WO2021177060A1 - Fluorescent probe which becomes substrate of lat1 - Google Patents

Fluorescent probe which becomes substrate of lat1 Download PDF

Info

Publication number
WO2021177060A1
WO2021177060A1 PCT/JP2021/006413 JP2021006413W WO2021177060A1 WO 2021177060 A1 WO2021177060 A1 WO 2021177060A1 JP 2021006413 W JP2021006413 W JP 2021006413W WO 2021177060 A1 WO2021177060 A1 WO 2021177060A1
Authority
WO
WIPO (PCT)
Prior art keywords
nbd
salt
lat1
compound
fluorescence
Prior art date
Application number
PCT/JP2021/006413
Other languages
French (fr)
Japanese (ja)
Inventor
泰照 浦野
真子 神谷
廉 伊藤
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2021177060A1 publication Critical patent/WO2021177060A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution

Definitions

  • the present invention relates to a novel fluorescent probe that serves as an LTA1 substrate. More specifically, the present invention relates to a fluorescent substrate compound that is selectively incorporated in LAT1 and a method for visualizing cancer cells via LTA1 using the same.
  • LAT1 Large amino acid transporter 1
  • LAT1 is one of the isoforms of the transporter LAT that is driven independently of sodium, and has large side chains such as Ph, His, Ile, Leu, Met, Trp, and Tyr.
  • Sexual amino acids and amino acid derivatives such as L-DOPA are antiported inside and outside the cell.
  • the three-dimensional structure of the protein has been clarified by crystal structure analysis, and LAT1 transports the substrate by forming a dimer with the transmembrane protein 4F2hc on the cell membrane.
  • LAT1 in normal tissues is limited to many normal tissues that require an intermittent supply of amino acids, such as nerve cells, glial cells, activated T cells, bone marrow, testis, placenta barrier, and blood-brain barrier.
  • amino acids such as nerve cells, glial cells, activated T cells, bone marrow, testis, placenta barrier, and blood-brain barrier.
  • Membrane transport of large neutral amino acids in tissues is mainly carried out by LAT2, which is one of the isoforms of LAT.
  • LAT1 is highly expressed in tumor tissues, and its upregulation in a wide range of cancer types and cancer-specific expression distribution have attracted attention as a new cancer biomarker in recent years. ing. Lung cancer, prostate cancer, ovarian cancer, breast cancer, bladder cancer, brain cancer, esophageal cancer, gastric cancer, bile duct cancer, liver cancer, pancreatic cancer, head and neck cancer, kidney cancer, leukemia, skin cancer
  • LAT1 expression has been confirmed at the tissue level derived from human patients (Non-Patent Documents 1 and 2), especially non-small cell lung cancer, brain tumor, and prostate.
  • LAT1 has been clarified to be closely related to the ecology of cancer, and is the subject of basic research aimed at elucidating the ecology of cancer, and is attracting attention as a new drug discovery target for cancer. Is collecting.
  • LAT1 has been verified to be useful as a cancer marker and is attracting attention as a drug discovery target
  • most of the fluorescence imaging techniques for visualizing cancer tissues via LAT1 have been reported. No.
  • the fluorescence imaging method that can be used with high sensitivity and safety can be applied to cancer detection, it is expected to become an epoch-making medical technology that can diagnose a wide range of cancer types intraoperatively. Little has been done to develop a fluorescent substrate that can be incorporated into cancer tissue through it.
  • the present inventors focused on the substrate requirements required by LAT1 and investigated and developed the structure of a compound in which a fluorescent group was bound to the amino acid side chain site. Specifically, NBD (nitrobenzoxaziazole, molecular weight: 164) having a small molecular weight was selected as the fluorescent group, and a compound in which the side chain sites of various amino acids were bound to NBD and a derivative of the compound were synthesized, and these were synthesized.
  • the present invention was completed as a result of diligent studies, considering that the compound may be efficiently taken up into cultured cells of cancer with high expression of LAT1.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms:
  • X represents NR 2
  • R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms:
  • Y is a nitro group (-NO 2 ), a sulfonic acid group (-SO 3 H) or a sulfonamide group (-SO 2 NR'R''), where R'and R'' are independent of each other.
  • L is selected from the group consisting of alkylene, arylene, and a group composed of an arbitrary bond of alkylene and arylene.
  • L is, - (CH 2) 4 - The compound or a salt thereof according to [3].
  • [7] The compound according to [3] or a salt thereof, wherein L is * -CH 2- Bz-CH 2-.
  • [8] The compound according to any one of [1] to [7] or a salt thereof, wherein Y is a nitro group (-NO 2).
  • A The step of introducing a fluorescent probe containing the compound according to any one of [1] to [8] or a salt thereof into the cell, and (b) the fluorescence emitted by the compound or the salt thereof in the cell.
  • a method that includes the step of measuring. [11] A method for visualizing cancer cells or tissues.
  • a method comprising irradiating with an appropriate wavelength at which the cell or tissue is measured, thereby observing or measuring the fluorescence emitted within the cell or tissue. Is to provide.
  • the compound of the present invention is efficiently taken up into A549 cells, which are cultured cells with high LAT1 expression, while the uptake into cells is significantly inhibited in the presence of a LAT1 inhibitor such as BHC. Was done. Therefore, the compound of the present invention can be used as a fluorescent substrate to be incorporated into cancer tissue via LAT1. In addition, the compound of the present invention can be applied to a fluorescence imaging technique for visualizing cancer tissue via LAT1.
  • NBD-pAP The optical properties of compound 2 (NBD-pAP) are shown. It is a fluorescence image of A549 cells treated with NBD-pAP. The time-lapse fluorescence image of HEK293 cells treated with NBD-pAP is shown. Fluorescent images of A549, HeLa and HEK293 cells treated with NBD-pAP are shown. The pH dependence of the absorption spectrum and the fluorescence spectrum of NBD-pAP is shown. The absorption and emission spectra of NBD-pMAP in 100 mM NaPi buffer with various pH values containing 0.1% DMSO as a co-solvent are shown. Fluorescent images of A549 and HeLa cells treated with NBD-mAP are shown.
  • FIG. 11A shows a time-lapse fluorescence image of A549 cells treated with NBD-pAMP after washing out of extracellular buffer.
  • FIG. 11 (b) shows the quantification of the fluorescence intensity in the ROI of each cell.
  • FIG. 12 (a) shows a fluorescence confocal image of a 3D spheroid prepared by A549 or HEK293.
  • FIG. 12B shows the quantification of the fluorescence intensity of each spheroid at ROI.
  • FIG. 13 (a) shows a fluorescence image of a fresh brain tumor sample incubated with 50 ⁇ M NBD-pAP for 30 minutes in the presence or absence of a LAT1 inhibitor (20 ⁇ M JPH203).
  • FIG. 13 (b) shows the time-dependent fluorescence changes of a fresh brain tumor sample after the addition of the NBD-pAP solution (in the presence or absence of JPH203). The photophysical characteristics of NBD-lys (upper) and NBD-amino-ala (lower) are shown.
  • FIG. 15 shows a fluorescence image of A549 cells treated with 5 ⁇ M NBD-lys and NBD-amino-ala.
  • alkyl may be any of an aliphatic hydrocarbon group consisting of a linear chain, a branched chain chain, a cyclic chain, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited, but for example, the number of carbon atoms is 1 to 6 (C 1 to 6 ), the number of carbon atoms is 1 to 10 (C 1 to 10 ), and the number of carbon atoms is 1 to 15 (C 1 to 15). ), The number of carbon atoms is 1 to 20 (C 1 to 20 ). When the number of carbon atoms is specified, it means “alkyl" having the number of carbon atoms in the range of the number of carbon atoms.
  • the C 1 ⁇ 8 alkyl methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, sec- butyl, tert- butyl, n- pentyl, isopentyl, neo-pentyl, n- hexyl, isohexyl, Includes n-heptyl, n-octyl and the like.
  • the alkyl group may have one or more arbitrary substituents.
  • substituents include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono or di-substituted amino group, a substituted silyl group, or an acyl. If the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl moiety of other substituents containing the alkyl moiety (eg, alkane group, arylalkyl group, etc.).
  • halogen atom may be any of a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and is preferably a fluorine atom, a chlorine atom, or a bromine atom.
  • a functional group when a functional group is defined as "may be substituted", the type of substituent, the position of substitution, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different.
  • the substituent include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, an oxo group and the like. Further substituents may be present in these substituents. Examples of such include, but are not limited to, alkyl halide groups, dialkylamino groups, and the like.
  • a compound represented by the general formula (I) or a salt thereof is a compound represented by the following general formula (I) or a salt thereof (hereinafter, also referred to as “compound of the present invention”). ..
  • LAT1 in developing a fluorescent substrate to be incorporated into cancer tissues via LAT1, the present inventors focused on the substrate requirements required by LAT1 and examined binding a fluorescent group to the amino acid side chain site. bottom.
  • LAT1 is considered to be preferable as a fluorescent group having a small molecular weight like other transporters. Among them, among them, although it is compact in molecular size, it is used in clinical practice. NBD (nitrobenzoxaziazole, molecular weight: 164), which can be used at the fluorescence wavelength used, was selected. Therefore, it is important that the compound of the present invention has a structure in which NBD and side chain sites of various amino acids are bonded.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group is preferably a methyl group.
  • L is a divalent group selected from the group consisting of alkylene, arylene, and a group composed of an arbitrary bond of alkylene and arylene.
  • the alkylene is a divalent group consisting of linear or branched saturated hydrocarbons, for example, methylene, 1-methylmethylene, 1,1-dimethylmethylene, ethylene, 1-methylethylene, 1-ethylethylene. , 1,1-dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1-methyltrimethylene, 2-methyltri Methylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1-diethyltrimethylene, 1,2- Diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrimethylene, tetramethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-dimethyl Examples thereof include tetram
  • the arylene is a divalent group consisting of a monocyclic or condensed polycyclic aromatic hydrocarbon, and contains one or more heteroatoms (for example, oxygen atom, nitrogen atom, sulfur atom, etc.) as a ring-constituting atom. It may be an aromatic heterocycle. Whether the arylene is a monocyclic ring or a condensed ring, it can be bonded at all possible positions.
  • monocyclic aryl include a phenylene group (Ph) and the like.
  • Non-limiting examples of condensed polycyclic arylenes include naphthylene and the like.
  • L is selected from: -(CR a R b ) n- , -Ar-, * -Ar- (CR a R b ) m- , * -(CR a R b ) s -Ar-, * -(CR a R b ) s- Ar- (CR a R b ) m-
  • Ar represents an arylene
  • Ra and R b are independent hydrogen atoms or alkyl groups having 1 to 3 carbon atoms at each appearance
  • n is an integer of 1 to 8.
  • m is an integer of 1 to 5
  • s is an integer of 1 to 8
  • * indicates the side to be combined with X.
  • L is selected from the following. - (CH 2) n1 -, - Ph-, * -Ph- (CH 2) m1 -, * - (CH 2) s1 -Ph-, * - (CH 2) s1 -Ph- (CH 2) m1 -
  • Ph represents a phenylene group
  • n1 is an integer of 1 to 8
  • m1 is an integer of 1 to 5
  • s1 is an integer of 1 to 8
  • * indicates a side to be bonded to X. ..
  • the hydrogen atom is removed from the group at the end of the side chain of the amino acid that is the substrate target of LAT1.
  • a group from which one is removed (for example, if the amino acid of the substrate target of LAT1 is alanine, a methylene group (-CH 2- )) is preferable, but the present invention is not limited to this, and can be selected depending on the type of amino acid. ..
  • L is preferably * -Bz-CH 2- (Bz represents a benzene ring) and * -CH 2- Bz-CH 2- .
  • L is selected from: -CH 2 -, * -Bz-CH 2 -, - (CH 2) 4 -, * -CH 2 -Bz-CH 2 -
  • Bz represents a benzene ring
  • * represents a side bonded to X.
  • X represents NR 2.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group is preferably a methyl group.
  • L is * -Bz-CH 2- .
  • L is, * -CH 2 -Bz-CH 2 - it is.
  • L is, -CH 2 - is.
  • L is, - (CH 2) 4 - a.
  • Y is a nitro group (-NO 2 ), a sulfonic acid group (-SO 3 H) or a sulfonamide group (-SO 2 NR'R''), where R'and R ′′ is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Y is preferably a nitro group (-NO 2 ).
  • the compound represented by the general formula (I) can exist as an acid addition salt or a base addition salt.
  • the acid addition salt include mineral salts such as hydrochloride, sulfate and nitrate, methanesulfonate, p-toluenesulfonate, oxalate, citrate, tartrate, trifluoroacetate and the like.
  • the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt and magnesium salt, ammonium salt, and organic amine salt such as triethylamine salt. .. In addition to these, it may form a salt with an amino acid such as glycine.
  • the compound represented by the general formula (I) or a salt thereof may exist as a hydrate or a solvate, but these substances can also be used in the present invention.
  • the compound represented by the general formula (I) may have one or two or more asymmetric carbons depending on the type of the substituent, but in the present invention, one or two or more asymmetric carbons.
  • stereoisomers such as optically active compounds based on the above and diastereoisomers based on two or more asymmetric carbons
  • any mixture of stereoisomers, racemates and the like can also be used.
  • a method for producing a typical compound of the compound represented by the general formula (I) is specifically shown in the examples of the present specification. Therefore, those skilled in the art can appropriately select reaction raw materials, reaction conditions, reaction reagents, etc. based on these explanations, and modify or modify these methods as necessary to obtain the general formula ( The compound represented by I) can be produced.
  • the compound represented by the general formula (I) can be used as a substrate for LAT1.
  • Fluorescent probe of the present invention Another aspect of the present invention is a fluorescent probe containing the compound of the general formula (I) or a salt thereof (hereinafter, also referred to as "fluorescent probe of the present invention").
  • Another aspect of the present invention is a method for detecting intracellular uptake by LAT1. It is a method including (a) a step of introducing a fluorescent probe containing the compound of the general formula (I) or a salt thereof into a cell, and (b) a step of measuring the fluorescence emitted by the compound or a salt thereof in the cell ().
  • a fluorescent probe containing the compound of the general formula (I) or a salt thereof into a cell
  • detection method of the present invention examples of cells include normal cells, cancer cells, nerve cells and the like.
  • Another aspect of the present invention is a method of visualizing cancer cells or tissues.
  • Another embodiment of the present invention is a method for detecting cancer, wherein (a) a step of applying a fluorescent probe containing a compound of the general formula (I) or a salt thereof to a clinical sample of a subject, and ( b) A method including measuring a fluorescent image of a clinical sample to which the fluorescent probe is applied (hereinafter, also referred to as "detection method of the present invention").
  • the application of the fluorescent probe to the clinical sample in the step (a) can be performed, for example, by locally spraying the solution of the fluorescent probe onto the clinical sample.
  • Clinical specimens include, for example, lung cancer, prostate cancer, ovarian cancer, breast cancer, bladder cancer, brain cancer, esophageal cancer, gastric cancer, bile duct cancer, liver cancer, pancreatic cancer, head and neck cancer, and kidney. Hmm, leukemia, skin cancer, thyroid cancer, etc.
  • Another aspect of the present invention is (a) a step of administering a fluorescent probe containing a compound of the general formula (I) or a salt thereof to a subject, and (b) fluorescence of cells, tissues or organs of the subject.
  • the types of cancers subject to the diagnostic method of the present invention include lung cancer, prostate cancer, ovarian cancer, breast cancer, bladder cancer, brain tumor, esophageal cancer, gastric cancer, bile duct cancer, liver cancer, and pancreatic cancer. , Head and neck cancer, kidney cancer, leukemia, skin cancer, thyroid cancer.
  • cancer tissue means any tissue including cancer cells.
  • tissue should be interpreted in the broadest sense, including part or all of the organ, and should not be construed in a limited way in any sense.
  • a tissue highly expressing LAT1 is preferable.
  • diagnosis in the present specification needs to be interpreted in the broadest sense, including confirming the presence of cancerous tissue at any biological site with the naked eye or under a microscope.
  • the compound of the present invention or a salt thereof is taken up into cells, tissues or organs via LAT1, and the compound is incorporated into cells, tissues or organs. This is preferably performed by observing or measuring the fluorescence emitted inside the organ.
  • the detection method, the method for visualizing cancer cells or tissues, the detection method and the diagnostic method of the present invention can further include observing a fluorescence response using a fluorescence imaging means.
  • a fluorometer having a wide measurement wavelength can be used, but the fluorescence response can also be visualized by using a fluorescence imaging means capable of displaying the fluorescence response as a two-dimensional image.
  • the fluorescence imaging device a device known in the art can be used. In some cases, it is also possible to detect the reaction between the sample to be measured and the fluorescent probe by a change in the ultraviolet-visible absorption spectrum (for example, a change in absorbance at a specific absorption wavelength).
  • the method of using the fluorescent probe of the present invention is not particularly limited, and it can be used in the same manner as a conventionally known fluorescent probe.
  • the compound of the present invention or a salt thereof is added to an aqueous medium such as physiological saline or a buffer solution, or a mixture of an aqueous medium and a water-miscible organic solvent such as ethanol, acetone, ethylene glycol, dimethyl sulfoxide, or dimethylformamide.
  • the solution may be added to a suitable buffer containing cells or tissues and the fluorescence spectrum may be measured.
  • the fluorescent probe of the present invention may be used in the form of a composition in combination with a suitable additive.
  • the concentration of the compound of the present invention in the fluorescent probe of the present invention can be appropriately determined according to the type of cells to be measured, measurement conditions, and the like.
  • Another embodiment of the present invention is a kit for detecting cancer cells or tissues, which comprises the fluorescent probe of the present invention.
  • the fluorescent probe of the present invention is usually prepared as a solution, but is provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid preparation, and is provided at the time of use. It can also be applied by dissolving it in distilled water for injection or an appropriate buffer solution.
  • the kit may appropriately contain other reagents and the like, if necessary.
  • additives such as a solubilizing agent, a pH adjusting agent, a buffering agent, and an isotonicizing agent can be used, and the blending amount thereof can be appropriately selected by those skilled in the art.
  • Reagents and solvents are Aldrich Chemical Co., Ltd., Tokyo Chemical Industry Co., Ltd. and Wako Pure Chemical Industries, Ltd., Kanto Chemical Co., Ltd., Gibco Co., Ltd., Invitrogen, Toyobo and Thermo Scientific. It was of the available grade grade supplied by and used without further purification. The reaction was observed by TLC and ESI mass spectrometry, or UPLC-MS.
  • the instrumental NMR spectrum was measured at 400 MHz for 1 1 HNMR and 101 MHz for 13 CNMR by a JEOL JNM-LA400 apparatus.
  • the mass spectrum (MS) was measured using JEOL JMS-T100LC AccuToF (ESI).
  • Preparative HPLC uses an HPLC system consisting of a pump (PU-2080, JASCO) and a detector (MD-2025 or FP-2025, JASCO) and contains eluent A (0.1% TFA (v / v)).
  • the preparative MPLC is a silica gel column (silica gel 40 ⁇ m, Yamazen) using an MPLC system consisting of a pump and a detector (EPCLC AI-580S, Yamazen), or a SNAP Ultra C18 30 g (Biotage) using Isolera TM One (Biotage). I went there.
  • LC-MS analysis includes pumps (LC-30AD, Shimadzu), PDA detectors (SPD-M30A, Shimadzu), FP detectors (RF-20Axs, Shimadzu) and MS detectors (LCMS-2020, Shimadzu). ) was used on an Agilent Poroshell 120 (10 cm ⁇ 2.1 mm, EC-C18 1.9 ⁇ m) column (Agilent). qPCR was performed on the Light Cycler® 480 system (Roche).
  • the absorption spectrum was obtained with Shimadzu UV-1850 (Tokyo, Japan).
  • the fluorescence spectrum was performed using Hitachi F7100 (Tokyo, Japan).
  • the slit width was 5 nm for both excitation and emission.
  • the photomultiplier tube voltage was 400V or 700V.
  • Absolute fluorescence quantum yields were determined using Hamamatsu Photonics Quantaurus QY.
  • the area under the emission spectrum of the test sample was compared with the standard sample to obtain the relative fluorescence quantum yield, which was calculated by the following formula.
  • st standard
  • x sample
  • A absorbance at excitation wavelength
  • n refractive index
  • D area under the fluorescence spectrum on the energy scale.
  • the optical properties of these probes were examined in PBS ( ⁇ ) or Na-Pi buffer containing 0.1% DMSO as a co-solvent. Fluorescence lifetime was measured by Quantaurus-Tau C 11367 (HAMAMATSU).
  • HEK293 cells and HeLa cells were cultured in DMEM (Gibco) containing 10% fetal bovine serum (Gibco) and 1% penicillin streptomycin (Gibco).
  • Caco-2 cells were cultured in DMEM containing 20% fetal bovine serum, 1% penicillin streptomycin and 1% MEM non-essential amino acid solution (100x, Gibco). All cells were cultured in a humidified incubator in 95% air under 5% CO 2.
  • Fluorescence confocal microscopy imaging with LAT inhibitors A549, HEK293, HeLa and Caco-2 cells were seeded at 4.0 ⁇ 10 4 cells / well in an 8-well chamber (ibidi) and cultured in the appropriate medium. Cells were washed once with Na + Free buffer (pH 5.3), were preincubated for 30 minutes at Na + Free buffer (pH 5.3).
  • the buffer is a probe in 200 ⁇ L of Na + free buffer (pH 5.3) in the presence or absence of a LAT inhibitor (5 mM BCH or 5 ⁇ M HCl 203) containing less than 0.5% DMSO as a co-solvent.
  • Fluorescence imaging of probe efflux A549 cells on an 8-well chamber are incubated with probe solution for 30 minutes according to the same protocol as above, and then buffer solution is Na Replaced with + free buffer (pH 5.3). Next, a 50-minute time-lapse fluorescence image was acquired using a confocal microscope under the same conditions as described above.
  • a 96-well round bottom plate (Corning) of spheroid culture was coated with 30 mg / mL poly-HEMA (Sigma-Aldrich) 95% EtOH solution and then dried overnight on a clean bench.
  • A549 cells and HEK293 cells were seeded with 2.0 ⁇ 10 3 cells containing 2.5% Matrigel (Corning) on each well (seeding procedure on ice to prevent Matrigel polymerization). rice field).
  • the plates were centrifuged (1000 G x 10 minutes, 4 ° C.) and incubated in DMEM for 3 days to prepare spheroids with a radius of about 400 ⁇ m.
  • Fluorescence images were obtained with a confocal fluorescence microscope (TCS SP8, Leica) equipped with a 10x objective lens (HC PL APO CS 10x / 0.40 DRY, Leica) and an Ar laser.
  • the excitation wavelength and the emission wavelength were 488 nm and 534 to 634 nm, respectively. Images were taken at 10 ⁇ m each in the z direction, for a total of 150 ⁇ M. After overlaying the z-direction image with LASX software, the fluorescence intensity of the spheroid was quantified with ImageJ software.
  • N-Boc-L-lysine 216 mg, 0.88 mmol
  • sodium bicarbonate 86.6 mg, 0.65 mmol
  • a solution of NBD-Cl 178 mg, 0.88 mmol
  • methanol 10 mL
  • the methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane.
  • the combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness.
  • the crude product was dissolved in dichloromethane (20 mL) and cooled at 0 ° C. without further purification.
  • N-Boc-L-lysine (19.6 mg, 0.080 mmol) and sodium bicarbonate (8.70 mg, 0.10 mmol) were dissolved in water (0.4 mL).
  • a solution of DBD-Cl (22.2 mg, 0.091 mmol) in methanol (2.0 mL) was added dropwise, and the mixture was stirred at room temperature for 5 hours.
  • the methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness.
  • FIG. 1 shows the optical characteristics of compound 2 (NBD-pAP), and the absorption spectrum and fluorescence spectrum were measured in a NaPi buffer solution (pH 7.5) containing 0.1% DMSO as a co-solvent.
  • the fluorescence quantum yield of NBD-pAP in the buffer solution was as low as 0.003, showing almost no fluorescence.
  • Example 2 Cell imaging with compound 2 (NBD-pAP) (1) Evaluation using a LAT1 high-expressing cell line (A549) As examined in Example 1, it was revealed that the fluorescence of NBD-pAP was very weak, but the high sensitivity of fluorescence imaging was taken into consideration. Then, it was considered that it was possible to evaluate whether NBD-pAP could be a substrate for LAT1 by fluorescence imaging using cultured cells. Therefore, first, A549 cells in which LAT1 expression has been reported are selected (Cell atlas --SLC7A5-The Human Protein Atlas.), And the presence or absence of BCH (structural formula is shown below), which is an inhibitor of LAT, is present. The intracellular uptake of NBD-pAP by LAT was evaluated from the fluorescence intensity below.
  • DMEM contains an amino acid that competes with NBD-pAP as a LAT1 substrate, and HBSS does not contain an amino acid but contains Na + ions, so it is Na + dependent. Since it is affected by the transport of amino acids by amino acid transporters, previous studies (Haefliger, P. et al. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse) Na + amino acid-free buffer (Na + free buffer: 125 mM Chocolate-Cl, 25 mM HEEPS,) prepared with reference to model. J. Exp. Clin. Cancer Res. 37, 1-15 (2016).
  • NBD-pAP could be a LAT1 substrate.
  • evaluation was performed in four types of buffer solutions having different pH (Fig. 2). Since the Na + free buffer solution showed weak acidity (pH 5.3) before pH adjustment, the pH was adjusted to neutral by adding Tris base.
  • the imaging protocol is as follows, and the parts not specifically mentioned in the subsequent experiments were evaluated by the same procedure.
  • ⁇ Protocol> A549 cells are seeded in an Ibidi 8-well imaging chamber at 4.0 ⁇ 10 4 cells / well. ⁇ 37 ° C, CO 2 5 % under 1 wash ⁇ Na + Free buffer for 30 minutes at 1-2 days of culture ⁇ Na + Free buffer, 37 ° C., were pre-incubated with CO 2 5% under. ⁇ The buffer was replaced with a probe solution in Na + free buffer in the presence or absence of a LAT inhibitor. ⁇ Na + Free buffer at 30 min, 37 ° C., and incubated CO 2 5% under. ⁇ The image was taken with a confocal microscope.
  • FIG. 2 is a fluorescence image of A549 cells treated with NBD-pAP.
  • Cells were preincubated for 30 minutes at Na + free buffer pH 5.3 ⁇ 7.4, then pH 5.3 was incubated with Na + free buffer 50 [mu] M NBD-pAP of ⁇ 7.4 (5mM BCH (LAT In the presence or absence of an inhibitor)).
  • Images were obtained with the Leica SP8.
  • the imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01.
  • NBD-pAP had a difference in intracellular fluorescence intensity depending on the presence or absence of BCH under acidic conditions, suggesting that it is a substrate for LAT1 (Fig. 2).
  • the intracellular fluorescence intensity decreased as the neutral condition was approached, suggesting that the uptake of NBD-pAP into A549 cells is affected by pH.
  • FIG. 3 shows a time-lapse fluorescence image of HEK293 cells treated with NBD-pAP.
  • Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then incubated with pH 5.3 Na + free buffer containing 50 ⁇ M NBD-pAP (in the presence of 5 mM BCH (LAT inhibitor) or In the absence).
  • Images were obtained with the Leica SP8.
  • the imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01.
  • Scale bar 50 ⁇ m.
  • LAT1 isoforms of LAT1 to LAT4 in LAT.
  • LAT1 is mainly highly expressed in tumor cells such as A549, but since BCH non-selectively inhibits all isoforms of LAT, NBD-pAP is LAT from previous studies. It was unclear which isoform of the throat was transported. Therefore, in order to evaluate whether NBD-pAP is a selective substrate for LAT1, JPH203 (structural formula is shown below), which exhibits a LAT1 selective inhibitory effect among the four isoforms of LAT, is used. , It was examined whether the uptake of NBD-pAP into A549 cells was inhibited. In addition, in order to investigate whether NBD-pAP is taken up via LAT1 regardless of cell type, a similar evaluation was performed using another cancer cultured cell line HeLa cell that highly expresses LAT1 (). FIG. 4).
  • FIG. 4 shows fluorescence images of A549, HeLa and HEK293 cells treated with NBD-pAP.
  • Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then in pH 5.3 Na + free buffer containing 50 ⁇ M NBD-pAP for 30 minutes (5 ⁇ M JPH203 (LAT1)). Selective inhibitor) in the presence or absence).
  • Images were obtained with the Leica SP8.
  • the imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 ⁇ m.
  • Example 3 Development of an improved NBD fluorescent mother nucleus probe From the results of the study in Example 2, it was clarified that the compound NBD-pAP in which p-aminophenylalanine was introduced into NBD, which is a compact fluorescent group, serves as the LAT1 substrate. On the other hand, NBD-pAP has (1) intracellular fluorescence intensity changes depending on pH, (2) slow uptake into cells, and (3) low fluorescence quantum yield ( ⁇ fl ⁇ 0). Since the point of 0.01) was recognized, next, structural development was carried out from NBD-pAP, and it was further examined whether these points could be improved.
  • NBD-pAP shows a pH-dependent absorption / fluorescence spectrum between pH 3.0 and 10.0, and the pKa of the nitrogen atom is about 7. It is known that it is around 5, and this data also agrees with this (Fig. 5).
  • FIG. 5 shows the pH dependence of the absorption spectrum and the fluorescence spectrum of NBD-pAP.
  • A, b) are absorption and emission spectra of NBD-pAP in 100 mM NaPi buffer of various pH values containing 0.1% DMSO as a co-solvent. The excitation wavelength was 470 nm.
  • C is a plot of absorbance ratio vs. pH at 447 nm and 493 nm.
  • NBD-pMAP NBD-methylamino-phe
  • NBD-mAP NBD-mAP
  • FIG. 7 shows fluorescence images of A549 cells and HeLa cells treated with NBD-mAP.
  • Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then in pH 5.3 Na + free buffer containing 50 ⁇ M NBD-mAP for 40 minutes (in the presence or absence of 5 ⁇ M JPH203). In existence). Images were obtained with the Leica SP8. The imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 ⁇ m.
  • the uptake speed was compared according to the replacement position.
  • a probe solution was added with the focal plane aligned with the cells (final 50 ⁇ M), and imaging was performed every minute for 10 minutes to track changes in intracellular fluorescence intensity for 10 to 20 minutes.
  • the uptake rate of the p-substituent was faster than that of the m-substitute in any of the cells, and the uptake was performed by changing the substitution position to the m-position. The speed did not improve (Fig. 8).
  • FIG. 8 shows a comparison of the uptake of NBD-pAP and NBD-mAP into A549 cells and HeLa cells.
  • A is a time-dependent fluorescence image of A549 and HeLa cells treated with NBD-pAP and NBD-mAP. Cells were incubated 30 minutes prior to Na + free buffer at pH 5.3. Images were obtained with the Leica SP8. The image conditions were as follows: Ar 20%, HC PL APO CS2 63 ⁇ / 1.40 OIL, Ex. 488 nm 1% Em. HyD3 534-634 nm (A549) or 519-590 nm (HeLa), gain 500% offset-0.01. Scale bar: 50 ⁇ m.
  • NBD-p-aminomethyl-phe NBD-p-aminomethyl-phe (NBD) in which a methylene group was introduced between the amine at the NBD4 position and the aromatic ring of phenylalanine with the aim of improving the fluorescence quantum yield.
  • -PAMP NBD-p-aminomethyl-phe
  • FIG. 9 shows the optical characteristics of NBD-pAMP. The figure on the left is the absorption spectrum, and the figure on the right is the fluorescence spectrum. The entire spectrum was measured in PBS containing 0.1% DMSO as a co-solvent.
  • the fluorescence quantum yield of NBD-pAMP in PBS ( ⁇ ) was 5.9%, which was more than 10 times higher than that of NBD-pAP containing no methylene group (Table 2).
  • FIG. 10 shows a fluorescence image of A549 cells treated with 5 ⁇ M NBD-pAMP. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then incubated with pH 5.3 Na + free buffer containing 5 ⁇ M NBD-pAMP for 30 minutes (in the presence or absence of 5 ⁇ M JPH203). under). Images were obtained with the Leica SP8. The image conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 ⁇ / 1, 30 OIL, Ex. 488 nm 2% Em. HyD 3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 ⁇ m.
  • NBD-pAMP when NBD-pAMP was incubated at 5 ⁇ M, an increase in intracellular fluorescence intensity was observed, and since this increase was significantly reduced by JPH203, NBD-pAMP became a LAT1 substrate. It was suggested that therefore, it was shown that the introduction of a methylene group between the NBD4-position amino group of NBD-pAP and the phenylalanine structure is acceptable for LAT1 substrate recognition. Also, in NBD-pAMP, as in NBD-pAP, the fluorescence signal from the inside of the cell can be selectively observed without a washing operation, and some mechanism such as intracellular concentration and activation of fluorescence in the cell can be observed. It was suggested that the cells could be fluorescently visualized with a high intracellular and extracellular fluorescence intensity ratio.
  • NBD-pAMP was incubated at 50 ⁇ M, washed, and then the intracellular fluorescence intensity was observed over time. As a result, it was observed that NBD-pAMP was excreted from the inside of the cell and stayed inside the cell. It was suggested that the sex was not high.
  • LAT1 carries out the opposite transport of the substrate, considering the possibility that the transport of NBD-pAMP from the inside of the cell to the outside of the cell is carried out by LAT1, the excretion to the outside of the cell after the washing operation is added with JPH203. It was examined whether it was suppressed by (Fig. 11).
  • FIG. 11A shows a time-lapse fluorescence image of A549 cells treated with NBD-pAMP after washing out of extracellular buffer.
  • Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and incubated with 5 ⁇ M NBD-pAMP for 30 minutes in the presence or absence of 5 ⁇ M JPH203 (LAT1 selective inhibitor). It is then washed with a pH 5.3 Na + free buffer (in the presence or absence of 5 ⁇ M JPH203).
  • Images were obtained with the Leica SP8. The image conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 0.5% Em. HyD3 530-630 nm, gain 500%. Scale bar: 50 ⁇ m.
  • FIG. 11 (b) shows the quantification of the fluorescence intensity in the ROI of each cell.
  • the leakage of the probe from the cells after the washing operation was not inhibited by the addition of JPH203. It is considered possible that the probe is excreted from the intracellular to the extracellular by an amino acid transporter other than LAT1 or various drug excretion transporters whose expression is enhanced in cancer cells.
  • Example 4 Application to spheroid
  • the fluorescent substrate NBD-pAP of LAT1 which was found to be taken up via LAT1 in two-dimensional cultured cells was applied to a 3D spheroid close to an actual tissue. It was verified whether the developed probe was taken up via LAT1 also in three-dimensional cultured cells.
  • a 3D spheroid having a diameter of about 400 mm was prepared from LAT1 high-expressing cell A549 and low-expressing cell HEK293 by the following protocol, and NBD-pAP was applied to this to perform fluorescence imaging with a confocal microscope (Fig.). 12).
  • ⁇ Protocol> A549 cells containing 2.5% matrigel at 2.0 ⁇ 10 3 cells / well were seeded in a 96-well circular bottom plate coated with poly-HEMA (poly 2-hydroxyethyl methacrylate). ⁇ 37 ° C., in CO 2 5%, 30 min in a single washing ⁇ Na + Free buffer (pH 5.3) at 3 days of culture ⁇ Na + Free buffer (pH5.3), 37 °C, CO 2 5% Pre-incubation with ⁇ The buffer was replaced with a probe solution in Na + free buffer (pH 5.3) in the presence or absence of JPH203 ⁇ Na + free buffer (pH 5.3) for 30 minutes. 37 ° C., photographed images with incubation ⁇ confocal microscopy CO 2 5%
  • FIG. 12 (a) shows a fluorescence confocal image of a 3D spheroid prepared by A549 or HEK293. Pre-incubated at pH 5.3 in Na + free buffer for 30 minutes, then incubated in pH 5.3 Na + free buffer containing 50 ⁇ M NBD-pAP for 30 minutes (in the presence or absence of 5 ⁇ M JPH203). ). Images were obtained with a Leica SP8. The shooting conditions were Ar 20%, line average 5, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 2% Em. HyD 3 534-634 nm, Gain 500% Offset-0.01.
  • Example 5 Application to patient-derived fresh brain tumor specimens It was examined whether NBD-pAP, which was suggested to be incorporated into three-dimensional spheroids via LAT1 in Example 4, is also incorporated into actual human fresh cancer tissues via LAT1. Brain tumors, which have been reported to have increased LAT1 expression and have been suggested to be associated with cancer malignancy and LAT1 expression, were selected as the cancer type to be evaluated. As an existing technique for fluorescently labeling brain tumors, there is 5-aminolevulinic acid (5-ALA), which is the only fluorescent reagent covered by insurance in the operation of malignant glioma.
  • 5-aminolevulinic acid 5-ALA
  • 5-ALA which was orally administered 3 hours before the start of surgery, was synthesized intracellularly into protoporphyrin IX (PpIX) and selectively over-accumulated in tumor cells, to which blue visible light (375-445 nm) was emitted. Upon irradiation, it emits red fluorescence (600-740 nm).
  • PpIX protoporphyrin IX
  • 5-ALA has problems such as low sensitivity specificity, poor resistance to photobleaching, and difficulty in additional administration during surgery.
  • the NBD-pAP developed by the present invention is incorporated into brain tumor tissue via LAT1, it can be expected to be used as a fluorescence imaging tool for brain tumors that can be administered intraoperatively.
  • NBD-pAP By applying NBD-pAP to fresh brain tumor specimens derived from patients, it was evaluated whether NBD-pAP was also incorporated into human brain tumor tissues via LAT1 (FIG. 13).
  • FIG. 13 (b) shows the time-dependent fluorescence changes of a fresh brain tumor sample after the addition of the NBD-pAP solution (in the presence or absence of JPH203).
  • FIG. 14 shows the photophysical characteristics of NBD-lys (upper row) and NBD-amino-ala (lower row). The figure on the left shows the absorption spectrum, and the figure on the right shows the fluorescence spectrum. All spectra were measured in 100 mM NaPi buffer containing 0.1% DMSO as a co-solvent.
  • the maximum absorption wavelength and fluorescence wavelength were about the same as NBD-pAP and NBD-pAMP, and the fluorescence quantum yield was about 5% in PBS, which was about the same brightness as NBD-pAMP.
  • NBD-lys and NBD-amino-ala were applied to A549 cells, which are LAT1 highly expressing cells, in a Na + free buffer solution having a pH of 5.3, and evaluated as to whether they could be used as a LAT1 substrate (Fig.). 15).
  • FIG. 15 shows a fluorescence image of A549 cells treated with 5 ⁇ M NBD-lys and NBD-amino-ala.
  • Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then incubated in pH 5.3 Na + free buffer containing 5 ⁇ M NBD-lys and NBD-amino-ala for 30 minutes (5 mM). In the presence or absence of BCH).
  • Images were obtained with the Leica SP8.
  • the imaging conditions are as follows: Ar 20%, line average 5, HC PL APO CS2 40 ⁇ / 1.30 OIL, Ex. 488 nm 1% Em. HyD3 534-634 nm, 100% gain offset-0.01.
  • the present invention provides fluorescent substrates NBD-pAP, NBD-pAMP, NBD-lys, NBD-amino-ala, etc., which are taken up into cells by LAT1, which is an amino acid transporter whose expression is upregulated in many cancer types. can do. Since LAT1 is a transporter that has been reported to be involved in a wide range of life phenomena including diseases such as cancer, many researchers are paying attention to the elucidation of the function of LAT1 and the development of medical tools using LAT1. Is collecting.
  • the results of the present invention that succeeded in developing a fluorescent substrate that is taken up via LAT1 are not only applied to clinical applications such as intraoperative imaging of cancers such as brain tumors, but also related to the search for inhibitors for LAT1 and LAT1. It is thought that it will also contribute to the elucidation of life phenomena.

