WO2021176666A1 - Autonomous and regional distributed power production/supply system - Google Patents

Autonomous and regional distributed power production/supply system Download PDF

Info

Publication number
WO2021176666A1
WO2021176666A1 PCT/JP2020/009501 JP2020009501W WO2021176666A1 WO 2021176666 A1 WO2021176666 A1 WO 2021176666A1 JP 2020009501 W JP2020009501 W JP 2020009501W WO 2021176666 A1 WO2021176666 A1 WO 2021176666A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
palm
gas turbine
power generation
plantations
Prior art date
Application number
PCT/JP2020/009501
Other languages
French (fr)
Japanese (ja)
Inventor
山本 泰三
常孝 安ヵ川
晃二 深田
直史 阪口
Original Assignee
株式会社エコ・サポート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコ・サポート filed Critical 株式会社エコ・サポート
Priority to PCT/JP2020/009501 priority Critical patent/WO2021176666A1/en
Priority to JP2022504895A priority patent/JP7199771B2/en
Priority to CN202080097770.6A priority patent/CN115210982A/en
Publication of WO2021176666A1 publication Critical patent/WO2021176666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • This disclosure relates to a self-sustaining and locally distributed power production and supply system.
  • Gas turbines (hereinafter referred to as "GT") are widely used in developed countries such as Japan for large-scale private power generation of 5 MW or more in factories and the like. Gas turbines have become widespread for cogeneration, which is used as heat and steam due to high-temperature exhaust gas. Even in Japan, cogeneration is rarely applied to small-scale 1MW class power generation such as that used in palm plantations in consideration of operation and maintenance. Similarly, Indonesia, which has little information, did not have the opportunity to deeply consider gas turbine power generation. We are aiming to put a general-purpose gas engine into practical use from a European manufacturer, but we are seeking a breakthrough in an unstable situation.
  • GTCC gas turbine combined cycle power generation system
  • ST steam turbine
  • a gas turbine is a rotating body similar to a water turbine or a wind turbine, and is a system that extracts stable force that has been widely used in the past.
  • S-GTCC highly efficient and ideal sustainable advanced S-GTCC
  • the oil squeezing factory of the palm plantation (palm factory: called MILL) is the core facility of the palm plantation, and electricity and clean water are indispensable for stable and continuous operation throughout the year.
  • the plan for the palm plantation is to grow oil palm trees from seedlings and plant them for 20 years.
  • Fruits (FFB) can be harvested about 3 years after planting, and the yield will drop after 20 years of harvesting. Therefore, the forest will be cut down and replanted with newly improved seedlings for growing. Therefore, in the palm factory, a place where electricity and clean water can be secured is an essential condition for planning and construction.
  • the electric power company supplies electricity to the palm plantation, but at this point, the demand for electricity is low, including in the surrounding area.
  • Indonesia has 700 palm plantations already in operation to produce palm oil, except for Java Island, which has a large population and a well-developed industry including agriculture.
  • There is a wastewater pond adjacent to the Palm Factory (MILL) and the final pond of the wastewater (POME) of multiple ponds is covered with a rubber film to generate biogas in an anaerobic state where oxygen is insufficient. Since this amount is stably generated throughout the year, about 1 MW or more has been established, and a technical system for collecting and utilizing this has been established, and dozens or more have already been installed and introduced. If biogas is captured and 700 self-sustaining and locally distributed power plants are put into operation in the country, a power transmission and distribution network suitable for this will be established, which will greatly contribute to the country's economic growth.
  • An object of the present disclosure is to easily obtain the fuel required for GTCC and to stably supply electric power to a power consuming area in a self-sustaining and locally distributed electric power production and supply system.
  • the self-sustaining and locally distributed electric power production and supply system is arranged in each of a plurality of plantations, and a plurality of gas turbines that generate power using the gaseous fuel and the liquid fuel produced in the plantations.
  • a transmission having a combined cycle power generation system, a first transmission line for transmitting power from a gas turbine combined cycle power generation system in each of a plurality of plantations to a power consumption area, and a second transmission line for connecting the plurality of first transmission lines to each other.
  • the plantation is a palm plantation that grows abra palm
  • each of the gaseous fuel and liquid fuel is a fuel produced from the fruits harvested in the plantation
  • multiple gas turbine combined cycle power generation Each of the systems uses the heat of the first gas turbine that operates using gaseous fuel, the second gas turbine that operates using liquid fuel, and the exhaust gas exhausted from the first gas turbine and the second gas turbine.
  • the gas turbine combined cycle power generation system includes a waste heat recovery boiler to be recovered and a steam turbine that operates by utilizing the heat recovered by the waste heat recovery boiler, and the gas turbine combined cycle power generation system is arranged. Power is sent to the plantations, and the multiple gas turbine combined cycle power generation systems send power to each of the multiple plantations via the transmission network.
  • This self-sustaining and locally distributed power production and supply system is equipped with a plurality of gas turbine combined cycle power generation systems as S-GTCC.
  • the gas turbine combined cycle power generation system is installed in a plantation and uses the gaseous fuel and liquid fuel produced in the plantation to generate electricity.
  • the fuel required for the gas turbine combined cycle power generation system can be easily obtained.
  • this self-sustaining and locally distributed electric power production and supply system has a first transmission line that sends electric power from a gas turbine combined cycle power generation system in each of a plurality of plantations, and a first transmission line that connects a plurality of first transmission lines to each other. It has a power grid with two power lines.
  • the exhaust heat recovery boiler has a denitration catalyst that removes NOx in the exhaust gas and a sensor that measures the NOx concentration in the exhaust gas.
  • the exhaust heat recovery boiler may lower the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of the water vapor in the exhaust gas, and may recover the water generated by the recovery of the latent heat of the water vapor.
  • the heat of the exhaust gas can be sufficiently recovered by lowering the temperature of the exhaust gas to the atmospheric temperature.
  • the water vapor in the exhaust gas can be recovered as water, and the water can be effectively used.
  • GTCC produces steam with a gas turbine (GT) and an exhaust heat recovery boiler, and generates electricity with the steam turbine.
  • GT gas turbine
  • NOx nitrogen oxide generated in the exhaust gas accompanying the combustion of fuel is thoroughly removed by using a denitration catalyst.
  • the gas turbine combined cycle power generation system in each of the plurality of plantations sends power to the local power supply network via the power transmission network and transmits the power.
  • the network may be configured to be incorporated and transferred to the local power supply network. According to this configuration, as described above, it is possible to back up the power supply and realize a stable power supply, and to convert the power to the local power supply network.
  • the self-sustaining and locally distributed power generation and supply system is a gas fuel and a liquid fuel having a zero CO 2 emission rating produced by fruits from each of a plurality of palm plantations, which are Abra palm plantations.
  • the transmission network comprises a plurality of gas turbine combined cycle power generation systems that generate power using at least one of them, and a transmission network that sends each of the power generated by the plurality of gas turbine combined cycle power generation systems to a local power supply network. It is configured so that it can be incorporated and transferred to the local power supply network.
  • Power is generated using one or two of gas fuel and liquid fuel, which are stable renewable energies with zero CO 2 emissions from palm plantations, to build a self-sustaining and locally distributed power generation system, and long-term and wide area. Power production, supply, and utilization will be possible. Electricity cannot be stored, and it is necessary to respond flexibly and appropriately according to demand. For this purpose, private electric wires will be installed between multiple palm plantations for mutual power interchange and backup. This makes it possible to economically and stably produce, transmit, distribute, and use electric power when and where it is needed, when and where it is needed.
  • This system is a power production / transmission / distribution system that can be used in an integrated manner with the transmission lines of electric power companies. It should be noted that the S-GTCC can sufficiently transmit and distribute power in cooperation with an electric power company or the like from the viewpoint of stability of large-scale power supply to power consumption areas.
  • FIG. 1 is a schematic configuration diagram showing an S-GTCC according to an embodiment.
  • FIG. 2 shows the S-GTCC (O1 in FIG. 2), the conventional GTCC, the thermal power generator, and the nuclear power generator in FIG. 1 when the exhaust heat amount of the S-GTCC (O2 in FIG. 2) of the comparative example is 100. It is a figure which shows the relative exhaust heat amount of each of.
  • FIG. 3 is a schematic view showing a self-sustaining and locally distributed power generation system according to an embodiment.
  • FIG. 4 is a schematic view showing the plantation of FIG.
  • FIG. 5 is a cross-sectional view showing a biogas captivity device in the wastewater pond of FIG.
  • FIG. 1 is a schematic configuration diagram showing a GTCC (gas turbine combined cycle power generation system) 1. As shown in FIG. 1, the GTCC 1 includes a power generation device 2, a power generation device 3, an exhaust heat recovery boiler 4, and a power generation device 5.
  • the GTCC 1 includes a power generation device 2, a power generation device 3, an exhaust heat recovery boiler 4, and a power generation device 5.
  • the power generation device 2 includes a combustor 21, a GT (first gas turbine) 22, an air compressor 23, and a generator 24.
  • the combustor 21 uses gaseous fuel as fuel to generate high-temperature combustion gas, and supplies the generated combustion gas to GT 22.
  • Gaseous fuel is a fuel of CO 2 emission zero rating produced fruit harvested in oil palm plantations, which will be described later, as a raw material (CO 2 CO 2 free evaluated not emit).
  • the GT 22 rotates by the action of the combustion gas to extract power. That is, the GT 22 operates using gaseous fuel.
  • the air compressor 23 and the generator 24 are connected to the GT 22.
  • the air compressor 23 rotates according to the rotation of the GT 22, compresses the air, and supplies the air to the combustor 21.
  • the generator 24 rotates according to the rotation of the GT 22 to generate electricity.
  • the power generation device 3 includes a combustor 31, a GT (second gas turbine) 32, an air compressor 33, and a generator 34.
  • the combustor 31 uses liquid fuel as fuel to generate high-temperature combustion gas, and supplies the generated combustion gas to the GT 32.
  • the liquid fuel is a fuel with a zero CO 2 emission evaluation, which is produced from fruits harvested at a palm plantation, which will be described later.
  • the GT 32 rotates by the action of the combustion gas to extract power. That is, the GT 32 operates using liquid fuel.
  • the air compressor 33 and the generator 34 are connected to the GT 32.
  • the air compressor 33 rotates according to the rotation of the GT 32, compresses the air, and supplies it to the combustor 31.
  • the generator 34 rotates according to the rotation of the GT 32 to generate electricity.
  • the exhaust heat recovery boiler 4 has a closed structure.
  • the exhaust heat recovery boiler 4 includes a heat exchanger 41, a denitration catalyst 42, a sensor 43, a sensor 44, and a condensed water recovery unit 45.
  • the exhaust heat recovery boiler 4 lowers the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of water vapor in the exhaust gas, and recovers the water generated by the recovery of the latent heat of water vapor.
  • the heat exchanger 41 is arranged in the housing 46.
  • the heat exchanger 41 recovers the heat of the exhaust gas exhausted from the GT 22 and the GT 32.
  • the heat exchanger 41 exchanges heat using water (here, clean water) or water vapor as a heat medium.
  • the high-pressure steam obtained by the heat exchanger 41 is supplied to ST51, which will be described later.
  • the exhaust gas from GT22 and GT32 passes through the exhaust heat recovery boiler 4 and is heat-exchanged, and then exhausted to the atmosphere.
  • the heat exchanger 41 adjusts the temperature of the exhaust gas at the outlet of the housing 46 by recovering the latent heat of the water vapor in the exhaust gas.
  • the heat exchanger 41 can reduce the temperature of the exhaust gas to the outside air temperature by sufficiently exchanging heat. This is the S-GTCC (O1) of FIG.
  • the S-GTCC (O2) in FIG. 2 is applied when a large-scale natural gas / LNG for diffusing exhaust gas into the atmosphere is used as fuel by recovering exhaust heat to an exhaust gas temperature of about
  • the denitration catalyst 42 is arranged in the housing 46.
  • the denitration catalyst 42 removes NOx in the exhaust gas from the power generation device 2 and the power generation device 3.
  • the denitration catalyst 42 is a dry denitration catalyst of the selective catalytic reduction method (SCR method).
  • the denitration catalyst 42 has a honeycomb structure.
  • the denitration catalyst 42 is formed of, for example, TIO 2- supported vanadium pentoxide (V 2 O 5 ) or TiO 2- supported copper oxide (CuO).
  • the denitration catalyst 42 has a sufficient surface area for the denitration reaction.
  • the sensor 43 is provided on the upstream side of the denitration catalyst 42.
  • the sensor 44 is provided on the downstream side of the denitration catalyst 42.
  • the sensor 43 and the sensor 44 continuously measure the NOx concentration in the exhaust gas.
  • an infrared analyzer or a batch type analyzer may be used.
  • a widely used general-purpose gas measuring instrument may be used.
  • the condensed water recovery unit 45 collects and stores the condensed water generated by the recovery of latent heat by the heat exchanger 41 in the housing 46.
  • the condensed water recovery unit 45 is not particularly limited, and various known configurations can be used.
  • the power generation device 5 has an ST (steam turbine) 51 and a generator 52.
  • the ST51 rotates by the action of high-pressure steam supplied from the heat exchanger 41 to extract power. That is, the ST 51 operates by utilizing the heat recovered by the exhaust heat recovery boiler 4.
  • the generator 52 is connected to the ST 51. The generator 52 rotates according to the rotation of ST51 to generate electricity.
  • FIG. 2 shows the S-GTCC1 (illustrated O1), the conventional GTCC, the thermal power generator system, and the nuclear power generator system, respectively, when the exhaust heat amount of the S-GTCC (illustrated O2) of the comparative example is 100. It is a figure which shows the relative exhaust heat amount.
  • the amount of exhaust heat of S-GTCC1 is about 20%.
  • the amount of heat exhausted from the conventional GTCC is about 200%.
  • the amount of heat exhausted from the system of a thermal power generator by a steam turbine (ST) that uses coal or petroleum as fuel is about 400%.
  • the amount of exhaust heat of the nuclear power generator system is about 550%.
  • the energy efficiency of S-GTCC1 is the best among the plurality of power generation methods.
  • FIG. 3 is a schematic diagram showing a self-sustaining and locally distributed electric power production and supply system (hereinafter referred to as “electric power supply system”) 10.
  • the power supply system 10 is used in a plurality of palm plantations (plantations) 11. Palm plantation 11 is a plantation for cultivating oil palm.
  • the power supply system 10 includes a plurality of GTCCs 1 arranged in each of the plurality of palm plantations 11 and a power transmission network 12. Each GTCC1 generates electricity by using the gaseous fuel and the liquid fuel produced in the palm plantation 11 where the GTCC1 is arranged.
  • a plurality of GTCC1s may be arranged in one palm plantation 11.
  • the power grid 12 has a plurality of first power transmission lines 13 and one second power transmission line 14.
  • the first transmission line 13 transmits electric power from the GTCC 1 in each of the plurality of palm plantations 11 to the power consuming area.
  • the second transmission line 14 connects a plurality of first transmission lines 13 to each other.
  • a plurality of insulating insulators 14a are provided on the second transmission line 14.
  • Electric power consumption area means an urban area or the like that requires electric power.
  • the power transmission network 12 is connected to the power transmission and distribution network (regional power supply network) 61 of the electric power company.
  • the S-GTCC 1 in each of the plurality of palm plantations 11 transmits electric power to the transmission and distribution network 61 of the electric power company via the transmission network 12.
  • the transmission and distribution network 61 of the electric power company has a main trunk line 62, a trunk line 63, and a transformer 64.
  • a plurality of insulating insulators 62a are provided on the main trunk line 62.
  • a plurality of insulating insulators 63a are provided on the trunk line 63.
  • the transformer 64 is provided between the main trunk line 62 and the trunk line 63.
  • the transmission network 12 is connected to the transmission and distribution network 61 of the electric power company.
  • the second transmission line 14 is connected to the main line 63 and the main line 65 by the first transmission line 13 drawn from the electric power company to each palm plantation.
  • a plurality of insulating insulators 65a are provided on the trunk line 65.
  • the transmission network 12 is configured to be incorporated and transferred to the transmission and distribution network 61 of an electric power company.
  • the first transmission line 13 is, for example, a 6 kV overhead wiring 60 mm 2 .
  • the second transmission line 14 is, for example, a 6 kV overhead wiring 80 mm 2 .
  • the main trunk line 62 is, for example, a 22 kV overhead wiring 80 mm 2 .
  • the trunk line 63 is, for example, a 6 kV overhead wiring 80 mm 2 .
  • the transformer 64 is, for example, a 22 kV / 6 kV three-phase transformer. Since the transmission network 12 has the same specifications as the trunk line 63, it can be transferred to the transmission and distribution network 61 of the electric power company.
  • the GTCC1 can send electric power to the palm plantation 11 where the GTCC1 is located via the transmission line (transmission and distribution network 61) of the electric power company. Further, the plurality of GTCC 1s transmit electric power to each of the plurality of palm plantations 11 via the power transmission network 12. In other words, one GTCC1 sends power not only to the palm plantation 11 where the one GTCC1 is arranged, but also to other palm plantations 11.
  • FIG. 4 is a schematic view showing the palm plantation 11. As shown in FIG. 4, there is a wastewater pond 8 in the palm plantation 11. There may be multiple wastewaters from the oil mill (MILL), and although Fig. 4 is simplified, there are actually multiple wastewater ponds.
  • FIG. 5 is a cross-sectional view showing a final wastewater pond 8 of a plurality of wastewater ponds. As shown in FIG. 5, the wastewater pond 8 is a pond formed on the ground. The wastewater pond 8 stores products from the oil squeezing device.
  • a wall 81 extending over the entire circumference of the wastewater pond 8 is provided at the edge of the wastewater pond 8.
  • a roof 82 is provided above the wall 81.
  • a gas fuel supply device 7 is connected to the wall 81.
  • the waste water pond 8, the wall 81 and the roof 82 constitute a storage device 80.
  • the waste water pond 8, the wall 81 and the roof 82 form a space Z.
  • the product In the waste water pond 8, the product is naturally decomposed and gaseous fuel is generated in an anaerobic state without oxygen.
  • the gaseous fuel is a biogas containing methane (CH 4 ), CO 2 and the like. Space Z is filled with gaseous fuel.
  • Gaseous fuel, after H 2 S or the like is removed by the removing device 71 of the gas fuel supply apparatus 7 is supplied to GT combustor 21 by pumping machine 72.
  • the wastewater from the wastewater pond 8 (the product after natural decomposition) is discharged to the public water area after confirming that it is purified and conforms to the wastewater standard.
  • the power supply system 10 of FIG. 3 shown in the present embodiment includes GTCC1.
  • the GTCC 1 is arranged in the palm plantation 11 and generates electricity by using the gaseous fuel and the liquid fuel produced in the palm plantation 11. Thereby, the fuel required for GTCC1 can be easily obtained.
  • the power supply system 10 has a power transmission network 12 having a first power transmission line 13 for transmitting power from GTCC 1 in each of the plurality of palm plantations 11 and a second power transmission line 14 for connecting the plurality of first power transmission lines 13 to each other. It has. Thereby, for example, even if it becomes difficult or impossible to send power from GTCC1 in some palm plantations to the power consumption area, power can be sent from GTCC1 in other palm plantations to the power consumption area. That is, it is possible to back up the power supply. Therefore, according to the power supply system 10, in addition to mutual interchange and backup of power between palm plantations 11, power can be stably supplied to power consumption areas.
  • the exhaust heat recovery boiler 4 has a denitration catalyst 42 for removing NOx in the exhaust gas, and sensors 43 and 44 for measuring the NOx concentration in the exhaust gas.
  • the exhaust heat recovery boiler 4 lowers the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of water vapor in the exhaust gas, and recovers the water generated by the recovery of the latent heat of water vapor.
  • the heat of the exhaust gas can be sufficiently recovered by lowering the temperature of the exhaust gas to the atmospheric temperature.
  • the water vapor in the exhaust gas can be recovered as a large amount of clean water, and the water can be effectively used.
  • the GTCC 1 in each of the plurality of palm plantations 11 transmits electric power to the transmission and distribution network 61 (the main line 63 and the main line 65) of the electric power company via the transmission network 12.
  • the transmission network 12 is the electric power company. It is configured so that it can be incorporated and transferred to the transmission and distribution network 61 of the above. According to this configuration, as described above, the backup of the power supply and the stable supply of the power are realized, and the power to the power transmission and distribution network 61 of the electric power company Can be converted.
  • the electric power supply system 10 includes a plurality of GTCC1s that generate electricity using at least one of a gas fuel and a liquid fuel having a zero CO 2 emission evaluation produced by fruits from each of the plurality of palm plantations 11 which are oil palm plantations.
  • a power transmission network 12 that sends each of the electric power generated by the plurality of GTCC 1s to the local power supply network.
  • the power transmission network 12 is configured to be incorporated and transferred to a local power supply network.
  • Power is generated using one or two of gas fuel and liquid fuel, which are stable renewable energies with zero CO 2 emissions from Palm Farm 11, as fuel, and a self-sustaining and locally distributed power generation system is constructed for a long period of time.
  • Wide-area power production, supply, and utilization will be possible. Electricity cannot be stored, and it is necessary to respond flexibly and appropriately according to demand.
  • private electric wires will be provided between the plurality of palm plantations 11 for mutual interchange and backup of electric power. This makes it possible to economically and stably produce, transmit, distribute, and use electric power when and where it is needed, when and where it is needed.
  • This system is a power production / transmission / distribution system that can be used in an integrated manner with the transmission lines of electric power companies. It should be noted that GTCC1 can sufficiently transmit and distribute power in cooperation with an electric power company or the like from the viewpoint of stability of large-scale power supply to power consumption areas.
  • Palm plantation 11 can produce a large amount of stable renewable energy with zero CO 2 emission evaluation. If liquid fuel is used for GT in addition to the gaseous fuel produced in the palm plantation 11, the highest value-added electric power can be secured. That is, it can be a self-sustaining and locally distributed power plant. In addition, the palm plantation 11 can manufacture and supply the electric power necessary for producing and exporting renewable energy (solid fuel and liquid fuel) with zero CO 2 emission evaluation in addition to palm oil, using the vast site. Furthermore, it can be developed as an industrial park in combination with the infrastructure development around the factory. At the same time, the heat of water vapor in the combustion exhaust gas can be recovered, and at the same time, a large amount of clean water can be created and used.
  • the palm plantation 11 builds a network as a locally distributed power plant, the necessary power supply can be easily realized in the new palm plantation plan.
  • SDGs Stustainable Development Goals
  • Palm oil production accounts for more than one-third of the global vegetable oil market.
  • Indonesia's production accounts for more than 50% of palm oil production.
  • the productivity of palm oil produced by oil palm is nearly 10 times that of soybean oil, which is the second largest food oil in the world, and exceeds 3 tons per hectare per year. In other words, the planted area is 1/10 and the same amount of cooking oil can be produced.
  • Oil palm is a tree, and once planted, it can stably produce fruits (FFB) for more than 20 years. More than 20% of vegetable oil for food can be harvested from FFB, and the remaining 80% is partially used.
  • biogas contains about 40% CO 2. If there is a lot of CO 2, it is difficult for a gas engine to operate stably. In addition, the properties of the gas may fluctuate, resulting in unstable combustion. Second, gas engines have a great track record in automobiles. In order to operate the gas engine, constant inspection and management is required, so engineering for inspection and adjustment is required in the field environment of palm plantation. If the operation management is outsourced to an external engineering company, the cost will increase and stable operation has not been achieved.
  • the blades of the gas turbine are rotating bodies, and the basic principle is the same as the water turbines and wind turbines that have been used for power before the Industrial Revolution. Therefore, stable operation can be performed for a long period of time in a state where there is no influence of thermal stress or corrosive substances.
  • Regular GT is generally 5 MW or more, but 200 kW (0.2 MW) or more 5 MW scale equipment is widely used as an emergency power generation device to operate in the event of an earthquake or fire, and its reliability is high. .. In principle, it can withstand long-term use. Recently, 1MW class GT has been developed and sold in Japan. Even if it is considered from the principle, it can be solved by including the procedure of demonstrating and confirming that it can withstand long-term use.
  • the emergency generator usually uses liquid fuel. Therefore, not only the gaseous fuel but also the liquid fuel produced in the palm plantation 11 can be used in the palm plantation 11. From now on, the demand for electric power in the palm plantation 11 will be generated mainly for fuel production, but it is important that the scale and the time when it can be used can be flexibly adjusted according to various surrounding situations. In addition, it is important to ensure the stability of supply because electricity cannot be stored. Palm plantation 11 will provide all of these fuels for the necessary electricity, and there is vast land, and it is possible to create employment in combination with the development of surrounding infrastructure, and it is necessary as an industrial park that will be the driving force for regional revitalization and economic development. There is a function that can increase the electric power with the fuel produced in the palm plantation 11. In other words, local governments can formulate regional development plans and promote commercialization in line with the long-term policies and master plans of local governments of the national and republics.
  • the palm plantation 11 it is most effective to convert and use the biogas and palm oil crude oil (CPO) produced in the plantation as fuel for the highest value-added electric power.
  • CPO biogas and palm oil crude oil
  • the temperature of the exhaust gas after power generation is as high as 700 ° C. or higher, and the exhaust heat recovery boiler 4 can recover sufficient heat as much as a dedicated steam boiler. Since the exhaust heat recovery boiler 4 does not have a combustor, stable operation can be realized. Since electric power cannot be stored, it is basic to collect and use the exhaust gas of two or more GTs for stable operation.
  • CH 4 which is a combustible gas is about 60% in the biogas captured and collected at the palm plantation 11 and the calorific value is small, there is a possibility that the flame blows off at the time of startup and the stability of ignition is low.
  • the response to stable operation can be solved by igniting with the liquid fuel (CPO: palm oil crude oil) that can be supplied at the palm plantation 11 and switching to the gaseous fuel after the combustor becomes stable.
  • CPO palm oil crude oil
  • the GT Based on the gas fuel and liquid fuel produced in the palm plantation 11, the GT generates electricity, and the exhaust heat recovery boiler 4 is a patented system of the evaluation test device and evaluation test system (Patent No. 6446160) registered earlier. Apply the idea. Based on the concept of Zero Waste, a system that makes effective use of the two ultimate power sources and clean water can be realized. In this regard, it has become well-established among stakeholders, including the Indonesian government, to take sustainability (S of Sustainable) and functionally express it as S-GTCC.
  • the exhaust heat recovery boiler 4 incorporates a denitration catalyst 42 to eliminate the emission of air pollutants, and the latent heat of water vapor in the combustion exhaust gas can be exchanged and recovered to the outside air temperature. The collected clean water can be used effectively.
  • the recovered water can be used, for example, in a boiler or the like, and can be produced in a large amount of about twice as much as fuel. Therefore, when GTCC1 is newly introduced to a palm plantation, the system is common, and improvements and improvements such as energy saving, stability of performance, facilitation of operation and inspection management, and securing of economy will be promoted.
  • the exhaust gas temperature can be lowered to the outside air temperature by recovering the latent heat of water vapor in the combustion exhaust gas.
  • the heat recoverable amount is 10% in the case of gaseous fuel and 6% in the case of liquid fuel. Therefore, the improvement of the power generation efficiency in the S-GTCC is about 3% for the gas fuel and about 2% for the liquid fuel when the power generation efficiency of the steam turbine is set to about 30% and converted into the efficiency improvement of the power generation efficiency.
  • the water recovered by the exhaust heat recovery boiler 4 is clean water produced by condensation. This can be effectively used as process steam in the palm plantation 11. It is also possible to supply clean water to the outside of the palm plantation 11, which can contribute to the development of local infrastructure.
  • the water recovered by the exhaust heat recovery boiler 4 is clean water produced by condensation.
  • Palm plantation 11 is used in a vast area, and since there are no residents, there is no concern about air pollution. In S-GTCC, there are no pollutants in the exhaust gas. It is not necessary to consider measures such as leakage of a small amount of ammonia and generation of white smoke. The entire amount of heat recovered from the exhaust gas can be exchanged up to room temperature, and no chimney is required. In fact, in an oil mill (MILL), black smoke is emitted from the chimney due to combustion of a boiler or the like. When this system is used for large-scale power generation using LNG as fuel, the achievements at the palm plantation 11 can exert great power. Since there is no air pollution, the residents are welcomed by the local community without any anxiety. Regionally distributed thermal power plant plans can be agreed upon by the community with virtually no environmental impact assessment procedure. This will create great added value not only in Japan but also in the world.
  • MILL oil mill
  • the private transmission line as a cluster can be used for 6 kV, but the transmission and distribution line is the same as the 22 kV specification. Insulators used in utility poles and steel towers generally use 6kV specifications to reduce initial equipment costs.
  • FIG. 3 shows a model in which private electric wires are progressively deployed in the electric power network of an electric power company.
  • the main line of the electric power company will be installed as if it is not maintained or cannot be used.
  • the voltage is set to 22 kV via a transformer.
  • the private line will be transferred to the electric power company, and the insulator will be replaced with the 22kV specification.
  • Palm plantation 11 is a self-sustaining and locally distributed power plant that uses stable renewable energy with zero CO 2 emission evaluation. By connecting to the main line reasonably and economically when and where it is needed and establishing a local power network, it will become a driving force for regional development. Conventionally, the transmission and distribution network of an electric power company has been planned to have a higher voltage of 66 kV as the main trunk line and 150 kV or more as the main trunk line, but the need for these becomes extremely small.
  • both the gaseous fuel produced by capturing the biogas produced from the waste liquid when palm oil is extracted from the fruit (FFB) produced at the palm plantation 11 and the liquid fuel produced from the palm oil raw material (palm oil crude oil: CPO) are both. It is a stable regenerated energy with zero CO 2 emission evaluation.
  • FFB palm oil is extracted from the fruit
  • CPO palm oil crude oil
  • FIG. 4 is a schematic view showing a model of the palm plantation 11.
  • the palm plantation 11 cultivates plants such as oil palm that grow in tropical rainforest areas that are warm and have a lot of rainfall all year round, for example.
  • the area of the palm plantation 11 is, for example, about 200 km 2 .
  • MILL oil mill
  • wastewater ponds 8 adjacent thereto.
  • oil palm fruits FFB: Fresh Fruits Bunch: FFB
  • Electricity and clean water are needed to operate an oil mill. Steam is injected into the fruit (FFB) to extract the oil.
  • the steam used for extraction is condensed and discharged to the wastewater pond 8 as wastewater (POME) containing organic matter mixed with oil.
  • wastewater wastewater
  • organic matter precipitates or decomposes spontaneously.
  • the oil content of POME is decomposed in an anaerobic state to generate biogas, which contains about 60% and about 40% CO 2 , but the composition varies.
  • H 2 S which is a harmful substance in this gas, is adsorbed and removed by a scrubber, purified, and sent to a generator.
  • Palm plantation 11 is at the stage of capturing biogas and using it as fuel for power generation in accordance with the government policy.
  • the Indonesian government has been working on 1MW scale power generation with a gas engine since around 2010, but the performance as a power generation facility is not stable because the engineering company is still devising and operating it.
  • GT is a system that rotates blades in the same way as wind turbines and water turbines in order to extract power from before the Industrial Revolution, and its performance is stable in principle. It has the characteristic that it can be operated stably for a long period of time without much human intervention. Also, unlike a gas engine, it is compact and can take out a large output by rotating it at high speed. For this reason, the function of an emergency generator that can be operated by turning on the switch in the event of a fire or earthquake has been highly evaluated, and it has become widespread from 0.2 MW to 5 MW and even larger capacity GTs.
  • liquid fuel is basically used as fuel
  • the gas turbine has a structure and method in which the amount of combustion air is about four times the theoretical amount of air to lower the combustion temperature and maintain the heat resistance of the turbine blades.
  • the basic configuration is to install a plurality of units for gas fuel and liquid fuel that can be self-sufficient in the palm plantation 11 in order to secure the output of electric power and to provide a stable supply.
  • a plurality of each can be installed.
  • the combination of liquid fuel and gaseous fuel that can be produced from the fruits (FFB) of Palm Farm 11 makes it possible to supply a large amount of power with the highest added value. Therefore, the palm plantation 11 can greatly contribute to the national master plan and the development plan of the local government as a regional industrial park as a regional distributed power plant using stable renewable energy with zero CO 2 emission evaluation. It is hoped that the demonstration of the power generation system will proceed as soon as possible. Once the basic performance is confirmed by the demonstration device, it will be possible to accelerate the practical application by adopting and demonstrating the same type of machine at a plurality of palm plantations 11.
  • the exhaust gas temperature at the GT outlet which is based on the installation of multiple units of gas fuel and liquid fuel, is 700 ° C or higher. Take it out. Remove air pollutants in the exhaust gas to recover all exhaust heat. H 2 S in the biogas is removed by the scrubber in the purification unit of the gas. Since NOx is generated at the GT outlet due to combustion, NOx is removed by injecting an equivalent amount or more of NH 3 into the NOx. This denitration reaction is carried out via a reduction catalyst. A heat exchanger exchanges heat between liquid and gas. The exhaust gas is designed to exchange heat up to room temperature. Since there are no air pollutants in the exhaust gas, it is a small-scale system in the palm plantation 11 and does not require a chimney.
  • the essential items are H 2 S measured at the GT inlet, NOx concentration and exhaust gas amount at the GT outlet, components in the recovered water, PH, and exhaust gas amount and temperature (measured at the inlet and outlet of each device).
  • Coordination of power supply and demand with the outside is also a great merit.
  • the electricity generated at the palm plantation is a stable renewable energy with a zero CO 2 emission rating, which is extremely desirable as a measure against global warming.
  • High-voltage power transmission line refers to an electric wire used in an electric line having a nominal voltage (JEC standard) of 6 kV.
  • JEC standard nominal voltage
  • the cost of wires used for power lines with low nominal voltage is lower than the cost of wires used for power lines with high nominal voltage.
  • the nominal voltage (JEC standard) is 22 kV
  • the specifications of the transmission line are the same as when the nominal voltage is 6 kV.
  • W 3 1/2 ⁇ EIcos ⁇ .
  • W electric power (kW)
  • E voltage (V)
  • I current (kA).
  • E voltage
  • I current
  • the electric power company will replace it with an insulator 22kV. It will be.
  • the liquid fuel produced at the palm plantation 11 has the potential to support an electric power supply of as much as 30 MW.
  • the wire is an important infrastructure, the use of 80 mm 2 instead 60 mm 2, there is also a choice that can be further corresponding to the large electric power.
  • the power supply system 10 includes a gas fuel supply device 7 that recovers gas fuel from a storage device 80 that stores products produced in the palm plantation 11 and supplies the gas fuel to GTCC 1. There is. According to this configuration, the gas fuel supply device 7 recovers the gas fuel from the storage device 80, and the gas fuel is supplied to the power generation device 2 to generate electricity, which can be used in the palm plantation 11.
  • the power supply system 10 is provided with a device for refining and supplying as fuel for a gas turbine based on palm oil crude oil (CPO) squeezed and produced at the palm plantation 11.
  • the liquid fuel supply device supplies the liquid fuel to the gas turbine via the oil storage device to generate electricity, and the electric power can be used in the palm plantation 11.
  • GTCC1 since electric power cannot be stored, it is important for GTCC1 to effectively function the feature that the output of the generated electric power can be adjusted in a form commensurate with the required electric energy.
  • the recovered water can be supplied in large quantities as boiler water used in oil mills by measuring trace substances such as N and S and controlling the pH to be alkaline of 7 or more. ..
  • trace substances such as N and S
  • the pH is controlled by measuring trace substances such as N and S and controlling the pH to be alkaline of 7 or more. ..
  • the amount of water required is 29% of fruit (FFB) and 24% of palm oil. Therefore, since the maximum water supply capacity from the liquid fuel is as large as 50% or more, it is possible to cover all the water supply capacity required in the palm farm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

