WO2021176723A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2021176723A1
WO2021176723A1 PCT/JP2020/009851 JP2020009851W WO2021176723A1 WO 2021176723 A1 WO2021176723 A1 WO 2021176723A1 JP 2020009851 W JP2020009851 W JP 2020009851W WO 2021176723 A1 WO2021176723 A1 WO 2021176723A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
dci
transmission
resource
Prior art date
Application number
PCT/JP2020/009851
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
聡 永田
シャオホン ジャン
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022504945A priority Critical patent/JPWO2021176723A1/ja
Priority to CN202080100565.0A priority patent/CN115552958A/zh
Priority to US17/908,377 priority patent/US20230113163A1/en
Priority to PCT/JP2020/009851 priority patent/WO2021176723A1/ja
Publication of WO2021176723A1 publication Critical patent/WO2021176723A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • a configuration in which the retransmission of the PDSCH is controlled by the UE feeding back a delivery confirmation signal (HARQ-ACK, ACK / NACK or A / N) to the DL data (for example, PDSCH) is supported. Has been done.
  • future wireless communication systems for example, 5G, NR, etc.
  • high speed and large capacity for example, eMBB: enhanced Mobile Broad Band
  • super large number of terminals for example, mMTC: massive Machine Type Communication, IoT: Internet of Things
  • Ultra-high reliability and low latency for example, URLLC: Ultra Reliable and Low Latency Communications
  • multiple traffic types with different requirements also called services, types, service types, communication types, or use cases. Is expected to be mixed.
  • a priority is set for a predetermined signal (for example, HARQ-ACK) according to a predetermined traffic type or requirement condition, and transmission processing or reception processing (transmission processing or reception processing) is performed based on the priority. For example, processing at the time of collision of a plurality of signals) is being studied.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station capable of appropriately performing communication even when communicating using a plurality of traffic types.
  • the terminal When a delivery confirmation signal (HARQ-ACK) collides with another UL transmission, the terminal according to one aspect of the present disclosure includes a transmission unit that transmits the UL transmission and information regarding retransmission of the HARQ-ACK. It is characterized by having a receiving unit that receives control information and a control unit that controls retransmission of the HARQ-ACK by using the resource notified by the downlink control information.
  • HARQ-ACK delivery confirmation signal
  • communication can be appropriately performed even when communication is performed using a plurality of traffic types.
  • FIG. 1 is a diagram showing an example of performing HARQ-ACK feedback for each service type.
  • FIG. 2 is a diagram showing an example of 1-shot HARQ-ACK feedback control.
  • FIG. 3 is a diagram showing an example of a case where HARQ-ACKs (or PUCCH resources) having different priorities collide.
  • FIG. 4 is a diagram showing an example of retransmission control of HARQ-ACK according to the first aspect.
  • FIG. 5 is a diagram showing another example of the retransmission control of HARQ-ACK according to the first aspect.
  • FIG. 6 is a diagram showing an example of retransmission control of HARQ-ACK according to the second aspect.
  • FIG. 7 is a diagram showing another example of the retransmission control of HARQ-ACK according to the second aspect.
  • FIG. 8 is a diagram showing an example of retransmission control of HARQ-ACK according to the third aspect.
  • FIG. 9 is a diagram showing an example of retransmission control of HARQ-ACK according to the fourth aspect.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 11 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 12 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • future wireless communication systems eg, NR
  • further sophistication of mobile broadband eg enhanced Mobile Broadband (eMBB)
  • machine type communication that realizes multiple simultaneous connections eg massive Machine Type Communications (mMTC)
  • Traffic types also referred to as types, services, service types, communication types, use cases, etc.
  • IoT of Things
  • high-reliability and low-latency communications eg, Ultra-Reliable and Low-Latency Communications (URLLC)
  • URLLC Ultra-Reliable and Low-Latency Communications
  • the traffic type may be identified at the physical layer based on at least one of the following: -Logical channels with different priorities-Modulation and Coding Scheme (MCS) table (MCS index table) -Channel Quality Indication (CQI) table-DCI format-Used for scramble (mask) of Cyclic Redundancy Check (CRC) bits included (added) in the DCI (DCI format).
  • MCS Modulation and Coding Scheme
  • CQI Channel Quality Indication
  • CRC Cyclic Redundancy Check
  • the HARQ-ACK (or PUCCH) traffic type for PDSCH may be determined based on at least one of the following: An MCS index table (for example, MCS index table 3) used to determine at least one of the PDSCH modulation order, target code rate, and transport block size (TBS).
  • An MCS index table for example, MCS index table 3
  • TBS transport block size
  • -RNTI used for CRC scrambling of DCI used for scheduling the PDSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
  • the traffic type may be associated with communication requirements (requirements such as delay and error rate, requirement conditions), data type (voice, data, etc.) and the like.
  • the difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, or that the URLLC requirement includes a reliability requirement.
  • the eMBB user (U) plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms.
  • the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms.
  • the URLLC reliability requirement may also include a 32-byte error rate of 10-5 for a 1 ms U-plane delay.
  • HARQ-ACK Codebook The UE transmits HARQ-ACK feedback using one PUCCH resource in units of HARQ-ACK codebooks composed of bits of one or more delivery confirmation information (eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)). You may.
  • the HARQ-ACK bit may be referred to as HARQ-ACK information, HARQ-ACK information bit, or the like.
  • the HARQ-ACK codebook includes a time domain (for example, a slot), a frequency domain (for example, a component carrier (CC)), a spatial domain (for example, a layer), and a transport block (Transport Block (TB)). )), And a bit for HARQ-ACK in at least one unit of the code block group (Code Block Group (CBG)) constituting the TB may be included.
  • the HARQ-ACK codebook may simply be referred to as a codebook.
  • the number of bits (size) and the like included in the HARQ-ACK codebook may be determined quasi-statically (semi-statically) or dynamically (dynamically).
  • the HARQ-ACK codebook whose size is determined quasi-statically is also called a quasi-static HARQ-ACK codebook, a type 1 HARQ-ACK codebook, or the like.
  • the HARQ-ACK codebook whose size is dynamically determined is also called a dynamic HARQ-ACK codebook, a type 2 HARQ-ACK codebook, or the like.
  • Whether to use the type 1 HARQ-ACK codebook or the type 2 HARQ-ACK codebook may be set in the UE by using the upper layer parameter (for example, pdsch-HARQ-ACK-Codebook).
  • the UE has a PDSCH candidate (or PDSCH) corresponding to the predetermined range in a predetermined range (for example, a range set based on the upper layer parameter) regardless of whether PDSCH is scheduled or not.
  • a predetermined range for example, a range set based on the upper layer parameter
  • the predetermined range is set or activated in the UE for a predetermined period (for example, a set of a predetermined number of opportunities (occasion) for receiving a candidate PDSCH or a predetermined number of monitoring opportunities (monitoring occurrence) of the PDCCH). It may be determined based on at least one of the number of CCs, the number of TBs (number of layers or ranks), the number of CBGs per TB, and whether or not spatial bundling is applied.
  • the predetermined range is also referred to as a HARQ-ACK window, a HARQ-ACK bundling window, a HARQ-ACK feedback window, or the like.
  • the UE allocates the HARQ-ACK bit for the PDSCH in the codebook as long as it is within a predetermined range even if there is no PDSCH scheduling for the UE.
  • the UE determines that the PDSCH is not actually scheduled, the UE can feed back the bit as a NACK bit.
  • the UE may feed back the HARQ-ACK bit for the scheduled PDSCH within the above predetermined range.
  • the UE may determine the number of bits in the Type 2 HARQ-ACK codebook based on a predetermined field in the DCI (for example, the Downlink Assignment Indicator (Index) (DAI)) field). good.
  • the DAI field may include a counter DAI (Counter DAI (C-DAI)) and a total DAI (Total DAI (T-DAI)).
  • C-DAI may indicate a counter value of downlink transmission (PDSCH, data, TB) scheduled within a predetermined period.
  • the C-DAI in the DCI that schedules data within the predetermined period may indicate the number counted first in the frequency domain (eg, CC) and then in the time domain within the predetermined period.
  • C-DAI may correspond to a value obtained by counting PDSCH reception or SPS release in ascending order of serving cell index and then in ascending order of PDCCH monitoring opportunity for one or more DCIs included in a predetermined period.
  • T-DAI may indicate the total value (total number) of data scheduled within a predetermined period.
  • a T-DAI in a DCI that schedules data in a time unit (eg, PDCCH monitoring opportunity) within the predetermined period is scheduled by the time unit (also referred to as point, timing, etc.) within the predetermined period.
  • the total number of data collected may be shown.
  • the HARQ-ACK codebook is set separately for different service types (or PDSCH or HARQ-ACK with different priorities) (see FIG. 1). That is, it is conceivable that a plurality of HARQ-ACK codebooks are simultaneously configured to support a plurality of service types (or a plurality of priorities). For example, a first HARQ-ACK codebook (CB # 1) corresponding to URLLC (eg, first priority) and a second HARQ-ACK code corresponding to eMBB (eg, second priority). A book (CB # 2) may be constructed.
  • the first PUCCH configuration parameter (for example, PUCCH configuration or PUCH configuration parameters) corresponding to the first HARQ-ACK codebook and the second PUCCH configuration parameter corresponding to the second HARQ-ACK codebook.
  • the PUCCH setting parameters are the PUCCH resource (or PUCCH resource set) applied to the transmission of HARQ-ACK, the PUCCH transmission timing (for example, K1 set), the maximum coding rate (for example, max-code rate), and the PUCCH transmission. It may be at least one of the electric power.
  • the first PUCCH setting information may be applied to the HARQ-ACK feedback for URLLC
  • the second PUCCH setting information may be applied to the HARQ-ACK feedback for eMBB.
  • HARQ process> For UEs configured with Carrier Aggregation (CA) or Dual Connectivity (DC), there may be one independent HARQ entity for each cell (CC) or cell group (CG).
  • the HARQ entity may manage multiple HARQ processes in parallel.
  • FIG. 1 is a diagram showing an example of the relationship between HARQ entities, HARQ processes and DCI.
  • a HARQ process number (HARQ Process Number (HPN)) is given to the HARQ process.
  • the DCI includes a 4-bit HARQ process number field indicating the HARQ process number used for current data transmission.
  • the HARQ entity manages a plurality of (up to 16) HARQ processes in parallel. That is, the HARQ process numbers exist from HPN0 to HPN15.
  • the HARQ process number is also called a HARQ process ID (HARQ process identifier).
  • TB transport blocks
  • MAC Media Access Control
  • HARQ (retransmission) control may be performed for each TB, or for each code block group (Code Block Group (CBG)) including one or more code blocks (Code Block (CB)) in the TB. It may be done.
  • CBG Code Block Group
  • CB Code Block
  • the user terminal outputs information indicating an acknowledgment (Positive Acknowledgement (ACK)) / negative response (Negative Acknowledgement (NACK)) of HARQ indicating whether or not the DL transport block received using the PDSCH has been successfully decoded. , PUCCH (Physical Uplink Control Channel) or PUSCH, etc. to transmit to the base station.
  • ACK acknowledgement
  • NACK Negative Acknowledgement
  • a single HARQ process corresponds to one transport block (TB).
  • TB transport block
  • a single HARQ process may correspond to one or more transport blocks (TB).
  • HARQ-ACK feedback ⁇ 1 shot HARQ-ACK feedback> Rel. From 16 onwards, in order to provide a transmission opportunity for HARQ-ACK feedback due to LBT failure in the UE or PUCCH detection error in the base station, the feedback of the HARQ-ACK codebook including all HARQ-ACK processes is given to the UE. Requests or triggers are being considered (see Figure 2).
  • the HARQ-ACK process (eg, DL HARQ-ACK process) may be to HARQ-ACK in all CCs configured on the UE in the PUCCH group.
  • FIG. 2 shows a case where the HARQ-ACK processes # 0, # 2, and # 4 are fed back in response to a request for 1-shot HARQ-ACK feedback.
  • the feedback of HARQ-ACK (or HARQ-ACK codebook) including all HARQ-ACK processes in all CCs may be referred to as one-shot HARQ-ACK feedback.
  • the one-shot HARQ-ACK feedback may be notified from the base station to the UE using a predetermined DCI format.
  • the predetermined DCI format may be a UE-specific DCI format (eg, DCI format 1-11).
  • a UE requesting or triggering one-shot HARQ-ACK feedback may use PUCCH to feed back a codebook containing a plurality of (for example, all) HARQ-ACK processes in each configured CC.
  • the one-shot HARQ-ACK feedback may be referred to as a single HARQ-ACK feedback, a single HARQ-ACK feedback, a one-shot HARQ-ACK, or the like.
  • NR ⁇ Priority setting> Rel.
  • a plurality of levels for example, 2 levels
  • communication is controlled by setting different priorities for each signal or channel corresponding to different traffic types (also referred to as services, service types, communication types, use cases, etc.) (for example, transmission control in the event of a collision). Is expected to be done. This makes it possible to control communication by setting different priorities for the same signal or channel according to the service type and the like.
  • the priority may be set for a signal (for example, UCI such as HARQ-ACK, a reference signal, etc.), a channel (PDSCH, PUSCH, etc.), a HARQ-ACK codebook, or the like.
  • the priority may be defined by a first priority (for example, High) and a second priority (for example, Low) that is lower than the first priority.
  • a first priority for example, High
  • a second priority for example, Low
  • three or more types of priorities may be set.
  • Information about the priority may be notified from the base station to the UE using at least one of higher layer signaling and DCI.
  • priorities may be set for the dynamically scheduled HARQ-ACK for PDSCH, HARQ-ACK for semi-persistent PDSCH (SPS PDSCH), and HARQ-ACK for SPS PDSCH release.
  • a priority may be set for the HARQ-ACK codebook corresponding to these HARQ-ACK.
  • the priority of the PDSCH may be read as the priority of HARQ-ACK with respect to the PDSCH.
  • the UE may control UL transmission based on priority when different UL signals / UL channels collide. For example, it may be controlled so that the UL transmission having a high priority is performed and the UL transmission having a low priority is not performed (for example, dropping).
  • the collision of different UL signals / UL channels may be the case where the resources corresponding to the different UL signals / UL channels overlap, or the transmission timings of the different UL signals / UL channels overlap.
  • the resource may be, for example, a time resource, or a time resource and a frequency resource.