Abstract

[Problem] To provide a novel fluorescent substrate compound which becomes a substrate of LAT1 and is introduced into cells. [Solution] A compound represented by general formula (I) or a salt thereof.

Description

LTA1基質となる蛍光プローブFluorescent probe that serves as an LTA1 substrate
 本発明は、LTA1基質となる新奇な蛍光プローブに関する。より具体的には、本発明は、LAT1選択的に取り込まれる蛍光基質化合物、及び、これを用いたLTA1を介してがん細胞を可視化する方法に関する。 The present invention relates to a novel fluorescent probe that serves as an LTA1 substrate. More specifically, the present invention relates to a fluorescent substrate compound that is selectively incorporated in LAT1 and a method for visualizing cancer cells via LTA1 using the same.
 LAT1(Large amino acid transporter 1)は、ナトリウム非依存的に駆動するトランスポーターLATのアイソフォームの一つであり、Phe、His、Ile、Leu、Met、Trp、Tyrといった大型側鎖を持った中性アミノ酸や、L-DOPAなどのアミノ酸誘導体を細胞内外に対向輸送する。近年、結晶構造解析よりタンパク質の立体構造が明らかとなり、LAT1は細胞膜上において膜一回貫通タンパク質4F2hcとダイマーを形成することで基質輸送を行っている。 LAT1 (Large amino acid transporter 1) is one of the isoforms of the transporter LAT that is driven independently of sodium, and has large side chains such as Ph, His, Ile, Leu, Met, Trp, and Tyr. Sexual amino acids and amino acid derivatives such as L-DOPA are antiported inside and outside the cell. In recent years, the three-dimensional structure of the protein has been clarified by crystal structure analysis, and LAT1 transports the substrate by forming a dimer with the transmembrane protein 4F2hc on the cell membrane.
 正常組織におけるLAT1の発現は、神経細胞、グリア細胞、活性化T細胞、骨髄、精巣、胎盤関門、血液脳関門など、アミノ酸の断続的な供給が必要である局所組織に限定され、多くの正常組織における大型中性アミノ酸の膜輸送は、LATのアイソフォームの一つであるLAT2が主に担っている。 Expression of LAT1 in normal tissues is limited to many normal tissues that require an intermittent supply of amino acids, such as nerve cells, glial cells, activated T cells, bone marrow, testis, placenta barrier, and blood-brain barrier. Membrane transport of large neutral amino acids in tissues is mainly carried out by LAT2, which is one of the isoforms of LAT.
 また、LAT1は腫瘍組織において高発現していることが報告されており、その広範ながん種における発現亢進と、がん特異的な発現分布から、近年新たながんのバイオマーカーとして注目されている。肺がん、前立腺がん、卵巣がん、乳がん、膀胱がん、脳腫瘍、食道がん、胃がん、胆管がん、肝がん、膵がん、頭頚部がん、腎がん、白血病、皮膚がん、甲状腺がんなど、非常に多くのがん種において、ヒト患者由来の組織レベルでLAT1発現の亢進は確認されており(非特許文献1、2)、特に非小細胞性肺がん、脳腫瘍、前立腺がん、乳がんにおいては、LAT1の高発現群は予後不良であり、がんの悪性度と LAT1の発現が関連することが示唆されている。
 このように、LAT1は、がんの生態との密接な関連が明らかとなってきており、がんの生態の解明を目指す基礎研究の対象となるとともに、がんに対する新たな創薬標的として注目を集めている。
In addition, it has been reported that LAT1 is highly expressed in tumor tissues, and its upregulation in a wide range of cancer types and cancer-specific expression distribution have attracted attention as a new cancer biomarker in recent years. ing. Lung cancer, prostate cancer, ovarian cancer, breast cancer, bladder cancer, brain cancer, esophageal cancer, gastric cancer, bile duct cancer, liver cancer, pancreatic cancer, head and neck cancer, kidney cancer, leukemia, skin cancer In a large number of cancer types such as thyroid cancer, increased LAT1 expression has been confirmed at the tissue level derived from human patients (Non-Patent Documents 1 and 2), especially non-small cell lung cancer, brain tumor, and prostate. In cancer and breast cancer, the high expression group of LAT1 has a poor prognosis, suggesting that the malignancy of cancer is related to the expression of LAT1.
In this way, LAT1 has been clarified to be closely related to the ecology of cancer, and is the subject of basic research aimed at elucidating the ecology of cancer, and is attracting attention as a new drug discovery target for cancer. Is collecting.
 一方で、近年、簡便かつ高感度ながんの診断、特にがんの術中診断を実現する手法として、蛍光イメージング法が注目を集めている。本発明者らの研究室ではこれまでに γ-グルタミルトランスペプチダーゼ(GGT)やジペプチジルペプチダーゼIV(DPPIV)といった、がんで発現が亢進している酵素と反応して初めて蛍光を発するactivatable型蛍光プローブを複数開発し、ヒト新鮮手術検体におけるがんを迅速かつ高感度に検出できることを示してきた(非特許文献3、4)。 On the other hand, in recent years, the fluorescence imaging method has been attracting attention as a method for realizing simple and highly sensitive cancer diagnosis, especially intraoperative diagnosis of cancer. In our laboratory, an active-table fluorescent probe that emits fluorescence only after reacting with an enzyme whose expression is upregulated in cancer, such as γ-glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV (DPPIV). We have developed a plurality of these and have shown that cancer in fresh human surgical specimens can be detected quickly and with high sensitivity (Non-Patent Documents 3 and 4).
 しかしながら、前述したように、LAT1はがんマーカーとしての有用性が多く検証され、創薬標的として注目されているものの、LAT1を介してがん組織を可視化するような蛍光イメージング技術はほとんど報告がない。
 また、高い感度および安全性で利用できる蛍光イメージング法をがんの検出に適用できれば、広範ながん種を術中で診断可能な画期的な医療技術となる事が期待されるが、LAT1を介してがん組織にとりこまれる蛍光基質の開発はほとんど行われていない。
However, as mentioned above, although LAT1 has been verified to be useful as a cancer marker and is attracting attention as a drug discovery target, most of the fluorescence imaging techniques for visualizing cancer tissues via LAT1 have been reported. No.
In addition, if the fluorescence imaging method that can be used with high sensitivity and safety can be applied to cancer detection, it is expected to become an epoch-making medical technology that can diagnose a wide range of cancer types intraoperatively. Little has been done to develop a fluorescent substrate that can be incorporated into cancer tissue through it.
 本発明は、LAT1の基質となり細胞内に取り込まれる新規な蛍光基質化合物を提供することを目的とする。
 また、本発明は、かかる蛍光基質化合物を用いて、LAT1を利用したがんの蛍光イメージングを可能とする、新たながん診断技術を提供することも目的とする。
An object of the present invention is to provide a novel fluorescent substrate compound that serves as a substrate for LAT1 and is taken up into cells.
Another object of the present invention is to provide a new cancer diagnostic technique that enables fluorescence imaging of cancer using LAT1 using such a fluorescent substrate compound.
 上記課題を解決するにあたり、本発明者らは、LAT1の求める基質要件に着目し、アミノ酸側鎖部位に蛍光団を結合させた化合物の検討及び構造展開を行った。具体的には、蛍光団として分子量の小さいNBD(ニトロベンゾキサジアゾール、分子量:164)を選択し、各種アミノ酸の側鎖部位とNBDを結合した化合物、及び当該化合物の誘導体を合成し、これら化合物がLAT1高発現がん培養細胞へ効率よく取り込まれるのではないかと考え、鋭意検討した結果、本発明を完成した。 In solving the above problems, the present inventors focused on the substrate requirements required by LAT1 and investigated and developed the structure of a compound in which a fluorescent group was bound to the amino acid side chain site. Specifically, NBD (nitrobenzoxaziazole, molecular weight: 164) having a small molecular weight was selected as the fluorescent group, and a compound in which the side chain sites of various amino acids were bound to NBD and a derivative of the compound were synthesized, and these were synthesized. The present invention was completed as a result of diligent studies, considering that the compound may be efficiently taken up into cultured cells of cancer with high expression of LAT1.
 即ち、本発明は、
[1]以下の一般式(I)で表される化合物又はその塩。
Figure JPOXMLDOC01-appb-I000002
(式中、
は、水素原子又は炭素数1~4のアルキル基であり:
Xは、NRを表し、
ここで、Rは、水素原子又は炭素数1~4のアルキル基であり:
Yは、ニトロ基(-NO)、スルホン酸基(-SOH)又はスルホンアミド基(-SONR’R’’)であり、ここで、R’及びR’’は、夫々独立に、水素原子又は炭素数1~4のアルキル基であり;
Lは、アルキレン、アリーレン、及び、アルキレンとアリーレンが任意に結合して構成される基からなる群から選択される。)
[2]Lが以下から選択される、[1]に記載の化合物又はその塩。
-(CR-、-Ar-、-Ar-(CR-、-(CR-Ar-、-(CR-Ar-(CR
(Arはアリーレンを表し、R及びRは、各々独立に、各出現において独立に、水素原子又は炭素数1~3のアルキル基であり、nは1~8の整数であり、mは1~ 5の整数であり、sは1~8の整数であり、*は、Xと結合する側を示す。)
[3]Lが以下から選択される、[1]又は[2]に記載の化合物又はその塩。
-CH-、-Bz-CH-、-(CH-、-CH-Bz-CH
(Bzは、ベンゼン環を表し、*は、Xと結合する側を示す。)
[4]Lが、-Bz-CH-である、[3]に記載の化合物又はその塩。
[5]Lが、-CH-である、[3]に記載の化合物又はその塩。
[6]Lが、-(CH-である、[3]に記載の化合物又はその塩。
[7]Lが、-CH-Bz-CH-である、[3]に記載の化合物又はその塩。
[8]Yが、ニトロ基(-NO)である、[1]~[7]のいずれか1項に記載の化合物又はその塩。
[9][1]~[8]のいずれか1項に記載の化合物又はその塩を含む蛍光プローブ。
[10] LAT1による細胞内への取り込みを検出する方法であって、
(a)[1]~[8]のいずれか1項に記載の化合物又はその塩を含む蛍光プローブを細胞内に導入する工程、及び(b)当該化合物又はその塩が細胞内で発する蛍光を測定する工程を含む方法。
[11] がん細胞又は組織を可視化する方法であって、
(a)[1]~[8]のいずれか1項に記載の化合物又はその塩を含む蛍光プローブを細胞又は組織に適用する工程、(b)前記蛍光プローブを適用した細胞又は組織を、蛍光が測定される適切な波長を用いて照射し、それによって前記細胞又は組織内で発する蛍光を観察又は測定する工程を含む、方法。
を提供するものである。
That is, the present invention
[1] A compound represented by the following general formula (I) or a salt thereof.
Figure JPOXMLDOC01-appb-I000002
(During the ceremony,
R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms:
X represents NR 2
Here, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms:
Y is a nitro group (-NO 2 ), a sulfonic acid group (-SO 3 H) or a sulfonamide group (-SO 2 NR'R''), where R'and R'' are independent of each other. In addition, it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
L is selected from the group consisting of alkylene, arylene, and a group composed of an arbitrary bond of alkylene and arylene. )
[2] The compound according to [1] or a salt thereof, wherein L is selected from the following.
-(CR a R b ) n- , -Ar-, * -Ar- (CR a R b ) m- , * -(CR a R b ) s -Ar-, * -(CR a R b ) s- Ar- (CR a R b ) m-
(Ar represents an arylene, Ra and R b are each independently and independently at each appearance, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, n is an integer of 1 to 8, and m is an integer of 1 to 8. It is an integer of 1 to 5, s is an integer of 1 to 8, and * indicates the side to be combined with X.)
[3] The compound according to [1] or [2] or a salt thereof, wherein L is selected from the following.
-CH 2 -, * -Bz-CH 2 -, - (CH 2) 4 -, * -CH 2 -Bz-CH 2 -
(Bz represents a benzene ring, and * indicates the side bonded to X.)
[4] The compound according to [3] or a salt thereof, wherein L is * -Bz-CH 2-.
[5] The compound according to [3] or a salt thereof, wherein L is -CH 2-.
[6] L is, - (CH 2) 4 - The compound or a salt thereof according to [3].
[7] The compound according to [3] or a salt thereof, wherein L is * -CH 2- Bz-CH 2-.
[8] The compound according to any one of [1] to [7] or a salt thereof, wherein Y is a nitro group (-NO 2).
[9] A fluorescent probe containing the compound according to any one of [1] to [8] or a salt thereof.
[10] A method for detecting intracellular uptake by LAT1.
(A) The step of introducing a fluorescent probe containing the compound according to any one of [1] to [8] or a salt thereof into the cell, and (b) the fluorescence emitted by the compound or the salt thereof in the cell. A method that includes the step of measuring.
[11] A method for visualizing cancer cells or tissues.
(A) A step of applying a fluorescent probe containing the compound according to any one of [1] to [8] or a salt thereof to a cell or tissue, and (b) fluorescence of the cell or tissue to which the fluorescent probe is applied. A method comprising irradiating with an appropriate wavelength at which the cell or tissue is measured, thereby observing or measuring the fluorescence emitted within the cell or tissue.
Is to provide.
 本発明の化合物は、LAT1高発現がん培養細胞であるA549細胞等に効率よく取り込まれる一方で、BHC等のLAT1阻害剤の存在下では優位に細胞内への取り込みが阻害されることが確認された。従って、本発明の化合物は、LAT1を介してがん組織にとりこまれる蛍光基質として用いることができる。
 また、本発明の化合物は、LAT1を介してがん組織を可視化するような蛍光イメージング技術に応用することが可能である。
It was confirmed that the compound of the present invention is efficiently taken up into A549 cells, which are cultured cells with high LAT1 expression, while the uptake into cells is significantly inhibited in the presence of a LAT1 inhibitor such as BHC. Was done. Therefore, the compound of the present invention can be used as a fluorescent substrate to be incorporated into cancer tissue via LAT1.
In addition, the compound of the present invention can be applied to a fluorescence imaging technique for visualizing cancer tissue via LAT1.
化合物2(NBD-pAP)の光学特性を示す。The optical properties of compound 2 (NBD-pAP) are shown. NBD-pAPで処理したA549細胞の蛍光画像である。It is a fluorescence image of A549 cells treated with NBD-pAP. NBD-pAPで処理したHEK293細胞の経時蛍光画像を示す。The time-lapse fluorescence image of HEK293 cells treated with NBD-pAP is shown. NBD-pAPで処理したA549、HeLa及びHEK293細胞の蛍光画像を示す。Fluorescent images of A549, HeLa and HEK293 cells treated with NBD-pAP are shown. NBD-pAPの吸収スペクトルと蛍光スペクトルのpH依存性を示す。The pH dependence of the absorption spectrum and the fluorescence spectrum of NBD-pAP is shown. 共溶媒としてDMSO0.1%を含む種々のpH値の100mM NaPi緩衝液中のNBD-pMAPの吸収及び発光スペクトルを示す。The absorption and emission spectra of NBD-pMAP in 100 mM NaPi buffer with various pH values containing 0.1% DMSO as a co-solvent are shown. NBD-mAPで処理したA549細胞とHeLa細胞の蛍光画像を示す。Fluorescent images of A549 and HeLa cells treated with NBD-mAP are shown. NBD-pAPとNBD-mAPのA549細胞とHeLa細胞への取り込み比較を示す。A comparison of the uptake of NBD-pAP and NBD-mAP into A549 cells and HeLa cells is shown. NBD-pAMPの光学特性を示す。The optical characteristics of NBD-pAMP are shown. 5μMのNBD-pAMPで処理したA549細胞の蛍光画像を示す。Fluorescent images of A549 cells treated with 5 μM NBD-pAMP are shown. 図11の(a)は、細胞外緩衝液のウォッシュアウト後にNBD-pAMPで処理したA549細胞の経時蛍光画像を示す。図11の(b)は、各細胞のROIにおける蛍光強度の定量化を示す。FIG. 11A shows a time-lapse fluorescence image of A549 cells treated with NBD-pAMP after washing out of extracellular buffer. FIG. 11 (b) shows the quantification of the fluorescence intensity in the ROI of each cell. 図12の(a)は、A549又はHEK293によって調製した3Dスフェロイドの蛍光共焦点画像を示す。図12の(b)は、各スフェロイドのROIでの蛍光強度の定量化を示す。FIG. 12 (a) shows a fluorescence confocal image of a 3D spheroid prepared by A549 or HEK293. FIG. 12B shows the quantification of the fluorescence intensity of each spheroid at ROI. 図13の(a)は、LAT1阻害剤(20μM JPH203)の存在下または非存在下で50μMのNBD-pAPと30分間インキュベートした、新鮮な脳腫瘍試料の蛍光画像を示す。図13の(b)は、NBD-pAP溶液(JPH203の存在下又は非存在下)添加後の新鮮な脳腫瘍試料の時間依存性蛍光変化を示す。FIG. 13 (a) shows a fluorescence image of a fresh brain tumor sample incubated with 50 μM NBD-pAP for 30 minutes in the presence or absence of a LAT1 inhibitor (20 μM JPH203). FIG. 13 (b) shows the time-dependent fluorescence changes of a fresh brain tumor sample after the addition of the NBD-pAP solution (in the presence or absence of JPH203). NBD-lys(上段)とNBD-amino-ala(下段)の光物理的特性を示す。The photophysical characteristics of NBD-lys (upper) and NBD-amino-ala (lower) are shown. 図15は、5μMのNBD-lysとNBD-amino-alaで処理したA549細胞の蛍光画像を示す。FIG. 15 shows a fluorescence image of A549 cells treated with 5 μM NBD-lys and NBD-amino-ala.
 本明細書中において、「アルキル」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~6個(C1~6)、炭素数1~10個(C1~10)、炭素数1~15個(C1~15)、炭素数1~20個(C1~20)である。炭素数を指定した場合は、その数の範囲の炭素数を有する「アルキル」を意味する。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。そのような置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルコシ基、アリールアルキル基など)のアルキル部分についても同様である。 In the present specification, "alkyl" may be any of an aliphatic hydrocarbon group consisting of a linear chain, a branched chain chain, a cyclic chain, or a combination thereof. The number of carbon atoms of the alkyl group is not particularly limited, but for example, the number of carbon atoms is 1 to 6 (C 1 to 6 ), the number of carbon atoms is 1 to 10 (C 1 to 10 ), and the number of carbon atoms is 1 to 15 (C 1 to 15). ), The number of carbon atoms is 1 to 20 (C 1 to 20 ). When the number of carbon atoms is specified, it means "alkyl" having the number of carbon atoms in the range of the number of carbon atoms. For example, the C 1 ~ 8 alkyl, methyl, ethyl, n- propyl, isopropyl, n- butyl, isobutyl, sec- butyl, tert- butyl, n- pentyl, isopentyl, neo-pentyl, n- hexyl, isohexyl, Includes n-heptyl, n-octyl and the like. As used herein, the alkyl group may have one or more arbitrary substituents. Examples of such a substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono or di-substituted amino group, a substituted silyl group, or an acyl. If the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl moiety of other substituents containing the alkyl moiety (eg, alkane group, arylalkyl group, etc.).
 本明細書において「ハロゲン原子」という場合には、フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれでもよく、好ましくはフッ素原子、塩素原子、又は臭素原子である。 In the present specification, the term "halogen atom" may be any of a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and is preferably a fluorine atom, a chlorine atom, or a bromine atom.
 本明細書において、ある官能基について「置換されていてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基、ジアルキルアミノ基などを挙げることができるが、これらに限定されることはない。 In the present specification, when a functional group is defined as "may be substituted", the type of substituent, the position of substitution, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different. Examples of the substituent include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, an oxo group and the like. Further substituents may be present in these substituents. Examples of such include, but are not limited to, alkyl halide groups, dialkylamino groups, and the like.
1.一般式(I)で表される化合物又はその塩
 本発明の1つの実施態様は、以下の一般式(I)で表される化合物又はその塩である(以下「本発明の化合物」ともいう)。
Figure JPOXMLDOC01-appb-I000003
1. 1. A compound represented by the general formula (I) or a salt thereof One embodiment of the present invention is a compound represented by the following general formula (I) or a salt thereof (hereinafter, also referred to as “compound of the present invention”). ..
Figure JPOXMLDOC01-appb-I000003
 本発明においては、本発明者らは、LAT1を介してがん組織にとりこまれる蛍光基質を開発するにあたり、LAT1の求める基質要件に着目し、アミノ酸側鎖部位に蛍光団を結合させることを検討した。理論に拘束されることを意図するものではないが、LAT1は他のトランスポーターと同様に、蛍光団として分子量の小さいものが好ましいと考え、その中でも、分子サイズとしてコンパクトでありながら、臨床現場で用いられる蛍光波長で使用することが可能なNBD(ニトロベンゾキサジアゾール、分子量:164)を選択した。従って、本発明の化合物は、NBDと各種アミノ酸の側鎖部位とが結合した構造を有することが重要である。 In the present invention, in developing a fluorescent substrate to be incorporated into cancer tissues via LAT1, the present inventors focused on the substrate requirements required by LAT1 and examined binding a fluorescent group to the amino acid side chain site. bottom. Although not intended to be bound by theory, LAT1 is considered to be preferable as a fluorescent group having a small molecular weight like other transporters. Among them, among them, although it is compact in molecular size, it is used in clinical practice. NBD (nitrobenzoxaziazole, molecular weight: 164), which can be used at the fluorescence wavelength used, was selected. Therefore, it is important that the compound of the present invention has a structure in which NBD and side chain sites of various amino acids are bonded.
 一般式(I)において、Rは、水素原子又は炭素数1~4のアルキル基である。アルキル基としては、好ましくは、メチル基である。 In the general formula (I), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The alkyl group is preferably a methyl group.
 一般式(I)において、Lは、アルキレン、アリーレン、及び、アルキレンとアリーレンが任意に結合して構成される基からなる群から選択される二価の基である。 In the general formula (I), L is a divalent group selected from the group consisting of alkylene, arylene, and a group composed of an arbitrary bond of alkylene and arylene.
 アルキレンは、直鎖状または分枝状の飽和炭化水素からなる二価の基であり、例えば、メチレン、1-メチルメチレン、1,1-ジメチルメチレン、エチレン、1-メチルエチレン、1-エチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、1,1-ジエチルエチレン、1,2-ジエチルエチレン、1-エチル-2-メチルエチレン、トリメチレン、1-メチルトリメチレン、2-メチルトリメチレン、1,1-ジメチルトリメチレン、1,2-ジメチルトリメチレン、2,2-ジメチルトリメチレン、1-エチルトリメチレン、2-エチルトリメチレン、1,1-ジエチルトリメチレン、1,2-ジエチルトリメチレン、2,2-ジエチルトリメチレン、2-エチル-2-メチルトリメチレン、テトラメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン、1,1-ジメチルテトラメチレン、1,2-ジメチルテトラメチレン、2,2-ジメチルテトラメチレン、2,2-ジ-n-プロピルトリメチレン等が挙げられる。 The alkylene is a divalent group consisting of linear or branched saturated hydrocarbons, for example, methylene, 1-methylmethylene, 1,1-dimethylmethylene, ethylene, 1-methylethylene, 1-ethylethylene. , 1,1-dimethylethylene, 1,2-dimethylethylene, 1,1-diethylethylene, 1,2-diethylethylene, 1-ethyl-2-methylethylene, trimethylene, 1-methyltrimethylene, 2-methyltri Methylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1-diethyltrimethylene, 1,2- Diethyltrimethylene, 2,2-diethyltrimethylene, 2-ethyl-2-methyltrimethylene, tetramethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltetramethylene, 1,2-dimethyl Examples thereof include tetramethylene, 2,2-dimethyltetramethylene and 2,2-di-n-propyltrimethylene.
 アリーレンは、単環式又は縮合多環式の芳香族炭化水素からなる二価の基であり、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含む芳香族複素環であってもよい。アリーレンが単環および縮合環のいずれである場合も、すべての可能な位置で結合しうる。単環式のアリールの非限定的な例としては、フェニレン基(Ph)等が挙げられる。縮合多環式のアリーレンの非限定的な例としては、ナフチレン等が挙げられる。 The arylene is a divalent group consisting of a monocyclic or condensed polycyclic aromatic hydrocarbon, and contains one or more heteroatoms (for example, oxygen atom, nitrogen atom, sulfur atom, etc.) as a ring-constituting atom. It may be an aromatic heterocycle. Whether the arylene is a monocyclic ring or a condensed ring, it can be bonded at all possible positions. Non-limiting examples of monocyclic aryl include a phenylene group (Ph) and the like. Non-limiting examples of condensed polycyclic arylenes include naphthylene and the like.
 本発明の1つの好ましい態様において、Lは以下から選択される。
-(CR-、-Ar-、-Ar-(CR-、-(CR-Ar-、-(CR-Ar-(CR
 ここで、Arはアリーレンを表し、R及びRは、各々独立に、各出現において独立に、水素原子又は炭素数1~3のアルキル基であり、nは1~8の整数であり、mは1~5の整数であり、sは1~8の整数であり、*は、Xと結合する側を示す。
In one preferred embodiment of the invention, L is selected from:
-(CR a R b ) n- , -Ar-, * -Ar- (CR a R b ) m- , * -(CR a R b ) s -Ar-, * -(CR a R b ) s- Ar- (CR a R b ) m-
Here, Ar represents an arylene, Ra and R b are independent hydrogen atoms or alkyl groups having 1 to 3 carbon atoms at each appearance, and n is an integer of 1 to 8. m is an integer of 1 to 5, s is an integer of 1 to 8, and * indicates the side to be combined with X.
