / mL regardless of the type of the laminin crosslinked product. This is because when neutralized and heated thereafter, collagen is fibrotic to form a gel, and the gel state can be maintained.
  • a gel is prepared and cells obtained from renal tissue are dispersed in the gel, or an aggregate of cells is embedded and cultured, or cells are placed on the gel. It was found that when the cells were dispersed and cultured on the gel, the cells formed a cell aggregate and differentiated to form a vascular structure and a glomerular structure three-dimensionally in the gel by any of the culture methods. Therefore, it is effective for the formation of organoids such as renal organoids.
  • the third of the present disclosure is a three-dimensional culture kit containing the culture medium and a pH adjuster.
  • the culture medium in the kit of the present disclosure may be one in which the laminin crosslinked product and collagen are stored in separate containers, or a mixture of the laminin crosslinked product and collagen and stored in one container. good.
  • the laminin crosslinked product and collagen may be dried products, respectively, and may be in the form of a solution or a dispersed liquid in which the laminin crosslinked product and collagen are dissolved or dispersed in a solvent.
  • a pH adjuster included in the 3D culture kit a pH adjuster that can be added to a mixture containing a laminin crosslinked product and collagen to adjust the pH to 6.5 to 8.5 can be widely used.
  • a solution in which Tris-HCl, sodium hydroxide, and potassium hydroxide are dissolved in water or the solvent can be exemplified.
  • a culture medium prepare a solution containing collagen and a laminin crosslinked product, and add a pH adjuster to the solution to adjust the pH of the solution to pH 6.5 to 8.5. Since this solution becomes a gel at a temperature of 20 to 45 ° C., it can be used for three-dimensional culture.
  • the three-dimensional culture kit of the present disclosure may further contain these solvents when the laminin crosslinked product and / or collagen is provided as a dried product.
  • a solvent physiological saline having a neutral pH of water, acetic acid, hydrochloric acid, PBS, physiological saline, trishydroxymethylaminomethane or 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid. There is water and so on.
  • the three-dimensional culture kit of the present disclosure may include a culture solution for cell culture.
  • a culture solution for cell culture examples include DMEM, EMEM, IMDM, F12K, RPMI, etc., which can be appropriately selected according to the cells and tissues to be cultured.
  • the fourth of the present disclosure is a culture substrate, characterized in that the laminin crosslinked product is coated together with collagen and / or gelatin. Since the laminin crosslinked product and collagen and / or gelatin are coated on the culture vessel, the culture operation can be easily performed. When temperature-responsive collagen is used in the culture vessel, three-dimensional culture is possible, but the culture substrate of the present disclosure is not limited to this, and even if it is intended for two-dimensional culture. good.
  • a glass or plastic petri dish, a flask, a multi-well plate, a culture slide, a microcarrier, a polymer film such as a polyvinylidene fluoride film, a test tube or other culture container can be used.
  • the collagen and / or gelatin used for coating the culture substrate is not particularly limited, and known collagen and / or gelatin used for cell culture applications can be preferably used.
  • collagen and / or gelatin When used for cell culture for regenerative medicine, it is preferable to use collagen and / or gelatin whose safety for medical use has been confirmed, and it is preferable to use collagen and / or gelatin derived from humans.
  • Collagen and / or gelatin whose safety has been confirmed for medical use includes atelocollagen (Koken), porcine skin collagen solution (Nipponham), Nippi high-grade gelatin (Nippi Co., Ltd.), and Medigelatin (Nippi Co., Ltd.). ) And so on.
  • collagen When such collagen is neutral and has a temperature responsiveness that makes it gel-like by heating, it is heated to a temperature of 20 to 45 ° C. to gel it, and cells are embedded or suspended in the gel and cultured. Three-dimensional culture can be performed in liquid.
  • the method for preparing the culture substrate of the present disclosure can be prepared, for example, by applying a mixed solution of a laminin crosslinked product and collagen and / or gelatin to a culture vessel.
  • a mixed solution of a laminin crosslinked product and collagen and / or gelatin can be performed by a conventionally known method.
  • the coating may be a step of placing the mixed solution on the culture vessel.
  • collagen has temperature responsiveness
  • the mixed solution may be adjusted to pH 6.5 to 8.5 and coated at a low temperature of 1 to 10 ° C. Since the culture substrate thus prepared gels when heated to a temperature of 20 to 45 ° C., it can be suitably used for three-dimensional culture.
  • the laminin crosslinked product and collagen and / or gelatin may be separately applied to serve as a culture medium.
  • a collagen or gelatin solution is applied to the culture vessel in advance, and then a solution of the laminin crosslinked product is applied to the formed film.
  • the coating order may be reversed.
  • collagen has temperature responsiveness
  • a collagen solution having a pH of 6.5 to 8.5 is applied to the culture vessel in advance, and the mixture is heated to a temperature of 20 to 45 ° C. to gel.
  • a solution of the laminin crosslinked product may be applied onto the gel-like product.
  • the pH of the Col-laminin crosslinked product may be adjusted to 6.5 to 8.5 after being dissolved in a solvent, and the coating may be applied at a low temperature of 1 to 10 ° C. Since the culture vessel prepared in this way gels when heated to a temperature of 20 to 45 ° C., it can be used for three-dimensional culture.
  • Suitable cells for culturing with the three-dimensional culture kit are mammalian cells such as humans, mice, rats, cows, and pigs, and epithelial cells, endothelial cells, myocardial cells, smooth muscle cells, skeletal muscle cells, and muscles.
  • Cells that are in contact with the basal membrane in vivo such as satellite cells, nerve schwan cells, fat cells, and pluripotent stem cells; somatics such as nerve stem cells, mesenchymal stem cells, hematopoietic stem cells, heart stem cells, liver stem cells, and small intestinal stem cells.
  • Stem cells ES cells (embryonic stem cells), iPS cells (artificial pluripotent stem cells), mGS cells (pluripotent reproductive stem cells), pluripotent stem cells such as fusion cells of ES cells and somatic cells, including these cells Suitable for culturing tissues.
  • the cells may be cancer cells, fusion cells, or the like, in addition to normal cells.
  • the three-dimensional culture kit is not limited to the above cells, and can be suitably used for culturing tissues containing these cells.
  • the shape of this composition may be powder, granules, other granules, liquid dissolved or dispersed in a solvent, or semi-solid gel.
  • the laminin crosslinked product is previously dried and pulverized to obtain a granular laminin crosslinked product, which is mixed with powder or other granular collagen and / or gelatin, respectively, and appropriately pulverized, granulated, etc. to granulate.
  • the laminin crosslinked product, collagen and / or gelatin can be dissolved or dispersed in a solvent, respectively, and mixed to obtain a liquid composition. Further, a laminin crosslinked product or a gel-like product mixed with collagen can be prepared.
  • the blending ratio of the laminin crosslinked product, collagen and / or gelatin in this composition is not particularly limited.
  • the laminin crosslinked product contains a laminin fragment and can be used in place of a conventionally known laminin fragment, collagen can be used as a culture medium, and gelatin can be used as a nutritional component during cell culture. can.
  • it can be blended within a range in which a desired effect is exhibited, depending on the intended use.
  • composition of the present disclosure When the composition of the present disclosure is granular in shape, for example, it can be used as one component to be added to the culture medium at the time of cell culture.
  • the composition of the present disclosure When the composition of the present disclosure is liquid, it can be applied to a culture vessel and used as a culture substrate.
  • a solvent examples include water, acetic acid, hydrochloric acid, PBS, physiological saline, trishydroxymethylaminomethane or physiological saline having a neutral pH of 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid.
  • the composition of the present disclosure When the composition of the present disclosure is in the form of a gel, it can be used for cell or tissue culture in the form of a gel.
  • the use of the composition of the present disclosure is not limited to cell and tissue culture, and can also be used for hemostasis, wound treatment members, and the like.
  • compositions of the present disclosure further include natural polymers such as fibrin, hyaluronic acid, alginic acid, starch, chitin, pectic acid, co-organizing peptides with self-assembling ability, polylactic acid, polyglycolic acid, lactic acid and glycol.
  • natural polymers such as fibrin, hyaluronic acid, alginic acid, starch, chitin, pectic acid, co-organizing peptides with self-assembling ability, polylactic acid, polyglycolic acid, lactic acid and glycol.
  • the sixth of the present disclosure is a structure composed of the laminin crosslinked product and collagen and / or gelatin.
  • the "structure" means a solid material having a predetermined shape.
  • Such predetermined shapes include three-dimensional structures such as sponge-like, film-like, mesh-like, non-woven fabric-like, and knitted cloth-like.
  • a laminin crosslinked product and collagen and / or gelatin can be dissolved in a solvent to prepare a liquid, which can be freeze-dried to prepare a sponge.
  • collagen has temperature responsiveness
  • a mixed solution of a laminin crosslinked product and collagen is heated to a pH of 6.5 to 8.5 and a temperature of 20 to 45 ° C. to prepare a gel, and the gel is prepared.
  • the product can be lyophilized and prepared into a sponge shape. Further, the laminin crosslinked product and collagen and / or gelatin are mixed and coated on a flat surface and dried to prepare a film or sheet, or the laminin crosslinked product and collagen and / or gelatin are separated from each other. It may be prepared in the form of a two-layer film or sheet by dissolving it in a solvent, coating it on a flat surface, and drying it. Further, a laminin crosslinked product and a product dissolved in a solvent separately from collagen and / or gelatin can be discharged into a fibrous form in ethanol or other solvent to prepare a mesh, non-woven fabric, or knitted cloth.
  • the structure of the present disclosure is spongy, a sponge containing a laminin crosslinked product and collagen and / or gelatin is provided.
  • Such structures can be used as an alternative to areas where collagen or collagen sponge has traditionally been used in bone grafts and the like.
  • the laminin crosslinked product is uniformly dispersed in the structure of the present disclosure, it can be particularly preferably used as a scaffold for pluripotent stem cells, somatic stem cells, and tissues containing them in three-dimensional culture.
  • the structure of the present disclosure functions as a scaffold for cell culture when embedded in a living body, it can also be used as a tissue regeneration induction device.
  • the seventh of the present disclosure is a method for culturing cells or tissues, which comprises culturing in the presence of the laminin crosslinked product.
  • the laminin cross-linked product is a product obtained by cross-linking laminin or the laminin fragment to glycosaminoglycan or collagen with a cross-linking agent. Since glycosaminoglycan and collagen are used as a culture medium, they can be used not only for cell culture but also for tissue culture as long as they are three-dimensional culture. Further, the culture is not limited to the three-dimensional culture, and may be a two-dimensional culture.
  • a culture vessel coated with a laminin crosslinked product can be prepared, mammalian cells can be seeded, and the cells can be cultured in a suitable culture medium.
  • the mammal is not particularly limited, and examples thereof include humans, mice, rats, cows, and pigs. Of these, humans are preferable.
  • the culturing method broadly includes culturing using a medium substrate containing at least a laminin crosslinked product, and may be culturing on a gel, embedding culturing, solution culturing, or the like.
  • a nutrient medium or basal medium suitable for the purpose of culturing if used, tissues can be formed from cultured cells as shown in Examples described later.
  • a composition known in the art can be used.
  • the culturing method of the present disclosure is also suitable for culturing cells derived from mammals such as humans, mice, rats, cows and pigs.
  • Such cells include normal cells derived from various organs, osteosarcoma, leukemia cells and other tumorigenic cells, recombinant cells, stem cells and the like.
  • it can also be used to culture cells in contact with the basement membrane in vivo, such as epithelial cells, endothelial cells, cardiomyocytes, smooth muscle cells, skeletal muscle cells, muscle satellite cells, nerve Schwann cells, adipocytes, and pluripotent stem cells.
  • epithelial cells such as epithelial cells, endothelial cells, cardiomyocytes, smooth muscle cells, skeletal muscle cells, muscle satellite cells, nerve Schwann cells, adipocytes, and pluripotent stem cells.
  • it can be suitably used for culturing stem cells.
  • Stem cells mean cells having self-renewal ability and pluripotency, and include somatic stem cells, pluripotent stem cells, and the like.
  • somatic stem cells include neural stem cells, mesenchymal stem cells, hematopoietic stem cells, heart stem cells, liver stem cells, and small intestinal stem cells.
  • pluripotent stem cells include ES cells (embryonic stem cells), iPS cells (induced pluripotent stem cells), mGS cells (pluripotent reproductive stem cells), and fusion cells of ES cells and somatic cells. That is, the culturing method of the present disclosure is preferably used for culturing human stem cells. According to the culture method of the present disclosure, stem cells can be cultured three-dimensionally in the presence of laminin crosslinked products, thereby inducing differentiation of stem cells and efficiently constructing a three-dimensional tissue structure for regenerative medicine. can.
  • a three-dimensional culture substrate may be prepared using a laminin crosslinked product, and the cells or tissues may be embedded and cultured.
  • Example 1 All the following operations were performed in ice at 4 ° C. To 1 ml of a 10 mg / ml hyaluronic acid aqueous solution (molecular weight 2 ⁇ 10 6 ), 0.5 mL of 500 ⁇ g / mL laminin 511E8 (iMatrix-511 manufactured by Nippi Co., Ltd .; E8 fragment of human laminin 511) was added, and 2M Tris- 200 ul of HCl was added, 25 ⁇ l of 10 mM (millimol / L) genipin (manufactured by Fuji Film WAKO) was added thereto, and sterilized water was added to make a volumetric flask to obtain a mixed solution having a total volume of 5 mL.
  • laminin 511E8 iMatrix-511 manufactured by Nippi Co., Ltd .
  • E8 fragment of human laminin 511 was added
  • 2M Tris- 200 ul of HCl
  • a cross-linking reaction was carried out for 12 hours to obtain a hyaluronic acid-laminin cross-linked product (final concentration: laminin 511E8 50 ⁇ g / ml, hyaluronic acid 2 mg / ml, genipin 0.05 mM).
  • Example 2 All the following operations were performed on an ice container at 4 ° C.
  • the collagen solution 1mL dispersed in 0.05M acetic acid such that the 3 mg / ml, in Tris-HCl buffer 2M
  • the pH was adjusted to 7.5 and purified water was added to prepare a 1 mg / ml neutral collagen solution.
  • 1 ml of 10-fold concentrated DMEM basal medium and 1 mL of the hyaluronic acid-laminin crosslinked product obtained in Example 1 are added, and the final volume is 10 ml with purified water.
  • Reference numeral 1 is a control (35 ° C.), and reference numerals 2 to 5 are the results of a collagen- (hyaluronic acid-laminin crosslinked product) mixture at temperatures of 4 ° C., 10 ° C., 20 ° C., and 35 ° C., respectively.
  • the collagen- (hyaluronic acid-laminin crosslinked product) mixture fell from the conical part at a temperature of 4 to 10 ° C., but remained gel-like at a temperature of 20 to 35 ° C. without falling from the conical part.
  • the collagen-free hyaluronic acid-laminin crosslinked product fell from the conical portion even at a temperature of 35 ° C.
  • Example 3 200 ⁇ L (4 ° C.) of the collagen- (hyaluronic acid-laminin crosslinked product) mixture obtained in Example 2 was dropped onto a sterile circular cover glass having a diameter of 1 cm and placed in a petri dish having a diameter of 3.5 cm. When this was heated to a temperature of 37 ° C., it gelled after 1 hour. Further, 200 ⁇ L of Matrigel (manufactured by Corning Inc.) was used as a control, and gelation was carried out in the same manner. Then, a fetus was removed from a female mouse on the 11.5th day of gestation to obtain renal tissue.
  • Matrigel manufactured by Corning Inc.
  • This renal tissue was promptly embedded in the gel, 1 mL of the nutrient medium for renal tissue culture shown in Table 1 was added, and embedding culture was performed at a temperature of 37 ° C. for 5 days. After 5 days, the nutrient medium was removed, 1 mL of the basal medium for renal tissue culture shown in Table 2 was added, and the medium was cultured at a temperature of 37 ° C. for 7 days. In addition, regardless of which gel was used, the medium was exchanged once every two days.
  • Tissues 7 days after culturing in the basal medium were stained with DBA (Dolichos Bifulorus Agglutinin; ureteral bud-specific stain) and WT-1 (nephron precursor marker) and observed with a phase-contrast microscope.
  • DBA Dolichos Bifulorus Agglutinin; ureteral bud-specific stain
  • WT-1 nephron precursor marker
  • FIGS. 2c, 2g, 2d and 2h are images of frozen sections co-stained with DBA and WT1 and then observed with a confocal microscope. It is an image that was made.
  • Example 4 20 ⁇ g / ml, 60 ⁇ g / ml, and 180 ⁇ g / ml hyaluronic acid-laminin crosslinked products were prepared in the same manner as in Example 1 except that the amount of laminin 511E8 added was changed. Depending on the content of laminin 511E8, they are referred to as hyaluronic acid-laminin crosslinked product (20 ⁇ g), hyaluronic acid-laminin crosslinked product (60 ⁇ g), and hyaluronic acid-laminin crosslinked product (180 ⁇ g), respectively.
  • Example 5 A collagen- (hyaluronic acid-laminin crosslinked product) mixture was prepared in the same manner as in Example 2 except that the hyaluronic acid-laminin crosslinked product prepared in Example 4 was used. These were combined with a collagen- (hyaluronic acid-laminin crosslinked product 20 ⁇ g) mixture, a collagen- (hyaluronic acid-laminin crosslinked product 60 ⁇ g) mixture, and a collagen- (hyaluronic acid-laminin crosslinked product 180 ⁇ g) mixture, respectively, according to the laminin 511E8 content. Refer to.
  • the final concentrations of laminin 511E8 contained in each collagen- (hyaluronic acid-laminin crosslinked product) mixture are 4 ⁇ g / ml, 12 ⁇ g / ml, and 36 ⁇ g / ml.
  • Example 6 200 ⁇ L (4 ° C.) of each collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared in Example 5 was dropped onto a sterile circular cover glass placed on a petri dish with a diameter of 3.5 cm and heated to a temperature of 37 ° C. It was gelled to give a mixture gel.
  • Matrigel manufactured by Corning
  • a collagen solution adjusted to pH 7.5 with Tris-HCl buffer manufactured by Nippi Co., Ltd., PSC, 0.5 mg / mL
  • this collagen solution 0.5 mg / mL
  • the renal tissue obtained in the same manner as in Example 3 after 11.5 days of pregnancy was embedded in each gel and cultured, and the tissue on the 3rd day of culture was fixed with a whole mount, stained with DBA and WT-1, and then stained. Images were acquired with an all-in-one fluorescence microscope (BZ-X800, manufactured by KEYENCE). The images were analyzed on the same machine, and the number of ureteral bud branching (branching tip numbers) and the ureteral bud branching area (extended brunching area) were measured based on DBA staining.
  • sample reference numeral 1 is Matrigel
  • reference numeral 2 is collagen solution (0.5 mg / mL)
  • reference numeral 3 is collagen- (hyaluronic acid-laminin crosslinked product 0 ⁇ g)
  • reference numeral 4 is collagen- (hyaluronic acid-laminin).
  • 20 ⁇ g of crosslinked product indicates a collagen- (hyaluronic acid-laminin crosslinked product 60 ⁇ g)
  • reference numeral 6 indicates a collagen- (hyaluronic acid-laminin crosslinked product 180 ⁇ g) mixture.
  • Example 7 The renal tissue obtained in Example 3 was dispersed by Accutase. This dispersion was passed through a 40 ⁇ m filter to form single cells, and then centrifuged in a 1.5 mL Eppendorf tube at 400 ⁇ g for 2 minutes. Then, tap tube was centrifuged for 2 minutes at by mixing with inversion again 400 ⁇ g, and cell pellets were obtained (5 ⁇ 10 5 cells). An embedding culture was carried out for 7 days in the same manner as in Example 3 except that the cell pellet was embedded in the gel instead of the renal tissue. The medium was changed once every two days. The tissue formed after 7 days of culturing was observed. The results are shown in FIG.
  • FIG. 4A The whole image of the tissue was observed in a bright field with a phase-contrast microscope (Fig. 4A).
  • the tissue was immobilized with 4% PFA, and frozen sections were used for observation.
  • Fluorescent staining was performed by PECAM-1 antibody staining (Fig. 4D) as a vascular marker, synaptopodin antibody staining (Fig. 4E) as a marker of glomerular epithelial cells, and cell nucleus staining (DAPI) (Fig. 4C).
  • 4C, 4D, and 4E are images obtained by laser scanning the tissue.
  • HE staining was performed separately. The results are shown in FIG. 4B.
  • FIG. 4A was a gel, and an aggregate of black cells was confirmed inside the gel. As shown in FIG. 4B, it was confirmed that vascular-like tissues (indicated by thin arrows) and glomerular-like structures (indicated by arrow heads) were present in the cell aggregate.
  • FIG. 4C shows the cell nuclei of many cells contained in the cell aggregate
  • FIG. 4D shows the annular vascular structure (PECAM-1 staining)
  • FIG. 4E shows the glomerular structure (synaptopodyn staining).
  • Aggregates of developing renal cell-derived cells collected from renal tissue 11.5 days after embryonic formation form vascular and glomerular structures by embedding culture in a collagen- (hyaluronic acid-laminin cross-linked product) mixture gel. It turned out to be.
  • Example 8 Preparation of hyaluronic acid-laminin crosslinked product: Sterilized water 2.5 mL, 10 x PBS 0.5 mL, 10 mg / ml hyaluronic acid aqueous solution (molecular weight 1.2 x 10 6 to 2.2 x 10 6 ) 1 ml, 500 ⁇ g / mL laminin 511E8 (manufactured by Nippi Co., Ltd.) , IMatrix-511; E8 fragment of human laminin 511) mixed with 0.5 mL, 1.5 M glycine solution (in PBS) 0.125 ml, 10 mM genipin (manufactured by Fuji Film WAKO) solution 0.25 mL, and cross-linked reaction for 12 hours.
  • 0.125 ml of 1.5 M glycine solution (in PBS) was added to the reaction product, and quenching was performed at 4 ° C. for 6 hours to obtain a hyal
  • collagen- (hyaluronic acid-laminin crosslinked product) mixture Molecular weight 3 ⁇ 10 5 of type I collagen (manufactured by Nippi trade name PSMC: pepsin-solubilized low endotoxin porcine type I collagen) of 2.5 mg / ml collagen solution in (PSMC in 0.05 M acetic acid) 4 mL, hyaluronic Add 1 ml of acid-laminin crosslinked product, 4 ml of 2.5 x DMEM (manufactured by Nippon Fisheries Co., Ltd., # 05919, L-glutamine, sodium hydrogencarbonate-free), and 1 ml of 2.5% NaHCO 3 solution and mix to make collagen-. A mixture (hyaluronic acid-laminine crosslinked product) was obtained. This collagen- (hyaluronic acid-laminin crosslinked product) mixture was heated to a temperature of 37 ° C. and gelled.
  • PSMC pepsin-solubilized low endo
  • Type I collagen antibody without cross-reactivity with pig-derived type I collagen
  • HABP hyaluronic acid-binding protein
  • laminin 511E8 antibody anti-HIS antibody
  • FIG. 5A is a stained image using a type I collagen antibody
  • FIG. 5B is a HABP
  • FIG. 5C is a stained image using a laminin 511E8 antibody.
