WO2021176797A1 - Inspection method - Google Patents

Inspection method Download PDF

Info

Publication number
WO2021176797A1
WO2021176797A1 PCT/JP2020/047107 JP2020047107W WO2021176797A1 WO 2021176797 A1 WO2021176797 A1 WO 2021176797A1 JP 2020047107 W JP2020047107 W JP 2020047107W WO 2021176797 A1 WO2021176797 A1 WO 2021176797A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation
retardation film
polarizing plate
light
film
Prior art date
Application number
PCT/JP2020/047107
Other languages
French (fr)
Japanese (ja)
Inventor
信次 小林
尚人 田岡
麻耶 尾崎
里恵 曽我部
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021176797A1 publication Critical patent/WO2021176797A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/894Pinholes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an inspection method.
  • the retardation film can convert linearly polarized light into circularly polarized light or elliptically polarized light, and conversely, it can convert circularly polarized light or elliptically polarized light into linearly polarized light, this retardation film and linearly polarizing plate are combined (elbow). Circular polarizing plates are applied to organic EL display devices and reflective liquid crystal display devices.
  • the retardation film obtained by orienting and curing a polymerizable liquid crystal compound is an extremely thin film, and has been attracting attention in manufacturing a thin display device (for example, patent documents). 1).
  • an optical film as an object to be inspected is irradiated with inspection light and detected as a bright spot defect or a dark spot defect in a dark mode or a white mode (for example,). See Patent Document 2).
  • the present invention is an inspection method for determining the presence or absence of defects in the retardation film, and can use a single wavelength and increase the difference in the amount of transmitted light of the inspection light between the normal portion and the defective portion. The purpose is to provide an inspection method.
  • inspection light is applied to a film-shaped object to be inspected including a first polarizing plate and a first retardation film made of a cured product of a polymerizable liquid crystal compound formed on one side of the first polarizing plate.
  • This is an inspection method for determining the presence or absence of defects in the first retardation film when incident, and is a second phase difference formed on one side of an object to be inspected and a second polarizing plate and a second polarizing plate.
  • a retardation filter including a film is provided so that the first retardation film side of the object to be inspected faces the retardation filter side and the second retardation film side of the retardation filter faces the object to be inspected.
  • the angle formed by the slow axis of the first retardation film and the slow axis of the second retardation film is 10 ° to 80 ° when viewed from the optical axis direction of the inspection light.
  • the in-plane retardation value of the first retardation film at a wavelength of 550 nm and the in-plane retardation value of the second retardation film at a wavelength of 550 nm are substantially the same as each other.
  • Inspection light is incident from either side of the second polarizing plate side of the phase difference filter so that the optical axis passes through a predetermined inspection region on the object to be inspected, and the second polarizing plate or the second polarizing plate or the second polarizing plate is incident from the other side.
  • An inspection method for observing the polarizing plate of No. 1 is provided.
  • the inspection light light having a wavelength that minimizes the amount of transmitted light of the object to be inspected and the retardation filter is used.
  • the wavelength at which the amount of transmitted light in the normal portion is minimized the amount of transmitted light in the portion (defective portion) of the first retardation film whose retardation value deviates from the desired value tends to be large, and in particular, the wavelength is 500 to 500 to.
  • the wavelength is in the range of 600 nm, even if the phase difference value of the defective part is deviated to be larger than the phase difference value of the normal part or deviated to be smaller than the normal part, it is more transparent than the normal part. Since the amount of light is large, it is easy to detect as a defect. Further, since the light having the half width of the intensity peak of 30 nm or less is used as the inspection light, the contrast ratio between the normal portion and the defective portion becomes high, and the defective portion can be easily recognized as a difference in brightness.
  • the third polarizing plate having the same configuration as the first polarizing plate and the first retardation film formed on one side of the third polarizing plate have the same configuration.
  • a film-shaped test piece having the retardation film of 3 is prepared, and the test piece and the retardation filter are arranged so that the third retardation film side of the test piece faces the retardation filter side and the retardation filter.
  • the angle formed by the slow axis of the third retardation film and the slow axis of the second retardation film is the optical axis of the inspection light so that the second retardation film side of the filter faces the test piece side.
  • the optical axis is on the test piece from either the third polarizing plate side of the test piece or the second polarizing plate side of the retardation filter.
  • Light of various wavelengths is incident so as to pass through the defect-free region of the above, and the second polarizing plate or the first polarizing plate is observed from the other side to obtain the wavelength that minimizes the amount of transmitted light. It is preferable to decide to use light of a wavelength as the inspection light.
  • the amount of transmitted light of the defect portion is small.
  • the present invention is an inspection method for determining the presence or absence of defects in the retardation film, and it is possible to use a single wavelength and increase the difference in the amount of transmitted light of the inspection light between the normal portion and the defective portion. It is possible to provide an inspection method that can be performed.
  • FIG. (A) is a diagram showing the relationship between the slow axis of the third retardation film in the test piece and the slow axis of the second retardation film in the retardation filter.
  • (B) is a view of (A) viewed from the optical axis side.
  • FIG. (A) is a diagram showing the relationship between the slow axis of the first retardation film in the object to be inspected and the slow axis of the second retardation film in the retardation filter.
  • (B) is a view of (A) viewed from the optical axis side. It is a figure which shows the arrangement of each member in the defect inspection process of another embodiment.
  • Refractive index (nx, ny, nz) “Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), “ny” is the direction orthogonal to the slow-phase axis in the in-plane, and “nz” is the thickness direction.
  • Refractive index ( ⁇ )) refers to the in-plane retardation value of the film at 23 ° C. and a wavelength of ⁇ (nm).
  • Re ( ⁇ ) (nx ⁇ ny) ⁇ d, where d (nm) is the thickness of the film.
  • Phase difference value in the thickness direction The phase difference value in the thickness direction (Rth ( ⁇ )) refers to the phase difference value in the thickness direction of the film at 23 ° C. and a wavelength of ⁇ (nm).
  • Rth ( ⁇ ) ((nx + ny) / 2-nz) ⁇ d, where d (nm) is the thickness of the film.
  • the inspection device of the present embodiment inspects the presence or absence of surface defects of the retardation film.
  • the inspection device 1A includes a light source 2, a phase difference filter 4, and a camera (detecting means) 6 arranged in this order.
  • the inspection device 1A is provided with a place for arranging the inspected object 10 to be inspected between the light source 2 and the phase difference filter 4, and FIG. 1 shows a state in which the inspected object 10 is arranged there. I'm drawing.
  • the object 10 to be inspected is a long circular polarizing plate (phase difference plate), and is formed by laminating a first polarizing plate 3A and a first retardation film 7A which is a main body to be inspected. Here, both are bonded so that the absorption axis of the first polarizing plate 3A and the slow axis of the first retardation film 7A are at 45 ° to each other.
  • the term "circularly polarized light” includes a circularly polarizing plate and an elliptical polarizing plate. Further, “circularly polarized light” includes circularly polarized light and elliptically polarized light.
  • the first retardation film 7A is, for example, a ⁇ / 4 plate.
  • the first retardation film 7A is made of a cured product of a polymerizable liquid crystal compound.
  • the first retardation film 7A made of a cured product of a polymerizable liquid crystal compound usually has a thin thickness of about 0.2 ⁇ m to 10 ⁇ m, and when a foreign substance or the like is contained, the retardation value tends to decrease at that portion.
  • the polymerizable liquid crystal compounds capable of forming the first retardation film 7A are, for example, JP-A-2009-173893, JP-A-2010-31223, WO2012 / 147904, WO2014 / 10325 and WO2017-43438. Examples thereof include those disclosed in the publication.
  • the polymerizable liquid crystal compounds described in these publications can form a retardation film having so-called anti-wavelength dispersibility, which enables uniform polarization conversion in a wide wavelength range.
  • a solution containing the polymerizable liquid crystal compound (polymerizable liquid crystal compound solution; liquid composition) is applied (coated) on the base film to form a coating film.
  • a base film may be provided with an alignment film for orienting the polymerizable liquid crystal compound.
  • the alignment film may be either photo-aligned by polarized light irradiation or mechanically oriented by rubbing treatment. As a specific example of such an alignment film, those described in the above publication can be used.
  • the first retardation film 7A formed in this way is attached to the first polarizing plate 3A together with the base film, and then the base film is peeled off to form the first retardation film 7A. It can be transferred onto the first polarizing plate 3A.
  • the first retardation film 7A may be formed by directly applying a solution containing the polymerizable liquid crystal compound onto the first polarizing plate 3A.
  • the first retardation film 7A When the first retardation film 7A is formed, foreign matter is present on the base film to which the polymerizable liquid crystal compound solution is applied, or the base film or the first polarizing plate 3A itself is scratched. In addition, a defect may occur in the coating film itself obtained by applying the polymerizable liquid crystal compound solution. For example, the phase difference value fluctuates due to uneven thickness of the coating film.
  • the first polarizing plate 3A is a film that converts light incident from the light source 2 into linearly polarized light, and is formed by laminating a protective film on at least one surface of the polarizing film.
  • the polarizing film include a polyvinyl alcohol film in which iodine and a dichroic dye are adsorbed and oriented, and a film in which a polymerizable liquid crystal compound is oriented and polymerized and a dichroic dye is adsorbed and oriented. Be done.
  • the first polarizing plate 3A has an absorption axis in a transmission axis direction for emitting linearly polarized light and in a direction orthogonal to the transmission axis direction.
  • the direction in which linearly polarized light is emitted is defined as the transmission axis direction