  • the base station uses higher layer signaling to determine whether or not a bit field (for example, Priority indicator) for notifying the priority is set to the DCI from the base station to the UE. Notifications or settings may be made.
  • a bit field for example, Priority indicator
  • the UE uses the first resource to transmit the first HARQ-ACK and controls so that the second HARQ-ACK is not transmitted (for example, drop).
  • the DL transmission for example, PDSCH
  • the HARQ-ACK for the retransmitted PDSCH for example, eMBB
  • eMBB retransmitted PDSCH
  • the present inventors how to transmit the plurality of HARQ-ACKs when the transmission processing or the feedback processing is controlled according to the traffic type (or priority) when a plurality of HARQ-ACKs collide. We examined whether to control it, and came up with the present embodiment.
  • a / B may be read as at least one of A and B
  • a / B / C may be read as at least one of A, B and C.
  • the first priority (High) and the second priority (Low) are given as examples as examples, but the number and type of priorities are not limited to this. Three or more priorities (or three levels) may be applied. Further, the priority set for each signal or channel may be set for the UE by higher layer signaling or the like.
  • eMBB and URLLC two service types, eMBB and URLLC, will be described as an example, but the types and number of service types are not limited to this.
  • the service type may also be set in association with the priority. Further, in the following description, the drop may be read as canceled or non-transmitted.
  • HARQ-ACK will be described as an example of the signal to be retransmitted, but the signal / channel to which this embodiment can be applied is not limited to HARQ-ACK.
  • the present embodiment may be applied to other signals / channels.
  • the UE When the UE receives a DCI (or PDCCH) instructing to retransmit a predetermined HARQ-ACK, the UE controls to retransmit (or retransmit, feed back, transmit) the predetermined HARQ-ACK based on the DCI. You may.
  • the predetermined HARQ-ACK may be a HARQ-ACK that was not transmitted (eg, dropped or postponed) due to a collision with another UL transmission.
  • the DCI (hereinafter, also referred to as request DCI) that instructs the retransmission of the predetermined HARQ-ACK may be a DCI that does not schedule PDSCH.
  • the request DCI may be UE-specific (eg, specific or dedicated), and for example, at least one of DCI format 1-11 and DCI format 1-22 may be utilized.
  • the request DCI reports the channel state information reference signal (for example, CSI-RS) / channel state information (for example, A) in addition to the configuration in which the PDSCH is not scheduled (or instead of the configuration in which the PDSCH is not scheduled).
  • -CSI report may also be configured without schedule / instruction.
  • the UE may determine whether or not the received DCI is a request DCI based on a predetermined field included in the DCI. For example, when a field related to a HARQ-ACK retransmission request (for example, requestHarqReTx) is set to DCI and the bit of the field is "1", it functions as a request DCI, and when the bit is "0", it functions as a request DCI. It may be a configuration that does not function as. Alternatively, other fields may be used to notify whether the request is DCI or not. Alternatively, RNTI applied to DCI may be used to notify whether or not the request DCI is made.
  • a field related to a HARQ-ACK retransmission request for example, requestHarqReTx
  • the UE may resend a predetermined HARQ-ACK using a predetermined resource.
  • the resource used for retransmission of HARQ-ACK is at least partially different (or partially the same) from the resource set for transmitting the dropped HARQ-ACK (hereinafter, also referred to as the original HARQ-ACK). It may be a new resource.
  • the resource may be read as a PUCCH resource.
  • the new resource used to retransmit the HARQ-ACK is based on at least one of the HARQ-ACK timing information (eg, K1) and the PUCCH resource identifier (PUCCH Resource Indicator (PRI)) field contained in the request DCI. It may be decided.
  • K1 the HARQ-ACK timing information
  • PRI PUCCH Resource Indicator
  • the first HARQ-ACK corresponds to the first PDSCH scheduled in the first DCI, and the first resource may be specified in the first DCI (and higher layer signaling).
  • the second HARQ-ACK corresponds to the second PDSCH scheduled in the second DCI, and the second resource may be specified in the second DCI (and higher layer signaling).
  • the priority of the first HARQ-ACK may be notified by the first DCI and the priority of the second HARQ-ACK may be notified by the second DCI.
  • the UE uses the first resource to transmit the first HARQ-ACK and does not transmit the second HARQ-ACK (or does not transmit the HARQ-ACK using the second resource). ) May be controlled.
  • the UE receives the request DCI (for example, the third DCI) instructing the retransmission of the HARQ-ACK, the UE controls to transmit the second HARQ-ACK by using the resource specified by the request DCI. You may.
  • the UE may determine the HARQ-ACK (for example, the dropped second HARQ-ACK) to be retransmitted based on the request DCI based on at least one of the following options 1-1 to 1-3. good.
  • the UE may control to feed back a plurality of HARQ-ACKs (for example, a plurality of HARQ-ACKs having a low priority) based on the request DCI instructing the retransmission of the HARQ-ACK.
  • the base station may request (or trigger) the feedback of 1-shot HARQ-ACK from the UE by using the request DCI. That is, the HARQ-ACK bit for which retransmission is requested in the request DCI may be the DL HARQ-ACK process in all CCs set in the UE in a predetermined group (for example, PUCCH group).
  • the UE for which the feedback of 1-shot HARQ-ACK is requested by the request DCI may include one or more HARQ-ACKs in one (or common) HARQ-ACK codebook to provide feedback.
  • the HARQ-ACK included in one HARQ-ACK codebook may be a HARQ-ACK corresponding to a predetermined HARQ-ACK process (or a predetermined HARQ-ACK process number).
  • the predetermined HARQ-ACK process may be, for example, a HARQ-ACK process corresponding to the PDSCH scheduled in the UE.
  • HARQ-ACK corresponding to the HARQ-ACK process in the plurality of CCs may be included in one HARQ-ACK codebook.
  • the UE may control to feed back (eg, retransmit) the latest (eg, latest) dropped HARQ-ACK based on the request DCI (see FIG. 4). That is, when there are a plurality of HARQ-ACKs that have not been transmitted, the UE controls to retransmit the HARQ-ACK that was not transmitted last (or the HARQ-ACK that was dropped last).
  • HARQ-ACK # 1 (or PUCCH resource # 1) corresponding to PDSCH # 1 collides with another high-priority UL transmission (for example, PUCCH resource # 0a for URLLC) and is dropped. Shows the case.
  • HARQ-ACK # 2 (or PUCCH resource # 2) corresponding to PDSCH # 2 and HARQ-ACK # 3 (or PUCCH resource # 3) corresponding to PDSCH # 3 are other UL transmissions having high priority.
  • PUCCH resource # 0b for URLLC PUCCH resource # 0b for URLLC
  • FIG. 4 shows a case where the request DCI is transmitted after HARQ-ACK # 2 and # 3 are dropped. That is, after HARQ-ACK # 1 is dropped, HARQ-ACK # 2 and # 3 are dropped before the request DCI is transmitted.
  • the UE when the UE receives the request DCI, if there are a plurality of dropped HARQ-ACKs, the last dropped HARQ-ACK (or the HARQ- corresponding to the last PUCCH resource not used for transmission). You may control to retransmit ACK).
  • the HARQ-ACK to be resent may be determined for each PUCCH resource. That is, when the HARQ-ACK corresponding to the same PUCCH resource (or the PUCCH resource set in the same slot) is dropped (HARQ-ACK # 2 and # 3 in FIG. 4), the plurality of HARQ-ACKs are used. It may be controlled to retransmit.
  • the UE since HARQ-ACK # 2 and # 3 correspond to the last dropped PUCCH resource, the UE retransmits the HARQ-ACK # 2 and # 3 using the resource specified in the request DCI. It may be controlled as follows.
  • the resource specified in the request DCI (for example, here, PUCCH resource # 4) is the HARQ-ACK timing information (for example, K1) and the PUCCH resource identifier (PUCCH Resource Indicator (PRI)) field included in the request DCI. It may be determined based on at least one of.
  • the UE may use the resource condition (for example, PRI) set for the dropped HARQ-ACK (for example, the original HARQ-ACK). For example, the UE determines the retransmission timing (for example, retransmission slot) of HARQ-ACK based on the information regarding the HARQ-ACK timing included in the request DCI (for example, K1), and determines the already specified PRI (for example, PDSCH).
  • the resource to be used for retransmission of HARQ-ACK may be determined based on the PRI notified by DCI).
  • the request DCI may be configured so that the PRI is not included.
  • the UE may ignore the PRI field contained in the request DCI. As a result, it is possible to suppress an increase in the overhead of the request DCI.
  • the last dropped HARQ-ACK (or PUCCH resource) may be determined based on the timing at which the HARQ-ACK is transmitted (or the time domain in which the PUCCH resource is set). Alternatively, it may be determined based on the DCI transmission timing or PDSCH transmission timing corresponding to the HARQ-ACK (or PUCCH resource).
  • HARQ-ACK to be retransmitted can be flexibly controlled based on the transmission timing of the request DCI. As a result, it is possible to suppress an increase in the overhead of HARQ-ACK to be retransmitted and a decrease in throughput.
  • the UE may determine HARQ-ACK to perform retransmission based on the information notified from the base station.
  • the information notified from the base station may be at least one of DCI and higher layer signaling.
  • the UE may determine the HARQ-ACK to be retransmitted based on the request DCI instructing the retransmission of the HARQ-ACK (see FIG. 5).
  • the request DCI may include information that specifies the original HARQ-ACK (original HARQ-ACK) of the HARQ-ACK to be resent.
  • the case where the information regarding the offset between the request DCI and the original HARQ-ACK (or the original PUCCH resource) is included in the request DCI and notified to the UE is shown.
  • HARQ-ACK # 1 (or PUCCH resource # 1) corresponding to PDSCH # 1 and HARQ-ACK # 2 (or PUCCH resource # 2) corresponding to PDSCH # 2 have other high priorities. It shows the case where it collides with UL transmission (for example, PUCCH resource # 0 for URLLC) and is dropped.
  • PUCCH resource # 0 for URLLC
  • the UE may control to retransmit the HARQ-ACK specified in the request DCI.
  • the request DCI may specify the time interval (eg, index m) at which the HARQ-ACK (or dropped HARQ-ACK) to be resent was scheduled to be transmitted.
  • the time interval may be at least one of slots, subslots or symbols.
  • the request DCI may include an offset between the request DCI and the dropped HARQ-ACK (or PUCCH resource).
  • the offset may be referred to as a timing offset (eg, ⁇ t).
  • the UE may determine the HARQ-ACK (or the original HARQ-ACK) to be retransmitted based on the timing offset included in the request DCI.
  • the timing offset (eg, ⁇ t) may be set in a new field in the request DCI (eg DCI format 1-11, or 1-2) or in an existing field (eg, time allocation field (TDRA field)). ..
  • the timing offset value included in the request DCI is used to notify the interval between the slot in which the request DCI (or PDCCH) is transmitted and the slot in which the original HARQ-ACK is transmitted is shown. , Not limited to this.
  • information regarding HARQ-ACK requesting retransmission may be included in the request DCI and notified to the UE.
  • the UE may determine the HARQ-ACK to be retransmitted based on the information regarding the timing offset notified in the upper layer.
  • the timing offset (eg, ⁇ t) may be the interval between the slot in which the request DCI (or PDCCH) is transmitted and the slot in which the original HARQ-ACK is transmitted.
  • the UE may control to retransmit HARQ-ACK in slot n- ⁇ t.
  • the base station may set a plurality of timing offset values (candidate values) in the UE by higher layer signaling, and notify the UE of a specific candidate value by using DCI (for example, request DCI). This makes it possible to flexibly set the timing offset.
  • the UE may determine the HARQ-ACK (or original HARQ-ACK) to be retransmitted based on a preset value (eg, default value) when the timing offset is not notified by DCI or higher layer signaling. ..
  • the priority of the retransmitted HARQ-ACK may be set to the same as that of the original HARQ-ACK (dropped HARQ-ACK), or may be different. Priority may be set.
  • the request DCI may be configured not to include the priority information (for example, PriorityIndicator) field. As a result, it is possible to suppress an increase in the overhead of the request DCI.
  • the priority information for example, PriorityIndicator
  • the priority of the retransmitted HARQ-ACK may be set high. For example, even if the priority of the original HARQ-ACK (dropped HARQ-ACK) is low, a high priority (for example, high) may be set when retransmitting the dropped HARQ-ACK. .. A high priority may be set by the request DCI, or the priority of HARQ-ACK retransmitted on the UE side may be assumed to be high without including information on the priority in the request DCI. As a result, the retransmission of HARQ-ACK can be prioritized.
  • the request DCI may be a DCI that schedules PDSCH.
  • the request DCI may be UE-specific (eg, specific or dedicated), and for example, at least one of DCI format 1-11 and DCI format 1-22 may be utilized.
  • the request DCI reports the channel state information reference signal (for example, CSI-RS) / channel state information (for example, A) in addition to the configuration for scheduling the PDSCH (or instead of the configuration for scheduling the PDSCH).
  • CSI report may also be configured to schedule / instruct.
  • the UE may determine whether or not the received DCI is a request DCI based on a predetermined field included in the DCI. For example, when a field related to a HARQ-ACK retransmission request (for example, requestHarqReTx) is set to DCI and the bit of the field is "1", it functions as a request DCI, and when the bit is "0", it functions as a request DCI. It may be a configuration that does not function as. Alternatively, other fields may be used to notify whether the request is DCI or not. Alternatively, RNTI applied to DCI may be used to notify whether or not the request DCI is made.
  • a field related to a HARQ-ACK retransmission request for example, requestHarqReTx
  • the UE may resend a predetermined HARQ-ACK using a predetermined resource.
  • the new resource used to retransmit the HARQ-ACK is based on at least one of the HARQ-ACK timing information (eg, K1) and the PUCCH resource identifier (PUCCH Resource Indicator (PRI)) field contained in the request DCI. It may be decided.
  • K1 the HARQ-ACK timing information
  • PRI PUCCH Resource Indicator
  • the first HARQ-ACK corresponds to the first PDSCH scheduled in the first DCI, and the first resource may be specified in the first DCI (and higher layer signaling).
  • the second HARQ-ACK corresponds to the second PDSCH scheduled in the second DCI, and the second resource may be specified in the second DCI (and higher layer signaling).