  • Each figure is a vertical cross section of the frozen gel, and the upper end faces the lower end of the gel surface to show the inside of the gel.
  • the inside of the gel is composed of a hyaluronic acid-laminin crosslinked product in which hyaluronic acid and laminin 511E8 are bound, and as shown in FIG. 5A, white fibers in which collagen molecules are associated with the gel surface.
  • the uniformly mixed collagen and hyaluronic acid-laminin crosslinked product formed a heterogeneous product between the collagen fiber portion and the hyaluronic acid-laminin crosslinked product portion as the gelation occurred.
  • This non-uniformity is similar to the localized separation between an interstitial portion having a collagen fiber portion as a microenvironment such as skin tissue and a basement membrane portion having a basement membrane structure such as laminin as a microenvironment. It was speculated that the collagen- (hyaluronic acid-laminin crosslinked product) mixture could utilize this localized separation to be used for cell organization in cell culture.
  • this mixture gel was fixed with 2% glutaraldehyde / PBS, dehydrated with ethanol, freeze-dried, platinum-deposited, and a scanning electron microscope image was taken.
  • the results are shown in FIG. 5D.
  • a scanning electron microscope image obtained by treating a mixture prepared in the same manner as the collagen- (hyaluronic acid-laminin crosslinked product) mixture in the same manner as above except that the hyaluronic acid-laminin crosslinked product was replaced with PBS is shown in FIG. 5E. Shown in. As shown in FIG. 5E, the control collagen had many linear fibers, but in the mixture gel shown in FIG. 5D, many fibers showing a bent structure were observed. Also, in the mixture gel of FIG. 5D, a denser network was observed as compared with the control of FIG. 5E.
  • Example 9 A hyaluronic acid-laminin crosslinked product was prepared by the method described in Example 8. Instead of the PSMC used in Example 8, a collagen solution obtained by blending collagen ⁇ 1> and collagen ⁇ 2> shown in Table 3 below at the ratios shown in Table 3 was added to the hyaluronic acid-laminin crosslinked product. A collagen- (hyaluronic acid-laminin crosslinked product) mixture was obtained.
  • type I means pepsin-solubilized type I collagen
  • type I (ASC) means acid-solubilized type I collagen
  • type I (PSMC) means pepsin-solubilized low endotoxin type I collagen.
  • type III Nippi Co., Ltd., trade name: bovine dermis-derived type III collagen (pepcin solubilized), and as type IV collagen, Nitta Gelatin, trade name: cellmatrix-type IV (pepcin extraction derived from bovine lens capsule).
  • type IV collagen Nitta Gelatin, trade name: cellmatrix-type IV (pepcin extraction derived from bovine lens capsule).
  • Pepsin solubilized extract and purified product from porcine cornea was used as V-type collagen, and various collagen- (hyaluronic acid-laminin crosslinked products) mixtures were prepared. 300 ⁇ L of each of these mixtures is dispensed into 8-wells and reacted at 37 ° C.
  • zirconia beads manufactured by Nikkato Corporation, diameter 1.5 mm
  • FIG. 6 the results are shown in FIG. 6, it was found that the zirconia beads did not settle in any of the mixtures and maintained the gelling ability.
  • Example 10 A hyaluronic acid-laminin uncrosslinked product was prepared in the same manner as in Example 8 except that the same amount of purified water was used instead of the cross-linking agent genipin, and collagen- (hyaluronic acid-laminin uncrosslinked product). A mixture was obtained. This collagen- (hyaluronic acid-laminin non-crosslinked product) mixture, the collagen- (hyaluronic acid-laminin cross-linked product) mixture prepared in Example 8, and Matrigel (manufactured by Corning) as a control were used. 100 ⁇ l of collagen- (hyaluronic acid-laminin uncrosslinked) mixture on 14 mm diameter glass in a glass bottom dish (Matsunami Glass Ind.
  • Centrifuge this suck the supernatant with a pipette, discard it, add the nutrient medium for renal cells shown in Table 4 to the pellet to 5 ⁇ 10 6 cells / mL and suspend it, and obtain the cell suspension.
  • Centrifugal tubes containing cells from which the supernatant was discarded were stored in ice.
  • each mixture or matrigel before gelation was added to 5 ⁇ 10 5 cells / 200 ⁇ L drop, suspended well to form a cell resuspension, and 200 ⁇ l of each drop was added dropwise to each gel bed.
  • Example 11 A collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared in the same manner as in Example 8 and Matrigel as a control were used, and the mixture was heated to a temperature of 37 ° C. to gel. Next, the embryos were removed from female mice on the 13th day of pregnancy to obtain developing kidney-derived cells by operating in the same manner as in Example 10 except that DMEM / F12 containing 10% serum was used instead of the nutrient medium for renal cells. Then, the implant culture in which the cells were dispersed in the gel was performed. Cell concentration in the gel is 2.5 ⁇ 10 6 cells / ml.
  • FIG. 8a low-magnification (20-fold) phase-contrast observation image.
  • FIG. 8c is an image obtained by fluorescently staining the cell aggregate using DBA (ureter marker), which is a specific marker of the developing ureter, and imaging with a confocal microscope (Olympus FV1000), and the white part is an image.
  • DBA ureter marker
  • the embedded culture on the 3rd and 5th days of the culture was fixed, and the type I collagen antibody (without cross-reactivity with pig-derived type I collagen) and the type IV collagen antibody (with bovine-derived type IV collagen) were used.
  • PECAM-1 vascular marker
  • Nephrin antibody nephron epithelial marker
  • DAPI staining cell nucleus
  • fluorescence observation with a confocal microscope.
  • FIG. 9a, 9b, 9c, and 9d are areas where DAPI-stained cell nuclei are clustered.
  • Hyaluronic acid with a molecular weight of 5 ⁇ 10 4 to 1.1 ⁇ 10 5 and 2 ⁇ 10 5 to 6 ⁇ 10 5 were used instead of hyaluronic acid with a molecular weight of 1.2 ⁇ 10 6 to 2.2 ⁇ 10 6.
  • a total of 3 types of collagen- (hyaluronic acid-laminin crosslinked product) mixture obtained by using molecular weights of 1.2 ⁇ 10 6 to 2.2 ⁇ 10 6 were used for these and operated in the same manner as in Example 10.
  • the dispersed cells derived from developing renal cells were embedded and cultured. On the 7th day of culture, formalin was fixed, stained with DBA (ureteral bud-specific stain), and fluorescently observed with a confocal microscope to evaluate ureteral formation. The results are shown in FIG. It was observed that developing renal cells formed a ureteral branch structure inside each gel. The formation of ureteral branch structure increased with the increase in the molecular weight of hyaluronic acid.
  • type I collagen mixed with type IV collagen (manufactured by Nitta Gelatin Co., Ltd., trade name cellmatic-type IV (extracted pepsin derived from bovine lens capsule)) is used at a ratio of 1: 0.6.
  • a collagen- (hyaluronic acid-laminin crosslinked product) mixture was obtained by the same procedure as in Example 8. This is a type I + type IV mixture. Further, a collagen- (hyaluronic acid-laminin crosslinked product) mixture using only type I collagen prepared in Example 8 is used as a type I mixture.
  • Type I + IV type mixture was stored on ice on a glass diameter 14mm in the same glass bottom dish as used in Example 10, I-type mixture, or Matrigel was 100 ⁇ m dropwise as a control, 37 ° C., in a C0 2 incubator The mixture was allowed to stand for 1 hour to gel.
  • the type I + type IV mixture, type I mixture or matrigel prepared above was used and operated in the same manner as in Example 10 to obtain cells derived from developing kidney cells.
  • cell resuspension (10 5 cells / 100 ⁇ l) was obtained.
  • the cell re-suspension 100 ⁇ l were pipetted on the upper surface of the gel, 37 ° C., for 2 hours left in the C0 2 incubator.
  • the DMEM / F12 medium + 10% FBS were prewarmed at 37 ° C. and 1.5ml dropwise from the outer periphery of the gel, 37 ° C., the cells were dispersed was subjected to gel the culture in the C0 2 incubator.
  • the culture was carried out for 3 days by using DMEM / F12 medium + 10% FBS instead of the above-mentioned nutrient medium for renal cells and exchanging the medium once every 2 days.
  • the cells were fixed on the 3rd day of culture, stained with DAPI, type IV collagen antibody (without cross-reactivity with bovine type IV collagen), and stained with phalloidin to stain the cytoskeleton, and observed with a confocal microscope.
  • the results are shown in FIG.
  • the cells dispersed by culturing on the gel for 3 days formed a cell aggregate, and type IV collagen was formed outside the cell aggregate (Fig. 11i).
  • the cells dispersed by culturing on the gel for 3 days formed a cell aggregate, but unlike Matrigel, type IV collagen was formed inside the cell aggregate.
  • Fig. 11c, Fig. 11f cytoskeleton formation aggregated at the cell margin resulting from the interaction between cells associated with cell assembly was observed (Fig. 11b), and the type I + IV mixture was cultured on the gel. Then, the cells were elongated while forming a strong cytoskeleton (stress fiber formation) (Fig. 11e).
  • Example 14 Instead of type IV collagen, type III collagen (manufactured by Nippi Co., Ltd., trade name: bovine dermis-derived type III collagen (pepsin solubilized)) and type V collagen (pepcin solubilized extract and purification from porcine cornea) were used. The same procedure as in Example 13 was carried out to obtain a collagen- (hyaluronic acid-laminin crosslinked product) mixture. This is used as an I + III type mixture and an I + V type mixture, respectively, and a collagen- (hyaluronic acid-laminin crosslinked product) mixture using only type I collagen prepared in Example 8 is used as a type I mixture.
  • bovine dermis-derived type III collagen pepsin solubilized
  • type V collagen pepcin solubilized extract and purification from porcine cornea
  • the procedure was the same as in Example 10 except that the type I mixture, the type I + type III mixture, and the type I + type V mixture were used to obtain a cell resuspension of cells derived from the developing kidney, and the cells in the gel.
  • was dispersed and embedded culture was performed.
  • the phase difference observation image on the 7th day of culture is shown in FIG.
  • the embedding culture in which cells were dispersed with a type I mixture gel it was observed that the gel contracted after 7 days of culture, a tissue-like structure was formed inside, and a ureteral branch was formed (Fig. 12a, FIG. Black mesh structure).
  • Fig. 12a FIG. Black mesh structure
  • the type I + type III mixture gel and the type I + V type mixture gel denser ureteral branching was observed in the gel (FIGS.
  • Example 10 the operation was carried out in the same manner as in Example 10 except that the type I mixture gel and the type I + IV mixture prepared in Example 13 were used, and DMEM / F12 medium + 10% FBS was used instead of the nutrient medium for renal cells.
  • a cell resuspension of cells derived from the developing kidney was obtained, and the cells were dispersed in a type I mixture gel or an I + IV type mixture gel and subjected to embedding culture.
  • the gel on the 10th day of culture using the type I mixture gel and the type I + IV mixture gel was fixed with formalin, stained with an antibody of nephrin, which is a renal epithelial cell marker, and PECAM-1 which is a vascular marker, and observed with a confocal microscope.
  • Example 15 Laminin 332E8 (Nippi Co., Ltd., E8 fragment of Hitoraminin 322), Laminin 111E8 (Nippi Co., Ltd., E8 fragment of Hitoraminin 111) instead of Laminin 511E8 (Nippi Co., Ltd., iMatrix-511; E8 fragment of Hitoraminin 511)
  • a collagen- (hyaluronic acid-laminin crosslinked product) mixture was prepared in the same manner as in Example 8 except that the above was used. These are referred to as 511 mixture, 332 mixture and 111 mixture, respectively.
  • Matrigel manufactured by Corning Inc.
  • Gelation was carried out in the same manner as in Example 8.
  • the fetus was removed from the female mouse on the 13th day of gestation to obtain the developing liver tissue and the developing intestinal tissue.
  • the developing liver tissue and the developing intestinal tissue were each dispersed by Accutase, and the dispersion was passed through a 40 ⁇ m filter to form a single cell.
  • the nutrient medium for renal cells the nutrient medium for hepatic cells shown in Table 5 below is used for culturing cells derived from developing hepatic tissue, and the cells derived from developing intestinal tissue are used for intestinal cells shown in Table 6.
  • the cells were dispersed in the gel and embedded culture was carried out in the same manner as in Example 10 except that the nutrient medium was used.
  • the liver marker was negative, but organization into a tubular structure was observed (arrowhead in FIG. 14c).
  • cell aggregates were observed on each substrate (arrows in FIGS. 14i, 14j, 14k and 14l). These cell aggregates were stained with the intestinal marker CDX-2 (white in FIGS. 14m, 14n, 14o and 14p).
  • radial tubes were formed from the cell aggregates, and the connections between the agglomerates were confirmed (arrowheads in FIGS. 12k and 12l), and the tubular structuring was particularly intense in the 111 mixture (FIG. 12k, arrowhead in FIG. 12l).
  • FIG. 14k arrow head It was suggested that the difference in laminin isoforms could provide a pericellular microenvironment suitable for organizing each cell, and could lead to various cell-specific organization.
  • Example 16 Collagen- (hyaluronic acid-laminine crosslinked product) mixture operated in the same manner as in Example 8 except that disuccinidiyl glutarate (DSG); Thermo Fisher # 20593 was used instead of genipin as a cross-linking agent.
  • DSG disuccinidiyl glutarate
  • Thermo Fisher # 20593 was used instead of genipin as a cross-linking agent.
  • Example 7 Example 7
  • FIG. 15 shows a phase difference observation image on the 7th day of culture.
  • the mixture gel using DSG as a cross-linking agent was also able to grow ureteral branches in the same manner as when genipin was used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials For Medical Uses (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided are: a laminin cross-linked product that is formed by bonding collagen or a glycosaminoglycan that has a molecular weight of 1×104–5×106 to laminin or a laminin fragment by means of a cross-linking agent; and a three-dimensional culture substrate and the like that include the laminin cross-linked product. A mixture of the laminin cross-linked product and collagen gels when heated to 37°C and, because the laminin cross-linked product is uniformly dispersed throughout the gel, can be used as a three-dimensional culture substrate for pluripotent stem cells, cancer cell aggregates, cells that are in physiological contact with a basement membrane, and the like.

Description

ラミニン架橋物、ラミニン架橋物を含む培養培地、三次元培養用キット、培養基材、組成物、構造体および培養方法Laminin cross-linked product, culture medium containing laminin cross-linked product, three-dimensional culture kit, culture substrate, composition, structure and culture method
 本開示は、ラミニン架橋物、ラミニン架橋物を含む培養培地、三次元培養用キット、培養基材、組成物、構造体および培養方法等に関する。 The present disclosure relates to a laminin crosslinked product, a culture medium containing a laminin crosslinked product, a three-dimensional culture kit, a culture substrate, a composition, a structure, a culture method, and the like.
 細胞を平面的に単層培養する2D培養に対し、縦方向の厚みを持たせて細胞を培養する三次元培養があり、より生体内環境を模した実験モデルといわれている。例えば、ヒト多能性幹細胞を成熟肝細胞等に分化する方法において、ヒト多能性幹細胞を2D培養し、次いで成熟化のために3Dスキャフォールドにて3D培養する方法がある(特許文献1)。多能性幹細胞を2D培養すると成熟した細胞型の特徴を再現できないことが多いことに鑑み、新規の3D培養系を開発したものである。特許文献1では3Dスキャフォールドとして、多孔性アルギン酸塩スポンジ、生物分解性ポリ(ウレタン尿素)ポリマー、エマルジョンテンプレート型ポリスチレン、合成ナノ繊維性複合材、ポリ(L-乳酸)から作られた多孔性スポンジを例示している。 There is a three-dimensional culture in which cells are cultured with a thickness in the vertical direction, as opposed to a 2D culture in which cells are cultured in a single layer in a plane, and it is said to be an experimental model that more closely imitates the in-vivo environment. For example, in a method of differentiating human pluripotent stem cells into mature hepatocytes or the like, there is a method of culturing human pluripotent stem cells in 2D and then culturing them in 3D scaffold for maturation (Patent Document 1). .. A new 3D culture system was developed in view of the fact that 2D culture of pluripotent stem cells often fails to reproduce the characteristics of mature cell types. In Patent Document 1, as a 3D scaffold, a porous alginate sponge, a biodegradable poly (urethane urea) polymer, an emulsion template polystyrene, a synthetic nanofiber composite material, and a porous sponge made of poly (L-lactic acid) are used. Is illustrated.
 また、ラミニン、または、ヘテロ3量体を形成しているラミニンフラグメントのα鎖のN末端、β鎖のN末端およびγ鎖のN末端の少なくとも1か所にコラーゲン結合性分子が結合していることを特徴とする改変ラミニンがあり、多能性幹細胞等の培養基材として使用されている(特許文献2)。マトリゲル(登録商標)に代わる細胞外マトリックス材料として、ヒトに対して安全な再生医療用三次元組織構造体を構築するために有用な細胞外マトリックス材料を提供することを課題とするものである。コラーゲン結合性分子として、コラゲナーゼまたはそのコラーゲン結合活性部位を含むフラグメントを使用するものであり、実施例では遺伝子組換えによりコラーゲン結合性分子が結合した改変ヒトラミニンを製造している。 In addition, a collagen-binding molecule is bound to at least one of the N-terminal of the α chain, the N-terminal of the β chain, and the N-terminal of the γ chain of the laminin fragment forming a laminin or a heterotrimer. There is a modified laminin characterized by this, and it is used as a culture medium for pluripotent stem cells and the like (Patent Document 2). As an extracellular matrix material that replaces Matrigel (registered trademark), it is an object of the present invention to provide an extracellular matrix material that is useful for constructing a three-dimensional tissue structure for regenerative medicine that is safe for humans. As the collagen-binding molecule, a fragment containing collagenase or a collagen-binding active site thereof is used, and in the examples, a modified human laminin to which the collagen-binding molecule is bound is produced by gene recombination.
 更に、細胞または組織を浮遊させて培養できる構造体を含有する培地組成物であって、細胞外マトリックスとして、コラーゲン、ヒアルロン酸またはプロテオグリカンのいずれかを含む組成物もある(特許文献3)。動植物細胞や組織を、三次元または浮遊状態で培養するための培地組成物を提供するものであり、上記培地組成物によれば液体培地中の粘度を高めることなく細胞や組織を浮遊状態に維持したまま増殖、分化或いは維持できるという。 Further, there is also a medium composition containing a structure capable of suspending and culturing cells or tissues, which contains either collagen, hyaluronic acid or proteoglycan as an extracellular matrix (Patent Document 3). It provides a medium composition for culturing animal and plant cells and tissues in a three-dimensional or floating state, and according to the above medium composition, the cells and tissues are maintained in a floating state without increasing the viscosity in a liquid medium. It is said that it can grow, differentiate or maintain as it is.
特表2013-532966号公報Special Table 2013-532966 国際公開2014/103534号International Publication No. 2014/103534 特開2019-150064号公報Japanese Unexamined Patent Publication No. 2019-150064
 本開示は、上皮細胞、内皮細胞その他の体細胞、多能性幹細胞やこれらを含む組織の培養に好適なラミニン架橋物、ラミニン架橋物を含む三次元培養に好適な培養培地、構造体、その関連物質、および培養方法等を提供することを課題とする。 The present disclosure describes laminin cross-linked products suitable for culturing epithelial cells, endothelial cells and other somatic cells, pluripotent stem cells and tissues containing them, culture media and structures suitable for three-dimensional culture containing laminin cross-linked products, and the like. An object of the present invention is to provide related substances, a culture method, and the like.
 本開示者らは、細胞外マトリックス(ECM:Extracellular Matrix)成分であるヒアルロン酸やコラーゲンは、架橋剤を介してラミニンやそのE8フラグメントと結合してラミニン架橋物を形成しうること、このラミニン架橋物とコラーゲンとを含む培養培地は培養温度でゲル化し、従来の三次元培養培地よりも細胞分化能に優れる培養培地となること、特に多能性幹細胞等の培養に優れることを見出し、本開示を完成させた。 The present inventors have stated that hyaluronic acid and collagen, which are extracellular matrix (ECM) components, can bind to laminin and its E8 fragment via a cross-linking agent to form a laminin cross-linked product. We have found that the culture medium containing the substance and collagen gels at the culture temperature to become a culture medium having superior cell differentiation ability as compared with the conventional three-dimensional culture medium, and particularly excellent in culturing pluripotent stem cells and the like. Was completed.
 すなわち本開示は、コラーゲンおよび/または分子量1×10~5×10のグリコサミノグリカンが、架橋剤によってラミニンまたは前記ラミニンの一部構造を有するラミニン断片と結合してなるラミニン架橋物を提供するものである。 That is, the present disclosure describes a laminin crosslinked product in which collagen and / or glycosaminoglycans having a molecular weight of 1 × 10 4 to 5 × 10 6 are bound to laminin or a laminin fragment having a partial structure of the laminin by a cross-linking agent. It is to provide.
 また本開示は、前記ラミニン断片が、前記ラミニンのインテグリン結合活性を有するラミニン断片である、前記ラミニン架橋物を提供するものである。 The present disclosure also provides the laminin crosslinked product, wherein the laminin fragment is a laminin fragment having an integrin-binding activity of the laminin.
 また本開示は、前記グリコサミノグリカンがヒアルロン酸またはコンドロイチンである、前記ラミニン架橋物を提供するものである。 The present disclosure also provides the laminin crosslinked product in which the glycosaminoglycan is hyaluronic acid or chondroitin.
 また本開示は、前記ラミニンが、ラミニン511、ラミニン332、ラミニン111、ラミニン121、ラミニン211、ラミニン221、ラミニン311、ラミニン321、ラミニン411、ラミニン421、またはラミニン521のいずれか1以上である、前記ラミニン架橋物を提供するものである。 Further, in the present disclosure, the laminin is any one or more of laminin 511, laminin 332, laminin 111, laminin 121, laminin 211, laminin 221 and laminin 311, laminin 321 and laminin 411, laminin 421, or laminin 521. It provides the laminin crosslinked product.
 また本開示は、前記ラミニン断片が、ラミニンE8フラグメントである、前記ラミニン架橋物を提供するものである。 The present disclosure also provides the laminin crosslinked product, wherein the laminin fragment is a laminin E8 fragment.
 また本開示は、前記ラミニン架橋物と、10℃以下で溶液状態を保ち、20~45℃でゲル状となる温度応答性基材とを含む培養培地を提供するものである。 The present disclosure also provides a culture medium containing the laminin crosslinked product and a temperature-responsive substrate that remains in a solution state at 10 ° C. or lower and becomes a gel at 20 to 45 ° C.
 また本開示は、前記温度応答性基材がコラーゲンであることを特徴とする、前記培養培地を提供するものである。 The present disclosure also provides the culture medium, which is characterized in that the temperature-responsive substrate is collagen.
 また本開示は、前記培養培地と、pH調整剤とを含む三次元培養用キットを提供するものである。 The present disclosure also provides a three-dimensional culture kit containing the culture medium and a pH adjuster.