  • the direction in which linearly polarized light is emitted is defined as the absorption axis direction
  • the polarizing film in which the polarized light in the blocking direction is reflected is not excluded. ..
  • the protective film is for protecting the polarizing film.
  • a film widely used in the technical field of polarizing plates is used for the purpose of obtaining a polarizing plate having appropriate mechanical strength.
  • cellulose ester films such as triacetyl cellulose (TAC) films; cyclic olefin films; polyester films such as polyethylene terephthalate (PET) films: (meth) acrylic films such as polymethyl methacrylate (PMMA) films. It is a film or the like.
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • an additive widely used in the technical field of the polarizing plate may be contained in the protective film.
  • the phase difference of the protective film used for the linear polarizing plate is preferably small. For example, in Re (550), 10 nm or less is preferable, and 5 nm or less is particularly preferable.
  • the object 10 to be inspected may further have a positive C plate on the first retardation film 7A.
  • the thickness direction retardation value (Rth (550)) of the positive C plate may be appropriately selected according to the thickness direction retardation value of the first retardation film 7A to be inspected.
  • the light source 2 is, for example, linear light such as laser light (including one that approximates linear light).
  • the light emitted by the light source 2 is unpolarized, passes through the first polarizing plate 3A and becomes polarized light in a predetermined direction, and further passes through the first retardation film 7A and becomes circularly polarized light. That is, unpolarized light passes through the first polarizing plate 3A and the first retardation film 7A, resulting in circularly polarized light.
  • the retardation filter 4 includes a second polarizing plate 3B and a second retardation film 7B laminated on the second polarizing plate 3B. Here, both are bonded so that the absorption axis of the second polarizing plate 3B and the slow axis of the second retardation film 7B are at 45 ° to each other.
  • the in-plane retardation value at a wavelength of 550 nm is substantially the same as the in-plane retardation value of the first retardation film 7A to be inspected at a wavelength of 550 nm.
  • the in-plane phase difference value is, for example, ⁇ / 4.
  • " ⁇ " is a measurement wavelength (here, 550 nm).
  • the phase difference filter 4 may further include a positive C plate.
  • the positive C plate may be provided on the surface facing the first retardation film 7A, or may be provided on the surface opposite to the first retardation film 7A.
  • the inspection area can be expanded by using the positive C plate.
  • the thickness direction retardation value (Rth (550)) of the positive C plate may be appropriately selected according to the thickness direction retardation value of the first retardation film 7A to be inspected.
  • the first retardation film may be selected.
  • 7A is a ⁇ / 4 plate, the effect can be easily obtained by using a phase difference value (Rth (550)) in the thickness direction of -50 nm to ⁇ 300 nm.
  • the retardation filter 4 may include a second retardation film 7B and a base film on which the second retardation film 7B is laminated. It is preferable to use a base film having a substantially zero in-plane retardation value (Re (550)) so as not to impair the optical characteristics of the second retardation film 7B.
  • a base film having a substantially zero in-plane retardation value (Re (550)) so as not to impair the optical characteristics of the second retardation film 7B.
  • the in-plane phase difference is substantially zero, it means that the in-plane phase difference value (Re (550)) is 3 nm or less.
  • Re (550) in-plane retardation value (Re (550)) and the thickness direction retardation value (Rth (550)) at a wavelength of 550 nm
  • Re (550) of this piece is measured three times, and the average value of Re (550) is obtained.
  • One piece of Re (550) can be measured at a measurement temperature of room temperature (23 ° C.) using a phase difference measuring device KOBRA-WPR (manufactured by Oji Measuring Instruments Co., Ltd.).
  • the configuration and material of the second polarizing plate 3B are the same as those of the first polarizing plate 3A.
  • the inspection device 1A of the present embodiment in order to observe the light that has passed through the object 10 to be inspected and the retardation filter 4, the side of the optical axis 9 and both sides of the retardation filter 4 where the light source 2 is located is A camera (detection means) 6 is arranged at a position on the opposite side.
  • the camera 6 is, for example, a CCD camera.
  • the camera 6 is automatically detected by image processing analysis in which the CCD camera and the image processing device are combined, whereby the object 10 to be inspected can be inspected.
  • the wavelength of the light emitted by the light source 2 can be selected as follows.
  • the test piece 20 is placed at the place where the object 10 to be inspected is placed.
  • the test piece 20 is a circularly polarizing plate (phase difference plate), and includes a third polarizing plate 3C and a third retardation film 7C laminated on one surface thereof.
  • the test piece 20 is a part of a long object to be inspected 10 cut out, and has substantially the same structure as the object to be inspected 10. That is, the test piece 20 is a laminated body having substantially the same material, thickness, and laminated structure as the object 10 to be inspected.
  • the test piece 20 is arranged in the inspection device 1A so that the third retardation film 7C faces the retardation filter 4 side.
  • the slow axis p of the third retardation film 7C included in the test piece 20 and the slow axis q of the second retardation film 7B included in the retardation filter 4 The angle ⁇ 1 between the two is arranged so as to be an angle other than 90 ° when viewed from the direction of the optical axis 9. This angle is preferably 10 ° to 80 °, more preferably 20 ° to 70 °, and even more preferably 30 ° to 60 °.
  • the angle ⁇ 1 can take a value of 0 ° or more and 90 ° or less, and an angle exceeding 90 ° is expressed by a value of 0 ° or more and 90 ° or less.
  • the angle is the above, the amount of change in the amount of transmitted light with respect to the degree of change in wavelength is large, and it becomes easy to find a wavelength useful for defect inspection.
  • a normal portion presumed to have no defect in the third retardation film 7C is positioned on the optical axis, and the normal portion is irradiated with light of an arbitrary wavelength from the light source 2.
  • the amount of transmitted light is measured by using the camera 6 from the opposite side across the phase difference filter 4. Next, light with a different wavelength is irradiated, and the amount of transmitted light is measured. In this way, the amount of transmitted light is measured with light having various wavelengths, and the wavelength at which the amount of transmitted light is minimized is determined. The wavelength that minimizes the amount of transmitted light is used as the inspection light.
  • the examination of the wavelength is preferably performed in the range of 500 to 600 nm.
  • the wavelength used as the inspection light may be, for example, 520 to 590 nm, 530 to 580 nm, or 540 to 570 nm. Within these wavelength ranges, the amount of transmitted light of the inspection light at the defective part tends to be larger than the amount of transmitted light of the inspection light at the normal part, which is advantageous for detecting the presence or absence of defects.
  • the defect inspection of the object 10 to be inspected is performed next.
  • the object to be inspected 10 is arranged between the light source 2 of the inspection device 1A and the phase difference filter 4.
  • the first retardation film 7A is arranged so as to face the retardation filter 4 side.
  • the angle ⁇ 2 formed is 10 ° to 80 ° when viewed from the direction of the optical axis 9.
  • This angle is preferably 20 ° to 70 °, more preferably 30 ° to 60 °.
  • the angle ⁇ 2 can take a value of 0 ° or more and 90 ° or less, and an angle exceeding 90 ° is expressed by a value of 0 ° or more and 90 ° or less.
  • the wavelength used is a wavelength in the range of 500 to 600 nm
  • the amount of transmitted light is larger than that of the normal part, and it is easy to detect it as a defect.
  • only one of the cases where the phase difference value of the defective part is shifted to be larger than the phase difference value of the normal part or the phase difference value is shifted to be smaller than the normal part is larger than the normal part.
  • the amount of transmitted light is often large, and in this case, it is necessary to perform the inspection using inspection lights of two types of wavelengths corresponding to each.
  • the defect inspection can be performed using only the inspection light having a single wavelength.
  • the light source 2 irradiates a predetermined inspection area of the object 10 to be inspected with light having a wavelength determined in the light source wavelength selection step.
  • the inspection light used has a half width of the intensity peak of 30 nm or less.
  • the inspection light may have a half width of 20 nm or less, or may have a half width of 10 nm or less.
  • the retardation filter 4 uses an in-plane retardation value at a wavelength of 550 nm which is substantially the same as the in-plane retardation value of the first retardation film 7A to be inspected at a wavelength of 550 nm.
  • the phase difference filter 4 is observed with the camera 6, the normal portion of the object 10 to be inspected is recognized as dark. Where the defective portion is recognized as having a different color from the normal portion, it is detected in a state where the brightness is high because the inspection light having the above half-value width is used. Therefore, according to the inspection method of the present embodiment, it is possible to easily determine the presence or absence of defects in the first retardation film 7A in the object to be inspected 10.
  • the inspected object 10 After completing the inspection of the predetermined inspection area of the inspected object 10, the inspected object 10 can be transported and inspected in the next inspection area.
  • the present invention is not limited to the above embodiment.
  • the inspection light emitted by the light source 2 is incident on the object 10 to be inspected and the retardation filter 4 in this order, and the inspection light emitted from the retardation filter 4 is captured by the camera 6.
  • the positions of 2 and the camera 6 may be reversed. That is, as shown in FIG. 5, the inspection light emitted by the light source 2 is incident on the phase difference filter 4 and the inspected object 10 in this order, and the inspection light emitted from the inspected object 10 is captured by the camera 6 (inspection). It may be the device 1B).
  • the object to be inspected is a long one
  • the object to be inspected may be, for example, a rectangular single-wafered object.
  • the present invention can be used for an inspection for determining the presence or absence of defects in the retardation film.
  • 1A, 1B ... inspection device 2 ... light source, 3A ... first polarizing film, 3B ... second polarizing film, 3C ... third polarizing film, 4 ... retardation filter, 6 ... camera (detection means), 7A ... 1st retardation film, 7B ... 2nd retardation film, 7C ... 3rd retardation film, 9 ... optical axis, 10 ... object to be inspected, 20 ... test piece, p ... third retardation film Slow axis of, q ... Slow axis of the second retardation film, r ... Slow axis of the first retardation film, ⁇ 1 , ⁇ 2 ... Angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