 また、本発明の1つの好ましい態様において、Lは以下から選択される。
-(CHn1-、-Ph-、-Ph-(CHm1-、-(CHs1-Ph-、-(CHs1-Ph-(CHm1
 ここで、Phはフェニレン基を表し、n1は1~8の整数であり、m1は1~5の整数であり、s1は1~8の整数であり、*は、Xと結合する側を示す。
Further, in one preferred embodiment of the present invention, L is selected from the following.
- (CH 2) n1 -, - Ph-, * -Ph- (CH 2) m1 -, * - (CH 2) s1 -Ph-, * - (CH 2) s1 -Ph- (CH 2) m1 -
Here, Ph represents a phenylene group, n1 is an integer of 1 to 8, m1 is an integer of 1 to 5, s1 is an integer of 1 to 8, and * indicates a side to be bonded to X. ..
 L、又はLとX(NR)が結合した基は、LAT1の基質となるアミノ酸の側鎖部位に対応することから、LAT1の基質ターゲットとなるアミノ酸の側鎖の末端の基から水素原子を1つ取り除いた基(例えば、LAT1の基質ターゲットのアミノ酸がアラニンであれば、メチレン基(-CH-))が好ましいが、これに限られずに、アミノ酸の種類に応じて選択することができる。
 例えば、LAT1の基質ターゲットのアミノ酸がフェニルアラニンであれば、Lとして、-Bz-CH-(Bzはベンゼン環を表す)及び-CH-Bz-CH-が好ましい。
Since the group in which L or L and X (NR 2 ) are bound corresponds to the side chain site of the amino acid that is the substrate of LAT1, the hydrogen atom is removed from the group at the end of the side chain of the amino acid that is the substrate target of LAT1. A group from which one is removed (for example, if the amino acid of the substrate target of LAT1 is alanine, a methylene group (-CH 2- )) is preferable, but the present invention is not limited to this, and can be selected depending on the type of amino acid. ..
For example, if the amino acid of the substrate target of LAT1 is phenylalanine, L is preferably * -Bz-CH 2- (Bz represents a benzene ring) and * -CH 2- Bz-CH 2- .
 本発明のより好ましい態様において、Lは、以下から選択される。
-CH-、-Bz-CH-、-(CH-、-CH-Bz-CH
 ここで、Bzは、ベンゼン環を表し、*は、Xと結合する側を表す。
In a more preferred embodiment of the invention, L is selected from:
-CH 2 -, * -Bz-CH 2 -, - (CH 2) 4 -, * -CH 2 -Bz-CH 2 -
Here, Bz represents a benzene ring, and * represents a side bonded to X.
 一般式(I)において、Xは、NRを表す。ここで、Rは、水素原子又は炭素数1~4のアルキル基である。Rがアルキル基であると、本発明の化合物の吸収スペクトル、蛍光スペクトルのpH依存性を抑制することができる。アルキル基としては好ましくはメチル基である。 In the general formula (I), X represents NR 2. Here, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. When R 2 is an alkyl group, the pH dependence of the absorption spectrum and fluorescence spectrum of the compound of the present invention can be suppressed. The alkyl group is preferably a methyl group.
 本発明の1つの好ましい側面においては、Lは、-Bz-CH-である。 In one preferred aspect of the invention, L is * -Bz-CH 2- .
 本発明の1つの好ましい側面においては、Lは、-CH-Bz-CH-である。 In one preferred aspect of the present invention, L is, * -CH 2 -Bz-CH 2 - it is.
 本発明の1つの好ましい側面においては、Lは、-CH-である。 In one preferred aspect of the present invention, L is, -CH 2 - is.
 本発明のもう1つの好ましい側面においては、Lは、-(CH-である。 In another preferred aspect of the present invention, L is, - (CH 2) 4 - a.
 一般式(I)において、Yは、ニトロ基(-NO)、スルホン酸基(-SOH)又はスルホンアミド基(-SONR’R’’)であり、ここで、R’及びR’’は、夫々独立に、水素原子又は炭素数1~4のアルキル基である。
 Yとしては、好ましくはニトロ基(-NO)である。
In general formula (I), Y is a nitro group (-NO 2 ), a sulfonic acid group (-SO 3 H) or a sulfonamide group (-SO 2 NR'R''), where R'and R ″ is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
Y is preferably a nitro group (-NO 2 ).
 一般式(I)において、Lが-Bz-CH-である場合は、Xは-CH基に対してBz(ベンゼン環)のパラ位又はメタ位に導入することができる。 In the general formula (I), when L is * -Bz-CH 2- , X can be introduced at the para-position or meta-position of Bz (benzene ring) with respect to two -CH groups.
 一般式(I)で表される化合物は、酸付加塩又は塩基付加塩として存在することができる。酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、又はメタンスルホン酸塩、p-トルエンスルホン酸塩、シュウ酸塩、クエン酸塩、酒石酸塩、トリフルオロ酢酸塩などの有機酸塩などを挙げることができ、塩基付加塩としては、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩などの有機アミン塩などを挙げることができる。これらのほか、グリシンなどのアミノ酸との塩を形成する場合もある。一般式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もあるが、本発明においては、これらの物質も用いることができる。 The compound represented by the general formula (I) can exist as an acid addition salt or a base addition salt. Examples of the acid addition salt include mineral salts such as hydrochloride, sulfate and nitrate, methanesulfonate, p-toluenesulfonate, oxalate, citrate, tartrate, trifluoroacetate and the like. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt and magnesium salt, ammonium salt, and organic amine salt such as triethylamine salt. .. In addition to these, it may form a salt with an amino acid such as glycine. The compound represented by the general formula (I) or a salt thereof may exist as a hydrate or a solvate, but these substances can also be used in the present invention.
 一般式(I)で表される化合物は、置換基の種類により、1個又は2個以上の不斉炭素を有する場合があるが、本発明においては、1個又は2個以上の不斉炭素に基づく光学活性体や2個以上の不斉炭素に基づくジアステレオ異性体などの立体異性体のほか、立体異性体の任意の混合物、ラセミ体なども用いることができる。 The compound represented by the general formula (I) may have one or two or more asymmetric carbons depending on the type of the substituent, but in the present invention, one or two or more asymmetric carbons. In addition to stereoisomers such as optically active compounds based on the above and diastereoisomers based on two or more asymmetric carbons, any mixture of stereoisomers, racemates and the like can also be used.
 一般式(I)で表される化合物の代表的化合物の製造方法を本明細書の実施例に具体的に示した。従って、当業者は、これらの説明をもとにして、反応原料、反応条件、及び反応試薬などを適宜選択して、必要に応じてこれらの方法に修飾や改変を加えることにより、一般式(I)で表される化合物を製造することができる。 A method for producing a typical compound of the compound represented by the general formula (I) is specifically shown in the examples of the present specification. Therefore, those skilled in the art can appropriately select reaction raw materials, reaction conditions, reaction reagents, etc. based on these explanations, and modify or modify these methods as necessary to obtain the general formula ( The compound represented by I) can be produced.
 一般式(I)で表される化合物は、LAT1の基質として用いることができる。 The compound represented by the general formula (I) can be used as a substrate for LAT1.
2.本発明の蛍光プローブ
 本発明のもう1つの態様は、一般式(I)の化合物又はその塩を含む蛍光プローブである(以下「本発明の蛍光プローブ」ともいう)。
2. Fluorescent probe of the present invention Another aspect of the present invention is a fluorescent probe containing the compound of the general formula (I) or a salt thereof (hereinafter, also referred to as "fluorescent probe of the present invention").
 また、本発明のもう1つの態様は、LAT1による細胞内への取り込みを検出する方法であって、
(a)一般式(I)の化合物又はその塩を含む蛍光プローブを細胞内に導入する工程、及び(b)当該化合物又はその塩が細胞内で発する蛍光を測定する工程を含む方法である(以下「本発明の検出方法」とも言う)。
 ここで、細胞としては、正常細胞、癌細胞、神経細胞等が挙げられる。
Another aspect of the present invention is a method for detecting intracellular uptake by LAT1.
It is a method including (a) a step of introducing a fluorescent probe containing the compound of the general formula (I) or a salt thereof into a cell, and (b) a step of measuring the fluorescence emitted by the compound or a salt thereof in the cell (). Hereinafter, it is also referred to as "detection method of the present invention").
Here, examples of cells include normal cells, cancer cells, nerve cells and the like.
 また、本発明のもう1つの態様は、がん細胞又は組織を可視化する方法であって、
(a)一般式(I)の化合物又はその塩を含む蛍光プローブを細胞又は組織に導入する工程、(b)前記蛍光プローブを導入した細胞又は組織を、蛍光が測定される適切な波長を用いて照射し、それによって前記細胞又は組織内で発する蛍光を観察又は測定する工程を含む、方法である(以下「本発明の可視化方法」とも言う)。
Another aspect of the present invention is a method of visualizing cancer cells or tissues.
(A) A step of introducing a fluorescent probe containing the compound of the general formula (I) or a salt thereof into a cell or tissue, and (b) using an appropriate wavelength at which fluorescence is measured in the cell or tissue into which the fluorescent probe has been introduced. It is a method including the step of observing or measuring the fluorescence emitted in the cell or tissue by irradiating the cell or tissue (hereinafter, also referred to as “visualization method of the present invention”).
 本発明のもう1つの実施態様は、がんを検知する方法であって、(a)一般式(I)の化合物又はその塩を含む蛍光プローブを被検体の臨床検体に適用する工程、及び(b)前記蛍光プローブを適用した臨床検体の蛍光像を測定することを含む、方法である(以下「本発明の検知方法」とも言う)。
 (a)の工程で蛍光プローブを臨床検体に適用するには、例えば、蛍光プローブの溶液を局所的に臨床検体にスプレーすることによって行うことができる。
 臨床検体としては、例えば、肺がん、前立腺がん、卵巣がん、乳がん、膀胱がん、脳腫瘍、食道がん、胃がん、胆管がん、肝がん、膵がん、頭頚部がん、腎がん、白血病、皮膚がん、甲状腺がんなどが挙げられる。
Another embodiment of the present invention is a method for detecting cancer, wherein (a) a step of applying a fluorescent probe containing a compound of the general formula (I) or a salt thereof to a clinical sample of a subject, and ( b) A method including measuring a fluorescent image of a clinical sample to which the fluorescent probe is applied (hereinafter, also referred to as "detection method of the present invention").
The application of the fluorescent probe to the clinical sample in the step (a) can be performed, for example, by locally spraying the solution of the fluorescent probe onto the clinical sample.
Clinical specimens include, for example, lung cancer, prostate cancer, ovarian cancer, breast cancer, bladder cancer, brain cancer, esophageal cancer, gastric cancer, bile duct cancer, liver cancer, pancreatic cancer, head and neck cancer, and kidney. Hmm, leukemia, skin cancer, thyroid cancer, etc.
 また、本発明のもう1つの態様は、(a)一般式(I)の化合物又はその塩を含む蛍光プローブを被検体に投与する工程、(b)被検体の細胞、組織又は臓器を、蛍光が測定される適切な波長を用いて照射し、それによって前記細胞、組織又は臓器内部の蛍光を観察又は測定する工程を含む、がんを診断する方法である(以下「本発明の診断方法」とも言う」。
 投与方法としては、局所投与、経口投与、静脈内投与等が挙げられる。
 本発明の診断方法の対象となるがんの種類として、肺がん、前立腺がん、卵巣がん、乳がん、膀胱がん、脳腫瘍、食道がん、胃がん、胆管がん、肝がん、膵がん、頭頚部がん、腎がん、白血病、皮膚がん、甲状腺がんが挙げられる。
Another aspect of the present invention is (a) a step of administering a fluorescent probe containing a compound of the general formula (I) or a salt thereof to a subject, and (b) fluorescence of cells, tissues or organs of the subject. Is a method for diagnosing cancer, which comprises a step of irradiating with an appropriate wavelength to be measured and thereby observing or measuring fluorescence inside the cell, tissue or organ (hereinafter, "diagnosis method of the present invention"). Also called. "
Examples of the administration method include local administration, oral administration, intravenous administration and the like.
The types of cancers subject to the diagnostic method of the present invention include lung cancer, prostate cancer, ovarian cancer, breast cancer, bladder cancer, brain tumor, esophageal cancer, gastric cancer, bile duct cancer, liver cancer, and pancreatic cancer. , Head and neck cancer, kidney cancer, leukemia, skin cancer, thyroid cancer.
 本明細書において、「がん組織」の用語はがん細胞を含む任意の組織を意味している。「組織」の用語は臓器の一部又は全体を含めて最も広義に解釈しなければならず、いかなる意味においても限定的に解釈してはならない。がん組織としてはLAT1を高発現している組織が好ましい。また、本明細書において「診断」の用語は任意の生体部位においてがん組織の存在を肉眼的又は顕微鏡下に確認することを含めて最も広義に解釈する必要がある。 In the present specification, the term "cancer tissue" means any tissue including cancer cells. The term "tissue" should be interpreted in the broadest sense, including part or all of the organ, and should not be construed in a limited way in any sense. As the cancer tissue, a tissue highly expressing LAT1 is preferable. In addition, the term "diagnosis" in the present specification needs to be interpreted in the broadest sense, including confirming the presence of cancerous tissue at any biological site with the naked eye or under a microscope.
 上記したがん細胞又は組織を可視化する方法、及びがんを診断する方法においては、本発明の化合物又はその塩はLAT1を介して細胞、組織又は臓器に取り込まれ、当該化合物が細胞、組織又は臓器内部で発する蛍光を観察又は測定することにより好適に行われる。 In the above-mentioned method for visualizing cancer cells or tissues and the method for diagnosing cancer, the compound of the present invention or a salt thereof is taken up into cells, tissues or organs via LAT1, and the compound is incorporated into cells, tissues or organs. This is preferably performed by observing or measuring the fluorescence emitted inside the organ.
 本発明の検出方法、がん細胞又は組織を可視化する方法、検知方法及び診断方法は、さらに蛍光イメージング手段を用いて蛍光応答を観測することを含むことができる。蛍光応答を観測する手段は、広い測定波長を有する蛍光光度計を用いることができるが、前記蛍光応答を2次元画像として表示可能な蛍光イメージング手段を用いて可視化することもできる。蛍光イメージングの手段を用いることによって、蛍光応答を二次元で可視化できるため、がん細胞又は組織を瞬時に視認することが可能となる。蛍光イメージング装置としては、当該技術分野において公知の装置を用いることができる。なお、場合によって、紫外可視吸光スペクトルの変化(例えば、特定の吸収波長における吸光度の変化)によって上記測定対象試料と蛍光プローブの反応を検出することも可能である。 The detection method, the method for visualizing cancer cells or tissues, the detection method and the diagnostic method of the present invention can further include observing a fluorescence response using a fluorescence imaging means. As a means for observing the fluorescence response, a fluorometer having a wide measurement wavelength can be used, but the fluorescence response can also be visualized by using a fluorescence imaging means capable of displaying the fluorescence response as a two-dimensional image. By using the means of fluorescence imaging, the fluorescence response can be visualized in two dimensions, so that cancer cells or tissues can be visually recognized instantly. As the fluorescence imaging device, a device known in the art can be used. In some cases, it is also possible to detect the reaction between the sample to be measured and the fluorescent probe by a change in the ultraviolet-visible absorption spectrum (for example, a change in absorbance at a specific absorption wavelength).
 本発明の蛍光プローブの使用方法は特に限定されず、従来公知の蛍光プローブと同様に用いることが可能である。通常は、生理食塩水や緩衝液などの水性媒体、又はエタノール、アセトン、エチレングリコール、ジメチルスルホキシド、ジメチルホルムアミドなどの水混合性の有機溶媒と水性媒体との混合物などに本発明の化合物又はその塩を溶解し、細胞や組織を含む適切な緩衝液中にこの溶液を添加して、蛍光スペクトルを測定すればよい。本発明の蛍光プローブを適切な添加物と組み合わせて組成物の形態で用いてもよい。例えば、緩衝剤、溶解補助剤、pH調節剤などの添加物と組み合わせることができる。
 また、本発明の蛍光プローブ中の本発明の化合物の濃度は、測定する細胞等の種類や測定条件等に応じて適切に定めることができる。
The method of using the fluorescent probe of the present invention is not particularly limited, and it can be used in the same manner as a conventionally known fluorescent probe. Usually, the compound of the present invention or a salt thereof is added to an aqueous medium such as physiological saline or a buffer solution, or a mixture of an aqueous medium and a water-miscible organic solvent such as ethanol, acetone, ethylene glycol, dimethyl sulfoxide, or dimethylformamide. The solution may be added to a suitable buffer containing cells or tissues and the fluorescence spectrum may be measured. The fluorescent probe of the present invention may be used in the form of a composition in combination with a suitable additive. For example, it can be combined with additives such as buffers, solubilizers and pH regulators.
In addition, the concentration of the compound of the present invention in the fluorescent probe of the present invention can be appropriately determined according to the type of cells to be measured, measurement conditions, and the like.
 本発明のもう1つの実施態様は、本発明の蛍光プローブを含む、がん細胞又は組織の検出用キットである。 Another embodiment of the present invention is a kit for detecting cancer cells or tissues, which comprises the fluorescent probe of the present invention.
 当該キットにおいて、通常、本発明の蛍光プローブは溶液として調製されているが、例えば、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供され、使用時に注射用蒸留水や適宜の緩衝液に溶解して適用することもできる。 In the kit, the fluorescent probe of the present invention is usually prepared as a solution, but is provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid preparation, and is provided at the time of use. It can also be applied by dissolving it in distilled water for injection or an appropriate buffer solution.
 また、当該キットには、必要に応じてそれ以外の試薬等を適宜含んでいてもよい。例えば、添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。 In addition, the kit may appropriately contain other reagents and the like, if necessary. For example, as the additive, additives such as a solubilizing agent, a pH adjusting agent, a buffering agent, and an isotonicizing agent can be used, and the blending amount thereof can be appropriately selected by those skilled in the art.
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
1.略語の説明
Boc:tert-ブトキシカルボニル
DCM:ジクロロメタン
DMEM:ドゥルベッコの改良イーグル培地
DMSO:ジメチルスルホキシド
ESI:エレクトロスプレーイオン化
FLIM:蛍光寿命イメージング顕微鏡
Φfl:蛍光量子収率
HBSS:ハンクの平衡塩類溶液
HEPES:4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸
HPLC:高速液体クロマトグラフィー
HRMS:高分解能質量分析
MeOH:メタノール
MeCN:アセトニトリル
MPLC:中圧液体クロマトグラフィー
MS:質量分析
NaPi:リン酸ナトリウム
PBS:リン酸緩衝生理食塩水
ROI:関心領域
RT-qPCR:リアルタイム定量的ポリメラーゼ連鎖反応
TFA:トリフルオロ酢酸
TLC:薄層クロマトグラフィー
UPLC-MS:超高性能液体クロマトグラフィー質量分析
1. 1. Abbreviation Description Boc: tert-butoxycarbonyl DCM: dichloromethane DMEM: Drubecco's improved eagle medium DMSO: dimethylsulfoxide ESI: electrospray ionization FLIM: fluorescence lifetime imaging microscope Φfl : fluorescence quantum yield HBSS: Hank's equilibrium salt solution HEPES: 4- (2-Hydroxyethyl) -1-piperazine ethanesulfonic acid HPLC: High Performance Liquid Chromatography HRMS: High Resolution Mass Spectrometry MeOH: Methanol MeCN: Acetonitrile MPLC: Medium Pressure Liquid Chromatography MS: Mass Spectrometry NaPi: Sodium Phosphate PBS : Phosphoric acid buffered physiological saline ROI: Region of interest RT-qPCR: Real-time quantitative polymerase chain reaction TFA: Trifluoroacetonitrile TLC: Thin layer chromatography UPLC-MS: Ultra-high performance liquid chromatography Mass spectrometry
2.材料及び方法
材料及び一般的手順
試薬と溶媒は、アルドリッチケミカル(株) 、東京化成工業(株)及び和光純薬 、関東化学(株)、ギブコ(株)、インビトロジェン、東洋紡及びサーモサイエンティフィックによって供給された、入手可能な特級グレードのものであり、さらに精製することなく使用した。反応はTLC及びESI質量分析、或いはUPLC-MSによって観察した。
2. Materials and methods
Materials and general procedures Reagents and solvents are Aldrich Chemical Co., Ltd., Tokyo Chemical Industry Co., Ltd. and Wako Pure Chemical Industries, Ltd., Kanto Chemical Co., Ltd., Gibco Co., Ltd., Invitrogen, Toyobo and Thermo Scientific. It was of the available grade grade supplied by and used without further purification. The reaction was observed by TLC and ESI mass spectrometry, or UPLC-MS.
機器
NMRスペクトルは、HNMRについては400MHzで、13CNMRについては101MHzで、JEOL JNM?LA400装置により測定した。
質量スペクトル(MS)は、JEOL JMS-T100LC AccuToF (ESI)を用いてを測定した。分取HPLCは、ポンプ(PU-2080、JASCO)及び検出器(MD-2015又はFP-2025、JASCO)からなるHPLCシステムを用い、溶離液A(0.1%TFA(v/v)含有HO)及び溶離液B(0.1%TFA(v/v)含有20%HOとCHCN)を流速5mL/分で、Inertsil ODS-3(10.0×250mm)カラム(GL Sciences Inc.)を用いて行った。
分取MPLCは、ポンプと検出器(EPCLC AI-580S、Yamazen)から成るMPLCシステムを用いたシリカゲルカラム(シリカゲル40μm、Yamazen)、又はIsoleraTM One(Biotage)を用いたSNAP Ultra C18 30g(Biotage)で行った。
LC-MS分析は、ポンプ(LC-30AD、島津製作所)、PDA検出器(SPD-M30A、島津製作所)、FP検出器(RF-20Axs、島津製作所)およびMS検出器(LCMS-2020、島津製作所)からなるLC‐MSシステムを用いて、Agilent Poroshell120(10cm×2.1mm、EC-C18 1.9μm)カラム(Agilent)で行った。
qPCRはLight Cycler(登録商標)480システム(Roche)で行った。
The instrumental NMR spectrum was measured at 400 MHz for 1 1 HNMR and 101 MHz for 13 CNMR by a JEOL JNM-LA400 apparatus.
The mass spectrum (MS) was measured using JEOL JMS-T100LC AccuToF (ESI). Preparative HPLC uses an HPLC system consisting of a pump (PU-2080, JASCO) and a detector (MD-2025 or FP-2025, JASCO) and contains eluent A (0.1% TFA (v / v)). 2 O) and eluent B (20% H 2 O and CH 3 CN containing 0.1% TFA (v / v)) at a flow rate of 5 mL / min, Inertsil ODS-3 (10.0 × 250 mm) column (GL). This was performed using Sciences Inc.).
The preparative MPLC is a silica gel column (silica gel 40 μm, Yamazen) using an MPLC system consisting of a pump and a detector (EPCLC AI-580S, Yamazen), or a SNAP Ultra C18 30 g (Biotage) using Isolera TM One (Biotage). I went there.
LC-MS analysis includes pumps (LC-30AD, Shimadzu), PDA detectors (SPD-M30A, Shimadzu), FP detectors (RF-20Axs, Shimadzu) and MS detectors (LCMS-2020, Shimadzu). ) Was used on an Agilent Poroshell 120 (10 cm × 2.1 mm, EC-C18 1.9 μm) column (Agilent).
qPCR was performed on the Light Cycler® 480 system (Roche).
光学特性の測定
吸収スペクトルは島津UV-1850(日本、東京)で得た。蛍光スペクトルはHitachi F7100(日本、東京)を用いて行った。スリット幅は励起、発光ともに5nmであった。光電子増倍管電圧は400Vまたは700Vであった。Hamamatsu Photonics Quantaurus QYを用いて絶対蛍光量子収率を決定した。試験試料の発光スペクトル下の面積を標準試料と比較して相対蛍光量子収率を求め、次式により計算した。
Figure JPOXMLDOC01-appb-I000004
 式中、st=標準;x=サンプル;A=励起波長における吸光度;n=屈折率;D=エネルギースケールでの蛍光スペクトル下の面積である。
 これらのプローブの光学特性は、PBS(-)又は共溶媒として0.1%DMSOを含むNa-Pi緩衝液中で調べた。蛍光寿命はQuantaurus‐Tau C 11367 (HAMAMATSU)により測定した。
Measurement of optical characteristics The absorption spectrum was obtained with Shimadzu UV-1850 (Tokyo, Japan). The fluorescence spectrum was performed using Hitachi F7100 (Tokyo, Japan). The slit width was 5 nm for both excitation and emission. The photomultiplier tube voltage was 400V or 700V. Absolute fluorescence quantum yields were determined using Hamamatsu Photonics Quantaurus QY. The area under the emission spectrum of the test sample was compared with the standard sample to obtain the relative fluorescence quantum yield, which was calculated by the following formula.
Figure JPOXMLDOC01-appb-I000004
In the formula, st = standard; x = sample; A = absorbance at excitation wavelength; n = refractive index; D = area under the fluorescence spectrum on the energy scale.
The optical properties of these probes were examined in PBS (−) or Na-Pi buffer containing 0.1% DMSO as a co-solvent. Fluorescence lifetime was measured by Quantaurus-Tau C 11367 (HAMAMATSU).
細胞培養
 A549細胞、HEK293細胞及びHeLa細胞を、10%ウシ胎児血清(Gibco)および1%ペニシリンストレプトマイシン(Gibco)を含有するDMEM(Gibco)中で培養した。
 Caco-2細胞を20%ウシ胎児血清と1%ペニシリンストレプトマイシンと1%MEM非必須アミノ酸溶液(100x、Gibco)を含むDMEM中で培養した。
 全ての細胞を5%CO下95%空気中の加湿インキュベータで培養した。
Cell Culture A549 cells, HEK293 cells and HeLa cells were cultured in DMEM (Gibco) containing 10% fetal bovine serum (Gibco) and 1% penicillin streptomycin (Gibco).
Caco-2 cells were cultured in DMEM containing 20% fetal bovine serum, 1% penicillin streptomycin and 1% MEM non-essential amino acid solution (100x, Gibco).