 また本開示は、更に、培養液を含む、前記三次元培養用キットを提供するものである。 Further, the present disclosure further provides the above-mentioned three-dimensional culture kit containing a culture solution.
 また本開示は、前記ラミニン架橋物が、コラーゲンおよび/またはゼラチンと共に塗工されていることを特徴とする、培養基材を提供するものである。 The present disclosure also provides a culture medium, characterized in that the laminin crosslinked product is coated with collagen and / or gelatin.
 また本開示は、前記ラミニン架橋物と、コラーゲンおよび/またはゼラチンとを含む組成物を提供するものである。 The present disclosure also provides a composition containing the laminin crosslinked product and collagen and / or gelatin.
 また本開示は、前記ラミニン架橋物と、コラーゲンおよび/またはゼラチンとからなる構造体を提供するものである。 The present disclosure also provides a structure composed of the laminin crosslinked product and collagen and / or gelatin.
 また本開示は、前記ラミニン架橋物の存在下に培養することを特徴とする、細胞または組織の培養方法を提供するものである。 The present disclosure also provides a method for culturing cells or tissues, which comprises culturing in the presence of the laminin crosslinked product.
 また本開示は、前記培養基材に細胞または組織を包埋して培養することを特徴とする、細胞または組織の三次元培養方法を提供するものである。 The present disclosure also provides a three-dimensional culture method for cells or tissues, which comprises burying cells or tissues in the culture medium and culturing the cells or tissues.
 また本開示は、前記細胞が、多能性幹細胞、または体性幹細胞である、前記培養方法を提供するものである。 The present disclosure also provides the culture method in which the cells are pluripotent stem cells or somatic stem cells.
 本開示によれば、コラーゲンやグリコサミノグリカンにラミニンが架橋してなるラミニン架橋物や、前記ラミニン架橋物を含む培養培地等が提供される。 According to the present disclosure, a laminin crosslinked product obtained by cross-linking laminin to collagen or glycosaminoglycan, a culture medium containing the laminin cross-linked product, or the like is provided.
実施例2の結果を示す図である。ヒアルロン酸-ラミニン架橋物とコラーゲンとを含むpH7.5のコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物は、温度4~10℃では液状であるが、温度20~35℃ではゲル状を維持することを示す図である。It is a figure which shows the result of Example 2. FIG. A pH 7.5 collagen- (hyaluronic acid-laminin crosslinked product) mixture containing a hyaluronic acid-laminin crosslinked product and collagen is liquid at a temperature of 4 to 10 ° C., but maintains a gel state at a temperature of 20 to 35 ° C. It is a figure which shows that. 実施例3において、胎生11.5日のマウス発生期腎組織の組織培養7日後の組織の明視野画像、尿管形成(DBA染色)、ネフロン前駆細胞(WT-1染色)の結果を示す図である。実施例2で調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を使用した実施例3では、比較例1のマトリゲルを使用する場合よりも、発生期腎臓組織はゲル中で尿管芽が分岐し尿管形成に優れること、および尿管芽先端で糸球体の前駆組織であるネフロン前駆細胞の形成が優れることが確認された。The figure which shows the result of the bright-field image of the tissue 7 days after tissue culture of the mouse developmental kidney tissue of embryonic day 11.5 days, ureter formation (DBA staining), and nephron progenitor cell (WT-1 staining) in Example 3. Is. In Example 3 using the collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared in Example 2, ureteral buds diverged in the gel in the developing kidney tissue as compared with the case of using the Matrigel of Comparative Example 1. It was confirmed that the formation of ureters was excellent, and that the formation of nephron precursor cells, which are the precursor tissues of glomeruli, was excellent at the tips of ureteral buds. 実施例6の結果を示す図であり、ラミニン511E8の終濃度が異なる混合物ゲルで腎組織を培養した場合の尿管芽分岐数および尿管芽分岐面積を示す図である。It is a figure which shows the result of Example 6, and is the figure which shows the number of ureteral bud branching and the ureteral bud branching area at the time of culturing the renal tissue in the mixture gel with different final concentrations of laminin 511E8. 実施例7の結果を示す図である。マウス胎仔の腎組織由来の細胞をコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物で培養すると、血管構造および糸球体構造が形成されることを示す図である。It is a figure which shows the result of Example 7. It is a figure which shows that the vascular structure and the glomerular structure are formed when the cells derived from the renal tissue of a mouse embryo are cultured with a collagen- (hyaluronic acid-laminin crosslinked product) mixture. 実施例8の結果を示す図であり、図5AはI型コラーゲン抗体を、図5BはHABPを、図5Cはラミニン511E8抗体を用いた染色画像である。また、図5D、図5Eは、混合物ゲルおよびコラーゲンゲルを凍結乾燥した後に白金蒸着し、走査型電子顕微鏡で撮像した画像である。It is a figure which shows the result of Example 8, FIG. 5A is a stained image using a type I collagen antibody, FIG. 5B is a HABP, and FIG. 5C is a stained image using a laminin 511E8 antibody. Further, FIGS. 5D and 5E are images obtained by freeze-drying the mixture gel and collagen gel, depositing platinum on them, and capturing the images with a scanning electron microscope. 実施例9の結果を示す図であり、各種コラーゲンを使用して調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物のゲル化能を評価した結果を示す図である。It is a figure which shows the result of Example 9, and is the figure which shows the result of having evaluated the gelation ability of a collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared using various collagens. 実施例10の結果を示す図であり、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物およびコラーゲン-(ヒアルロン酸-ラミニン未架橋物)混合物、マトリゲルによる発生期腎臓由来の細胞を包埋培養した結果を示す図である。It is a figure which shows the result of Example 10, and is the result of embedding culture of collagen- (hyaluronic acid-laminin crosslinked product) mixture, collagen- (hyaluronic acid-laminin uncrosslinked product) mixture, and cells derived from the developing kidney by Matrigel. It is a figure which shows. 実施例11の結果を示す図であり、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物およびマトリゲルで発生期腎臓由来の細胞を1週間包埋培養した結果を示す図である。It is a figure which shows the result of Example 11, and is the figure which shows the result of embedding and culturing the cells derived from the developing kidney with collagen- (hyaluronic acid-laminin crosslinked product) mixture and Matrigel for 1 week. 実施例11の結果を示す図であり、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物およびマトリゲルで発生期腎臓に由来する細胞を包埋培養した結果を示す図である。It is a figure which shows the result of Example 11, and is the figure which shows the result of embedding and culturing the cell derived from the developing kidney with a collagen- (hyaluronic acid-laminin crosslinked product) mixture and Matrigel. 実施例12の結果を示す図であり、ヒアルロン酸の分子量を変化させてコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を調製し、この混合物を使用して発生期腎細胞由来の細胞を7日間の包埋培養を行い、ヒアルロン酸の分子量の相違によって腎組織化に差が出ることを示した図である。It is a figure which shows the result of Example 12, and the molecular weight of hyaluronic acid is changed to prepare the collagen- (hyaluronic acid-laminin cross-linked product) mixture, and this mixture is used for the cell derived from the developmental kidney cell for 7 days. It is a figure which showed that the difference in the molecular weight of hyaluronic acid causes a difference in renal tissue organization. 実施例13の結果を示す図である。I型+IV型混合物ゲルおよびI型混合物ゲルの上面で発生期腎臓由来の細胞をゲル上の培養した結果を示す図である。It is a figure which shows the result of Example 13. It is a figure which shows the result of culturing the cell of the developmental kidney origin on the gel on the upper surface of the type I + type IV mixture gel and the type I mixture gel. 実施例14の結果を示す図である。I型混合物、I型+III型混合物、およびI型+V型混合物を使用し、発生期腎臓由来の細胞を包埋培養した結果を示す。It is a figure which shows the result of Example 14. The results of embedding and culturing cells derived from developing kidney using a type I mixture, a type I + type III mixture, and a type I + V type mixture are shown. 実施例14の結果を示す図であり、I型+IV型混合物を使用して発生期腎臓由来の細胞を包埋培養した結果を示す。It is a figure which shows the result of Example 14, and shows the result of embedding culture of the cell derived from the developmental kidney using the type I + type IV mixture. 実施例15の結果を示す図である。ラミニン511E8に代えてラミニン332E8、ラミニン111E8を使用して調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を使用し、発生期肝由来の細胞と腸管由来の細胞を包埋培養した結果を示す。It is a figure which shows the result of Example 15. The results of embedding and culturing cells derived from the developing liver and cells derived from the intestinal tract using a collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared by using laminin 332E8 and laminin 111E8 instead of laminin 511E8 are shown. .. 実施例16の結果を示す図である。ゲニピンに代えてDSGを使用して調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を使用し、発生期腎臓由来の細胞を包埋培養した結果を示す。It is a figure which shows the result of Example 16. The results of embedding and culturing cells derived from the developing kidney using a collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared using DSG instead of genipin are shown.
 本開示の第1は、コラーゲンおよび/または分子量1×10~5×10のグリコサミノグリカンが、架橋剤によってラミニンまたは前記ラミニンの一部構造を有するラミニン断片と結合してなるラミニン架橋物である。 The first of the present disclosure is laminin cross-linking in which collagen and / or glycosaminoglycans having a molecular weight of 1 × 10 4 to 5 × 10 6 are bound to laminin or a laminin fragment having a partial structure of the laminin by a cross-linking agent. It is a thing.
 グリコサミノグリカンとは、動物の結合組織を中心にあらゆる組織に普遍的に存在する長鎖の通常枝分れがみられない多糖であり、天然型ではヒアルロン酸、コンドロイチン、ヘパリン、ケラタン硫酸などがある。本開示で使用するグリコサミノグリカンとしては、ECM成分であるヒアルロン酸やコンドロイチンを好適に使用することができる。使用するグリコサミノグリカンの分子量は1×10~5×10であり、好ましくは2×10~4×10、より好ましくは3×10~4×10である。この範囲であれば、コラーゲンと混合し、温度20~45℃に加温した後にゲル状を維持することができる。 Glycosaminoglycans are long-chain, normally unbranched polysaccharides that are ubiquitous in all tissues, especially connective tissues in animals. In their natural form, hyaluronic acid, chondroitin, heparin, keratan sulfate, etc. There is. As the glycosaminoglycan used in the present disclosure, hyaluronic acid and chondroitin, which are ECM components, can be preferably used. The molecular weight of the glycosaminoglycan used is 1 × 10 4 to 5 × 10 6 , preferably 2 × 10 4 to 4 × 10 6 , and more preferably 3 × 10 4 to 4 × 10 6 . Within this range, the gel can be maintained after being mixed with collagen and heated to a temperature of 20 to 45 ° C.
 コラーゲンとは、主に脊椎動物の真皮、靱帯、腱、骨、軟骨などを構成するタンパク質のひとつであり、甲殻類、軟体動物などに含まれる。本開示で使用するコラーゲンはいずれの動物に由来するものであってもよく、動物種に限定はない。一般に、動物の皮や骨等の原料に含まれるコラーゲン組織をペプシンなどのプロテアーゼを添加して可溶化した酵素処理可溶化コラーゲン、アルカリを添加して可溶化したアルカリ処理可溶化コラーゲン、酸を添加して可溶化した酸処理可溶化コラーゲンを使用することができる。これらのコラーゲン可溶化溶液からコラーゲン分子を抽出するには、一般に塩析法や等電点沈殿法を採用する。コラーゲンには線維を形成する線維性コラーゲンと、線維を形成しない非線維性コラーゲンとが存在し、I型、II型、III型、IV、V型のようにローマ数字で名前をつけている。本開示で使用するコラーゲンは、少なくとも一部に3重螺旋構造を有し、温度10℃以下で溶液であり、温度20~45℃でゲル化できるものであれば特に限定はない。更に、コラーゲンのアルカリ可溶化の際にアスパラギン残基やグルタミン残基などが脱アミド化しておのおのアスパラギン酸残基およびグルタミン酸残基に変化したものであってもよい。由来する動物種も問わない。また、動物組織からの抽出物に限定されず、公知の技術を用いてコラーゲン高発現細胞から精製したものや、組換えタンパク質として製造したものであってもよい。例えば、CHO細胞やタバコ細胞に遺伝子組み換え技術によって合成させたものでもよい。 Collagen is one of the proteins that mainly make up the dermis, ligaments, tendons, bones, cartilage, etc. of vertebrates, and is contained in crustaceans, mollusks, etc. The collagen used in the present disclosure may be derived from any animal, and the animal species is not limited. In general, enzyme-treated solubilized collagen in which collagen tissue contained in raw materials such as animal skin and bone is solubilized by adding protease such as pepsin, alkali-treated solubilized collagen solubilized by adding alkali, and acid are added. Solubleized acid-treated solubilized collagen can be used. In order to extract collagen molecules from these collagen solubilized solutions, a salting out method or an isoelectric point precipitation method is generally adopted. Collagen includes fibrous collagen that forms fibers and non-fibrotic collagen that does not form fibers, and is named by Roman numerals such as type I, type II, type III, IV, and V. The collagen used in the present disclosure is not particularly limited as long as it has a triple helix structure at least in part, is a solution at a temperature of 10 ° C. or lower, and can be gelled at a temperature of 20 to 45 ° C. Further, asparagine residue, glutamine residue and the like may be deamidated and changed to aspartic acid residue and glutamic acid residue at the time of alkali solubilization of collagen. The animal species from which it is derived does not matter. Further, the extract is not limited to an extract from animal tissue, and may be purified from collagen high-expressing cells using a known technique or produced as a recombinant protein. For example, CHO cells or tobacco cells may be synthesized by genetic recombination technology.
 ラミニンはECM成分であり、細胞表面受容体の「インテグリン」と相互作用し、細胞の機能維持や増殖・分化誘導の制御に必要なシグナルを伝達する。その構造は、α、β、γ鎖がコイルドコイル領域で会合した十字架状の分子であり、各鎖に数種が存在する。このため5種のα鎖(LAMA1~5)、4種のβ鎖(LAMB1~4)、3種のγ鎖(LAMC1~3)を組み合わせて称呼され、ラミニン511はラミニンα5β1γ1を意味する。ラミニンはそれぞれ独自の作用を発揮する。本開示で使用するラミニンとしては、ラミニン511、ラミニン332、ラミニン111、ラミニン121、ラミニン211、ラミニン221、ラミニン311、ラミニン321、ラミニン411、ラミニン421、またはラミニン521を使用することが好ましい。ラミニンの由来は特に限定されず、各種生物由来のラミニンを用いることができる。好ましくは哺乳動物由来のラミニンである。哺乳動物としては、例えば、ヒト、マウス、ラット、ウシ、ブタ等が挙げられるが、これらに限定されるものではない。また、公知の遺伝子組換え技術を適宜用い、遺伝子組み換え技術により産生したものであってもよい。主要な哺乳動物のラミニンを構成するα鎖、β鎖、γ鎖をコードする遺伝子の塩基配列情報および各鎖のアミノ酸配列情報は、公知のデータベース(GenBank等)から取得することができる。 Laminin is an ECM component that interacts with the cell surface receptor "integrin" and transmits signals necessary for maintaining cell function and controlling proliferation and differentiation induction. Its structure is a cross-shaped molecule in which α, β, and γ chains are associated in a coiled coil region, and there are several types in each chain. Therefore, 5 types of α chains (LAMA1 to 5), 4 types of β chains (LAMB1 to 4), and 3 types of γ chains (LAMC1 to 3) are combined and called, and laminin 511 means laminin α5β1γ1. Each laminin has its own unique effect. As the laminin used in the present disclosure, it is preferable to use laminin 511, laminin 332, laminin 111, laminin 121, laminin 211, laminin 221 or laminin 311, laminin 321 or laminin 411, laminin 421 or laminin 521. The origin of laminin is not particularly limited, and laminin derived from various organisms can be used. It is preferably a mammalian-derived laminin. Examples of mammals include, but are not limited to, humans, mice, rats, cows, pigs and the like. Further, it may be produced by the gene recombination technique by appropriately using a known gene recombination technique. Nucleotide sequence information of genes encoding α-chain, β-chain, and γ-chain constituting laminin of major mammals and amino acid sequence information of each chain can be obtained from a known database (GenBank, etc.).
 また、前記ラミニンの一部構造を有するラミニン断片であってもよい。このようなラミニン断片として、インテグリン結合活性を有するラミニン断片がある。インテグリン結合活性を有するラミニン断片は、インテグリンと結合して全長ラミニンと同様の効果を発揮することができる。例えば、ラミニン511のインテグリン結合部位は、ラミニン分子のα鎖C末端側の3つの球状ドメイン(LG1-3)とγ鎖C末端領域(γ-tail)とからなる。前記3つの球状ドメインが三つ葉状に会合し、その底面側でインテグリンと結合し、前記γ-tailがインテグリンのリガンド認識スポットの所定位置に誘導され、安定なラミニン-インテグリン複合体を形成する。このようなインテグリン結合部位として、ラミニンE8フラグメントがある。一般に「ラミニンE8フラグメント」とは、マウスラミニン111をエラスターゼで消化して得られたヘテロ三量体を形成しているフラグメントであって強い細胞接着活性をもつフラグメントとして同定されたもの(Edgar D et al., J.Cell Biol., 105:589-598, 1987)をいう。しかしながら本開示における「ラミニンE8フラグメント」は、インテグリンと結合しうる部位を有するラミニンの断片を広く含むものとし、いずれの動物種やラミニン種に由来するものであってもよい。更に、「ラミニンE8フラグメント」は、ラミニンのエラスターゼ消化産物であることを要するものではなく、遺伝子組換えその他によって生成されたものであってもよい。前記したように、ラミニン511のインテグリン結合部位は、ラミニン分子のα鎖C末端側の3つの球状ドメイン(LG1-3)とγ鎖C末端領域(γ-tail)とからなり、α鎖のN末端側はβ鎖よびγ鎖のC末端側とS-S結合で連結したヘテロ三量体を形成するから、このようなヘテロ三量体をラミニンE8フラグメントとして使用することができる。なお、インテグリン結合活性を有するラミニン断片は、インテグリン結合活性を有することを条件にヘテロ3量体を有するものに限定されるものではない。なお、ラミニン断片がインテグリン結合活性を有していることは、固相結合アッセイ等により確認することができ、ラミニン断片がヘテロ3量体を形成していることは、ラミニン断片をSDS-PAGEに供し、バンドの数を検出すること等により確認できる。本開示では、市販のインテグリン結合活性を有するラミニン断片を使用することもできる。このようなラミニン断片として、株式会社ニッピ製のiMatrix-511、iMatrix-411、iMatrix-221などがある。ラミニンやインテグリン結合活性を有するラミニン断片で構成されたラミニン架橋物は、インテグリン結合能に優れる。このため従来の培養液に、コラーゲンやグリコサミノグリカン、ラミニンの代わりに、またはこれらに加えてこのラミニン架橋物を使用することができる。 Further, it may be a laminin fragment having a partial structure of the laminin. As such a laminin fragment, there is a laminin fragment having an integrin-binding activity. A laminin fragment having integrin-binding activity can bind to integrin and exert the same effect as full-length laminin. For example, the integrin binding site of laminin 511 consists of three spherical domains (LG1-3) on the α-chain C-terminal side of the laminin molecule and a γ-chain C-terminal region (γ-tail). The three spherical domains associate in a trefoil shape and bind to integrin on the bottom surface side thereof, and the γ-tail is guided to a predetermined position of the ligand recognition spot of integrin to form a stable laminin-integrin complex. As such an integrin binding site, there is a laminin E8 fragment. Generally, the "laminin E8 fragment" is a fragment forming a heterotrimer obtained by digesting mouse laminin 111 with elastase and identified as a fragment having strong cell adhesion activity (Edgar D et). al., J.Cell Biol., 105: 589-598, 1987). However, the "laminin E8 fragment" in the present disclosure broadly includes a fragment of laminin having a site capable of binding to integrin, and may be derived from any animal species or laminin species. Furthermore, the "laminin E8 fragment" does not need to be a digested product of laminin elastase, but may be produced by genetic recombination or the like. As described above, the integrin binding site of laminin 511 consists of three spherical domains (LG1-3) on the α-chain C-terminal side of the laminin molecule and the γ-chain C-terminal region (γ-tail), and N of the α-chain. Since the terminal side forms a heterotrimer linked to the C-terminal side of the β chain and the γ chain by an SS bond, such a heterotrimer can be used as a laminin E8 fragment. The laminin fragment having an integrin-binding activity is not limited to a laminin fragment having a heterotrimer on condition that it has an integrin-binding activity. The fact that the laminin fragment has integrin-binding activity can be confirmed by a solid-phase binding assay or the like, and the fact that the laminin fragment forms a heterotrimer indicates that the laminin fragment forms SDS-PAGE. It can be confirmed by detecting the number of bands and the like. In the present disclosure, commercially available laminin fragments having integrin-binding activity can also be used. Examples of such a laminin fragment include iMatrix-511, iMatrix-411, and iMatrix-221 manufactured by Nippi Co., Ltd. A laminin crosslinked product composed of laminin or a laminin fragment having integrin-binding activity is excellent in integrin-binding ability. Therefore, this laminin crosslinked product can be used in place of or in addition to collagen, glycosaminoglycan, and laminin in the conventional culture medium.
 一方、本開示で使用するラミニン断片は、インテグリン結合活性を有するものに限定されない。ラミニンはインテグリン結合以外にも種々の機能があることが知られている。例えば、ラミニンα鎖のLGドメインにはルテランやシンデカンなどの結合部位があり、細胞接着の制御に関係するとの報告がある。ラミニンの一部構造を有するものであればこのようなラミニン断片であってもよい。このようなラミニン断片をコラーゲンやグリコサミノグリカンと架橋することで、ラミニンの有する活性を利用することができる。 On the other hand, the laminin fragment used in the present disclosure is not limited to those having integrin-binding activity. Laminin is known to have various functions other than integrin binding. For example, it has been reported that the LG domain of the laminin α chain has binding sites such as lutelan and syndecane and is involved in the regulation of cell adhesion. Such a laminin fragment may be used as long as it has a partial structure of laminin. By cross-linking such a laminin fragment with collagen or glycosaminoglycan, the activity of laminin can be utilized.
 ラミニンおよびラミニン断片の使用量は、ラミニン架橋物を構成するコラーゲンおよびグリコサミノグリカンの合計量100重量部に対して0.01~1000重量部、より好ましくは0.05~500重量部、特に好ましくは1~10重量部である。この範囲で調製したラミニン架橋物を用いて細胞培養すると生体由来の単分散細胞の生体外における生体内を模倣した組織形成に優れるからである。 The amount of laminin and laminin fragment used is 0.01 to 1000 parts by weight, more preferably 0.05 to 500 parts by weight, particularly preferably 0.05 to 500 parts by weight, based on 100 parts by weight of the total amount of collagen and glycosaminoglycan constituting the laminin crosslinked product. It is preferably 1 to 10 parts by weight. This is because cell culture using a laminin crosslinked product prepared in this range is excellent in tissue formation that mimics the in vivo of monodisperse cells derived from a living body.