  • the priority of the first HARQ-ACK may be notified by the first DCI and the priority of the second HARQ-ACK may be notified by the second DCI.
  • the UE uses the first resource to transmit the first HARQ-ACK and does not transmit the second HARQ-ACK (or does not transmit the HARQ-ACK using the second resource). ) May be controlled.
  • the UE receives the request DCI (for example, the third DCI) instructing the retransmission of the HARQ-ACK, the UE controls to transmit the second HARQ-ACK by using the resource specified by the request DCI. You may.
  • the UE controls the reception of the PDSCH scheduled by the request DCI.
  • the HARQ-ACK for the PDSCH scheduled by the request DCI may be configured to be transmitted using a predetermined resource, or may be configured not to be transmitted.
  • the UE may apply at least one of the following options 2-1 to 2-2 to the HARQ-ACK for the PDSCH scheduled in the request DCI.
  • the UE may use the resource specified in the request DCI to retransmit the dropped HARQ-ACK and may not use it to transmit the HARQ-ACK to the PDSCH scheduled in the request DCI (see FIG. 6). In this case, the UE may control the request DCI not to send (or not report, drop) HARQ-ACK for the newly scheduled PDSCH.
  • HARQ-ACK # 1 (or PUCCH resource # 1) corresponding to PDSCH # 1 and HARQ-ACK # 2 (or PUCCH resource # 2) corresponding to PDSCH # 2 have other high priorities. It shows the case where it collides with UL transmission (for example, PUCCH resource # 0 for URLLC) and is dropped.
  • PUCCH resource # 0 for URLLC
  • the case where the PUCCH resource # 1 and the PUCCH resource # 2 are the same PUCCH resource (or the PUCCH resource set in the same slot) is shown.
  • FIG. 6 shows a case where the request DCI is transmitted after HARQ-ACK # 1 and # 2 are dropped. It also indicates that PDSCH # 3 is scheduled by request DCI.
  • the UE controls to retransmit HARQ-ACK # 1 and # 2 by using the resource specified in the request DCI (here, PUCCH resource # 3).
  • PUCCH resource # 3 the resource specified in the request DCI
  • HARQ-ACK # 3 for PDSCH # 3 scheduled by the request DCI is controlled not to be transmitted in the PUCCH resource # 3.
  • the UE controls not to map or multiplex the HARQ-ACK for the PDSCH scheduled by the request DCI and the HARQ-ACK for resending to the same resource (here, PUCCH resource # 3).
  • HARQ-ACK # 3 may be controlled to be transmitted by another resource, or may be controlled not to be transmitted itself.
  • the resource specified in the request DCI may be determined based on at least one of the K1 and PRI fields included in the request DCI. Also, the HARQ-ACK bit (or HARQ-ACK payload) transmitted by PUCCH resource # 3 takes into account the dropped HARQ-ACK or the original HARQ-ACK (without considering HARQ-ACK # 3). ) May be decided.
  • the PDSCH # 3 scheduled in the request DCI or HARQ-ACK # 3 for the PDSCH # 3 may be a PDSCH or HARQ-ACK with a low priority. That is, the PDSCH scheduled in the request DCI or the priority set in HARQ-ACK for the PDSCH may be limited (for example, limited to low). As a result, it is possible to prevent the HARQ-ACK having a high priority from being transmitted or being delayed.
  • the UE may use the resource specified in the request DCI to retransmit the dropped HARQ-ACK and to transmit the HARQ-ACK to the PDSCH scheduled in the request DCI (see FIG. 7).
  • the UE may control the HARQ-ACK for the PDSCH newly scheduled in the request DCI and the HARQ-ACK to be retransmitted to be included in the same HARQ-ACK codebook and transmitted.
  • HARQ-ACK # 1 (or PUCCH resource # 1) corresponding to PDSCH # 1 and HARQ-ACK # 2 (or PUCCH resource # 2) corresponding to PDSCH # 2 have other high priorities. It shows the case where it collides with UL transmission (for example, PUCCH resource # 0 for URLLC) and is dropped.
  • PUCCH resource # 0 for URLLC
  • the case where the PUCCH resource # 1 and the PUCCH resource # 2 are the same PUCCH resource (or the PUCCH resource set in the same slot) is shown.
  • FIG. 7 shows a case where the request DCI is transmitted after HARQ-ACK # 1 and # 2 are dropped. It also indicates that PDSCH # 3 is scheduled by request DCI.
  • the UE controls to retransmit HARQ-ACK # 1 and # 2 and transmit HARQ-ACK # 3 by using the resource specified in the request DCI (here, PUCCH resource # 3). That is, the UE controls to map or multiplex the HARQ-ACK for the PDSCH scheduled in the request DCI and the HARQ-ACK for resending to the same resource (here, PUCCH resource # 3).
  • the PDSCH # 3 scheduled in the request DCI or HARQ-ACK # 3 for the PDSCH # 3 may be a PDSCH or HARQ-ACK with a low priority. That is, the PDSCH scheduled in the request DCI or the priority set in HARQ-ACK for the PDSCH may be limited (for example, limited to low). This makes it possible to match the priority of HARQ-ACK that maps or multiplexes to the same resource.
  • the UE determines the HARQ-ACK (for example, the dropped second HARQ-ACK) to be retransmitted based on the request DCI based on at least one of options 1-1 to 1-3 of the first aspect. You may. That is, the UE may apply the option 2-1 or 2-2 in combination with at least one of the options 1-1 to 1-3 of the first aspect.
  • the UE When the UE receives the request DCI (or PDCCH) instructing the retransmission of the predetermined HARQ-ACK, the UE so as to retransmit (or retransmit, feedback, transmit) the predetermined HARQ-ACK based on the request DCI. It may be controlled to.
  • the predetermined HARQ-ACK may be a HARQ-ACK that was not transmitted (eg, dropped or postponed) due to a collision with another UL transmission.
  • the request DCI may be a DCI that does not schedule UL data (eg, UL-SCH).
  • the request DCI may be UE-specific (eg, specific or dedicated), and for example, at least one of DCI format 0_1 and DCI format 0_2 may be utilized.
  • the request DCI reports the channel state information reference signal (for example, CSI-RS) / channel state information (for example, in addition to the configuration in which the UL data is not scheduled) (or instead of the configuration in which the UL data is not scheduled).
  • CSI-RS channel state information reference signal
  • A-CSI report may also be configured without schedule / instruction.
  • the UE may determine whether or not the received DCI is a request DCI based on a predetermined field included in the DCI. For example, when a field related to a HARQ-ACK retransmission request (for example, requestHarqReTx) is set to DCI and the bit of the field is "1", it functions as a request DCI, and when the bit is "0", it functions as a request DCI. It may be a configuration that does not function as. Alternatively, other fields may be used to notify whether the request is DCI or not. Alternatively, RNTI applied to DCI may be used to notify whether or not the request DCI is made.
  • a field related to a HARQ-ACK retransmission request for example, requestHarqReTx
  • the UE may resend a predetermined HARQ-ACK using a predetermined resource.
  • the resource used for retransmission of HARQ-ACK may be PUSCH scheduled or set in the request DCI.
  • the resource may be read as a PUSCH resource.
  • the PUSCH resource used for retransmission of HARQ-ACK may be determined based on at least one of the time allocation field and the frequency allocation field included in the request DCI. Further, HARQ-ACK to be retransmitted is mapped to the PUSCH resource, and UL data / A-CSI / SRS may not be mapped.
  • the first HARQ-ACK corresponds to the first PDSCH scheduled in the first DCI, and the first resource may be specified in the first DCI (and higher layer signaling).
  • the second HARQ-ACK corresponds to the second PDSCH scheduled in the second DCI, and the second resource may be specified in the second DCI (and higher layer signaling).
  • the priority of the first HARQ-ACK may be notified by the first DCI and the priority of the second HARQ-ACK may be notified by the second DCI.
  • the UE uses the first resource to transmit the first HARQ-ACK and does not transmit the second HARQ-ACK (or does not transmit the HARQ-ACK using the second resource). ) May be controlled.
  • the UE receives the request DCI (for example, the third DCI) instructing the retransmission of the HARQ-ACK
  • the UE uses the resource (for example, PUSCH) specified by the request DCI to perform the second HARQ-ACK. It may be controlled to transmit.
  • the UE determines the HARQ-ACK (for example, the dropped second HARQ-ACK) to be retransmitted based on the request DCI based on at least one of options 1-1 to 1-3 of the first aspect. You may. For example, in option 1-1 to option 1-3 of the first aspect, the resource set in the request DCI may be replaced with the PUCCH resource from the PUCCH resource.
  • FIG. 8 shows an example in which HARQ-ACK is retransmitted using the PUSCH resource by applying option 1-2 of the first aspect. That is, FIG. 8 shows a case where the UE controls to feed back (for example, retransmit) the latest (for example, latest) dropped HARQ-ACK based on the request DCI.
  • HARQ-ACK # 1 (or PUCCH resource # 1) corresponding to PDSCH # 1 collides with another high-priority UL transmission (for example, PUCCH resource # 0a for URLLC) and is dropped. Shows the case.
  • HARQ-ACK # 2 (or PUCCH resource # 2) corresponding to PDSCH # 2 and HARQ-ACK # 3 (or PUCCH resource # 3) corresponding to PDSCH # 3 are other UL transmissions having high priority.
  • PUCCH resource # 0b for URLLC PUCCH resource # 0b for URLLC
  • FIG. 8 shows a case where the request DCI is transmitted after HARQ-ACK # 2 and # 3 are dropped. That is, after HARQ-ACK # 1 is dropped, HARQ-ACK # 2 and # 3 are dropped before the request DCI is transmitted.
  • the UE when the UE receives the request DCI, if there are a plurality of dropped HARQ-ACKs, the last dropped HARQ-ACK (or the HARQ- corresponding to the last PUCCH resource not used for transmission). You may control to retransmit ACK).
  • the HARQ-ACK to be resent may be determined for each PUCCH resource. That is, when the HARQ-ACK corresponding to the same PUCCH resource (or the PUCCH resource set in the same slot) is dropped (HARQ-ACK # 2 and # 3 in FIG. 8), the plurality of HARQ-ACKs are used. It may be controlled to retransmit.
  • the UE since HARQ-ACK # 2 and # 3 correspond to the last dropped PUCCH resource, the UE retransmits the HARQ-ACK # 2 and # 3 using the PUSCH resource specified in the request DCI. It may be controlled to do so.
  • the resource specified in the request DCI (for example, here, the PUSCH resource) may be determined based on the PUSCH allocation information included in the request DCI.
  • HARQ-ACK to be retransmitted can be flexibly controlled based on the transmission timing of the request DCI. As a result, it is possible to suppress an increase in the overhead of HARQ-ACK to be retransmitted and a decrease in throughput.
  • the UE When the UE receives the request DCI (or PDCCH) instructing the retransmission of the predetermined HARQ-ACK, the UE so as to retransmit (or retransmit, feedback, transmit) the predetermined HARQ-ACK based on the request DCI. It may be controlled to.
  • the predetermined HARQ-ACK may be a HARQ-ACK that was not transmitted (eg, dropped or postponed) due to a collision with another UL transmission.
  • the request DCI may be a DCI that schedules UL data (eg, UL-SCH).
  • the request DCI may be UE-specific (eg, specific or dedicated), and for example, at least one of DCI format 0_1 and DCI format 0_2 may be utilized.
  • the request DCI reports the channel state information reference signal (for example, CSI-RS) / channel state information (for example, in addition to the configuration for scheduling UL data) in addition to the configuration for scheduling UL data (or instead of the configuration for scheduling UL data).
  • CSI-RS channel state information reference signal
  • A-CSI report may be scheduled / instructed.
  • the UE may determine whether or not the received DCI is a request DCI based on a predetermined field included in the DCI. For example, when a field related to a HARQ-ACK retransmission request (for example, requestHarqReTx) is set to DCI and the bit of the field is "1", it functions as a request DCI, and when the bit is "0", it functions as a request DCI. It may be a configuration that does not function as. Alternatively, other fields may be used to notify whether the request is DCI or not. Alternatively, RNTI applied to DCI may be used to notify whether or not the request DCI is made.
  • a field related to a HARQ-ACK retransmission request for example, requestHarqReTx
  • the UE may resend a predetermined HARQ-ACK using a predetermined resource.
  • the resource used for retransmission of HARQ-ACK may be PUSCH scheduled or set in the request DCI.
  • the resource may be read as a PUSCH resource.
  • the PUSCH resource used for retransmission of HARQ-ACK may be determined based on at least one of the time allocation field and the frequency allocation field included in the request DCI. Further, the retransmitted HARQ-ACK and UL data / A-CSI / SRS may be mapped to the PUSCH resource.
  • the first HARQ-ACK corresponds to the first PDSCH scheduled in the first DCI, and the first resource may be specified in the first DCI (and higher layer signaling).
  • the second HARQ-ACK corresponds to the second PDSCH scheduled in the second DCI, and the second resource may be specified in the second DCI (and higher layer signaling).
  • the priority of the first HARQ-ACK may be notified by the first DCI and the priority of the second HARQ-ACK may be notified by the second DCI.
  • the UE uses the first resource to transmit the first HARQ-ACK and does not transmit the second HARQ-ACK (or does not transmit the HARQ-ACK using the second resource). ) May be controlled.
  • the UE receives the request DCI (for example, the third DCI) instructing the retransmission of the HARQ-ACK
  • the UE uses the resource (for example, PUSCH) specified by the request DCI to perform the second HARQ-ACK. It may be controlled to transmit.
  • the UE determines the HARQ-ACK (for example, the dropped second HARQ-ACK) to be retransmitted based on the request DCI based on at least one of options 1-1 to 1-3 of the first aspect. You may. For example, in option 1-1 to option 1-3 of the first aspect, the resource set in the request DCI may be replaced with the PUCCH resource from the PUCCH resource.
  • FIG. 9 shows an example in which HARQ-ACK is retransmitted using the PUSCH resource by applying option 1-2 of the first aspect. That is, FIG. 9 shows a case where the UE controls to feed back (for example, retransmit) the latest (for example, latest) dropped HARQ-ACK based on the request DCI.
  • HARQ-ACK # 1 (or PUCCH resource # 1) corresponding to PDSCH # 1 collides with another high-priority UL transmission (for example, PUCCH resource # 0a for URLLC) and is dropped. Shows the case.