All cells were cultured in a humidified incubator in 95% air under 5% CO 2.
LAT阻害剤を用いた蛍光共焦点顕微鏡イメージング
 A549、HEK293、HeLaおよびCaco-2細胞を4.0×10細胞/ウェルで8ウェルチャンバー(ibidi)に播種し、適切な培地で培養した。細胞をNaフリー緩衝液(pH5.3)で一度洗浄し、Naフリー緩衝液(pH5.3)で30分間プレインキュベートした。緩衝液は、200μLのNaフリー緩衝液(pH5.3)中で、共溶媒として0.5%未満のDMSOを含むLAT阻害剤(5mM BCH又は5μM JPH203)の存在下または非存在下でプローブ溶液と置き換え(阻害剤としてJPH203を用いた場合、緩衝液は共溶媒として100μMのHClを含む)、チャンバーを30分間インキュベートした。40倍対物レンズ(HC PL APO 40x/1.30 OIL、Leica)とArレーザを装着した共焦点蛍光顕微鏡(TCS SP8、Leica)を用いて蛍光画像を取得した。
 励起波長および発光波長はそれぞれ488nmおよび534~634nmであった。
Fluorescence confocal microscopy imaging with LAT inhibitors A549, HEK293, HeLa and Caco-2 cells were seeded at 4.0 × 10 4 cells / well in an 8-well chamber (ibidi) and cultured in the appropriate medium. Cells were washed once with Na + Free buffer (pH 5.3), were preincubated for 30 minutes at Na + Free buffer (pH 5.3). The buffer is a probe in 200 μL of Na + free buffer (pH 5.3) in the presence or absence of a LAT inhibitor (5 mM BCH or 5 μM HCl 203) containing less than 0.5% DMSO as a co-solvent. It was replaced with a solution (when JPH203 was used as an inhibitor, the buffer contained 100 μM HCl as a co-solvent) and the chamber was incubated for 30 minutes. Fluorescence images were acquired using a confocal fluorescence microscope (TCS SP8, Leica) equipped with a 40x objective lens (HC PL APO 40x / 1.30 OIL, Leica) and an Ar laser.
The excitation wavelength and the emission wavelength were 488 nm and 534 to 634 nm, respectively.
プローブ排出の蛍光イメージング
 8ウェルチャンバー上のA549細胞を、上記と同じプロトコルに従ってプローブ溶液と30分間インキュベートした後、緩衝液を、LAT1阻害剤(5μM JPH 203)の存在下または非存在下で、Naフリー緩衝液(pH5.3)で置き換えた。次に、上記と同じ条件で共焦点顕微鏡を用いて50分間の経時蛍光画像を取得した。
Fluorescence imaging of probe efflux A549 cells on an 8-well chamber are incubated with probe solution for 30 minutes according to the same protocol as above, and then buffer solution is Na Replaced with + free buffer (pH 5.3). Next, a 50-minute time-lapse fluorescence image was acquired using a confocal microscope under the same conditions as described above.
プローブの取り込み速度の比較
 上記と同じプロトコルに従って、8ウェルチャンバー上のA549細胞及びHeLa細胞をプレインキュベートした後、チャンバーを共焦点顕微鏡上に置いた。次いで、緩衝液を、共溶媒として0.25%未満のDMSOを含有する200μLのNaフリー緩衝液(pH5.3)のプローブ溶液で迅速に置き換えた。プローブ適用後、画像を、ライカTCS SP8によって毎分、合計10分間または20分間、以下の条件で記録した。63倍対物レンズとArレーザを用い、励起波長及び発光波長はそれぞれ488nm及び534~634nm(A549)又は519~590nm(HeLa)であった。
Comparison of probe uptake rates Following the same protocol as above, A549 and HeLa cells in an 8-well chamber were pre-incubated and then the chamber was placed on a confocal microscope. The buffer was then rapidly replaced with a probe solution of 200 μL Na + free buffer (pH 5.3) containing less than 0.25% DMSO as a co-solvent. After application of the probe, images were recorded by Leica TCS SP8 every minute for a total of 10 or 20 minutes under the following conditions: Using a 63x objective lens and an Ar laser, the excitation wavelength and emission wavelength were 488 nm and 534 to 634 nm (A549) or 519 to 590 nm (HeLa), respectively.
スフェロイド培養
 96ウェルの円形底板(コーニング)を30mg/mLポリ-HEMA(Sigma-Aldrich)95%のEtOH溶液でコーティングし、次いで、清浄なベンチで一晩乾燥した。A549細胞及びHEK293細胞を、各ウェル上に2.5%のマトリゲル(コーニング)を含有させた2.0×10細胞で播種した(マトリゲルの重合を防ぐために、氷の上で播種手順を行った)。プレートを遠心分離し(1000G×10分、4℃)、DMEMで3日間インキュベートした後、約400μmの半径を有するスフェロイドを調製した。
A 96-well round bottom plate (Corning) of spheroid culture was coated with 30 mg / mL poly-HEMA (Sigma-Aldrich) 95% EtOH solution and then dried overnight on a clean bench. A549 cells and HEK293 cells were seeded with 2.0 × 10 3 cells containing 2.5% Matrigel (Corning) on each well (seeding procedure on ice to prevent Matrigel polymerization). rice field). The plates were centrifuged (1000 G x 10 minutes, 4 ° C.) and incubated in DMEM for 3 days to prepare spheroids with a radius of about 400 μm.
スフェロイドの蛍光イメージング
上記プロトコルによって培養されたこれらスフェロイドを、Naフリー緩衝液(pH5.3)で一度洗浄し、Naフリー緩衝液(pH5.3)で30分間プレインキュベートした。次にスフェロイドを8ウェルチャンバーに移し、緩衝液を、共溶媒として0.25%未満のDMSOと100μMのHClを含む200μLのNaフリー緩衝液のLAT1阻害剤(5μM JPH203)の存在下又は非存在下のプローブ溶液に置き換え、チャンバーを30分間インキュベートした。蛍光画像を10倍対物レンズ(HC PL APO CS 10x/0.40 DRY、Leica)とArレーザーを装備した共焦点蛍光顕微鏡(TCS SP8、Leica)で得た。励起波長および発光波長はそれぞれ488nmおよび534~634nmであった。画像はz方向にそれぞれ10μm、合計150μMを撮影した。z方向画像にLASXソフトウェアで重ねた後、ImageJソフトウェアでスフェロイドの蛍光強度を定量化した。
These spheroids cultured by fluorescence imaging <br/> above protocol spheroids were washed once with Na + Free buffer (pH 5.3), were preincubated for 30 minutes at Na + Free buffer (pH 5.3). The spheroids are then transferred to an 8-well chamber and the buffer is in the presence or absence of a 200 μL Na + free buffer LAT1 inhibitor (5 μM JPH203) containing less than 0.25% DMSO and 100 μM HCl as co-solvent. It was replaced with the probe solution in the presence and the chamber was incubated for 30 minutes. Fluorescence images were obtained with a confocal fluorescence microscope (TCS SP8, Leica) equipped with a 10x objective lens (HC PL APO CS 10x / 0.40 DRY, Leica) and an Ar laser. The excitation wavelength and the emission wavelength were 488 nm and 534 to 634 nm, respectively. Images were taken at 10 μm each in the z direction, for a total of 150 μM. After overlaying the z-direction image with LASX software, the fluorescence intensity of the spheroid was quantified with ImageJ software.
新鮮な標本の蛍光イメージング
 実験で使用した新鮮な脳腫瘍標本は手術中に切除し、凍結せずに提供された。共溶媒として0.25% DMSOを含むLAT1阻害剤(20μM JPH203)の存在下または非存在下のNaフリー緩衝液(pH5.3)中のNBD-pAPを、8ウェルチャンバー上の新鮮な脳腫瘍試料に適用した。その後、以下の条件でプローブを適用する前と適用後2分、5分、10分、15分、20分、25分および30分でMaestroTM In-Vivoイメージングシステム(パーキン・エルマー)を用いて、蛍光画像を得た。励起フィルター:490nm、発光フィルター:530ロングパス。蛍光強度の定量化は、以下の手順に従って行った。関心領域(ROI)を捕捉蛍光画像上に設定し、各ROIの蛍光強度を計算し、Maestroソフトウェアを用いてグラフ化した。
Fresh brain tumor specimens used in the fluorescence imaging experiments of fresh specimens were resected during surgery and provided unfrozen. NBD-pAP in Na + free buffer (pH 5.3) in the presence or absence of a LAT1 inhibitor (20 μM JPH203) containing 0.25% DMSO as a co-solvent, fresh brain tumors on an 8-well chamber. Applied to the sample. Then, using the Maestro TM In-Vivo Imaging System (PerkinElmer) before and 2 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes after application of the probe under the following conditions. , Fluorescent images were obtained. Excitation filter: 490 nm, emission filter: 530 long pass. The fluorescence intensity was quantified according to the following procedure. The region of interest (ROI) was set on the captured fluorescence image, the fluorescence intensity of each ROI was calculated and graphed using Maestro software.
3.化合物の合成とキャラクタリゼーション
[合成実施例1]
化合物2(NBD-pAP)の合成
(1)化合物1の合成
 以下の合成スキームにより化合物1を合成した。
Figure JPOXMLDOC01-appb-I000005
3. 3. Synthesis and characterization of compounds [Synthesis Example 1]
Synthesis of Compound 2 (NBD-pAP) (1) Synthesis of Compound 1 Compound 1 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000005
 4-アミノ-N-Boc-L-フェニルアラニン(101mg、0.36mmol)および重炭酸ナトリウム(26.1mg、0.31mmol)を水(1.3mL)に溶解した。4-クロロ-7-ニトロベンゾフラザン(NBD-Cl、87.6mg、0.44mmol)のメタノール溶液(6.1mL)を滴下し、55℃で2.25時間撹拌した。室温に冷却した後、メタノールを蒸発させた。水性混合物を1N HClで酸性化し、ジクロロメタンで抽出した。合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発させて明るいオレンジ色の固体(151.7mg、収率95%)を得た。
1H-NMR (400 MHz,CD2Cl2) δ 8.42 (d, J = 8.7 Hz, 1H), 7.37-7.32 (m, 4H), 6.70 (d, J = 8.7 Hz, 1H), 5.03 (d, J = 4.6 Hz, 1H), 3.04-3.27 (m, 2H), 1.39 (s, 9H)
4-Amino-N-Boc-L-phenylalanine (101 mg, 0.36 mmol) and sodium bicarbonate (26.1 mg, 0.31 mmol) were dissolved in water (1.3 mL). A methanol solution (6.1 mL) of 4-chloro-7-nitrobenzoflazan (NBD-Cl, 87.6 mg, 0.44 mmol) was added dropwise, and the mixture was stirred at 55 ° C. for 2.25 hours. After cooling to room temperature, methanol was evaporated. The aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The combined organic layers were washed with brine and dried over Na 2 SO 4 to evaporate the solvent to give a bright orange solid (151.7 mg, 95% yield).
1 H-NMR (400 MHz, CD 2 Cl 2 ) δ 8.42 (d, J = 8.7 Hz, 1H), 7.37-7.32 (m, 4H), 6.70 (d, J = 8.7 Hz, 1H), 5.03 (d , J = 4.6 Hz, 1H), 3.04-3.27 (m, 2H), 1.39 (s, 9H)
(2)化合物2(NBD-pAP)の合成
 以下の合成スキームにより化合物2を合成した。
Figure JPOXMLDOC01-appb-I000006
(2) Synthesis of Compound 2 (NBD-pAP) Compound 2 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000006
化合物1(152mg、0.34mmol)をジクロロメタン(15mL)に溶解し、0℃で冷却した。TFA(5.6mL)を滴下して添加し、反応混合物を室温に温めた。2.25時間撹拌後、溶媒を蒸発乾固させた。残渣をHPLC(溶離液:A:H2O、0.1%TFA(v/v)、B:CH3CN/H2O=80/20、0.1%TFA(v/v);勾配:A/B=70/30~30/70、45分)で精製し、NBD-pAP(化合物2、36.3mg、収率31%)を得た。
1H-NMR (400MHz,CD3OD) δ8.48 (d, J = 8.7 Hz, 1H), 7.44 (dd, J = 19.0, 8.5 Hz, 4H), 6.75 (d, J = 8.7 Hz, 1H), 4.16 (dd, J = 7.8, 5.5 Hz, 1H), 3.36-3.14 (m, 2H). 
13CNMR (101 MHz, CDCl3): δ 170.10, 145.18, 144.22, 142.32, 137.59, 136.43, 132.92, 130.60, 124.32, 124.11, 100.78, 53.94, 35.65.
HRMS (ESI-) : Calcd. For [M-H], 342.08384, Found, 310.11301 (-0.85 mDa)
Compound 1 (152 mg, 0.34 mmol) was dissolved in dichloromethane (15 mL) and cooled at 0 ° C. TFA (5.6 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 2.25 hours, the solvent was evaporated to dryness. The residue is HPLC (eluent: A: H2O, 0.1% TFA (v / v), B: CH3CN / H2O = 80/20, 0.1% TFA (v / v); gradient: A / B = 70. Purification by 30/30/70, 45 minutes) gave NBD-pAP (Compound 2, 36.3 mg, yield 31%).
1 1 H-NMR (400MHz, CD 3 OD) δ8.48 (d, J = 8.7 Hz, 1H), 7.44 (dd, J = 19.0, 8.5 Hz, 4H), 6.75 (d, J = 8.7 Hz, 1H) , 4.16 (dd, J = 7.8, 5.5 Hz, 1H), 3.36-3.14 (m, 2H).
13 CNMR (101 MHz, CDCl 3 ): δ 170.10, 145.18, 144.22, 142.32, 137.59, 136.43, 132.92, 130.60, 124.32, 124.11, 100.78, 53.94, 35.65.
HRMS (ESI -):. Calcd For [MH] -, 342.08384, Found, 310.11301 (-0.85 mDa)
[合成実施例2]
化合物5(NBD-pMAP)の合成
(1)化合物3の合成
 以下の合成スキームにより化合物3を合成した。
Figure JPOXMLDOC01-appb-I000007
[Synthesis Example 2]
Synthesis of Compound 5 (NBD-pMAP) (1) Synthesis of Compound 3 Compound 3 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000007
 4-アミノ-N-Boc-L-フェニルアラニン(430mg、1.53mmol)を、メタノール(2mL)および酢酸(0.4mL)の混合溶液に溶解した。37%ホルムアルデヒド・HO溶液(113μL)を滴下し、次いで、ボラン-2-メチルピリジン錯体(pic・BH、164mg、1.53mmol)のメタノール溶液(2.3mL)を加え、室温で3時間撹拌した。MeOHを蒸発させ、残渣に1N HClaqを加えた。水溶液を室温で5分間撹拌し、飽和NaHCOaqを添加して溶液をアルカリ性にした。水層を酢酸エチルで抽出し、合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発乾固した。残渣を分取用MPLCシステム(AcOEt/n-ヘキサン、Rf=0.30)で精製し、淡黄色固体の化合物3(43.1mg、収率9.6%)を得た。
1H-NMR (400 MHz, CD3CN) δ 6.94 (d, J = 8.2 Hz, 2H), 6.49 (d, J = 8.2 Hz, 2H), 5.33 (d, J = 6.4 Hz, 1H), 4.19 (dd, J = 13.3, 7.8 Hz, 1H), 2.95-2.72 (m, 2H), 2.70 (s, 3H), 1.34 (s, 9H)
13CNMR (101 MHz, CD3CN): δ 172.95, 155.31, 148.86, 129.93, 124.49, 112.06, 79.00, 55.10, 36.24, 29.77, 27.56.
4-Amino-N-Boc-L-Phenylalanine (430 mg, 1.53 mmol) was dissolved in a mixed solution of methanol (2 mL) and acetic acid (0.4 mL). 37% formaldehyde · H 2 O solution (113μL) was added dropwise, then borane-2-methylpyridine complex (pic · BH 3, 164mg, 1.53mmol) in methanol (2.3 mL) was added and 3 at room temperature Stirred for hours. The MeOH was evaporated and 1N HClaq was added to the residue. The aqueous solution was stirred at room temperature for 5 minutes and saturated NaHCO 3 aq was added to make the solution alkaline. The aqueous layer was extracted with ethyl acetate, the combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The residue was purified by a preparative MPLC system (AcOEt / n-hexane, Rf = 0.30) to obtain compound 3 (43.1 mg, yield 9.6%) as a pale yellow solid.
1 H-NMR (400 MHz, CD 3 CN) δ 6.94 (d, J = 8.2 Hz, 2H), 6.49 (d, J = 8.2 Hz, 2H), 5.33 (d, J = 6.4 Hz, 1H), 4.19 (dd, J = 13.3, 7.8 Hz, 1H), 2.95-2.72 (m, 2H), 2.70 (s, 3H), 1.34 (s, 9H)
13 CNMR (101 MHz, CD 3 CN): δ 172.95, 155.31, 148.86, 129.93, 124.49, 112.06, 79.00, 55.10, 36.24, 29.77, 27.56.
(2)化合物5(NBD-pMAP)の合成
 以下の合成スキームにより化合物5を合成した。
Figure JPOXMLDOC01-appb-I000008
(2) Synthesis of Compound 5 (NBD-pMAP) Compound 5 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000008
 化合物3(43.1mg、0.15mmol)および重炭酸ナトリウム(11.1mg、0.13mmol)を水(2.0mL)に溶解した。NBD-Cl(26.6mg、0.13mmol)のメタノール溶液(2.0mL)を滴下し、室温で3.5時間撹拌した。メタノールを蒸発させ、水性混合物を2N HClで酸性化し、ジクロロメタンで抽出した。合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発させて乾燥した。さらに精製することなく、粗生成物をジクロロメタン(10mL)に溶解し、0℃で冷却した。TFA(2mL)を滴下して加え、反応混合物を室温に温めた。2時間攪拌した後、溶媒を蒸発乾固させた。残渣をHPLC(溶離液:A:HO、0.1%TFA(v/v)、B:CHCN/HO=80/20、0.1%TFA(v/v);勾配:A/B=90/10~50/50、45分)で精製し、NBD-pMAP(化合物5、12.9mg、2段階で収率25%)を得た。
1H-NMR (400 MHz, CD3OD) δ 8.40 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 6.26 (d, J = 9.1 Hz, 1H), 4.22 (dd, J = 7.8, 5.5 Hz, 1H), 3.89 (s, 3H), 3.38 (dd, J = 14.6, 5.5 Hz, 1H), 3.21 (q, J = 7.5 Hz, 1H)
HRMS (ESI+) : Calcd. For [M+H], 344.09949, Found, 344.10190 (+2.41 mDa)
Compound 3 (43.1 mg, 0.15 mmol) and sodium bicarbonate (11.1 mg, 0.13 mmol) were dissolved in water (2.0 mL). A methanol solution (2.0 mL) of NBD-Cl (26.6 mg, 0.13 mmol) was added dropwise, and the mixture was stirred at room temperature for 3.5 hours. The methanol was evaporated and the aqueous mixture was acidified with 2N HCl and extracted with dichloromethane. The combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The crude product was dissolved in dichloromethane (10 mL) and cooled at 0 ° C. without further purification. TFA (2 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 2 hours, the solvent was evaporated to dryness. HPLC the residue (eluent: A: H 2 O, 0.1% TFA (v / v), B: CH 3 CN / H 2 O = 80/20, 0.1% TFA (v / v); gradient : A / B = 90/10 to 50/50, 45 minutes) to obtain NBD-pMAP (Compound 5, 12.9 mg, yield 25% in two steps).
1 1 H-NMR (400 MHz, CD 3 OD) δ 8.40 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 6.26 (d, J = 9.1 Hz, 1H), 4.22 (dd, J = 7.8, 5.5 Hz, 1H), 3.89 (s, 3H), 3.38 (dd, J = 14.6, 5.5 Hz, 1H), 3.21 (q, J = 7.5 Hz, 1H)
HRMS (ESI + ): Calcd. For [M + H] + , 344.09949, Found, 344.10190 (+2.41 mDa)
[合成実施例3]
化合物8(NBD-mAP)の合成
(1)化合物6の合成
 以下の合成スキームにより化合物6を合成した。
Figure JPOXMLDOC01-appb-I000009
[Synthesis Example 3]
Synthesis of Compound 8 (NBD-mAP) (1) Synthesis of Compound 6 Compound 6 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000009
 3-アミノ-N-Boc-L-フェニルアラニン(100mg、0.32mmol)を10mLメタノールに溶解し、続いてPd/C(10%、12mg)を添加した。その後、室温でH下で2時間撹拌した。反応混合物をCelite(登録商標)で濾過し、濾液を減圧下で濃縮して化合物6(88.6mg、収率98%)を得た。
1H-NMR (400 MHz, CDCl3) δ 7.95 (d, J = 7.8 Hz, 1H), 7.66- 7.48 (m, 1H), 7.42 (d, J = 7.8 Hz, 2H), 5.31 (d, J = 5.9 Hz, 1H), 4.66 (s, 1H), 3.59-3.24 (m, 2H), 1.34 (s, 9H)
3-Amino-N-Boc-L-Phenylalanine (100 mg, 0.32 mmol) was dissolved in 10 mL methanol, followed by the addition of Pd / C (10%, 12 mg). Then, the mixture was stirred at room temperature under H 2 for 2 hours. The reaction mixture was filtered through Celite® and the filtrate was concentrated under reduced pressure to give compound 6 (88.6 mg, 98% yield).
1 1 H-NMR (400 MHz, CDCl 3 ) δ 7.95 (d, J = 7.8 Hz, 1H), 7.66- 7.48 (m, 1H), 7.42 (d, J = 7.8 Hz, 2H), 5.31 (d, J = 5.9 Hz, 1H), 4.66 (s, 1H), 3.59-3.24 (m, 2H), 1.34 (s, 9H)
(2)化合物8(NBD-mAP)の合成
 以下の合成スキームにより化合物8を合成した。
Figure JPOXMLDOC01-appb-I000010
(2) Synthesis of Compound 8 (NBD-mAP) Compound 8 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000010
 化合物6(49.9mg、0.18mmol)及び重炭酸ナトリウム(12.9mg、0.15mmol)を水(4.0mL)に溶解した。NBD-Cl(42.7mg、0.21 mmol)のメタノール溶液(2.0mL)を滴下して加え、室温で7時間撹拌した。メタノールを蒸発させ、水性混合物を1N HClで酸性化し、ジクロロメタンで抽出した。混合した有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発させて乾燥した。さらに精製することなく、粗生成物をジクロロメタン(10mL)に溶解し、0℃で冷却した。TFA(2mL)を滴下して加え、反応混合物を室温に温めた。6時間攪拌した後、溶媒を蒸発させた。残渣をHPLC(溶離液:A:HO、0.1%TFA(v/v)、B:CHCN/HO=80/20、0.1%TFA(v/v);勾配:A/B=70/30~30/70、45分)で精製し、NBD-mAP(化合物8、22.3mg、2段階で収率37%)を得た。
1H-NMR (400 MHz, CD3OD) δ 8.51 (d, J = 8.7 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 7.3 Hz, 1H), 6.79 (d, J = 8.7 Hz, 1H), 4.29 (t, J = 6.6 Hz, 1H), 3.21-3.36 (m, 2H)
HRMS (ESI+) : Calcd. For [M+H], 358.11514, Found, 358.11873 (+3.58 mDa)
Compound 6 (49.9 mg, 0.18 mmol) and sodium bicarbonate (12.9 mg, 0.15 mmol) were dissolved in water (4.0 mL). A methanol solution (2.0 mL) of NBD-Cl (42.7 mg, 0.21 mmol) was added dropwise, and the mixture was stirred at room temperature for 7 hours. The methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The mixed organic layer was washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The crude product was dissolved in dichloromethane (10 mL) and cooled at 0 ° C. without further purification. TFA (2 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 6 hours, the solvent was evaporated. HPLC the residue (eluent: A: H 2 O, 0.1% TFA (v / v), B: CH 3 CN / H 2 O = 80/20, 0.1% TFA (v / v); gradient : A / B = 70/30 to 30/70, 45 minutes) to obtain NBD-mAP (Compound 8, 22.3 mg, yield 37% in two steps).
1 H-NMR (400 MHz, CD 3 OD) δ 8.51 (d, J = 8.7 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 7.3 Hz, 1H), 6.79 (d, J = 8.7 Hz, 1H), 4.29 (t, J = 6.6 Hz, 1H), 3.21-3.36 (m, 2H)
HRMS (ESI + ): Calcd. For [M + H] + , 358.11514, Found, 358.11873 (+3.58 mDa)
[合成実施例4]
化合物11(NBD-pAMP)の合成
(1)化合物9の合成
 以下の合成スキームにより化合物9を合成した。
Figure JPOXMLDOC01-appb-I000011
[Synthesis Example 4]
Synthesis of Compound 11 (NBD-pAMP) (1) Synthesis of Compound 9 Compound 9 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000011
 4-シアノ-N-Boc-L-フェニルアラニン(216.7mg、0.77mmol)を、30mLメタノールおよび10mL酢酸の混合溶液に溶解し、次いで、Pd/C(10%、36mg)を添加した。その後、室温でH下で2時間撹拌した。反応混合物をCelite(登録商標)で濾過し、濾液を減圧下で濃縮した。残渣を逆相カラムクロマトグラフィーSNAP Ultra C18 30g(Biotage、溶離液:A:HO、0.1%TFA(v/v)、B:CHCN、0.1% TFA(v/v))で精製して化合物9(199.5mg、収率91%)を得た。
1H-NMR (400 MHz, CD3OD) δ 7.32 (dd, J = 17.6, 8.0 Hz, 4H), 4.27 (q, J = 4.6 Hz, 1H), 4.05 (s, 2H), 3.16 (dd, J = 13.7, 5.0 Hz, 1H), 2.91 (dd, J = 13.7, 8.7 Hz, 1H), 1.36 (s, 9H)
4-Cyano-N-Boc-L-Phenylalanine (216.7 mg, 0.77 mmol) was dissolved in a mixed solution of 30 mL methanol and 10 mL acetic acid, then Pd / C (10%, 36 mg) was added. Then, the mixture was stirred at room temperature under H 2 for 2 hours. The reaction mixture was filtered through Celite® and the filtrate was concentrated under reduced pressure. The residue was purified by reverse phase column chromatography SNAP Ultra C18 30g (Biotage, eluent: A: H 2 O, 0.1 % TFA (v / v), B: CH 3 CN, 0.1% TFA (v / v) ) To give compound 9 (199.5 mg, yield 91%).
1 1 H-NMR (400 MHz, CD 3 OD) δ 7.32 (dd, J = 17.6, 8.0 Hz, 4H), 4.27 (q, J = 4.6 Hz, 1H), 4.05 (s, 2H), 3.16 (dd, dd, J = 13.7, 5.0 Hz, 1H), 2.91 (dd, J = 13.7, 8.7 Hz, 1H), 1.36 (s, 9H)
(2)化合物11(NBD-pAMP)の合成
 以下の合成スキームにより化合物11を合成した。
Figure JPOXMLDOC01-appb-I000012
(2) Synthesis of Compound 11 (NBD-pAMP) Compound 11 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000012
 化合物9(164mg、0.56mmol)及び重炭酸ナトリウム(281mg、3.3mmol)を水(15mL)に溶解した。NBD-Cl(134mg、0.67mmol)のメタノール溶液(15mL)を滴下して加え、室温で10時間撹拌した。メタノールを蒸発させ、水性混合物を1N HClで酸性化し、ジクロロメタンで抽出した。混合有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発させて乾燥した。さらに精製することなく、粗生成物をジクロロメタン(47mL)に溶解し、0℃で冷却した。TFA(13mL)を滴下して加え、反応混合物を室温に温めた。2.5時間撹拌後、溶媒を蒸発させた。残渣をHPLC(溶離液:A:HO、0.1%TFA(v/v)、B:CHCN/HO=80/20、0.1%TFA(v/v);勾配:A/B=90/10~50/50、45分)で精製し、NBD-pAMP (化合物11、69.8mg、2段階で収率31%)を得た。
1H-NMR (400 MHz, CD3OD) δ 9.49 (d, J = 8.7 Hz, 1H), 8.48 (d, J = 8.2 Hz, 2H), 8.35 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.7 Hz, 1H), 5.79 (s, 2H), 5.24 (dd, J = 7.8, 5.5 Hz, 1H), 4.31 (d, J = 5.5 Hz, 1H), 4.16 (dd, J = 14.4, 8.0 Hz, 1H)
HRMS (ESI+) : Calcd. For [M+H], 358.11514, Found, 358.12008 (+4.93 mDa)
Compound 9 (164 mg, 0.56 mmol) and sodium bicarbonate (281 mg, 3.3 mmol) were dissolved in water (15 mL). A methanol solution (15 mL) of NBD-Cl (134 mg, 0.67 mmol) was added dropwise, and the mixture was stirred at room temperature for 10 hours. The methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The mixed organic layer was washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The crude product was dissolved in dichloromethane (47 mL) and cooled at 0 ° C. without further purification. TFA (13 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 2.5 hours, the solvent was evaporated. Residues HPLC (eluent: A: H 2 O, 0.1% TFA (v / v), B: CH 3 CN / H 2 O = 80/20, 0.1% TFA (v / v); gradient : A / B = 90/10 to 50/50, 45 minutes) to obtain NBD-pAMP (Compound 11, 69.8 mg, yield 31% in two steps).
1 H-NMR (400 MHz, CD 3 OD) δ 9.49 (d, J = 8.7 Hz, 1H), 8.48 (d, J = 8.2 Hz, 2H), 8.35 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.7 Hz, 1H), 5.79 (s, 2H), 5.24 (dd, J = 7.8, 5.5 Hz, 1H), 4.31 (d, J = 5.5 Hz, 1H), 4.16 (dd, J = 14.4, 8.0 Hz, 1H)
HRMS (ESI + ): Calcd. For [M + H] + , 358.11514, Found, 358.12008 (+4.93 mDa)
[合成実施例5]
化合物12(NBD-lys)の合成
 以下の合成スキームにより化合物12を合成した。
Figure JPOXMLDOC01-appb-I000013
[Synthesis Example 5]
Synthesis of Compound 12 (NBD-lys) Compound 12 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000013
 N-Boc-L-リジン(216mg、0.88mmol)及び重炭酸ナトリウム(86.6mg、0.65mmol)を水(4.0mL)に溶解した。NBD-Cl(178mg、0.88mmol)のメタノール(10mL)溶液を滴下して加えて、室温で3時間撹拌した。メタノールを蒸発させ、水性混合物を1N HClで酸性化し、ジクロロメタンで抽出した。合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発させて乾燥した。さらに精製することなく、粗生成物をジクロロメタン(20mL)に溶解し、0℃で冷却した。TFA(7mL)を滴下して加え、反応混合物を室温に温めた。3.5時間撹拌後、溶媒を蒸発させた。残渣をHPLC(溶離液:A:HO、0.1%TFA(v/v)、B:CHCN/HO=80/20、0.1%TFA(v/v);勾配:A/B=80/20~20/80、45分)で精製し、NBD-Lys(化合物12,211mg、2段階で収率78%)を得た。