The object to be inspected comprising a first polarizing plate and a first retardation film that is formed from a cured product of a polymerizable crystal liquid compound and is formed on one face of the first polarizing plate is irradiated with inspection light to determine the presence/absence of a defect in the first retardation film. The aforementioned are disposed such that the angle formed by the slow axis of the fist retardation film and the slow axis of a second retardation film becomes 10°-80°. The in-plane phase difference values at a wavelength of 550 nm of the first retardation film and the second retardation film are approximately the same. The inspection light has an intensity peak with the half width of 30 nm or less and has a wavelength at which the amount of light transmitted by the object to be inspected and a retardation filter is minimized within a wavelength range of 500-600 nm.

Description

検査方法Inspection method
 本発明は、検査方法に関する。 The present invention relates to an inspection method.
 位相差膜は、直線偏光を円偏光や楕円偏光に変換したり、逆に円偏光や楕円偏光を直線偏光に変換したりできることから、この位相差膜と直線偏光板とを組み合わせた(楕)円偏光板が、有機EL表示装置や反射型液晶表示装置に適用されている。位相差膜の中でも重合性液晶化合物を配向及び硬化させることで得られる位相差膜は極めて薄膜のものとなることから、薄型の表示装置を製造するうえで注目されてきている(例えば、特許文献1参照)。 Since the retardation film can convert linearly polarized light into circularly polarized light or elliptically polarized light, and conversely, it can convert circularly polarized light or elliptically polarized light into linearly polarized light, this retardation film and linearly polarizing plate are combined (elbow). Circular polarizing plates are applied to organic EL display devices and reflective liquid crystal display devices. Among the retardation films, the retardation film obtained by orienting and curing a polymerizable liquid crystal compound is an extremely thin film, and has been attracting attention in manufacturing a thin display device (for example, patent documents). 1).
 製造した(楕)円偏光板は、製品として出荷する前にその欠陥の有無を検査できることも重要である。一般に光学フィルムの検査方法としては、被検査物とした光学フィルムに対して検査光を照射して、暗黒モード又は白色モードにて輝点欠陥又は暗点欠陥として検出することが行われる(例えば、特許文献2参照)。 It is also important that the manufactured (elliptical) circularly polarized light can be inspected for defects before it is shipped as a product. Generally, as an inspection method of an optical film, an optical film as an object to be inspected is irradiated with inspection light and detected as a bright spot defect or a dark spot defect in a dark mode or a white mode (for example,). See Patent Document 2).
特開2006-58546号公報Japanese Unexamined Patent Publication No. 2006-58546 特開2015-138031号公報Japanese Unexamined Patent Publication No. 2015-13831
 特許文献2の検査方法では複数種の波長の光(複数の光源)を用いる必要がある。また、欠陥部分は実際には正常部分との透過光量の差が小さく、自動検出を確実に行える程にはその差は大きくない。そこで本発明は、位相差膜の欠陥の有無を判断する検査方法であって、単一の波長を用い、かつ、正常部分と欠陥部分とにおいて検査光の透過光量の差を大きくすることができる検査方法を提供することを目的とする。 In the inspection method of Patent Document 2, it is necessary to use light of a plurality of wavelengths (plurality of light sources). Further, the defect portion actually has a small difference in the amount of transmitted light from the normal portion, and the difference is not so large that automatic detection can be reliably performed. Therefore, the present invention is an inspection method for determining the presence or absence of defects in the retardation film, and can use a single wavelength and increase the difference in the amount of transmitted light of the inspection light between the normal portion and the defective portion. The purpose is to provide an inspection method.
 本発明は、第1の偏光板と、第1の偏光板の片面に形成された重合性液晶化合物の硬化物からなる第1の位相差膜とを備えるフィルム状の被検査物に検査光を入射して第1の位相差膜の欠陥の有無を判断する検査方法であって、被検査物、及び、第2の偏光板と第2の偏光板の片面に形成された第2の位相差膜とを備える位相差フィルタを、被検査物の第1の位相差膜側が位相差フィルタ側を向くように、かつ、位相差フィルタの第2の位相差膜側が被検査物側を向くように、かつ、第1の位相差膜の遅相軸と第2の位相差膜の遅相軸とのなす角度が、検査光の光軸方向から見た場合に10°~80°となるように配置し、第1の位相差膜の波長550nmにおける面内位相差値と、第2の位相差膜の波長550nmにおける面内位相差値とは互いに略同一であり、検査光は、強度ピークの半値幅が30nm以下であり、かつ、波長500~600nmの範囲内で被検査物及び位相差フィルタの透過光量が最小となる波長の光であり、被検査物の第1の偏光板側又は位相差フィルタの第2の偏光板側のいずれか一方側から、光軸が被検査物上の所定の検査領域を通過するように検査光を入射し、その他方側から第2の偏光板又は第1の偏光板を観察する、検査方法を提供する。 In the present invention, inspection light is applied to a film-shaped object to be inspected including a first polarizing plate and a first retardation film made of a cured product of a polymerizable liquid crystal compound formed on one side of the first polarizing plate. This is an inspection method for determining the presence or absence of defects in the first retardation film when incident, and is a second phase difference formed on one side of an object to be inspected and a second polarizing plate and a second polarizing plate. A retardation filter including a film is provided so that the first retardation film side of the object to be inspected faces the retardation filter side and the second retardation film side of the retardation filter faces the object to be inspected. Moreover, the angle formed by the slow axis of the first retardation film and the slow axis of the second retardation film is 10 ° to 80 ° when viewed from the optical axis direction of the inspection light. The in-plane retardation value of the first retardation film at a wavelength of 550 nm and the in-plane retardation value of the second retardation film at a wavelength of 550 nm are substantially the same as each other. Light having a half-value width of 30 nm or less and a wavelength in which the amount of transmitted light of the object to be inspected and the retardation filter is minimized within the range of a wavelength of 500 to 600 nm, and is the first polarizing plate side or position of the object to be inspected. Inspection light is incident from either side of the second polarizing plate side of the phase difference filter so that the optical axis passes through a predetermined inspection region on the object to be inspected, and the second polarizing plate or the second polarizing plate or the second polarizing plate is incident from the other side. An inspection method for observing the polarizing plate of No. 1 is provided.
 この検査方法では、検査光として、被検査物及び位相差フィルタの透過光量が最小となる波長の光を用いる。正常部分の透過光量が最小となる波長では、第1の位相差膜のうち位相差値が所望の値とずれている部分(欠陥部分)の透過光量が大きくなりやすく、特に、波長が500~600nmの範囲の波長である場合は、欠陥部分の位相差値が正常部分の位相差値よりも大きくなるようにずれている場合でも、小さくなるようにずれている場合でも、正常部分よりも透過光量が大きくなるので、欠陥として検出しやすい。また、強度ピークの半値幅が30nm以下である光を検査光として用いることから、正常部分と欠陥部分とのコントラスト比が高くなり、欠陥部分を輝度の違いとして認識することが容易となる。 In this inspection method, as the inspection light, light having a wavelength that minimizes the amount of transmitted light of the object to be inspected and the retardation filter is used. At the wavelength at which the amount of transmitted light in the normal portion is minimized, the amount of transmitted light in the portion (defective portion) of the first retardation film whose retardation value deviates from the desired value tends to be large, and in particular, the wavelength is 500 to 500 to. When the wavelength is in the range of 600 nm, even if the phase difference value of the defective part is deviated to be larger than the phase difference value of the normal part or deviated to be smaller than the normal part, it is more transparent than the normal part. Since the amount of light is large, it is easy to detect as a defect. Further, since the light having the half width of the intensity peak of 30 nm or less is used as the inspection light, the contrast ratio between the normal portion and the defective portion becomes high, and the defective portion can be easily recognized as a difference in brightness.
 本発明では、検査を行う前に、第1の偏光板と同一構成である第3の偏光板と、第3の偏光板の片面に形成された第1の位相差膜と同一構成である第3の位相差膜とを備えるフィルム状の試験片を用意し、試験片、及び、位相差フィルタを、試験片の第3の位相差膜側が位相差フィルタ側を向くように、かつ、位相差フィルタの第2の位相差膜側が試験片側を向くように、かつ、第3の位相差膜の遅相軸と第2の位相差膜の遅相軸とのなす角度が、検査光の光軸方向から見た場合に90°以外の角度となるように配置し、試験片の第3の偏光板側又は位相差フィルタの第2の偏光板側のいずれか一方側から、光軸が試験片上の欠陥のない領域を通過するように、様々な波長の光を入射し、その他方側から第2の偏光板又は第1の偏光板を観察し、透過光量が最小となる波長を求め、その波長の光を検査光として採用することを決定することが好ましい。 In the present invention, before the inspection, the third polarizing plate having the same configuration as the first polarizing plate and the first retardation film formed on one side of the third polarizing plate have the same configuration. A film-shaped test piece having the retardation film of 3 is prepared, and the test piece and the retardation filter are arranged so that the third retardation film side of the test piece faces the retardation filter side and the retardation filter. The angle formed by the slow axis of the third retardation film and the slow axis of the second retardation film is the optical axis of the inspection light so that the second retardation film side of the filter faces the test piece side. Arranged so that the angle is other than 90 ° when viewed from the direction, the optical axis is on the test piece from either the third polarizing plate side of the test piece or the second polarizing plate side of the retardation filter. Light of various wavelengths is incident so as to pass through the defect-free region of the above, and the second polarizing plate or the first polarizing plate is observed from the other side to obtain the wavelength that minimizes the amount of transmitted light. It is preferable to decide to use light of a wavelength as the inspection light.
 本発明の欠陥検査では、検査対象である第1の位相差膜のうち、所望の位相差値から位相差値がずれている部分(欠陥部分)を見出すために、欠陥部分の透過光量が少しでも大きくなる波長の光を用いることが望ましい。したがって、検査に先立って最適な波長を見出し、これを検査光として採用することを決定することが好ましい。その波長を見出す過程において、第2の位相差膜の遅相軸と第3の位相差膜の遅相軸(=後の第1の位相差膜7Aの遅相軸)とのなす角度を上記の角度とすると、波長の変化度合いに対する透過光量の変化量が大きく、欠陥検査に有用な波長を見出しやすい。 In the defect inspection of the present invention, in order to find a portion (defect portion) of the first retardation film to be inspected whose retardation value deviates from the desired retardation value, the amount of transmitted light of the defect portion is small. However, it is desirable to use light with a larger wavelength. Therefore, it is preferable to find the optimum wavelength prior to the inspection and decide to adopt it as the inspection light. In the process of finding the wavelength, the angle formed by the slow axis of the second retardation film and the slow axis of the third retardation film (= the slow axis of the first retardation film 7A later) is defined as described above. When the angle is set to, the amount of change in the amount of transmitted light with respect to the degree of change in wavelength is large, and it is easy to find a wavelength useful for defect inspection.