  • HARQ-ACK # 2 (or PUCCH resource # 2) corresponding to PDSCH # 2 and HARQ-ACK # 3 (or PUCCH resource # 3) corresponding to PDSCH # 3 are other UL transmissions having high priority.
  • PUCCH resource # 0b for URLLC PUCCH resource # 0b for URLLC
  • FIG. 9 shows a case where the request DCI is transmitted after HARQ-ACK # 2 and # 3 are dropped. That is, after HARQ-ACK # 1 is dropped, HARQ-ACK # 2 and # 3 are dropped before the request DCI is transmitted.
  • the UE when the UE receives the request DCI, if there are a plurality of dropped HARQ-ACKs, the last dropped HARQ-ACK (or the HARQ- corresponding to the last PUCCH resource not used for transmission). You may control to retransmit ACK).
  • the HARQ-ACK to be resent may be determined for each PUCCH resource. That is, when the HARQ-ACK corresponding to the same PUCCH resource (or the PUCCH resource set in the same slot) is dropped (HARQ-ACK # 2 and # 3 in FIG. 9), the plurality of HARQ-ACKs are used. It may be controlled to retransmit.
  • the UE since HARQ-ACK # 2 and # 3 correspond to the last dropped PUCCH resource, the UE retransmits the HARQ-ACK # 2 and # 3 using the PUSCH resource specified in the request DCI. It may be controlled to do so.
  • the resource specified in the request DCI (for example, here, the PUSCH resource) may be determined based on the PUSCH allocation information included in the request DCI.
  • the UE may map or multiplex the UL data scheduled by the request DCI and HARQ-ACK # 2 and # 3 to the PUSCH resource specified by the request DCI.
  • HARQ-ACK to be retransmitted can be flexibly controlled based on the transmission timing of the request DCI. As a result, it is possible to suppress an increase in the overhead of HARQ-ACK to be retransmitted and a decrease in throughput.
  • the UE may retransmit the HARQ-ACK that was not transmitted (or dropped) in the first to fourth aspects described above, but the present invention is not limited to this. Even if the UE transmits HARQ-ACK, if the base station cannot receive the HARQ-ACK, the base station may instruct the retransmission of the HARQ-ACK using the request DCI. .. In this case, the UE may retransmit the transmitted HARQ-ACK.
  • the retransmission of HARQ-ACK may be instructed by using DCI which is not used for scheduling DL transmission or UL transmission.
  • the base station may notify the UE of HARQ-ACK corresponding to the HARQ-ACK process number / CC index to be retransmitted by using the predetermined field of the request DCI.
  • HARQ-ACK may be a HARQ-ACK bit for PDSCH.
  • the predetermined field may be a new field composed of predetermined bits (x bits).
  • the predetermined field is Rel.
  • the existing field defined in 15 (for example, at least one of the TDRA field, the TDRA table, and the field for the HARQ-ACK process number) may be read and used. The replacement of existing fields may be set by higher layer signaling.
  • a case where retransmission is performed for HARQ-ACK having a low priority (for example, low) is shown, but the present invention is not limited to this. It may be controlled to retransmit the HARQ-ACK having a high priority (for example, high). Alternatively, the HARQ-ACK that is retransmitted by the request DCI may be limited to the HARQ-ACK having a low priority.
  • the retransmission of HARQ-ACK When the retransmission of HARQ-ACK is instructed regardless of the priority of HARQ-ACK, the retransmission of HARQ-ACK of either one of the priorities may be instructed for each request DCI.
  • the UE may determine which priority retransmission is instructed based on the request DCI.
  • whether or not the predetermined HARQ-ACK retransmission control or retransmission operation is applied may be notified or set from the base station to the UE by higher layer signaling.
  • a predetermined HARQ-ACK retransmission control may be supported for a certain UE, and a predetermined HARQ-ACK retransmission control may not be supported for another UE.
  • the presence or absence of support for a predetermined HARQ-ACK retransmission control may be controlled for each UE based on the UE capability / upper layer signaling.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the radio communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 11 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may receive the UL transmission.
  • the transmission / reception unit 120 may transmit downlink control information including information regarding retransmission of HARQ-ACK.
  • the control unit 110 may control the reception of the HARQ-ACK that is retransmitted by using the resource notified by the downlink control information.
  • FIG. 12 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 may transmit the UL transmission.
  • the transmission / reception unit 220 may receive downlink control information including information regarding retransmission of HARQ-ACK.
  • the control unit 210 may control the retransmission of the HARQ-ACK by using the resource notified by the downlink control information.
  • the downlink control information may have a configuration that does not instruct the schedule of the downlink shared channel.
  • the control unit 210 When the downlink control information indicates the schedule of the downlink shared channel, the control unit 210 does not transmit the HARQ-ACK to the downlink shared channel, or uses the resource used for retransmission of the HARQ-ACK to the downlink shared channel. It may be controlled to transmit HARQ-ACK.
  • control unit 210 may control the retransmission of the HARQ-ACK by using the uplink shared channel.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • Ultra-WideBand (UWB), Bluetooth®, other systems utilizing appropriate wireless communication methods, next-generation systems extended based on these, and the like may be applied.
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を送信する送信部と、前記HARQ-ACKの再送に関する情報を含む下り制御情報を受信する受信部と、前記下り制御情報で通知されるリソースを利用して前記HARQ-ACKの再送を制御する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 また、既存システムでは、UEがDLデータ(例えば、PDSCH)に対して送達確認信号(HARQ-ACK、ACK/NACK又はA/N)をフィードバックすることにより、PDSCHの再送が制御される構成がサポートされている。
 将来の無線通信システム(例えば、5G、NRなど)では、例えば、高速及び大容量(例えば、eMBB:enhanced Mobile Broad Band)、超多数端末(例えば、mMTC:massive Machine Type Communication、IoT:Internet of Things)、超高信頼及び低遅延(例えば、URLLC:Ultra Reliable and Low Latency Communications)など、要件(requirement)が異なる複数のトラフィックタイプ(サービス、タイプ、サービスタイプ、通信タイプ、又はユースケース等ともいう)が混在することが想定される。
 Rel-16以降のNRでは、所定のトラフィックタイプ又は要求条件に応じて、所定の信号(例えば、HARQ-ACK)に対して優先度が設定され、当該優先度に基づいて送信処理又は受信処理(例えば、複数信号の衝突時の処理等)が制御されることが検討されている。
 しかしながら、優先度(又は、トラフィックタイプ)が異なる信号が衝突した場合等の送信処理又は受信処理をどのように制御するかについて、十分に検討されていない。
 そこで、本開示は、複数のトラフィックタイプを利用して通信を行う場合であっても通信を適切に行うことができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を送信する送信部と、前記HARQ-ACKの再送に関する情報を含む下り制御情報を受信する受信部と、前記下り制御情報で通知されるリソースを利用して前記HARQ-ACKの再送を制御する制御部と、を有することを特徴とする。
 本開示の一態様によれば、複数のトラフィックタイプを利用して通信を行う場合であっても通信を適切に行うことができる。
図1は、サービスタイプ毎にHARQ-ACKフィードバックを行う場合の一例を示す図である。 図2は、1ショットHARQ-ACKフィードバック制御の一例を示す図である。 図3は、優先度が異なるHARQ-ACK(又は、PUCCHリソース)が衝突する場合の一例を示す図である。 図4は、第1の態様に係るHARQ-ACKの再送制御の一例を示す図である。 図5は、第1の態様に係るHARQ-ACKの再送制御の他の例を示す図である。 図6は、第2の態様に係るHARQ-ACKの再送制御の一例を示す図である。 図7は、第2の態様に係るHARQ-ACKの再送制御の他の例を示す図である。 図8は、第3の態様に係るHARQ-ACKの再送制御の一例を示す図である。 図9は、第4の態様に係るHARQ-ACKの再送制御の一例を示す図である。 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図11は、一実施形態に係る基地局の構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。
<サービス(トラフィックタイプ)>
 将来の無線通信システム(例えば、NR)では、モバイルブロードバンドのさらなる高度化(例えば、enhanced Mobile Broadband(eMBB))、多数同時接続を実現するマシンタイプ通信(例えば、massive Machine Type Communications(mMTC)、Internet of Things(IoT))、高信頼かつ低遅延通信(例えば、Ultra-Reliable and Low-Latency Communications(URLLC))などのトラフィックタイプ(タイプ、サービス、サービスタイプ、通信タイプ、ユースケース、等ともいう)が想定される。例えば、URLLCでは、eMBBより小さい遅延及びより高い信頼性が要求される。
 トラフィックタイプは、物理レイヤにおいては、以下の少なくとも一つに基づいて識別されてもよい。
・異なる優先度(priority)を有する論理チャネル
・変調及び符号化方式(Modulation and Coding Scheme(MCS))テーブル(MCSインデックステーブル)