1H-NMR (400MHz, CD3OD) δ 8.50 (d, J = 8.7 Hz, 1H), 6.33 (d, J = 8.7 Hz, 1H), 3.93-3.95 (m, 1H), 3.55 (brs, 2H), 1.79-2.01 (m, 4H), 1.56-1.61 (m, 2H) 
HRMS (ESI+) : Calcd. For [M+H]+ , 310.11514, Found, 310.11301 (-2.14 mDa).
N-Boc-L-lysine (216 mg, 0.88 mmol) and sodium bicarbonate (86.6 mg, 0.65 mmol) were dissolved in water (4.0 mL). A solution of NBD-Cl (178 mg, 0.88 mmol) in methanol (10 mL) was added dropwise, and the mixture was stirred at room temperature for 3 hours. The methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The crude product was dissolved in dichloromethane (20 mL) and cooled at 0 ° C. without further purification. TFA (7 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 3.5 hours, the solvent was evaporated. Residues HPLC (eluent: A: H 2 O, 0.1% TFA (v / v), B: CH 3 CN / H 2 O = 80/20, 0.1% TFA (v / v); gradient : A / B = 80/20 to 20/80, 45 minutes) to obtain NBD-Lys (compound 12,211 mg, yield 78% in two steps).
1 1 H-NMR (400MHz, CD 3 OD) δ 8.50 (d, J = 8.7 Hz, 1H), 6.33 (d, J = 8.7 Hz, 1H), 3.93-3.95 (m, 1H), 3.55 (brs, 2H) ), 1.79-2.01 (m, 4H), 1.56-1.61 (m, 2H)
HRMS (ESI + ): Calcd. For [M + H] + , 310.11514, Found, 310.11301 (-2.14 mDa).
[合成実施例6]
化合物14(NBD-amino-ala)の合成
 以下の合成スキームにより化合物14を合成した。
Figure JPOXMLDOC01-appb-I000014
[Synthesis Example 6]
Synthesis of Compound 14 (NBD-amino-ala) Compound 14 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000014
 3-アミノ-N-(Boc)-L-アラニン(168mg、0.82mmol)及び重炭酸ナトリウム(61.0mg、0.61mmol)を水(4.0mL)に溶解した。NBD-Cl(165mg、0.82mmol)のメタノール(15mL)溶液を滴下して加え、室温で3時間撹拌した。メタノールを蒸発させ、水性混合物を1N HClで酸性化し、ジクロロメタンで抽出した。合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発させて乾燥した。さらに精製することなく、粗生成物をジクロロメタン(35mL)に溶解し、0℃で冷却した。TFA(10mL)を滴下して加え、反応混合物を室温に温めた。3.5時間撹拌後、溶媒を蒸発させた。残渣をHPLC(溶離液:A:HO、0.1%TFA(v/v)、B:CHCN/HO=80/20、0.1%TFA(v/v);勾配:A/B=80/20~20/80、45分)で精製し、NBD-amino-ala(化合物14、99.4mg、2段階で収率45%)を得た。
1H-NMR (400MHz, CD3OD) δ8.54 (d, J = 8.7 Hz, 1H), 6.52 (d, J = 8.7 Hz, 1H), 4.04- 3.87 (m, 3H). HRMS (ESI+) : Calcd. For [M+H]+ , 268.06819, Found, 268.06572 (-2.47 mDa).
3-Amino-N- (Boc) -L-alanine (168 mg, 0.82 mmol) and sodium bicarbonate (61.0 mg, 0.61 mmol) were dissolved in water (4.0 mL). A solution of NBD-Cl (165 mg, 0.82 mmol) in methanol (15 mL) was added dropwise, and the mixture was stirred at room temperature for 3 hours. The methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The crude product was dissolved in dichloromethane (35 mL) and cooled at 0 ° C. without further purification. TFA (10 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 3.5 hours, the solvent was evaporated. HPLC the residue (eluent: A: H 2 O, 0.1% TFA (v / v), B: CH 3 CN / H 2 O = 80/20, 0.1% TFA (v / v); gradient : A / B = 80/20 to 20/80, 45 minutes) to obtain NBD-amino-ala (Compound 14, 99.4 mg, yield 45% in two steps).
1 1 H-NMR (400MHz, CD 3 OD) δ8.54 (d, J = 8.7 Hz, 1H), 6.52 (d, J = 8.7 Hz, 1H), 4.04- 3.87 (m, 3H). HRMS (ESI + ): Calcd. For [M + H] + , 268.06819, Found, 268.06572 (-2.47 mDa).
[合成実施例7]
化合物16(DBD-lys)の合成
 以下の合成スキームにより化合物16を合成した。
Figure JPOXMLDOC01-appb-I000015
[Synthesis Example 7]
Synthesis of Compound 16 (DBD-lys) Compound 16 was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-I000015
 N-Boc-L-リジン(19.6mg、0.080mmol)及び重炭酸ナトリウム(8.70mg、0.10mmol)を水(0.4mL)に溶解した。DBD-Cl(22.2mg、0.091mmol)のメタノール(2.0mL)溶液を滴下して加え、室温で5時間撹拌した。メタノールを蒸発させ、水性混合物を1N HClで酸性化し、ジクロロメタンで抽出した。合わせた有機層を食塩水で洗浄し、NaSO上で乾燥し、溶媒を蒸発乾固させた。残渣を分取MPLCシステム(シリカゲル、AcOEt+AcOH/n-ヘキサン、Rf=0.20)で精製した。次いで、粗生成物をジクロロメタン(5mL)に溶解し、0℃で冷却した。TFA(1.5mL)を滴下して加え、反応混合物を室温まで温めた。1時間攪拌した後、溶媒を蒸発させた。残渣をHPLC(溶離液:A:HO、0.1%TFA(v/v)、B:CHCN/HO=80/20、0.1%TFA(v/v);勾配:A/B=70/30~30/70、30分)で精製してDBD-lys(化合物16、5.15mg、2段階で収率17%)を得た。 
1H-NMR (400 MHz, CD3OD) δ 7.86 (d, J = 8.2 Hz, 1H), 6.27 (d, J = 8.2 Hz, 1H), 3.94 (t, J = 6.2 Hz, 1H), 3.46 (t, J = 7.1 Hz, 2H), 2.77 (s, 6H), 1.90-2.01 (m, 2H), 1.77-1.84 (m, 2H), 1.54-1.65 (m, 2H). HRMS (ESI+) : Calcd. For [M+H]+ , 372.13416, Found, 372.13600 (+1.84 mDa).
N-Boc-L-lysine (19.6 mg, 0.080 mmol) and sodium bicarbonate (8.70 mg, 0.10 mmol) were dissolved in water (0.4 mL). A solution of DBD-Cl (22.2 mg, 0.091 mmol) in methanol (2.0 mL) was added dropwise, and the mixture was stirred at room temperature for 5 hours. The methanol was evaporated and the aqueous mixture was acidified with 1N HCl and extracted with dichloromethane. The combined organic layers were washed with brine, dried over Na 2 SO 4 , and the solvent was evaporated to dryness. The residue was purified by a preparative MPLC system (silica gel, AcOEt + AcOH / n-hexane, Rf = 0.20). The crude product was then dissolved in dichloromethane (5 mL) and cooled at 0 ° C. TFA (1.5 mL) was added dropwise and the reaction mixture was warmed to room temperature. After stirring for 1 hour, the solvent was evaporated. HPLC the residue (eluent: A: H 2 O, 0.1% TFA (v / v), B: CH 3 CN / H 2 O = 80/20, 0.1% TFA (v / v); gradient Purification with A / B = 70/30 to 30/70, 30 minutes) gave DBD-lys (Compound 16, 5.15 mg, yield 17% in two steps).
1 H-NMR (400 MHz, CD 3 OD) δ 7.86 (d, J = 8.2 Hz, 1H), 6.27 (d, J = 8.2 Hz, 1H), 3.94 (t, J = 6.2 Hz, 1H), 3.46 (t, J = 7.1 Hz, 2H), 2.77 (s, 6H), 1.90-2.01 (m, 2H), 1.77-1.84 (m, 2H), 1.54-1.65 (m, 2H). HRMS (ESI + ) : Calcd. For [M + H] + , 372.13416, Found, 372.13600 (+1.84 mDa).
4.化合物の評価
[実施例1]
化合物2(NBD-pAP)の光学特性の評価
 合成実施例1で得た化合物2(NBD-pAP)の光学特性を取得した。結果を図1及び以下の表1に示す。
4. Evaluation of Compound [Example 1]
Evaluation of Optical Properties of Compound 2 (NBD-pAP) The optical properties of Compound 2 (NBD-pAP) obtained in Synthesis Example 1 were obtained. The results are shown in FIG. 1 and Table 1 below.
 図1は化合物2(NBD-pAP)の光学特性であり、共溶媒としてDMSO0.1%を含むNaPi緩衝液(pH7.5)中で吸収スペクトルと蛍光スペクトルを測定した。 FIG. 1 shows the optical characteristics of compound 2 (NBD-pAP), and the absorption spectrum and fluorescence spectrum were measured in a NaPi buffer solution (pH 7.5) containing 0.1% DMSO as a co-solvent.
Figure JPOXMLDOC01-appb-I000016
[a]吸収極大(Absmax)及び放出極大(Emmax)をNaPi緩衝液(pH7.5)中で測定した。 
[b]絶対蛍光量子収率 (Φfl)をHamamatsu Photonics Quantaurus-QYを用いてPBS(-)中で測定した。
Figure JPOXMLDOC01-appb-I000016
[A] Absorption maximum (Abs max ) and release maximum (Em max ) were measured in NaPi buffer (pH 7.5). 
[B] Absolute fluorescence quantum yield ([Phi fl) using Hamamatsu Photonics Quantaurus-QY PBS - measured in ().
 NBD-pAPの緩衝液中の蛍光量子収率は0.003と非常に低く、ほとんど蛍光性を示さなかった。 The fluorescence quantum yield of NBD-pAP in the buffer solution was as low as 0.003, showing almost no fluorescence.
[実施例2]
化合物2(NBD-pAP)を用いた細胞イメージング
(1)LAT1高発現細胞株(A549)を用いた評価
 実施例1で調べたようにNBD-pAPの蛍光性は非常に弱いことが明らかとなったが、蛍光イメージングの感度の高さを考慮すると、培養細胞を用いた蛍光イメージングよりNBD-pAPがLAT1の基質となるか評価できると考えた。
 そこでまず、LAT1の発現が報告されているA549細胞を選択し(Cell atlas - SLC7A5 - The Human Protein Atlas.)、LATの阻害剤であるBCH(以下に構造式を示す)の存在下・非存在下における蛍光強度から、NBD-pAPのLATによる細胞内への取り込みを評価した。
Figure JPOXMLDOC01-appb-I000017
[Example 2]
Cell imaging with compound 2 (NBD-pAP)
(1) Evaluation using a LAT1 high-expressing cell line (A549) As examined in Example 1, it was revealed that the fluorescence of NBD-pAP was very weak, but the high sensitivity of fluorescence imaging was taken into consideration. Then, it was considered that it was possible to evaluate whether NBD-pAP could be a substrate for LAT1 by fluorescence imaging using cultured cells.
Therefore, first, A549 cells in which LAT1 expression has been reported are selected (Cell atlas --SLC7A5-The Human Protein Atlas.), And the presence or absence of BCH (structural formula is shown below), which is an inhibitor of LAT, is present. The intracellular uptake of NBD-pAP by LAT was evaluated from the fluorescence intensity below.
Figure JPOXMLDOC01-appb-I000017
 DMEM中にはLAT1基質としてNBD-pAPと競合するアミノ酸が含まれており、また、HBSS中にはアミノ酸は含まれていないものの、Naイオンが含まれているため、Na依存的な他のアミノ酸トランスポーターによる輸送の影響を受けるため、これらの影響を排した条件での評価を行うべく、先行研究(Haefliger, P. et al. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J. Exp. Clin. Cancer Res. 37, 1-15 (2018).)を参考に調整したNa・アミノ酸不含の緩衝液(Naフリー緩衝液:125mM Choline-Cl、25mM HEPES、4.8mM KCl、1.2mM MgSO、1.2mM KHPO、1.3mM CaCl、5.6mM D-グルコース)を用いて、NBD-pAPがLAT1基質となるか評価した。
 また、NBD-pAPのA549への取り込みに緩衝液のpHが影響する可能性があったため、pHの異なる4種類の緩衝液中での評価を行った(図2)。なお、Naフリー緩衝液は、pH調整前は弱酸性(pH5.3)を示したため、Tris baseを加えることでpHを中性に調整した。イメージングのプロトコルは下記の通りであり、以降の実験においても特に言及がない箇所は同様の手順で評価した。
DMEM contains an amino acid that competes with NBD-pAP as a LAT1 substrate, and HBSS does not contain an amino acid but contains Na + ions, so it is Na + dependent. Since it is affected by the transport of amino acids by amino acid transporters, previous studies (Haefliger, P. et al. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse) Na + amino acid-free buffer (Na + free buffer: 125 mM Chocolate-Cl, 25 mM HEEPS,) prepared with reference to model. J. Exp. Clin. Cancer Res. 37, 1-15 (2018). Using 4.8 mM KCl, 1.2 mM sulfonyl 4 , 1.2 mM KH 2 PO 4 , 1.3 mM CaCl 2 , 5.6 mM D-glucose), it was evaluated whether NBD-pAP could be a LAT1 substrate.
In addition, since the pH of the buffer solution may affect the uptake of NBD-pAP into A549, evaluation was performed in four types of buffer solutions having different pH (Fig. 2). Since the Na + free buffer solution showed weak acidity (pH 5.3) before pH adjustment, the pH was adjusted to neutral by adding Tris base. The imaging protocol is as follows, and the parts not specifically mentioned in the subsequent experiments were evaluated by the same procedure.
<プロトコル>
A549細胞を、4.0×10細胞/ウェルで、Ibidi8ウェルイメージングチャンバーに播種する。
↓37°C、CO5%下で1~2日間培養
↓Naフリー緩衝液で1回洗浄
↓Naフリー緩衝液で30分間、37℃、CO5%下でプレインキュベートした。
↓緩衝液を、LAT阻害剤の存在下又は非存在下でNaフリー緩衝液中のプローブ溶液で置き換えた。
↓Naフリー緩衝液で30分間、37℃、CO5%下でインキュベートした。
↓画像を共焦点顕微鏡で撮影した。
<Protocol>
A549 cells are seeded in an Ibidi 8-well imaging chamber at 4.0 × 10 4 cells / well.
↓ 37 ° C, CO 2 5 % under 1 wash ↓ Na + Free buffer for 30 minutes at 1-2 days of culture ↓ Na + Free buffer, 37 ° C., were pre-incubated with CO 2 5% under.
↓ The buffer was replaced with a probe solution in Na + free buffer in the presence or absence of a LAT inhibitor.
↓ Na + Free buffer at 30 min, 37 ° C., and incubated CO 2 5% under.
↓ The image was taken with a confocal microscope.
 結果を図2に示す。図2は、NBD-pAPで処理したA549細胞の蛍光画像である。細胞は、pH5.3~7.4のNaフリー緩衝液で30分間プレインキュベートし、次いでpH5.3~7.4のNaフリー緩衝液中50μM NBD-pAPとインキュベートした(5mM BCH(LAT阻害剤)の存在下又は非存在下)。画像はライカSP8により得た。撮像条件は以下の通りであった。Ar20%、ライン平均16、HC PL APO CS2 40×/1.30 OIL、Ex.488nm 2% Em.HyD3 530-630nm、ゲイン500%オフセット-0.01。 The results are shown in FIG. FIG. 2 is a fluorescence image of A549 cells treated with NBD-pAP. Cells were preincubated for 30 minutes at Na + free buffer pH 5.3 ~ 7.4, then pH 5.3 was incubated with Na + free buffer 50 [mu] M NBD-pAP of ~ 7.4 (5mM BCH (LAT In the presence or absence of an inhibitor)). Images were obtained with the Leica SP8. The imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01.
 その結果、NBD-pAPは酸性条件下でBCHの有無により細胞内の蛍光強度に差がつく様子が観察され、LAT1の基質となっていることが示唆された(図2)。細胞内の蛍光強度は中性条件に近づくにつれ低下し、NBD-pAPのA549細胞への取り込みはpHの影響を受けることが示唆された。 As a result, it was observed that NBD-pAP had a difference in intracellular fluorescence intensity depending on the presence or absence of BCH under acidic conditions, suggesting that it is a substrate for LAT1 (Fig. 2). The intracellular fluorescence intensity decreased as the neutral condition was approached, suggesting that the uptake of NBD-pAP into A549 cells is affected by pH.
(2)LAT1低発現細胞株(HEK293)を用いた評価
 次に、LAT1の発現量が低いことが報告されているHEK293細胞についても、pH5.3のNaフリー緩衝液中でNBD-pAPの取り込みを評価した。
(2) Evaluation using a LAT1 low expression cell line (HEK293) Next, regarding HEK293 cells in which the expression level of LAT1 is reported to be low, NBD-pAP in a Na + free buffer solution having a pH of 5.3 was also used. Uptake was evaluated.
 結果を図3に示す。図3は、NBD-pAPで処理したHEK293細胞の経時蛍光画像を示す。細胞をpH5.3のNaフリー緩衝液中で30分間プレインキュベートし、その後50μM NBD-pAPを含むpH5.3のNaフリー緩衝液とインキュベートした(5mM BCH(LAT阻害剤)の存在下又は非存在下)。画像はライカSP8により得た。撮像条件は以下の通りであった。Ar20%、ライン平均16、HC PL APO CS2 40×/1.30 OIL、Ex.488nm 2% Em.HyD3 530-630nm、ゲイン500%オフセット-0.01。スケールバー:50μm。 The results are shown in FIG. FIG. 3 shows a time-lapse fluorescence image of HEK293 cells treated with NBD-pAP. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then incubated with pH 5.3 Na + free buffer containing 50 μM NBD-pAP (in the presence of 5 mM BCH (LAT inhibitor) or In the absence). Images were obtained with the Leica SP8. The imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 μm.
 その結果、HEK293細胞における細胞内の蛍光強度はA549細胞と比較して低く、HEK293細胞ではNBD-pAPの取り込みが低いことが示唆される結果となった(図3)。 As a result, the intracellular fluorescence intensity in HEK293 cells was lower than that in A549 cells, suggesting that the uptake of NBD-pAP was low in HEK293 cells (Fig. 3).
(3)LAT1選択的阻害剤JPH203を用いた評価
 LATにはLAT1~LAT4の4種類のアイソフォームが存在する。A549などの腫瘍細胞において高発現しているのはこのうち主にLAT1ではあるが、BCHはLATの全てのアイソフォームを非選択的に阻害するため、これまでの検討からはNBD-pAPがLATのどのアイソフォームで輸送されているか不明であった。そこで、NBD-pAPがLAT1の選択的な基質となっているかを評価する為、LATの4種類のアイソフォームの中でもLAT1選択的に阻害作用を示すJPH203(以下に構造式を示す)を用いて、NBD-pAPのA549細胞への取り込みが阻害されるか検討した。また、NBD-pAPが細胞種にかかわらずLAT1を介して取り込まれるかどうかを検討するために、LAT1を高発現する別のがん培養細胞株HeLa細胞を用いて、同様の評価を行った(図4)。
(3) Evaluation Using LAT1 Selective Inhibitor JPH203 There are four types of isoforms of LAT1 to LAT4 in LAT. Of these, LAT1 is mainly highly expressed in tumor cells such as A549, but since BCH non-selectively inhibits all isoforms of LAT, NBD-pAP is LAT from previous studies. It was unclear which isoform of the throat was transported. Therefore, in order to evaluate whether NBD-pAP is a selective substrate for LAT1, JPH203 (structural formula is shown below), which exhibits a LAT1 selective inhibitory effect among the four isoforms of LAT, is used. , It was examined whether the uptake of NBD-pAP into A549 cells was inhibited. In addition, in order to investigate whether NBD-pAP is taken up via LAT1 regardless of cell type, a similar evaluation was performed using another cancer cultured cell line HeLa cell that highly expresses LAT1 (). FIG. 4).
JPH203(LAT1選択的阻害剤)の化学構造
Figure JPOXMLDOC01-appb-I000018
Chemical structure of JPH203 (LAT1 selective inhibitor)
Figure JPOXMLDOC01-appb-I000018
 図4は、NBD-pAPで処理したA549、HeLa及びHEK293細胞の蛍光画像を示す。細胞をpH5.3のNaフリー緩衝液中で30分間プレインキュベートし、次に50μMのNBD-pAPを含有したpH5.3のNaフリー緩衝液中で30分間インキュベートした(5μMのJPH203(LAT1選択的阻害剤)の存在下又は非存在下)。画像はライカSP8により得た。撮像条件は以下の通りであった。Ar20%、ライン平均16、HC PL APO CS2 40×/1.30 OIL、Ex.488nm 2% Em.HyD3 530-630nm、ゲイン500%オフセット-0.01。スケールバー:50μm。 FIG. 4 shows fluorescence images of A549, HeLa and HEK293 cells treated with NBD-pAP. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then in pH 5.3 Na + free buffer containing 50 μM NBD-pAP for 30 minutes (5 μM JPH203 (LAT1)). Selective inhibitor) in the presence or absence). Images were obtained with the Leica SP8. The imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 μm.
 阻害剤としてJPH203を用いたところ、A549細胞、HeLa細胞のいずれにおいてもJPH203の有無により細胞内の蛍光強度に差が見られた。また、LAT1低発現細胞HEK293については阻害剤としてBCHを用いた図3と同様に、細胞内の蛍光強度は低かった。したがって、NBD-pAPがLATの4種類のアイソフォームの中でも特にLAT1を介して取り込まれていることが示唆される結果となった。またこれまでの検討より、NBD-pAPは洗浄操作無しで細胞内からの蛍光シグナルを選択的に観察でき、細胞内への濃縮や細胞内での蛍光のアクティベーションなど、何かしらの機構により、高い細胞内外の蛍光強度比で細胞を蛍光可視化出来ていることが示唆された。 When JPH203 was used as an inhibitor, a difference in intracellular fluorescence intensity was observed in both A549 cells and HeLa cells depending on the presence or absence of JPH203. Further, for the LAT1 low expression cell HEK293, the intracellular fluorescence intensity was low as in FIG. 3 in which BCH was used as an inhibitor. Therefore, the results suggest that NBD-pAP is taken up via LAT1 among the four isoforms of LAT. In addition, from the studies so far, NBD-pAP can selectively observe the fluorescence signal from the inside of the cell without washing operation, and is high due to some mechanism such as intracellular concentration and activation of fluorescence inside the cell. It was suggested that the cells could be fluorescently visualized by the fluorescence intensity ratio inside and outside the cells.
[実施例3]
改良したNBD蛍光母核プローブの開発
 実施例2での検討結果から、コンパクトな蛍光団であるNBDにp-アミノフェニルアラニンを導入した化合物NBD-pAPがLAT1基質となる事が明らかとなった。一方、NBD-pAPには、(1)細胞内の蛍光強度がpHに依存して変化する、(2)細胞への取り込み速度が遅い、(3)蛍光量子収率が低い(Φfl<0.01)、という点が認められたので、次に、NBD-pAPから構造展開を行い、これらの点を改善できるかについて更に検討した。
[Example 3]
Development of an improved NBD fluorescent mother nucleus probe From the results of the study in Example 2, it was clarified that the compound NBD-pAP in which p-aminophenylalanine was introduced into NBD, which is a compact fluorescent group, serves as the LAT1 substrate. On the other hand, NBD-pAP has (1) intracellular fluorescence intensity changes depending on pH, (2) slow uptake into cells, and (3) low fluorescence quantum yield ( Φfl <0). Since the point of 0.01) was recognized, next, structural development was carried out from NBD-pAP, and it was further examined whether these points could be improved.
(1)pH依存性に関する検討
 はじめに、NBD-pAPのpH依存性について検討を行った。NBD-pAPは、pH3.0~10.0の間でpH依存性な吸収・蛍光スペクトルを示し、NBDの4位窒素原子に直接アリール基が導入された化合物では窒素原子のpKaが約7.5付近であるということが知られており、本データもこれに合致する結果となった(図5)。
 図5は、NBD-pAPの吸収スペクトルと蛍光スペクトルのpH依存性を示す。(a、b)は、共溶媒としてDMSO0.1%を含む様々なpH値の100mM NaPi緩衝液中のNBD-pAPの吸収及び発光スペクトルである。励起波長は470nmであった。(c)は、447nm及び493nmにおける吸光度比対pHのプロットである。
(1) Examination of pH dependence First, the pH dependence of NBD-pAP was examined. NBD-pAP shows a pH-dependent absorption / fluorescence spectrum between pH 3.0 and 10.0, and the pKa of the nitrogen atom is about 7. It is known that it is around 5, and this data also agrees with this (Fig. 5).
FIG. 5 shows the pH dependence of the absorption spectrum and the fluorescence spectrum of NBD-pAP. (A, b) are absorption and emission spectra of NBD-pAP in 100 mM NaPi buffer of various pH values containing 0.1% DMSO as a co-solvent. The excitation wavelength was 470 nm. (C) is a plot of absorbance ratio vs. pH at 447 nm and 493 nm.
 そこで、NBD-pAPのpH依存性を改善するべく、NBD結合窒素原子上の水素原子をメチル基に置換した化合物NBD-methylamino-phe (NBD-pMAP)を設計・合成した(合成実施例2)。NBD-pMAPの吸収・蛍光スペクトルを取得した結果、吸収スペクトルのpH依存性はなくなり、NBD-pAPの4位NHのデプロトネーションが吸収スペクトルのpH依存性の原因であることを確認した(図6)。
図6は、共溶媒としてDMSO0.1%を含む種々のpH値の100mM NaPi緩衝液中のNBD-pMAPの吸収及び発光スペクトルを示す。励起波長は490nmであった。
Therefore, in order to improve the pH dependence of NBD-pAP, a compound NBD-methylamino-phe (NBD-pMAP) in which a hydrogen atom on an NBD-bonded nitrogen atom was replaced with a methyl group was designed and synthesized (Synthesis Example 2). .. As a result of acquiring the absorption / fluorescence spectrum of NBD-pMAP, it was confirmed that the pH dependence of the absorption spectrum disappeared and that the deprotonation of the 4-position NH of NBD-pAP was the cause of the pH dependence of the absorption spectrum (Fig.). 6).
FIG. 6 shows the absorption and emission spectra of NBD-pMAP in 100 mM NaPi buffer with various pH values containing 0.1% DMSO as a co-solvent. The excitation wavelength was 490 nm.
(2)細胞への取り込み速度の改善の検討
 次に、NBD-pAPの細胞への取り込み速度を改善できるか検討を行った。がんを術中に検出することを考えた場合、蛍光シグナルの上昇速度が速い方が迅速検出に適している。そこで、フェニルアラニンのフェニル基への置換基の置換位置は、p位に比べm位のほうがLAT1基質の輸送速度が高いという先行研究を参考にして、NBDにm-アミノ-フェニルアラニンを導入した化合物、NBD-m-amino-phe(NBD-mAP)を設計・合成した(合成実施例3)。
(2) Examination of improvement of uptake rate into cells Next, it was examined whether the uptake rate of NBD-pAP into cells could be improved. When considering the intraoperative detection of cancer, the faster the rate of increase of the fluorescent signal is, the more suitable for rapid detection. Therefore, the substitution position of the substituent of phenylalanine to the phenyl group is a compound in which m-amino-phenylalanine is introduced into NBD with reference to the previous research that the transport rate of the LAT1 substrate is higher at the m-position than at the p-position. NBD-m-amino-phe (NBD-mAP) was designed and synthesized (Synthesis Example 3).
 NBD-mAPをA549細胞に適用した結果を図7に示す。
 図7は、NBD-mAPで処理したA549細胞とHeLa細胞の蛍光画像を示す。細胞をpH5.3のNaフリー緩衝液中で30分間プレインキュベートし、次に50μM NBD-mAPを含むpH5.3のNaフリー緩衝液中で40分間インキュベートした(5μM JPH203の存在下又は非存在下)。画像はライカSP8により得た。撮像条件は以下の通りであった。Ar20%、ライン平均16、HC PL APO CS2 40×/1.30 OIL、Ex.488nm 2% Em.HyD3 530-630nm、ゲイン500% オフセット-0.01。スケールバー:50μm。
The result of applying NBD-mAP to A549 cells is shown in FIG.
FIG. 7 shows fluorescence images of A549 cells and HeLa cells treated with NBD-mAP. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then in pH 5.3 Na + free buffer containing 50 μM NBD-mAP for 40 minutes (in the presence or absence of 5 μM JPH203). In existence). Images were obtained with the Leica SP8. The imaging conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 2% Em. HyD3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 μm.