This autonomous and regional distributed power production/supply system comprises: a plurality of gas turbine combined cycle power generation systems that are respectively disposed in a plurality of plantations and that generate power by using gaseous fuel and liquid fuel produced by the plantations; and a power transmission network comprising first power transmission lines that transmit, to power consumption locations, power from the gas turbine combined cycle power generation systems respective to the plurality of plantations, and second power transmission lines that connect the plurality of first power transmission lines to each other. Each of the gas turbine combined cycle power generation systems transmits power to the plantation in which said gas turbine combined cycle power generation systems is disposed. The plurality of gas turbine combined cycle power generation systems transmit power to each of the plurality of plantations via the power transmission network.

Description

自立型且つ地域分散型の電力製造供給システムIndependent and locally distributed power production and supply system
 本開示は、自立型且つ地域分散型の電力製造供給システムに関する。 This disclosure relates to a self-sustaining and locally distributed power production and supply system.
 プランテーションにおける生産活動は、コーヒー、紅茶、砂糖、タバコ、香辛料及び綿花などの付加価値の高い農業生産物をヨーロッパなどに輸出して収益を上げるために産業革命前から拡がった。 Production activities in plantations have expanded since before the Industrial Revolution in order to export high value-added agricultural products such as coffee, tea, sugar, tobacco, spices and cotton to Europe and other countries to generate profits.
 熱帯の多雨林地帯で湿潤地域では、常緑の広葉樹林の生育が良い。このため、マレーシアやインドネシアでは、20世紀初頭から大規模な天然ゴム林のプランテーションが発達し、付加価値の高い天然ゴムを製品原料として欧米などに輸出する産業が発達した。 Evergreen broad-leaved forests grow well in tropical rainforests and moist areas. For this reason, in Malaysia and Indonesia, large-scale natural rubber forest plantations have developed since the beginning of the 20th century, and industries that export high-value-added natural rubber as product raw materials to Europe and the United States have developed.
 その後、さらに農園内での輸送など大規模で近代産業として生産性、収益性が高いアブラヤシによる植物性油、食用油・エネルギーであるパーム油の生産がプランテーションの主生産物となり、品種改良、栽培面積の拡大に伴い、生産量が増大してきた。 After that, the production of vegetable oil by oil palm, which is highly productive and profitable as a large-scale modern industry such as transportation within farms, and palm oil, which is edible oil and energy, became the main products of plantations, and varieties were improved and cultivated. With the expansion of the area, the production volume has increased.
 特に、インドネシアは、土地が広く人口が多いことから、パーム油の増産が続き、その生産量が年間4000万トン以上になった。これは、品種改良による収量の増加、果実(FFB)が手の届く高さで収穫できる作業性の改善、及び栽培面積の拡大によって実現された。経済性の高さからパーム油は植物性油の世界市場の1/3を超えるようになった。 In particular, Indonesia has a large land area and a large population, so the production of palm oil has continued to increase, and the annual production has increased to more than 40 million tons. This was achieved by increasing the yield by breeding, improving the workability of harvesting fruits (FFB) at a reachable height, and expanding the cultivated area. Due to its high economic efficiency, palm oil has exceeded one-third of the world market for vegetable oils.
 インドネシア政府は、長期的な視点で、食料用としてのパーム油市場に限界があることから温暖化対策の推進のため、二つの方針を示している。アブラヤシの樹木から20年間安定して生産可能な果実(FFB:Fresh Fruits Bunch)を原料資源として、CO排出ゼロ評価の安定型の再生可能エネルギーを作り、世界に輸出して収益確保と地球温暖化対策に貢献する。現在、パーム油は、果実(FFB)から20%強生産でき、残りはごく一部しか利用されていない。 From a long-term perspective, the Indonesian government has indicated two policies to promote global warming countermeasures due to the limited palm oil market for food. Using fruits (FFB: Fresh Fruits Bunch) that can be stably produced from oil palm trees for 20 years as a raw material resource, we will create stable renewable energy with zero CO 2 emission evaluation and export it to the world to secure profits and global warming. Contribute to measures against global warming. Currently, palm oil can be produced in excess of 20% from fruits (FFB), and the rest is only partially used.
 果実(FFB)は、毎日収穫されトラックでパーム工場(MILL)に集められる。パーム油を生産するには、大量の蒸気を注入する。パーム工場で植物油を生産するためには、相当量の電力とクリーンな水が必要である。果実(FFB)から生産できる固形物を燃料として高温の蒸気をつくってパーム油粗油(CPO:Crude Palm Oil)を抽出(搾油)する。これを食料用として精製するとパーム油ができる。大量の固形物や油分を含んだ廃水(POME:Palm Oil Mill Effluent)として浄化処理して公共用水域に放出する。一方、廃水から発生するバイオガスは、CH(メタンガス)を60%程度、COを40%程度含んでいる。 Fruits (FFB) are harvested daily and trucked to the Palm Factory (MILL). To produce palm oil, a large amount of steam is injected. A considerable amount of electricity and clean water are required to produce vegetable oil in a palm factory. Using solids that can be produced from fruits (FFB) as fuel, high-temperature steam is produced to extract (squeeze) palm oil crude oil (CPO: Crude Palm Oil). When this is refined for food, palm oil is produced. It is purified as wastewater (POME: Palm Oil Mill Effect) containing a large amount of solids and oil, and released into public water bodies. On the other hand, the biogas generated from wastewater contains about 60% of CH 4 (methane gas) and about 40% of CO 2.
 CHは、地球温暖化係数がCOの20倍以上と大きいことから、インドネシア政府やマレーシア政府などは、これを捕囚及び火力発電用燃料として利用することを基本政策として国際約束している。このために、廃水の最終工程で池にゴム製の膜を設置してバイオガスを回収する取組みが進めている。標準的なパーム農園では、パーム農園内で1MW程度のガスエンジンによる発電設備を設置し、パーム農園内の電力として自家使用する、または、電力会社に電力を販売する開発取組みが近年進み始めているが、課題も多い。ガス成分中のCOが多いとガスエンジンでは安定した稼働が不安定になること、及び、ガスエンジンの稼働のために、常時点検管理が必要なことから、現場でのエンジニアリングが必要であり、実用化、安定操業に至っていない。 Since CH 4 has a global warming potential that is more than 20 times that of CO 2 , the Indonesian government and the Malaysian government have made an international commitment as a basic policy to use it as fuel for prisoners and thermal power generation. .. For this reason, efforts are underway to recover biogas by installing a rubber film in the pond in the final process of wastewater. In a standard palm plantation, development efforts have begun in recent years to install a power generation facility with a gas engine of about 1 MW in the palm plantation and use it in-house as electric power in the palm plantation, or to sell the electric power to an electric power company. , There are many issues. If the amount of CO 2 in the gas component is high, stable operation of the gas engine becomes unstable, and constant inspection and management is required for the operation of the gas engine. Therefore, on-site engineering is required. It has not been put into practical use and stable operation.
 ガスタービン(以下、「GT」という)は、日本のような先進国では、工場などでの5MW以上の大規模な自家発電用として広く採用されている。ガスタービンは、高温の排気ガスにより、熱及び蒸気として利用するコージェネレーション用として普及してきた。日本でもコージェネレーションは、運転及び維持管理などを考慮して、パーム農園で利用するような1MW級の小規模な発電に適用された例は少ない。同様に、情報が少ないインドネシアでもガスタービンによる発電を深く検討する機会がなかった。欧州のメーカーから汎用のガスエンジンを導入して実用化を目指しているが、安定していない状況で打開策を求めている。 Gas turbines (hereinafter referred to as "GT") are widely used in developed countries such as Japan for large-scale private power generation of 5 MW or more in factories and the like. Gas turbines have become widespread for cogeneration, which is used as heat and steam due to high-temperature exhaust gas. Even in Japan, cogeneration is rarely applied to small-scale 1MW class power generation such as that used in palm plantations in consideration of operation and maintenance. Similarly, Indonesia, which has little information, did not have the opportunity to deeply consider gas turbine power generation. We are aiming to put a general-purpose gas engine into practical use from a European manufacturer, but we are seeking a breakthrough in an unstable situation.
 従来、ガスタービンコンバインドサイクル発電システム(以下、「GTCC」という)を備えた発電システムが知られている。GTCCとしては、例えば特許文献1に記載された装置が知られている。特許文献1に記載された装置では、ガスタービン及び蒸気タービン(以下、「ST」という)を組み合わせて発電している。 Conventionally, a power generation system equipped with a gas turbine combined cycle power generation system (hereinafter referred to as "GTCC") is known. As the GTCC, for example, the device described in Patent Document 1 is known. In the apparatus described in Patent Document 1, a gas turbine and a steam turbine (hereinafter referred to as “ST”) are combined to generate electricity.
 ガスタービンは水車や風車と同様の回転体で、従来から広く使用されてきた安定した力を取り出すシステムである。これに排熱を含めZero Wasteの考え方で、高効率で理想的な持続可能(Sustainable)な先進型S-GTCC(以下、「S-GTCC」という)システムを普及させるために、実証から実用設備に展開していく。この取組を通じてインドネシアの膨大な農業資源をCO排出ゼロ評価の安定型の再生エネルギーの開発利用など、SDGs(Sustainable Developmet Goals)の目標実現に向けて明確な道筋が見えてくる。 A gas turbine is a rotating body similar to a water turbine or a wind turbine, and is a system that extracts stable force that has been widely used in the past. In order to popularize the highly efficient and ideal sustainable advanced S-GTCC (hereinafter referred to as "S-GTCC") system based on the concept of Zero Waste including waste heat, from demonstration to practical equipment. It will be expanded to. Through this initiative, a clear path toward the realization of the goals of SDGs (Sustainable Development Goals), such as the development and utilization of stable renewable energy with zero CO 2 emission evaluation, will be revealed.
 パーム農園の計画と建設には少なくとも最低5年程度必要である。土地が広く人口が多いインドネシアではパーム農園の栽培適地は豊富にある。パーム農園を計画し建設する場合、電力と水の確保が必須である。パーム農園では苗木を植えてから3年経たないと果実(FFB)は収穫できない。アブラヤシからは20年間果実(FFB)を収穫出来るので、200kmのモデル農園を想定すると、毎年10kmずつ苗木を植えていく。このことから、計画からパーム工場(MILL)が稼働するまでに、パーム農園の事業者は電力会社の送電網から送電線により電力供給を受ける。初期段階にはパーム農場周辺には電力需要が少なく、長期的な電力インフラの計画・整備が重要である。 It takes at least five years to plan and build a palm plantation. Indonesia, which has a large land area and a large population, has abundant suitable land for palm plantations. When planning and constructing palm plantations, it is essential to secure electricity and water. Fruits (FFB) cannot be harvested at palm plantations until three years have passed since the seedlings were planted. Fruits (FFB) can be harvested from oil palm for 20 years, so assuming a model farm of 200 km 2 , 10 km 2 seedlings will be planted every year. From this, from the plan to the operation of the palm factory (MILL), the operator of the palm plantation receives power from the power grid of the electric power company by the transmission line. In the initial stage, there is little demand for electricity around the palm farm, so it is important to plan and develop long-term electricity infrastructure.
特開2007-315213号公報Japanese Unexamined Patent Publication No. 2007-315213
 パーム農園の搾油工場(パーム工場:MILLという)はパーム農園の核になる施設であり、年間安定して連続運転するために電力とクリーンな水が必須である。パーム農園の計画では20年間にわたり、アブラヤシの樹木を苗から育てて植林していく。植林してから3年程度して果実(FFB)が収穫できるようになり、20年間収穫すると収量が落ちるので、樹林を伐採して新たに品質改良した苗に植え替えて育てていく。したがってパーム工場では電力とクリーンな水を確保できる場所が計画・建設の必須条件になる。ただし、パーム農園計画・建設時には電力会社はパーム農園に電力供給するが、この時点では周辺地域を含め電力需要が少ない。 The oil squeezing factory of the palm plantation (palm factory: called MILL) is the core facility of the palm plantation, and electricity and clean water are indispensable for stable and continuous operation throughout the year. The plan for the palm plantation is to grow oil palm trees from seedlings and plant them for 20 years. Fruits (FFB) can be harvested about 3 years after planting, and the yield will drop after 20 years of harvesting. Therefore, the forest will be cut down and replanted with newly improved seedlings for growing. Therefore, in the palm factory, a place where electricity and clean water can be secured is an essential condition for planning and construction. However, when planning and constructing a palm plantation, the electric power company supplies electricity to the palm plantation, but at this point, the demand for electricity is low, including in the surrounding area.
 インドネシアは人口が多く農業を含む産業が発達しているジャワ島を除き、パーム農園がすでに700カ所稼動してパーム油を生産している。パーム工場(MILL)に隣接して廃水池があり、複数の池の廃水(POME)の最終の池はゴム製の膜を張って酸素が不足する嫌気状態でバイオガスを発生させる。この量が年中安定して1MW程度以上発生するので、これを回収利用する技術システムは確立し、数十台以上がすでに設置導入されている。バイオガスを捕囚して、国内に700カ所ある自立型で地域分散型の発電所が稼働すると、これに適合した電力の送配電網が整備でき、同国の経済成長に大きく寄与できる。 Indonesia has 700 palm plantations already in operation to produce palm oil, except for Java Island, which has a large population and a well-developed industry including agriculture. There is a wastewater pond adjacent to the Palm Factory (MILL), and the final pond of the wastewater (POME) of multiple ponds is covered with a rubber film to generate biogas in an anaerobic state where oxygen is insufficient. Since this amount is stably generated throughout the year, about 1 MW or more has been established, and a technical system for collecting and utilizing this has been established, and dozens or more have already been installed and introduced. If biogas is captured and 700 self-sustaining and locally distributed power plants are put into operation in the country, a power transmission and distribution network suitable for this will be established, which will greatly contribute to the country's economic growth.
 インドネシア政府は2010年代初めからバイオガスを捕囚してガスエンジンによる発電に取り組んできたが、まだ実用化に至っていない。詳細は後述するが、排熱を回収して蒸気タービン(ST)とを組み合わせて発電するガスタービンによる発電システムが最適である。 The Indonesian government has been capturing biogas since the early 2010s and working on power generation using a gas engine, but it has not yet been put into practical use. Although details will be described later, a gas turbine power generation system that recovers exhaust heat and generates power in combination with a steam turbine (ST) is optimal.
 ここで、自立型且つ地域分散型の電力製造供給システムでは、GTCCに必要な燃料を容易に得ると共に電力を安定して電力消費地へ供給することが望まれる。本開示は、自立型且つ地域分散型の電力製造供給システムにおいて、GTCCに必要な燃料を容易に得ると共に電力を安定して電力消費地へ供給することを目的とする。 Here, in a self-sustaining and locally distributed electric power production and supply system, it is desired that the fuel required for GTCC can be easily obtained and the electric power can be stably supplied to the electric power consumption area. An object of the present disclosure is to easily obtain the fuel required for GTCC and to stably supply electric power to a power consuming area in a self-sustaining and locally distributed electric power production and supply system.
 本開示の一形態に係る自立型且つ地域分散型の電力製造供給システムは、複数のプランテーションのそれぞれに配置され、当該プランテーションで製造された気体燃料及び液体燃料を利用して発電する複数のガスタービンコンバインドサイクル発電システムと、複数のプランテーションのそれぞれにおけるガスタービンコンバインドサイクル発電システムから電力消費地へ電力を送る第1送電線、及び、複数の第1送電線を互いに接続する第2送電線を有する送電網と、を備え、プランテーションは、アブラヤシを栽培するパーム農園であり、気体燃料及び液体燃料のそれぞれは、プランテーションで収穫される果実を原料として製造された燃料であり、複数のガスタービンコンバインドサイクル発電システムのそれぞれは、気体燃料を利用して稼働する第1ガスタービンと、液体燃料を利用して稼働する第2ガスタービンと、第1ガスタービン及び第2ガスタービンから排気される排ガスの熱を回収する排熱回収ボイラーと、排熱回収ボイラーによって回収された熱を利用して稼働する蒸気タービンと、を有し、ガスタービンコンバインドサイクル発電システムは、当該ガスタービンコンバインドサイクル発電システムが配置されたプランテーションへ電力を送り、複数のガスタービンコンバインドサイクル発電システムは、送電網を介して、複数のプランテーションのそれぞれに電力を送る。 The self-sustaining and locally distributed electric power production and supply system according to one form of the present disclosure is arranged in each of a plurality of plantations, and a plurality of gas turbines that generate power using the gaseous fuel and the liquid fuel produced in the plantations. A transmission having a combined cycle power generation system, a first transmission line for transmitting power from a gas turbine combined cycle power generation system in each of a plurality of plantations to a power consumption area, and a second transmission line for connecting the plurality of first transmission lines to each other. Equipped with a net, the plantation is a palm plantation that grows abra palm, and each of the gaseous fuel and liquid fuel is a fuel produced from the fruits harvested in the plantation, and multiple gas turbine combined cycle power generation Each of the systems uses the heat of the first gas turbine that operates using gaseous fuel, the second gas turbine that operates using liquid fuel, and the exhaust gas exhausted from the first gas turbine and the second gas turbine. The gas turbine combined cycle power generation system includes a waste heat recovery boiler to be recovered and a steam turbine that operates by utilizing the heat recovered by the waste heat recovery boiler, and the gas turbine combined cycle power generation system is arranged. Power is sent to the plantations, and the multiple gas turbine combined cycle power generation systems send power to each of the multiple plantations via the transmission network.
 この自立型且つ地域分散型の電力製造供給システムは、S-GTCCとしてのガスタービンコンバインドサイクル発電システムを複数備えている。ガスタービンコンバインドサイクル発電システムは、プランテーションに配置され、当該プランテーションで製造された気体燃料及び液体燃料を利用して発電する。これにより、ガスタービンコンバインドサイクル発電システムに必要な燃料を容易に得ることができる。また、この自立型且つ地域分散型の電力製造供給システムは、複数のプランテーションのそれぞれにおけるガスタービンコンバインドサイクル発電システムから電力を送る第1送電線、及び、複数の第1送電線を互いに接続する第2送電線を有する送電網を備えている。これにより、例えば一部のプランテーションにおけるガスタービンコンバインドサイクル発電システムから電力消費地へ電力を送ることが困難又は不能となった場合でも、他のプランテーションにおけるガスタービンコンバインドサイクル発電システムから電力消費地へ電力を送ることができる。つまり、電力供給のバックアップを実現することができる。したがって、この自立型且つ地域分散型の電力製造供給システムによれば、電力を安定して電力消費地へ供給することができる。 This self-sustaining and locally distributed power production and supply system is equipped with a plurality of gas turbine combined cycle power generation systems as S-GTCC. The gas turbine combined cycle power generation system is installed in a plantation and uses the gaseous fuel and liquid fuel produced in the plantation to generate electricity. As a result, the fuel required for the gas turbine combined cycle power generation system can be easily obtained. In addition, this self-sustaining and locally distributed electric power production and supply system has a first transmission line that sends electric power from a gas turbine combined cycle power generation system in each of a plurality of plantations, and a first transmission line that connects a plurality of first transmission lines to each other. It has a power grid with two power lines. As a result, for example, even if it becomes difficult or impossible to send power from the gas turbine combined cycle power generation system in some plantations to the power consumption area, power is supplied from the gas turbine combined cycle power generation system in other plantations to the power consumption area. Can be sent. That is, it is possible to back up the power supply. Therefore, according to this self-sustaining and locally distributed electric power production and supply system, electric power can be stably supplied to the electric power consumption area.
 パーム農園でのガスタービンでの発電を最適化するためにS-GTCCによる発電システムの実証から普及に取り組む。パーム農園では発電用の燃料はバイオガス(気体燃料)に加えて、液体燃料としてパーム油粗油(CPO)が大量に生産・供給できる。電力は安定供給が必須要件である。ガスタービン用の燃料は気体燃料と液体燃料と二つの燃料が利用出来る。このことからパーム農園で最適な発電システムとして気体燃料と液体燃料の1つまたは2つの燃料を利用して発電する。 Work on the demonstration and dissemination of the power generation system by S-GTCC in order to optimize the power generation by the gas turbine in the palm plantation. At the palm plantation, in addition to biogas (gas fuel), palm oil crude oil (CPO) can be produced and supplied in large quantities as liquid fuel. A stable supply of electric power is an essential requirement. Two fuels, gas fuel and liquid fuel, can be used as fuel for the gas turbine. For this reason, one or two fuels, gas fuel and liquid fuel, are used to generate electricity as the optimum power generation system in the palm plantation.
 本開示の一形態に係る自立型且つ地域分散型の電力製造供給システムでは、排熱回収ボイラーは、排ガス中のNOxを除去する脱硝触媒と、排ガス中のNOx濃度を測定するセンサーと、を有し、排熱回収ボイラーは、排ガス中の水蒸気の潜熱を回収することにより排ガスの温度を大気温度まで下げると共に、水蒸気の潜熱の回収により発生した水を回収してもよい。この構成によれば、排ガスの温度を大気温度まで下げることによって、排ガスの熱を十分に回収することができる。また、排ガス中の水蒸気を水として回収し、当該水を有効に利用することができる。 In the self-sustaining and locally distributed power production and supply system according to one embodiment of the present disclosure, the exhaust heat recovery boiler has a denitration catalyst that removes NOx in the exhaust gas and a sensor that measures the NOx concentration in the exhaust gas. However, the exhaust heat recovery boiler may lower the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of the water vapor in the exhaust gas, and may recover the water generated by the recovery of the latent heat of the water vapor. According to this configuration, the heat of the exhaust gas can be sufficiently recovered by lowering the temperature of the exhaust gas to the atmospheric temperature. Further, the water vapor in the exhaust gas can be recovered as water, and the water can be effectively used.
 GTCCはガスタービン(GT)と排熱回収ボイラーで蒸気を作り蒸気タービンで発電する。この場合、Zero Wasteの考え方に基づいて、大気中の排熱エネルギーを徹底的に回収利用することが望ましい。同時に回収したクリーンな水を有効利用する。このために燃料の燃焼に伴う排気ガス中に生成されるNOx(窒素酸化物)を脱硝触媒を利用して徹底的に除去する。 GTCC produces steam with a gas turbine (GT) and an exhaust heat recovery boiler, and generates electricity with the steam turbine. In this case, it is desirable to thoroughly recover and utilize the exhaust heat energy in the atmosphere based on the concept of Zero Waste. Make effective use of the clean water collected at the same time. For this purpose, NOx (nitrogen oxide) generated in the exhaust gas accompanying the combustion of fuel is thoroughly removed by using a denitration catalyst.
 本開示の一形態に係る自立型且つ地域分散型の電力製造供給システムでは、複数のプランテーションのそれぞれにおけるガスタービンコンバインドサイクル発電システムは、送電網を介して地域の電力供給網へ電力を送り、送電網は、地域の電力供給網に組込み移管が可能に構成されていてもよい。この構成によれば、上述したように、電力供給のバックアップ及び電力の安定供給を実現すると共に、地域の電力供給網への電力の転換を図ることができる。 In the self-sustaining and locally distributed power production and supply system according to one form of the present disclosure, the gas turbine combined cycle power generation system in each of the plurality of plantations sends power to the local power supply network via the power transmission network and transmits the power. The network may be configured to be incorporated and transferred to the local power supply network. According to this configuration, as described above, it is possible to back up the power supply and realize a stable power supply, and to convert the power to the local power supply network.
 本開示の一形態に係る自立型且つ地域分散型の電力製造供給システムは、アブラヤシのプランテーションである複数のパーム農園のそれぞれからの果実により製造されるCO排出ゼロ評価の気体燃料及び液体燃料の少なくとも一方を用いて発電する複数のガスタービンコンバインドサイクル発電システムと、複数のガスタービンコンバインドサイクル発電システムにより発電した電力のそれぞれを地域の電力供給網へ送る送電網と、を備え、送電網は、地域の電力供給網に組込み移管が可能に構成されている。 The self-sustaining and locally distributed power generation and supply system according to one form of the present disclosure is a gas fuel and a liquid fuel having a zero CO 2 emission rating produced by fruits from each of a plurality of palm plantations, which are Abra palm plantations. The transmission network comprises a plurality of gas turbine combined cycle power generation systems that generate power using at least one of them, and a transmission network that sends each of the power generated by the plurality of gas turbine combined cycle power generation systems to a local power supply network. It is configured so that it can be incorporated and transferred to the local power supply network.
 パーム農園からのCO排出ゼロ評価の安定型再生エネルギーである気体燃料及び液体燃料の1つまたは2つを燃料として発電し、自立型で地域分散型の発電システムを構築し、長期的・広域的な電力製造・供給・利用が可能になる。電力は貯められない、需要に応じて柔軟に適切に対応する必要がある。このために、電力の相互融通及びバックアップ用として複数のパーム農園間に自家用電線を整備する。このことで、必要な時に必要なだけ、必要な場所で経済的に安定して電力を製造・送配電・利用への展開が可能になる。このシステムは、電力会社の送電線とも統合利用できる電力製造・送配電システムである。なお、S-GTCCにより電力消費地への大規模な電力の供給安定性などの観点から電力会社等と連携して送配電することも十分に可能である。 Power is generated using one or two of gas fuel and liquid fuel, which are stable renewable energies with zero CO 2 emissions from palm plantations, to build a self-sustaining and locally distributed power generation system, and long-term and wide area. Power production, supply, and utilization will be possible. Electricity cannot be stored, and it is necessary to respond flexibly and appropriately according to demand. For this purpose, private electric wires will be installed between multiple palm plantations for mutual power interchange and backup. This makes it possible to economically and stably produce, transmit, distribute, and use electric power when and where it is needed, when and where it is needed. This system is a power production / transmission / distribution system that can be used in an integrated manner with the transmission lines of electric power companies. It should be noted that the S-GTCC can sufficiently transmit and distribute power in cooperation with an electric power company or the like from the viewpoint of stability of large-scale power supply to power consumption areas.
 本開示によれば、GTCCを備えた自立型且つ地域分散型の発電システムにおいて、GTCCに必要な燃料を容易に得ると共に電力を安定して電力消費地へ供給することが可能となる。 According to the present disclosure, in a self-sustaining and locally distributed power generation system equipped with GTCC, it is possible to easily obtain the fuel required for GTCC and to stably supply electric power to a power consuming area.
図1は、一実施形態に係るS-GTCCを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an S-GTCC according to an embodiment. 図2は、比較例のS-GTCC(図2のO2)の排熱量を100とした場合における、図1のS-GTCC(図2のO1)、従来のGTCC、火力発電機及び原子力発電機のそれぞれの相対的な排熱量を示す図である。FIG. 2 shows the S-GTCC (O1 in FIG. 2), the conventional GTCC, the thermal power generator, and the nuclear power generator in FIG. 1 when the exhaust heat amount of the S-GTCC (O2 in FIG. 2) of the comparative example is 100. It is a figure which shows the relative exhaust heat amount of each of. 図3は、一実施形態に係る自立型且つ地域分散型の発電システムを示す概略図である。FIG. 3 is a schematic view showing a self-sustaining and locally distributed power generation system according to an embodiment. 図4は、図3のプランテーションを示す概略図である。FIG. 4 is a schematic view showing the plantation of FIG. 図5は、図4の廃水池でのバイオガスの捕囚装置を示す断面図である。FIG. 5 is a cross-sectional view showing a biogas captivity device in the wastewater pond of FIG.
 以下、添付図面を参照して、本開示に係る実施形態について詳細に説明する。以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. In the following description, the same code will be used for the same element or the element having the same function, and duplicate description will be omitted.
 図1は、GTCC(ガスタービンコンバインドサイクル発電システム)1を示す概略構成図である。図1に示されるように、GTCC1は、発電装置2と、発電装置3と、排熱回収ボイラー4と、発電装置5と、を有している。 FIG. 1 is a schematic configuration diagram showing a GTCC (gas turbine combined cycle power generation system) 1. As shown in FIG. 1, the GTCC 1 includes a power generation device 2, a power generation device 3, an exhaust heat recovery boiler 4, and a power generation device 5.
 発電装置2は、燃焼器21と、GT(第1ガスタービン)22と、空気圧縮機23と、発電機24と、を有している。燃焼器21は、気体燃料を燃料として高温の燃焼ガスを生成し、生成した燃焼ガスをGT22へ供給する。気体燃料は、後述するパーム農園で収穫された果実を原料として製造されたCO排出ゼロ評価(COを排出しないと評価されたCOフリー)の燃料である。GT22は、当該燃焼ガスの作用によって回転して動力を取り出す。つまり、GT22は、気体燃料を利用して稼働する。空気圧縮機23及び発電機24は、GT22に連結されている。空気圧縮機23は、GT22の回転にしたがって回転し、空気を圧縮して燃焼器21へ供給する。発電機24は、GT22の回転にしたがって回転し、発電する。 The power generation device 2 includes a combustor 21, a GT (first gas turbine) 22, an air compressor 23, and a generator 24. The combustor 21 uses gaseous fuel as fuel to generate high-temperature combustion gas, and supplies the generated combustion gas to GT 22. Gaseous fuel is a fuel of CO 2 emission zero rating produced fruit harvested in oil palm plantations, which will be described later, as a raw material (CO 2 CO 2 free evaluated not emit). The GT 22 rotates by the action of the combustion gas to extract power. That is, the GT 22 operates using gaseous fuel. The air compressor 23 and the generator 24 are connected to the GT 22. The air compressor 23 rotates according to the rotation of the GT 22, compresses the air, and supplies the air to the combustor 21. The generator 24 rotates according to the rotation of the GT 22 to generate electricity.
 発電装置3は、燃焼器31と、GT(第2ガスタービン)32と、空気圧縮機33と、発電機34と、を有している。燃焼器31は、液体燃料を燃料として高温の燃焼ガスを生成し、生成した燃焼ガスをGT32へ供給する。液体燃料は、後述するパーム農園で収穫された果実を原料として製造されたCO排出ゼロ評価の燃料である。GT32は、当該燃焼ガスの作用によって回転して動力を取り出す。つまり、GT32は、液体燃料を利用して稼働する。空気圧縮機33及び発電機34は、GT32に連結されている。空気圧縮機33は、GT32の回転にしたがって回転し、空気を圧縮して燃焼器31へ供給する。発電機34は、GT32の回転にしたがって回転し、発電する。 The power generation device 3 includes a combustor 31, a GT (second gas turbine) 32, an air compressor 33, and a generator 34. The combustor 31 uses liquid fuel as fuel to generate high-temperature combustion gas, and supplies the generated combustion gas to the GT 32. The liquid fuel is a fuel with a zero CO 2 emission evaluation, which is produced from fruits harvested at a palm plantation, which will be described later. The GT 32 rotates by the action of the combustion gas to extract power. That is, the GT 32 operates using liquid fuel. The air compressor 33 and the generator 34 are connected to the GT 32. The air compressor 33 rotates according to the rotation of the GT 32, compresses the air, and supplies it to the combustor 31. The generator 34 rotates according to the rotation of the GT 32 to generate electricity.
 排熱回収ボイラー4は、密閉構造を有する。排熱回収ボイラー4は、熱交換器41と、脱硝触媒42と、センサー43と、センサー44と、凝縮水回収部45と、を有している。排熱回収ボイラー4は、排ガス中の水蒸気の潜熱を回収することにより排ガスの温度を大気温度まで下げると共に、水蒸気の潜熱の回収により発生した水を回収する。 The exhaust heat recovery boiler 4 has a closed structure. The exhaust heat recovery boiler 4 includes a heat exchanger 41, a denitration catalyst 42, a sensor 43, a sensor 44, and a condensed water recovery unit 45. The exhaust heat recovery boiler 4 lowers the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of water vapor in the exhaust gas, and recovers the water generated by the recovery of the latent heat of water vapor.
 熱交換器41は、筐体46内に配置されている。熱交換器41は、GT22及びGT32から排気される排ガスの熱を回収する。熱交換器41は、水(ここでは、クリーンな水)又は水蒸気を熱媒体として熱交換を行う。熱交換器41で得られた高圧蒸気は、後述するST51へ供給される。GT22及びGT32からの排ガスは、排熱回収ボイラー4を通過して熱交換された後、大気へ排気される。熱交換器41は、排ガス中の水蒸気の潜熱を回収することにより、筐体46の出口における排ガスの温度を調整する。熱交換器41は、排ガスの温度を十分に熱交換することで外気温にまで下げることができる。これが図2のS-GTCC(O1)である。図2のS-GTCC(O2)は排ガス温度を50℃程度まで排熱を回収することで排ガスを大気中に拡散させるための大型の天然ガス・LNGを燃料とする場合に適用する。 The heat exchanger 41 is arranged in the housing 46. The heat exchanger 41 recovers the heat of the exhaust gas exhausted from the GT 22 and the GT 32. The heat exchanger 41 exchanges heat using water (here, clean water) or water vapor as a heat medium. The high-pressure steam obtained by the heat exchanger 41 is supplied to ST51, which will be described later. The exhaust gas from GT22 and GT32 passes through the exhaust heat recovery boiler 4 and is heat-exchanged, and then exhausted to the atmosphere. The heat exchanger 41 adjusts the temperature of the exhaust gas at the outlet of the housing 46 by recovering the latent heat of the water vapor in the exhaust gas. The heat exchanger 41 can reduce the temperature of the exhaust gas to the outside air temperature by sufficiently exchanging heat. This is the S-GTCC (O1) of FIG. The S-GTCC (O2) in FIG. 2 is applied when a large-scale natural gas / LNG for diffusing exhaust gas into the atmosphere is used as fuel by recovering exhaust heat to an exhaust gas temperature of about 50 ° C.
 脱硝触媒42は、筐体46内に配置されている。脱硝触媒42は、発電装置2及び発電装置3からの排ガス中のNOxを除去する。脱硝触媒42は、選択接触還元法(SCR法)の乾式脱硝触媒である。脱硝触媒42は、ハニカム構造を有している。脱硝触媒42は、例えば、TiO担持の五酸化バナジウム(V)又はTiO担持の酸化銅(CuO)により形成されている。脱硝触媒42では、脱硝反応に十分な表面積が確保されている。 The denitration catalyst 42 is arranged in the housing 46. The denitration catalyst 42 removes NOx in the exhaust gas from the power generation device 2 and the power generation device 3. The denitration catalyst 42 is a dry denitration catalyst of the selective catalytic reduction method (SCR method). The denitration catalyst 42 has a honeycomb structure. The denitration catalyst 42 is formed of, for example, TIO 2- supported vanadium pentoxide (V 2 O 5 ) or TiO 2- supported copper oxide (CuO). The denitration catalyst 42 has a sufficient surface area for the denitration reaction.
 センサー43は、脱硝触媒42の上流側に設けられている。センサー44は、脱硝触媒42の下流側に設けられている。センサー43及びセンサー44は、排ガス中のNOx濃度を連続測定する。センサー43及びセンサー44のそれぞれとしては、例えば、赤外線分析計を用いてもよいし、バッチ式の分析計を用いてもよい。センサー43及びセンサー44のそれぞれとしては、例えば、広く普及している汎用のガス測定器を用いてもよい。 The sensor 43 is provided on the upstream side of the denitration catalyst 42. The sensor 44 is provided on the downstream side of the denitration catalyst 42. The sensor 43 and the sensor 44 continuously measure the NOx concentration in the exhaust gas. As each of the sensor 43 and the sensor 44, for example, an infrared analyzer or a batch type analyzer may be used. As each of the sensor 43 and the sensor 44, for example, a widely used general-purpose gas measuring instrument may be used.
 凝縮水回収部45は、筐体46内において熱交換器41による潜熱の回収により発生した凝縮水を、回収して溜める。凝縮水回収部45としては、特に限定されず、種々の公知の構成を用いることができる。 The condensed water recovery unit 45 collects and stores the condensed water generated by the recovery of latent heat by the heat exchanger 41 in the housing 46. The condensed water recovery unit 45 is not particularly limited, and various known configurations can be used.
 発電装置5は、ST(蒸気タービン)51と、発電機52と、を有している。ST51は、熱交換器41から供給される高圧蒸気の作用によって回転して動力を取り出す。つまり、ST51は、排熱回収ボイラー4によって回収された熱を利用して稼働する。発電機52は、ST51に連結されている。発電機52は、ST51の回転にしたがって回転し、発電する。 The power generation device 5 has an ST (steam turbine) 51 and a generator 52. The ST51 rotates by the action of high-pressure steam supplied from the heat exchanger 41 to extract power. That is, the ST 51 operates by utilizing the heat recovered by the exhaust heat recovery boiler 4. The generator 52 is connected to the ST 51. The generator 52 rotates according to the rotation of ST51 to generate electricity.
 図2は、比較例のS-GTCC(図示O2)の排熱量を100とした場合における、S-GTCC1(図示O1)、従来のGTCC、火力発電機のシステム及び原子力発電機のシステムのそれぞれの相対的な排熱量を示す図である。図2に示されるように、GTCCとしては3種類がある。S-GTCC1の排熱量は、約20%程度である。従来のGTCCの排熱量は、約200%程度である。石炭や石油を燃料とする蒸気タービン(ST)による火力発電機のシステムの排熱量は、約400%程度である。原子力発電機のシステムの排熱量は、約550%程度である。このように、複数の発電方式のうち、S-GTCC1のエネルギー効率がもっともよい。 FIG. 2 shows the S-GTCC1 (illustrated O1), the conventional GTCC, the thermal power generator system, and the nuclear power generator system, respectively, when the exhaust heat amount of the S-GTCC (illustrated O2) of the comparative example is 100. It is a figure which shows the relative exhaust heat amount. As shown in FIG. 2, there are three types of GTCC. The amount of exhaust heat of S-GTCC1 is about 20%. The amount of heat exhausted from the conventional GTCC is about 200%. The amount of heat exhausted from the system of a thermal power generator by a steam turbine (ST) that uses coal or petroleum as fuel is about 400%. The amount of exhaust heat of the nuclear power generator system is about 550%. As described above, the energy efficiency of S-GTCC1 is the best among the plurality of power generation methods.
 図3は、自立型且つ地域分散型の電力製造供給システム(以下、「電力供給システム」という)10を示す概略図である。電力供給システム10は、複数のパーム農園(プランテーション)11で利用されている。パーム農園11は、アブラヤシを栽培する農園である。電力供給システム10は、複数のパーム農園11のそれぞれに配置された複数のGTCC1と、送電網12と、を備えている。それぞれのGTCC1は、当該GTCC1が配置されたパーム農園11で製造された気体燃料及び液体燃料を利用して発電する。なお、1つのパーム農園11には、複数のGTCC1が配置されていてもよい。 FIG. 3 is a schematic diagram showing a self-sustaining and locally distributed electric power production and supply system (hereinafter referred to as “electric power supply system”) 10. The power supply system 10 is used in a plurality of palm plantations (plantations) 11. Palm plantation 11 is a plantation for cultivating oil palm. The power supply system 10 includes a plurality of GTCCs 1 arranged in each of the plurality of palm plantations 11 and a power transmission network 12. Each GTCC1 generates electricity by using the gaseous fuel and the liquid fuel produced in the palm plantation 11 where the GTCC1 is arranged. A plurality of GTCC1s may be arranged in one palm plantation 11.
 送電網12は、複数の第1送電線13と、1つの第2送電線14と、を有している。第1送電線13は、複数のパーム農園11のそれぞれにおけるGTCC1から電力消費地へ電力を送る。第2送電線14は、複数の第1送電線13を互いに接続する。第2送電線14には、複数の絶縁碍子14aが設けられている。「電力消費地」とは、電力を必要とする都市部等のことをいう。 The power grid 12 has a plurality of first power transmission lines 13 and one second power transmission line 14. The first transmission line 13 transmits electric power from the GTCC 1 in each of the plurality of palm plantations 11 to the power consuming area. The second transmission line 14 connects a plurality of first transmission lines 13 to each other. A plurality of insulating insulators 14a are provided on the second transmission line 14. "Electric power consumption area" means an urban area or the like that requires electric power.
 送電網12は、電力会社の送配電網(地域の電力供給網)61に接続されている。複数のパーム農園11のそれぞれにおけるS-GTCC1は、送電網12を介して電力会社の送配電網61へ電力を送る。電力会社の送配電網61は、主幹線62と、幹線63と、変圧器64と、を有している。主幹線62には、複数の絶縁碍子62aが設けられている。幹線63には、複数の絶縁碍子63aが設けられている。変圧器64は、主幹線62と幹線63との間に設けられている。 The power transmission network 12 is connected to the power transmission and distribution network (regional power supply network) 61 of the electric power company. The S-GTCC 1 in each of the plurality of palm plantations 11 transmits electric power to the transmission and distribution network 61 of the electric power company via the transmission network 12. The transmission and distribution network 61 of the electric power company has a main trunk line 62, a trunk line 63, and a transformer 64. A plurality of insulating insulators 62a are provided on the main trunk line 62. A plurality of insulating insulators 63a are provided on the trunk line 63. The transformer 64 is provided between the main trunk line 62 and the trunk line 63.
 送電網12は、電力会社の送配電網61に接続されている。第2送電線14は、それぞれのパーム農園に電力会社から引き込まれている第1送電線13によって、幹線63及び幹線65に接続されている。幹線65には、複数の絶縁碍子65aが設けられている。 The transmission network 12 is connected to the transmission and distribution network 61 of the electric power company. The second transmission line 14 is connected to the main line 63 and the main line 65 by the first transmission line 13 drawn from the electric power company to each palm plantation. A plurality of insulating insulators 65a are provided on the trunk line 65.
 送電網12は、電力会社の送配電網61に組込み移管が可能に構成されている。第1送電線13は、例えば、6kV架空配線60mmである。第2送電線14は、例えば、6kV架空配線80mmである。主幹線62は、例えば、22kV架空配線80mmである。幹線63は、例えば、6kV架空配線80mmである。変圧器64は、例えば、22kV/6kV三相変圧器である。送電網12は、幹線63と同一の仕様であるから、電力会社の送配電網61に移管が可能である。 The transmission network 12 is configured to be incorporated and transferred to the transmission and distribution network 61 of an electric power company. The first transmission line 13 is, for example, a 6 kV overhead wiring 60 mm 2 . The second transmission line 14 is, for example, a 6 kV overhead wiring 80 mm 2 . The main trunk line 62 is, for example, a 22 kV overhead wiring 80 mm 2 . The trunk line 63 is, for example, a 6 kV overhead wiring 80 mm 2 . The transformer 64 is, for example, a 22 kV / 6 kV three-phase transformer. Since the transmission network 12 has the same specifications as the trunk line 63, it can be transferred to the transmission and distribution network 61 of the electric power company.
 GTCC1は、当該GTCC1が配置されたパーム農園11へ電力会社の送電線(送配電網61)を介して電力を送ることができる。また、複数のGTCC1は、送電網12を介して、複数のパーム農園11のそれぞれに電力を送る。換言すると、1つのGTCC1は、当該1つのGTCC1が配置されたパーム農園11だけではなく、他のパーム農園11にも電力を送る。 The GTCC1 can send electric power to the palm plantation 11 where the GTCC1 is located via the transmission line (transmission and distribution network 61) of the electric power company. Further, the plurality of GTCC 1s transmit electric power to each of the plurality of palm plantations 11 via the power transmission network 12. In other words, one GTCC1 sends power not only to the palm plantation 11 where the one GTCC1 is arranged, but also to other palm plantations 11.
 図4は、パーム農園11を示す概略図である。図4に示されるように、パーム農園11には、廃水池8が存在する。搾油工場(MILL)からは複数の廃水が出ることもあり、図4は単純化しているが実際は複数の廃水池がある。図5は、複数の廃水池の最終廃水池8を示す断面図である。図5に示されるように、廃水池8は、地面に形成された池である。廃水池8には、搾油装置からの生成物が貯留される。廃水池8の縁には、廃水池8の全周に亘って延在する壁81が設けられている。壁81の上部には屋根82が設けられている。壁81には、気体燃料供給装置7が連結されている。廃水池8、壁81及び屋根82は、貯留装置80を構成する。廃水池8、壁81及び屋根82は、空間Zを形成する。 FIG. 4 is a schematic view showing the palm plantation 11. As shown in FIG. 4, there is a wastewater pond 8 in the palm plantation 11. There may be multiple wastewaters from the oil mill (MILL), and although Fig. 4 is simplified, there are actually multiple wastewater ponds. FIG. 5 is a cross-sectional view showing a final wastewater pond 8 of a plurality of wastewater ponds. As shown in FIG. 5, the wastewater pond 8 is a pond formed on the ground. The wastewater pond 8 stores products from the oil squeezing device. A wall 81 extending over the entire circumference of the wastewater pond 8 is provided at the edge of the wastewater pond 8. A roof 82 is provided above the wall 81. A gas fuel supply device 7 is connected to the wall 81. The waste water pond 8, the wall 81 and the roof 82 constitute a storage device 80. The waste water pond 8, the wall 81 and the roof 82 form a space Z.
 廃水池8では、生成物が自然分解すると共に酸素がない嫌気性の状態で気体燃料が発生する。気体燃料は、メタン(CH)及びCO等を含むバイオガスである。空間Zは、気体燃料により充填される。気体燃料は、気体燃料供給装置7の除去装置71によりHS等が除去された後、圧送機72によりGTの燃焼器21へ供給される。廃水池8からの排水(自然分解された後の生成物)は、浄化されて廃水基準に適合した状態であることを確認して、公共水域に放流される。 In the waste water pond 8, the product is naturally decomposed and gaseous fuel is generated in an anaerobic state without oxygen. The gaseous fuel is a biogas containing methane (CH 4 ), CO 2 and the like. Space Z is filled with gaseous fuel. Gaseous fuel, after H 2 S or the like is removed by the removing device 71 of the gas fuel supply apparatus 7 is supplied to GT combustor 21 by pumping machine 72. The wastewater from the wastewater pond 8 (the product after natural decomposition) is discharged to the public water area after confirming that it is purified and conforms to the wastewater standard.
 本実施形態で示す図3の電力供給システム10は、GTCC1を備えている。GTCC1は、パーム農園11に配置され、当該パーム農園11で製造された気体燃料及び液体燃料を利用して発電する。これにより、GTCC1に必要な燃料を容易に得ることができる。また、電力供給システム10は、複数のパーム農園11のそれぞれにおけるGTCC1から電力を送る第1送電線13、及び、複数の第1送電線13を互いに接続する第2送電線14を有する送電網12を備えている。これにより、例えば一部のパーム農園11におけるGTCC1から電力消費地へ電力を送ることが困難又は不能となった場合でも、他のパーム農園11におけるGTCC1から電力消費地へ電力を送ることができる。つまり、電力供給のバックアップを実現することができる。したがって、電力供給システム10によれば、パーム農園11間の電力の相互融通及びバックアップに加え、電力を安定して電力消費地へ供給することができる。 The power supply system 10 of FIG. 3 shown in the present embodiment includes GTCC1. The GTCC 1 is arranged in the palm plantation 11 and generates electricity by using the gaseous fuel and the liquid fuel produced in the palm plantation 11. Thereby, the fuel required for GTCC1 can be easily obtained. Further, the power supply system 10 has a power transmission network 12 having a first power transmission line 13 for transmitting power from GTCC 1 in each of the plurality of palm plantations 11 and a second power transmission line 14 for connecting the plurality of first power transmission lines 13 to each other. It has. Thereby, for example, even if it becomes difficult or impossible to send power from GTCC1 in some palm plantations to the power consumption area, power can be sent from GTCC1 in other palm plantations to the power consumption area. That is, it is possible to back up the power supply. Therefore, according to the power supply system 10, in addition to mutual interchange and backup of power between palm plantations 11, power can be stably supplied to power consumption areas.
 また、電力供給システム10では、排熱回収ボイラー4は、排ガス中のNOxを除去する脱硝触媒42と、排ガス中のNOx濃度を測定するセンサー43,44と、を有している。排熱回収ボイラー4は、排ガス中の水蒸気の潜熱を回収することにより排ガスの温度を大気温度まで下げると共に、水蒸気の潜熱の回収により発生した水を回収している。この構成によれば、排ガスの温度を大気温度まで下げることによって、排ガスの熱を十分に回収することができる。また、排ガス中の水蒸気を大量のクリーンな水として回収し、当該水を有効に利用することができる。 Further, in the power supply system 10, the exhaust heat recovery boiler 4 has a denitration catalyst 42 for removing NOx in the exhaust gas, and sensors 43 and 44 for measuring the NOx concentration in the exhaust gas. The exhaust heat recovery boiler 4 lowers the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of water vapor in the exhaust gas, and recovers the water generated by the recovery of the latent heat of water vapor. According to this configuration, the heat of the exhaust gas can be sufficiently recovered by lowering the temperature of the exhaust gas to the atmospheric temperature. In addition, the water vapor in the exhaust gas can be recovered as a large amount of clean water, and the water can be effectively used.
 また、電力供給システム10では、複数のパーム農園11のそれぞれにおけるGTCC1は、送電網12を介して電力会社の送配電網61(幹線63及び幹線65へ電力を送る。送電網12は、電力会社の送配電網61に組込み移管が可能に構成されている。この構成によれば、上述したように電力供給のバックアップ及び電力の安定供給を実現すると共に、電力会社の送配電網61への電力の転換を図ることができる。 Further, in the electric power supply system 10, the GTCC 1 in each of the plurality of palm plantations 11 transmits electric power to the transmission and distribution network 61 (the main line 63 and the main line 65) of the electric power company via the transmission network 12. The transmission network 12 is the electric power company. It is configured so that it can be incorporated and transferred to the transmission and distribution network 61 of the above. According to this configuration, as described above, the backup of the power supply and the stable supply of the power are realized, and the power to the power transmission and distribution network 61 of the electric power company Can be converted.
 また、電力供給システム10は、アブラヤシのプランテーションである複数のパーム農園11のそれぞれからの果実により製造されるCO排出ゼロ評価の気体燃料及び液体燃料の少なくとも一方を用いて発電する複数のGTCC1と、複数のGTCC1により発電した電力のそれぞれを地域の電力供給網へ送る送電網12と、を備えている。送電網12は、地域の電力供給網に組込み移管が可能に構成されている。 Further, the electric power supply system 10 includes a plurality of GTCC1s that generate electricity using at least one of a gas fuel and a liquid fuel having a zero CO 2 emission evaluation produced by fruits from each of the plurality of palm plantations 11 which are oil palm plantations. , A power transmission network 12 that sends each of the electric power generated by the plurality of GTCC 1s to the local power supply network. The power transmission network 12 is configured to be incorporated and transferred to a local power supply network.
 パーム農園11からのCO排出ゼロ評価の安定型再生エネルギーである気体燃料及び液体燃料の1つまたは2つを燃料として発電し、自立型で地域分散型の発電システムを構築し、長期的・広域的な電力製造・供給・利用が可能になる。電力は貯められない、需要に応じて柔軟に適切に対応する必要がある。このために、電力の相互融通及びバックアップ用として複数のパーム農園11間に自家用電線を整備する。このことで、必要な時に必要なだけ、必要な場所で経済的に安定して電力を製造・送配電・利用への展開が可能になる。このシステムは、電力会社の送電線とも統合利用できる電力製造・送配電システムである。なお、GTCC1により電力消費地への大規模な電力の供給安定性などの観点から電力会社等と連携して送配電することも十分に可能である。 Power is generated using one or two of gas fuel and liquid fuel, which are stable renewable energies with zero CO 2 emissions from Palm Farm 11, as fuel, and a self-sustaining and locally distributed power generation system is constructed for a long period of time. Wide-area power production, supply, and utilization will be possible. Electricity cannot be stored, and it is necessary to respond flexibly and appropriately according to demand. For this purpose, private electric wires will be provided between the plurality of palm plantations 11 for mutual interchange and backup of electric power. This makes it possible to economically and stably produce, transmit, distribute, and use electric power when and where it is needed, when and where it is needed. This system is a power production / transmission / distribution system that can be used in an integrated manner with the transmission lines of electric power companies. It should be noted that GTCC1 can sufficiently transmit and distribute power in cooperation with an electric power company or the like from the viewpoint of stability of large-scale power supply to power consumption areas.
 パーム農園11ではCO排出ゼロ評価の安定型再生エネルギーを大量に生産できる。パーム農園11内でできる気体燃料に加え液体燃料もGT用として発電利用すると、最も付加価値の高い電力を確保できる。即ち自立型で地域分散型の発電所にできる。また、パーム農園11は広大な敷地を利用し、パーム油以外にCO排出ゼロ評価の再生エネルギー(固形燃料及び液体燃料)を製造し輸出するために必要な電力を製造供給できる。さらに工場内の周辺のインフラ整備と相まって工業団地として発展可能である。なお、同時に燃焼排ガス中の水蒸気の熱回収と同時に、クリーンな大量の水を創出し、利用もできる。 Palm plantation 11 can produce a large amount of stable renewable energy with zero CO 2 emission evaluation. If liquid fuel is used for GT in addition to the gaseous fuel produced in the palm plantation 11, the highest value-added electric power can be secured. That is, it can be a self-sustaining and locally distributed power plant. In addition, the palm plantation 11 can manufacture and supply the electric power necessary for producing and exporting renewable energy (solid fuel and liquid fuel) with zero CO 2 emission evaluation in addition to palm oil, using the vast site. Furthermore, it can be developed as an industrial park in combination with the infrastructure development around the factory. At the same time, the heat of water vapor in the combustion exhaust gas can be recovered, and at the same time, a large amount of clean water can be created and used.
 パーム農園11が地域分散型の発電所としてネットワークを構築していくと新規のパーム農園計画において、必要な電力供給が容易に実現できる。また、クリーンな水供給の制約が緩和されるので、SDGs(Sustainable Developmet Goals)に配慮した新たなパーム農場の加速的な普及が期待できる。 If the palm plantation 11 builds a network as a locally distributed power plant, the necessary power supply can be easily realized in the new palm plantation plan. In addition, since restrictions on clean water supply will be relaxed, it is expected that new palm farms that take SDGs (Sustainable Development Goals) into consideration will spread at an accelerated pace.
 インドネシアでのパーム油の生産量は、アブラヤシの品種改良及び栽培面積の拡大、作業性の改善により近年急成長してきた。パーム油の生産量は、世界の植物油市場で1/3以上を占める。パーム油の生産量の中でインドネシアの生産量は50%以上を占めている。 The production of palm oil in Indonesia has grown rapidly in recent years due to the improvement of oil palm varieties, the expansion of cultivation area, and the improvement of workability. Palm oil production accounts for more than one-third of the global vegetable oil market. Indonesia's production accounts for more than 50% of palm oil production.
 アブラヤシによるパーム油の生産性は、食料油で世界第2位の大豆油に比べ約10倍近く、1ヘクタール当たり年間3トンを超えている。言い換えると、作付面積は1/10で同量の食用油を生産できる。アブラヤシは、樹木であり、一度植えると20年以上安定して果実(FFB)を生産できる。FFBから食糧用の植物油を20%強収穫出来、残りの80%弱は一部が利用されている状況である。 The productivity of palm oil produced by oil palm is nearly 10 times that of soybean oil, which is the second largest food oil in the world, and exceeds 3 tons per hectare per year. In other words, the planted area is 1/10 and the same amount of cooking oil can be produced. Oil palm is a tree, and once planted, it can stably produce fruits (FFB) for more than 20 years. More than 20% of vegetable oil for food can be harvested from FFB, and the remaining 80% is partially used.
 今後も農業生産技術の向上が見込まれることから、植物性油は国際的に大豆、ココナッツをはじめ代替可能な植物が生産を伸ばすことが見込まれる。国際的にも植物性油としての供給量が需要量を上回る状況になっている。インドネシアでは経済成長に伴い、石油の輸入国になって久しい。このため、石油輸入を節約することを含め2019年9月からパーム油からバイオディーゼル油としての転用を図る政策が導入された。 As agricultural production technology is expected to improve in the future, it is expected that the production of vegetable oils will increase internationally with alternative plants such as soybeans and coconuts. Internationally, the supply of vegetable oil exceeds the demand. Indonesia has long been an oil importer due to economic growth. For this reason, a policy was introduced in September 2019 to convert palm oil to biodiesel oil, including saving oil imports.
 今後、世界で最も重要なエネルギー環境問題は地球温暖化による気候変動への対応である。このことはSDGs実現のための中心課題である。このために、熱帯の湿潤な気候の下で、広大な土地と人的資源(労働力)があるインドネシアなどの常緑広葉樹林によるアブラヤシのパーム農園からできる果実(FFB)は、年間を通して安定して大量に生産できる資源であり、CO排出ゼロ評価の安定型の再生可能エネルギー、燃料としてとして世界中から生産及び普及が強く期待されている。しかし、農業生産物であることから、燃料への転換という発想はまだ、部分的なレベルにとどまっている。 In the future, the most important energy and environmental problem in the world will be the response to climate change caused by global warming. This is a central issue for the realization of SDGs. For this reason, under the humid tropical climate, the fruits (FFB) produced from oil palm palm plantations of evergreen broadleaf forests such as Indonesia, which has vast land and human resources (labor force), are stable throughout the year. It is a resource that can be mass-produced, and is strongly expected to be produced and spread from all over the world as a stable renewable energy and fuel with zero CO 2 emission evaluation. However, since it is an agricultural product, the idea of switching to fuel is still only partial.
 インドネシア政府は「地球温暖化による気候変動への対応を最重要視して2045年にはGDPを世界で5位以内にする」という長期政策及び戦略を2019年10月、大統領の就任時に発表した。FFBからCO排出ゼロ評価の安定型の再生エネルギー、燃料にすることで外貨を獲得し経済発展を進めるとともに国内外で温暖化による気候変動への対応を推進して世界に貢献が図れる。 In October 2019, the Indonesian government announced a long-term policy and strategy to "make GDP within the fifth place in the world by 2045 with the highest priority on responding to climate change caused by global warming" when the president took office. .. By using FFB as a stable renewable energy and fuel with zero CO 2 emissions, we can earn foreign currency and promote economic development, and at the same time, promote the response to climate change due to global warming at home and abroad to contribute to the world.
 パーム農園でFFBから燃料を作り、国際市場に流通させるには燃料規格を作り、これに適合した品質の燃料を安定して作り、SDGsのコンセプトに沿って長期にわたり安定して持続可能な状態で国内のパーム農園外での発電用及び海外の需要地に輸送する必要がある。このために上流(燃料製造段階)から下流(燃料を輸入して利用する段階)に至るまで開発利用するために総合的に捉え最適解を求める。例えば、インフラとして重要な港湾への固形燃料、液体燃料の輸送、港湾から海外への船舶の輸送用燃料をCO排出ゼロ評価の再生エネルギーの使用や船舶の帰り便の有効な貨物輸送などを検討し具体化していけばよい。 In order to make fuel from FFB at palm plantations and distribute it to the international market, we will make fuel standards, stably make fuels of quality conforming to this, and in a stable and sustainable state for a long period of time according to the concept of SDGs. It is necessary to transport it for power generation outside the domestic palm plantation and to overseas demand areas. For this reason, the optimum solution is obtained by comprehensively grasping it for development and utilization from the upstream (fuel manufacturing stage) to the downstream (the stage of importing and using fuel). For example, transportation of solid fuel and liquid fuel to ports, which are important as infrastructure , use of renewable energy with zero CO 2 emission evaluation for fuel for transportation of ships from ports to overseas, and effective freight transportation of return flights of ships, etc. You should consider and materialize it.
 これに加え、燃料を作るために必要な電力をパーム農園内でつくり出すこと、自立型且つ地域分散型の発電システムを作り普及させることが大きな強みである。本開示はこれを実現するための政府の政策に沿って、長期的、広域的に国全体で活用できるシステム開発と製造した電力や燃料を利用する取組みである。 In addition to this, it is a great strength to produce the electric power required to produce fuel in the palm plantation, and to create and disseminate a self-sustaining and locally distributed power generation system. This disclosure is an effort to develop a system that can be used nationwide in the long term and in a wide area and to use the produced electricity and fuel in line with the government policy to realize this.
 パーム農園では、FFBから蒸気を利用してパーム油粗油(CPO)を抽出したあとの油混じりの廃水(POME)から、農園内の複数の廃水池の最終の池で、嫌気性状態でバイオガスを製造及び捕囚する装置(図5参照)が技術確立して普及できる状況である。バイオガス中には60%程度のCH及び40%程度のCOを含んでいる。CHは地球温暖化係数がCOの20倍以上高いため、インドネシア政府及びマレーシア政府は、これを捕囚して利用することで温暖化を防止することを国際約束している。 At palm plantations, oil-mixed wastewater (POME) after extracting crude palm oil (CPO) from FFB using steam is anaerobic biogas in the final ponds of multiple wastewater ponds in the plantation. A device for producing and capturing gas (see FIG. 5) has been established and can be widely used. Biogas contains about 60% CH 4 and about 40% CO 2. Since CH 4 has a global warming potential that is more than 20 times higher than CO 2 , the Indonesian and Malaysian governments have made an international commitment to prevent global warming by capturing and using it.
 インドネシア政府及びマレーシア政府は、CHを捕囚し、最も付加価値の高い発電用燃料として利用する政策を進めている。バイオガスを捕囚することで標準的なパーム油の収穫量を3トン/ha、面積200kmとして60万トン/年とすると、インドネシア国内では700ヶ所のパーム農園がある。標準的なパーム農園では1MW(1000kW)程度の発電を可能にするバイオガスを捕囚できる。このための設備投資は相当に巨額を必要とするが、華僑系財閥資本の大手事業者を中心に設置が進みつつあり、安定して発電できるシステムが確立すると一気に設置が進む。なお、本技術システムは、高温で湿度の多いアフリカやブラジルなどの地域でもアブラヤシのプランテーションが拡大し、適用していくことが見込まれる。 The Indonesian government and the Malaysian government, and captivity of the CH 4, has promoted a policy to use as high fuel for power generation of the most value-added. Assuming that the standard yield of palm oil is 3 tons / ha and the area is 200 km 2 and 600,000 tons / year by capturing biogas, there are 700 palm plantations in Indonesia. A standard palm plantation can capture biogas, which can generate about 1 MW (1000 kW) of electricity. Capital investment for this purpose requires a considerable amount of money, but the installation is progressing mainly by major companies with overseas Chinese conglomerate capital, and when a system capable of stable power generation is established, the installation will proceed at once. It is expected that this technology system will be applied to the expansion of oil palm plantations in areas such as Africa and Brazil where the temperature and humidity are high.
 発電用燃料として使用する場合、腐食性のあるHSをスクラバーで反応させて吸着除去、精製したバイオガスを発電用に供給する。これらの前処理装置、エンジニアリングの取組みはパーム農園で相当期間の取組み実績があり、確立している。発電装置はガスエンジンとガスタービンによる2つの方式が考えられる。 When used as a fuel for power generation, the adsorption removal by reacting a corrosive H 2 S scrubber, supplies the purified biogas for power generation. These pretreatment equipment and engineering efforts have been established at palm plantations for a considerable period of time. Two types of power generation devices, a gas engine and a gas turbine, can be considered.
 日本でも工場等で利用されるコージェネレーション(熱と電気と両方を利用する)のガスタービンは、ジェット飛行機のエンジンを転用した5MW級が一般的であり、1MW級での利用は一般的ではない。ヨーロッパでも同様に1MW級での利用はガスエンジンが一般的である。 Even in Japan, cogeneration gas turbines (which use both heat and electricity) used in factories are generally 5 MW class, which is a diversion of the engine of a jet airplane, and 1 MW class is not common. .. Similarly in Europe, gas engines are generally used in the 1 MW class.
 インドネシア政府は、関係組織と協力してバイオガスによる1MW規模のガスエンジンによる発電装置の開発及び実証普及に向けてヨーロッパのガスエンジンを導入して取り組んできた。パーム農園での利用には以下のような二つの大きな課題があり、いまだに開発実証段階にある。 The Indonesian government has been working with related organizations to introduce a European gas engine for the development and demonstration dissemination of a power generation device using a 1 MW scale gas engine using biogas. The use in palm plantations has the following two major issues, and is still in the development demonstration stage.
 一つ目は、バイオガスには40%程度のCOを含んでいる。COが多いとガスエンジンでは安定した稼働が難しい。また、ガスの性状が変動することもあり、燃焼が不安定になる。二つ目は、ガスエンジンは自動車用などで大きな実績がある。ガスエンジンを稼働させるためには、常時点検管理が必要なことから、パーム農園という現場環境では点検調整などのためのエンジニアリングが必要である。運転管理を外部のエンジニアリング会社に委託するとコストが高まり安定操業に至っていない。 First, biogas contains about 40% CO 2. If there is a lot of CO 2, it is difficult for a gas engine to operate stably. In addition, the properties of the gas may fluctuate, resulting in unstable combustion. Second, gas engines have a great track record in automobiles. In order to operate the gas engine, constant inspection and management is required, so engineering for inspection and adjustment is required in the field environment of palm plantation. If the operation management is outsourced to an external engineering company, the cost will increase and stable operation has not been achieved.
 ガスタービンの羽根は回転体であり、基本原理は産業革命前から動力用として使用されてきた水車や風車と同じである。従って、熱応力や腐食性物質などの影響がない状態では、長期間安定して稼働できる。 The blades of the gas turbine are rotating bodies, and the basic principle is the same as the water turbines and wind turbines that have been used for power before the Industrial Revolution. Therefore, stable operation can be performed for a long period of time in a state where there is no influence of thermal stress or corrosive substances.
 常用のGTは、5MW以上が一般的であるが、地震や火災などの場合に稼働させる非常用発電装置として200kW(0.2MW)以上5MW規模の設備が広く普及しており、信頼性も高い。原理的に長期間の使用に耐えるものである。最近、日本では1MW級のGTが開発及び販売された。原理から考えても長期間の使用に耐えることを実証及び確認する手順をふむことで解決できる。 Regular GT is generally 5 MW or more, but 200 kW (0.2 MW) or more 5 MW scale equipment is widely used as an emergency power generation device to operate in the event of an earthquake or fire, and its reliability is high. .. In principle, it can withstand long-term use. Recently, 1MW class GT has been developed and sold in Japan. Even if it is considered from the principle, it can be solved by including the procedure of demonstrating and confirming that it can withstand long-term use.
 非常用発電機は、通常は液体燃料を使用する。したがって、パーム農園11では気体燃料だけでなく、パーム農園11で製造される液体燃料も使用できる。今後はパーム農園11内での電力需要は主として燃料製造用に発生するが、その規模や利用可能な時期は周辺の様々な状況に合わせて柔軟に対応できることが重要である。また、電気は貯められないから供給の安定性を確保することが重要である。必要な電力のためのこれらの燃料をパーム農園11ですべて賄うとともに、広大な土地があり、周辺のインフラ整備と相まって雇用の創出が可能で地域活性化、経済発展の原動力となる工業団地として必要な電力をパーム農園11内で製造する燃料で増強できる機能がある。即ち、国や共和国の地方政府の長期的な政策、マスタープランに沿って地方政府は地域開発計画を立て事業化推進が可能になる。 The emergency generator usually uses liquid fuel. Therefore, not only the gaseous fuel but also the liquid fuel produced in the palm plantation 11 can be used in the palm plantation 11. From now on, the demand for electric power in the palm plantation 11 will be generated mainly for fuel production, but it is important that the scale and the time when it can be used can be flexibly adjusted according to various surrounding situations. In addition, it is important to ensure the stability of supply because electricity cannot be stored. Palm plantation 11 will provide all of these fuels for the necessary electricity, and there is vast land, and it is possible to create employment in combination with the development of surrounding infrastructure, and it is necessary as an industrial park that will be the driving force for regional revitalization and economic development. There is a function that can increase the electric power with the fuel produced in the palm plantation 11. In other words, local governments can formulate regional development plans and promote commercialization in line with the long-term policies and master plans of local governments of the national and republics.
 パーム農園11では農園内でできるバイオガス及びパーム油粗油(CPO)を燃料として最も付加価値の高い電力に変換利用することが最も有効である。GTの発電効率を25%程度に確保することは原理的にも可能である。そして発電後の排ガスの温度が700℃以上の高温であり、排熱回収ボイラー4で専用の蒸気ボイラーと遜色なく十分な熱回収が可能である。排熱回収ボイラー4は、燃焼器を持たないので安定した運転を実現出来る。電力は貯蔵できないから、安定して稼働させるために2基以上のGTの排ガスを集合させて利用することを基本とする。パーム農園11で捕囚及び回収するバイオガス中に可燃ガスであるCHが60%程度で発熱量が小さいので、起動時に炎が吹き飛び着火の安定性が低い可能性がある。この場合、パーム農園11で供給可能な液体燃料(CPO:パーム油粗油)で着火させて、燃焼器が安定状態になってから気体燃料に切り替えることで、安定稼働への対応は解決できる。 At the palm plantation 11, it is most effective to convert and use the biogas and palm oil crude oil (CPO) produced in the plantation as fuel for the highest value-added electric power. In principle, it is possible to secure the power generation efficiency of GT to about 25%. The temperature of the exhaust gas after power generation is as high as 700 ° C. or higher, and the exhaust heat recovery boiler 4 can recover sufficient heat as much as a dedicated steam boiler. Since the exhaust heat recovery boiler 4 does not have a combustor, stable operation can be realized. Since electric power cannot be stored, it is basic to collect and use the exhaust gas of two or more GTs for stable operation. Since CH 4 which is a combustible gas is about 60% in the biogas captured and collected at the palm plantation 11 and the calorific value is small, there is a possibility that the flame blows off at the time of startup and the stability of ignition is low. In this case, the response to stable operation can be solved by igniting with the liquid fuel (CPO: palm oil crude oil) that can be supplied at the palm plantation 11 and switching to the gaseous fuel after the combustor becomes stable.
 パーム農園11でできる気体燃料及び液体燃料をもとに、GTで発電するとともに、排熱回収ボイラー4については、先に登録した評価試験装置及び評価試験システム(特許第6446160号)の特許システムの考え方を適用する。Zero Wasteの考え方で2つの究極の電力とクリーンな水を有効利用するシステムが実現できる。この点に関し、持続可能(SustainableのS)をとってS-GTCCとして機能表現することがインドネシア政府を含む関係者の間で定着している。排熱回収ボイラー4の中に脱硝触媒42を組み込んで大気汚染物質の排出をゼロにし、燃焼排ガス中の水蒸気の潜熱を外気温にまで熱交換し回収できる。回収したクリーンな水を有効利用出来る。回収される水は、例えばこれをボイラー等に利用可能であり燃料の2倍程度と大量に生成できる。このため、新規にパーム農園にGTCC1を導入する場合、システムは共通で、省エネ性、性能の安定性と運転及び点検管理の容易化、経済性の確保など改善及び改良が進むものになる。 Based on the gas fuel and liquid fuel produced in the palm plantation 11, the GT generates electricity, and the exhaust heat recovery boiler 4 is a patented system of the evaluation test device and evaluation test system (Patent No. 6446160) registered earlier. Apply the idea. Based on the concept of Zero Waste, a system that makes effective use of the two ultimate power sources and clean water can be realized. In this regard, it has become well-established among stakeholders, including the Indonesian government, to take sustainability (S of Sustainable) and functionally express it as S-GTCC. The exhaust heat recovery boiler 4 incorporates a denitration catalyst 42 to eliminate the emission of air pollutants, and the latent heat of water vapor in the combustion exhaust gas can be exchanged and recovered to the outside air temperature. The collected clean water can be used effectively. The recovered water can be used, for example, in a boiler or the like, and can be produced in a large amount of about twice as much as fuel. Therefore, when GTCC1 is newly introduced to a palm plantation, the system is common, and improvements and improvements such as energy saving, stability of performance, facilitation of operation and inspection management, and securing of economy will be promoted.
 パーム農園11では、燃焼排ガス中の水蒸気の潜熱を回収することにより、排ガス温度を外気温にまでさげることができる。熱回収可能量は、気体燃料の場合10%、液体燃料の場合6%である。したがって、S-GTCCでの発電効率の向上は,蒸気タービンの発電電効率を30%程度として発電効率の効率向上に換算すると、気体燃料で3%程度、液体燃料で2%程度になる。排熱回収ボイラー4で回収した水は、凝縮してできるクリーンな水である。これをパーム農園11内のプロセス蒸気として有効に利用出来る。また、パーム農園11外にクリーンな水を供給することも可能であり、地域のインフラ整備にも貢献できる。排熱回収ボイラー4で回収した水は、凝縮してできるクリーンな水である。化学式CH + 2O =CO +2HOからすると、CHとHOとの気体の体積比が1:2であって、重量比が16:2×18=1:2.25である。即ち、燃料として使用するバイオガス中のメタンガスの重量に対して2倍強の重量の大量のクリーンな水が製造できる。パーム農園11でのS-GTCCの実証ができると、インドネシア政府は、700カ所の全てのパーム農園11に普及させる方針を示している。地球温暖化対策としてCO排出ゼロ評価の安定型の再生エネルギーによりCO排出量を最大限に抑制できる。同時にパーム農園11を核とした工業団地づくりまでを視野に入れた総合計画、マスタープランを作ることが可能になる。 At the palm plantation 11, the exhaust gas temperature can be lowered to the outside air temperature by recovering the latent heat of water vapor in the combustion exhaust gas. The heat recoverable amount is 10% in the case of gaseous fuel and 6% in the case of liquid fuel. Therefore, the improvement of the power generation efficiency in the S-GTCC is about 3% for the gas fuel and about 2% for the liquid fuel when the power generation efficiency of the steam turbine is set to about 30% and converted into the efficiency improvement of the power generation efficiency. The water recovered by the exhaust heat recovery boiler 4 is clean water produced by condensation. This can be effectively used as process steam in the palm plantation 11. It is also possible to supply clean water to the outside of the palm plantation 11, which can contribute to the development of local infrastructure. The water recovered by the exhaust heat recovery boiler 4 is clean water produced by condensation. From the chemical formula CH 4 + 2O 2 = CO 2 + 2H 2 O , the volume ratio of the gas between CH 4 and H 2 O is 1: 2, and the weight ratio is 16: 2 × 18 = 1: 2.25. be. That is, it is possible to produce a large amount of clean water having a weight more than twice the weight of methane gas in the biogas used as fuel. When the S-GTCC can be demonstrated at the palm plantation 11, the Indonesian government has indicated a policy to disseminate it to all 700 palm plantations 11. It can be suppressed to maximize the CO 2 emissions by stable regeneration energy CO 2 emissions zero rating as global warming. At the same time, it will be possible to create a comprehensive plan and master plan with a view to creating an industrial park centered on palm plantation 11.
 パーム農園11は、広大な面積の中での利用であり、住民がいないので大気汚染の懸念はない。S-GTCCでは、排ガス中に汚染物質がない。アンモニアの少量の漏れや、白煙の発生対策などに配慮する必要はない。排気ガスからの熱回収は常温まで全量熱交換が可能であり煙突も不要である。実際に搾油工場(MILL)では、ボイラー等の燃焼により煙突から黒い煙があがっている。このシステムをLNGを燃料として大規模な発電用に利用するときに、パーム農園11での実績が大きな力を発揮できる。大気汚染がないので、住民の不安もなく地域社会に歓迎される。地域分散型の火力発電所の計画は、実質的に環境影響評価手続きなしに地域社会の合意を得ることができる。これは、日本は勿論、世界的にも大きな付加価値を生み出すことになる。 Palm plantation 11 is used in a vast area, and since there are no residents, there is no concern about air pollution. In S-GTCC, there are no pollutants in the exhaust gas. It is not necessary to consider measures such as leakage of a small amount of ammonia and generation of white smoke. The entire amount of heat recovered from the exhaust gas can be exchanged up to room temperature, and no chimney is required. In fact, in an oil mill (MILL), black smoke is emitted from the chimney due to combustion of a boiler or the like. When this system is used for large-scale power generation using LNG as fuel, the achievements at the palm plantation 11 can exert great power. Since there is no air pollution, the residents are welcomed by the local community without any anxiety. Regionally distributed thermal power plant plans can be agreed upon by the community with virtually no environmental impact assessment procedure. This will create great added value not only in Japan but also in the world.
 パーム農園11では、農園内でできるバイオガス及びパーム油粗油(CPO)を燃料として付加価値が高い電力に変換することが最も望ましい。そして、発電電力が豊富にあると、パーム農園11内で有効な液体燃料、固形燃料の製造やその他の製造用に活用できる。同時に、土地が広く豊富な労働力を教育と訓練により育てることでパーム農園事業者が工業団地としての機能及びポテンシャルを持っている。さらに、パーム農園11外への電力供給が可能になり、極めて効率的な電力のネットワーク構築を実現出来る。これを実現するために、次のパーム農園間の電力の相互融通及びバックアップシステムを通じて地域の電力インフラの整備にも大きな付加価値を生み出すことができる。広大なパーム農園11を複数のクラスターと捉えて、自家用電線で繋ぐことにより、電力の相互融通及びバックアップ電源の確保が可能になる。また、パーム農園11は、人口が希薄な地域で計画されることから、S-GTCCを導入採用することでパーム農園11で電力及びクリーンな水の使用が容易になる。同時に周辺の電力需要量が小さいことから電力会社は送配電網の整備の収支を圧迫することにもなって進めにくい。パーム農園11で自立型且つ地域分散型の発電所の建設が進むと、合理的な電力ネットワークの構築に繋がる。クラスターとしての自家用送電線は、6kV用で対応できるが、送配電線については、22kV仕様と同一である。電柱や鉄塔で使用する絶縁碍子は一般に6kV仕様を採用することで初期設備コストを抑制する。図3は、自家用電線を発展的に電力会社の電力ネットワークに展開していくモデルを示す。クラスター計画及び設置段階では、電力会社の幹線は整備されていないか、利用できないものとして専用電線を設置する。パーム農園11内の自家使用ないしはクラスターへの送電などの電力送電容量が大きくなると変圧器を介して電圧を22kVにする。このときに、自家用線を電力会社に移管するとともに、絶縁碍子を22kV仕様に交換する。パーム農園11は、CO排出ゼロ評価の安定型の再生エネルギーを利用する自立型且つ地域分散型の発電所である。必要な時に必要な場所で合理的、経済的に主幹線へと接続し、地域の電力ネットワークを整備することで、地域発展の原動力になる。従来、電力会社の送配電網は、より高電圧の主幹線として66kV、基幹幹線として150kV以上で計画していたが、これらの必要性は極めて小さくなる。 At the palm plantation 11, it is most desirable to convert the biogas and palm oil crude oil (CPO) produced in the plantation into high value-added electric power as fuel. If the generated power is abundant, it can be utilized for the production of effective liquid fuel and solid fuel and other production in the palm plantation 11. At the same time, palm plantation operators have the function and potential as an industrial park by raising a large and abundant labor force through education and training. Further, it becomes possible to supply electric power to the outside of the palm plantation 11, and it is possible to realize an extremely efficient electric power network construction. In order to achieve this, it is possible to create great added value for the development of local power infrastructure through the mutual interchange of power between the following palm plantations and the backup system. By treating the vast palm plantation 11 as a plurality of clusters and connecting them with private electric wires, mutual power interchange and backup power supply can be secured. In addition, since the palm plantation 11 is planned in an area where the population is sparse, the introduction and adoption of S-GTCC facilitates the use of electricity and clean water in the palm plantation 11. At the same time, since the demand for electric power in the surrounding area is small, it is difficult for electric power companies to proceed because it puts pressure on the balance of development of the transmission and distribution network. If the construction of a self-sustaining and locally distributed power plant progresses at Palm Plantation 11, it will lead to the construction of a rational power network. The private transmission line as a cluster can be used for 6 kV, but the transmission and distribution line is the same as the 22 kV specification. Insulators used in utility poles and steel towers generally use 6kV specifications to reduce initial equipment costs. FIG. 3 shows a model in which private electric wires are progressively deployed in the electric power network of an electric power company. At the cluster planning and installation stage, the main line of the electric power company will be installed as if it is not maintained or cannot be used. When the power transmission capacity such as private use in the palm plantation 11 or power transmission to the cluster becomes large, the voltage is set to 22 kV via a transformer. At this time, the private line will be transferred to the electric power company, and the insulator will be replaced with the 22kV specification. Palm plantation 11 is a self-sustaining and locally distributed power plant that uses stable renewable energy with zero CO 2 emission evaluation. By connecting to the main line reasonably and economically when and where it is needed and establishing a local power network, it will become a driving force for regional development. Conventionally, the transmission and distribution network of an electric power company has been planned to have a higher voltage of 66 kV as the main trunk line and 150 kV or more as the main trunk line, but the need for these becomes extremely small.
 パーム農園11でできる果実(FFB)からパーム油を抽出する際の廃液からできるバイオガスを捕囚して製造する気体燃料及びパーム油原料(パーム油粗油:CPO)からできる液体燃料はいずれもCO排出ゼロ評価の安定型再生エネルギーである。この燃料により持続可能なS-GTCCシステムを備えた自立型で地域分散型発電システムを複数のパーム農園11に自家用電線でネットワーク化することで、相互融通及びバックアップ電力として安定した電力供給が可能になる。また、パーム農園11内で大量に生産できるFFBからCO排出ゼロ評価の安定型の再生可能エネルギーとしての燃料生産用等に必要な自家用電力を利用計画に基づき柔軟に安定して増強し確保できる。さらに自家用線を電力会社の幹線と連携することで、付加価値の高い電力の製造、利用及び地域への供給が可能となり、地域のインフラ整備、工業団地などの地域開発、産業と雇用の創出、並びに、人々の教育及び訓練による能力向上など、政府や地方政府の総合的な政策の実現の支援が経済的に計画的に実現できる。将来的にはパーム農園の事業者自らが自家用電線を建設所有し運用することから政府や地方政府等とともに電力事業者になることも可能性が高い。また、排熱回収ボイラー4で水蒸気の熱回収、大量の回収水の有効利用を図ることができる。なお、気体燃料はパーム農園11での製造プロセスからできる廃水(POME)から発生するバイオガスを捕囚して精製したものを有効利用するなど、地球温暖化対策として長期的な目標を早期に確立及び実現出来る技術システムである。自立型且つ地域分散型の電力供給システム10が整備充実すると、周辺の広大な地域でのパーム農園11の建設計画に必要な電力とクリーンな水の供給及び確保が容易になる。これらを活用して新規に計画するパーム農園11は、温暖化対策とSDGsに対応したものとして一層の地域開発、経済発展の加速につながることになる。 Both the gaseous fuel produced by capturing the biogas produced from the waste liquid when palm oil is extracted from the fruit (FFB) produced at the palm plantation 11 and the liquid fuel produced from the palm oil raw material (palm oil crude oil: CPO) are both. It is a stable regenerated energy with zero CO 2 emission evaluation. By using this fuel to network a self-sustaining and locally distributed power generation system equipped with a sustainable S-GTCC system to multiple palm plantations 11 with private electric wires, it is possible to provide mutual interchange and stable power supply as backup power. Become. In addition, it is possible to flexibly and stably increase and secure private power required for fuel production as a stable renewable energy with zero CO 2 emission evaluation from FFB that can be mass-produced in the palm plantation 11 based on the utilization plan. .. Furthermore, by linking private lines with the trunk lines of electric power companies, it will be possible to manufacture and use high value-added electricity and supply it to the region, and it will be possible to develop regional infrastructure, develop regions such as industrial parks, and create industry and employment. In addition, support for the realization of comprehensive policies of the government and local governments, such as capacity building through education and training of people, can be realized economically and systematically. In the future, it is highly possible that the palm plantation company will become an electric power company together with the government and local governments because it will construct, own and operate private electric wires. Further, the waste heat recovery boiler 4 can recover the heat of steam and effectively use a large amount of recovered water. As for gaseous fuel, long-term goals have been established at an early stage as a measure against global warming, such as by effectively using biogas generated from wastewater (POME) generated from the manufacturing process at Palm Farm 11 and refining it. And a technical system that can be realized. If the self-sustaining and locally distributed power supply system 10 is developed and enhanced, it will be easy to supply and secure the power and clean water required for the construction plan of the palm plantation 11 in the vast surrounding area. The palm plantation 11, which is newly planned by utilizing these, will lead to further acceleration of regional development and economic development as a response to global warming countermeasures and SDGs.
 図4は、パーム農園11のモデルを示す概略図である。図4に示されるように、パーム農園11は、例えば一年中温暖で降雨量の多い熱帯雨林地帯で生育するアブラヤシ等の植物を栽培する。パーム農園11の面積は、例えば約200kmである。パーム農園11の中には、搾油工場(MILL)及びこれに隣接する複数の廃水池8が存在する。パーム農園11では、アブラヤシの果実(FFB:Fresh Fruits Bunch:FFB)が毎日収穫されて搾油工場へ運ばれる。搾油工場を稼働させるために電力とクリーンな水が必要である。果実(FFB)に蒸気を注入して油分を抽出する。抽出に使用した蒸気は凝縮して油混じりの有機物を含んだ廃水(POME)として、廃水池8に排出される。廃水池8では、有機物が沈殿または自然分解する。最終の廃水池8では、嫌気状態でPOMEの油分を分解してバイオガスを発生させ60%程度、COが40%程度含まれているが、組成は変動する。このガス中の有害物質であるHSをスクラバーで吸着除去して精製して発電機に送り込む。 FIG. 4 is a schematic view showing a model of the palm plantation 11. As shown in FIG. 4, the palm plantation 11 cultivates plants such as oil palm that grow in tropical rainforest areas that are warm and have a lot of rainfall all year round, for example. The area of the palm plantation 11 is, for example, about 200 km 2 . In the palm plantation 11, there is an oil mill (MILL) and a plurality of wastewater ponds 8 adjacent thereto. At the palm plantation 11, oil palm fruits (FFB: Fresh Fruits Bunch: FFB) are harvested daily and transported to an oil mill. Electricity and clean water are needed to operate an oil mill. Steam is injected into the fruit (FFB) to extract the oil. The steam used for extraction is condensed and discharged to the wastewater pond 8 as wastewater (POME) containing organic matter mixed with oil. In the wastewater pond 8, organic matter precipitates or decomposes spontaneously. In the final wastewater pond 8, the oil content of POME is decomposed in an anaerobic state to generate biogas, which contains about 60% and about 40% CO 2 , but the composition varies. H 2 S, which is a harmful substance in this gas, is adsorbed and removed by a scrubber, purified, and sent to a generator.
 パーム農園11では、政府の方針に従って、バイオガスを捕囚し発電用燃料に利用する段階である。インドネシア政府は、2010年頃からガスエンジンによる1MW規模の発電に取り組んでいるが、まだエンジニアリング会社が工夫しながら運転しており発電設備としての性能が安定しない。また、バイオガスの捕囚装置の改造費が大きいことなどから、部分的な普及に留まっている。 Palm plantation 11 is at the stage of capturing biogas and using it as fuel for power generation in accordance with the government policy. The Indonesian government has been working on 1MW scale power generation with a gas engine since around 2010, but the performance as a power generation facility is not stable because the engineering company is still devising and operating it. In addition, due to the high cost of remodeling the biogas captivity device, it is only partially popularized.
 バイオガスを利用してGTの常用発電機としては普及しておらず、パーム農園11でも使用された実績がない。しかし、GTは産業革命以前から動力をとりだすために風車や水車と同様に羽根(ブレード)を回転させるシステムであり、原理的に性能が安定している。人があまり手をかけずに長期間安定して稼働できる特徴がある。また、ガスエンジンと異なり、高速で回転させることによりコンパクトで大きな出力を取り出すことができる。このことから、非常用発電機として火災や地震などのときにスイッチを入れれば稼働できる機能が評価されて0.2MWから5MW、さらに大容量のGTまで広く普及している。また、燃料としては液体燃料が基本であるが、バイオマス燃料でも原理的に問題がない。ガスタービンは燃焼用空気量を理論空気量の4倍程度入れて燃焼温度を下げて、タービン羽根の耐熱性を維持する構造・方式である。このことから、電力は貯められないので、電力の出力を確保するため及び安定供給のためにパーム農園11内で自給できる気体燃料用と液体燃料用と複数台設置が基本構成になる。勿論、パーム農園11内等での電力需要の増大に伴い、それぞれを複数台設置することもできる。 It has not been widely used as a GT regular generator using biogas, and has not been used in palm plantations 11. However, GT is a system that rotates blades in the same way as wind turbines and water turbines in order to extract power from before the Industrial Revolution, and its performance is stable in principle. It has the characteristic that it can be operated stably for a long period of time without much human intervention. Also, unlike a gas engine, it is compact and can take out a large output by rotating it at high speed. For this reason, the function of an emergency generator that can be operated by turning on the switch in the event of a fire or earthquake has been highly evaluated, and it has become widespread from 0.2 MW to 5 MW and even larger capacity GTs. In addition, although liquid fuel is basically used as fuel, there is no problem in principle with biomass fuel. The gas turbine has a structure and method in which the amount of combustion air is about four times the theoretical amount of air to lower the combustion temperature and maintain the heat resistance of the turbine blades. For this reason, since electric power cannot be stored, the basic configuration is to install a plurality of units for gas fuel and liquid fuel that can be self-sufficient in the palm plantation 11 in order to secure the output of electric power and to provide a stable supply. Of course, as the demand for electric power in the palm plantation 11 increases, a plurality of each can be installed.
 さらにパーム農園11の果実(FFB)から製造できる液体燃料と気体燃料の組み合わせにより最も付加価値の高い大量の電力供給が可能になる。したがって、パーム農園11はCO排出ゼロ評価の安定型再生エネルギーによる地域分散型発電所として地域の工業団地として国のマスタープランや地方政府の開発計画に大きく寄与することができる。可及的速やかに発電システムの実証を進めることが望まれる。実証装置で基本性能が確認されると、同型機を複数のパーム農園11で採用・実証して実用化を加速することが可能になる。小規模(0.2MW,200kW)から中規模(5MW級)であっても安定した規格品として市場で購入・調達してできる市販されている設備を採用・設置できる。したがって実証段階での開発スピードが速く、実用設備に規模を拡大したシステムとして短期間に普及が見込まれる。市場ニーズが大きくなると、GTは確立した技術であり、複数のGTメーカーの参入により品質と価格面のメリットがある市場を形成できる。今後、高速大容量の通信技術、AI、IoTの利用技術が急速に進展するので、AIやIoTを活用したドローンなどによる監視測定やデータ蓄積・活用などを現在700カ所、今後はさらに増大させて、パーム農園11での長期的、総合的な管理、改善を図ることに繋ぐことができる。同時に今後高速大容量化が進むAI、IoTの活用、有効利用により、品質の安定した液体燃料、固形燃料を年間を通じて安定して供給できることが、発電用燃料として重要であり、これを支える基盤技術になる。 Furthermore, the combination of liquid fuel and gaseous fuel that can be produced from the fruits (FFB) of Palm Farm 11 makes it possible to supply a large amount of power with the highest added value. Therefore, the palm plantation 11 can greatly contribute to the national master plan and the development plan of the local government as a regional industrial park as a regional distributed power plant using stable renewable energy with zero CO 2 emission evaluation. It is hoped that the demonstration of the power generation system will proceed as soon as possible. Once the basic performance is confirmed by the demonstration device, it will be possible to accelerate the practical application by adopting and demonstrating the same type of machine at a plurality of palm plantations 11. It is possible to adopt and install commercially available equipment that can be purchased and procured in the market as a stable standard product even for small scale (0.2 MW, 200 kW) to medium scale (5 MW class). Therefore, the development speed at the demonstration stage is fast, and it is expected that the system will be widely used in a short period of time as a system expanded to practical equipment. As market needs grow, GT is an established technology, and the entry of multiple GT manufacturers can form a market with quality and price advantages. In the future, high-speed and large-capacity communication technology and AI and IoT utilization technologies will rapidly advance, so we will increase the number of monitoring measurements and data storage and utilization by drones utilizing AI and IoT at 700 locations in the future. , It can lead to long-term, comprehensive management and improvement at Palm Farm 11. At the same time, it is important as a fuel for power generation to be able to stably supply liquid fuel and solid fuel with stable quality throughout the year by utilizing and effectively using AI and IoT, which will increase in speed and capacity in the future, and the basic technology that supports this. become.
 パーム農園11内では付加価値の高い電力をより効率的に理想的な形で製造利用できることが望まれる。気体燃料及び液体燃料の複数台設置を基本とするGT出口の排ガス温度が700℃以上であり、これの排熱をすべて回収して蒸気を作り蒸気タービンにより発電し、最も付加価値の高い電力を取り出す。全ての排熱を回収するために、排ガス中の大気汚染物質を除去する。バイオガス中のHSはガスの精製装置にあるスクラバーで除去する。GT出口では燃焼に伴いNOxが発生するので、これに当量以上のNHを注入してNOxを除去する。この脱硝反応は還元触媒を介して行う。熱交換器で液体と気体の熱交換をする。排ガスは常温まで熱交換する設計とする。排気ガス中には大気汚染物質がないので、パーム農園11内の小規模システムであり、煙突は不要である。 It is desired that high value-added electric power can be manufactured and used more efficiently and in an ideal form in the palm plantation 11. The exhaust gas temperature at the GT outlet, which is based on the installation of multiple units of gas fuel and liquid fuel, is 700 ° C or higher. Take it out. Remove air pollutants in the exhaust gas to recover all exhaust heat. H 2 S in the biogas is removed by the scrubber in the purification unit of the gas. Since NOx is generated at the GT outlet due to combustion, NOx is removed by injecting an equivalent amount or more of NH 3 into the NOx. This denitration reaction is carried out via a reduction catalyst. A heat exchanger exchanges heat between liquid and gas. The exhaust gas is designed to exchange heat up to room temperature. Since there are no air pollutants in the exhaust gas, it is a small-scale system in the palm plantation 11 and does not require a chimney.
 排熱回収ボイラーでの反応が適切に行われていることを計測監視する。必須項目は、GT入口でHSを測定、GT出口でのNOx濃度と排ガス量、回収水中の成分、PH、及び、排ガス量と温度(それぞれの装置の入口と出口で測定)がある。 Measure and monitor that the reaction in the exhaust heat recovery boiler is being performed properly. The essential items are H 2 S measured at the GT inlet, NOx concentration and exhaust gas amount at the GT outlet, components in the recovered water, PH, and exhaust gas amount and temperature (measured at the inlet and outlet of each device).
 発電した電力の特徴と活用について述べる。パーム農園11の主要構成部分は上述したように200kmもの広大な面積の中に事務所と搾油工場と搾油工場からでる廃水(POME)中の有機物を沈殿または自然分解させる複数の廃水池などからなる。従って、工場等で必要な電力を確保できると、パーム農園11内で新たな液体燃料、固形燃料製造工場などを作り、関連事業を拡大することも容易である。一般にGTは気体燃料、液体燃料の複数台で発電電力供給することに特徴があり、需要量に応じて柔軟に出力調整が可能である。また、メンテナンスや故障等の非常事態に対しても最低限の電力を自給できる。さらに自家用電線で複数のパーム農園を繋ぐことで電力の総合融通、バックアップが容易になり、自家用電線は将来的には電力事業の送配電線として重要なインフラになる。 The characteristics and utilization of the generated power will be described. Major components of the palm plantations 11 from such a plurality of waste water pond of precipitating or natural decomposing organic matter in waste water (POME) leaving the office and oil mill and oil mill in 200 km 2 things large area as described above Become. Therefore, if the necessary electric power can be secured in the factory or the like, it is easy to create a new liquid fuel or solid fuel manufacturing factory in the palm plantation 11 and expand the related business. In general, GT is characterized by supplying generated power with a plurality of units of gas fuel and liquid fuel, and its output can be flexibly adjusted according to the amount of demand. In addition, the minimum amount of electric power can be self-sufficient even in an emergency such as maintenance or breakdown. Furthermore, by connecting multiple palm farms with private electric wires, it will be easier to provide comprehensive power interchange and backup, and private electric wires will become an important infrastructure for power transmission and distribution in the future.
 外部との電力の需給の連携も大きなメリットがある。パーム農園で発電する電力はCO排出ゼロ評価の安定型の再生可能エネルギーであり、地球温暖化対策としても極めて望ましい。そして、周辺部には電力会社による電力供給ネットワークを整備し、同時に道路等のインフラ整備を進めることで、国及び地方政府の地域開発は長期的な視点で総合的に計画を推進できる。パーム農園はインドネシアでは全国に約700カ所あり、政府はS-GTCCを実用化すると全国に拡大するとの方針を示している。CO排出ゼロ評価の安定型再生エネルギーによる自立型で地域分散型の発電所が700カ所設置できる。そして、最も付加価値の高い電力を必要なときに必要なだけ経済的に安定して供給することが可能になる。 Coordination of power supply and demand with the outside is also a great merit. The electricity generated at the palm plantation is a stable renewable energy with a zero CO 2 emission rating, which is extremely desirable as a measure against global warming. By developing a power supply network by electric power companies in the surrounding area and at the same time promoting infrastructure development such as roads, regional development of the national and local governments can be comprehensively promoted from a long-term perspective. There are about 700 palm plantations nationwide in Indonesia, and the government has indicated that it will expand nationwide when S-GTCC is put into practical use. It is possible to install 700 self-sustaining and locally distributed power plants using stable renewable energy with zero CO 2 emission evaluation. Then, it becomes possible to economically and stably supply the most value-added electric power when and as much as necessary.
 電力を外部のネットワークに接続することの優位性について述べる。GTCCで発電する電力は一般に周辺の電力需要が小さいので、6kVで送電できる仕様が基本である。パーム農園11の周辺に22kVの送電網がある場合はそのまま送出し、変圧器を介して電力会社が送電網に接続する。「高圧送電線」とは、公称電圧(JEC規格)が6kVの電線路で使用される電線のことをいう。公称電圧が低い電線路に使用される電線のコストは、公称電圧が高い電線路に使用される電線のコストよりも低い。ただし、公称電圧(JEC規格)が22kVの場合、公称電圧6kVの場合と送電線の仕様は同一である。例えば式W=31/2×EIcosθにより求めることができる。ただし、Wは電力(kW)、Eは電圧(V)、Iは電流(kA)である。電圧Eが22kVである場合、例えば電流Iが1kAであると仮定すると、電力Wは34MW程度となる。電力会社は、将来的に地域の電力需要量が増大する場合、22kVは6kVの送電線と同一仕様であるので、新規に送電網を計画・建設する場合、碍子22kV用に交換して対応することになる。パーム農園11でできる液体燃料により電力30MWもの電力供給に対応できるポテンシャルがある。実際には電線は重要なインフラであり、60mmではなく80mmを使用することで、さらに大電力に対応できる選択肢もある。 The advantages of connecting power to an external network are described. Since the power generated by GTCC generally has a small demand for power in the surrounding area, the basic specification is that it can be transmitted at 6 kV. If there is a 22 kV power grid around the palm plantation 11, it will be transmitted as it is, and the electric power company will connect to the power grid via a transformer. "High-voltage power transmission line" refers to an electric wire used in an electric line having a nominal voltage (JEC standard) of 6 kV. The cost of wires used for power lines with low nominal voltage is lower than the cost of wires used for power lines with high nominal voltage. However, when the nominal voltage (JEC standard) is 22 kV, the specifications of the transmission line are the same as when the nominal voltage is 6 kV. For example, it can be obtained by the formula W = 3 1/2 × EIcos θ. However, W is electric power (kW), E is voltage (V), and I is current (kA). When the voltage E is 22 kV, for example, assuming that the current I is 1 kA, the power W is about 34 MW. When the electric power demand in the area increases in the future, 22kV has the same specifications as the 6kV transmission line, so when planning and constructing a new transmission network, the electric power company will replace it with an insulator 22kV. It will be. The liquid fuel produced at the palm plantation 11 has the potential to support an electric power supply of as much as 30 MW. In fact the wire is an important infrastructure, the use of 80 mm 2 instead 60 mm 2, there is also a choice that can be further corresponding to the large electric power.
 地域の電力ネットワークが整備されると、次のメリットが生ずる。パーム農園11内のGTCC1に故障等のトラブルが発生した場合、隣接するパーム農園11から相互融通及びバックアップ用電力の託送をうけることが可能になり、地域の電力供給の安定供給性、信頼性はさらに大きなものになる。新規にパーム農園11の設置を計画する場合、6kVの送電線を延長することで、必要な電力供給を受けることが可能である。勿論パーム農園が稼働すると、パーム農園11相互の電力ネットワークに組み込まれることになる。 The following merits will occur when the local power network is developed. If a trouble such as a failure occurs in GTCC1 in the palm plantation 11, it will be possible to receive mutual accommodation and backup power consignment from the adjacent palm plantation 11, and the stable supply and reliability of the local power supply will be improved. It will be even bigger. When planning the installation of a new palm plantation 11, it is possible to receive the necessary power supply by extending the 6 kV transmission line. Of course, when the palm plantation starts operating, it will be incorporated into the mutual power network of the palm plantations 11.
 本開示の一形態に係る電力供給システム10は、パーム農園11で生成された生成物を貯留する貯留装置80から気体燃料を回収し、気体燃料をGTCC1へ供給する気体燃料供給装置7を備えている。この構成によれば、気体燃料供給装置7により貯留装置80から気体燃料を回収し、当該気体燃料を発電装置2に供給して発電しパーム農園11内で電力使用することができる。 The power supply system 10 according to one embodiment of the present disclosure includes a gas fuel supply device 7 that recovers gas fuel from a storage device 80 that stores products produced in the palm plantation 11 and supplies the gas fuel to GTCC 1. There is. According to this configuration, the gas fuel supply device 7 recovers the gas fuel from the storage device 80, and the gas fuel is supplied to the power generation device 2 to generate electricity, which can be used in the palm plantation 11.
 また、本開示の一形態に係る電力供給システム10は、パーム農園11で搾油・生産したパーム油粗油(CPO)をもとにガスタービン用燃料として精製し供給する装置を備えている。この構成によれば、液体燃料供給装置により貯油装置を経て液体燃料をガスタービンに供給して発電し、パーム農園11内で電力使用することができる。この場合、電力は貯められないから、GTCC1は発電電力量を需要電力量に見合った形で出力調整できる特徴を有効に機能させることが重要である。 Further, the power supply system 10 according to one form of the present disclosure is provided with a device for refining and supplying as fuel for a gas turbine based on palm oil crude oil (CPO) squeezed and produced at the palm plantation 11. According to this configuration, the liquid fuel supply device supplies the liquid fuel to the gas turbine via the oil storage device to generate electricity, and the electric power can be used in the palm plantation 11. In this case, since electric power cannot be stored, it is important for GTCC1 to effectively function the feature that the output of the generated electric power can be adjusted in a form commensurate with the required electric energy.
 燃料として使用するバイオガス中のメタンガスの重量に対して2倍強の重量の大量のクリーンな水を製造できる。回収水は実証段階ではN分、S分などの微量物質の測定をするとともに、PHが7以上のアルカリ性であることを管理することで、搾油工場で使用するボイラー用水として大量に供給可能である。パーム農場で液体燃料を製造する場合、必要な給水量は果実(FFB)の29%、パーム油は24%に相当するとの報告書がある。したがって、液体燃料からの最大給水可能量は50%以上と大きいので、パーム農場内で必要な給水量をすべて賄うことが可能である。新規にパーム農園11の設置を計画する場合、搾油工程で必要とするクリーンな水の利用を計画に織り込むことで立地の自由度が広がる。また、給水用の初期設備投資額を抑制できる。新規のパーム農園11の計画では生産量が標準状態に拡大するまでに長期間を要する。アブラヤシは苗を育ててから3年目くらいで果実(FFB)ができる。その後20年間は果実を取り続けた後、伐採して新たに苗を植えて持続可能な循環をしているシステムである。したがって、パーム農園11の初期段階では、生産量が小さいことを考慮して必要な電力も水のユーティリティ計画に有効に反映できる。このクリーンな回収水をパーム農園11外の地域に供給することも可能である。ただし、水道法への適用などの事業の運営・管理面での配慮が必要になる。 It is possible to produce a large amount of clean water that weighs more than twice the weight of methane gas in the biogas used as fuel. At the demonstration stage, the recovered water can be supplied in large quantities as boiler water used in oil mills by measuring trace substances such as N and S and controlling the pH to be alkaline of 7 or more. .. There is a report that when producing liquid fuel on a palm farm, the amount of water required is 29% of fruit (FFB) and 24% of palm oil. Therefore, since the maximum water supply capacity from the liquid fuel is as large as 50% or more, it is possible to cover all the water supply capacity required in the palm farm. When planning the installation of a new palm plantation 11, the degree of freedom of location will be expanded by incorporating the use of clean water required in the oil extraction process into the plan. In addition, the initial capital investment for water supply can be suppressed. In the plan of the new palm plantation 11, it will take a long time for the production volume to expand to the standard state. Oil palm produces fruits (FFB) about 3 years after growing seedlings. It is a system that keeps harvesting fruits for the next 20 years, then cuts down and plants new seedlings for sustainable circulation. Therefore, in the initial stage of the palm plantation 11, the required electric power can be effectively reflected in the water utility plan in consideration of the small production amount. It is also possible to supply this clean reclaimed water to an area outside the palm plantation 11. However, consideration must be given to the operation and management of the business, such as application to the Waterworks Law.
 地球温暖化対策を考慮すると、世界では長期的にはCO排出原単位が少ない大規模な火力発電所による電力供給がどうしても必要になり、相当量を化石燃料に頼る必要がある。石油は1980年代以降、価格が高いこともあり発電電力用としては不向きであることが明確になった。石炭火力は天然ガスに比べてCOの排出量が多く、地球温暖化の観点から好ましくないと位置づけられている。このために世界中で広く大量に埋蔵されている天然ガス、これを液化して輸送するLNGが経済性、供給安定性、環境保全性の面から最も優れている。これをS-GTCCとする技術システムは、確立した技術で対応できるが、実証できていないこともあり、世界中でまだ普及していない。これを実証するために評価実証装置及び評価実証システムとして特許が登録できた。これをパーム農園11で実証し、広く普及させることで実証の役割を果たすことができる。大規模な火力発電に適用するために、環境影響評価制度などで実証の実績があることは大きな推進力になる。原理的にはスケール・ニュートラル即ち発電規模と関係がないので、本発明の成果として初めて実現、世界に貢献できるものになる。 Considering global warming countermeasures, in the long run, it is absolutely necessary to supply electricity from large-scale thermal power plants with low CO 2 emission intensity, and it is necessary to rely on fossil fuels for a considerable amount. Since the 1980s, it has become clear that petroleum is unsuitable for power generation due to its high price. Coal-fired power emits more CO 2 than natural gas, and is regarded as unfavorable from the viewpoint of global warming. For this reason, natural gas, which is widely stored in large quantities all over the world, and LNG, which liquefies and transports this gas, are the most excellent in terms of economy, supply stability, and environmental protection. The technology system that uses this as S-GTCC can be handled with established technology, but it has not been demonstrated yet, and it is not yet widespread all over the world. To prove this, a patent could be registered as an evaluation verification device and an evaluation verification system. By demonstrating this at the palm plantation 11 and disseminating it widely, it can play a role of demonstrating. In order to apply it to large-scale thermal power generation, having a track record of demonstration in an environmental impact assessment system is a great driving force. In principle, it has nothing to do with scale-neutral, that is, the scale of power generation, so it can be realized for the first time as a result of the present invention and contribute to the world.
1…GTCC(ガスタービンコンバインドサイクル発電システム)、4…排熱回収ボイラー、10…電力供給システム(自立型且つ地域分散型の電力供給システム)、11…パーム農園(プランテーション)、12…送電網、13…第1送電線、14…第2送電線、22…GT(第1ガスタービン)、32…GT(第2ガスタービン)、42…脱硝触媒、43,44センサー、51…蒸気タービン。 1 ... GTCC (Gas Turbine Combined Cycle Power Generation System), 4 ... Exhaust Heat Recovery Boiler, 10 ... Power Supply System (Independent and Regionally Distributed Power Supply System), 11 ... Palm Farm (Plantation), 12 ... Transmission Network, 13 ... 1st transmission line, 14 ... 2nd transmission line, 22 ... GT (1st gas turbine), 32 ... GT (2nd gas turbine), 42 ... denitration catalyst, 43,44 sensor, 51 ... steam turbine.

Claims (4)

  1.  複数のプランテーションのそれぞれに配置され、当該プランテーションで製造された気体燃料及び液体燃料を利用して発電する複数のガスタービンコンバインドサイクル発電システムと、
     複数の前記プランテーションのそれぞれにおける前記ガスタービンコンバインドサイクル発電システムから電力消費地へ電力を送る第1送電線、及び、複数の前記第1送電線を互いに接続する第2送電線を有する送電網と、を備え、
     前記プランテーションは、アブラヤシを栽培するパーム農園であり、
     前記気体燃料及び前記液体燃料のそれぞれは、前記プランテーションで収穫される果実を原料として製造された燃料であり、
     複数の前記ガスタービンコンバインドサイクル発電システムのそれぞれは、
      前記気体燃料を利用して稼働する第1ガスタービンと、
      前記液体燃料を利用して稼働する第2ガスタービンと、
      前記第1ガスタービン及び前記第2ガスタービンから排気される排ガスの熱を回収する排熱回収ボイラーと、
      前記排熱回収ボイラーによって回収された熱を利用して稼働する蒸気タービンと、を有し、
     前記ガスタービンコンバインドサイクル発電システムは、当該ガスタービンコンバインドサイクル発電システムが配置された前記プランテーションへ電力を送り、
     複数の前記ガスタービンコンバインドサイクル発電システムは、前記送電網を介して、複数の前記プランテーションのそれぞれに電力を送る、自立型且つ地域分散型の電力製造供給システム。
    Multiple gas turbine combined cycle power generation systems that are located in each of multiple plantations and generate electricity using the gaseous and liquid fuels produced in the plantations.
    A transmission line having a first transmission line that sends power from the gas turbine combined cycle power generation system in each of the plurality of plantations to a power consumption area, and a transmission network having a second transmission line that connects the plurality of first transmission lines to each other. With
    The plantation is a palm plantation where oil palm is cultivated.
    Each of the gaseous fuel and the liquid fuel is a fuel produced from fruits harvested in the plantation.
    Each of the plurality of gas turbine combined cycle power generation systems
    The first gas turbine that operates using the gaseous fuel and
    A second gas turbine that operates using the liquid fuel,
    An exhaust heat recovery boiler that recovers the heat of the exhaust gas exhausted from the first gas turbine and the second gas turbine, and
    It has a steam turbine that operates by utilizing the heat recovered by the exhaust heat recovery boiler.
    The gas turbine combined cycle power generation system sends electric power to the plantation where the gas turbine combined cycle power generation system is arranged.
    The plurality of gas turbine combined cycle power generation systems are self-sustaining and locally distributed power production and supply systems that transmit power to each of the plurality of plantations via the power grid.
  2.  前記排熱回収ボイラーは、
      前記排ガス中のNOxを除去する脱硝触媒と、
      前記排ガス中のNOx濃度を測定するセンサーと、を有し、
     前記排熱回収ボイラーは、前記排ガス中の水蒸気の潜熱を回収することにより前記排ガスの温度を大気温度まで下げると共に、前記水蒸気の潜熱の回収により発生した水を回収する、請求項1に記載の自立型且つ地域分散型の電力製造供給システム。
    The exhaust heat recovery boiler
    A denitration catalyst that removes NOx in the exhaust gas,
    It has a sensor for measuring the NOx concentration in the exhaust gas and
    The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler lowers the temperature of the exhaust gas to the atmospheric temperature by recovering the latent heat of the water vapor in the exhaust gas, and recovers the water generated by the recovery of the latent heat of the water vapor. A self-sustaining and locally distributed power production and supply system.
  3.  複数の前記プランテーションのそれぞれにおける前記ガスタービンコンバインドサイクル発電システムは、前記送電網を介して地域の電力供給網へ電力を送り、
     前記送電網は、地域の前記電力供給網に組込み移管が可能に構成されている、請求項1又は2に記載の自立型且つ地域分散型の電力製造供給システム。
    The gas turbine combined cycle power generation system in each of the plurality of plantations sends power to the local power grid via the power grid.
    The self-sustaining and locally distributed power production and supply system according to claim 1 or 2, wherein the power transmission network is configured to be incorporated and transferred to the power supply network in the region.
  4.  アブラヤシのプランテーションである複数のパーム農園のそれぞれからの果実により製造されるCO排出ゼロ評価の気体燃料及び液体燃料の少なくとも一方を用いて発電する複数のガスタービンコンバインドサイクル発電システムと、
     複数の前記ガスタービンコンバインドサイクル発電システムにより発電した電力のそれぞれを地域の電力供給網へ送る送電網と、を備え、
     前記送電網は、地域の前記電力供給網に組込み移管が可能に構成されている、自立型且つ地域分散型の電力製造供給システム。
    Multiple gas turbine combined cycle power generation systems that generate electricity using at least one of the zero CO 2 emission rated gaseous and liquid fuels produced by fruits from each of the palm plantations, which are oil palm plantations.
    It is equipped with a power transmission network that sends each of the power generated by the plurality of gas turbine combined cycle power generation systems to the local power supply network.
    The power transmission network is a self-sustaining and locally distributed power production and supply system that is configured to be incorporated and transferred to the power supply network in the area.
PCT/JP2020/009501 2020-03-05 2020-03-05 Autonomous and regional distributed power production/supply system WO2021176666A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/009501 WO2021176666A1 (en) 2020-03-05 2020-03-05 Autonomous and regional distributed power production/supply system
JP2022504895A JP7199771B2 (en) 2020-03-05 2020-03-05 Self-reliant and regionally distributed power production and supply system
CN202080097770.6A CN115210982A (en) 2020-03-05 2020-03-05 Independent and locally distributed power production and supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009501 WO2021176666A1 (en) 2020-03-05 2020-03-05 Autonomous and regional distributed power production/supply system

Publications (1)

Publication Number Publication Date
WO2021176666A1 true WO2021176666A1 (en) 2021-09-10

Family

ID=77613272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009501 WO2021176666A1 (en) 2020-03-05 2020-03-05 Autonomous and regional distributed power production/supply system

Country Status (3)

Country Link
JP (1) JP7199771B2 (en)
CN (1) CN115210982A (en)
WO (1) WO2021176666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203979A1 (en) * 2022-04-18 2023-10-26 オルガノ株式会社 Virtual power/fluid plant, operation method thereof, and input resource evaluation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282069A (en) * 1999-03-31 2000-10-10 Jgc Corp Production of gas turbine fuel oil and gas turbine fuel oil
JP2000333373A (en) * 1999-05-20 2000-11-30 Toshiba Corp Distribution power supply system
JP2007315213A (en) * 2006-05-24 2007-12-06 Mitsubishi Heavy Ind Ltd Intake air heating system of combined cycle plant
JP2011205728A (en) * 2010-03-24 2011-10-13 Tokyo Electric Power Co Inc:The Recyclable energy transporting and utilizing system
JP2015514179A (en) * 2012-03-28 2015-05-18 アルストム テクノロジー リミテッドALSTOM Technology Ltd Combined cycle power plant and method for operating a combined cycle power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282069A (en) * 1999-03-31 2000-10-10 Jgc Corp Production of gas turbine fuel oil and gas turbine fuel oil
JP2000333373A (en) * 1999-05-20 2000-11-30 Toshiba Corp Distribution power supply system
JP2007315213A (en) * 2006-05-24 2007-12-06 Mitsubishi Heavy Ind Ltd Intake air heating system of combined cycle plant
JP2011205728A (en) * 2010-03-24 2011-10-13 Tokyo Electric Power Co Inc:The Recyclable energy transporting and utilizing system
JP2015514179A (en) * 2012-03-28 2015-05-18 アルストム テクノロジー リミテッドALSTOM Technology Ltd Combined cycle power plant and method for operating a combined cycle power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203979A1 (en) * 2022-04-18 2023-10-26 オルガノ株式会社 Virtual power/fluid plant, operation method thereof, and input resource evaluation system

Also Published As

Publication number Publication date
JP7199771B2 (en) 2023-01-06
CN115210982A (en) 2022-10-18
JPWO2021176666A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
CN102787993B (en) Power generation and supply system and method
Köbbing et al. Economic evaluation of common reed potential for energy production: A case study in Wuliangsuhai Lake (Inner Mongolia, China)
Gustavsson et al. Cogeneration: one way to use biomass efficiently
Abdullah Biomass energy potentials and utilization in Indonesia
Chungsangunsit et al. Environmental assessment of electricity production from rice husk: a case study in Thailand
CN104813870A (en) Ecological agriculture system that fully utilizes wind, light and gas energy sources
US20090031698A1 (en) Liquid and Solid Biofueled Combined Heat and Renewable Power Plants
WO2021176666A1 (en) Autonomous and regional distributed power production/supply system
Balat The use of renewable energy sources for energy in Turkey and potential trends
US20110191256A1 (en) Sustainability campus of co-located facilities
Tosun 5MW hybrid power generation with agriculture and forestry biomass waste co-incineration in stoker and subsequent solar panel (CSP) ORC station
Garcilasso et al. Electric energy generation from landfill biogas—Case study and barriers
Bhattacharya Biomass Energy and Densification: A global review with emphasis on developing countries
Costello et al. Biomass, bioenergy, and carbon management
CN202811239U (en) Power generating and supplying system
Varshney et al. Small scale biomass gasification technology in India—an overview
JP2011223971A (en) Bamboo resource-using system, method for controlling bamboo grove, and bamboo age-identifying means
Bioenergy Benefits of bioenergy
Verma An analysis of biomass technology and its impact on multi-fuel fired biomass boiler
Andries et al. Introduction of Small-Scale Biomass Gasification Systems in Rural China and the Amazon Region of Brazil
CN105603944B (en) Power station increases the DCS Control protection systems of biomass generator
AU2021102311A4 (en) A novel sustainable stubble burner for cooking purpose: e-cleora (eco clean fuel apparatus)
Jacobson Why Not Biomass For Electricity or Heat as Part of a 100% Wind-Water-Solar (WWS) and Storage Solution to Global Warming, Air Pollution, and Energy Security. Ebook
JP3239809U (en) Thermal energy effective utilization system
Alderucci et al. Potential biomass resources of Sicily for electric-power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923372

Country of ref document: EP

Kind code of ref document: A1