 本発明によれば、位相差膜の欠陥の有無を判断する検査方法であって、単一の波長を用い、かつ、正常部分と欠陥部分とにおいて検査光の透過光量の差を大きくすることができる検査方法を提供することができる。 According to the present invention, it is an inspection method for determining the presence or absence of defects in the retardation film, and it is possible to use a single wavelength and increase the difference in the amount of transmitted light of the inspection light between the normal portion and the defective portion. It is possible to provide an inspection method that can be performed.
本実施形態の検査方法のうち、欠陥検査工程における各部材の配置を示す図である。It is a figure which shows the arrangement of each member in the defect inspection process in the inspection method of this embodiment. 本実施形態の検査方法のうち、光源波長選定工程における各部材の配置を示す図である。It is a figure which shows the arrangement of each member in the light source wavelength selection process in the inspection method of this embodiment. (A)は、試験片における第3の位相差膜の遅相軸と、位相差フィルタにおける第2の位相差膜の遅相軸との関係を示す図である。(B)は、(A)を光軸側から見た図である。FIG. (A) is a diagram showing the relationship between the slow axis of the third retardation film in the test piece and the slow axis of the second retardation film in the retardation filter. (B) is a view of (A) viewed from the optical axis side. (A)は、被検査物における第1の位相差膜の遅相軸と、位相差フィルタにおける第2の位相差膜の遅相軸との関係を示す図である。(B)は、(A)を光軸側から見た図である。FIG. (A) is a diagram showing the relationship between the slow axis of the first retardation film in the object to be inspected and the slow axis of the second retardation film in the retardation filter. (B) is a view of (A) viewed from the optical axis side. 他の実施形態の欠陥検査工程における各部材の配置を示す図である。It is a figure which shows the arrangement of each member in the defect inspection process of another embodiment.
 以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.
<用語および記号の定義>
 本明細書における用語および記号の定義は下記のとおりである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向、「nz」は厚み方向の屈折率である。
(2)面内位相差値
 面内位相差値(Re(λ))は、23℃、波長λ(nm)におけるフィルムの面内の位相差値をいう。Re(λ)は、フィルムの厚みをd(nm)としたとき、Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差値
 厚み方向の位相差値(Rth(λ))は、23℃、波長λ(nm)におけるフィルムの厚み方向の位相差値をいう。Rth(λ)は、フィルムの厚みをd(nm)としたとき、Rth(λ)=((nx+ny)/2-nz)×dによって求められる。
<Definition of terms and symbols>
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), "ny" is the direction orthogonal to the slow-phase axis in the in-plane, and "nz" is the thickness direction. Refractive index.
(2) In-plane retardation value The in-plane retardation value (Re (λ)) refers to the in-plane retardation value of the film at 23 ° C. and a wavelength of λ (nm). Re (λ) is obtained by Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the film.
(3) Phase difference value in the thickness direction The phase difference value in the thickness direction (Rth (λ)) refers to the phase difference value in the thickness direction of the film at 23 ° C. and a wavelength of λ (nm). Rth (λ) is obtained by Rth (λ) = ((nx + ny) / 2-nz) × d, where d (nm) is the thickness of the film.
<検査装置と被検査物>
 本実施形態の検査装置は、位相差膜の表面欠陥の有無を検査するものである。図1に示されているとおり、検査装置1Aは、光源2、位相差フィルタ4、及び、カメラ(検出手段)6がこの順に配置されてなるものである。検査装置1Aは、光源2と位相差フィルタ4との間に、検査対象である被検査物10を配置する場所が用意されており、図1では、被検査物10をそこに配置した様子を描いている。
<Inspection equipment and objects to be inspected>
The inspection device of the present embodiment inspects the presence or absence of surface defects of the retardation film. As shown in FIG. 1, the inspection device 1A includes a light source 2, a phase difference filter 4, and a camera (detecting means) 6 arranged in this order. The inspection device 1A is provided with a place for arranging the inspected object 10 to be inspected between the light source 2 and the phase difference filter 4, and FIG. 1 shows a state in which the inspected object 10 is arranged there. I'm drawing.
 はじめに、検査対象であるフィルム状の被検査物10について説明する。被検査物10は長尺の円偏光板(位相差板)であり、第1の偏光板3Aと、検査対象の本体である第1の位相差膜7Aとが積層されて成るものである。ここで、第1の偏光板3Aの吸収軸と第1の位相差膜7Aの遅相軸とは互いに45°となるように両者は貼合されている。なお、本明細書において「円偏光板」とは、円偏光板及び楕円偏光板を含むものとする。また、「円偏光」は、円偏光と楕円偏光を含むものとする。 First, the film-shaped object 10 to be inspected will be described. The object 10 to be inspected is a long circular polarizing plate (phase difference plate), and is formed by laminating a first polarizing plate 3A and a first retardation film 7A which is a main body to be inspected. Here, both are bonded so that the absorption axis of the first polarizing plate 3A and the slow axis of the first retardation film 7A are at 45 ° to each other. In the present specification, the term "circularly polarized light" includes a circularly polarizing plate and an elliptical polarizing plate. Further, "circularly polarized light" includes circularly polarized light and elliptically polarized light.
 第1の位相差膜7Aは、例えばλ/4板である。本実施形態において、第1の位相差膜7Aは、重合性液晶化合物の硬化物からなる。重合性液晶化合物の硬化物からなる第1の位相差膜7Aは、通常厚みが0.2μm~10μm程度と薄く、異物等を含む場合にその部分で位相差値が低下しやすい。 The first retardation film 7A is, for example, a λ / 4 plate. In the present embodiment, the first retardation film 7A is made of a cured product of a polymerizable liquid crystal compound. The first retardation film 7A made of a cured product of a polymerizable liquid crystal compound usually has a thin thickness of about 0.2 μm to 10 μm, and when a foreign substance or the like is contained, the retardation value tends to decrease at that portion.
 第1の位相差膜7Aを形成し得る重合性液晶化合物は、例えば、特開2009-173893号公報、特開2010-31223号公報、WO2012/147904号公報、WO2014/10325号公報及びWO2017-43438号公報に開示されたものを挙げることができる。これらの公報に記載の重合性液晶化合物は、広い波長域において一様の偏光変換が可能な、いわゆる逆波長分散性を有する位相差膜を形成可能である。 The polymerizable liquid crystal compounds capable of forming the first retardation film 7A are, for example, JP-A-2009-173893, JP-A-2010-31223, WO2012 / 147904, WO2014 / 10325 and WO2017-43438. Examples thereof include those disclosed in the publication. The polymerizable liquid crystal compounds described in these publications can form a retardation film having so-called anti-wavelength dispersibility, which enables uniform polarization conversion in a wide wavelength range.
 第1の位相差膜7Aの形成方法としては、当該重合性液晶化合物を含む溶液(重合性液晶化合物溶液;液状組成物)を基材フィルム上に塗布(塗工)して塗工膜をつくり、これを光重合させることで、上述のように極めて薄いものを形成することができる。かかる基材フィルムには、重合性液晶化合物を配向させるために配向膜が設けられていてもよい。
配向膜は偏光照射により光配向させるものや、ラビング処理により機械的に配向させたもののいずれでもよい。なお、かかる配向膜の具体例としては、上記公報に記載されているものを用いることができる。このようにして形成した第1の位相差膜7Aは、第1の偏光板3Aに対して基材フィルムごと貼合し、その後、基材フィルムを剥がすことで、第1の位相差膜7Aを第1の偏光板3A上に転写することができる。あるいは、第1の偏光板3A上に直接、重合性液晶化合物を含む溶液を塗布することで第1の位相差膜7Aを形成してもよい。
As a method for forming the first retardation film 7A, a solution containing the polymerizable liquid crystal compound (polymerizable liquid crystal compound solution; liquid composition) is applied (coated) on the base film to form a coating film. By photopolymerizing this, an extremely thin substance can be formed as described above. Such a base film may be provided with an alignment film for orienting the polymerizable liquid crystal compound.
The alignment film may be either photo-aligned by polarized light irradiation or mechanically oriented by rubbing treatment. As a specific example of such an alignment film, those described in the above publication can be used. The first retardation film 7A formed in this way is attached to the first polarizing plate 3A together with the base film, and then the base film is peeled off to form the first retardation film 7A. It can be transferred onto the first polarizing plate 3A. Alternatively, the first retardation film 7A may be formed by directly applying a solution containing the polymerizable liquid crystal compound onto the first polarizing plate 3A.
 第1の位相差膜7Aの形成に際し、重合性液晶化合物溶液を塗布する基材フィルムに異物等が存在していたり、基材フィルム又は第1の偏光板3A自体に傷等があったりする場合に、重合性液晶化合物溶液を塗布して得られる塗布膜自体に欠陥が生じることがある。
例えば、塗布膜の厚みムラにより位相差値が変動する。
When the first retardation film 7A is formed, foreign matter is present on the base film to which the polymerizable liquid crystal compound solution is applied, or the base film or the first polarizing plate 3A itself is scratched. In addition, a defect may occur in the coating film itself obtained by applying the polymerizable liquid crystal compound solution.
For example, the phase difference value fluctuates due to uneven thickness of the coating film.
 また、配向膜をラビング処理した場合には、ラビング布の屑が配向膜上に残り、これが重合性液晶化合物溶液(液晶硬化膜形成用組成物)の塗布膜に欠陥を生じさせることもある。このように、重合性液晶化合物から位相差膜を形成する場合、厚みが極めて薄い位相差膜を形成可能であるが、上記のような屑や傷等が当該位相差膜に光学欠陥を生じる要因となることがある。 Further, when the alignment film is rubbed, debris of the rubbing cloth remains on the alignment film, which may cause a defect in the coating film of the polymerizable liquid crystal compound solution (composition for forming a liquid crystal cured film). In this way, when a retardation film is formed from a polymerizable liquid crystal compound, it is possible to form a retardation film having an extremely thin thickness, but the above-mentioned debris and scratches cause optical defects in the retardation film. May become.
 検査装置1Aにおいて、第1の偏光板3Aは、光源2から入射した光を直線偏光に変換するフィルムであり、偏光フィルムの少なくとも一方の面に保護フィルムが貼合されてなるものである。偏光フィルムとしては、例えば、ポリビニルアルコールフィルムにヨウ素や二色性色素が吸着・配向されたものや、重合性液晶化合物を配向・重合したものに、二色性色素が吸着・配向したものが挙げられる。 In the inspection device 1A, the first polarizing plate 3A is a film that converts light incident from the light source 2 into linearly polarized light, and is formed by laminating a protective film on at least one surface of the polarizing film. Examples of the polarizing film include a polyvinyl alcohol film in which iodine and a dichroic dye are adsorbed and oriented, and a film in which a polymerizable liquid crystal compound is oriented and polymerized and a dichroic dye is adsorbed and oriented. Be done.
 第1の偏光板3Aは、直線偏光を出射する透過軸方向と、それとは直交する方向に吸収軸を持つ。本実施形態では、便宜的に直線偏光を出射する方向を透過軸方向、遮断する方向を吸収軸方向と定義するが、遮断する方向の偏光が反射される偏光フィルムについて排除しているものではない。 The first polarizing plate 3A has an absorption axis in a transmission axis direction for emitting linearly polarized light and in a direction orthogonal to the transmission axis direction. In the present embodiment, for convenience, the direction in which linearly polarized light is emitted is defined as the transmission axis direction, and the direction in which linearly polarized light is emitted is defined as the absorption axis direction, but the polarizing film in which the polarized light in the blocking direction is reflected is not excluded. ..
 ここで保護フィルムは、偏光フィルムを保護するためのものである。保護フィルムとしては、適度な機械的強度を有する偏光板を得る目的で、偏光板の技術分野で汎用されているものが用いられる。典型的には、トリアセチルセルロース(TAC)フィルム等のセルロースエステル系フィルム;環状オレフィン系フィルム;ポリエチレンテレフタレート(PET)フィルム等のポリエステル系フィルム:ポリメチルメタクリレート(PMMA)フィルム等の(メタ)アクリル系フィルム等である。また、偏光板の技術分野で汎用されている添加剤が、保護フィルムに含まれていてもよい。直線偏光板に用いられる保護フィルムの位相差は小さいことが好ましく、例えば、Re(550)では、10nm以下が好ましく、5nm以下が特に好ましい。 Here, the protective film is for protecting the polarizing film. As the protective film, a film widely used in the technical field of polarizing plates is used for the purpose of obtaining a polarizing plate having appropriate mechanical strength. Typically, cellulose ester films such as triacetyl cellulose (TAC) films; cyclic olefin films; polyester films such as polyethylene terephthalate (PET) films: (meth) acrylic films such as polymethyl methacrylate (PMMA) films. It is a film or the like. Further, an additive widely used in the technical field of the polarizing plate may be contained in the protective film. The phase difference of the protective film used for the linear polarizing plate is preferably small. For example, in Re (550), 10 nm or less is preferable, and 5 nm or less is particularly preferable.
 なお、被検査物10は、第1の位相差膜7A上に、さらにポジティブCプレートを備えていてもよい。ポジティブCプレートの厚み方向の位相差値(Rth(550))は、検査する第1の位相差膜7Aの厚み方向の位相差値によって適宜選択すればよい。 The object 10 to be inspected may further have a positive C plate on the first retardation film 7A. The thickness direction retardation value (Rth (550)) of the positive C plate may be appropriately selected according to the thickness direction retardation value of the first retardation film 7A to be inspected.
 光源2は、種々の市販品を用いることができるが、例えばレーザ光等の直線光(直線光に近似するものも含む)であることが有利である。光源2が発する光は無偏光であり、第1の偏光板3Aを通過し所定方向の偏光となり、更に第1の位相差膜7Aを通過して円偏光となる。すなわち、無偏光の光が第1の偏光板3A及び第1の位相差膜7Aを通過することで、円偏光となる。 Various commercially available products can be used as the light source 2, but it is advantageous that the light source 2 is, for example, linear light such as laser light (including one that approximates linear light). The light emitted by the light source 2 is unpolarized, passes through the first polarizing plate 3A and becomes polarized light in a predetermined direction, and further passes through the first retardation film 7A and becomes circularly polarized light. That is, unpolarized light passes through the first polarizing plate 3A and the first retardation film 7A, resulting in circularly polarized light.
 位相差フィルタ4は、第2の偏光板3Bと、これに積層された第2の位相差膜7Bとを備えるものである。ここで、第2の偏光板3Bの吸収軸と第2の位相差膜7Bの遅相軸とは互いに45°となるように両者は貼合されている。位相差フィルタ4は、波長550nmにおける面内位相差値が、検査対象である第1の位相差膜7Aの波長550nmにおける面内位相差値と略同一であるものを用いる。当該面内位相差値は、例えばλ/4である。ここで「λ」とは測定波長(ここでは550nm)である。光学欠陥を輝度(明度)情報ΔL*より判定するために、位相差フィルタ4は、被検査物10と同一の構成を有するフィルムを用いることが好ましい。 The retardation filter 4 includes a second polarizing plate 3B and a second retardation film 7B laminated on the second polarizing plate 3B. Here, both are bonded so that the absorption axis of the second polarizing plate 3B and the slow axis of the second retardation film 7B are at 45 ° to each other. As the retardation filter 4, the in-plane retardation value at a wavelength of 550 nm is substantially the same as the in-plane retardation value of the first retardation film 7A to be inspected at a wavelength of 550 nm. The in-plane phase difference value is, for example, λ / 4. Here, "λ" is a measurement wavelength (here, 550 nm). In order to determine the optical defect from the luminance (brightness) information ΔL *, it is preferable to use a film having the same configuration as the object 10 to be inspected for the retardation filter 4.
 また、位相差フィルタ4は、さらにポジティブCプレートを備えていてもよい。ポジティブCプレートは、第1の位相差膜7Aと向かい合う側の面に備えていてもよく、その反対側の面に備えていてもよい。ポジティブCプレートを用いることで検査領域を拡大することができる。ポジティブCプレートの厚み方向の位相差値(Rth(550))は、検査する第1の位相差膜7Aの厚み方向の位相差値によって適宜選択すればよいが、例えば、第1の位相差膜7Aがλ/4板である場合には、厚み方向の位相差値(Rth(550))を-50nm~-300nmのものを用いることで効果を得られやすい。 Further, the phase difference filter 4 may further include a positive C plate. The positive C plate may be provided on the surface facing the first retardation film 7A, or may be provided on the surface opposite to the first retardation film 7A. The inspection area can be expanded by using the positive C plate. The thickness direction retardation value (Rth (550)) of the positive C plate may be appropriately selected according to the thickness direction retardation value of the first retardation film 7A to be inspected. For example, the first retardation film may be selected. When 7A is a λ / 4 plate, the effect can be easily obtained by using a phase difference value (Rth (550)) in the thickness direction of -50 nm to −300 nm.
 位相差フィルタ4は、第2の位相差膜7Bと、第2の位相差膜7Bが積層された基材フィルムとを備えるものでもよい。基材フィルムは、第2の位相差膜7Bの光学特性を損なわないように面内位相差値(Re(550))が、実質的にゼロのものを用いることが好ましい。ここで面内位相差が実質的にゼロとは、面内位相差値(Re(550))が3nm以下であることをいう。 The retardation filter 4 may include a second retardation film 7B and a base film on which the second retardation film 7B is laminated. It is preferable to use a base film having a substantially zero in-plane retardation value (Re (550)) so as not to impair the optical characteristics of the second retardation film 7B. Here, when the in-plane phase difference is substantially zero, it means that the in-plane phase difference value (Re (550)) is 3 nm or less.
 ここで、波長550nmにおける面内位相差値(Re(550))及び厚み方向の位相差値(Rth(550))の求め方を示しておく。上記のとおり、測定対象のフィルムから例えば、40mm×40mm程度の大きさの片を分取(長尺フィルムから、適当な切断具を用いて分取する等)する。この片のRe(550)を3回測定し、Re(550)の平均値を求める。片のRe(550)は、位相差測定装置KOBRA-WPR(王子計測機器株式会社製)を用い、測定温度室温(23℃)で測定することができる。 Here, how to obtain the in-plane retardation value (Re (550)) and the thickness direction retardation value (Rth (550)) at a wavelength of 550 nm will be shown. As described above, for example, a piece having a size of about 40 mm × 40 mm is separated from the film to be measured (from a long film, separated by using an appropriate cutting tool, etc.). Re (550) of this piece is measured three times, and the average value of Re (550) is obtained. One piece of Re (550) can be measured at a measurement temperature of room temperature (23 ° C.) using a phase difference measuring device KOBRA-WPR (manufactured by Oji Measuring Instruments Co., Ltd.).
 第2の偏光板3Bの構成や材料については、第1の偏光板3Aと同様である。 The configuration and material of the second polarizing plate 3B are the same as those of the first polarizing plate 3A.
 本実施形態の検査装置1Aでは、被検査物10及び位相差フィルタ4を通過した光を観察するために、光軸9上、且つ、位相差フィルタ4の両側のうち光源2がある側とは反対側の位置に、カメラ(検出手段)6が配置されている。カメラ6は、例えばCCDカメラであり、この場合CCDカメラと画像処理装置を組み合わせた画像処理解析により自動的に検出し、これによって被検査物10の検査を行うことができる。 In the inspection device 1A of the present embodiment, in order to observe the light that has passed through the object 10 to be inspected and the retardation filter 4, the side of the optical axis 9 and both sides of the retardation filter 4 where the light source 2 is located is A camera (detection means) 6 is arranged at a position on the opposite side. The camera 6 is, for example, a CCD camera. In this case, the camera 6 is automatically detected by image processing analysis in which the CCD camera and the image processing device are combined, whereby the object 10 to be inspected can be inspected.
<検査方法>
 以下、検査装置1Aを用いた円偏光板の検査方法について説明する。円偏光板を被検査物10として検査を開始する前に、光源2が発する光の波長を設定する。波長の設定のために、試験片を用いて波長を選定する。
<Inspection method>
Hereinafter, a method for inspecting a circularly polarizing plate using the inspection device 1A will be described. Before starting the inspection with the circularly polarizing plate as the object 10 to be inspected, the wavelength of the light emitted by the light source 2 is set. To set the wavelength, use a test piece to select the wavelength.
(光源波長選定工程)
 光源2が発する光の波長は、以下のようにして選定することができる。
(Light source wavelength selection process)
The wavelength of the light emitted by the light source 2 can be selected as follows.
 はじめに、図2に示されているとおり、検査装置1Aにおいて、被検査物10を配置する場所に試験片20を配置する。試験片20は、円偏光板(位相差板)であり、第3の偏光板3Cと、その片面に積層された第3の位相差膜7Cとを備えている。試験片20は、長尺の被検査物10の一部を切り出したものであり、実質的に被検査物10と同一構成である。すなわち、試験片20は、被検査物10と材料、厚さ、積層構成が実質的に同一である積層体である。 First, as shown in FIG. 2, in the inspection device 1A, the test piece 20 is placed at the place where the object 10 to be inspected is placed. The test piece 20 is a circularly polarizing plate (phase difference plate), and includes a third polarizing plate 3C and a third retardation film 7C laminated on one surface thereof. The test piece 20 is a part of a long object to be inspected 10 cut out, and has substantially the same structure as the object to be inspected 10. That is, the test piece 20 is a laminated body having substantially the same material, thickness, and laminated structure as the object 10 to be inspected.
 試験片20は、第3の位相差膜7Cが位相差フィルタ4側を向くようにして検査装置1A内に配置する。また、このとき、図3に示されているとおり、試験片20が備える第3の位相差膜7Cの遅相軸pと位相差フィルタ4が備える第2の位相差膜7Bの遅相軸qとのなす角度θが、光軸9の方向から見た場合に90°以外の角度となるように配置する。この角度は、10°~80°とすることが好ましく、20°~70°とすることがより好ましく、30°~60°とすることが更に好ましい。ここで角度θは0°以上90°以下の値をとりうるものとし、90°を超える角度は、0°以上90°以下の値で表現するものとする。このような角度で配置することにより、欠陥検査に有用な波長を見出しやすくなる。すなわち、欠陥検査では、検査対象である第1の位相差膜7Aのうち、所望の位相差値から位相差値がずれている部分(欠陥部分)を見出すために、欠陥部分の透過光量が少しでも大きくなる波長の光を用いることが望ましい。ここで、第2の位相差膜7Bの遅相軸qと第3の位相差膜7Cの遅相軸p(=後の第1の位相差膜7Aの遅相軸r)とのなす角度が上記の角度である場合、波長の変化度合いに対する透過光量の変化量が大きく、欠陥検査に有用な波長を見出しやすくなる。 The test piece 20 is arranged in the inspection device 1A so that the third retardation film 7C faces the retardation filter 4 side. At this time, as shown in FIG. 3, the slow axis p of the third retardation film 7C included in the test piece 20 and the slow axis q of the second retardation film 7B included in the retardation filter 4 The angle θ 1 between the two is arranged so as to be an angle other than 90 ° when viewed from the direction of the optical axis 9. This angle is preferably 10 ° to 80 °, more preferably 20 ° to 70 °, and even more preferably 30 ° to 60 °. Here, the angle θ 1 can take a value of 0 ° or more and 90 ° or less, and an angle exceeding 90 ° is expressed by a value of 0 ° or more and 90 ° or less. By arranging at such an angle, it becomes easy to find a wavelength useful for defect inspection. That is, in the defect inspection, in the first retardation film 7A to be inspected, the amount of transmitted light of the defective portion is small in order to find the portion (defective portion) whose retardation value deviates from the desired retardation value. However, it is desirable to use light with a larger wavelength. Here, the angle formed by the slow axis q of the second retardation film 7B and the slow axis p of the third retardation film 7C (= the slow axis r of the first retardation film 7A later) is When the angle is the above, the amount of change in the amount of transmitted light with respect to the degree of change in wavelength is large, and it becomes easy to find a wavelength useful for defect inspection.
 試験片20の表面のうち、第3の位相差膜7Cに欠陥がないと推定される正常部位を光軸上に位置させ、光源2から任意の波長の光をその正常部位に照射する。位相差フィルタ4を跨いだ反対側からカメラ6を用い、透過光量を測定する。次に、波長を変えた光を照射し、その透過光量を測定する。このように、波長を様々に変えた光で透過光量を測定し、その透過光量が最小となる波長を求める。透過光量が最小となる波長を検査光として採用する。 Of the surface of the test piece 20, a normal portion presumed to have no defect in the third retardation film 7C is positioned on the optical axis, and the normal portion is irradiated with light of an arbitrary wavelength from the light source 2. The amount of transmitted light is measured by using the camera 6 from the opposite side across the phase difference filter 4. Next, light with a different wavelength is irradiated, and the amount of transmitted light is measured. In this way, the amount of transmitted light is measured with light having various wavelengths, and the wavelength at which the amount of transmitted light is minimized is determined. The wavelength that minimizes the amount of transmitted light is used as the inspection light.
 当該波長の検討は、500~600nmの間で行うことが好ましい。また、検査光として採用する波長は、例えば520~590nmであってもよく、530~580nmであってもよく、540~570nmであってもよい。これらの波長の範囲内では、正常部位における検査光の透過光量よりも、欠陥部位における検査光の透過光量が大きくなりやすいので、欠陥の有無の検出に有利である。 The examination of the wavelength is preferably performed in the range of 500 to 600 nm. The wavelength used as the inspection light may be, for example, 520 to 590 nm, 530 to 580 nm, or 540 to 570 nm. Within these wavelength ranges, the amount of transmitted light of the inspection light at the defective part tends to be larger than the amount of transmitted light of the inspection light at the normal part, which is advantageous for detecting the presence or absence of defects.
(欠陥検査工程)
 検査光の波長を決定したら、次に、被検査物10の欠陥検査を行う。図1に示されているとおり、検査装置1Aの光源2と位相差フィルタ4との間に、被検査物10を配置する。このとき、第1の位相差膜7Aが位相差フィルタ4側を向くように配置する。また、図4に示されているとおり、被検査物10が備える第1の位相差膜7Aの遅相軸rと位相差フィルタ4が備える第2の位相差膜7Bの遅相軸qとのなす角度θが、光軸9の方向から見た場合に10°~80°となるように配置する。この角度は、20°~70°とすることが好ましく、30°~60°とすることがより好ましい。ここで角度θは0°以上90°以下の値をとりうるものとし、90°を超える角度は、0°以上90°以下の値で表現するものとする。このような角度で配置することにより、上記光源波長選定工程で決定した、正常部分の透過光量が最小となる波長において、第1の位相差膜7Aのうち位相差値が所望の値とずれている部分(欠陥部分)の透過光量が大きくなりやすい。特に、用いる波長が500~600nmの範囲の波長である場合は、欠陥部分の位相差値が正常部分の位相差値よりも大きくなるようにずれている場合でも、小さくなるようにずれている場合でも、正常部分よりも透過光量が大きくなり、欠陥として検出しやすい。他の波長領域では、欠陥部分の位相差値が正常部分の位相差値よりも大きくなるようにずれている場合、又は、小さくなるようにずれている場合のいずれか一方のみで正常部分よりも透過光量が大きくなることが多く、この場合、それぞれに対応した二種類の波長の検査光を用いて検査を行う必要がある。しかしながら、本実施形態では検査に最適な波長を見出したことによって、単一の波長の検査光のみを用いて欠陥検査を行うことができる。
(Defect inspection process)
After determining the wavelength of the inspection light, the defect inspection of the object 10 to be inspected is performed next. As shown in FIG. 1, the object to be inspected 10 is arranged between the light source 2 of the inspection device 1A and the phase difference filter 4. At this time, the first retardation film 7A is arranged so as to face the retardation filter 4 side. Further, as shown in FIG. 4, the slow axis r of the first retardation film 7A included in the object 10 to be inspected and the slow axis q of the second retardation film 7B included in the retardation filter 4 The angle θ 2 formed is 10 ° to 80 ° when viewed from the direction of the optical axis 9. This angle is preferably 20 ° to 70 °, more preferably 30 ° to 60 °. Here, the angle θ 2 can take a value of 0 ° or more and 90 ° or less, and an angle exceeding 90 ° is expressed by a value of 0 ° or more and 90 ° or less. By arranging at such an angle, the retardation value of the first retardation film 7A deviates from the desired value at the wavelength at which the amount of transmitted light in the normal portion is minimized, which is determined in the light source wavelength selection step. The amount of transmitted light in the existing part (defective part) tends to increase. In particular, when the wavelength used is a wavelength in the range of 500 to 600 nm, even if the phase difference value of the defective portion is shifted to be larger than the phase difference value of the normal portion, it is shifted to be smaller. However, the amount of transmitted light is larger than that of the normal part, and it is easy to detect it as a defect. In other wavelength regions, only one of the cases where the phase difference value of the defective part is shifted to be larger than the phase difference value of the normal part or the phase difference value is shifted to be smaller than the normal part is larger than the normal part. The amount of transmitted light is often large, and in this case, it is necessary to perform the inspection using inspection lights of two types of wavelengths corresponding to each. However, in the present embodiment, by finding the optimum wavelength for the inspection, the defect inspection can be performed using only the inspection light having a single wavelength.
 被検査物10を配置した後、光源2から、上記光源波長選定工程で決定した波長の光を被検査物10の所定の検査領域に照射する。このとき、検査光は、その強度ピークの半値幅が30nm以下であるものを使用する。検査光は、当該半値幅が20nm以下のものであってもよく、10nm以下のものであってもよい。このような検査光を用いることで、正常部分と欠陥部分とのコントラスト比が高くなり、正常部分とは色が異なる部分として認識される欠陥部分の輝度が強くなり、欠陥部分を輝度の違いにより認識することが容易になる。 After arranging the object 10 to be inspected, the light source 2 irradiates a predetermined inspection area of the object 10 to be inspected with light having a wavelength determined in the light source wavelength selection step. At this time, the inspection light used has a half width of the intensity peak of 30 nm or less. The inspection light may have a half width of 20 nm or less, or may have a half width of 10 nm or less. By using such inspection light, the contrast ratio between the normal part and the defective part becomes high, the brightness of the defective part recognized as a part whose color is different from that of the normal part becomes stronger, and the defective part is determined by the difference in brightness. It becomes easy to recognize.
 位相差フィルタ4は上述したとおり、波長550nmにおける面内位相差値が、検査対象である第1の位相差膜7Aの波長550nmにおける面内位相差値と略同一であるものを用いているので、カメラ6で位相差フィルタ4を観察すると、被検査物10のうち正常部分は暗く認識される。欠陥部分は正常部分とは色が違って認識されるところ、上記半値幅を有する検査光を用いているので輝度が高くなった状態で検出される。したがって、本実施形態の検査方法によれば、被検査物10における第1の位相差膜7Aの欠陥の有無を容易に判断することができる。 As described above, the retardation filter 4 uses an in-plane retardation value at a wavelength of 550 nm which is substantially the same as the in-plane retardation value of the first retardation film 7A to be inspected at a wavelength of 550 nm. When the phase difference filter 4 is observed with the camera 6, the normal portion of the object 10 to be inspected is recognized as dark. Where the defective portion is recognized as having a different color from the normal portion, it is detected in a state where the brightness is high because the inspection light having the above half-value width is used. Therefore, according to the inspection method of the present embodiment, it is possible to easily determine the presence or absence of defects in the first retardation film 7A in the object to be inspected 10.
 被検査物10の所定の検査領域の検査を終えたら、被検査物10を搬送して次の検査領域を対象として検査を行うことができる。 After completing the inspection of the predetermined inspection area of the inspected object 10, the inspected object 10 can be transported and inspected in the next inspection area.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、上記実施形態では、光源2が発した検査光が被検査物10、位相差フィルタ4の順に入射し、位相差フィルタ4から出射する検査光をカメラ6で捉える態様を示したが、光源2とカメラ6は、位置を逆としてもよい。すなわち、図5に示されているとおり、光源2が発した検査光が位相差フィルタ4、被検査物10の順に入射し、被検査物10から出射する検査光をカメラ6で捉える態様(検査装置1B)としてもよい。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, in the above embodiment, the inspection light emitted by the light source 2 is incident on the object 10 to be inspected and the retardation filter 4 in this order, and the inspection light emitted from the retardation filter 4 is captured by the camera 6. The positions of 2 and the camera 6 may be reversed. That is, as shown in FIG. 5, the inspection light emitted by the light source 2 is incident on the phase difference filter 4 and the inspected object 10 in this order, and the inspection light emitted from the inspected object 10 is captured by the camera 6 (inspection). It may be the device 1B).
 また、上記実施形態では被検査物が長尺のものである態様を示したが、被検査物は例えば矩形の枚葉状のものであってもよい。 Further, although the above-described embodiment shows that the object to be inspected is a long one, the object to be inspected may be, for example, a rectangular single-wafered object.
 本発明は、位相差膜の欠陥の有無を判断する検査に利用することができる。 The present invention can be used for an inspection for determining the presence or absence of defects in the retardation film.
 1A,1B…検査装置、2…光源、3A…第1の偏光板、3B…第2の偏光板、3C…第3の偏光板、4…位相差フィルタ、6…カメラ(検出手段)、7A…第1の位相差膜、7B…第2の位相差膜、7C…第3の位相差膜、9…光軸、10…被検査物、20…試験片、p…第3の位相差膜の遅相軸、q…第2の位相差膜の遅相軸、r…第1の位相差膜の遅相軸、θ,θ…角度。 1A, 1B ... inspection device, 2 ... light source, 3A ... first polarizing film, 3B ... second polarizing film, 3C ... third polarizing film, 4 ... retardation filter, 6 ... camera (detection means), 7A ... 1st retardation film, 7B ... 2nd retardation film, 7C ... 3rd retardation film, 9 ... optical axis, 10 ... object to be inspected, 20 ... test piece, p ... third retardation film Slow axis of, q ... Slow axis of the second retardation film, r ... Slow axis of the first retardation film, θ 1 , θ 2 ... Angle.

Claims (2)

  1.  第1の偏光板と、前記第1の偏光板の片面に形成された重合性液晶化合物の硬化物からなる第1の位相差膜とを備えるフィルム状の被検査物に検査光を入射して前記第1の位相差膜の欠陥の有無を判断する検査方法であって、
     前記被検査物、及び、第2の偏光板と前記第2の偏光板の片面に形成された第2の位相差膜とを備える位相差フィルタを、前記被検査物の第1の位相差膜側が前記位相差フィルタ側を向くように、かつ、前記位相差フィルタの第2の位相差膜側が前記被検査物側を向くように、かつ、前記第1の位相差膜の遅相軸と第2の位相差膜の遅相軸とのなす角度が、前記検査光の光軸方向から見た場合に10°~80°となるように配置し、
     前記第1の位相差膜の波長550nmにおける面内位相差値と、前記第2の位相差膜の波長550nmにおける面内位相差値とは互いに略同一であり、
     前記検査光は、強度ピークの半値幅が30nm以下であり、かつ、波長500~600nmの範囲内で前記被検査物及び前記位相差フィルタの透過光量が最小となる波長の光であり、
     前記被検査物の前記第1の偏光板側又は前記位相差フィルタの前記第2の偏光板側のいずれか一方側から、前記光軸が前記被検査物上の所定の検査領域を通過するように前記検査光を入射し、その他方側から前記第2の偏光板又は前記第1の偏光板を観察する、検査方法。
    Inspection light is incident on a film-shaped object to be inspected, which includes a first polarizing plate and a first retardation film made of a cured product of a polymerizable liquid crystal compound formed on one side of the first polarizing plate. This is an inspection method for determining the presence or absence of defects in the first retardation film.
    A retardation filter including the object to be inspected and a second polarizing plate and a second retardation film formed on one surface of the second polarizing plate is provided with a first retardation film of the object to be inspected. The side faces the retardation filter side, the second retardation film side of the retardation filter faces the object to be inspected, and the slow axis and the first retardation of the first retardation film. Arranged so that the angle formed by the retarding axis of the retardation film 2 with the slow axis is 10 ° to 80 ° when viewed from the optical axis direction of the inspection light.
    The in-plane retardation value of the first retardation film at a wavelength of 550 nm and the in-plane retardation value of the second retardation film at a wavelength of 550 nm are substantially the same.
    The inspection light is light having a wavelength in which the half width of the intensity peak is 30 nm or less and the amount of transmitted light of the object to be inspected and the retardation filter is minimized within the wavelength range of 500 to 600 nm.
    The optical axis passes through a predetermined inspection region on the inspected object from either the first polarizing plate side of the inspected object or the second polarizing plate side of the retardation filter. An inspection method in which the inspection light is incident on the surface and the second polarizing plate or the first polarizing plate is observed from the other side.
  2.  前記検査を行う前に、
     前記第1の偏光板と同一構成である第3の偏光板と、前記第3の偏光板の片面に形成された前記第1の位相差膜と同一構成である第3の位相差膜とを備えるフィルム状の試験片を用意し、
     前記試験片、及び、前記位相差フィルタを、前記試験片の第3の位相差膜側が前記位相差フィルタ側を向くように、かつ、前記位相差フィルタの第2の位相差膜側が前記試験片側を向くように、かつ、前記第3の位相差膜の遅相軸と第2の位相差膜の遅相軸とのなす角度が、前記検査光の光軸方向から見た場合に90°以外の角度となるように配置し、
     前記試験片の前記第3の偏光板側又は前記位相差フィルタの前記第2の偏光板側のいずれか一方側から、前記光軸が前記試験片上の欠陥のない領域を通過するように、様々な波長の光を入射し、その他方側から前記第2の偏光板又は前記第1の偏光板を観察し、透過光量が最小となる波長を求め、その波長の光を前記検査光として採用することを決定する、請求項1記載の検査方法。
    Before performing the above inspection
    A third polarizing plate having the same configuration as the first polarizing plate and a third retardation film having the same configuration as the first retardation film formed on one surface of the third polarizing plate are formed. Prepare a film-shaped test piece to prepare
    With respect to the test piece and the retardation filter, the third retardation film side of the test piece faces the retardation filter side, and the second retardation film side of the retardation filter is the test piece side. The angle formed by the slow axis of the third retardation film and the slow axis of the second retardation film is other than 90 ° when viewed from the optical axis direction of the inspection light. Arrange so that the angle is
    Various so that the optical axis passes through a defect-free region on the test piece from either the third polarizing plate side of the test piece or the second polarizing plate side of the retardation filter. Light of a different wavelength is incident, the second polarizing plate or the first polarizing plate is observed from the other side, a wavelength that minimizes the amount of transmitted light is obtained, and the light of that wavelength is adopted as the inspection light. The inspection method according to claim 1, which determines that.
PCT/JP2020/047107 2020-03-04 2020-12-17 Inspection method WO2021176797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020036726A JP7374815B2 (en) 2020-03-04 2020-03-04 Inspection method
JP2020-036726 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021176797A1 true WO2021176797A1 (en) 2021-09-10

Family

ID=77613196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047107 WO2021176797A1 (en) 2020-03-04 2020-12-17 Inspection method

Country Status (3)

Country Link
JP (1) JP7374815B2 (en)
TW (1) TW202134636A (en)
WO (1) WO2021176797A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092006A1 (en) * 2020-10-29 2022-05-05 住友化学株式会社 Inspection method
WO2023189090A1 (en) * 2022-03-31 2023-10-05 住友化学株式会社 Test method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023171051A (en) * 2022-05-20 2023-12-01 住友化学株式会社 Inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212442A (en) * 2006-01-11 2007-08-23 Nitto Denko Corp Method of manufacturing laminated film, method of detecting defect in laminated film, detector for detecting defect of laminated film, laminated film, and image display
JP2007213016A (en) * 2006-01-11 2007-08-23 Nitto Denko Corp Layered film manufacturing method, layered film defect detection method, layered film defect detection device, layered film and image display device
JP2009097915A (en) * 2007-10-15 2009-05-07 Nippon Oil Corp Inspection method of optical film
JP2012198032A (en) * 2011-03-18 2012-10-18 Canon Chemicals Inc Device and method for detecting defect in plate body
JP2019070617A (en) * 2017-10-11 2019-05-09 住友化学株式会社 Defect inspection device, defect inspection method, and film manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212442A (en) * 2006-01-11 2007-08-23 Nitto Denko Corp Method of manufacturing laminated film, method of detecting defect in laminated film, detector for detecting defect of laminated film, laminated film, and image display
JP2007213016A (en) * 2006-01-11 2007-08-23 Nitto Denko Corp Layered film manufacturing method, layered film defect detection method, layered film defect detection device, layered film and image display device
JP2009097915A (en) * 2007-10-15 2009-05-07 Nippon Oil Corp Inspection method of optical film
JP2012198032A (en) * 2011-03-18 2012-10-18 Canon Chemicals Inc Device and method for detecting defect in plate body
JP2019070617A (en) * 2017-10-11 2019-05-09 住友化学株式会社 Defect inspection device, defect inspection method, and film manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092006A1 (en) * 2020-10-29 2022-05-05 住友化学株式会社 Inspection method
WO2023189090A1 (en) * 2022-03-31 2023-10-05 住友化学株式会社 Test method

Also Published As

Publication number Publication date
JP2021139999A (en) 2021-09-16
JP7374815B2 (en) 2023-11-07
TW202134636A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2021176797A1 (en) Inspection method
WO2021124645A1 (en) Inspection method, inspection device, and inspection system
JP7455527B2 (en) Inspection method and inspection device
WO2021124647A1 (en) Inspection method, inspection device, and inspection system
JP7474569B2 (en) Inspection method and inspection device
WO2021124646A1 (en) Inspection method, inspection device, and inspection system
WO2022092006A1 (en) Inspection method
WO2022092005A1 (en) Inspection method
WO2023189090A1 (en) Test method
WO2023223728A1 (en) Inspection method
WO2022044952A1 (en) Inspection method
JP7413211B2 (en) Inspection method
JP2023110350A (en) Inspection method
TW202413914A (en) Inspection method
JP2022172803A (en) Inspection method
JP2022039687A (en) Inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922582

Country of ref document: EP

Kind code of ref document: A1