 図7から、細胞内において蛍光強度上昇が観察され、またそれはJPH203の添加により抑制されたことから、NBD-mAPもLAT1の基質となっていることが示唆された。従って、LAT1の基質認識において、フェニルアラニンのフェニル基m位にNBDを導入しても、LAT1基質として許容されることが示された。 From FIG. 7, an increase in fluorescence intensity was observed in the cells, and it was suppressed by the addition of JPH203, suggesting that NBD-mAP is also a substrate for LAT1. Therefore, in the substrate recognition of LAT1, it was shown that even if NBD is introduced at the m-position of the phenyl group of phenylalanine, it is acceptable as a LAT1 substrate.
 次に、置換位置による取り込み速度の比較を行った。共焦点蛍光顕微鏡において、焦点面を細胞に合わせた状態でプローブ溶液を添加し(final 50μM)、1分ごとに10分間撮像し10~20分間の細胞内蛍光強度変化を追跡した。A549とHeLaの2種類のLAT1高発現細胞について測定した結果、いずれの細胞においてもm-置換体に比べてp-置換体のほうが取り込み速度は速く、置換位置をm位に変更することで取り込み速度は向上しなかった(図8)。 Next, the uptake speed was compared according to the replacement position. In a confocal fluorescence microscope, a probe solution was added with the focal plane aligned with the cells (final 50 μM), and imaging was performed every minute for 10 minutes to track changes in intracellular fluorescence intensity for 10 to 20 minutes. As a result of measurement for two types of LAT1 high-expressing cells, A549 and HeLa, the uptake rate of the p-substituent was faster than that of the m-substitute in any of the cells, and the uptake was performed by changing the substitution position to the m-position. The speed did not improve (Fig. 8).
 図8は、NBD-pAPとNBD-mAPのA549細胞とHeLa細胞への取り込み比較を示す。(a)は、NBD-pAPとNBD-mAPで処理したA549とHeLa細胞の経時蛍光画像である。細胞をpH5.3のNaフリー緩衝液で30分前インキュベートした。画像をLeica SP8で得た。画像条件は以下の通りだった:Ar 20%、 HC PL APO CS2 63×/1.40 OIL、Ex.488nm 1% Em.HyD3 534-634nm(A549)または519-590nm(HeLa)、ゲイン500% オフセット-0.01。スケールバー:50μm。(b)は、各細胞のROIにおける蛍光強度の定量化である。エラーバーはSDで表す(n=10)。 FIG. 8 shows a comparison of the uptake of NBD-pAP and NBD-mAP into A549 cells and HeLa cells. (A) is a time-dependent fluorescence image of A549 and HeLa cells treated with NBD-pAP and NBD-mAP. Cells were incubated 30 minutes prior to Na + free buffer at pH 5.3. Images were obtained with the Leica SP8. The image conditions were as follows: Ar 20%, HC PL APO CS2 63 × / 1.40 OIL, Ex. 488 nm 1% Em. HyD3 534-634 nm (A549) or 519-590 nm (HeLa), gain 500% offset-0.01. Scale bar: 50 μm. (B) is the quantification of the fluorescence intensity in the ROI of each cell. Error bars are represented by SD (n = 10).
(3)蛍光量子収率の改善の検討
 次に、蛍光量子収率を改善する狙いでNBD4位のアミンとフェニルアラニンの芳香環の間にメチレン基を導入した化合物NBD-p-aminomethyl-phe(NBD-pAMP)を設計・合成し(合成実施例4)、光学特性を取得した(図9)。
 図9は、NBD-pAMPの光学特性を示す。左図は 吸収スペクトルで、右図は蛍光スペクトルである。全スペクトルを、共溶媒としてDMSO0.1%を含むPBS中で測定した。
 NBD-pAMPのPBS(-)中での蛍光量子収率は5.9%であり、メチレン基を含まないNBD-pAPに比べて10倍以上高い蛍光量子収率を示した(表2)。
(3) Examination of Improvement of Fluorescence Quantum Yield Next, a compound NBD-p-aminomethyl-phe (NBD) in which a methylene group was introduced between the amine at the NBD4 position and the aromatic ring of phenylalanine with the aim of improving the fluorescence quantum yield. -PAMP) was designed and synthesized (Synthesis Example 4), and the optical characteristics were obtained (Fig. 9).
FIG. 9 shows the optical characteristics of NBD-pAMP. The figure on the left is the absorption spectrum, and the figure on the right is the fluorescence spectrum. The entire spectrum was measured in PBS containing 0.1% DMSO as a co-solvent.
The fluorescence quantum yield of NBD-pAMP in PBS (−) was 5.9%, which was more than 10 times higher than that of NBD-pAP containing no methylene group (Table 2).
Figure JPOXMLDOC01-appb-I000019
すべての特性をPBS(-)中で測定した。Hamamatsu Photonics Quantaurus-QYを用いて絶対蛍光量子収率(Φfl)を決定した。
Figure JPOXMLDOC01-appb-I000019
All properties were measured in PBS (−). Hamamatsu Photonics Quantaurus-QY to determine the absolute fluorescence quantum yield ([Phi fl) used.
 NBD-pAMPをA549細胞に適用し、LAT1基質となるか評価した(図10)。
 図10は、5μMのNBD-pAMPで処理したA549細胞の蛍光画像を示す。細胞をpH5.3のNaフリー緩衝液中で30分間プレインキュベートし、次いで5μMのNBD-pAMPを含むpH5.3のNaフリー緩衝液と30分間インキュベートした(5μM JPH203の存在下又は非存在下)。画像をLeica SP8で得た。画像条件は以下の通りだった。Ar20%、ライン平均16、HC PL APO CS2 40×/1、30 OIL、Ex.488nm 2% Em.HyD 3 530-630nm、ゲイン500% オフセット-0.01。スケールバー:50μm。
NBD-pAMP was applied to A549 cells and evaluated for LAT1 substrate (Fig. 10).
FIG. 10 shows a fluorescence image of A549 cells treated with 5 μM NBD-pAMP. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then incubated with pH 5.3 Na + free buffer containing 5 μM NBD-pAMP for 30 minutes (in the presence or absence of 5 μM JPH203). under). Images were obtained with the Leica SP8. The image conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 × / 1, 30 OIL, Ex. 488 nm 2% Em. HyD 3 530-630 nm, gain 500% offset-0.01. Scale bar: 50 μm.
 図10で示す結果から、NBD-pAMPは5μMでインキュベーションすることにより、細胞内における蛍光強度の上昇が観察され、またこの上昇がJPH203により大幅に低下したことから、NBD-pAMPがLAT1基質となっていることが示唆された。したがって、NBD-pAPのNBD4位アミノ基とフェニルアラニン構造の間へのメチレン基の導入はLAT1基質認識に許容されることが示された。
 また、NBD-pAMPにおいてもNBD-pAPと同様に、洗浄操作無しで細胞内からの蛍光シグナルを選択的に観察でき、細胞内への濃縮や細胞内での蛍光のアクティベーションなど、何かしらの機構により、高い細胞内外の蛍光強度比で細胞を蛍光可視化出来ていることが示唆された。
From the results shown in FIG. 10, when NBD-pAMP was incubated at 5 μM, an increase in intracellular fluorescence intensity was observed, and since this increase was significantly reduced by JPH203, NBD-pAMP became a LAT1 substrate. It was suggested that Therefore, it was shown that the introduction of a methylene group between the NBD4-position amino group of NBD-pAP and the phenylalanine structure is acceptable for LAT1 substrate recognition.
Also, in NBD-pAMP, as in NBD-pAP, the fluorescence signal from the inside of the cell can be selectively observed without a washing operation, and some mechanism such as intracellular concentration and activation of fluorescence in the cell can be observed. It was suggested that the cells could be fluorescently visualized with a high intracellular and extracellular fluorescence intensity ratio.
 次に、NBD-pAMPを50μMでインキュベーションした後に洗浄し、その後の細胞内の蛍光強度を経時的に観察したところ、NBD-pAMPが細胞内から外へ排出される様子が観察され、細胞内滞留性は高くないことが示唆された。ここで、LAT1は基質の対向輸送を行うことから、細胞内から細胞外へのNBD-pAMPの輸送がLAT1により行われている可能性を考え、洗浄操作後の細胞外への排出がJPH203添加により抑制されるかを検討した(図11)。 Next, NBD-pAMP was incubated at 50 μM, washed, and then the intracellular fluorescence intensity was observed over time. As a result, it was observed that NBD-pAMP was excreted from the inside of the cell and stayed inside the cell. It was suggested that the sex was not high. Here, since LAT1 carries out the opposite transport of the substrate, considering the possibility that the transport of NBD-pAMP from the inside of the cell to the outside of the cell is carried out by LAT1, the excretion to the outside of the cell after the washing operation is added with JPH203. It was examined whether it was suppressed by (Fig. 11).
 図11の(a)は、細胞外緩衝液のウォッシュアウト後にNBD-pAMPで処理したA549細胞の経時蛍光画像を示す。細胞をpH5.3のNaフリー緩衝液で30分間プレインキュベートし、30分間5μMのNBD-pAMPでインキュベートした(5μMのJPH203(LAT1選択的阻害剤)の存在下又は非存在下)。次いで、pH5.3のNaフリー緩衝液で洗浄する(5μM JPH203の存在下又は非存在下)で洗浄する。画像をLeica SP8で得た。画像条件は以下の通りだった。Ar20%、ライン平均16、HC PL APO CS2 40×/1.30 OIL、Ex.488nm 0.5% Em.HyD3 530-630nm、ゲイン500%。スケールバー:50μm。
図11の(b)は、各細胞のROIにおける蛍光強度の定量化を示す。
FIG. 11A shows a time-lapse fluorescence image of A549 cells treated with NBD-pAMP after washing out of extracellular buffer. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and incubated with 5 μM NBD-pAMP for 30 minutes in the presence or absence of 5 μM JPH203 (LAT1 selective inhibitor). It is then washed with a pH 5.3 Na + free buffer (in the presence or absence of 5 μM JPH203). Images were obtained with the Leica SP8. The image conditions were as follows. Ar 20%, line average 16, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 0.5% Em. HyD3 530-630 nm, gain 500%. Scale bar: 50 μm.
FIG. 11 (b) shows the quantification of the fluorescence intensity in the ROI of each cell.
 図11で示す通り、洗浄操作後の細胞内からのプローブの漏出はJPH203の添加で阻害されなかった。細胞内から細胞外へのプローブの排出はLAT1以外のアミノ酸トランスポーターや、がん細胞において発現が亢進している種々の薬剤排出トランスポーターなどにより行われている可能性が考えられる。 As shown in FIG. 11, the leakage of the probe from the cells after the washing operation was not inhibited by the addition of JPH203. It is considered possible that the probe is excreted from the intracellular to the extracellular by an amino acid transporter other than LAT1 or various drug excretion transporters whose expression is enhanced in cancer cells.
[実施例4] 
スフェロイド(spheroid)への応用
 実施例2において、二次元の培養細胞においてLAT1を介して取り込まれることが明らかとなったLAT1の蛍光基質NBD-pAPについて、実際の組織に近い3D spheroidに適用し、3次元の培養細胞においても開発したプローブがLAT1を介して取り込まれるかどうか検証した。具体的には、LAT1高発現細胞A549と低発現細胞HEK293から直径約400mmの3D spheroidを下記のプロトコルで作製し、これにNBD-pAPを適用して共焦点顕微鏡で蛍光イメージングを行った(図12)。
[Example 4]
Application to spheroid In Example 2, the fluorescent substrate NBD-pAP of LAT1 which was found to be taken up via LAT1 in two-dimensional cultured cells was applied to a 3D spheroid close to an actual tissue. It was verified whether the developed probe was taken up via LAT1 also in three-dimensional cultured cells. Specifically, a 3D spheroid having a diameter of about 400 mm was prepared from LAT1 high-expressing cell A549 and low-expressing cell HEK293 by the following protocol, and NBD-pAP was applied to this to perform fluorescence imaging with a confocal microscope (Fig.). 12).
<プロトコル>
ポリ-HEMA(ポリ2-ヒドロキシエチルメタクリレート)によって被覆された96ウェル円形底板中に2.0×10細胞/ウェルで2.5%マトリゲルを含有するA 549細胞を播種した。
↓37℃、CO5%で、3日間培養
↓Naフリー緩衝液(pH5.3)で一回洗浄
↓Naフリー緩衝液(pH5.3)で30分間、37℃、CO5%でプレインキュベート
↓緩衝液を、JPH203の存在下又は非存在下で、Naフリー緩衝液(pH5.3)中のプローブ溶液で置換した
↓Naフリー緩衝液(pH5.3)で30分間、37℃、CO5%でインキュベート
↓共焦点顕微鏡で画像を撮影
<Protocol>
A549 cells containing 2.5% matrigel at 2.0 × 10 3 cells / well were seeded in a 96-well circular bottom plate coated with poly-HEMA (poly 2-hydroxyethyl methacrylate).
↓ 37 ° C., in CO 2 5%, 30 min in a single washing ↓ Na + Free buffer (pH 5.3) at 3 days of culture ↓ Na + Free buffer (pH5.3), 37 ℃, CO 2 5% Pre-incubation with ↓ The buffer was replaced with a probe solution in Na + free buffer (pH 5.3) in the presence or absence of JPH203 ↓ Na + free buffer (pH 5.3) for 30 minutes. 37 ° C., photographed images with incubation ↓ confocal microscopy CO 2 5%
 共焦点顕微鏡によるイメージングにおいては、z軸方向に10mm間隔で計16枚のスタック画像(合計:150mm)を取得し、LAS X softwareのprojection機能を用いて、各ピクセルにおける蛍光強度の最大値を投影した画像を作成した。結果を図12に示す。 In imaging with a confocal microscope, a total of 16 stack images (total: 150 mm) are acquired at 10 mm intervals in the z-axis direction, and the maximum value of fluorescence intensity at each pixel is projected using the projection function of LAS X software. I created the image. The results are shown in FIG.
  図12の(a)は、A549又はHEK293によって調製した3Dスフェロイドの蛍光共焦点画像を示す。pH5.3でNaフリー緩衝液中で30分間プレインキュベートし、その後50μM NBD-pAPを含むpH5.3のNaフリー緩衝液中で30分間インキュベートした(5μMのJPH203の存在下又は非存在下)。画像はライカSP8で得た。撮影条件はAr20%、ライン平均5、HC PL APO CS2 40×/1.30 OIL、Ex.488nm 2% Em.HyD 3 534~634nm、Gain 500% Offset-0.01。
図12の(b)は、各スフェロイドのROIでの蛍光強度の定量化を示す。データは平均±標準偏差(n=4)で示した。:p<0.05、**:p<0.001。
FIG. 12 (a) shows a fluorescence confocal image of a 3D spheroid prepared by A549 or HEK293. Pre-incubated at pH 5.3 in Na + free buffer for 30 minutes, then incubated in pH 5.3 Na + free buffer containing 50 μM NBD-pAP for 30 minutes (in the presence or absence of 5 μM JPH203). ). Images were obtained with a Leica SP8. The shooting conditions were Ar 20%, line average 5, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 2% Em. HyD 3 534-634 nm, Gain 500% Offset-0.01.
FIG. 12B shows the quantification of the fluorescence intensity of each spheroid at ROI. The data are shown as mean ± standard deviation (n = 4). * : P <0.05, ** : p <0.001.
 図12で示す結果から、NBD-pAPをA549細胞のスフェロイドに添加した場合には、JPH203の有無での蛍光強度に差がつき、またHEK293細胞のスフェロイドにおいてはJPH203添加したA549由来スフェロイドと同程度の蛍光強度を示したことから、三次元培養のスフェロイドにおいてもプローブがLAT1を介して取り込まれていることが示唆された。 From the results shown in FIG. 12, when NBD-pAP was added to the spheroids of A549 cells, there was a difference in the fluorescence intensity with and without JPH203, and the spheroids of HEK293 cells were comparable to the A549-derived spheroids to which JPH203 was added. It was suggested that the probe was taken up via LAT1 even in the spheroids of the three-dimensional culture.
[実施例5]
患者由来新鮮脳腫瘍検体への応用 
 実施例4においてLAT1を介して三次元スフェロイド内に取り込まれることが示唆されたNBD-pAPについて、実際のヒトの新鮮がん組織においてもLAT1を介して取り込まれるか検討した。LAT1の発現が亢進していることが報告されており、がんの悪性度とLAT1の発現が関連することが示唆されている脳腫瘍を、評価するがん種として選択した。脳腫瘍を蛍光標識する既存技術としては、5-アミノレブリン酸(5-ALA)があり、悪性神経膠腫の手術において唯一保険収載されている蛍光試薬である。手術開始3時間前に内服投与された5-ALAは細胞内でプロトポルフィリンIX(PpIX)へと合成され、腫瘍細胞内に選択的に過剰蓄積し、これに青色可視光(375-445nm)を照射することで赤色蛍光(600-740nm)を発する。しかしながら5-ALAは、感度特異度が低い、光退色耐性に乏しい、術中の追加投与が難しいなどの課題がある。
[Example 5]
Application to patient-derived fresh brain tumor specimens
It was examined whether NBD-pAP, which was suggested to be incorporated into three-dimensional spheroids via LAT1 in Example 4, is also incorporated into actual human fresh cancer tissues via LAT1. Brain tumors, which have been reported to have increased LAT1 expression and have been suggested to be associated with cancer malignancy and LAT1 expression, were selected as the cancer type to be evaluated. As an existing technique for fluorescently labeling brain tumors, there is 5-aminolevulinic acid (5-ALA), which is the only fluorescent reagent covered by insurance in the operation of malignant glioma. 5-ALA, which was orally administered 3 hours before the start of surgery, was synthesized intracellularly into protoporphyrin IX (PpIX) and selectively over-accumulated in tumor cells, to which blue visible light (375-445 nm) was emitted. Upon irradiation, it emits red fluorescence (600-740 nm). However, 5-ALA has problems such as low sensitivity specificity, poor resistance to photobleaching, and difficulty in additional administration during surgery.
 本発明により開発したNBD-pAPが脳腫瘍組織においてもLAT1を介して取り込まれれば、術中投与も可能な脳腫瘍の蛍光イメージングツールとしての利用が期待できることから、東京大学病院 脳神経外科の臨床外科医と共同して、患者由来の新鮮脳腫瘍検体にNBD-pAPを適用することでNBD-pAPがヒトの脳腫瘍組織においてもLAT1を介して取り込まれるか、評価した(図13)。 If the NBD-pAP developed by the present invention is incorporated into brain tumor tissue via LAT1, it can be expected to be used as a fluorescence imaging tool for brain tumors that can be administered intraoperatively. By applying NBD-pAP to fresh brain tumor specimens derived from patients, it was evaluated whether NBD-pAP was also incorporated into human brain tumor tissues via LAT1 (FIG. 13).
<プロトコル>
新鮮な脳腫瘍標本をIbidi8ウェルイメージングチャンバーに置いた。
↓pH5.3のNa+フリー緩衝液中に50mMのNBD-pAPを添加する(20μMのJPH203の存在下又は非存在下)
↓Maestro(商標)In-Vivo Imaging System(ParkinElmer Inc.)による経時画像
<Protocol>
Fresh brain tumor specimens were placed in the Ibidi 8-well imaging chamber.
↓ Add 50 mM NBD-pAP to pH 5.3 Na + free buffer (in the presence or absence of 20 μM JPH203).
↓ Time-lapse image by Maestro ™ In-Vivo Imaging System (Parkin Elmer Inc.)
 図13の(a)は、LAT1阻害剤(20μM JPH203)の存在下または非存在下で50μMのNBD-pAPと30分間インキュベートした、新鮮な脳腫瘍試料の蛍光画像を示す。Ex/Em=488nm/530nmのロングパス。
 図13の(b)は、NBD-pAP溶液(JPH203の存在下又は非存在下)添加後の新鮮な脳腫瘍試料の時間依存性蛍光変化を示す。
FIG. 13 (a) shows a fluorescent image of a fresh brain tumor sample incubated with 50 μM NBD-pAP for 30 minutes in the presence or absence of a LAT1 inhibitor (20 μM JPH203). Ex / Em = 488nm / 530nm long pass.
FIG. 13 (b) shows the time-dependent fluorescence changes of a fresh brain tumor sample after the addition of the NBD-pAP solution (in the presence or absence of JPH203).
 図13で示すように、NBD-pAPを添加した脳腫瘍検体において経時的な蛍光強度上昇が確認され、またその蛍光上昇はLAT1阻害剤JPH203により抑制された。すなわち、NBD-pAPは脳腫瘍組織においても、LAT1を介して取り込まれていることが示唆された。 As shown in FIG. 13, an increase in fluorescence intensity over time was confirmed in a brain tumor sample to which NBD-pAP was added, and the increase in fluorescence was suppressed by the LAT1 inhibitor JPH203. That is, it was suggested that NBD-pAP is also taken up via LAT1 in brain tumor tissues.
[実施例6]
NBD-Lys、NBD-amino-alaを用いた評価
(1)光学特性
 LAT1の基質認識として側鎖の芳香環構造が重要だと考えられたため、これまではアミノ酸構造としてフェニルアラニンを中心にして種々の構造展開を行った。次に、新たな基質認識の為の構造をNBDに持たせることができる可能性を考え、NBDにアミノ酸構造としてリシンを導入したNBD-Lys、3-アミノ-アラニンを導入したNBD-amino-alaを合成し(合成実施例5及び6)、光学特性を取得した。結果を図14及び表3に示す。
[Example 6]
Evaluation using NBD-Lys and NBD-amino-ala
(1) Optical characteristics Since the aromatic ring structure of the side chain was considered to be important for substrate recognition of LAT1, various structural developments have been carried out so far centering on phenylalanine as the amino acid structure. Next, considering the possibility that NBD can have a structure for new substrate recognition, NBD-Lys in which lysine was introduced as an amino acid structure in NBD and NBD-amino-ala in which 3-amino-alanine was introduced. (Synthesis Examples 5 and 6) were synthesized to obtain optical characteristics. The results are shown in FIG. 14 and Table 3.
 図14は、NBD-lys(上段)とNBD-amino-ala(下段)の光物理的特性。左側の図は吸収スペクトル を示し、右側の図は蛍光スペクトル を示す 。全てのスペクトルは、共溶媒としてDMSO0.1%を含む100mM NaPi緩衝液中で測定した。 FIG. 14 shows the photophysical characteristics of NBD-lys (upper row) and NBD-amino-ala (lower row). The figure on the left shows the absorption spectrum, and the figure on the right shows the fluorescence spectrum. All spectra were measured in 100 mM NaPi buffer containing 0.1% DMSO as a co-solvent.
Figure JPOXMLDOC01-appb-I000020
[a]吸収最大値(Absmax)及び発光最大値(Emmax)を100mM NaPi緩衝液(pH7.5)中で測定した。[b]絶対蛍光量子収率(Φfl)をHamamatsu Photonics Quantaurus‐QYを用いてPBS(-)中で測定した。
Figure JPOXMLDOC01-appb-I000020
[A] The maximum absorption value (Abs max ) and the maximum emission value (Em max ) were measured in 100 mM NaPi buffer (pH 7.5). [B] Absolute fluorescence quantum yield ([Phi fl) using Hamamatsu Photonics Quantaurus-QY PBS - measured in ().
 最大吸収波長・蛍光波長はNBD-pAP及びNBD-pAMPと同程度であり、蛍光量子収率はPBS中で約5%とNBD-pAMPと同程度の明るさを示した。 The maximum absorption wavelength and fluorescence wavelength were about the same as NBD-pAP and NBD-pAMP, and the fluorescence quantum yield was about 5% in PBS, which was about the same brightness as NBD-pAMP.
(2)細胞イメージング
 次に、NBD-lys、NBD-amino-alaをpH5.3のNaフリー緩衝液中でLAT1高発現細胞であるA549細胞に適用し、LAT1基質となるか評価した(図15)。
(2) Cell imaging Next, NBD-lys and NBD-amino-ala were applied to A549 cells, which are LAT1 highly expressing cells, in a Na + free buffer solution having a pH of 5.3, and evaluated as to whether they could be used as a LAT1 substrate (Fig.). 15).
 図15は、5μMのNBD-lysとNBD-amino-alaで処理したA549細胞の蛍光画像を示す。細胞をpH5.3のNaフリー緩衝液中で30分間プレインキュベートし、次に5μMのNBD-lysおよびNBD-amino-alaを含むpH5.3のNaフリー緩衝液で30分間インキュベートした(5mM BCHの存在下または非存在下)。画像はLeica SP8で得た。撮像条件は以下のとおりである:Ar20%、ライン平均5、HC PL APO CS2 40×/1.30 OIL、 Ex.488nm 1%Em。HyD3 534-634nm、ゲイン100%オフセット-0.01。 FIG. 15 shows a fluorescence image of A549 cells treated with 5 μM NBD-lys and NBD-amino-ala. Cells were pre-incubated in pH 5.3 Na + free buffer for 30 minutes and then incubated in pH 5.3 Na + free buffer containing 5 μM NBD-lys and NBD-amino-ala for 30 minutes (5 mM). In the presence or absence of BCH). Images were obtained with the Leica SP8. The imaging conditions are as follows: Ar 20%, line average 5, HC PL APO CS2 40 × / 1.30 OIL, Ex. 488 nm 1% Em. HyD3 534-634 nm, 100% gain offset-0.01.
 図15で得られた結果が示す通り、いずれの化合物もNBD-pAMPと同じ濃度(5μM)でA549細胞に取り込まれ、その取り込みはLATの阻害剤BCHの添加により阻害された。したがって、アミノ酸構造としてリシン、3-アミノ-アラニンを導入したNBD-lys,NBD-amino-alaにおいてもLAT1基質として細胞内に取り込まれていることが示唆された。すなわち、NBDを蛍光母核とした化合物に対するLAT1の基質認識において、アミノ酸側鎖部位の構造はアリール基を持たなくても許容されることが示された。 As the results obtained in FIG. 15 show, all the compounds were taken up by A549 cells at the same concentration (5 μM) as NBD-pAMP, and the uptake was inhibited by the addition of the LAT inhibitor BCH. Therefore, it was suggested that NBD-lys and NBD-amino-ala into which lysine and 3-amino-alanine were introduced as amino acid structures were also incorporated into cells as LAT1 substrates. That is, in the substrate recognition of LAT1 for a compound having NBD as a fluorescent mother nucleus, it was shown that the structure of the amino acid side chain site is acceptable even if it does not have an aryl group.
 本発明により、多くのがん種で発現が亢進しているアミノ酸トランスポーターであるLAT1により細胞内に取り込まれる蛍光基質NBD-pAP、NBD-pAMP、NBD-lys,NBD-amino-ala等を提供することができる。
 LAT1は、癌などの疾患を始めとして多岐にわたる生命現象との関与が報告されているトランスポーターであることから、LAT1の機能の解明やLAT1を利用した医療ツールの開発は多くの研究者から注目を集めている。したがって、LAT1を介して取り込まれる蛍光基質の開発に成功した本発明の成果は、脳腫瘍を始めとしたがんの術中イメージングなど臨床への応用のみならず、LAT1に対する阻害剤の探索やLAT1が関連する生命現象の解明にも貢献していくと考えられる。
INDUSTRIAL APPLICABILITY The present invention provides fluorescent substrates NBD-pAP, NBD-pAMP, NBD-lys, NBD-amino-ala, etc., which are taken up into cells by LAT1, which is an amino acid transporter whose expression is upregulated in many cancer types. can do.
Since LAT1 is a transporter that has been reported to be involved in a wide range of life phenomena including diseases such as cancer, many researchers are paying attention to the elucidation of the function of LAT1 and the development of medical tools using LAT1. Is collecting. Therefore, the results of the present invention that succeeded in developing a fluorescent substrate that is taken up via LAT1 are not only applied to clinical applications such as intraoperative imaging of cancers such as brain tumors, but also related to the search for inhibitors for LAT1 and LAT1. It is thought that it will also contribute to the elucidation of life phenomena.