 本開示で使用する架橋剤は、グリコサミノグリカンと、ラミニンまたは前記ラミニン断片とを架橋できるもの、またはコラーゲンと、ラミニンまたは前記ラミニン断片とを架橋できるものを広く使用することができる。グリコサミノグリカン、コラーゲン、ラミニンには水酸基、カルボキシル基、アミノ基、アミド結合などが含まれ、これらを結合する架橋剤によって架橋することができる。このような架橋剤としては、N-(6-Maleimidocaproyloxy)sullfosuccinimide, sodium salt、N-[(4-Maleimidomethyl)cyclohexylcarbonyloxy]sulfosuccinimide, sodium salt、N-(4-Maleimidobutyryloxy)sulfosuccinimide, sodium salt、N-{6-[3-(2-Pyridyldithio)propionamido]hexanoyloxy}sulfosuccinimide, sodium salt、N-(8-Maleimidocapryloxy)sulfosuccinimide, sodium salt、Methyl (1S,2R,6S)-2-Hydroxy-9-(hydroxymethyl)-3-oxabicyclo[4.3.0]nona-4,8-diene-5-carboxylate(ゲニピン)などがある。中性近傍で反応が進行する点でゲニピンが好ましい。架橋剤の配合量は、使用する架橋剤によって適宜選択することができる。一般には、ラミニンおよびラミニン断片の合計質量100質量部に対して0.1~1000質量部、より好ましくは0.5~500質量部、特に好ましくは1~300質量部である。 As the cross-linking agent used in the present disclosure, those capable of cross-linking glycosaminoglycan with laminin or the laminin fragment, or those capable of cross-linking collagen with laminin or the laminin fragment can be widely used. Glycosaminoglycans, collagen, and laminin contain hydroxyl groups, carboxyl groups, amino groups, amide bonds, and the like, and can be crosslinked by a cross-linking agent that binds these. Examples of such cross-linking agents include N- (6-Maleimidocaproyloxy) sullfosuccinimide, sodium salt, N-[(4-Maleimidomethyl) cyclohexyl carbonyloxy] sulfosuccinimide, sodium salt, N- (4-Maleimidobutyryloxy) sulfosuccinimide, sodium salt, N- { 6-[3- (2-Pyridyldithio) propionamido] hexanoyloxy} sulfosuccinimide, sodium salt, N- (8-Maleimidocapryloxy) sulfosuccinimide, sodium salt, Methyl (1S, 2R, 6S) -2-Hydroxy-9-(hydroxymethyl)- There are 3-oxabicyclo [4.3.0] nona-4,8-diene-5-carboxylate (genipin). Genipin is preferred because the reaction proceeds near neutrality. The blending amount of the cross-linking agent can be appropriately selected depending on the cross-linking agent used. Generally, it is 0.1 to 1000 parts by mass, more preferably 0.5 to 500 parts by mass, and particularly preferably 1 to 300 parts by mass with respect to 100 parts by mass of the total mass of laminin and the laminin fragment.
 ラミニン架橋物を調製するには、グリコサミノグリカン、コラーゲン、ラミニンまたは前記ラミニン断片をそれぞれ溶媒に溶解し、例えばグリコサミノグリカンの溶解液とラミニン溶解液とを混合し、これに架橋剤を添加して反応させる。溶媒としては、水の他、PBS、生理食塩水、トリスヒドロキシメチルアミノメタンあるいは4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルフォン酸で中性pHとした生理的食塩水などがある。使用する架橋剤によっても相違するが、反応は温度4℃~24℃で、0.5~30時間、より好ましくは1~20時間である。 To prepare a laminin cross-linked product, glycosaminoglycan, collagen, laminin or the laminin fragment are each dissolved in a solvent, and for example, a lycosaminoglycan lysate and a laminin lysate are mixed, and a cross-linking agent is added thereto. Add and react. Examples of the solvent include water, PBS, physiological saline, trishydroxymethylaminomethane, or physiological saline having a neutral pH of 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid. Depending on the cross-linking agent used, the reaction is at a temperature of 4 ° C. to 24 ° C. for 0.5 to 30 hours, more preferably 1 to 20 hours.
 ラミニン架橋物を調製する際には、架橋剤の反応基に結合するクエンチ剤を含ませることができる。クエンチ剤の添加によりラミニン架橋物を使用したゲル強度に影響を与えることなく、未反応の架橋剤の影響を低減することができる。クエンチ剤は使用する架橋剤によって適宜選択することができる。例えば架橋剤がゲニピンである場合には、クエンチ剤としてグリシン、トリスヒドロキシメチルアミノメタン(tris(hydroxymethyl)aminomethane、THAM)、などを好適に使用することができる。クエンチ剤を使用する場合は、例えばグリコサミノグリカンの溶解液とラミニン溶解液との混合時にクエンチ剤を加えて混合してもよく、架橋反応後にクエンチ剤を混合してもよい。クエンチ剤を使用する場合の配合量は、例えば、ゲニピンに対して1~10000モル倍、好ましくは10~5000モル倍、より好ましくは100~2000モル倍である。 When preparing a laminin crosslinked product, a quenching agent that binds to the reactive group of the crosslinking agent can be included. The addition of the quenching agent can reduce the influence of the unreacted cross-linking agent without affecting the gel strength using the laminin cross-linked product. The quenching agent can be appropriately selected depending on the cross-linking agent used. For example, when the cross-linking agent is genipin, glycine, trishydroxymethylaminomethane (tris (hydroxymethyl) aminomethane, THAM), or the like can be preferably used as the quenching agent. When a quenching agent is used, for example, the quenching agent may be added and mixed at the time of mixing the glycosaminoglycan solution and the laminin solution, or the quenching agent may be mixed after the cross-linking reaction. When a quenching agent is used, the blending amount is, for example, 1 to 10000 mol times, preferably 10 to 5000 mol times, and more preferably 100 to 2000 mol times with respect to genipin.
 架橋反応後は、得られたラミニン架橋物を透析やクロマトグラフィーなどで精製することができる。精製後のラミニン架橋物は、乾燥し、これを粉砕して粉末としてもよいし、溶液に溶解または分散したまま使用することができる。乾燥の際は、使用する架橋剤に応じて、ラミニン、コラーゲンやグリコサミノグリカンが変質しない範囲で適宜加熱処理を行ってもよい。 After the cross-linking reaction, the obtained laminin cross-linked product can be purified by dialysis, chromatography, or the like. The purified laminin crosslinked product may be dried and crushed into a powder, or may be used as it is dissolved or dispersed in a solution. At the time of drying, depending on the cross-linking agent used, heat treatment may be appropriately performed as long as laminin, collagen and glycosaminoglycan are not deteriorated.
 本開示のラミニン架橋物で培養しうる細胞としては、ヒト、マウス、ラット、ウシ、ブタ等の哺乳動物細胞であり、上皮細胞、内皮細胞、心筋細胞、平滑筋細胞、骨格筋細胞、筋衛星細胞、神経シュワン細胞、脂肪細胞、多能性幹細胞など、生体内で基底膜に接している細胞;神経幹細胞、間葉系幹細胞、造血幹細胞、心臓幹細胞、肝臓幹細胞、小腸幹細胞などの体性幹細胞;ES細胞(胚性幹細胞)、iPS細胞(人工多能性幹細胞)、mGS細胞(多能性生殖幹細胞)、ES細胞と体細胞との融合細胞などの多能性幹細胞、これら細胞を含む組織の培養に好適である。細胞は、正常細胞の他、がん細胞や融合細胞などであってもよい。 The cells that can be cultured with the laminin crosslinked product of the present disclosure are mammalian cells such as humans, mice, rats, cows, and pigs, and epithelial cells, endothelial cells, myocardial cells, smooth muscle cells, skeletal muscle cells, and muscle satellites. Cells that are in contact with the basal membrane in vivo, such as cells, nerve schwan cells, fat cells, and pluripotent stem cells; somatic stem cells such as nerve stem cells, mesenchymal stem cells, hematopoietic stem cells, heart stem cells, liver stem cells, and small intestinal stem cells. ; ES cells (embryonic stem cells), iPS cells (induced pluripotent stem cells), mGS cells (pluripotent reproductive stem cells), pluripotent stem cells such as fusion cells of ES cells and somatic cells, tissues containing these cells Suitable for culturing. The cells may be cancer cells, fusion cells, or the like, in addition to normal cells.
 本開示の第2は、前記ラミニン架橋物と、10℃以下、より好ましくは温度1~10℃、特に好ましくは1~7℃で溶液状態を保ち、20~45℃、好ましくは25~40℃、より好ましくは30~40℃でゲル状となる温度応答性基材とを含む培養培地である。
 温度応答性基材としては、ポリ(N-アルキルアクリルアミド)、ポリ(N-ビニルアルキルアミド)、ポリビニルアルキルエーテル、ポリエチレングリコール/ポリプロピレングリコールブロック共重合体、ポリ(N-イソプロピルアクリルアミド)、コラーゲンなどがある。本開示では、体温近傍に下限臨界溶液温度を有するコラーゲンやポリ(N-イソプロピルアクリルアミド)を好適に使用することができる。例えばコラーゲン酸性溶液を中和後に加温すると、複数のコラーゲン分子が65nm毎ずれて会合して線維化し、コラーゲンゲルを形成する。加温によるゲル形成という利点を活かし、液体状のコラーゲン溶液を細胞や培地と混合してから各種培養器材に添加することで、培養器材の形状に合わせたコラーゲンゲル内やコラーゲンゲル上での三次元培養が可能となる。
The second aspect of the present disclosure is to maintain a solution state with the laminin crosslinked product at 10 ° C. or lower, more preferably 1 to 10 ° C., particularly preferably 1 to 7 ° C., and 20 to 45 ° C., preferably 25 to 40 ° C. , More preferably a culture medium containing a temperature-responsive substrate that gels at 30-40 ° C.
Examples of the temperature-responsive substrate include poly (N-alkylacrylamide), poly (N-vinylalkylamide), polyvinylalkyl ether, polyethylene glycol / polypropylene glycol block copolymer, poly (N-isopropylacrylamide), collagen and the like. be. In the present disclosure, collagen or poly (N-isopropylacrylamide) having a lower limit critical solution temperature near the body temperature can be preferably used. For example, when an acidic collagen solution is neutralized and then heated, a plurality of collagen molecules are displaced by 65 nm to form fibrosis and form a collagen gel. Taking advantage of gel formation by heating, by mixing a liquid collagen solution with cells and medium and then adding it to various culture equipment, tertiary in the collagen gel and on the collagen gel according to the shape of the culture equipment. Original culture becomes possible.
 本開示の培養培地において、ラミニン架橋物としてグリコサミノグリカンとラミニンまたは前記ラミニン断片との架橋物(以下、便宜のためG-ラミニン架橋物とも称する。)を使用する場合には、コラーゲンに対するG-ラミニン架橋物の配合比は特に限定はない。コラーゲン100重量部に対し、0.01~500重量部、より好ましくは0.1~100重量部、特に好ましくは10~50重量部である。この範囲で、G-ラミニン架橋物とコラーゲンとの混合物の溶液は、中性および温度20~45℃の加温条件でゲル状を維持することができる。なお、コラーゲン濃度によってゲル強度が異なるため、上記範囲で細胞培養に適するコラーゲン濃度を選択することができる。この培養培地には、細胞培養に使用できる他の成分、例えばゼラチン、フィブロネクチン、ヴィトロネクチン、プロテオグリカン、テネイシン、エラスチン、ヘパリン、ラミニン、フィブリノーゲン(フィブリン)、アルギン酸塩、トロンビン、キサンタンガム等を添加してもよい。 In the culture medium of the present disclosure, when a crosslinked product of glycosaminoglycan and laminin or the laminin fragment (hereinafter, also referred to as a G-laminin crosslinked product for convenience) is used as the laminin crosslinked product, G for collagen is used. -The blending ratio of the laminin crosslinked product is not particularly limited. It is 0.01 to 500 parts by weight, more preferably 0.1 to 100 parts by weight, and particularly preferably 10 to 50 parts by weight with respect to 100 parts by weight of collagen. Within this range, the solution of the mixture of G-laminin crosslinked product and collagen can maintain a gel state under neutral and heating conditions at a temperature of 20 to 45 ° C. Since the gel strength differs depending on the collagen concentration, a collagen concentration suitable for cell culture can be selected within the above range. Other components that can be used for cell culture, such as gelatin, fibronectin, vitronectin, proteoglycan, tenascin, elastin, heparin, laminin, fibrinogen (fibrin), alginate, thrombin, xanthan gum, etc., are added to this culture medium. May be good.
 一方、ラミニン架橋物としてコラーゲンとラミニンまたは前記ラミニン断片との架橋物(以下、便宜のためCol-ラミニン架橋物とも称する。)を使用する場合は、コラーゲンに対するCol-ラミニン架橋物の配合比は特に限定はない。いずれの範囲でもCol-ラミニン架橋物も中性および加温によりゲル化するため、上記範囲で細胞培養に適するラミニン架橋物とコラーゲンとの配合量を選択することができる。この培養培地には、細胞培養に使用できる他の成分、例えばヒアルロン酸、ゼラチン、フィブロネクチン、ヴィトロネクチン、プロテオグリカン、テネイシン、エラスチン、ラミニン、フィブリノーゲン(フィブリン)等の分子全体またはその一部を添加してもよい。 On the other hand, when a crosslinked product of collagen and laminin or the laminin fragment (hereinafter, also referred to as a Col-laminin crosslinked product for convenience) is used as the laminin crosslinked product, the blending ratio of the Col-laminin crosslinked product to collagen is particularly high. There is no limit. In any range, the Col-laminin crosslinked product also gels by neutralization and heating, so that the blending amount of the laminin crosslinked product and collagen suitable for cell culture can be selected in the above range. To this culture medium, all or part of other components that can be used for cell culture, such as hyaluronic acid, gelatin, fibronectin, vitronectin, proteoglycan, tenascin, elastin, laminin, fibrinogen (fibrin), etc., are added. You may.
 本開示の培養培地は、G-ラミニン架橋物および/またはCol-ラミニン架橋物と、コラーゲンとを含む。このような培養培地は、例えば、ラミニン架橋物とコラーゲンとをそれぞれ溶媒に溶解または分散させ、これをコラーゲンとラミニン架橋物との配合割合が上記範囲となるように混合して調製することができる。このような溶媒として、水、酢酸、塩酸、PBS、生理食塩水、トリスヒドロキシメチルアミノメタンあるいは4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルフォン酸で中性pHとした生理的食塩水などがある。特にコラーゲンが水に分散するが溶解しない場合には、酢酸等を添加してpH2~5に調整してもよい。溶媒に溶解する際のラミニン架橋物の濃度は、0.0000001~0.003g/mL、好ましくは0.000001~0.003g/mL、より好ましくは0.000004~0.001g/mLである。このようにして得られる培養培地は、温度1~10℃で液状である。なお、前記培養培地に含まれるコラーゲン濃度は、0.00005~0.005g/mL、好ましくは0.0001~0.003g/mL、より好ましくは0.0004~0.001g/mLである。 The culture medium of the present disclosure contains G-laminin cross-linked product and / or Col-laminin cross-linked product and collagen. Such a culture medium can be prepared, for example, by dissolving or dispersing laminin crosslinked product and collagen in a solvent, respectively, and mixing them so that the blending ratio of collagen and laminin crosslinked product is within the above range. .. Examples of such a solvent include water, acetic acid, hydrochloric acid, PBS, physiological saline, trishydroxymethylaminomethane or physiological saline having a neutral pH of 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid. There is. In particular, when collagen is dispersed in water but not dissolved, acetic acid or the like may be added to adjust the pH to 2 to 5. The concentration of the laminin crosslinked product when dissolved in the solvent is 0.000000001 to 0.003 g / mL, preferably 0.000001 to 0.003 g / mL, and more preferably 0.000004 to 0.001 g / mL. The culture medium thus obtained is liquid at a temperature of 1 to 10 ° C. The collagen concentration contained in the culture medium is 0.00005 to 0.005 g / mL, preferably 0.0001 to 0.003 g / mL, and more preferably 0.0004 to 0.001 g / mL.
 上記培養培地は、G-ラミニン架橋物および/またはCol-ラミニン架橋物と、コラーゲンとの混合物であり、これに更に、Tris-HClや水酸化ナトリウム、水酸化カリウムなどのpH調整剤を添加してpH6.5~8.5に調整し、温度20~45℃に加温することができる。中和および加温により混合物中でコラーゲン分子が会合して線維化しゲル状となる。混合物に含まれるラミニン架橋物によってゲル内にラミニンや前記ラミニン断片が均一に分散されている。このため、このゲル内に細胞や組織を播種し、包埋し、浮遊させると三次元培養を行うことができる。特に、多能性幹細胞や体性幹細胞、またはこれらを含む組織を長期にわたり安定に三次元培養することができる。なお、培養培地に含まれるラミニンまたは前記ラミニンの一部構造を有するラミニン断片の濃度は使用する細胞や組織に応じて適宜選択することができる。例えば発生腎の三次元培養を行う際には、後記する実施例に示すように、培地中に4μg/mL以上であればマトリゲルより有意に尿管芽数や尿管芽分岐面積を増加させることができる。好ましくは1.5~100μg/mLである。 The culture medium is a mixture of G-laminin crosslinked product and / or Col-laminin crosslinked product and collagen, and a pH adjuster such as Tris-HCl, sodium hydroxide, or potassium hydroxide is further added thereto. The pH can be adjusted to 6.5 to 8.5 and heated to a temperature of 20 to 45 ° C. By neutralization and heating, collagen molecules associate in the mixture to become fibrous and gel-like. The laminin crosslinked product contained in the mixture uniformly disperses laminin and the laminin fragment in the gel. Therefore, three-dimensional culture can be performed by seeding, embedding, and suspending cells and tissues in this gel. In particular, pluripotent stem cells, somatic stem cells, or tissues containing these cells can be stably cultured in three dimensions for a long period of time. The concentration of laminin contained in the culture medium or the laminin fragment having a partial structure of the laminin can be appropriately selected depending on the cells and tissues used. For example, when performing three-dimensional culture of developing kidney, as shown in the examples described later, if the content is 4 μg / mL or more in the medium, the number of ureteral buds and the ureteral bud branching area should be significantly increased as compared with Matrigel. Can be done. It is preferably 1.5 to 100 μg / mL.
 なお本開示の培養培地において、コラーゲンとラミニン架橋物との混合液のコラーゲン濃度は、ラミニン架橋物の種類を問わず0.00005~0.005g/mLであることが好ましい。その後に中和および加温するとコラーゲンが線維化してゲルを形成し、かつゲル状を維持しうるからである。 In the culture medium of the present disclosure, the collagen concentration of the mixed solution of collagen and the laminin crosslinked product is preferably 0.00005 to 0.005 g / mL regardless of the type of the laminin crosslinked product. This is because when neutralized and heated thereafter, collagen is fibrotic to form a gel, and the gel state can be maintained.
 本開示の培養培地は、後記する実施例に示すように、ゲルを調製しこのゲルに腎組織から得た細胞を分散させ、または細胞の集合体を包埋培養し、または細胞をゲル上に分散させてゲル上培養を行うと、いずれの培養方法でも細胞が細胞集合体を形成し、かつ分化して血管構造や糸球体構造をゲル内に立体的に形成させることが判明した。したがって、例えば腎臓オルガノイドなどのオルガノイド形成に有効である。 In the culture medium of the present disclosure, as shown in Examples described later, a gel is prepared and cells obtained from renal tissue are dispersed in the gel, or an aggregate of cells is embedded and cultured, or cells are placed on the gel. It was found that when the cells were dispersed and cultured on the gel, the cells formed a cell aggregate and differentiated to form a vascular structure and a glomerular structure three-dimensionally in the gel by any of the culture methods. Therefore, it is effective for the formation of organoids such as renal organoids.
 本開示の第3は、前記培養培地と、pH調整剤とを含む三次元培養用キットである。本開示のキットにおける培養培地は、ラミニン架橋物とコラーゲンとを別個の容器に収納したものであってもよく、ラミニン架橋物とコラーゲンとを混合し、1つの容器に収納したものであってもよい。また、ラミニン架橋物とコラーゲンとは、それぞれ乾燥物であってもよく、溶媒に溶解しまたは分散した溶液状または分散液状であってもよい。 The third of the present disclosure is a three-dimensional culture kit containing the culture medium and a pH adjuster. The culture medium in the kit of the present disclosure may be one in which the laminin crosslinked product and collagen are stored in separate containers, or a mixture of the laminin crosslinked product and collagen and stored in one container. good. Further, the laminin crosslinked product and collagen may be dried products, respectively, and may be in the form of a solution or a dispersed liquid in which the laminin crosslinked product and collagen are dissolved or dispersed in a solvent.
 三次元培養用キットに含まれるpH調整剤とは、ラミニン架橋物とコラーゲンとを含む混合物に添加して、そのpHを6.5~8.5に調整できるものを広く使用することができる。例えばTris-HCl、水酸化ナトリウム、水酸化カリウムを水や前記溶媒に溶解した溶液を例示することができる。 As the pH adjuster included in the 3D culture kit, a pH adjuster that can be added to a mixture containing a laminin crosslinked product and collagen to adjust the pH to 6.5 to 8.5 can be widely used. For example, a solution in which Tris-HCl, sodium hydroxide, and potassium hydroxide are dissolved in water or the solvent can be exemplified.
 培養培地として、コラーゲンとラミニン架橋物とを含む溶液を調製し、これにpH調整剤を添加して、溶液のpHをpH6.5~8.5に調整する。この溶液は温度20~45℃でゲル状となるため、三次元培養に使用することができる。 As a culture medium, prepare a solution containing collagen and a laminin crosslinked product, and add a pH adjuster to the solution to adjust the pH of the solution to pH 6.5 to 8.5. Since this solution becomes a gel at a temperature of 20 to 45 ° C., it can be used for three-dimensional culture.
 本開示の三次元培養用キットには、ラミニン架橋物および/またはコラーゲンが乾燥物で提供される場合には、これらの溶媒を更に含むものであってもよい。この様な溶媒として、前記した水、酢酸、塩酸、PBS、生理食塩水、トリスヒドロキシメチルアミノメタンあるいは4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルフォン酸で中性pHとした生理的食塩水などがある。 The three-dimensional culture kit of the present disclosure may further contain these solvents when the laminin crosslinked product and / or collagen is provided as a dried product. As such a solvent, physiological saline having a neutral pH of water, acetic acid, hydrochloric acid, PBS, physiological saline, trishydroxymethylaminomethane or 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid. There is water and so on.
 更に、本開示の三次元培養用キットには、細胞培養用の培養液を含むものであってもよい。このような培養液としてはDMEM、EMEM、IMDM、F12K、RPMI等があり、培養する細胞や組織に応じて適宜選択することができる。 Further, the three-dimensional culture kit of the present disclosure may include a culture solution for cell culture. Examples of such a culture solution include DMEM, EMEM, IMDM, F12K, RPMI, etc., which can be appropriately selected according to the cells and tissues to be cultured.
 本開示の第4は、前記ラミニン架橋物が、コラーゲンおよび/またはゼラチンと共に塗工されていることを特徴とする、培養基材である。培養容器にラミニン架橋物とコラーゲンおよび/またはゼラチンとが塗工されているため、簡便に培養操作を行うことができる。なお、培養容器に温度応答性のコラーゲンを使用する場合は、三次元培養が可能であるが、本開示の培養基材はこれに限定されず、二次元培養を目的とするものであってもよい。 The fourth of the present disclosure is a culture substrate, characterized in that the laminin crosslinked product is coated together with collagen and / or gelatin. Since the laminin crosslinked product and collagen and / or gelatin are coated on the culture vessel, the culture operation can be easily performed. When temperature-responsive collagen is used in the culture vessel, three-dimensional culture is possible, but the culture substrate of the present disclosure is not limited to this, and even if it is intended for two-dimensional culture. good.
 培養容器としては、ガラス製またはプラスチック製のシャーレ、フラスコ、マルチウェルプレート、カルチャースライド、マイクロキャリア、ポリビニリデンフルオリド膜等のポリマー膜、試験管その他の培養容器を使用することができる。 As the culture container, a glass or plastic petri dish, a flask, a multi-well plate, a culture slide, a microcarrier, a polymer film such as a polyvinylidene fluoride film, a test tube or other culture container can be used.
 培養基材の塗工に用いるコラーゲンおよび/またはゼラチンは特に限定されず、細胞培養用途に使用される公知のコラーゲンおよび/またはゼラチンを好適に用いることができる。再生医療用の細胞培養に用いる場合は、医療用途の安全性が確認されているコラーゲンおよび/またはゼラチンを用いることが好ましく、ヒト由来のコラーゲンおよび/またはゼラチンを用いることが好ましい。医療用途の安全性が確認されているコラーゲンおよび/またはゼラチンとしては、アテロコラーゲン(高研)、ブタ皮膚製コラーゲン溶液(ニッポンハム)、ニッピハイグレードゼラチン(株式会社ニッピ)、メディゼラチン(株式会社ニッピ)などが挙げられる。このようなコラーゲンが中性および加温によりゲル状となる温度応答性を有する場合には、温度20~45℃に加温してゲル化させ、ゲル内に細胞を包埋または浮遊し、培養液中で三次元培養を行うことができる。 The collagen and / or gelatin used for coating the culture substrate is not particularly limited, and known collagen and / or gelatin used for cell culture applications can be preferably used. When used for cell culture for regenerative medicine, it is preferable to use collagen and / or gelatin whose safety for medical use has been confirmed, and it is preferable to use collagen and / or gelatin derived from humans. Collagen and / or gelatin whose safety has been confirmed for medical use includes atelocollagen (Koken), porcine skin collagen solution (Nipponham), Nippi high-grade gelatin (Nippi Co., Ltd.), and Medigelatin (Nippi Co., Ltd.). ) And so on. When such collagen is neutral and has a temperature responsiveness that makes it gel-like by heating, it is heated to a temperature of 20 to 45 ° C. to gel it, and cells are embedded or suspended in the gel and cultured. Three-dimensional culture can be performed in liquid.
 本開示の培養基材の調製方法は、例えば、培養容器にラミニン架橋物とコラーゲンおよび/またはゼラチンの混合液を塗工して調製することができる。このような塗工は、従来公知の方法で行うことができる。塗工には、混合液を培養容器にのせる工程であってもよい。一方、コラーゲンが温度応答性を有する場合には、混合液をpH6.5~8.5に調整し、温度1~10℃の低温で塗工してもよい。このように調製された培養基材は、温度20~45℃に加温するとゲル化するため、三次元培養に好適に使用することができる。 The method for preparing the culture substrate of the present disclosure can be prepared, for example, by applying a mixed solution of a laminin crosslinked product and collagen and / or gelatin to a culture vessel. Such coating can be performed by a conventionally known method. The coating may be a step of placing the mixed solution on the culture vessel. On the other hand, when collagen has temperature responsiveness, the mixed solution may be adjusted to pH 6.5 to 8.5 and coated at a low temperature of 1 to 10 ° C. Since the culture substrate thus prepared gels when heated to a temperature of 20 to 45 ° C., it can be suitably used for three-dimensional culture.
 一方、ラミニン架橋物と、コラーゲンおよび/またはゼラチンとを別個に塗工して培養基材としてもよい。例えば、予め培養容器にコラーゲンまたはゼラチン溶液を塗工し、次いで、形成した皮膜状にラミニン架橋物の溶解液を塗工する。塗工順序はこの逆であってもよい。また、コラーゲンが温度応答性を有する場合には、予め培養容器にpH6.5~8.5のコラーゲン溶液を塗工し、温度20~45℃に加温してゲル化させる。次いで、このゲル状物の上にラミニン架橋物の溶解液を塗工してもよい。ラミニン架橋物がCol-ラミニン架橋物の場合は、Col-ラミニン架橋物を溶媒に溶解した後にpH6.5~8.5に調整し、温度1~10℃の低温で塗工してもよい。このように調製された培養容器は、温度20~45℃に加温するとゲル化するため、三次元培養に使用することができる。 On the other hand, the laminin crosslinked product and collagen and / or gelatin may be separately applied to serve as a culture medium. For example, a collagen or gelatin solution is applied to the culture vessel in advance, and then a solution of the laminin crosslinked product is applied to the formed film. The coating order may be reversed. When collagen has temperature responsiveness, a collagen solution having a pH of 6.5 to 8.5 is applied to the culture vessel in advance, and the mixture is heated to a temperature of 20 to 45 ° C. to gel. Next, a solution of the laminin crosslinked product may be applied onto the gel-like product. When the laminin crosslinked product is a Col-laminin crosslinked product, the pH of the Col-laminin crosslinked product may be adjusted to 6.5 to 8.5 after being dissolved in a solvent, and the coating may be applied at a low temperature of 1 to 10 ° C. Since the culture vessel prepared in this way gels when heated to a temperature of 20 to 45 ° C., it can be used for three-dimensional culture.
 三次元培養用キットでの培養に好適な細胞としては、ヒト、マウス、ラット、ウシ、ブタ等の哺乳動物細胞であり、上皮細胞、内皮細胞、心筋細胞、平滑筋細胞、骨格筋細胞、筋衛星細胞、神経シュワン細胞、脂肪細胞、多能性幹細胞など、生体内で基底膜に接している細胞;神経幹細胞、間葉系幹細胞、造血幹細胞、心臓幹細胞、肝臓幹細胞、小腸幹細胞などの体性幹細胞;ES細胞(胚性幹細胞)、iPS細胞(人工多能性幹細胞)、mGS細胞(多能性生殖幹細胞)、ES細胞と体細胞との融合細胞などの多能性幹細胞、これら細胞を含む組織の培養に好適である。細胞は、正常細胞の他、がん細胞や融合細胞などであってもよい。三次元培養用キットは、上記細胞に限定されず、これら細胞を含む組織の培養にも好適に使用することができる。 Suitable cells for culturing with the three-dimensional culture kit are mammalian cells such as humans, mice, rats, cows, and pigs, and epithelial cells, endothelial cells, myocardial cells, smooth muscle cells, skeletal muscle cells, and muscles. Cells that are in contact with the basal membrane in vivo, such as satellite cells, nerve schwan cells, fat cells, and pluripotent stem cells; somatics such as nerve stem cells, mesenchymal stem cells, hematopoietic stem cells, heart stem cells, liver stem cells, and small intestinal stem cells. Stem cells: ES cells (embryonic stem cells), iPS cells (artificial pluripotent stem cells), mGS cells (pluripotent reproductive stem cells), pluripotent stem cells such as fusion cells of ES cells and somatic cells, including these cells Suitable for culturing tissues. The cells may be cancer cells, fusion cells, or the like, in addition to normal cells. The three-dimensional culture kit is not limited to the above cells, and can be suitably used for culturing tissues containing these cells.
 本開示の第5は、前記ラミニン架橋物と、コラーゲンおよび/またはゼラチンとを含む組成物である。この組成物の形状は、粉末、顆粒、その他の粒状であってもよく、溶媒に溶解または分散した液状であってもよく、半固体のゲル状であってもよい。
 粒状の場合は、予めラミニン架橋物を乾燥および粉砕その他により粒状のラミニン架橋物とし、これに粉末その他の粒状のコラーゲンおよび/またはゼラチンとをそれぞれ混合し、適宜、粉砕、造粒等して粒状に成形することができる。これらは使用時に溶媒その他に溶解または分散して細胞培養等に使用することができる。一方、ラミニン架橋物、コラーゲンおよび/またはゼラチンをそれぞれ溶媒に溶解または分散し、これを混合して液状の組成物とすることができる。更に、ラミニン架橋物やコラーゲンを混合したゲル状物とすることもできる。
Fifth of the present disclosure is a composition containing the laminin crosslinked product and collagen and / or gelatin. The shape of this composition may be powder, granules, other granules, liquid dissolved or dispersed in a solvent, or semi-solid gel.
In the case of granularity, the laminin crosslinked product is previously dried and pulverized to obtain a granular laminin crosslinked product, which is mixed with powder or other granular collagen and / or gelatin, respectively, and appropriately pulverized, granulated, etc. to granulate. Can be molded into. These can be dissolved or dispersed in a solvent or the like at the time of use and used for cell culture or the like. On the other hand, the laminin crosslinked product, collagen and / or gelatin can be dissolved or dispersed in a solvent, respectively, and mixed to obtain a liquid composition. Further, a laminin crosslinked product or a gel-like product mixed with collagen can be prepared.
 この組成物におけるラミニン架橋物、コラーゲンおよび/またはゼラチンの配合割合は特に限定はない。ラミニン架橋物は、ラミニン断片を含み、従来公知のラミニン断片に代えて使用することができ、コラーゲンは培養基材として使用することができ、ゼラチンは細胞培養の際の栄養成分として使用することができる。本開示の組成物では、用途に応じ、所望の効果が発揮される範囲で配合することができる。 The blending ratio of the laminin crosslinked product, collagen and / or gelatin in this composition is not particularly limited. The laminin crosslinked product contains a laminin fragment and can be used in place of a conventionally known laminin fragment, collagen can be used as a culture medium, and gelatin can be used as a nutritional component during cell culture. can. In the composition of the present disclosure, it can be blended within a range in which a desired effect is exhibited, depending on the intended use.
 本開示の組成物は、形状が粒状の場合、例えば、細胞培養の際の培養液に添加する1成分として使用することもできる。
 また、本開示の組成物が液状の場合は、培養容器に塗工して培養基材として使用し得る。このような溶媒として、水、酢酸、塩酸、PBS、生理食塩水、トリスヒドロキシメチルアミノメタンあるいは4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルフォン酸で中性pHとした生理的食塩水などがある。
 また本開示の組成物がゲル状の場合は、ゲル状物の中で細胞や組織培養に使用することができる。ただし、本開示の組成物の用途は、細胞や組織培養に限定されず、止血、創傷治療部材などに使用することもできる。
When the composition of the present disclosure is granular in shape, for example, it can be used as one component to be added to the culture medium at the time of cell culture.
When the composition of the present disclosure is liquid, it can be applied to a culture vessel and used as a culture substrate. Examples of such a solvent include water, acetic acid, hydrochloric acid, PBS, physiological saline, trishydroxymethylaminomethane or physiological saline having a neutral pH of 4- (2-hydroxyethyl) -1-piperazine ethanesulphonic acid. There is.
When the composition of the present disclosure is in the form of a gel, it can be used for cell or tissue culture in the form of a gel. However, the use of the composition of the present disclosure is not limited to cell and tissue culture, and can also be used for hemostasis, wound treatment members, and the like.
 本開示の組成物には、更に、フィブリン、ヒアルロン酸、アルギン酸、デンプン、キチン、ペクチン酸等の天然高分子、自己組織化能を有する両親媒性ペプチド、ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸との共重合体、ポリ-ε-カプロラクトン、ε-カプロラクトンと乳酸あるいはグリコール酸との共重合体、ポリクエン酸、ポリリンゴ酸、ポリ-α-シアノアクリレート、ポリ-β-ヒドロキシ酪酸、ポリトリメチレンオキサレート、ポリテトラメチレンオキサレート、ポリプロピレンカーボネート、ポリ-γ-ベンジル-L-グルタメート、ポリ-γ-メチル-L-グルタメート、ポリ-L-アラニン等の合成高分子、ハイドロキシアパタイト、リン酸三カルシウム等の無機材料などを配合してもよい。 The compositions of the present disclosure further include natural polymers such as fibrin, hyaluronic acid, alginic acid, starch, chitin, pectic acid, co-organizing peptides with self-assembling ability, polylactic acid, polyglycolic acid, lactic acid and glycol. Copolymer with acid, poly-ε-caprolactone, copolymer of ε-caprolactone with lactic acid or glycolic acid, polycitrate, polyapple acid, poly-α-cyanoacrylate, poly-β-hydroxybutyric acid, polytrimethylene Synthetic polymers such as oxalate, polytetramethylene oxalate, polypropylene carbonate, poly-γ-benzyl-L-glutamate, poly-γ-methyl-L-glutamate, poly-L-alanine, hydroxyapatite, tricalcium phosphate Inorganic materials such as, etc. may be blended.
 本開示の第6は、前記ラミニン架橋物と、コラーゲンおよび/またはゼラチンとからなる構造体である。本開示において「構造体」とは所定の形状を有する固形物を意味する。このような所定の形状としては、スポンジ状、フィルム状、メッシュ状、不織布状、編織布状などの三次元構造を含む。例えば、ラミニン架橋物と、コラーゲンおよび/またはゼラチンを溶媒に溶解して液状に調製し、これを凍結乾燥してスポンジ状に調製することができる。また、コラーゲンが温度応答性を有する場合には、ラミニン架橋物とコラーゲンとの混合液をpH6.5~8.5、温度20~45℃に加温してゲル状に調製し、このゲル状物を凍結乾燥してスポンジ状に調製することができる。更に、ラミニン架橋物と、コラーゲンおよび/またはゼラチンとを混合してこれを平面に塗工して乾燥させフィルム状、シート状に調製し、またはラミニン架橋物と、コラーゲンおよび/またはゼラチンと別個に溶媒に溶解し、平面に塗工して乾燥させ2層のフィルム状やシート状に調製したものであってもよい。更に、ラミニン架橋物と、コラーゲンおよび/またはゼラチンと別個に溶媒に溶解したものをエタノールその他の溶媒に繊維状に吐出させてメッシュ状、不織布状、編織布状に調製することもできる。 The sixth of the present disclosure is a structure composed of the laminin crosslinked product and collagen and / or gelatin. In the present disclosure, the "structure" means a solid material having a predetermined shape. Such predetermined shapes include three-dimensional structures such as sponge-like, film-like, mesh-like, non-woven fabric-like, and knitted cloth-like. For example, a laminin crosslinked product and collagen and / or gelatin can be dissolved in a solvent to prepare a liquid, which can be freeze-dried to prepare a sponge. When collagen has temperature responsiveness, a mixed solution of a laminin crosslinked product and collagen is heated to a pH of 6.5 to 8.5 and a temperature of 20 to 45 ° C. to prepare a gel, and the gel is prepared. The product can be lyophilized and prepared into a sponge shape. Further, the laminin crosslinked product and collagen and / or gelatin are mixed and coated on a flat surface and dried to prepare a film or sheet, or the laminin crosslinked product and collagen and / or gelatin are separated from each other. It may be prepared in the form of a two-layer film or sheet by dissolving it in a solvent, coating it on a flat surface, and drying it. Further, a laminin crosslinked product and a product dissolved in a solvent separately from collagen and / or gelatin can be discharged into a fibrous form in ethanol or other solvent to prepare a mesh, non-woven fabric, or knitted cloth.
 本開示の構造体がスポンジ状の場合には、ラミニン架橋物とコラーゲンおよび/またはゼラチンを含むスポンジ状物が提供される。このような構造体は、従来骨移植その他でコラーゲンやコラーゲンスポンジが使用された領域にその代替物として使用することができる。本開示の構造体は、ラミニン架橋物が均一に分散しているため、多能性幹細胞や体性幹細胞、これらを含む組織の三次元培養の際の足場として特に好適に使用することができる。更に、本開示の構造体は、生体に埋め込むと、細胞培養用の足場として機能するため、組織再生誘導デバイスとして用いることもできる。 When the structure of the present disclosure is spongy, a sponge containing a laminin crosslinked product and collagen and / or gelatin is provided. Such structures can be used as an alternative to areas where collagen or collagen sponge has traditionally been used in bone grafts and the like. Since the laminin crosslinked product is uniformly dispersed in the structure of the present disclosure, it can be particularly preferably used as a scaffold for pluripotent stem cells, somatic stem cells, and tissues containing them in three-dimensional culture. Furthermore, since the structure of the present disclosure functions as a scaffold for cell culture when embedded in a living body, it can also be used as a tissue regeneration induction device.
 本開示の第7は、前記ラミニン架橋物の存在下に培養することを特徴とする、細胞または組織の培養方法である。ラミニン架橋物は、架橋剤によりラミニンまたは前記ラミニン断片がグリコサミノグリカンまたはコラーゲンに架橋したものである。グリコサミノグリカンやコラーゲンは培養基材として使用されるため、三次元培養であれば細胞培養に限定されず組織培養にも使用することができる。また、三次元培養に限定されず、二次元培養であってもよい。例えば、ラミニン架橋物を塗工した培養容器を調製し、哺乳動物細胞を播種し、適当な培養液で培養することができる。哺乳動物としては特に限定されず、ヒト、マウス、ラット、ウシ、ブタ等が挙げられる。なかでもヒトが好ましい。 The seventh of the present disclosure is a method for culturing cells or tissues, which comprises culturing in the presence of the laminin crosslinked product. The laminin cross-linked product is a product obtained by cross-linking laminin or the laminin fragment to glycosaminoglycan or collagen with a cross-linking agent. Since glycosaminoglycan and collagen are used as a culture medium, they can be used not only for cell culture but also for tissue culture as long as they are three-dimensional culture. Further, the culture is not limited to the three-dimensional culture, and may be a two-dimensional culture. For example, a culture vessel coated with a laminin crosslinked product can be prepared, mammalian cells can be seeded, and the cells can be cultured in a suitable culture medium. The mammal is not particularly limited, and examples thereof include humans, mice, rats, cows, and pigs. Of these, humans are preferable.
 培養方法としては、少なくともラミニン架橋物を含む培地基材を用いる培養を広く含み、ゲル上培養の他、包埋培養、溶液培養その他であってもよい。また、培養の際には、培養目的に適する栄養培地や基礎培地を使用すると、後記する実施例に示すように、培養細胞から組織体を形成することができる。このような栄養培地や基礎培地としては、当該分野で公知の組成物を使用することができる。 The culturing method broadly includes culturing using a medium substrate containing at least a laminin crosslinked product, and may be culturing on a gel, embedding culturing, solution culturing, or the like. In addition, when culturing, if a nutrient medium or basal medium suitable for the purpose of culturing is used, tissues can be formed from cultured cells as shown in Examples described later. As such a nutrient medium or a basal medium, a composition known in the art can be used.
 本開示の培養方法は、ヒト、マウス、ラット、ウシ、ブタ等の哺乳動物に由来する細胞の培養にも好適である。このような細胞として各種臓器由来の正常細胞の他、骨肉腫、白血病細胞その他の腫瘍化細胞、組換え細胞、幹細胞などがある。更に、上皮細胞、内皮細胞、心筋細胞、平滑筋細胞、骨格筋細胞、筋衛星細胞、神経シュワン細胞、脂肪細胞、多能性幹細胞など、生体内で基底膜に接している細胞の培養にも好適である。特に幹細胞の培養に好適に使用することができる。幹細胞は、自己複製能と多分化能を持った細胞を意味し、体性幹細胞、多能性幹細胞などが含まれる。体性幹細胞としては、神経幹細胞、間葉系幹細胞、造血幹細胞、心臓幹細胞、肝臓幹細胞、小腸幹細胞などが挙げられる。多能性幹細胞としては、ES細胞(胚性幹細胞)、iPS細胞(人工多能性幹細胞)、mGS細胞(多能性生殖幹細胞)、ES細胞と体細胞との融合細胞などが挙げられる。すなわち、本開示の培養方法は、ヒト幹細胞の培養に用いることが好ましい。本開示の培養方法によれば、ラミニン架橋物の存在下に幹細胞を三次元培養することができ、これにより幹細胞を分化誘導し、再生医療用の三次元組織構造体を効率よく構築することができる。 The culturing method of the present disclosure is also suitable for culturing cells derived from mammals such as humans, mice, rats, cows and pigs. Such cells include normal cells derived from various organs, osteosarcoma, leukemia cells and other tumorigenic cells, recombinant cells, stem cells and the like. Furthermore, it can also be used to culture cells in contact with the basement membrane in vivo, such as epithelial cells, endothelial cells, cardiomyocytes, smooth muscle cells, skeletal muscle cells, muscle satellite cells, nerve Schwann cells, adipocytes, and pluripotent stem cells. Suitable. In particular, it can be suitably used for culturing stem cells. Stem cells mean cells having self-renewal ability and pluripotency, and include somatic stem cells, pluripotent stem cells, and the like. Examples of somatic stem cells include neural stem cells, mesenchymal stem cells, hematopoietic stem cells, heart stem cells, liver stem cells, and small intestinal stem cells. Examples of pluripotent stem cells include ES cells (embryonic stem cells), iPS cells (induced pluripotent stem cells), mGS cells (pluripotent reproductive stem cells), and fusion cells of ES cells and somatic cells. That is, the culturing method of the present disclosure is preferably used for culturing human stem cells. According to the culture method of the present disclosure, stem cells can be cultured three-dimensionally in the presence of laminin crosslinked products, thereby inducing differentiation of stem cells and efficiently constructing a three-dimensional tissue structure for regenerative medicine. can.
 なお、ラミニン架橋物を用いて三次元培養基材を調製し、前記細胞や組織を包埋して培養してもよい。 A three-dimensional culture substrate may be prepared using a laminin crosslinked product, and the cells or tissues may be embedded and cultured.
 次に実施例を挙げて本開示を具体的に説明するが、これらの実施例は何ら本開示を制限するものではない。 Next, the present disclosure will be specifically described with reference to examples, but these examples do not limit the present disclosure in any way.
 (実施例1)
 以下の全ての操作は氷中4℃で行った。10mg/mlのヒアルロン酸水溶液(分子量2×10)1mlに、500μg/mLのラミニン511E8(株式会社ニッピ製、iMatrix-511;ヒトラミニン511のE8フラグメント)を0.5mL添加し、2MのTris-HClを200ul添加、これに10mM(millimol/L)のゲニピン(富士フィルムWAKO社製)を25μl添加し、滅菌水を加えてメスアップ、全量5mLの混合液を得た。その後12時間架橋反応を行い、ヒアルロン酸-ラミニン架橋物(最終濃度:ラミニン511E8 50μg/ml、ヒアルロン酸2mg/ml、ゲニピン0.05mM)を得た。
(Example 1)
All the following operations were performed in ice at 4 ° C. To 1 ml of a 10 mg / ml hyaluronic acid aqueous solution (molecular weight 2 × 10 6 ), 0.5 mL of 500 μg / mL laminin 511E8 (iMatrix-511 manufactured by Nippi Co., Ltd .; E8 fragment of human laminin 511) was added, and 2M Tris- 200 ul of HCl was added, 25 μl of 10 mM (millimol / L) genipin (manufactured by Fuji Film WAKO) was added thereto, and sterilized water was added to make a volumetric flask to obtain a mixed solution having a total volume of 5 mL. Then, a cross-linking reaction was carried out for 12 hours to obtain a hyaluronic acid-laminin cross-linked product (final concentration: laminin 511E8 50 μg / ml, hyaluronic acid 2 mg / ml, genipin 0.05 mM).
 (実施例2)
 以下の全ての操作は氷容器上4℃で行った。ペプシン処理可溶化した分子量3×10のI型コラーゲン(以下、PSCと称する。)を3mg/mlとなるように0.05M酢酸に分散させたコラーゲン溶液1mLを、2MのTris-HClバッファーでpHを7.5に調整し、精製水を添加して、1mg/mlの中性コラーゲン溶液を作製した。この中性コラーゲン溶液5mlに10倍濃縮のDMEM基礎培地を1ml、実施例1で得たヒアルロン酸-ラミニン架橋物を1mL加え、精製水で最終量10mlにメスアップし、均一に混合し、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を得た。このコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物1mLを底部が円錐状の遠沈管に仕込み、温度4℃、10℃、20℃、35℃、2時間静置したのち、反転して底部を天面にして観察した。また、対照として、実施例1で調製したヒアルロン酸-ラミニン架橋物を使用し、35℃で同様に2時間静置したのち、反転して底部を天面にして観察した。結果を図1に示す。符号1は、対照(35℃)、符号2~5は、それぞれコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物の温度4℃、10℃、20℃、35℃の結果である。コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物は、温度4~10℃では円錐状の部分から落下するが、温度20~35℃でゲル状が維持され円錐状の部分から落下せず残存した。なお、コラーゲンを含まないヒアルロン酸-ラミニン架橋物は、温度35℃でも円錐状の部分から落下した。
(Example 2)
All the following operations were performed on an ice container at 4 ° C. Pepsin treatment solubilized molecular weight 3 × 10 5 of type I collagen (hereinafter referred to as PSC.) The collagen solution 1mL dispersed in 0.05M acetic acid such that the 3 mg / ml, in Tris-HCl buffer 2M The pH was adjusted to 7.5 and purified water was added to prepare a 1 mg / ml neutral collagen solution. To 5 ml of this neutral collagen solution, 1 ml of 10-fold concentrated DMEM basal medium and 1 mL of the hyaluronic acid-laminin crosslinked product obtained in Example 1 are added, and the final volume is 10 ml with purified water. -(Hyaluronic acid-laminin crosslinked product) mixture was obtained. 1 mL of this collagen- (hyaluronic acid-laminin crosslinked product) mixture was placed in a centrifuge tube with a conical bottom, allowed to stand at temperatures of 4 ° C, 10 ° C, 20 ° C, 35 ° C for 2 hours, and then inverted to the top. I observed it face to face. Further, as a control, the hyaluronic acid-laminin crosslinked product prepared in Example 1 was used, and after allowing it to stand at 35 ° C. for 2 hours in the same manner, it was inverted and observed with the bottom surface facing up. The results are shown in FIG. Reference numeral 1 is a control (35 ° C.), and reference numerals 2 to 5 are the results of a collagen- (hyaluronic acid-laminin crosslinked product) mixture at temperatures of 4 ° C., 10 ° C., 20 ° C., and 35 ° C., respectively. The collagen- (hyaluronic acid-laminin crosslinked product) mixture fell from the conical part at a temperature of 4 to 10 ° C., but remained gel-like at a temperature of 20 to 35 ° C. without falling from the conical part. The collagen-free hyaluronic acid-laminin crosslinked product fell from the conical portion even at a temperature of 35 ° C.
 (実施例3)
 実施例2で得たコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物200μL(4℃)を直径3.5cmのシャーレに置いた直径1cmの滅菌円形カバーガラスの上に滴下した。これを温度37℃に加温すると、1時間後にゲル化した。また、対照としてマトリゲル(コーニング社製)200μLを使用し、同様に操作してゲル化した。
 次いで、妊娠11.5日のメスマウスから胎仔を摘出し、腎組織を取得した。この腎組織を速やかに前記ゲルに埋め込み、表1に示す腎組織培養用栄養培地を1mL加え、温度37℃で5日間の包埋培養を行った。5日後に前記栄養培地を除去し、表2に示す腎組織培養用基礎培地を1mL加え、温度37℃で7日間培養した。なお、いずれのゲルを使用した場合も2日に1回の割合で培地交換を行った。前記基礎培地で培養7日後の組織をDBA(Dolichos Biflorus Agglutinin;尿管芽特異的染色剤)およびWT-1(ネフロン前駆マーカー)で染色し、位相差顕微鏡で観察した。結果を図2に示す。図2に示すように、胎生11.5日後の腎組織はコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルでの包埋培養により、尿管芽(DBA染色)の分岐数、伸長がマトリゲルより旺盛で、特に尿管芽先端で糸球体の前駆組織であるネフロン前駆(WT-1染色)の形成が確認された。なお、図2b、図2fは、DBA染色後にキーエンス顕微鏡で蛍光観察した画像であり、図2c、図2g、図2d、図2hは、凍結切片をDBAとWT1で共染色した後に共焦点顕微鏡観察した画像である。
(Example 3)
200 μL (4 ° C.) of the collagen- (hyaluronic acid-laminin crosslinked product) mixture obtained in Example 2 was dropped onto a sterile circular cover glass having a diameter of 1 cm and placed in a petri dish having a diameter of 3.5 cm. When this was heated to a temperature of 37 ° C., it gelled after 1 hour. Further, 200 μL of Matrigel (manufactured by Corning Inc.) was used as a control, and gelation was carried out in the same manner.
Then, a fetus was removed from a female mouse on the 11.5th day of gestation to obtain renal tissue. This renal tissue was promptly embedded in the gel, 1 mL of the nutrient medium for renal tissue culture shown in Table 1 was added, and embedding culture was performed at a temperature of 37 ° C. for 5 days. After 5 days, the nutrient medium was removed, 1 mL of the basal medium for renal tissue culture shown in Table 2 was added, and the medium was cultured at a temperature of 37 ° C. for 7 days. In addition, regardless of which gel was used, the medium was exchanged once every two days. Tissues 7 days after culturing in the basal medium were stained with DBA (Dolichos Bifulorus Agglutinin; ureteral bud-specific stain) and WT-1 (nephron precursor marker) and observed with a phase-contrast microscope. The results are shown in FIG. As shown in FIG. 2, the renal tissue after 11.5 days of embryonic development was subjected to embedding culture in a collagen- (hyaluronic acid-laminin crosslinked product) mixture gel, and the number of branches and elongation of ureteral buds (DBA staining) were higher than that of Matrigel. It was vigorous, and the formation of nephron precursor (WT-1 staining), which is a precursor tissue of glomeruli, was confirmed especially at the tip of the ureteral bud. 2b and 2f are images fluorescently observed with a Keyence microscope after DBA staining, and FIGS. 2c, 2g, 2d and 2h are images of frozen sections co-stained with DBA and WT1 and then observed with a confocal microscope. It is an image that was made.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例4)
 ラミニン511E8の添加量を変更した以外は実施例1と同様に操作して、20μg/ml、60μg/ml、180μg/mlのヒアルロン酸-ラミニン架橋物を調製した。ラミニン511E8含有量に応じて、それぞれヒアルロン酸-ラミニン架橋物(20μg)、ヒアルロン酸-ラミニン架橋物(60μg)、ヒアルロン酸-ラミニン架橋物(180μg)と称する。
(Example 4)
20 μg / ml, 60 μg / ml, and 180 μg / ml hyaluronic acid-laminin crosslinked products were prepared in the same manner as in Example 1 except that the amount of laminin 511E8 added was changed. Depending on the content of laminin 511E8, they are referred to as hyaluronic acid-laminin crosslinked product (20 μg), hyaluronic acid-laminin crosslinked product (60 μg), and hyaluronic acid-laminin crosslinked product (180 μg), respectively.
 (実施例5)
 実施例4で調製したヒアルロン酸-ラミニン架橋物を使用した以外は実施例2と同様に操作してコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を調製した。これらをラミニン511E8含有量に応じて、それぞれコラーゲン-(ヒアルロン酸-ラミニン架橋物20μg)混合物、コラーゲン-(ヒアルロン酸-ラミニン架橋物60μg)混合物、コラーゲン-(ヒアルロン酸-ラミニン架橋物180μg)混合物と称する。それぞれのコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物に含まれるラミニン511E8最終濃度は、4μg/ml、12μg/ml、36μg/mlである。
(Example 5)
A collagen- (hyaluronic acid-laminin crosslinked product) mixture was prepared in the same manner as in Example 2 except that the hyaluronic acid-laminin crosslinked product prepared in Example 4 was used. These were combined with a collagen- (hyaluronic acid-laminin crosslinked product 20 μg) mixture, a collagen- (hyaluronic acid-laminin crosslinked product 60 μg) mixture, and a collagen- (hyaluronic acid-laminin crosslinked product 180 μg) mixture, respectively, according to the laminin 511E8 content. Refer to. The final concentrations of laminin 511E8 contained in each collagen- (hyaluronic acid-laminin crosslinked product) mixture are 4 μg / ml, 12 μg / ml, and 36 μg / ml.
 (実施例6)
 実施例5で調製した各コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物200μL(4℃)を直径3.5cmシャーレに置いた滅菌円形カバーガラスの上に滴下し、温度37℃に加温してゲル化させ、混合物ゲルを得た。
 また、対照としてマトリゲル(コーニング社製)、Tris-HClバッファーでpH7.5に調整したコラーゲン溶液(株式会社ニッピ製、PSC、0.5mg/mL)、およびこのコラーゲン溶液(0.5mg/mL)と2mg/mLの分子量2×10のヒアルロン酸溶液との9:1混合物を使用し、同様に操作してゲルを得た。
 実施例3と同様にして得た妊娠11.5日後の腎組織をそれぞれのゲルに包埋培養し、培養3日目の組織をホールマウントで固定し、DBA、WT-1で染色した後、オールインワン蛍光顕微鏡(キーエンス社製、BZ-X800)で画像取得した。画像を同機で解析し、DBA染色に基づいて、尿管芽分岐数(branching tip numbers)と尿管芽分岐面積(extended branching area)とを測定した。結果を図3に示す。図3Aは尿管芽分岐数の結果を、図3Bは尿管芽分岐面積の結果である。なお、図3において、サンプル符号1はマトリゲル、符号2はコラーゲン溶液(0.5mg/mL)、符号3はコラーゲン-(ヒアルロン酸-ラミニン架橋物0μg)、符号4はコラーゲン-(ヒアルロン酸-ラミニン架橋物20μg)混合物、符号5はコラーゲン-(ヒアルロン酸-ラミニン架橋物60μg)、符号6はコラーゲン-(ヒアルロン酸-ラミニン架橋物180μg)混合物を示す。マトリゲルに対するt-検定を行ったところ、上記コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物はいずれも統計的有意差(p<0.05)が検出された。
(Example 6)
200 μL (4 ° C.) of each collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared in Example 5 was dropped onto a sterile circular cover glass placed on a petri dish with a diameter of 3.5 cm and heated to a temperature of 37 ° C. It was gelled to give a mixture gel.
In addition, as a control, Matrigel (manufactured by Corning), a collagen solution adjusted to pH 7.5 with Tris-HCl buffer (manufactured by Nippi Co., Ltd., PSC, 0.5 mg / mL), and this collagen solution (0.5 mg / mL). and 2 mg / mL of molecular weight 2 × 10 5 of hyaluronic acid solution 9: 1 mixture, to obtain a similar manipulation to gel.
The renal tissue obtained in the same manner as in Example 3 after 11.5 days of pregnancy was embedded in each gel and cultured, and the tissue on the 3rd day of culture was fixed with a whole mount, stained with DBA and WT-1, and then stained. Images were acquired with an all-in-one fluorescence microscope (BZ-X800, manufactured by KEYENCE). The images were analyzed on the same machine, and the number of ureteral bud branching (branching tip numbers) and the ureteral bud branching area (extended brunching area) were measured based on DBA staining. The results are shown in FIG. FIG. 3A shows the result of the number of ureteral bud branches, and FIG. 3B shows the result of the ureteral bud branch area. In FIG. 3, sample reference numeral 1 is Matrigel, reference numeral 2 is collagen solution (0.5 mg / mL), reference numeral 3 is collagen- (hyaluronic acid-laminin crosslinked product 0 μg), and reference numeral 4 is collagen- (hyaluronic acid-laminin). 20 μg of crosslinked product), reference numeral 5 indicates a collagen- (hyaluronic acid-laminin crosslinked product 60 μg), and reference numeral 6 indicates a collagen- (hyaluronic acid-laminin crosslinked product 180 μg) mixture. When t-test was performed on Matrigel, a statistically significant difference (p <0.05) was detected in all of the above collagen- (hyaluronic acid-laminin crosslinked products) mixtures.
 (実施例7)
 実施例3で得た腎組織をAccutaseで分散した。この分散液を40μmのフィルターに通して単一細胞とした後、1.5mLエッペンドルフチューブ中で400×g、2分間の遠心分離を行った。次いで、チューブをタップ、転倒混和させてもう1度400×gで2分間の遠心分離を行い、細胞ペレット(5×10細胞)を得た。
 腎組織に代えて、前記細胞ペレットを前記ゲルに埋め込む以外は実施例3と同様に操作して7日間の包埋培養を行った。なお、2日に1回の割合で培地交換を行った。
 培養7日後に形成された組織を観察した。結果を図4に示す。組織の全体像を位相差顕微鏡により明視野で観察した(図4A)。また、組織を4%PFAで固定化し、凍結切片にして観察を行った。蛍光染色は、血管マーカーとしてPECAM-1抗体染色(図4D)、糸球体上皮細胞のマーカーとしてsynaptopodin抗体染色(図4E)、および細胞核染色(DAPI)(図4C)を行った。図4C、図4D、図4Eは、同組織をレーザースキャンして取得した画像である。また、別途HE染色を行った。結果を図4Bに示す。図4Aの明視野画像の白色部分がゲルであり、その内部に黒色の細胞の集合体が確認された。図4Bに示すように、細胞の集合体には、血管様組織(細矢印で示す)や糸球体様構造物(矢印頭で示す)が存在することが確認された。図4Cに、細胞の集合体に含まれる多くの細胞の細胞核を示し、図4Dに環状の血管構造(PECAM-1染色)を示し、図4Eに糸球体構造(synaptopodin染色)を示す。胎生11.5日後の腎組織から採取した発生期腎細胞由来の細胞の集合体は、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルでの包埋培養によって、血管構造や糸球体構造を形成することが判明した。
(Example 7)
The renal tissue obtained in Example 3 was dispersed by Accutase. This dispersion was passed through a 40 μm filter to form single cells, and then centrifuged in a 1.5 mL Eppendorf tube at 400 × g for 2 minutes. Then, tap tube was centrifuged for 2 minutes at by mixing with inversion again 400 × g, and cell pellets were obtained (5 × 10 5 cells).
An embedding culture was carried out for 7 days in the same manner as in Example 3 except that the cell pellet was embedded in the gel instead of the renal tissue. The medium was changed once every two days.
The tissue formed after 7 days of culturing was observed. The results are shown in FIG. The whole image of the tissue was observed in a bright field with a phase-contrast microscope (Fig. 4A). In addition, the tissue was immobilized with 4% PFA, and frozen sections were used for observation. Fluorescent staining was performed by PECAM-1 antibody staining (Fig. 4D) as a vascular marker, synaptopodin antibody staining (Fig. 4E) as a marker of glomerular epithelial cells, and cell nucleus staining (DAPI) (Fig. 4C). 4C, 4D, and 4E are images obtained by laser scanning the tissue. In addition, HE staining was performed separately. The results are shown in FIG. 4B. The white part of the bright-field image of FIG. 4A was a gel, and an aggregate of black cells was confirmed inside the gel. As shown in FIG. 4B, it was confirmed that vascular-like tissues (indicated by thin arrows) and glomerular-like structures (indicated by arrow heads) were present in the cell aggregate. FIG. 4C shows the cell nuclei of many cells contained in the cell aggregate, FIG. 4D shows the annular vascular structure (PECAM-1 staining), and FIG. 4E shows the glomerular structure (synaptopodyn staining). Aggregates of developing renal cell-derived cells collected from renal tissue 11.5 days after embryonic formation form vascular and glomerular structures by embedding culture in a collagen- (hyaluronic acid-laminin cross-linked product) mixture gel. It turned out to be.
 (実施例8)
 ヒアルロン酸-ラミニン架橋物の作製:
 滅菌水2.5mL、10×PBSを0.5mL、10mg/mlのヒアルロン酸水溶液(分子量1.2×10~2.2×10)1ml、500μg/mLのラミニン511E8(株式会社ニッピ製、iMatrix-511;ヒトラミニン511のE8フラグメント)を0.5mL、1.5Mグリシン溶液(in PBS)0.125ml、10mMゲニピン(富士フィルムWAKO社製)溶液0.25mLを混合し、12時間架橋反応を行った。反応物に1.5Mグリシン溶液(in PBS)0.125mlを加え4℃、6時間クエンチングを行い、ヒアルロン酸-ラミニン架橋物を得た。
(Example 8)
Preparation of hyaluronic acid-laminin crosslinked product:
Sterilized water 2.5 mL, 10 x PBS 0.5 mL, 10 mg / ml hyaluronic acid aqueous solution (molecular weight 1.2 x 10 6 to 2.2 x 10 6 ) 1 ml, 500 μg / mL laminin 511E8 (manufactured by Nippi Co., Ltd.) , IMatrix-511; E8 fragment of human laminin 511) mixed with 0.5 mL, 1.5 M glycine solution (in PBS) 0.125 ml, 10 mM genipin (manufactured by Fuji Film WAKO) solution 0.25 mL, and cross-linked reaction for 12 hours. Was done. 0.125 ml of 1.5 M glycine solution (in PBS) was added to the reaction product, and quenching was performed at 4 ° C. for 6 hours to obtain a hyaluronic acid-laminin crosslinked product.
 コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物の作製:
 分子量3×10のI型コラーゲン(株式会社ニッピ製、商品名PSMC:ペプシン可溶化低エンドトキシンブタ由来I型コラーゲン)の2.5mg/mlコラーゲン溶液(PSMC in 0.05M酢酸)4mLに、ヒアルロン酸-ラミニン架橋物1ml、2.5×DMEM(日本水産株式会社製、#05919,L-グルタミン、炭酸水素ナトリウム非含有)4ml、2.5%NaHCO溶液1mlを加えて混合し、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を得た。このコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を温度37℃に加温し、ゲル化した。
Preparation of collagen- (hyaluronic acid-laminin crosslinked product) mixture:
Molecular weight 3 × 10 5 of type I collagen (manufactured by Nippi trade name PSMC: pepsin-solubilized low endotoxin porcine type I collagen) of 2.5 mg / ml collagen solution in (PSMC in 0.05 M acetic acid) 4 mL, hyaluronic Add 1 ml of acid-laminin crosslinked product, 4 ml of 2.5 x DMEM (manufactured by Nippon Fisheries Co., Ltd., # 05919, L-glutamine, sodium hydrogencarbonate-free), and 1 ml of 2.5% NaHCO 3 solution and mix to make collagen-. A mixture (hyaluronic acid-laminine crosslinked product) was obtained. This collagen- (hyaluronic acid-laminin crosslinked product) mixture was heated to a temperature of 37 ° C. and gelled.
 混合物ゲルを凍結して凍結切片を得た。この凍結切片に対し、I型コラーゲン抗体(ブタ由来I型コラーゲンとの交差性無し)、ヒアルロン酸結合タンパク質(HABP)、ラミニン511E8抗体(抗HIS抗体)を用いて、I型コラーゲン、ヒアルロン酸、ラミニン511E8をそれぞれ染色し、共焦点顕微鏡で観察した。結果を図5に示す。図5AはI型コラーゲン抗体を、図5BはHABPを、図5Cはラミニン511E8抗体を用いた染色画像である。なお、各図は凍結ゲルの縦断面であり、上端がゲル表面下端に向かいゲル内部を示す。図5B、図5Cに示すように、ゲル内部は、ヒアルロン酸とラミニン511E8とが結合したヒアルロン酸-ラミニン架橋物で構成され、図5Aに示すように、ゲル表面にコラーゲン分子が会合した白色線維が存在することが確認された。均一混合されたコラーゲンとヒアルロン酸-ラミニン架橋物は、ゲル化に伴いコラーゲン線維部分とヒアルロン酸-ラミニン架橋物部分との不均一物を形成した。この不均一性は、例えば皮膚組織などのコラーゲン線維部を微小環境とする間質部分とラミニンなどの基底膜性構造体を微小環境とする基底膜部分との局在分離に近似する。コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物はこの局在分離を利用して、細胞培養における細胞の組織化に利用し得ると推定された。 The mixture gel was frozen to obtain frozen sections. Type I collagen antibody (without cross-reactivity with pig-derived type I collagen), hyaluronic acid-binding protein (HABP), and laminin 511E8 antibody (anti-HIS antibody) were used for this frozen section to form type I collagen, hyaluronic acid, Laminin 511E8 was stained and observed with a confocal microscope. The results are shown in FIG. FIG. 5A is a stained image using a type I collagen antibody, FIG. 5B is a HABP, and FIG. 5C is a stained image using a laminin 511E8 antibody. Each figure is a vertical cross section of the frozen gel, and the upper end faces the lower end of the gel surface to show the inside of the gel. As shown in FIGS. 5B and 5C, the inside of the gel is composed of a hyaluronic acid-laminin crosslinked product in which hyaluronic acid and laminin 511E8 are bound, and as shown in FIG. 5A, white fibers in which collagen molecules are associated with the gel surface. Was confirmed to exist. The uniformly mixed collagen and hyaluronic acid-laminin crosslinked product formed a heterogeneous product between the collagen fiber portion and the hyaluronic acid-laminin crosslinked product portion as the gelation occurred. This non-uniformity is similar to the localized separation between an interstitial portion having a collagen fiber portion as a microenvironment such as skin tissue and a basement membrane portion having a basement membrane structure such as laminin as a microenvironment. It was speculated that the collagen- (hyaluronic acid-laminin crosslinked product) mixture could utilize this localized separation to be used for cell organization in cell culture.
 また、この混合物ゲルを2%グルタルアルデヒド/PBSで固定した後エタノールによる脱水および凍結乾燥し、白金蒸着し、走査型電子顕微鏡像を撮像した。結果を図5Dに示す。また、対照として、ヒアルロン酸-ラミニン架橋物をPBSに代えた以外はコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物と同様に調製した混合物を上記と同様に処理した走査型電子顕微鏡像を図5Eに示す。図5Eに示すように、対照のコラーゲンは直線状の線維が多くみられるが、図5Dに示す混合物ゲルでは、折れ曲がった構造を示す線維が多く観察された。また図5Dの混合物ゲルでは、図5Eの対照に比べ、より密な網目が観察された。 In addition, this mixture gel was fixed with 2% glutaraldehyde / PBS, dehydrated with ethanol, freeze-dried, platinum-deposited, and a scanning electron microscope image was taken. The results are shown in FIG. 5D. As a control, a scanning electron microscope image obtained by treating a mixture prepared in the same manner as the collagen- (hyaluronic acid-laminin crosslinked product) mixture in the same manner as above except that the hyaluronic acid-laminin crosslinked product was replaced with PBS is shown in FIG. 5E. Shown in. As shown in FIG. 5E, the control collagen had many linear fibers, but in the mixture gel shown in FIG. 5D, many fibers showing a bent structure were observed. Also, in the mixture gel of FIG. 5D, a denser network was observed as compared with the control of FIG. 5E.
 (実施例9)
 実施例8に記載する方法でヒアルロン酸-ラミニン架橋物を調製した。実施例8で使用したPSMCに代えて、下記表3に示すコラーゲン<1>、コラーゲン<2>を表3に示す割合で配合して得たコラーゲン溶液をヒアルロン酸-ラミニン架橋物に添加してコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を得た。なお、表中、I型(PSC)はペプシン可溶化I型コラーゲン、I型(ASC)は酸可溶化I型コラーゲン、I型(PSMC)はペプシン可溶化低エンドトキシンI型コラーゲンを意味する。また、III型として株式会社ニッピ製、商品名:ウシ真皮由来III型コラーゲン(ペプシン可溶化)を、IV型コラーゲンとして新田ゼラチン社製、商品名cellmatrix-typeIV(ウシレンズカプセル由来ペプシン抽出)を、V型コラーゲンとして豚角膜からのペプシン可溶化抽出精製物を使用し、各種コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を調製した。
 これらの混合物を8連ウェルに300μLずつ分注して、37℃で2時間以上反応させた後、ジルコニアビーズ(株式会社ニッカトー製、直径1.5mm)をゲルの上に載せて、沈降するか否かを判別した。結果を図6に示す。図中、矢印頭はジルコニアビーズを示す。図6に示すように、いずれの混合物もジルコニアビーズは沈降せず、ゲル化能を維持することが判明した。
(Example 9)
A hyaluronic acid-laminin crosslinked product was prepared by the method described in Example 8. Instead of the PSMC used in Example 8, a collagen solution obtained by blending collagen <1> and collagen <2> shown in Table 3 below at the ratios shown in Table 3 was added to the hyaluronic acid-laminin crosslinked product. A collagen- (hyaluronic acid-laminin crosslinked product) mixture was obtained. In the table, type I (PSC) means pepsin-solubilized type I collagen, type I (ASC) means acid-solubilized type I collagen, and type I (PSMC) means pepsin-solubilized low endotoxin type I collagen. In addition, as type III, Nippi Co., Ltd., trade name: bovine dermis-derived type III collagen (pepcin solubilized), and as type IV collagen, Nitta Gelatin, trade name: cellmatrix-type IV (pepcin extraction derived from bovine lens capsule). , Pepsin solubilized extract and purified product from porcine cornea was used as V-type collagen, and various collagen- (hyaluronic acid-laminin crosslinked products) mixtures were prepared.
300 μL of each of these mixtures is dispensed into 8-wells and reacted at 37 ° C. for 2 hours or more, and then zirconia beads (manufactured by Nikkato Corporation, diameter 1.5 mm) are placed on a gel and settled. It was determined whether or not. The results are shown in FIG. In the figure, the arrow heads indicate zirconia beads. As shown in FIG. 6, it was found that the zirconia beads did not settle in any of the mixtures and maintained the gelling ability.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例10)
 架橋剤であるゲニピンに代えて同量の精製水を使用した以外は実施例8と同様に操作してヒアルロン酸-ラミニン未架橋物を調製し、およびコラーゲン-(ヒアルロン酸-ラミニン未架橋物)混合物を得た。このコラーゲン-(ヒアルロン酸-ラミニン未架橋物)混合物、実施例8で調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物、および対照としてマトリゲル(コーニング社製)を使用した。
 直径35mmのガラスボトムディッシュ(松浪硝子工業製 #D11131H)内の直径14mmのガラス上に100μlのコラーゲン-(ヒアルロン酸-ラミニン未架橋物)混合物、実施例8で調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物、またはマトリゲルを、ディッシュ表面を覆うように広げ、37℃で1時間静置し、ゲルベッドを作製した。
 次いで、妊娠13日のメスマウスから胎仔を摘出し、発生期腎臓を取得した。これをAccutase処理して細胞に分離した後、分散液を40μmのフィルターに通して単一細胞とした後、1,200rpm5分間遠心分離して細胞を再凝集させた。これを遠心し、上清をピペットで吸い取り破棄し、ペレットに表4に示す腎細胞用栄養培地を5×10cells/mLになるように添加して懸濁し、得られた細胞懸濁液を遠心管10本に分注し、1,200rpmで5分間遠心分離して細胞を再凝集させた。上清を破棄した細胞が入った遠心管を氷中で保存した。
 この遠心管にゲル化前の前記各混合物またはマトリゲルを5×10cells/200μL dropとなるように加え、よく懸濁して細胞再懸濁液とし、200μlの各ドロップをそれぞれのゲルベッドに滴下し、37℃、COインキュベーター中で1時間静置した。1時間後、各混合物等がゲル化した後に、予め37℃で予熱した表4に示す腎細胞用栄養培地をゲルの外周から1.5ml滴下し、37℃、COインキュベーター内で細胞をゲル中に分散させて包埋培養を行った。なお、培地は2日に1回の割合で交換した。培養直後、培養1日目、培養7日目に位相差顕微鏡で観察を行った。また、培養7日目にホルマリン固定し、DBA(尿管芽特異的染色剤)で染色し、共焦点顕微鏡で蛍光観察、尿管形成を評価した。結果を図7に示す。
 培養直後は、いずれのゲル中でも細胞が単分散していた(図7a、図7e、図7i)。コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルを用いた分散細胞の包埋培養では、細胞が培養1日後から凝集する傾向が観察され(図7b)、培養7日目では尿管の分枝組織が観察された(図7c)。培養7日目を尿管特異的マーカーであるDBAで染色すると、尿管の分枝構造を確認することができた(図7d、白色部)。
 一方、コラーゲン-(ヒアルロン酸-ラミニン未架橋物)混合物ゲルを用いた包埋培養では、培養7日後に伸長した細胞が観察されたが、尿管構造は観察できなかった(図7g、図7h)。
 また、対照のマトリゲルでは、培養7日後に細胞の集合化は観察されたが、伸長した細胞は観察されず、尿管も形成されなかった(図7k、図7l)。分散細胞が、凝集した後に伸長し、尿管という組織化に至るのは、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルに特異的な現象であった。ヒアルロン酸-ラミニン架橋物の配合によりヒアルロン酸-ラミニン未架橋物やマトリゲル培養では実現できない現象が得られた。
(Example 10)
A hyaluronic acid-laminin uncrosslinked product was prepared in the same manner as in Example 8 except that the same amount of purified water was used instead of the cross-linking agent genipin, and collagen- (hyaluronic acid-laminin uncrosslinked product). A mixture was obtained. This collagen- (hyaluronic acid-laminin non-crosslinked product) mixture, the collagen- (hyaluronic acid-laminin cross-linked product) mixture prepared in Example 8, and Matrigel (manufactured by Corning) as a control were used.
100 μl of collagen- (hyaluronic acid-laminin uncrosslinked) mixture on 14 mm diameter glass in a glass bottom dish (Matsunami Glass Ind. # D11131H) with a diameter of 35 mm, collagen- (hyaluronic acid-laminin) prepared in Example 8. Crosslinked) The mixture or matrigel was spread over the surface of the dish and allowed to stand at 37 ° C. for 1 hour to prepare a gel bed.
Next, a fetus was removed from a female mouse on the 13th day of gestation to obtain a developing kidney. This was subjected to Accutase treatment to separate into cells, and then the dispersion was passed through a 40 μm filter to form single cells, which were then centrifuged at 1,200 rpm for 5 minutes to reaggregate the cells. Centrifuge this, suck the supernatant with a pipette, discard it, add the nutrient medium for renal cells shown in Table 4 to the pellet to 5 × 10 6 cells / mL and suspend it, and obtain the cell suspension. Was dispensed into 10 centrifuge tubes and centrifuged at 1,200 rpm for 5 minutes to reaggregate the cells. Centrifugal tubes containing cells from which the supernatant was discarded were stored in ice.
To this centrifuge tube, each mixture or matrigel before gelation was added to 5 × 10 5 cells / 200 μL drop, suspended well to form a cell resuspension, and 200 μl of each drop was added dropwise to each gel bed. , 37 ° C., allowed to stand in a CO 2 incubator for 1 hour. After 1 hour, after each mixture and the like gelled, 1.5 ml of the nutrient medium for renal cells shown in Table 4 preheated at 37 ° C. was added dropwise from the outer periphery of the gel, and the cells were gelled in a CO 2 incubator at 37 ° C. It was dispersed in the medium and embedded culture was performed. The medium was changed once every two days. Immediately after culturing, observation was performed with a phase-contrast microscope on the first day of culturing and the seventh day of culturing. In addition, on the 7th day of culture, formalin was fixed, stained with DBA (ureteral bud-specific stain), and fluorescently observed with a confocal microscope to evaluate ureteral formation. The results are shown in FIG.
Immediately after culturing, the cells were monodispersed in all the gels (FIGS. 7a, 7e, 7i). In the embedded culture of dispersed cells using a collagen- (hyaluronic acid-laminin crosslinked product) mixture gel, a tendency for the cells to aggregate from 1 day after the culture was observed (Fig. 7b), and urinary tract branching was observed on the 7th day of the culture. Tissue was observed (Fig. 7c). When the 7th day of culture was stained with DBA, which is a ureter-specific marker, the branched structure of the ureter could be confirmed (Fig. 7d, white part).
On the other hand, in the embedding culture using the collagen- (hyaluronic acid-laminin uncrosslinked product) mixture gel, elongated cells were observed 7 days after the culture, but the ureteral structure could not be observed (Fig. 7g, Fig. 7h). ).
In the control Matrigel, cell aggregation was observed 7 days after culturing, but no elongated cells were observed and no ureter was formed (FIGS. 7k, 7l). It was a phenomenon specific to the collagen- (hyaluronic acid-laminin cross-linked product) mixture gel that the dispersed cells expanded after agglutination and led to the organization of the ureter. By blending the hyaluronic acid-laminin crosslinked product, a phenomenon that cannot be realized by the hyaluronic acid-laminin uncrosslinked product or the Matrigel culture was obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例11)
 実施例8と同様に操作して調製したコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物、および対照としてマトリゲルを使用し、温度37℃に加温して、ゲル化した。次いで腎細胞用栄養培地に代えて、10%血清を含むDMEM/F12を使用した以外は実施例10と同様に操作して、妊娠13日のメスマウスから胎仔を摘出し発生期腎臓由来細胞を得て、ゲル中に細胞を分散させた包埋培養を行った。ゲル中の細胞濃度は、2.5×10cells/mlである。
 コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲル内での1週間の培養により、位相差顕微鏡によって細胞集合体がゲル中に確認された(図8a:低倍率(20倍)位相差観察像)。図8aの一部拡大図が図8bである。図8bには、黒色の細胞集合体と、細胞集合体と細胞集合体とを繋ぐ網目状の線維が観察された。また、図8cは、細胞集合体を発生期尿管の特異的マーカーであるDBA(尿管マーカー)を用いて蛍光染色し、共焦点顕微鏡(オリンパス FV1000)で撮像した画像であり、白色部はDBA染色部である。
 また、このゲル中の細胞集合体を固定し、DBAおよびnephrin(糸球体マーカー)で染色した。マージ画像を図8dに、DBA染色画像を図8eに、nephrin染色画像を図8fに示す。図8fに示すように、細胞集合体の内部はnephrinで染色され、図8eに示すように細胞集合体の外側はDBAで染色され、この細胞集合体は、糸球体と尿管の前駆組織の融合物であることが判明した。発生期腎臓由来の細胞をコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲル中に分散して1週間の包埋培養を行うことで、糸球体や尿管が形成された細胞集合体を形成しうることが判明した。
(Example 11)
A collagen- (hyaluronic acid-laminin crosslinked product) mixture prepared in the same manner as in Example 8 and Matrigel as a control were used, and the mixture was heated to a temperature of 37 ° C. to gel. Next, the embryos were removed from female mice on the 13th day of pregnancy to obtain developing kidney-derived cells by operating in the same manner as in Example 10 except that DMEM / F12 containing 10% serum was used instead of the nutrient medium for renal cells. Then, the implant culture in which the cells were dispersed in the gel was performed. Cell concentration in the gel is 2.5 × 10 6 cells / ml.
By culturing in a collagen- (hyaluronic acid-laminin crosslinked product) mixture gel for 1 week, cell aggregates were confirmed in the gel by a phase-contrast microscope (Fig. 8a: low-magnification (20-fold) phase-contrast observation image). .. A partially enlarged view of FIG. 8a is FIG. 8b. In FIG. 8b, a black cell aggregate and a mesh-like fiber connecting the cell aggregate and the cell aggregate were observed. In addition, FIG. 8c is an image obtained by fluorescently staining the cell aggregate using DBA (ureter marker), which is a specific marker of the developing ureter, and imaging with a confocal microscope (Olympus FV1000), and the white part is an image. It is a DBA staining part.
In addition, the cell aggregates in this gel were fixed and stained with DBA and nephrin (glomerular marker). The merged image is shown in FIG. 8d, the DBA stained image is shown in FIG. 8e, and the nephrin stained image is shown in FIG. 8f. As shown in FIG. 8f, the inside of the cell assembly is stained with nephrin, and as shown in FIG. 8e, the outside of the cell assembly is stained with DBA, and this cell assembly is a precursor tissue of the glomerulus and the urinary tract. It turned out to be a fusion. By dispersing cells derived from the developing kidney in a collagen- (hyaluronic acid-laminin crosslinked product) mixture gel and performing embedding culture for 1 week, a cell aggregate in which glomeruli and ureters are formed is formed. It turned out to be possible.
 上記培養における、培養3日目、5日目の包埋培養物を固定し、I型コラーゲン抗体(ブタ由来I型コラーゲンとの交差性無し)、IV型コラーゲン抗体(ウシ由来IV型コラーゲンとの交差性なし)、PECAM-1(血管マーカー)、Nephrin抗体(ネフロン上皮マーカー)、DAPI染色(細胞核)で染色し、共焦点顕微鏡で蛍光観察した。結果を図9に示す。図9a、図9b、図9c、図9dの矢印は、DAPIで染色される細胞核が集まった部分である。包埋培養によって、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲル、マトリゲルのいずれでも培養3日目には細胞集合体が観察された。ここに、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルによる培養3日目の細胞集合体の内部にはI型コラーゲン、およびIV型コラーゲンが観察されたが(図9e、図9i)、マトリゲルではI型コラーゲンは確認することができなかった(図9f、図9j)。また、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルでは包埋培養5日目の細胞集合体の内部に、PECAM-1、およびNephrinによる染色が確認されたが(図9g、図9k)、マトリゲルでは、PECAM-1による染色は観察されなかった(図9h、図9l)。コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物ゲルを用いて分散した細胞を包埋培養すると、細胞が凝集して凝集塊を形成し、その際、細胞集合体の内部に間質成分であるI型コラーゲンが内包され、基底膜性のIV型コラーゲンとすみわけながら組織化させ、その結果、血管と上皮を有する組織化がなされたものと推測された。 In the above culture, the embedded culture on the 3rd and 5th days of the culture was fixed, and the type I collagen antibody (without cross-reactivity with pig-derived type I collagen) and the type IV collagen antibody (with bovine-derived type IV collagen) were used. (No crossing), PECAM-1 (vascular marker), Nephrin antibody (nephron epithelial marker), DAPI staining (cell nucleus), and fluorescence observation with a confocal microscope. The results are shown in FIG. The arrows in FIGS. 9a, 9b, 9c, and 9d are areas where DAPI-stained cell nuclei are clustered. By embedding culture, cell aggregates were observed on the 3rd day of culture in both collagen- (hyaluronic acid-laminin crosslinked product) mixture gel and matrigel. Here, type I collagen and type IV collagen were observed inside the cell aggregate on the third day of culture with a collagen- (hyaluronic acid-laminin crosslinked product) mixture gel (Fig. 9e, Fig. 9i), but Matrigel. Type I collagen could not be confirmed in (Fig. 9f, Fig. 9j). In addition, in the collagen- (hyaluronic acid-laminin crosslinked product) mixture gel, staining with PECAM-1 and Nephrin was confirmed inside the cell aggregate on the 5th day of embedding culture (Fig. 9g, Fig. 9k). No staining with PECAM-1 was observed in Matrigel (Fig. 9h, Fig. 9l). When dispersed cells are embedded and cultured using a collagen- (hyaluronic acid-laminin crosslinked product) mixture gel, the cells aggregate to form agglomerates, and at that time, I, which is an stromal component inside the cell aggregate. It was speculated that the type collagen was encapsulated and organized while separating from the basal membrane type IV collagen, and as a result, the tissue had blood vessels and epithelium.
 (実施例12)
 ヒアルロン酸の分子量1.2×10~2.2×10に代えて、分子量5×10~1.1×10、2×10~6×10のヒアルロン酸を使用した以外は実施例8と同様に操作してヒアルロン酸-ラミニン架橋物を調製し、およびコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を得た。これらに分子量1.2×10~2.2×10を使用して得た、合計3種のコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を使用し、実施例10と同様に操作して発生期腎細胞由来の分散細胞の包埋培養を行った。培養7日目にホルマリン固定し、DBA(尿管芽特異的染色剤)で染色し、共焦点顕微鏡で蛍光観察、尿管形成を評価した。結果を図10に示す。いずれのゲル内部でも発生期腎細胞が尿管分枝構造を形成する様子が観察された。なお、ヒアルロン酸の分子量の増加に伴い尿管分枝構造形成が上昇した。
(Example 12)
Hyaluronic acid with a molecular weight of 5 × 10 4 to 1.1 × 10 5 and 2 × 10 5 to 6 × 10 5 were used instead of hyaluronic acid with a molecular weight of 1.2 × 10 6 to 2.2 × 10 6. Prepared a hyaluronic acid-laminin crosslinked product and obtained a collagen- (hyaluronic acid-laminin crosslinked product) mixture in the same manner as in Example 8. A total of 3 types of collagen- (hyaluronic acid-laminin crosslinked product) mixture obtained by using molecular weights of 1.2 × 10 6 to 2.2 × 10 6 were used for these and operated in the same manner as in Example 10. The dispersed cells derived from developing renal cells were embedded and cultured. On the 7th day of culture, formalin was fixed, stained with DBA (ureteral bud-specific stain), and fluorescently observed with a confocal microscope to evaluate ureteral formation. The results are shown in FIG. It was observed that developing renal cells formed a ureteral branch structure inside each gel. The formation of ureteral branch structure increased with the increase in the molecular weight of hyaluronic acid.
 (実施例13)
 I型コラーゲン全量に代えて、I型コラーゲンにIV型コラーゲン(新田ゼラチン社製、商品名cellmatrix-typeIV(ウシレンズカプセル由来ペプシン抽出))を1:0.6の割合で配合したものを使用した以外は実施例8と同様に操作してコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を得た。これをI型+IV型混合物とする。また、実施例8で調製したI型コラーゲンのみを用いたコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物をI型混合物とする。実施例10で使用したものと同じガラスボトムディッシュ内の直径14mmのガラス上に氷上保存したI型+IV型混合物、I型混合物、または対照としてマトリゲルを100μm滴下し、37℃、C0インキュベーター中で1時間静置して各混合物をゲル化させた。
(Example 13)
Instead of the total amount of type I collagen, type I collagen mixed with type IV collagen (manufactured by Nitta Gelatin Co., Ltd., trade name cellmatic-type IV (extracted pepsin derived from bovine lens capsule)) is used at a ratio of 1: 0.6. A collagen- (hyaluronic acid-laminin crosslinked product) mixture was obtained by the same procedure as in Example 8. This is a type I + type IV mixture. Further, a collagen- (hyaluronic acid-laminin crosslinked product) mixture using only type I collagen prepared in Example 8 is used as a type I mixture. Type I + IV type mixture was stored on ice on a glass diameter 14mm in the same glass bottom dish as used in Example 10, I-type mixture, or Matrigel was 100μm dropwise as a control, 37 ° C., in a C0 2 incubator The mixture was allowed to stand for 1 hour to gel.
 コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物に代えて、上記で調製したI型+IV型混合物、I型混合物またはマトリゲルを使用し、実施例10と同様に操作して、発生期腎臓由来細胞の細胞再懸濁液(10cells/100μl)を得た。この細胞再懸濁液100μlを前記ゲルの上面にピペットで滴下し、37℃、C0インキュベーター内に2時間静置した。その後、37℃で予温したDMEM/F12培地+10%FBSをゲルの外周から1.5ml滴下し、37℃、C0インキュベーター内で細胞を分散させてゲル上培養を行った。なお、培養は前記腎細胞用栄養培地に代えて、DMEM/F12培地+10%FBSを用い、2日に1回の割合で培地交換して、3日間の培養を行った。
 培養3日目に固定し、DAPI染色、IV型コラーゲン抗体(ウシ由来IV型コラーゲンとの交差性なし)染色および細胞骨格を染色するPhalloidin染色を行い共焦点顕微鏡で観察した。結果を図11に示す。
 対照のマトリゲルは、ゲル上での3日間の培養により分散した細胞が細胞集合体を形成し、細胞集合体の外部にIV型コラーゲンを形成していた(図11i)。I型混合物およびI型+IV型混合物も、ゲル上での3日間の培養により分散した細胞が細胞集合体を形成したが、マトリゲルと相違して、細胞集合体の内部にIV型コラーゲンが形成されていた(図11c、図11f)。また、I型混合物ゲル上培養では、細胞集合に伴う細胞間での相互作用の結果生じる細胞辺縁部に集合した細胞骨格形成が観察され(図11b)、I型+IV型混合物のゲル上培養では、細胞は、細胞骨格を強く形成(ストレスファイバーフォーメーション)しながら、細長く伸展するものであった(図11e)。また、対照のマトリゲルのゲル上培養では、細胞内に細胞骨格は観察されたが、I型+IV型混合物と相違してストレスファイバー形成まで集合化しておらず、細胞内で全体的に拡散した形になっていた(図11h)。IV型コラーゲンの局在と細胞の挙動、細胞組織化が連動し、基材ごとに異なる細胞組織化を誘導していると考察された。
Instead of the collagen- (hyaluronic acid-laminin cross-linked product) mixture, the type I + type IV mixture, type I mixture or matrigel prepared above was used and operated in the same manner as in Example 10 to obtain cells derived from developing kidney cells. cell resuspension (10 5 cells / 100μl) was obtained. The cell re-suspension 100μl were pipetted on the upper surface of the gel, 37 ° C., for 2 hours left in the C0 2 incubator. Thereafter, the DMEM / F12 medium + 10% FBS were prewarmed at 37 ° C. and 1.5ml dropwise from the outer periphery of the gel, 37 ° C., the cells were dispersed was subjected to gel the culture in the C0 2 incubator. In addition, the culture was carried out for 3 days by using DMEM / F12 medium + 10% FBS instead of the above-mentioned nutrient medium for renal cells and exchanging the medium once every 2 days.
The cells were fixed on the 3rd day of culture, stained with DAPI, type IV collagen antibody (without cross-reactivity with bovine type IV collagen), and stained with phalloidin to stain the cytoskeleton, and observed with a confocal microscope. The results are shown in FIG.
In the control Matrigel, the cells dispersed by culturing on the gel for 3 days formed a cell aggregate, and type IV collagen was formed outside the cell aggregate (Fig. 11i). In the type I mixture and the type I + type IV mixture, the cells dispersed by culturing on the gel for 3 days formed a cell aggregate, but unlike Matrigel, type IV collagen was formed inside the cell aggregate. (Fig. 11c, Fig. 11f). In addition, in the type I mixture gel culture, cytoskeleton formation aggregated at the cell margin resulting from the interaction between cells associated with cell assembly was observed (Fig. 11b), and the type I + IV mixture was cultured on the gel. Then, the cells were elongated while forming a strong cytoskeleton (stress fiber formation) (Fig. 11e). In the cell culture of the control Matrigel, the cytoskeleton was observed inside the cells, but unlike the type I + type IV mixture, the stress fiber formation was not aggregated, and the cells were totally diffused inside the cells. (Fig. 11h). It was considered that the localization of type IV collagen, cell behavior, and cell organization are linked to induce different cell organization for each substrate.
 (実施例14)
 IV型コラーゲンに代えて、III型コラーゲン(株式会社ニッピ製、商品名:ウシ真皮由来 III型コラーゲン(ペプシン可溶化))、V型コラーゲン(豚角膜からペプシン可溶化抽出精製)を使用した以外は実施例13と同様に操作して、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を得た。これをそれぞれI+III型混合物、I+V型混合物とし、実施例8で調製したI型コラーゲンのみを用いたコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物をI型混合物とする。
 I型混合物、I型+III型混合物、およびI型+V型混合物を使用した以外は実施例10と同様に操作し、発生期腎臓由来の細胞の細胞再懸濁液を得て、ゲル中に細胞を分散させて包埋培養を行った。
 培養7日目の位相差観察像を図12に示す。I型混合物ゲルによる細胞を分散した包埋培養では、7日間の培養によりゲルが収縮し、内部に組織様構造が形成され、かつ尿管分枝を形成する様子が観察された(図12a、黒色網状構造)。I型+III型混合物ゲル、およびI型+V型混合物ゲルでは、ゲル中に更に密な尿管分枝形成が観察された(図12b、図12c、黒色網)。また、I型+V型混合物ゲルの培養物をホール固定染色し、尿管特異的マーカーであるDolichos Biflorusで染色し、蛍光顕微鏡(キーエンス社製、BZ-X800)で蛍光観察を行ったところ、ゲル内部で腎細胞が尿管分枝形成を進めている様子が観察された(図12d、白色網)。
(Example 14)
Instead of type IV collagen, type III collagen (manufactured by Nippi Co., Ltd., trade name: bovine dermis-derived type III collagen (pepsin solubilized)) and type V collagen (pepcin solubilized extract and purification from porcine cornea) were used. The same procedure as in Example 13 was carried out to obtain a collagen- (hyaluronic acid-laminin crosslinked product) mixture. This is used as an I + III type mixture and an I + V type mixture, respectively, and a collagen- (hyaluronic acid-laminin crosslinked product) mixture using only type I collagen prepared in Example 8 is used as a type I mixture.
The procedure was the same as in Example 10 except that the type I mixture, the type I + type III mixture, and the type I + type V mixture were used to obtain a cell resuspension of cells derived from the developing kidney, and the cells in the gel. Was dispersed and embedded culture was performed.
The phase difference observation image on the 7th day of culture is shown in FIG. In the embedding culture in which cells were dispersed with a type I mixture gel, it was observed that the gel contracted after 7 days of culture, a tissue-like structure was formed inside, and a ureteral branch was formed (Fig. 12a, FIG. Black mesh structure). In the type I + type III mixture gel and the type I + V type mixture gel, denser ureteral branching was observed in the gel (FIGS. 12b, 12c, black mesh). In addition, the culture of the type I + type V mixture gel was fixed-stained with holes, stained with Dorichos Biflorus, which is a ureter-specific marker, and fluorescently observed with a fluorescence microscope (Kieens, BZ-X800). It was observed that the renal cells promoted ureteral branching inside (Fig. 12d, white mesh).
 また、I型混合物ゲルおよび実施例13で調製したI+IV型混合物を使用し、前記腎細胞用栄養培地に代えてDMEM/F12培地+10%FBSを用いた以外は実施例10と同様に操作して発生期腎臓由来の細胞の細胞再懸濁液を得て、I型混合物ゲルまたはI+IV型混合物ゲル中に細胞を分散させて包埋培養を行った。
 I型混合物ゲルおよびI+IV型混合物ゲルを用いた培養10日目のゲルをホルマリン固定し、腎上皮細胞マーカーであるnephrin、血管マーカーであるPECAM-1の抗体を用いて染色、共焦点顕微鏡観察した。結果を図13に示す。いずれの混合物ゲルでも細胞を分散した包埋培養10日に細胞は集合化し、組織化され、尿管および糸球体が形成されていた(図13-b,f)。特に、I+IV型混合物ゲルでは腎上皮細胞マーカーであるnephrinで染色されるネフロン構造(図13-g)の先端部に血管マーカーであるPECAM-1で染色される細胞集合体が集中局在した(図13-h)。
Further, the operation was carried out in the same manner as in Example 10 except that the type I mixture gel and the type I + IV mixture prepared in Example 13 were used, and DMEM / F12 medium + 10% FBS was used instead of the nutrient medium for renal cells. A cell resuspension of cells derived from the developing kidney was obtained, and the cells were dispersed in a type I mixture gel or an I + IV type mixture gel and subjected to embedding culture.
The gel on the 10th day of culture using the type I mixture gel and the type I + IV mixture gel was fixed with formalin, stained with an antibody of nephrin, which is a renal epithelial cell marker, and PECAM-1 which is a vascular marker, and observed with a confocal microscope. .. The results are shown in FIG. In each of the mixture gels, the cells were assembled and organized on the 10th day of the embedding culture in which the cells were dispersed, and ureters and glomeruli were formed (FIGS. 13-b, f). In particular, in the I + IV type mixture gel, cell aggregates stained with the vascular marker PECAM-1 were concentratedly localized at the tip of the nephron structure (Fig. 13-g) stained with the renal epithelial cell marker nephrin (Fig. 13-g). FIG. 13-h).
 (実施例15)
 ラミニン511E8(株式会社ニッピ製、iMatrix-511;ヒトラミニン511のE8フラグメント)に代えてラミニン332E8(株式会社ニッピ製、ヒトラミニン322のE8フラグメント)、ラミニン111E8(株式会社ニッピ製、ヒトラミニン111のE8フラグメント)を使用した以外は実施例8と同様に操作して、コラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を調製した。これらをそれぞれ511混合物、332混合物、111混合物と称する。また、対照としてマトリゲル(コーニング社製)を使用し、実施例8と同様にゲル化した。
 次いで、妊娠13日のメスマウスから胎仔を摘出し、発生期肝組織および発生期腸管組織を取得した。発生期肝組織および発生期腸管組織をそれぞれAccutaseで分散し、この分散液を40μmのフィルターに通して単一細胞とした。前記腎細胞用栄養培地に代えて、発生期肝組織由来の細胞の培養には下記表5示す肝細胞用栄養培地を使用し、発生期腸管組織由来の細胞には表6に示す腸管細胞用栄養培地を用いる以外は実施例10と同様に操作して、ゲル中に細胞を分散させて包埋培養を行った。
(Example 15)
Laminin 332E8 (Nippi Co., Ltd., E8 fragment of Hitoraminin 322), Laminin 111E8 (Nippi Co., Ltd., E8 fragment of Hitoraminin 111) instead of Laminin 511E8 (Nippi Co., Ltd., iMatrix-511; E8 fragment of Hitoraminin 511) A collagen- (hyaluronic acid-laminin crosslinked product) mixture was prepared in the same manner as in Example 8 except that the above was used. These are referred to as 511 mixture, 332 mixture and 111 mixture, respectively. In addition, Matrigel (manufactured by Corning Inc.) was used as a control, and gelation was carried out in the same manner as in Example 8.
Then, the fetus was removed from the female mouse on the 13th day of gestation to obtain the developing liver tissue and the developing intestinal tissue. The developing liver tissue and the developing intestinal tissue were each dispersed by Accutase, and the dispersion was passed through a 40 μm filter to form a single cell. Instead of the above-mentioned nutrient medium for renal cells, the nutrient medium for hepatic cells shown in Table 5 below is used for culturing cells derived from developing hepatic tissue, and the cells derived from developing intestinal tissue are used for intestinal cells shown in Table 6. The cells were dispersed in the gel and embedded culture was carried out in the same manner as in Example 10 except that the nutrient medium was used.
 培養7日目にゲルを固定、成熟肝マーカーであるCPSI、成熟腸マーカーであるCDX2の抗体を用いて染色し、蛍光観察を行った。結果を図14に示す。
 発生期肝細胞の包埋培養では、511混合物、332混合物、111混合物、マトリゲル共に肝細胞の細胞集合体が形成された(図14a、図14b、図14cおよび図14d中の矢印)。また511混合物、332混合物、マトリゲルでは成熟肝マーカーで染色される細胞集合体が観察された(図12e、図12fおよび図12h中の白色)。一方、111混合物では肝マーカーは陰性であったが、管状構造への組織化が観察された(図14c中の矢印頭)。
 また、発生期腸管細胞の包埋培養において、各基材共に細胞集合体が観察された(図14i、図14j、図14kおよび図14l中の矢印)。これらの細胞集合体は、腸マーカー、CDX-2で染色された(図14m、図14n、図14oおよび図14p中の白色)。一方、111混合物とマトリゲルでは細胞集合体から放射状の管が形成され、凝集塊同士の連結が確認され(図12k、図12l中の矢印頭)、111混合物では、特に管状構造化が激しかった(図14k矢印頭)。ラミニンのアイソフォームの相違により、各細胞の組織化に適した細胞周囲微細環境を提供することができ、細胞に応じた多様な組織化を導き得ることが示唆された。
On the 7th day of culture, the gel was fixed, stained with antibodies of CPSI, which is a mature liver marker, and CDX2, which is a mature intestinal marker, and fluorescence observation was performed. The results are shown in FIG.
In the embedding culture of developing hepatocytes, hepatocyte cell aggregates were formed in all of the 511 mixture, 332 mixture, 111 mixture, and Matrigel (arrows in FIGS. 14a, 14b, 14c, and 14d). In addition, cell aggregates stained with mature liver markers were observed in the 511 mixture, 332 mixture, and Matrigel (white in FIGS. 12e, 12f, and 12h). On the other hand, in the 111 mixture, the liver marker was negative, but organization into a tubular structure was observed (arrowhead in FIG. 14c).
In addition, in the embedding culture of developing intestinal cells, cell aggregates were observed on each substrate (arrows in FIGS. 14i, 14j, 14k and 14l). These cell aggregates were stained with the intestinal marker CDX-2 (white in FIGS. 14m, 14n, 14o and 14p). On the other hand, in the 111 mixture and Matrigel, radial tubes were formed from the cell aggregates, and the connections between the agglomerates were confirmed (arrowheads in FIGS. 12k and 12l), and the tubular structuring was particularly intense in the 111 mixture (FIG. 12k, arrowhead in FIG. 12l). FIG. 14k arrow head). It was suggested that the difference in laminin isoforms could provide a pericellular microenvironment suitable for organizing each cell, and could lead to various cell-specific organization.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例16)
 架橋剤としてゲニピンに代えてグルタル酸ジスクシンイミジル(disuccinimidyl glutarate(DSG);Thermo Fisher #20593)を使用した以外は実施例8と同様に操作してコラーゲン-(ヒアルロン酸-ラミニン架橋物)混合物を調製し、37℃に加温し、ゲル化した。
 次いで、妊娠12日のメスマウスを使用した以外は実施例7と同様に操作して腎細胞の細胞ペレットを得て、包埋培養を行った。図15に培養7日目の位相差観察像を示す。図12aと比較して明らかなように、DSGを架橋剤とした混合物ゲルも、ゲニピンを使用した場合と同様に尿管分枝を成長させることができた。
(Example 16)
Collagen- (hyaluronic acid-laminine crosslinked product) mixture operated in the same manner as in Example 8 except that disuccinidiyl glutarate (DSG); Thermo Fisher # 20593 was used instead of genipin as a cross-linking agent. Was prepared, heated to 37 ° C., and gelled.
Next, a cell pellet of renal cells was obtained in the same manner as in Example 7 except that a female mouse on the 12th day of pregnancy was used, and embedding culture was performed. FIG. 15 shows a phase difference observation image on the 7th day of culture. As is clear from FIG. 12a, the mixture gel using DSG as a cross-linking agent was also able to grow ureteral branches in the same manner as when genipin was used.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされるものである。また、上述した実施形態と実施例は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施形態と実施例ではなく、請求の範囲によって示される。そして、請求の範囲内およびそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 The present disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Further, the above-described embodiments and examples are for explaining the present disclosure, and do not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims, not by the embodiments and examples. And various modifications made within the scope of the claims and within the equivalent meaning of the disclosure are considered to be within the scope of the present disclosure.
 本出願は、2020年3月2日に出願された、日本国特許出願特願2020-035152号に基づく。本明細書中に日本国特許出願特願2020-035152号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2020-035152, which was filed on March 2, 2020. The specification, claims, and the entire drawing of Japanese Patent Application No. 2020-035152 shall be incorporated into this specification as a reference.

Claims (15)

  1.  コラーゲンおよび/または分子量1×10~5×10のグリコサミノグリカンが、架橋剤によってラミニンまたは前記ラミニンの一部構造を有するラミニン断片と結合してなるラミニン架橋物。 A laminin crosslinked product in which collagen and / or glycosaminoglycans having a molecular weight of 1 × 10 4 to 5 × 10 6 are bound to laminin or a laminin fragment having a partial structure of the laminin by a cross-linking agent.
  2.  前記ラミニン断片が、前記ラミニンのインテグリン結合活性を有するラミニン断片である、請求項1記載のラミニン架橋物。 The laminin crosslinked product according to claim 1, wherein the laminin fragment is a laminin fragment having an integrin-binding activity of the laminin.
  3.  前記グリコサミノグリカンがヒアルロン酸またはコンドロイチンである、請求項1または2記載のラミニン架橋物。 The laminin crosslinked product according to claim 1 or 2, wherein the glycosaminoglycan is hyaluronic acid or chondroitin.
  4.  前記ラミニンが、ラミニン511、ラミニン332、ラミニン111、ラミニン121、ラミニン211、ラミニン221、ラミニン311、ラミニン321、ラミニン411、ラミニン421、またはラミニン521のいずれか1以上である、請求項1~3のいずれかに記載のラミニン架橋物。 Claims 1 to 3 wherein the laminin is any one or more of laminin 511, laminin 332, laminin 111, laminin 121, laminin 211, laminin 221 and laminin 311, laminin 321 and laminin 411, laminin 421, or laminin 521. The laminin crosslinked product described in any of the above.
  5.  前記ラミニン断片が、ラミニンE8フラグメントである、請求項1~4のいずれかに記載のラミニン架橋物。 The laminin crosslinked product according to any one of claims 1 to 4, wherein the laminin fragment is a laminin E8 fragment.
  6.  請求項1~5のいずれかに記載のラミニン架橋物と、10℃以下で溶液状態を保ち、20~45℃でゲル状となる温度応答性基材とを含む培養培地。 A culture medium containing the laminin crosslinked product according to any one of claims 1 to 5 and a temperature-responsive substrate that remains in a solution state at 10 ° C. or lower and becomes a gel at 20 to 45 ° C.
  7.  前記温度応答性基材がコラーゲンであることを特徴とする、請求項6記載の培養培地。 The culture medium according to claim 6, wherein the temperature-responsive substrate is collagen.
  8.  請求項6または7記載の培養培地と、pH調整剤とを含む三次元培養用キット。 A three-dimensional culture kit containing the culture medium according to claim 6 or 7 and a pH adjuster.
  9.  更に、培養液を含む、請求項8記載の三次元培養用キット。 The three-dimensional culture kit according to claim 8, further containing a culture solution.
  10.  請求項1~5のいずれかに記載のラミニン架橋物が、コラーゲンおよび/またはゼラチンと共に塗工されていることを特徴とする、培養基材。 A culture substrate, wherein the laminin crosslinked product according to any one of claims 1 to 5 is coated with collagen and / or gelatin.
  11.  請求項1~5のいずれかに記載のラミニン架橋物と、コラーゲンおよび/またはゼラチンとを含む組成物。 A composition containing the laminin crosslinked product according to any one of claims 1 to 5 and collagen and / or gelatin.
  12.  請求項1~5のいずれかに記載のラミニン架橋物と、コラーゲンおよび/またはゼラチンとからなる構造体。 A structure composed of the laminin crosslinked product according to any one of claims 1 to 5 and collagen and / or gelatin.
  13.  請求項1~5のいずれかに記載のラミニン架橋物の存在下に培養することを特徴とする、細胞または組織の培養方法。 A method for culturing cells or tissues, which comprises culturing in the presence of the laminin crosslinked product according to any one of claims 1 to 5.
  14.  請求項6または7記載の培養基材に細胞または組織を包埋して培養することを特徴とする、細胞または組織の三次元培養方法。 A three-dimensional culture method for cells or tissues, which comprises burying cells or tissues in the culture medium according to claim 6 or 7 and culturing the cells or tissues.
  15.  前記細胞が、多能性幹細胞、または体性幹細胞である、請求項13または14記載の培養方法。 The culture method according to claim 13 or 14, wherein the cells are pluripotent stem cells or somatic stem cells.
PCT/JP2021/007634 2020-03-02 2021-03-01 Laminin cross-linked product, culture medium including laminin cross-linked product, three-dimensional culturing kit, culture substrate, composition, structure, and culturing method WO2021177209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022504342A JPWO2021177209A1 (en) 2020-03-02 2021-03-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-035152 2020-03-02
JP2020035152 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021177209A1 true WO2021177209A1 (en) 2021-09-10

Family

ID=77613372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007634 WO2021177209A1 (en) 2020-03-02 2021-03-01 Laminin cross-linked product, culture medium including laminin cross-linked product, three-dimensional culturing kit, culture substrate, composition, structure, and culturing method

Country Status (2)

Country Link
JP (1) JPWO2021177209A1 (en)
WO (1) WO2021177209A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087397A1 (en) * 2009-01-29 2010-08-05 学校法人北里研究所 Process for producing laminated high-density cultured artificial tissue, and laminated high-density cultured artificial tissue
WO2014103534A1 (en) * 2012-12-28 2014-07-03 国立大学法人大阪大学 Modified laminin having collagen-binding molecule attached thereto, and use of same
WO2017014165A1 (en) * 2015-07-17 2017-01-26 国立大学法人京都大学 Method for inducing vascular endothelial cells
WO2019142833A1 (en) * 2018-01-16 2019-07-25 学校法人慶應義塾 METHOD FOR DERIVING CORNEAL ENDOTHELIUM REPLACEMENT CELLS FROM iPS CELLS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087397A1 (en) * 2009-01-29 2010-08-05 学校法人北里研究所 Process for producing laminated high-density cultured artificial tissue, and laminated high-density cultured artificial tissue
WO2014103534A1 (en) * 2012-12-28 2014-07-03 国立大学法人大阪大学 Modified laminin having collagen-binding molecule attached thereto, and use of same
WO2017014165A1 (en) * 2015-07-17 2017-01-26 国立大学法人京都大学 Method for inducing vascular endothelial cells
WO2019142833A1 (en) * 2018-01-16 2019-07-25 学校法人慶應義塾 METHOD FOR DERIVING CORNEAL ENDOTHELIUM REPLACEMENT CELLS FROM iPS CELLS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MURASAWA, YUSUKE: "Construction and evaluation of culture scaffolds useful for kidney organoids formation", 19TH CONGRESS OF THE JAPANESE SOCIETY FOR REGENERATIVE MEDICINE, 20 February 2020 (2020-02-20) *
TAKAMICHI MIYAZAKI; FUTAKI SUGIKO; SUEMORI HIROFUMI; TANIGUCHI YUKIMASA; YAMADA MASASHI; KAWASAKI MIWA; HAYASHI MARIA; KUMAGAI HID: "Laminin ES fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells", NATURE COMMUNICATIONS, vol. 3, no. 1236, 2012, pages 1 - 10, XP055055638, DOI: 10.1038/ncomms2231 *

Also Published As

Publication number Publication date
JPWO2021177209A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
Wu et al. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide
Cruz-Acuna et al. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions
Prestwich Simplifying the extracellular matrix for 3‐D cell culture and tissue engineering: A pragmatic approach
Krishna et al. Integrin-mediated adhesion and proliferation of human MSCs elicited by a hydroxyproline-lacking, collagen-like peptide
US20150252148A1 (en) Synthetically designed extracellular microenvironment
US9644183B2 (en) Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
Sedaghati et al. Investigation of Schwann cell behaviour on RGD-functionalised bioabsorbable nanocomposite for peripheral nerve regeneration
Jain et al. Mimicking the natural basement membrane for advanced tissue engineering
Loth et al. Gelatin-based biomaterial engineering with anhydride-containing oligomeric cross-linkers
Lin et al. Characterization of cortical neuron outgrowth in two‐and three‐dimensional culture systems
Huang et al. Engineering a self-assembling leucine zipper hydrogel system with function-specific motifs for tissue regeneration
Gullotta et al. Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration
US8877500B2 (en) Thermally induced gelation of collagen hydrogel and method of thermally inducing gelling a collagen hydrogel
Zhou et al. Comparison of neurite growth in three dimensional natural and synthetic hydrogels
Noro et al. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application
Renò et al. Gelatin-based anionic hydrogel as biocompatible substrate for human keratinocyte growth
WO2021177209A1 (en) Laminin cross-linked product, culture medium including laminin cross-linked product, three-dimensional culturing kit, culture substrate, composition, structure, and culturing method
Rothan et al. Polycaprolactone triol–citrate scaffolds enriched with human platelet releasates promote chondrogenic phenotype and cartilage extracellular matrix formation
KR101919930B1 (en) In vitro 3D cell culture model, method for preparing thereof and method for screening using the same
WO2010110596A2 (en) Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
Yao et al. Regulating coupling efficiency of REDV by controlling silk fibroin structure for vascularization
JP5687829B2 (en) Type I-IV collagen hybrid gel
Li et al. Enhancement of artificial juxtacrine stimulation of insulin by co‐immobilization with adhesion factors
Licciardello et al. Development of biomimetic co-culture and tri-culture models to mimic the complex structure of the alveolar-capillary barrier
EP2489375B1 (en) Type I-type IV collagen hybrid gel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764159

Country of ref document: EP

Kind code of ref document: A1