・チャネル品質指示(Channel Quality Indication(CQI))テーブル
・DCIフォーマット
・当該DCI(DCIフォーマット)に含まれる(付加される)巡回冗長検査(CRC:Cyclic Redundancy Check)ビットのスクランブル(マスク)に用いられる(無線ネットワーク一時識別子(RNTI:System Information-Radio Network Temporary Identifier))
・RRC(Radio Resource Control)パラメータ
・特定のRNTI(例えば、URLLC用のRNTI、MCS-C-RNTI等)
・サーチスペース
・DCI内の所定フィールド(例えば、新たに追加されるフィールド又は既存のフィールドの再利用)
 具体的には、PDSCHに対するHARQ-ACK(又は、PUCCH)のトラフィックタイプは、以下の少なくとも一つに基づいて決定されてもよい。
・当該PDSCHの変調次数(modulation order)、ターゲット符号化率(target code rate)、トランスポートブロックサイズ(TBS:Transport Block size)の少なくとも一つの決定に用いられるMCSインデックステーブル(例えば、MCSインデックステーブル3を利用するか否か)
・当該PDSCHのスケジューリングに用いられるDCIのCRCスクランブルに用いられるRNTI(例えば、C-RNTI又はMCS-C-RNTIのどちらでCRCスクランブルされるか)
・上位レイヤシグナリングで設定される優先度
 トラフィックタイプは、通信要件(遅延、誤り率などの要件、要求条件)、データ種別(音声、データなど)などに関連付けられてもよい。
 URLLCの要件とeMBBの要件の違いは、URLLCの遅延(latency)がeMBBの遅延よりも小さいことであってもよいし、URLLCの要件が信頼性の要件を含むことであってもよい。
 例えば、eMBBのuser(U)プレーン遅延の要件は、下りリンクのUプレーン遅延が4msであり、上りリンクのUプレーン遅延が4msであること、を含んでもよい。一方、URLLCのUプレーン遅延の要件は、下りリンクのUプレーン遅延が0.5msであり、上りリンクのUプレーン遅延が0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーン遅延において、32バイトの誤り率が10-5であることを含んでもよい。
 また、enhanced Ultra Reliable and Low Latency Communications(eURLLC)として、主にユニキャストデータ用のトラフィックの信頼性(reliability)の高度化が検討されている。以下において、URLLC及びeURLLCを区別しない場合、単にURLLCと呼ぶ。
(HARQ-ACKコードブック)
 UEは、1以上の送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK))のビットから構成されるHARQ-ACKコードブック単位で、1つのPUCCHリソースを用いてHARQ-ACKフィードバックを送信してもよい。HARQ-ACKビットは、HARQ-ACK情報、HARQ-ACK情報ビットなどと呼ばれてもよい。
 ここで、HARQ-ACKコードブックは、時間領域(例えば、スロット)、周波数領域(例えば、コンポーネントキャリア(Component Carrier(CC)))、空間領域(例えば、レイヤ)、トランスポートブロック(Transport Block(TB))、及びTBを構成するコードブロックグループ(Code Block Group(CBG))の少なくとも1つの単位でのHARQ-ACK用のビットを含んで構成されてもよい。HARQ-ACKコードブックは、単にコードブックと呼ばれてもよい。
 なお、HARQ-ACKコードブックに含まれるビット数(サイズ)等は、準静的(semi-static)又は動的に(dynamic)決定されてもよい。準静的にサイズが決定されるHARQ-ACKコードブックは、準静的HARQ-ACKコードブック、タイプ1HARQ-ACKコードブックなどとも呼ばれる。動的にサイズが決定されるHARQ-ACKコードブックは、動的HARQ-ACKコードブック、タイプ2HARQ-ACKコードブックなどとも呼ばれる。
 タイプ1HARQ-ACKコードブック及びタイプ2HARQ-ACKコードブックのいずれを用いるかは、上位レイヤパラメータ(例えば、pdsch-HARQ-ACK-Codebook)を用いてUEに設定されてもよい。
 タイプ1HARQ-ACKコードブックの場合、UEは、所定範囲(例えば、上位レイヤパラメータに基づいて設定される範囲)において、PDSCHのスケジューリングの有無に関係なく、当該所定範囲に対応するPDSCH候補(又はPDSCH機会(オケージョン))に対するHARQ-ACKビットをフィードバックしてもよい。
 当該所定範囲は、所定期間(例えば、候補となるPDSCH受信用の所定数の機会(occasion)のセット、又は、PDCCHの所定数のモニタリング機会(monitoring occasion))、UEに設定又はアクティブ化されるCCの数、TBの数(レイヤ数又はランク)、1TBあたりのCBG数、空間バンドリングの適用の有無、の少なくとも1つに基づいて定められてもよい。当該所定範囲は、HARQ-ACKウィンドウ、HARQ-ACKバンドリングウィンドウ、HARQ-ACKフィードバックウィンドウなどとも呼ばれる。
 タイプ1HARQ-ACKコードブックでは、所定範囲内であれば、UEに対するPDSCHのスケジューリングが無い場合でも、UEは、当該PDSCHに対するHARQ-ACKビットをコードブック内に確保する。UEは、当該PDSCHが実際にはスケジューリングされてないと判断した場合、当該ビットをNACKビットとしてフィードバックできる。
 一方、タイプ2HARQ-ACKコードブックの場合、UEは、上記所定範囲において、スケジューリングされたPDSCHに対するHARQ-ACKビットをフィードバックしてもよい。
 具体的には、UEは、タイプ2HARQ-ACKコードブックのビット数を、DCI内の所定フィールド(例えば、DL割り当てインデックス(Downlink Assignment Indicator(Index)(DAI))フィールド)に基づいて決定してもよい。DAIフィールドは、カウンタDAI(Counter DAI(C-DAI))及びトータルDAI(Total DAI(T-DAI))を含んでもよい。
 C-DAIは、所定期間内でスケジューリングされる下り送信(PDSCH、データ、TB)のカウンタ値を示してもよい。例えば、当該所定期間内にデータをスケジューリングするDCI内のC-DAIは、当該所定期間内で最初に周波数領域(例えば、CC)で、その後に時間領域でカウントされた数を示してもよい。例えば、C-DAIは、所定期間に含まれる1つ以上のDCIについて、サービングセルインデックスの昇順で、次にPDCCHモニタリング機会の昇順でPDSCH受信又はSPSリリースをカウントした値に該当してもよい。
 T-DAIは、所定期間内でスケジューリングされるデータの合計値(総数)を示してもよい。例えば、当該所定期間内のある時間ユニット(例えば、PDCCHモニタリング機会)においてデータをスケジューリングするDCI内のT-DAIは、当該所定期間内で当該時間ユニット(ポイント、タイミングなどともいう)までにスケジューリングされたデータの総数を示してもよい。
 また、異なるサービスタイプ(又は、異なる優先度が設定されたPDSCH又はHARQ-ACK)に対して、HARQ-ACKコードブックが別々に設定されることが検討されている(図1参照)。つまり、複数のサービスタイプ(又は、複数の優先度)をサポートするために、複数のHARQ-ACKコードブックが同時に構成されることが考えられる。例えば、URLLC(例えば、第1の優先度)に対応する第1のHARQ-ACKコードブック(CB#1)と、eMBB(例えば、第2の優先度)に対応する第2のHARQ-ACKコードブック(CB#2)が構成されてもよい。
 この場合、第1のHARQ-ACKコードブックに対応する第1のPUCCH設定パラメータ(例えば、PUCCH configuration、又はPUCH configuration parameters)と、第2のHARQ-ACKコードブックに対応する第2のPUCCH設定パラメータは別々にサポート又は設定されてもよい。PUCCH設定パラメータは、HARQ-ACKの送信に適用するPUCCHリソース(又は、PUCCHリソースセット)、PUCCHの送信タイミング(例えば、K1セット)、最大符号化率(例えば、max-code rate)及びPUCCHの送信電力の少なくとも一つであってもよい。
 この場合、第1のPUCCH設定情報は、URLLC用のHARQ-ACKフィードバックに適用され、第2のPUCCH設定情報は、eMBB用のHARQ-ACKフィードバックに適用されてもよい。
<HARQプロセス>
 キャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)が設定されたUEに対し、セル(CC)またはセルグループ(CG)ごとに1つの独立したHARQエンティティ(entity)が存在してもよい。HARQエンティティは、複数のHARQプロセスを並行して管理してもよい。
 無線通信システムでは、データ送信はスケジューリングに基づき、Downlink(DL)データ送信のスケジューリング情報は下り制御情報(DCI)で搬送される。図1は、HARQエンティティ、HARQプロセスおよびDCIの関係の一例を示す図である。HARQプロセスに対しHARQプロセス番号(HARQ Process Number(HPN))が与えられる。DCIは、現在のデータ送信に使用されるHARQプロセス番号を示す4ビットのHARQプロセス番号フィールドを含む。HARQエンティティは、複数(最大16個)のHARQプロセスを並行して管理する。すなわち、HARQプロセス番号は、HPN0からHPN15まで存在する。HARQプロセス番号は、HARQプロセスID(HARQ process identifier)とも呼ばれる。
 Uplink(UL)データをPhysical Uplink Shared Channel(PUSCH)で送信する単位、および、DLデータをPhysical Downlink Shared Channel(PDSCH)で送信する単位は、トランスポートブロック(Transport Block(TB))と呼ばれてもよい。TBは、Media Access Control(MAC)層によって扱われる単位である。HARQ(再送信)の制御は、TBごとに行われてもよいし、TB内の1つ以上のコードブロック(Code Block(CB))を含むコードブロックグループ(Code Block Group(CBG))ごとに行われてもよい。
 ユーザ端末は、PDSCHを使用して受信したDLトランスポートブロックの復号に成功したか否かを示すHARQの肯定応答(Positive Acknowledgement(ACK))/否定応答(Negative Acknowledgement(NACK))を示す情報を、PUCCH(Physical Uplink Control Channel)またはPUSCHなどを使用して基地局へ送信する。
 物理層で複数のULデータまたは複数のDLデータが空間多重(spatial multiplexing)されない場合、単一のHARQプロセスは、1つのトランスポートブロック(TB)に対応する。物理層で複数のULデータまたは複数のDLデータが空間多重される場合、単一のHARQプロセスは、1または複数のトランスポートブロック(TB)に対応してもよい。
<1ショットHARQ-ACKフィードバック>
 Rel.16以降では、UEにおけるLBTの失敗又は基地局におけるPUCCHの検出ミスによるHARQ-ACKフィードバック用の送信機会を提供するために、全てのHARQ-ACKプロセスを含むHARQ-ACKコードブックのフィードバックをUEに要求又はトリガすることが検討されている(図2参照)。HARQ-ACKプロセス(例えば、DL HARQ-ACKプロセス)は、PUCCHグループにおいてUEに設定された全てのCCにおけるHARQ-ACKにであってもよい。
 図2では、1ショットHARQ-ACKフィードバックの要求に応じて、HARQ-ACKプロセス#0、#2、#4をフィードバックする場合を示している。
 全てのCCにおける全てのHARQ-ACKプロセスを含むHARQ-ACK(又は、HARQ-ACKコードブック)のフィードバックは、1ショットHARQ-ACKフィードバックと呼ばれてもよい。1ショットHARQ-ACKフィードバックは、基地局からUEに所定のDCIフォーマットを利用して通知してもよい。所定のDCIフォーマットは、UE固有のDCIフォーマット(例えば、DCIフォーマット1_1)であってもよい。
 1ショットHARQ-ACKフィードバックを要求又はトリガーされたUEは、設定された各CCにおける複数(例えば、全て)のHARQ-ACKプロセスを含むコードブックをPUCCHを利用してフィードバックしてもよい。
 このように、1ショットHARQ-ACKフィードバックが導入されることが想定される。1ショットHARQ-ACKフィードバックは、1回のHARQ-ACKフィードバック、単一HARQ-ACKフィードバック、又は1ショットHARQ-ACK等と呼ばれてもよい。
<優先度の設定>
 Rel.16以降のNRでは、所定の信号又はチャネルに対して複数レベル(例えば、2レベル)の優先度を設定することが検討されている。例えば、異なるトラフィックタイプ(サービス、サービスタイプ、通信タイプ、ユースケース等ともいう)にそれぞれ対応する信号又はチャネル毎に別々の優先度を設定して通信を制御(例えば、衝突時の送信制御等)を行うことが想定される。これにより、同じ信号又はチャネルに対して、サービスタイプ等に応じて異なる優先度を設定して通信を制御することが可能となる。
 優先度は、信号(例えば、HARQ-ACK等のUCI、参照信号等)、チャネル(PDSCH、PUSCH等)、又はHARQ-ACKコードブック等に対して設定されてもよい。優先度は、第1の優先度(例えば、High)と、当該第1の優先度より優先度が低い第2の優先度(例えば、Low)で定義されてもよい。あるいは、3種類以上の優先度が設定されてもよい。優先度に関する情報は、上位レイヤシグナリング及びDCIの少なくとも一つを利用して基地局からUEに通知されてもよい。
 例えば、動的にスケジュールされるPDSCH用のHARQ-ACK、セミパーシステントPDSCH(SPS PDSCH)用のHARQ-ACK、SPS PDSCHリリース用のHARQ-ACKに対して優先度が設定されてもよい。あるいは、これらのHARQ-ACKに対応するHARQ-ACKコードブックに対して優先度が設定されてもよい。なお、PDSCHに優先度を設定する場合、PDSCHの優先度を当該PDSCHに対するHARQ-ACKの優先度と読み替えてもよい。
 UEは、異なるUL信号/ULチャネルが衝突する場合、優先度に基づいてUL送信を制御してもよい。例えば、優先度が高いUL送信を行い、優先度が低いUL送信を行わない(例えば、ドロップする)ように制御してもよい。
 異なるUL信号/ULチャネルが衝突するとは、異なるUL信号/ULチャネルにそれぞれ対応するリソースがオーバーラップする場合、又は異なるUL信号/ULチャネルの送信タイミングがオーバーラップする場合であってもよい。リソースは、例えば、時間リソース、又は時間リソースと周波数リソースであってもよい。
 DCIを利用して優先度を通知する場合、当該DCIに優先度を通知するためのビットフィールド(例えば、Priority indicator)が設定されるか否かについて上位レイヤシグナリングを利用して基地局からUEに通知又は設定してもよい。また、UEは、DCIに優先度を通知するビットフィールドが含まれない場合、当該DCIでスケジュールされるPDSCH(又は、PDSCHに対応するHARQ-ACK)の優先度は、特定の優先度(例えば、low)と判断してもよい。
 このように、優先度に基づいてUL送信が制御される場合、優先度が低いUL送信が行われない(例えば、ドロップ)されることにより、スループットの低下が生じるおそれがある。例えば、第1のHARQ-ACKに対応する第1のリソースと、当該第1のHARQ-ACKより優先度が低い第2のHARQ-ACKに対応する第2のリソースとが衝突する場合を想定する(図3参照)。
 この場合、UEは、第1のリソースを利用して第1のHARQ-ACKを送信し、第2のHARQ-ACKの送信は行わない(例えば、ドロップ)ように制御することが考えられる。
 優先度が低い第2のHARQ-ACKがドロップされると当該第2のHARQ-ACKに対応するDL送信(例えば、PDSCH)が再送され、当該再送されたPDSCH(例えば、eMBB)に対するHARQ-ACKを再度フィードバックすることが必要となる。これにより、優先度が低いトラフィックタイプ(例えば、eMBB)のスループットの低下が生じるおそれがある。
 スループットの低下を抑制するために、ドロップしたHARQ-ACK(図3における第2のHARQ-ACK)を再送することが考えられる。しかし、ドロップしたHARQ-ACKの再送をどのように制御するかが問題となる。
 本発明者らは、複数のHARQ-ACKが衝突する場合にトラフィックタイプ(又は、優先度)に応じて送信処理又はフィードバック処理が制御される場合に、当該複数のHARQ-ACKの送信をどのように制御するかについて検討し、本実施の形態を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。以下の各態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。以下の説明にいおいて、A/Bは、A及びBの少なくとも一つと読み替えられてもよいし、A/B/Cは、A、B及びCの少なくとも一つと読み替えられてもよい。
 また、以下の説明では、優先度として第1の優先度(High)と第2の優先度(Low)を例に挙げて説明するが、優先度の数及びタイプはこれに限られない。3種類(又は、3レベル)以上の優先度が適用されてもよい。また、各信号又はチャネルに設定される優先度は上位レイヤシグナリング等でUEに設定されてもよい。
 以下の説明では、複数のサービスタイプとしてeMBBとURLLCの2つを例に挙げて説明するが、サービスタイプの種類、数はこれに限られない。また、サービスタイプは、優先度に関連付けられて設定されてもよい。また、以下の説明において、ドロップは、キャンセル、又は非送信と読み替えられてもよい。
 また、以下の説明では、再送を行う信号としてHARQ-ACKを例に挙げて説明するが、本実施の形態が適用可能な信号/チャネルはHARQ-ACKに限られない。他の信号/チャネルについて本実施の形態を適用してもよい。
(第1の態様)
 第1の態様では、DLデータ(例えば、DL-SCH)又はPDSCHのスケジュールを行わないDCIを利用して、HARQ-ACKの再送の指示(又は、要求/トリガ)を制御する場合について説明する。以下の説明では、DCIによりPDSCHがスケジュールされない場合を例に挙げて説明する。
 UEは、所定のHARQ-ACKの再送を指示するDCI(又は、PDCCH)を受信した場合、当該DCIに基づいて所定のHARQ-ACKを再送(又は、再送信、フィードバック、送信)するように制御してもよい。所定のHARQ-ACKは、他のUL送信との衝突により送信されなかった(例えば、ドロップされた又は送信が延期された)HARQ-ACKであってもよい。
 所定のHARQ-ACKの再送を指示するDCI(以下、リクエストDCIとも記す)は、PDSCHをスケジュールしないDCIであってもい。リクエストDCIは、UE固有(例えば、specific又はdedicated)であってもよく、例えば、DCIフォーマット1_1及びDCIフォーマット1_2の少なくとも一つが利用されてもよい。また、リクエストDCIは、PDSCHをスケジュールしない構成に加えて(又は、PDSCHをスケジュールしない構成にかえて)、チャネル状態情報用参照信号(例えば、CSI-RS)/チャネル状態情報の報告(例えば、A-CSIレポート)もスケジュール/指示しない構成であってもよい。
 UEは、受信したDCIがリクエストDCIであるか否かについて、当該DCIに含まれる所定フィールドに基づいて決定してもよい。例えば、HARQ-ACKの再送要求に関するフィールド(例えば、requestHarqReTx)がDCIに設定され、当該フィールドのビットが“1”である場合にリクエストDCIとして機能し、ビットが“0”である場合にリクエストDCIとして機能しない構成としてもよい。あるいは、他のフィールドを利用してリクエストDCIであるか否かが通知されてもよい。あるいは、DCIに適用されるRNTIを利用してリクエストDCIであるか否かが通知されてもよい。
 UEは、リクエストDCIを受信した場合、所定のHARQ-ACKを所定のリソースを利用して再送してもよい。HARQ-ACKの再送に利用するリソースは、ドロップされたHARQ-ACK(以下、オリジナルHARQ-ACKとも呼ぶ)の送信用に設定されたリソースと少なくとも一部が異なる(又は、一部のみ同じの)新規のリソースであってもよい。リソースは、PUCCHリソースと読み替えられてもよい。
 HARQ-ACKの再送に利用される新規のリソースは、リクエストDCIに含まれるHARQ-ACKタイミングに関する情報(例えば、K1)及びPUCCHリソース識別子(PUCCH Resource Indicator(PRI))フィールドの少なくとも一つに基づいて決定されてもよい。
 例えば、第1のHARQ-ACKに対応する第1のリソースと、当該第1のHARQ-ACKより優先度が低い第2のHARQ-ACKに対応する第2のリソースとが衝突する場合を想定する。
 第1のHARQ-ACKは、第1のDCIでスケジュールされる第1のPDSCHに対応し、第1のリソースは、第1のDCI(及び上位レイヤシグナリング)で指定されてもよい。第2のHARQ-ACKは、第2のDCIでスケジュールされる第2のPDSCHに対応し、第2のリソースは、第2のDCI(及び上位レイヤシグナリング)で指定されてもよい。第1のHARQ-ACKの優先度は第1のDCIで通知され、第2のHARQ-ACKの優先度は第2のDCIで通知されてもよい。
 かかる場合、UEは、第1のリソースを利用して第1のHARQ-ACKを送信し、第2のHARQ-ACKは送信しない(又は、第2のリソースを利用したHARQ-ACK送信は行わない)ように制御してもよい。UEは、HARQ-ACKの再送を指示するリクエストDCI(例えば、第3のDCI)を受信した場合、当該リクエストDCIで指定されるリソースを利用して第2のHARQ-ACKを送信するように制御してもよい。
 なお、ドロップされるHARQ-ACKが複数存在する場合も考えられる。UEは、リクエストDCIに基づいて再送を行うHARQ-ACK(例えば、ドロップした第2のHARQ-ACK)について、以下のオプション1-1~オプション1-3の少なくとも一つに基づいて決定してもよい。
<オプション1-1>
 UEは、HARQ-ACKの再送を指示するリクエストDCIに基づいて、複数のHARQ-ACK(例えば、優先度が低い複数のHARQ-ACK)をフィードバックするように制御してもよい。例えば、基地局は、リクエストDCIを利用して1ショットHARQ-ACKのフィードバックをUEに要求(又は、トリガ)してもよい。つまり、リクエストDCIで再送が要求されるHARQ-ACKビットは、所定グループ(例えば、PUCCHグループ)においてUEに設定された全てのCCにおけるDL HARQ-ACKプロセスであってもよい。
 リクエストDCIにより1ショットHARQ-ACKのフィードバックを要求されたUEは、1以上のHARQ-ACKを1つ(又は、共通)のHARQ-ACKコードブックに含めてフィードバックを行ってもよい。1つのHARQ-ACKコードブックに含めるHARQ-ACKは、所定のHARQ-ACKプロセス(又は、所定のHARQ-ACKプロセス番号)に対応するHARQ-ACKであってもよい。
 所定のHARQ-ACKプロセスは、例えば、UEにスケジュールされるPDSCHに対応するHARQ-ACKプロセスであってもよい。また、UEに複数のCC(又は、セル)が設定されている場合には、当該複数のCCにおけるHARQ-ACKプロセスに対応するHARQ-ACKを1つのHARQ-ACKコードブックに含めてもよい。
 これにより、ドロップされるHARQ-ACKが複数存在する(例えば、送信タイミングが異なる複数の第2のHARQ-ACKがドロップされる)場合に、1つのリクエストDCIに基づいて再送を行うことができる。その結果、スループットの低下を抑制することができる。
<オプション1-2>
 UEは、リクエストDCIに基づいて、最新(例えば、latest)にドロップされたHARQ-ACKをフィードバック(例えば、再送)するように制御してもよい(図4参照)。つまり、UEは、送信を行わなかったHARQ-ACKが複数存在する場合、最後に送信を行わなかったHARQ-ACK(又は、最後にドロップしたHARQ-ACK)を再送するように制御する。
 図4では、PDSCH#1に対応するHARQ-ACK#1(又は、PUCCHリソース#1)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0a))と衝突してドロップされる場合を示している。
 また、PDSCH#2に対応するHARQ-ACK#2(又は、PUCCHリソース#2)、PDSCH#3に対応するHARQ-ACK#3(又は、PUCCHリソース#3)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0b))と衝突してドロップされる場合を示している。ここでは、PUCCHリソース#2とPUCCHリソース#3が同じPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)となる場合を示している。
 図4では、HARQ-ACK#2、#3がドロップされた後にリクエストDCIが送信される場合を示している。つまり、HARQ-ACK#1がドロップされた後、リクエストDCIが送信される前にHARQ-ACK#2、#3がドロップされる。
 このように、UEがリクエストDCIを受信した際に、ドロップしたHARQ-ACKが複数存在する場合、最後にドロップしたHARQ-ACK(又は、送信に利用しなかった最後のPUCCHリソースに対応するHARQ-ACK)を再送するように制御してもよい。
 再送を行うHARQ-ACKは、PUCCHリソース単位で決定されてもよい。つまり、同一のPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)に対応するHARQ-ACKがドロップされる場合(図4のHARQ-ACK#2、#3)、当該複数のHARQ-ACKを再送するように制御してもよい。
 ここでは、最後にドロップされたPUCCHリソースにHARQ-ACK#2、#3が対応するため、UEは、リクエストDCIで指定されるリソースを利用して当該HARQ-ACK#2、#3を再送するように制御してもよい。リクエストDCIで指定されるリソース(例えば、ここでは、PUCCHリソース#4)は、当該リクエストDCIに含まれるHARQ-ACKタイミングに関する情報(例えば、K1)及びPUCCHリソース識別子(PUCCH Resource Indicator(PRI))フィールドの少なくとも一つに基づいて決定されてもよい。
 UEは、HARQ-ACKの再送を行う場合、ドロップしたHARQ-ACK(例えば、オリジナルHARQ-ACK)用に設定されたリソース条件(例えば、PRI)を利用してもよい。例えば、UEは、リクエストDCIに含まれるHARQ-ACKタイミングに関する情報(例えば、K1)に基づいてHARQ-ACKの再送タイミング(例えば、再送スロット)を決定し、既に指定されているPRI(例えば、PDSCHをスケジュールするDCIで通知されたPRI)に基づいてHARQ-ACKの再送に利用するリソースを決定してもよい。この場合、リクエストDCIにPRIが含まれない構成としてもよい。あるいは、UEは、リクエストDCIに含まれるPRIフィールドを無視してもよい。これにより、リクエストDCIのオーバーヘッドの増加を抑制できる。
 最後にドロップしたHARQ-ACK(又は、PUCCHリソース)は、HARQ-ACKが送信されるタイミング(又は、PUCCHリソースが設定される時間領域)に基づいて決定されてもよい。あるいは、当該HARQ-ACK(又は、PUCCHリソース)に対応するDCIの送信タイミング又はPDSCHの送信タイミングに基づいて決定されてもよい。
 オプション1-2では、リクエストDCIの送信タイミングに基づいて、再送を行うHARQ-ACKを柔軟に制御することができる。これにより、再送するHARQ-ACKのオーバーヘッドの増加を抑制すると共に、スループットの低下を抑制することができる。
<オプション1-3>
 UEは、基地局から通知される情報に基づいて再送を行うHARQ-ACKを決定してもよい。基地局から通知される情報は、DCI及び上位レイヤシグナリングの少なくとも一つであってもよい。
[DCIによる通知]
 UEは、HARQ-ACKの再送を指示するリクエストDCIに基づいて、再送を行うHARQ-ACKを決定してもよい(図5参照)。例えば、再送を行うHARQ-ACKの元のHARQ-ACK(オリジナルHARQ-ACK)を指定する情報がリクエストDCIに含まれていてもよい。以下の説明では、リクエストDCIとオリジナルHARQ-ACK(又は、オリジナルPUCCHリソース)間のオフセットに関する情報をリクエストDCIに含めてUEに通知する場合を示す。
 図5では、PDSCH#1に対応するHARQ-ACK#1(又は、PUCCHリソース#1)、PDSCH#2に対応するHARQ-ACK#2(又は、PUCCHリソース#2)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0))と衝突してドロップされる場合を示している。ここでは、PUCCHリソース#1とPUCCHリソース#2が同じPUCCHリソース(又は、同一スロット#n-2に設定されるPUCCHリソース)となる場合を示している。
 UEは、リクエストDCIを受信した場合、当該リクエストDCIで指定されるHARQ-ACKを再送するように制御してもよい。例えば、リクエストDCIにより、再送を行うHARQ-ACK(又は、ドロップされたHARQ-ACK)が送信される予定であった時間区間(例えば、インデックスm)を指定してもよい。時間区間は、スロット、サブスロット又はシンボルの少なくとも一つであってもよい。
 リクエストDCIは、当該リクエストDCIとドロップされたHARQ-ACK(又は、PUCCHリソース)間のオフセットを含んでいてもよい。当該オフセットは、タイミングオフセット(例えば、Δt)と呼ばれてもよい。UEは、リクエストDCIに含まれるタイミングオフセットに基づいて、再送を行うHARQ-ACK(又は、オリジナルHARQ-ACK)を判断してもよい。
 図5では、スロット#nで送信されるリクエストDCIに含まれるタイミングオフセットが2(Δt=2)である場合を示している。この場合、UEは、スロットm(=n-2)のHARQ-ACK(ここでは、HARQ-ACK#1、#2)を再送するように制御してもよい。また、HARQ-ACKの再送は、リクエストDCIで指定されたリソース(ここでは、PUCCHリソース#4)を利用してもよい。
 タイミングオフセット(例えば、Δt)は、リクエストDCI(例えばDCIフォーマット1_1、又は1_2)の新規フィールドに設定されてもよいし、既存フィールド(例えば、時間割当てフィールド(TDRAフィールド))に設定されてもよい。
 ここでは、リクエストDCIに含まれるタイミングオフセット値を利用して、当該リクエストDCI(又は、PDCCH)が送信されるスロットと、オリジナルHARQ-ACKが送信されるスロットの間隔を通知する場合を示したが、これに限られない。例えば、再送を要求するHARQ-ACKに関する情報(例えば、プロセス番号、又はスロット番号)をリクエストDCIに含めてUEに通知してもよい。
[上位レイヤによる通知]
 UEは、上位レイヤで通知されるタイミングオフセットに関する情報に基づいて、再送を行うHARQ-ACKを決定してもよい。タイミングオフセット(例えば、Δt)は、リクエストDCI(又は、PDCCH)が送信されるスロットと、オリジナルHARQ-ACKが送信されるスロットの間隔であってもよい。
 UEは、HARQ-ACKの再送を指示するリクエストDCIをスロットnで受信した場合、スロットn-ΔtにおけるHARQ-ACKの再送を行うように制御してもよい。
[DCIと上位レイヤの組み合わせによる通知]
 基地局は、複数のタイミングオフセット値(候補値)を上位レイヤシグナリングでUEに設定し、DCI(例えば、リクエストDCI)を利用して特定の候補値をUEに通知してもよい。これにより、タイミングオフセットを柔軟に設定することが可能となる。
 UEは、DCI又は上位レイヤシグナリングによりタイミングオフセットが通知されない場合、あらかじめ設定された値(例えば、デフォルト値)に基づいて、再送するHARQ-ACK(又は、オリジナルHARQ-ACK)を判断してもよい。
<バリエーション>
 リクエストDCIに基づいてHARQ-ACKの再送を指示する場合、再送するHARQ-ACKの優先度は、オリジナルHARQ-ACK(ドロップされたHARQ-ACK)と同じ優先度が設定されてもよいし、異なる優先度が設定されてもよい。
 オリジナルHARQ-ACKと再送するHARQ-ACKに同じ優先度が設定される場合、リクエストDCIに優先度に関する情報(例えば、PriorityIndicator)フィールドが含まれない構成としてもよい。これにより、リクエストDCIのオーバーヘッドの増加を抑制できる。
 あるいは、リクエストDCIに基づいてHARQ-ACKの再送を指示する場合、再送するHARQ-ACKの優先度が高く設定されてもよい。例えば、オリジナルHARQ-ACK(ドロップされたHARQ-ACK)の優先度がlowであっても、当該ドロップされたHARQ-ACKを再送する場合、高い優先度(例えば、high)が設定されてもよい。リクエストDCIにより高い優先度(high)が設定されてもよいし、リクエストDCIに優先度に関する情報を含めずUE側で再送されるHARQ-ACKの優先度はhighと想定してもよい。これにより、HARQ-ACKの再送を優先して行うことができる。
(第2の態様)
 第2の態様では、DLデータ(例えば、DL-SCH)又はPDSCHのスケジュールを行うDCIを利用して、HARQ-ACKの再送の指示(又は、要求/トリガ)を制御する場合について説明する。
 リクエストDCIは、PDSCHをスケジュールするDCIであってもい。リクエストDCIは、UE固有(例えば、specific又はdedicated)であってもよく、例えば、DCIフォーマット1_1及びDCIフォーマット1_2の少なくとも一つが利用されてもよい。また、リクエストDCIは、PDSCHをスケジュールする構成に加えて(又は、PDSCHをスケジュールする構成にかえて)、チャネル状態情報用参照信号(例えば、CSI-RS)/チャネル状態情報の報告(例えば、A-CSIレポート)もスケジュール/指示する構成であってもよい。
 UEは、受信したDCIがリクエストDCIであるか否かについて、当該DCIに含まれる所定フィールドに基づいて決定してもよい。例えば、HARQ-ACKの再送要求に関するフィールド(例えば、requestHarqReTx)がDCIに設定され、当該フィールドのビットが“1”である場合にリクエストDCIとして機能し、ビットが“0”である場合にリクエストDCIとして機能しない構成としてもよい。あるいは、他のフィールドを利用してリクエストDCIであるか否かが通知されてもよい。あるいは、DCIに適用されるRNTIを利用してリクエストDCIであるか否かが通知されてもよい。
 UEは、リクエストDCIを受信した場合、所定のHARQ-ACKを所定のリソースを利用して再送してもよい。HARQ-ACKの再送に利用される新規のリソースは、リクエストDCIに含まれるHARQ-ACKタイミングに関する情報(例えば、K1)及びPUCCHリソース識別子(PUCCH Resource Indicator(PRI))フィールドの少なくとも一つに基づいて決定されてもよい。
 例えば、第1のHARQ-ACKに対応する第1のリソースと、当該第1のHARQ-ACKより優先度が低い第2のHARQ-ACKに対応する第2のリソースとが衝突する場合を想定する。
 第1のHARQ-ACKは、第1のDCIでスケジュールされる第1のPDSCHに対応し、第1のリソースは、第1のDCI(及び上位レイヤシグナリング)で指定されてもよい。第2のHARQ-ACKは、第2のDCIでスケジュールされる第2のPDSCHに対応し、第2のリソースは、第2のDCI(及び上位レイヤシグナリング)で指定されてもよい。第1のHARQ-ACKの優先度は第1のDCIで通知され、第2のHARQ-ACKの優先度は第2のDCIで通知されてもよい。
 かかる場合、UEは、第1のリソースを利用して第1のHARQ-ACKを送信し、第2のHARQ-ACKは送信しない(又は、第2のリソースを利用したHARQ-ACK送信は行わない)ように制御してもよい。UEは、HARQ-ACKの再送を指示するリクエストDCI(例えば、第3のDCI)を受信した場合、当該リクエストDCIで指定されるリソースを利用して第2のHARQ-ACKを送信するように制御してもよい。
 また、UEは、リクエストDCIでスケジュールされるPDSCHの受信を制御する。リクエストDCIでスケジュールされるPDSCHに対するHARQ-ACKは、所定リソースを利用して送信される構成としてもよいし、送信されない構成としてもよい。例えば、UEは、リクエストDCIでスケジュールされるPDSCHに対するHARQ-ACKに対して、以下のオプション2-1~オプション2-2の少なくとも一つを適用してもよい。
<オプション2-1>
 UEは、リクエストDCIで指定されたリソースをドロップされたHARQ-ACKの再送に利用し、当該リクエストDCIでスケジュールされたPDSCHに対するHARQ-ACKの送信に利用しなくてもよい(図6参照)。この場合、UEは、リクエストDCIで新規にスケジュールされたPDSCHに対するHARQ-ACKを送信しない(又は、報告しない、ドロップする)ように制御してもよい。
 図6では、PDSCH#1に対応するHARQ-ACK#1(又は、PUCCHリソース#1)、PDSCH#2に対応するHARQ-ACK#2(又は、PUCCHリソース#2)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0))と衝突してドロップされる場合を示している。ここでは、PUCCHリソース#1とPUCCHリソース#2が同じPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)となる場合を示している。
 図6では、HARQ-ACK#1、#2がドロップされた後にリクエストDCIが送信される場合を示している。また、リクエストDCIによりPDSCH#3がスケジュールされる場合をしめしている。
 UEは、リクエストDCIで指定されたリソース(ここでは、PUCCHリソース#3)を利用して、HARQ-ACK#1、#2を再送するように制御する。一方で、リクエストDCIでスケジュールされたPDSCH#3に対するHARQ-ACK#3は、PUCCHリソース#3において送信しないように制御する。
 つまり、UEは、リクエストDCIでスケジュールされたPDSCHに対するHARQ-ACKと、再送を行うHARQ-ACKとを同じリソース(ここでは、PUCCHリソース#3)にマッピング又は多重しないように制御する。HARQ-ACK#3は、他のリソースで送信するように制御してもよいし、送信自体を行わないように制御してもよい。
 リクエストDCIで指定されるリソース(ここでは、PUCCHリソース#3)は、当該リクエストDCIに含まれるK1及びPRIフィールドの少なくとも一つに基づいて決定されてもよい。また、PUCCHリソース#3で送信されるHARQ-ACKビット(又は、HARQ-ACKペイロード)は、ドロップされたHARQ-ACK又はオリジナルHARQ-ACKを考慮して(HARQ-ACK#3は考慮せずに)決定されてもよい。
 リクエストDCIでスケジュールされるPDSCH#3又は当該PDSCH#3に対するHARQ-ACK#3は、優先度が低いPDSCH又はHARQ-ACKであってもよい。つまり、リクエストDCIでスケジュールされるPDSCH又は当該PDSCHに対するHARQ-ACKに設定される優先度は制限(例えば、lowに限定)されてもよい。これにより、優先度が高いHARQ-ACKが送信されない又は遅延することを抑制することができる。
<オプション2-2>
 UEは、リクエストDCIで指定されたリソースをドロップされたHARQ-ACKの再送と、当該リクエストDCIでスケジュールされたPDSCHに対するHARQ-ACKの送信と、に利用してもよい(図7参照)。この場合、UEは、リクエストDCIで新規にスケジュールされたPDSCHに対するHARQ-ACKと、再送するHARQ-ACKを同じHARQ-ACKコードブックに含めて送信するように制御してもよい。
 図7では、PDSCH#1に対応するHARQ-ACK#1(又は、PUCCHリソース#1)、PDSCH#2に対応するHARQ-ACK#2(又は、PUCCHリソース#2)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0))と衝突してドロップされる場合を示している。ここでは、PUCCHリソース#1とPUCCHリソース#2が同じPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)となる場合を示している。
 図7では、HARQ-ACK#1、#2がドロップされた後にリクエストDCIが送信される場合を示している。また、リクエストDCIによりPDSCH#3がスケジュールされる場合をしめしている。
 UEは、リクエストDCIで指定されたリソース(ここでは、PUCCHリソース#3)を利用して、HARQ-ACK#1、#2の再送と、HARQ-ACK#3の送信を行うように制御する。つまり、UEは、リクエストDCIでスケジュールされたPDSCHに対するHARQ-ACKと、再送を行うHARQ-ACKとを同じリソース(ここでは、PUCCHリソース#3)にマッピング又は多重するように制御する。
 リクエストDCIでスケジュールされるPDSCH#3又は当該PDSCH#3に対するHARQ-ACK#3は、優先度が低いPDSCH又はHARQ-ACKであってもよい。つまり、リクエストDCIでスケジュールされるPDSCH又は当該PDSCHに対するHARQ-ACKに設定される優先度は制限(例えば、lowに限定)されてもよい。これにより、同じリソースにマッピング又は多重するHARQ-ACKの優先度をあわせることができる。
<再送するHARQ-ACKの決定>
 UEは、リクエストDCIに基づいて再送を行うHARQ-ACK(例えば、ドロップした第2のHARQ-ACK)について、第1の態様のオプション1-1~オプション1-3の少なくとも一つに基づいて決定してもよい。つまり、UEは、オプション2-1又は2-2と、第1の態様のオプション1-1~オプション1-3の少なくとも一つと、を組み合わせて適用すればよい。
(第3の態様)
 第3の態様では、ULデータ(例えば、UL-SCH)又はPUSCHのスケジュールを行わないDCIを利用して、HARQ-ACKの再送の指示(又は、要求/トリガ)を制御する場合について説明する。以下の説明では、DCIによりPUSCHはスケジュールされるが、ULデータ(PUSCH)が送信(又は、スケジュール)されない場合を例に挙げて説明する。
 UEは、所定のHARQ-ACKの再送を指示するリクエストDCI(又は、PDCCH)を受信した場合、当該リクエストDCIに基づいて所定のHARQ-ACKを再送(又は、再送信、フィードバック、送信)するように制御してもよい。所定のHARQ-ACKは、他のUL送信との衝突により送信されなかった(例えば、ドロップされた又は送信が延期された)HARQ-ACKであってもよい。
 リクエストDCIは、ULデータ(例えば、UL-SCH)をスケジュールしないDCIであってもよい。リクエストDCIは、UE固有(例えば、specific又はdedicated)であってもよく、例えば、DCIフォーマット0_1及びDCIフォーマット0_2の少なくとも一つが利用されてもよい。また、リクエストDCIは、ULデータをスケジュールしない構成に加えて(又は、ULデータをスケジュールしない構成にかえて)、チャネル状態情報用参照信号(例えば、CSI-RS)/チャネル状態情報の報告(例えば、A-CSIレポート)もスケジュール/指示しない構成であってもよい。
 UEは、受信したDCIがリクエストDCIであるか否かについて、当該DCIに含まれる所定フィールドに基づいて決定してもよい。例えば、HARQ-ACKの再送要求に関するフィールド(例えば、requestHarqReTx)がDCIに設定され、当該フィールドのビットが“1”である場合にリクエストDCIとして機能し、ビットが“0”である場合にリクエストDCIとして機能しない構成としてもよい。あるいは、他のフィールドを利用してリクエストDCIであるか否かが通知されてもよい。あるいは、DCIに適用されるRNTIを利用してリクエストDCIであるか否かが通知されてもよい。
 UEは、リクエストDCIを受信した場合、所定のHARQ-ACKを所定のリソースを利用して再送してもよい。HARQ-ACKの再送に利用するリソースは、リクエストDCIでスケジュール又は設定されるPUSCHであってもよい。リソースは、PUSCHリソースと読み替えられてもよい。
 HARQ-ACKの再送に利用されるPUSCHリソースは、リクエストDCIに含まれる時間割当てフィールド及び周波数割当てフィールドの少なくとも一つに基づいて決定されてもよい。また、PUSCHリソースには、再送されるHARQ-ACKがマッピングされ、ULデータ/A-CSI/SRSがマッピングされなくてもよい。
 例えば、第1のHARQ-ACKに対応する第1のリソースと、当該第1のHARQ-ACKより優先度が低い第2のHARQ-ACKに対応する第2のリソースとが衝突する場合を想定する。
 第1のHARQ-ACKは、第1のDCIでスケジュールされる第1のPDSCHに対応し、第1のリソースは、第1のDCI(及び上位レイヤシグナリング)で指定されてもよい。第2のHARQ-ACKは、第2のDCIでスケジュールされる第2のPDSCHに対応し、第2のリソースは、第2のDCI(及び上位レイヤシグナリング)で指定されてもよい。第1のHARQ-ACKの優先度は第1のDCIで通知され、第2のHARQ-ACKの優先度は第2のDCIで通知されてもよい。
 かかる場合、UEは、第1のリソースを利用して第1のHARQ-ACKを送信し、第2のHARQ-ACKは送信しない(又は、第2のリソースを利用したHARQ-ACK送信は行わない)ように制御してもよい。UEは、HARQ-ACKの再送を指示するリクエストDCI(例えば、第3のDCI)を受信した場合、当該リクエストDCIで指定されるリソース(例えば、PUSCH)を利用して第2のHARQ-ACKを送信するように制御してもよい。
 なお、ドロップされるHARQ-ACKが複数存在する場合も考えられる。UEは、リクエストDCIに基づいて再送を行うHARQ-ACK(例えば、ドロップした第2のHARQ-ACK)について、第1の態様のオプション1-1~オプション1-3の少なくとも一つに基づいて決定してもよい。例えば、第1の態様のオプション1-1~オプション1-3において、リクエストDCIで設定されるリソースがPUCCHリソースからPUSCHリソースに置き換えられてもよい。
 図8は、第1の態様のオプション1-2を適用して、HARQ-ACKの再送をPUSCHリソースを利用して行う場合の一例を示している。つまり、図8では、UEが、リクエストDCIに基づいて、最新(例えば、latest)にドロップされたHARQ-ACKをフィードバック(例えば、再送)するように制御する場合を示している。
 図8では、PDSCH#1に対応するHARQ-ACK#1(又は、PUCCHリソース#1)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0a))と衝突してドロップされる場合を示している。
 また、PDSCH#2に対応するHARQ-ACK#2(又は、PUCCHリソース#2)、PDSCH#3に対応するHARQ-ACK#3(又は、PUCCHリソース#3)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0b))と衝突してドロップされる場合を示している。ここでは、PUCCHリソース#2とPUCCHリソース#3が同じPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)となる場合を示している。
 図8では、HARQ-ACK#2、#3がドロップされた後にリクエストDCIが送信される場合を示している。つまり、HARQ-ACK#1がドロップされた後、リクエストDCIが送信される前にHARQ-ACK#2、#3がドロップされる。
 このように、UEがリクエストDCIを受信した際に、ドロップしたHARQ-ACKが複数存在する場合、最後にドロップしたHARQ-ACK(又は、送信に利用しなかった最後のPUCCHリソースに対応するHARQ-ACK)を再送するように制御してもよい。
 再送を行うHARQ-ACKは、PUCCHリソース単位で決定されてもよい。つまり、同一のPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)に対応するHARQ-ACKがドロップされる場合(図8のHARQ-ACK#2、#3)、当該複数のHARQ-ACKを再送するように制御してもよい。
 ここでは、最後にドロップされたPUCCHリソースにHARQ-ACK#2、#3が対応するため、UEは、リクエストDCIで指定されるPUSCHリソースを利用して当該HARQ-ACK#2、#3を再送するように制御してもよい。リクエストDCIで指定されるリソース(例えば、ここでは、PUSCHリソース)は、当該リクエストDCIに含まれるPUSCHの割当て情報に基づいて決定されてもよい。
 オプション1-2を利用する場合、リクエストDCIの送信タイミングに基づいて、再送を行うHARQ-ACKを柔軟に制御することができる。これにより、再送するHARQ-ACKのオーバーヘッドの増加を抑制すると共に、スループットの低下を抑制することができる。
(第4の態様)
 第4の態様では、ULデータ(例えば、UL-SCH)のスケジュールを行うDCIを利用して、HARQ-ACKの再送の指示(又は、要求/トリガ)を制御する場合について説明する。以下の説明では、DCIによりPUSCHで送信されるULデータがスケジュールされる場合を例に挙げて説明する。
 UEは、所定のHARQ-ACKの再送を指示するリクエストDCI(又は、PDCCH)を受信した場合、当該リクエストDCIに基づいて所定のHARQ-ACKを再送(又は、再送信、フィードバック、送信)するように制御してもよい。所定のHARQ-ACKは、他のUL送信との衝突により送信されなかった(例えば、ドロップされた又は送信が延期された)HARQ-ACKであってもよい。
 リクエストDCIは、ULデータ(例えば、UL-SCH)をスケジュールするDCIであってもよい。リクエストDCIは、UE固有(例えば、specific又はdedicated)であってもよく、例えば、DCIフォーマット0_1及びDCIフォーマット0_2の少なくとも一つが利用されてもよい。また、リクエストDCIは、ULデータをスケジュールする構成に加えて(又は、ULデータをスケジュールする構成にかえて)、チャネル状態情報用参照信号(例えば、CSI-RS)/チャネル状態情報の報告(例えば、A-CSIレポート)をスケジュール/指示する構成であってもよい。
 UEは、受信したDCIがリクエストDCIであるか否かについて、当該DCIに含まれる所定フィールドに基づいて決定してもよい。例えば、HARQ-ACKの再送要求に関するフィールド(例えば、requestHarqReTx)がDCIに設定され、当該フィールドのビットが“1”である場合にリクエストDCIとして機能し、ビットが“0”である場合にリクエストDCIとして機能しない構成としてもよい。あるいは、他のフィールドを利用してリクエストDCIであるか否かが通知されてもよい。あるいは、DCIに適用されるRNTIを利用してリクエストDCIであるか否かが通知されてもよい。
 UEは、リクエストDCIを受信した場合、所定のHARQ-ACKを所定のリソースを利用して再送してもよい。HARQ-ACKの再送に利用するリソースは、リクエストDCIでスケジュール又は設定されるPUSCHであってもよい。リソースは、PUSCHリソースと読み替えられてもよい。
 HARQ-ACKの再送に利用されるPUSCHリソースは、リクエストDCIに含まれる時間割当てフィールド及び周波数割当てフィールドの少なくとも一つに基づいて決定されてもよい。また、PUSCHリソースには、再送されるHARQ-ACKと、ULデータ/A-CSI/SRSとがマッピングされてもよい。
 例えば、第1のHARQ-ACKに対応する第1のリソースと、当該第1のHARQ-ACKより優先度が低い第2のHARQ-ACKに対応する第2のリソースとが衝突する場合を想定する。
 第1のHARQ-ACKは、第1のDCIでスケジュールされる第1のPDSCHに対応し、第1のリソースは、第1のDCI(及び上位レイヤシグナリング)で指定されてもよい。第2のHARQ-ACKは、第2のDCIでスケジュールされる第2のPDSCHに対応し、第2のリソースは、第2のDCI(及び上位レイヤシグナリング)で指定されてもよい。第1のHARQ-ACKの優先度は第1のDCIで通知され、第2のHARQ-ACKの優先度は第2のDCIで通知されてもよい。
 かかる場合、UEは、第1のリソースを利用して第1のHARQ-ACKを送信し、第2のHARQ-ACKは送信しない(又は、第2のリソースを利用したHARQ-ACK送信は行わない)ように制御してもよい。UEは、HARQ-ACKの再送を指示するリクエストDCI(例えば、第3のDCI)を受信した場合、当該リクエストDCIで指定されるリソース(例えば、PUSCH)を利用して第2のHARQ-ACKを送信するように制御してもよい。
 なお、ドロップされるHARQ-ACKが複数存在する場合も考えられる。UEは、リクエストDCIに基づいて再送を行うHARQ-ACK(例えば、ドロップした第2のHARQ-ACK)について、第1の態様のオプション1-1~オプション1-3の少なくとも一つに基づいて決定してもよい。例えば、第1の態様のオプション1-1~オプション1-3において、リクエストDCIで設定されるリソースがPUCCHリソースからPUSCHリソースに置き換えられてもよい。
 図9は、第1の態様のオプション1-2を適用して、HARQ-ACKの再送をPUSCHリソースを利用して行う場合の一例を示している。つまり、図9では、UEが、リクエストDCIに基づいて、最新(例えば、latest)にドロップされたHARQ-ACKをフィードバック(例えば、再送)するように制御する場合を示している。
 図9では、PDSCH#1に対応するHARQ-ACK#1(又は、PUCCHリソース#1)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0a))と衝突してドロップされる場合を示している。
 また、PDSCH#2に対応するHARQ-ACK#2(又は、PUCCHリソース#2)、PDSCH#3に対応するHARQ-ACK#3(又は、PUCCHリソース#3)が優先度の高い他のUL送信(例えば、URLLC用PUCCHリソース#0b))と衝突してドロップされる場合を示している。ここでは、PUCCHリソース#2とPUCCHリソース#3が同じPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)となる場合を示している。
 図9では、HARQ-ACK#2、#3がドロップされた後にリクエストDCIが送信される場合を示している。つまり、HARQ-ACK#1がドロップされた後、リクエストDCIが送信される前にHARQ-ACK#2、#3がドロップされる。
 このように、UEがリクエストDCIを受信した際に、ドロップしたHARQ-ACKが複数存在する場合、最後にドロップしたHARQ-ACK(又は、送信に利用しなかった最後のPUCCHリソースに対応するHARQ-ACK)を再送するように制御してもよい。
 再送を行うHARQ-ACKは、PUCCHリソース単位で決定されてもよい。つまり、同一のPUCCHリソース(又は、同一スロットに設定されるPUCCHリソース)に対応するHARQ-ACKがドロップされる場合(図9のHARQ-ACK#2、#3)、当該複数のHARQ-ACKを再送するように制御してもよい。
 ここでは、最後にドロップされたPUCCHリソースにHARQ-ACK#2、#3が対応するため、UEは、リクエストDCIで指定されるPUSCHリソースを利用して当該HARQ-ACK#2、#3を再送するように制御してもよい。リクエストDCIで指定されるリソース(例えば、ここでは、PUSCHリソース)は、当該リクエストDCIに含まれるPUSCHの割当て情報に基づいて決定されてもよい。
 ここでは、UEは、リクエストDCIで指定されるPUSCHリソースに、当該リクエストDCIでスケジュールされるULデータと、HARQ-ACK#2、#3とをマッピング又は多重してもよい。
 オプション1-4を利用する場合、リクエストDCIの送信タイミングに基づいて、再送を行うHARQ-ACKを柔軟に制御することができる。これにより、再送するHARQ-ACKのオーバーヘッドの増加を抑制すると共に、スループットの低下を抑制することができる。
(バリエーション)
 上記第1の態様~第4の態様において、UEが送信しなかった(又は、ドロップした)HARQ-ACKを再送する場合を示したが、これに限られない。仮にUEがHARQ-ACKを送信する場合であっても基地局側で当該HARQ-ACKを受信できなかった場合、基地局はリクエストDCIを利用して当該HARQ-ACKの再送を指示してもよい。この場合、UEは、送信を行ったHARQ-ACKを再度送信してもよい。
 上記第1の態様~第4の態様において、DL送信又はUL送信のスケジューリングに利用されるDCIを利用してHARQ-ACKの再送を指示する場合を示したが、これに限られない。例えば、DL送信又はUL送信のスケジューリングに利用されないDCIを利用してHARQ-ACKの再送を指示してもよい。
 また、基地局は、リクエストDCIの所定フィールドを利用して、再送を行うHARQ-ACKプロセス番号/CCインデックスに対応するHARQ-ACKをUEに通知してもよい。HARQ-ACKは、PDSCHに対するHARQ-ACKビットであってもよい。所定フィールドは、所定ビット(xビット)で構成される新規フィールドであってもよい。
 あるいは、所定フィールドは、Rel.15で定義されている既存フィールド(例えば、TDRAフィールド、TDRAテーブル、HARQ-ACKプロセス番号用のフィールドの少なくとも一つ)を読み替えて利用してもよい。既存フィールドの読み替えは、上位レイヤシグナリングで設定されてもよい。
 また、上記第1の態様~第4の態様において、優先度が低い(例えば、low)HARQ-ACKについて再送を行う場合を示したが、これに限られない。優先度が高い(例えば、high)HARQ-ACKについて再送を行うように制御してもよい。あるいは、リクエストDCIで再送を行うHARQ-ACKは、優先度が低いHARQ-ACKに限定してもよい。
 HARQ-ACKの優先度に関わらずHARQ-ACKの再送が指示される場合、リクエストDCI毎にいずれか一方の優先度のHARQ-ACKの再送が指示されてもよい。UEは、リクエストDCIに基づいていずれの優先度の再送が指示されるかを判断してもよい。
 また、第1の態様~第4の態様において、所定のHARQ-ACKの再送制御又は再送動作の適用有無は、基地局からUEに上位レイヤシグナリングで通知又は設定されてもよい。この場合、あるUEについて所定のHARQ-ACKの再送制御がサポートされ、他のUEについて所定のHARQ-ACKの再送制御がサポートされない構成としてもよい。例えば、UE能力/上位レイヤシグナリングに基づいて、UE毎に所定のHARQ-ACKの再送制御のサポート有無が制御されてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を受信してもよい。送受信部120は、HARQ-ACKの再送に関する情報を含む下り制御情報を送信してもよい。
 制御部110は、下り制御情報で通知するリソースを利用して再送される前記HARQ-ACKの受信を制御してもよい。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を送信してもよい。送受信部220は、HARQ-ACKの再送に関する情報を含む下り制御情報を受信してもよい。
 制御部210は、下り制御情報で通知されるリソースを利用して前記HARQ-ACKの再送を制御してもよい。
 下り制御情報は、下り共有チャネルのスケジュールを指示しない構成であってもよい。
 下り制御情報が下り共有チャネルのスケジュールを指示する場合、制御部210は、下り共有チャネルに対するHARQ-ACKの送信を行わない、又はHARQ-ACKの再送に利用するリソースを利用して下り共有チャネルに対するHARQ-ACKを送信するように制御してもよい。
 下り制御情報が上り共有チャネルのスケジュールを指示する場合、制御部210は、上り共有チャネルを利用して第HARQ-ACKの再送を制御してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を送信する送信部と、
     前記HARQ-ACKの再送に関する情報を含む下り制御情報を受信する受信部と、
     前記下り制御情報で通知されるリソースを利用して前記HARQ-ACKの再送を制御する制御部と、を有することを特徴とする端末。
  2.  前記下り制御情報は、下り共有チャネルのスケジュールを指示しないことを特徴とする請求項1に記載の端末。
  3.  前記下り制御情報が下り共有チャネルのスケジュールを指示する場合、前記制御部は、前記下り共有チャネルに対するHARQ-ACKの送信を行わない、又は前記HARQ-ACKの再送に利用するリソースを利用して前記下り共有チャネルに対するHARQ-ACKを送信するように制御することを特徴とする請求項1に記載の端末。
  4.  前記下り制御情報が上り共有チャネルのスケジュールを指示する場合、前記制御部は、前記上り共有チャネルを利用して前記第HARQ-ACKの再送を制御することを特徴とする請求項1に記載の端末。
  5.  送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を送信する工程と、
     前記HARQ-ACKの再送に関する情報を含む下り制御情報を受信する工程と、
     前記下り制御情報で通知されるリソースを利用して前記HARQ-ACKの再送を制御する工程と、を有することを特徴とする端末の無線通信方法。
  6.  送達確認信号(HARQ-ACK)と他のUL送信とが衝突する場合、前記UL送信を受信する受信部と、
     前記HARQ-ACKの再送に関する情報を含む下り制御情報を送信する送信部と、
     前記下り制御情報で通知するリソースを利用して再送される前記HARQ-ACKの受信を制御する制御部と、を有することを特徴とする基地局。
     
     
PCT/JP2020/009851 2020-03-06 2020-03-06 端末、無線通信方法及び基地局 WO2021176723A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022504945A JPWO2021176723A1 (ja) 2020-03-06 2020-03-06
CN202080100565.0A CN115552958A (zh) 2020-03-06 2020-03-06 终端、无线通信方法以及基站
US17/908,377 US20230113163A1 (en) 2020-03-06 2020-03-06 Terminal, radio communication method, and base station
PCT/JP2020/009851 WO2021176723A1 (ja) 2020-03-06 2020-03-06 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009851 WO2021176723A1 (ja) 2020-03-06 2020-03-06 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2021176723A1 true WO2021176723A1 (ja) 2021-09-10

Family

ID=77613295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009851 WO2021176723A1 (ja) 2020-03-06 2020-03-06 端末、無線通信方法及び基地局

Country Status (4)

Country Link
US (1) US20230113163A1 (ja)
JP (1) JPWO2021176723A1 (ja)
CN (1) CN115552958A (ja)
WO (1) WO2021176723A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186676A (ja) * 2018-04-05 2019-10-24 シャープ株式会社 基地局装置および端末装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357537B2 (en) * 2012-06-19 2016-05-31 Lg Electronics Inc. Method and apparatus for transmitting uplink data
US20150173102A1 (en) * 2013-12-12 2015-06-18 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method, and integrated circuit
JP6907117B2 (ja) * 2015-08-21 2021-07-21 株式会社Nttドコモ 端末、基地局及び無線通信方法
US10602537B2 (en) * 2015-11-02 2020-03-24 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186676A (ja) * 2018-04-05 2019-10-24 シャープ株式会社 基地局装置および端末装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
NTT DOCOMO, INC.: "DL/UL scheduling and HARQ management", 3GPP TSG RAN WG1 #90BIS, R1-1718217, 13 October 2017 (2017-10-13), XP051352925, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90b/Docs/R1-1718217.zip> [retrieved on 20200915] *
OPPO: "UCI enhancements for URLLC", 3GPP TSG RAN WG1 #98BIS, R1-1910620, 20 October 2019 (2019-10-20), XP051789412, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_98b/Docs/R1-1910620.zip> [retrieved on 20200915] *

Also Published As

Publication number Publication date
US20230113163A1 (en) 2023-04-13
JPWO2021176723A1 (ja) 2021-09-10
CN115552958A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2021152805A1 (ja) 端末、無線通信方法及び基地局
JP7168676B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7269331B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022163559A1 (ja) 端末、無線通信方法及び基地局
WO2022039164A1 (ja) 端末、無線通信方法及び基地局
WO2020202478A1 (ja) ユーザ端末及び無線通信方法
WO2020188821A1 (ja) ユーザ端末及び無線通信方法
WO2020095457A1 (ja) ユーザ端末
WO2022130629A1 (ja) 端末、無線通信方法及び基地局
WO2021255936A1 (ja) 端末、無線通信方法及び基地局
WO2022024379A1 (ja) 端末、無線通信方法及び基地局
JP7351921B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020188666A1 (ja) ユーザ端末及び無線通信方法
WO2020202448A1 (ja) ユーザ端末及び無線通信方法
WO2022074802A1 (ja) 端末、無線通信方法及び基地局
WO2021152804A1 (ja) 端末、無線通信方法及び基地局
WO2022009347A1 (ja) 端末、無線通信方法及び基地局
WO2022009346A1 (ja) 端末、無線通信方法及び基地局
WO2022059110A1 (ja) 端末、無線通信方法及び基地局
WO2022009315A1 (ja) 端末、無線通信方法及び基地局
WO2021186701A1 (ja) 端末、無線通信方法及び基地局
JP7335349B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7230179B2 (ja) 端末、無線通信方法及びシステム
WO2021064961A1 (ja) 端末及び無線通信方法
WO2021176723A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504945

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020922965

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922965

Country of ref document: EP

Kind code of ref document: A1