Claims (11)

  1.  以下の一般式(I)で表される化合物又はその塩。
    Figure JPOXMLDOC01-appb-I000001
    (式中、
    は、水素原子又は炭素数1~4のアルキル基であり:
    Xは、NRを表し、
    ここで、Rは、水素原子又は炭素数1~4のアルキル基であり:
    Yは、ニトロ基(-NO)、スルホン酸基(-SOH)又はスルホンアミド基(-SONR’R’’)であり、ここで、R’及びR’’は、夫々独立に、水素原子又は炭素数1~4のアルキル基であり;
    Lは、アルキレン、アリーレン、及び、アルキレンとアリーレンが任意に結合して構成される基からなる群から選択される。)
    A compound represented by the following general formula (I) or a salt thereof.
    Figure JPOXMLDOC01-appb-I000001
    (During the ceremony,
    R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms:
    X represents NR 2
    Here, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms:
    Y is a nitro group (-NO 2 ), a sulfonic acid group (-SO 3 H) or a sulfonamide group (-SO 2 NR'R''), where R'and R'' are independent of each other. In addition, it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
    L is selected from the group consisting of alkylene, arylene, and a group composed of an arbitrary bond of alkylene and arylene. )
  2.  Lが以下から選択される、請求項1に記載の化合物又はその塩。
    -(CR-、-Ar-、-Ar-(CR-、-(CR-Ar-、-(CR-Ar-(CR
    (Arはアリーレンを表し、R及びRは、各々独立に、各出現において独立に、水素原子又は炭素数1~3のアルキル基であり、nは1~8の整数であり、mは1~ 5の整数であり、sは1~8の整数であり、*は、Xと結合する側を示す。)
    The compound according to claim 1, or a salt thereof, wherein L is selected from the following.
    -(CR a R b ) n- , -Ar-, * -Ar- (CR a R b ) m- , * -(CR a R b ) s -Ar-, * -(CR a R b ) s- Ar- (CR a R b ) m-
    (Ar represents an arylene, Ra and R b are each independently and independently at each appearance, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, n is an integer of 1 to 8, and m is an integer of 1 to 8. It is an integer of 1 to 5, s is an integer of 1 to 8, and * indicates the side to be combined with X.)
  3.  Lが以下から選択される、請求項1又は2に記載の化合物又はその塩。
    -CH-、-Bz-CH-、-(CH-、-CH-Bz-CH
    (Bzは、ベンゼン環を表し、*は、Xと結合する側を示す。)
    The compound according to claim 1 or 2, or a salt thereof, wherein L is selected from the following.
    -CH 2 -, * -Bz-CH 2 -, - (CH 2) 4 -, * -CH 2 -Bz-CH 2 -
    (Bz represents a benzene ring, and * indicates the side bonded to X.)
  4.  Lが、-Bz-CH-である、請求項3に記載の化合物又はその塩。 The compound according to claim 3, or a salt thereof, wherein L is * -Bz-CH 2-.
  5.  Lが、-CH-である、請求項3に記載の化合物又はその塩。 The compound according to claim 3, or a salt thereof, wherein L is -CH 2-.
  6.  Lが、-(CH-である、請求項3に記載の化合物又はその塩。 L is, - (CH 2) 4 - The compound or a salt thereof according to claim 3.
  7.  Lが、-CH-Bz-CH-である、請求項3に記載の化合物又はその塩。 The compound according to claim 3, or a salt thereof, wherein L is * -CH 2- Bz-CH 2-.
  8.  Yが、ニトロ基(-NO)である、請求項1~7のいずれか1項に記載の化合物又はその塩。 The compound according to any one of claims 1 to 7, or a salt thereof, wherein Y is a nitro group (-NO 2).
  9.  請求項1~8のいずれか1項に記載の化合物又はその塩を含む蛍光プローブ。 A fluorescent probe containing the compound according to any one of claims 1 to 8 or a salt thereof.
  10.  LAT1による細胞内への取り込みを検出する方法であって、
    (a)請求項1~8のいずれか1項に記載の化合物又はその塩を含む蛍光プローブを細胞内に導入する工程、及び(b)当該化合物又はその塩が細胞内で発する蛍光を測定する工程を含む方法。
    It is a method for detecting the intracellular uptake by LAT1.
    (A) A step of introducing a fluorescent probe containing the compound according to any one of claims 1 to 8 or a salt thereof into the cell, and (b) measuring the fluorescence emitted by the compound or the salt thereof in the cell. Method involving steps.
  11.  がん細胞又は組織を可視化する方法であって、
    (a)請求項1~8のいずれか1項に記載の化合物又はその塩を含む蛍光プローブを細胞又は組織に適用する工程、(b)前記蛍光プローブを適用した細胞又は組織を、蛍光が測定される適切な波長を用いて照射し、それによって前記細胞又は組織内で発する蛍光を観察又は測定する工程を含む、方法。
    A method of visualizing cancer cells or tissues
    (A) A step of applying a fluorescent probe containing the compound according to any one of claims 1 to 8 or a salt thereof to a cell or tissue, (b) Fluorescence measures the cell or tissue to which the fluorescent probe is applied. A method comprising the step of irradiating with an appropriate wavelength, thereby observing or measuring the fluorescence emitted within the cell or tissue.
PCT/JP2021/006413 2020-03-03 2021-02-19 Fluorescent probe which becomes substrate of lat1 WO2021177060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062984417P 2020-03-03 2020-03-03
US62/984,417 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021177060A1 true WO2021177060A1 (en) 2021-09-10

Family

ID=77612644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006413 WO2021177060A1 (en) 2020-03-03 2021-02-19 Fluorescent probe which becomes substrate of lat1

Country Status (1)

Country Link
WO (1) WO2021177060A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167333A1 (en) * 2022-03-03 2023-09-07 国立大学法人 東京大学 Fluorescence imaging of cancer cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081669A1 (en) * 2006-02-01 2009-03-26 Encode Bio, Inc. Fluorescent Assays Using Orthogonal tRNA - Aminoacyl Synthetase Pairs
US20110117556A1 (en) * 2008-03-21 2011-05-19 The Regents Of The University Of California High-sensitive fluorescent energy transfer assay using fluorescent amino acids and fluoresent proteins
US20160222430A1 (en) * 2013-09-11 2016-08-04 Indiana University Research And Technology Corporation D-ala-d-ala-based dipeptides as tools for imaging peptidoglycan biosynthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081669A1 (en) * 2006-02-01 2009-03-26 Encode Bio, Inc. Fluorescent Assays Using Orthogonal tRNA - Aminoacyl Synthetase Pairs
US20110117556A1 (en) * 2008-03-21 2011-05-19 The Regents Of The University Of California High-sensitive fluorescent energy transfer assay using fluorescent amino acids and fluoresent proteins
US20160222430A1 (en) * 2013-09-11 2016-08-04 Indiana University Research And Technology Corporation D-ala-d-ala-based dipeptides as tools for imaging peptidoglycan biosynthesis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURA JONATHAN M., KEARNS DANIEL, PIRES MARCOS M.: "D-Amino Acid Probes for Penicillin Binding Protein-based Bacterial Surface Labeling", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 290, no. 51, 18 December 2015 (2015-12-18), pages 30540 - 30550, XP055852910 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167333A1 (en) * 2022-03-03 2023-09-07 国立大学法人 東京大学 Fluorescence imaging of cancer cells

Similar Documents

Publication Publication Date Title
JP5228190B2 (en) Peroxynitrite fluorescent probe
US9610366B2 (en) Method for diagnosing cancer
US9981934B2 (en) Enzyme-specific fluorescent compound capable of being retained in cells
US20140248654A1 (en) Acidic environment-detecting fluorescent probe
WO2018003686A1 (en) Enzyme-specific intracellularly-retained red fluorescent probe
WO2017078623A1 (en) Background-free fluorescent probes for live cell imaging
WO2021177060A1 (en) Fluorescent probe which becomes substrate of lat1
JP7140398B2 (en) Nitrobenzene derivative or salt thereof and uses thereof
JP2015038114A (en) Novel fluorescent derivatives of polyamines, method for preparing the same and applications thereof as diagnosis tools in treatment of cancerous tumors
WO2020235567A1 (en) Fluorescent probe for use in detection of brain tumor
EP3943919B1 (en) Fluorescence imaging of lipid droplets in cell and tissue with 3-(benzo[d]thiazol-2-yl)-2h-benzo[g]chromen-2-one derivatives and the corresponding benzo[d]oxazole and 1h-benzo[d]imidazole derivatives
WO2023167333A1 (en) Fluorescence imaging of cancer cells
WO2023166801A1 (en) Novel time-resolved fluorescence imaging probe
JP2004101389A (en) Probe for measuring aluminum ion and/or ferric ion
WO2023167282A1 (en) O-function-type activatable raman probe
CN113597547B (en) Fluorescent imaging agent for lipid droplets in cells and tissues
WO2023074778A1 (en) Fluorescence imaging reagent for lipid droplets in tissues and cells
JP7008339B2 (en) Red fluorescent probe for detecting peptidase activity
WO2021153772A1 (en) Blue fluorescent probe for detecting aldehyde dehydrogenase 1a1
Zhang et al. Activatable fluorescence molecular imaging and anti-tumor effects investigation of GSH-sensitive BRD4 ligands
KR20110033451A (en) Compound for labeling material, intermediate therefor and process for producing the same
WO2014057999A1 (en) Imaging reagent for acetylation in cell
CN116669770A (en) Methacrylamide protein binding agents and uses thereof
Deal Design and Synthesis of Chemical Tools for Imaging Neuronal Activity
CN116731021A (en) Fluorescent probe compound for tumor targeted imaging and synthesis method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP