WO2021176609A1 - 入出力モデルを設定可能なペン状態検出回路 - Google Patents

入出力モデルを設定可能なペン状態検出回路 Download PDF

Info

Publication number
WO2021176609A1
WO2021176609A1 PCT/JP2020/009227 JP2020009227W WO2021176609A1 WO 2021176609 A1 WO2021176609 A1 WO 2021176609A1 JP 2020009227 W JP2020009227 W JP 2020009227W WO 2021176609 A1 WO2021176609 A1 WO 2021176609A1
Authority
WO
WIPO (PCT)
Prior art keywords
pen
state detection
electronic
model
detection circuit
Prior art date
Application number
PCT/JP2020/009227
Other languages
English (en)
French (fr)
Inventor
光一 前山
原 英之
Original Assignee
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワコム filed Critical 株式会社ワコム
Priority to PCT/JP2020/009227 priority Critical patent/WO2021176609A1/ja
Priority to JP2022504852A priority patent/JP7472262B2/ja
Publication of WO2021176609A1 publication Critical patent/WO2021176609A1/ja
Priority to US17/876,963 priority patent/US20220365621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0441Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for receiving changes in electrical potential transmitted by the digitiser, e.g. tablet driving signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0442Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for transmitting changes in electrical potential to be received by the digitiser

Definitions

  • the present invention relates to a pen state detection circuit, a method and an apparatus, and a parameter providing apparatus.
  • Patent Document 1 discloses a method of provisionally detecting an indicated position of an electronic pen, obtaining a position calibration value corresponding to the indicated position, and correcting the indicated position based on the position calibration value. More specifically, it is described that by tracing the test pattern drawn on the display panel with the user's electronic pen, a detection value corresponding to the ideal value of the indicated position can be obtained.
  • the outer shape of the electronic pen or electronic device may change for some reason.
  • the combination of electronic pens and electronic devices may change as the system continues to be used.
  • the geometrical relationship between the pen-side electrode of the electronic pen and the sensor electrode incorporated in the electronic device is changed, and the shape tendency of the signal distribution indicating the change in capacitance is changed.
  • the input / output model of 1 is determined by using the correction method disclosed in Patent Document 1 and then the state of the electronic pen is estimated from the signal distribution according to this uniform input / output model, the outer shape or combination described above is used. With the change, the detection accuracy of the pen state may decrease. As described above, in the method disclosed in Patent Document 1, there is sufficient room for improvement from the viewpoint of maintaining the detection accuracy.
  • the present invention has been made in view of the above problems, and an object of the present invention is a pen state detection circuit, method and device capable of maintaining pen state detection accuracy regardless of the usage status of an electronic pen or an electronic device. Also, it is to provide a parameter providing device.
  • the first pen state detection circuit in the present invention is a circuit incorporated in an electronic device having a capacitance type touch sensor in which a plurality of sensor electrodes are arranged in a plane, and is on the pen side of the electronic pen.
  • Input / output in which the acquisition step of acquiring the signal distribution indicating the change in capacitance due to the approach of the electrodes from the touch sensor and the acquired feature amount related to the signal distribution are input and the state amount of the electronic pen is output.
  • An estimation step of estimating the state of the electronic pen according to the model is executed, and different input / output models can be set according to the external change of the electronic pen or the electronic device.
  • the pen state detection circuit incorporated in an electronic device having a capacitance type touch sensor in which a plurality of sensor electrodes are arranged in a plane is a pen possessed by the electronic pen.
  • an estimation step of estimating the state of the electronic pen and an estimation step are executed, and different input / output models are set according to the external change of the electronic pen or the electronic device.
  • the third pen state detection device includes the pen state detection circuit described above, an information acquisition unit that acquires model selection information regarding the outer shape of the electronic pen or the electronic device, and the information acquisition unit. It includes a parameter setting unit that sets model parameters that can identify the input / output model corresponding to the model selection information in the pen state detection circuit.
  • the fourth parameter providing device includes the pen state detection circuit described above, an information acquisition unit that acquires model selection information regarding the outer shape of the electronic pen or the electronic device, and the model selection unit acquired by the information acquisition unit.
  • a device configured to enable mutual communication between a parameter setting unit that sets model parameters that can identify the input / output model selected according to information in the pen state detection circuit and a pen state detection device including the pen state detection device.
  • a storage unit that stores the model parameters in association with the model selection information, and a storage unit that stores the model parameters corresponding to the model selection information when the model selection information is received from the pen state detection device. It is provided with a control unit that controls reading from the pen state detection device and transmitting the pen state detection device to the pen state detection device.
  • the fifth pen state detection circuit in the present invention is a circuit incorporated in an electronic device having a capacitance type touch sensor in which a plurality of sensor electrodes are arranged in a plane, and is on the pen side of the electronic pen.
  • Input / output in which the acquisition step of acquiring the signal distribution indicating the change in capacitance due to the approach of the electrodes from the touch sensor and the acquired feature amount related to the signal distribution are input and the state amount of the electronic pen is output.
  • an estimation step of estimating the state of the electronic pen is performed, and different input / output models are performed depending on the types of the electronic pen, the electronic device, and the touch sensor, and a combination of two or more of the users. Is configured to be configurable.
  • the pen state detection circuit incorporated in an electronic device having a capacitive touch sensor in which a plurality of sensor electrodes are arranged in a plane is a pen possessed by the electronic pen.
  • an estimation step of estimating the state of the electronic pen is performed, and the input / output differs depending on the type of the electronic pen, the electronic device, and the touch sensor, and a combination of two or more of the users.
  • the model is set.
  • the seventh method for detecting a pen state in the present invention acquires model selection information regarding the above-mentioned pen state detection circuit, the types of the electronic pen, the electronic device, and the touch sensor, and a combination of two or more of the users.
  • the pen state detection circuit includes a parameter setting unit that can identify the input / output model corresponding to the model selection information acquired by the information acquisition unit.
  • the eighth parameter providing device in the present invention acquires model selection information regarding the above-mentioned pen state detection circuit, the types of the electronic pen, the electronic device, and the touch sensor, and a combination of two or more of the users.
  • a pen state detection device including an information acquisition unit and a parameter setting unit that sets model parameters that can identify the input / output model corresponding to the model selection information acquired by the information acquisition unit in the pen state detection circuit.
  • the device is configured to be able to communicate with each other and the model selection information is received from the storage unit that stores the model parameters in association with the model selection information and the pen state detection device. It includes a control unit that controls to read model parameters corresponding to the model selection information from the storage unit and transmit the model parameters to the pen state detection device.
  • the detection accuracy of the pen state can be easily maintained regardless of the usage status of the electronic pen or the electronic device.
  • FIG. 1 It is an overall block diagram of the input system which incorporated the electronic device as the pen state estimation device in one Embodiment of this invention. It is a block diagram which shows an example of the structure of the electronic device in FIG. It is a sequence diagram concerning the operation of the input system shown in FIG. It is a schematic diagram which shows the electronic pen of FIG. 1 partially. It is a figure which shows an example of the 1st signal distribution detected from the touch sensor at the time of contact state of an electronic pen. It is a figure which shows an example of the 2nd signal distribution detected from the touch sensor at the time of contact state of an electronic pen. It is a figure which shows the tendency of the estimation error about a designated position.
  • FIG. 1 is an overall configuration diagram of an input system 10 in which an electronic device 12 as a pen state detection device according to an embodiment of the present invention is incorporated.
  • the input system 10 is configured to be capable of generating digital ink (or ink data) having high reproducibility for writing input using the electronic pen 14.
  • digital ink data formats so-called "ink description languages”, include WILL (Wacom Ink Layer Language), InkML (Ink Markup Language), and ISF (Ink Serialized Format).
  • the input system 10 includes at least one electronic device 12, at least one electronic pen 14, and a server device 16 (corresponding to a "parameter providing device").
  • Each electronic device 12 can communicate with the server device 16 via the network NT.
  • the electronic device 12 is a general-purpose device or a dedicated device provided with a touch panel display 32 (FIG. 2).
  • Examples of general-purpose devices include tablet terminals, smartphones, and personal computers.
  • Examples of dedicated devices include digital signage (so-called electronic signboards) and wearable terminals.
  • the electronic pen 14 is a pen-type pointing device, and is configured to be able to communicate in one direction or in both directions via an electrostatic coupling formed with the electronic device 12.
  • the user can write a picture or a character on the electronic device 12 by grasping the electronic pen 14 and moving the pen tip while pressing the pen tip against a predetermined touch surface.
  • the electronic pen 14 is, for example, an active electrostatic coupling method (AES) or an electromagnetic induction method (EMR) stylus.
  • the server device 16 is a computer that performs overall control related to the provision of the model parameter 20, and may be either a cloud type or an on-premises type.
  • the server device 16 is illustrated as a single computer, but instead of this, the server device 16 may be a group of computers for constructing a distributed system.
  • the server device 16 includes a server-side communication unit 22, a server-side control unit 24, and a server-side storage unit 26.
  • the server-side communication unit 22 is an interface for transmitting and receiving electrical signals to and from an external device.
  • the server device 16 can receive the model selection information 18 from the electronic device 12 and transmit the model parameter 20 to the electronic device 12.
  • the server-side control unit 24 is composed of a processing arithmetic unit including a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the server-side control unit 24 functions as a model selection unit 28, which will be described in detail later, by reading and executing the program stored in the server-side storage unit 26.
  • the server-side storage unit 26 is composed of a non-transient and computer-readable storage medium, for example, a hard disk drive (HDD: Hard Disk Drive) or a solid state drive (SSD: Solid State Drive).
  • a database related to the model parameter 20 (hereinafter, parameter DB 30) is constructed in the server-side storage unit 26.
  • FIG. 2 is a block diagram showing an example of the configuration of the electronic device 12 in FIG.
  • the electronic device 12 includes a touch panel display 32, a display drive IC (Integrated Circuit) 34, a touch IC 36 (corresponding to a “pen state detection circuit”), a communication module 38, a host processor 40, and the like.
  • the memory 42 and the like are included in the memory 42.
  • the touch panel display 32 includes a display panel 44 capable of visually displaying contents and a planar touch sensor 46 arranged so as to overlap the display panel 44 in a plan view.
  • the touch sensor 46 is an "external type” sensor attached to the display panel 44 from the outside, but instead of the touch sensor 46, a "built-in type” (further classified) configured integrally with the display panel 44. Then, it may be an on-cell type or an in-cell type sensor.
  • the display panel 44 can display a monochrome image or a color image, and is composed of, for example, a liquid crystal panel, an organic EL (Electro-Luminescence) panel, and electronic paper.
  • a liquid crystal panel an organic EL (Electro-Luminescence) panel
  • electronic paper By providing the display panel 44 with flexibility, the user can perform a handwritten input operation while keeping the touch surface of the electronic device 12 curved or bent.
  • the touch sensor 46 is a capacitance type sensor in which a plurality of sensor electrodes are arranged in a plane.
  • the touch sensor 46 includes a plurality of X-line electrodes 47 (see FIG. 10A) for detecting the position of the X-axis in the sensor coordinate system, and a plurality of X-line electrodes 47 for detecting the position of the Y-axis. It is configured to include a Y-line electrode 48 (see the figure).
  • the X-line electrodes 47 are provided so as to extend in the Y-axis direction and are arranged at equal intervals along the X-axis direction.
  • the Y-line electrodes 48 are provided so as to extend in the X-axis direction and are arranged at equal intervals along the Y-axis direction.
  • the touch sensor 46 may be a self-capacitating sensor in which block-shaped electrodes are arranged in a two-dimensional lattice pattern instead of the mutual capacitance type sensor described above.
  • the display drive IC 34 is an integrated circuit that is electrically connected to the display panel 44 and controls the drive of the display panel 44.
  • the display drive IC 34 drives the display panel 44 based on the display signal supplied from the host processor 40. As a result, the content indicated by the digital ink 58 is displayed on the display panel 44.
  • the touch IC 36 is an integrated circuit that is electrically connected to the touch sensor 46 and controls the drive of the touch sensor 46.
  • the touch IC 36 drives the touch sensor 46 based on the control signal supplied from the host processor 40.
  • the touch IC 36 executes a "pen detection function” for detecting the state of the electronic pen 14 and a "touch detection function” for detecting a touch by a user's finger or the like.
  • This pen detection function includes, for example, a scan function of the touch sensor 46, a downlink signal reception / analysis function, an estimation function of the state (for example, position, posture, pen pressure) of the electronic pen 14, and a command to the electronic pen 14. Includes uplink signal generation / transmission function.
  • the touch detection function includes, for example, a two-dimensional scan function of the touch sensor 46, a detection map acquisition function on the touch sensor 46, and an area classification function on the detection map (for example, classification of fingers, palms, etc.).
  • GUI graphical user interface
  • the communication module 38 has a communication function for performing wired communication or wireless communication with an external device.
  • the electronic device 12 can transmit the model selection information 18 to the server device 16 and receive the model parameter 20 from the server device 16.
  • the host processor 40 is composed of a processing unit including a CPU, GPU, or MPU (Micro-Processing Unit).
  • the host processor 40 functions as an information acquisition unit 50, a parameter setting unit 52, an ink generation unit 54, and a drawing processing unit 56 by reading and executing a program stored in the memory 42.
  • the memory 42 is composed of a non-transient and computer-readable storage medium.
  • the computer-readable storage medium is a storage device including an HDD, or a portable medium such as a magneto-optical disk, ROM, CD-ROM, or flash memory.
  • the memory 42 stores the model selection information 18, the model parameter 20, and the digital ink 58.
  • step S1 of FIG. 3 the host processor 40 of the electronic device 12 detects the electronic pen 14 used for the user's writing input. Specifically, the electronic device 12 attempts to pair with an electronic pen 14 in the vicinity of its own device, and detects the electronic pen 14 through the success of this pairing. Alternatively, the electronic device 12 may detect the electronic pen 14 by accepting an operation in which the user inputs information about the electronic pen 14.
  • step S2 the information acquisition unit 50 of the electronic device 12 acquires the model selection information 18 from the electronic pen 14 and / or its own device.
  • the model selection information 18 is information necessary for selecting the input / output model 70 described later, and specifically, [1] information on the outer shape of the electronic pen 14 or the electronic device 12, [2] the electronic pen 14, the electronic device. Information about the types of the device 12 and the touch sensor 46, and a combination of two or more of the users.
  • step S3 the electronic device 12 transmits the data including the model selection information 18 acquired in step S2 to the server device 16 in a state of being associated with the identification information (that is, the device ID) of the electronic device 12.
  • step S4 the server device 16 acquires the model selection information 18 through the reception of data from the electronic device 12.
  • step S5 the server-side control unit 24 (more specifically, the model selection unit 28) refers to the parameter DB 30 constructed in the server-side storage unit 26 using the model selection information 18 acquired in step S4 as a search key. ..
  • the server-side control unit 24 (more specifically, the model selection unit 28) refers to the parameter DB 30 constructed in the server-side storage unit 26 using the model selection information 18 acquired in step S4 as a search key. ..
  • one set of model parameters 20 capable of specifying the input / output model 70 corresponding to the model selection information 18 is selected from the plurality of sets of model parameters 20.
  • step S6 the server device 16 transmits the data including the model parameter 20 selected in step S5 to the electronic device 12 having the device ID associated with the corresponding model selection information 18.
  • step S7 the electronic device 12 acquires the model parameter 20 through the reception of data from the server device 16.
  • the model parameter 20 is stored in the memory 42 of the electronic device 12.
  • step S8 the host processor 40 (more specifically, the parameter setting unit 52) sets the model parameter 20 acquired in step S7 in a manner in which the touch IC 36 can be used. For example, the host processor 40 writes each value of the model parameter 20 into the storage area of the corresponding memory or register.
  • step S9 the electronic device 12 performs a desired writing operation in cooperation with the electronic pen 14.
  • the ink generation unit 54 generates digital ink 58 in which stroke data indicating a locus of a designated position of the electronic pen 14 is associated with meta information related to the stroke data.
  • This metadata includes, for example, document metadata, semantic data, device data, classification data, contextual data, and the like.
  • the drawing processing unit 56 analyzes the digital ink 58 read from the memory 42, performs a desired rasterization process on the stroke data, and generates a display signal indicating the content to be drawn.
  • the display drive IC 34 drives the display panel 44 based on the display signal supplied from the host processor 40. As a result, the visualized content is displayed on the display panel 44.
  • FIG. 4 is a schematic view partially showing the electronic pen 14 of FIG.
  • a substantially conical tip electrode 60 and a bottomless truncated cone-shaped upper electrode 62 are coaxially provided.
  • the chip electrode 60 and the upper electrode 62 are pen-side electrodes for outputting a signal (so-called downlink signal) generated by the oscillation circuit 64, respectively.
  • the electronic pen 14 can output two types of downlink signals via the chip electrode 60 and the upper electrode 62.
  • the touch IC 36 (FIG. 2) of the electronic device 12 has a plurality of signal distributions (hereinafter, first signal distributions) indicating changes in capacitance (more specifically, mutual capacitance or self-capacitance) as the chip electrodes 60 approach each other. Obtained from the X-line electrode 47 of the book.
  • the first signal distribution typically has a shape with one peak at position Q1.
  • the position Q1 corresponds to the position where the top portion (position P1) of the chip electrode 60 is projected on the sensor plane.
  • the touch IC 36 acquires a signal distribution (hereinafter, second signal distribution) indicating a change in capacitance due to the approach of the upper electrode 62 from a plurality of X-line electrodes 47.
  • the second signal distribution typically has a shape with one or two peaks at position Q2.
  • the position Q2 corresponds to the position where the shoulder portion (position P2) of the upper electrode 62 is projected on the sensor plane.
  • the position Q3 described later corresponds to a position where the center (position P3) of the upper and lower surfaces of the upper electrode 62 is projected on the sensor plane.
  • FIG. 5A and 5B are diagrams showing an example of the signal distribution detected from the touch sensor 46 when the electronic pen 14 is in contact. More specifically, FIG. 5A shows the first signal distribution and FIG. 5B shows the second signal distribution.
  • the horizontal axis of the graph shows the relative position (unit: mm) with respect to the indicated position of the electronic pen 14, and the vertical axis of the graph shows the signal value (unit: none) normalized to [0,1]. ing. Positive and negative signs are defined for this signal value so that it becomes "positive" when the electronic pen 14 approaches.
  • the shapes of the first and second signal distributions change according to the tilt angle of the electronic pen 14, respectively. In this figure, three curves obtained by changing the inclination angle are superimposed and shown.
  • the first signal distribution has a substantially similar shape regardless of the magnitude of the tilt angle. This is because, while using the electronic pen 14, the top of the chip electrode 60 is usually at the position closest to the sensor plane, and the position Q1 roughly coincides with the position P1.
  • the position or number of peaks changes greatly according to the change in the inclination angle. This is because, while using the electronic pen 14, one of the shoulders of the upper electrode 62 is usually located closest to the sensor plane, and the distance between the positions Q1 and Q2 changes according to the tilt angle. Because.
  • the position / orientation of the electronic pen 14 (hereinafter, also referred to as the pen state) can be estimated.
  • the indicated position corresponds to the position Q1 shown in FIG.
  • an orientation may be used in addition to the above-mentioned angle.
  • FIG. 6 is a diagram showing the tendency of the estimation error regarding the indicated position.
  • the horizontal axis of the graph shows the actual value (unit: mm) of the indicated position
  • the vertical axis of the graph shows the estimated value (unit: mm) of the indicated position.
  • the signal distribution is a set of signal values sampled at equal intervals (pitch ⁇ X)
  • interpolation calculation is performed in order to estimate the peak (that is, the indicated position) of the signal distribution more accurately.
  • a fitting error occurs, and a periodic "interpolation approximation error" occurs in pitch units.
  • the estimation accuracy of the indicated position or tilt angle may vary due to the above-mentioned interpolation approximation error and offset error. Therefore, by introducing the following input / output model 70, it is possible to reduce these two types of errors at the same time and improve the estimation accuracy of the pen state.
  • FIG. 7 is a schematic configuration diagram showing an example of the input / output model 70 implemented by the touch IC 36 of FIG.
  • the input / output model 70 is a model in which the feature amount related to the signal distribution is input and the state amount of the electronic pen 14 is output.
  • the input / output model 70 is a neural network in which a front-stage arithmetic unit 72, a rear-stage arithmetic unit 74, and an adder 76 are sequentially connected in series.
  • the network structure is not limited to the example in this figure, and various configurations may be adopted.
  • the front-stage arithmetic unit 72 functions as a first estimation means for estimating the tilt angle of the electronic pen 14.
  • the latter-stage arithmetic unit 74 and the adder 76 function as a second estimation means for estimating the indicated position of the electronic pen 14.
  • Circles in the drawings indicate arithmetic units that correspond to neurons in neural networks.
  • Each value of the "first local feature amount” corresponding to the chip electrode 60 is stored in the calculation unit of "T”.
  • Each value of the "second local feature amount” corresponding to the upper electrode 62 is stored in the calculation unit of "U”.
  • the "tilt angle” is stored in the calculation unit of "A”.
  • the "relative position” is stored in the arithmetic unit of "P".
  • the front-stage arithmetic unit 72 is, for example, a hierarchical neural network arithmetic unit including an input layer 72i, an intermediate layer 72m, and an output layer 72o.
  • the input layer 72i is composed of N arithmetic units for inputting each value of the second local feature amount.
  • the output layer 72o is composed of one arithmetic unit for outputting the tilt angle.
  • the second local feature amount is a feature amount indicating a shape feature related to a portion (also referred to as “second local distribution”) including a peak in the second signal distribution.
  • the second local feature amount may be, for example, the slope of the second local distribution or the absolute value of the slope, or may be the second local distribution itself.
  • the latter-stage arithmetic unit 74 is, for example, a hierarchical neural network arithmetic unit including an input layer 74i, an intermediate layer 74m, and an output layer 74o.
  • the input layer 74i is composed of (N + 1) arithmetic units for inputting each value of the first local feature amount and the inclination angle.
  • the output layer 74o is composed of one arithmetic unit for outputting a relative position between the reference position and the indicated position.
  • the first local feature amount is a feature amount indicating a shape feature related to a portion (also referred to as "first local distribution") including a peak in the first signal distribution.
  • the first local feature amount may be, for example, the slope of the first local distribution or the absolute value of the slope, or may be the first local distribution itself.
  • the adder 76 outputs the indicated position of the electronic pen 14 by adding the relative position from the subsequent arithmetic unit 74 to the position (that is, the reference position) of the reference point of the first local distribution in the sensor coordinate system.
  • This reference position may be, for example, any of a rising position, a falling position, a peak position, or a position in the vicinity of the rising position, the falling position, and the peak position of the first local distribution.
  • the indicated position is a position corresponding to the peak center of the first local distribution, and has a resolution higher than the pitch of the X-line electrode 47 (or the Y-line electrode 48).
  • the calculation rule of the input / output model 70 is determined by each value of the model parameter 20.
  • the model parameter 20 is, for example, a "variable parameter" including a coefficient describing the activation function of the arithmetic unit, a coupling strength between the arithmetic units, and a "fixed parameter" (so-called hyperparameter) for specifying the architecture of the learning model. Consists of. Examples of hyperparameters include the number of arithmetic units constituting each layer and the number of intermediate layers. For example, if the architecture is fixed, the model parameter 20 may consist only of variable parameters.
  • This model parameter 20 is determined, for example, through "supervised learning” using teacher data obtained by actual measurement or computer simulation.
  • teacher data is created by randomly selecting a plurality of positions on the sensor plane and measuring the signal distribution at each position.
  • teacher data is created by using physical simulation including electromagnetic field analysis or electric circuit analysis, and mathematical simulation including sampling processing, interpolation processing or noise addition.
  • the touch IC 36 supplies the data including the indicated position and the tilt angle estimated according to the input / output model 70 to the host processor 40.
  • the touch IC 36 may repeat the one-dimensional model calculation twice to estimate the X-axis coordinate value and the Y-axis coordinate value, respectively, and supply the coordinate values (X, Y) of the indicated position to the host processor 40.
  • the touch IC 36 may perform a two-dimensional model operation once to simultaneously estimate the coordinate values (X, Y) of the indicated position, and supply the coordinate values (X, Y) to the host processor 40.
  • the outer shape of the electronic pen 14 or the electronic device 12 may change for some reason.
  • This "change in outer shape (or change in outer shape)” means that the shape seen from the outside (so-called appearance) physically changes.
  • the "external change” changes with time (usage state or over time) even though it is a state that is statically indicated by the same information such as the same product, pen tip type, or sensor electrode product.
  • the combination of the electronic pen 14 and the electronic device 12 may change.
  • the geometrical relationship between the pen-side electrode of the electronic pen 14 and the sensor electrode incorporated in the electronic device 12 is changed, and the shape tendency of the signal distribution indicating the change in capacitance is changed.
  • the input / output model 70 that is fixedly mounted, a situation may occur in which the detection accuracy of the pen state cannot be sufficiently ensured.
  • the server device 16 holds a plurality of sets of model parameters 20 having different input / output characteristics, and selects and supplies one set of model parameters 20 suitable for the usage situation of the electronic pen 14 or the electronic device 12.
  • the selection operation of the model selection unit 28 in step S5 of FIG. 2 will be described with reference to FIGS. 8A to 15.
  • FIG. 8A is a schematic cross-sectional view showing a state in which the touch surface of the electronic device 12 is curved in an upward convex shape.
  • a state in which the X-line electrode 47, the Y-line electrode 48, and the surface cover 80 are laminated is shown from the lower side to the upper side.
  • an electrostatic bond is formed between the chip electrode 60 and the three X-line electrodes 47 located relatively close to the chip electrode 60. ..
  • the capacitances at the center, left side, and right side of the drawing are C1, C2, and C3.
  • the geometrical positional relationship between the chip electrode 60 and the X-line electrode 47 changes depending on the presence or absence of curvature or the curvature of the electronic device 12. Along with this, the relative magnitude relationship of the capacitances C1, C2, and C3 changes.
  • FIG. 8B is a diagram showing changes in the signal distribution before and after the curvature of the touch surface.
  • the horizontal axis of the graph indicates the position (unit: mm) in the X-axis direction, and the vertical axis of the graph indicates the signal value (unit: none).
  • the signal distribution in the "curved state” tends to have a narrower width and a higher peak than in the "flat state”. Therefore, in consideration of such a difference in the distribution shape, a plurality of sets of model parameters 20 suitable for the case where the touch surface of the electronic device 12 is flat or curved or bent are prepared.
  • FIG. 9 is a diagram showing a first example of a data structure included in the parameter DB 30 of FIG.
  • the first table of the parameter DB 30 includes a "pen type” indicating the type of the electronic pen 14, a "sensor curvature degree” indicating the degree of curvature of the touch sensor 46, and a "parameter set name” indicating the set name of the model parameter 20. It is table format data showing the correspondence between and.
  • the "pen type” is classified by, for example, the product name, model number, production lot, manufacturer, and the like of the electronic pen 14.
  • the "sensor curvature” may be qualitatively classified according to, for example, none, presence, small, large, etc., or may be quantitatively classified according to curvature, bending angle, or the like.
  • the information acquisition unit 50 of the electronic device 12 acquires the pen type and the sensor curvature as the model selection information 18, respectively (step S2 in FIG. 3).
  • the pen type may be the type information included in the downlink signal from the electronic pen 14, or the type information input through the operation of the electronic device 12 by the user.
  • the degree of curvature of the sensor may be a value detected by a strain sensor (not shown) provided in the touch sensor 46, or may be a measured value input through the operation of the electronic device 12 by the user.
  • model selection information 18 includes information on the outer shape of the electronic device 12 as in the first example, different input / output models 70 differ depending on whether the touch surface of the electronic device 12 is flat, curved, or bent. It may be selected. This makes it possible to detect the pen state suitable for the bent state of the touch sensor 46.
  • FIG. 10A is a schematic cross-sectional view showing a state in which the protective film 82 is attached to the touch surface of the electronic device 12.
  • a state in which the X-line electrode 47, the Y-line electrode 48, the surface cover 80, and the protective film 82 are laminated is shown from the lower side to the upper side.
  • the protective film 82 is an optional member that can be attached by the user of the electronic device 12 as needed.
  • the tip electrode 60 and the X-line electrode 47 (or the X-line electrode 47) (or) are in contact with the touch surface of the electronic device 12 depending on the presence or absence or thickness of the protective film 82.
  • the separation distance between the Y-line electrodes 48) changes. As a result, the magnitude of the capacitance formed by the electrostatic coupling changes.
  • FIG. 10B is a diagram showing changes in the signal distribution before and after the protective film 82 is attached.
  • the horizontal axis of the graph indicates the position (unit: mm) in the X-axis direction, and the vertical axis of the graph indicates the signal value (unit: none).
  • the signal distribution of "with protective film” tends to have a lower signal value level as a whole as compared with the case of "without protective film”. Therefore, in consideration of such a difference in the distribution shape, a plurality of sets of model parameters 20 suitable for the presence / absence of the protective film 82 provided on the touch surface of the electronic device 12 or the thickness of the protective film 82 are prepared.
  • FIG. 11 is a diagram showing a second example of the data structure included in the parameter DB 30 of FIG.
  • the second table of the parameter DB 30 includes a "sensor type” indicating the type of the touch sensor 46, a "device type” indicating the type of the electronic device 12, a “film state” indicating the covering state of the protective film 82, and model parameters. It is tabular data showing the correspondence between the "parameter set name” indicating the group name of 20 and the "parameter set name”.
  • the "sensor type” is classified by, for example, the product name, model number, manufacturing lot, manufacturer, and the like of the touch sensor 46.
  • the "device type” is classified by, for example, the product name, model number, manufacturing lot, manufacturer, and the like of the electronic device 12.
  • the "film state” is classified according to, for example, the presence / absence of the protective film 82, the thickness, the product name, and the like. Specifically, the film state may be qualitatively classified according to none, presence, thinness, thickness, etc., or may be quantitatively classified according to a measured value of thickness (unit: ⁇ m) or the like.
  • the information acquisition unit 50 of the electronic device 12 acquires the sensor type, the device type, and the film state as the model selection information 18, respectively (step S2 in FIG. 3).
  • the sensor type may be the type information stored in the electronic component (for example, the touch IC 36) constituting the electronic device 12, or the type information input through the operation of the electronic device 12 by the user. ..
  • this device type may be type information stored in the memory 42 of the electronic device 12.
  • the film state may be state information input through the operation of the electronic device 12 by the user.
  • the input differs depending on the presence or absence of the protective film 82 provided on the touch surface of the electronic device 12 or the thickness of the protective film 82.
  • the output model 70 may be selected. This makes it possible to detect a pen state suitable for the covering state of the protective film 82.
  • FIG. 12A is a schematic side view showing a state in which the tip electrode 60 of the electronic pen 14 is worn.
  • the user performs a writing operation while bringing the end of the electronic pen 14 into contact with the touch surface of the electronic device 12.
  • the worn portion 90 of the chip electrode 60 in the initial state is removed by wear, and the chip electrode 60 is deformed into a remaining portion 92 having a blunt tip shape. That is, the geometric relationship between the chip electrode 60 and the sensor electrode (for example, the X-line electrode 47) changes, and the signal distribution is deformed accordingly.
  • FIG. 12B is a diagram showing changes in the signal distribution before and after wear of the chip electrode 60.
  • the horizontal axis of the graph indicates the position (unit: mm) in the X-axis direction, and the vertical axis of the graph indicates the signal value (unit: none).
  • the signal distribution in the "wear state” tends to have a wider width and a lower peak than in the "initial state”. Therefore, in consideration of such a difference in the distribution shape, a plurality of sets of model parameters 20 suitable for the presence or absence of wear or the degree of wear of the chip electrode 60 are prepared.
  • FIG. 13 is a diagram showing a third example of the data structure included in the parameter DB 30 of FIG.
  • the third table of the parameter DB 30 includes a "pen type” indicating the type of the electronic pen 14, a "pen tip wear degree” indicating the presence or absence or degree of wear of the tip electrode 60, and a "parameter” indicating the group name of the model parameter 20. It is tabular data showing the correspondence between "set name” and.
  • the "pen type” is classified by, for example, the product name, model number, production lot, manufacturer, and the like of the electronic pen 14.
  • the "pen tip wear degree” may be qualitatively classified according to, for example, none / presence / small / large, or quantitatively classified according to the length of the wear portion 90, the length / curvature of the remaining portion 92, and the like. May be done.
  • the information acquisition unit 50 of the electronic device 12 acquires the pen type and the pen tip wear degree as the model selection information 18 (step S2 in FIG. 3).
  • the pen type may be the type information included in the downlink signal from the electronic pen 14, or the type information input through the operation of the electronic device 12 by the user.
  • the pen tip wear degree may be an image captured by the chip electrode 60 by the camera or a measured value obtained through an analysis process on the image, or may be a measured value input through an operation of the electronic device 12 by the user. May be good.
  • model selection information 18 includes information on the outer shape of the electronic pen 14 as in the third example
  • different input / output models 70 may be selected depending on the presence or absence of wear or the degree of wear of the chip electrode 60. This makes it possible to detect a pen state suitable for the worn state of the chip electrode 60.
  • FIG. 14 is a diagram showing a fourth example of the data structure included in the parameter DB 30 of FIG.
  • the fourth table of the parameter DB 30 includes a "pen type” indicating the type of the electronic pen 14, a "sensor type” indicating the type of the touch sensor 46, and a "parameter set name” indicating the group name of the model parameter 20. It is tabular data showing the correspondence between the two. Since the specific examples of the pen type and the sensor type are the same as those of the first to third examples described above, detailed description thereof will be omitted.
  • model selection information 18 includes the type of the electronic pen 14 and the type of the touch sensor 46 as in the fourth example, different input / output models 70 may be selected according to the combination of these types. This makes it possible to detect the pen state suitable for the combination of the electronic pen 14 and the touch sensor 46.
  • Example 5 For example, even with the same electronic pen 14, the appearance tendency of the signal distribution may differ depending on the gripping method by the user. Therefore, in consideration of such a difference in the distribution shape, a plurality of sets of model parameters 20 suitable for the combination of the user and the device (for example, the electronic pen 14) are prepared.
  • FIG. 15 is a diagram showing a fifth example of the data structure included in the parameter DB 30 of FIG.
  • the fifth table of the parameter DB 30 is between the "user ID” indicating the user identification information, the "pen type” indicating the type of the electronic pen 14, and the "parameter set name” indicating the group name of the model parameter 20. It is data in a table format showing the correspondence between.
  • the "user ID” is identification information that is centrally managed by the server device 16.
  • the "pen type” is classified according to the product name, model number, production lot, manufacturer, and the like of the electronic pen 14, as in the first example.
  • the information acquisition unit 50 of the electronic device 12 acquires the user ID and the pen type as the model selection information 18, respectively (step S2 in FIG. 3).
  • the user ID may be the account information of the digital ink 58 generation application, or may be the host name given to the electronic device 12.
  • the pen type may be the type information included in the downlink signal from the electronic pen 14, or the type information input through the operation of the electronic device 12 by the user.
  • the input / output model 70 differs depending on the combination of this type and the user. May be selected. This makes it possible for the user to detect the pen state according to the tendency of how to use various devices.
  • the combinations including the types of the electronic pens 14 have been described, but the present invention is not limited to this, and various combinations may be considered. Specifically, it may be a combination of two or more of the types of the electronic pen 14, the electronic device 12, and the touch sensor 46, and the user. Alternatively, it may be a combination in which the external changes of the electronic pen 14 or the electronic device 12 in the first to third examples described above are combined.
  • the touch IC 36 as the pen state detection circuit is incorporated in the electronic device 12 having the capacitance type touch sensor 46 in which a plurality of sensor electrodes are arranged in a plane.
  • the touch IC 36 acquires a signal distribution indicating a change in capacitance due to the approach of the pen side electrodes (chip electrode 60, upper electrode 62) of the electronic pen 14 from the touch sensor 46, and inputs a feature amount related to this signal distribution.
  • the state of the electronic pen 14 is estimated according to the input / output model 70 that outputs the state amount of the electronic pen 14, and different input / output models 70 can be set according to the external change of the electronic pen 14 or the electronic device 12. Will be done.
  • the electronic device 12 as the pen state detection device includes an information acquisition unit 50 that acquires model selection information 18 regarding the outer shape of the electronic pen 14 or the electronic device 12, and the acquired model selection information.
  • a parameter setting unit 52 for setting a model parameter 20 capable of specifying the input / output model 70 corresponding to 18 in the touch IC 36 is provided.
  • the server device 16 as the parameter providing device is configured to be able to communicate with each other with the electronic device 12 described above. Then, when the server device 16 receives the model selection information 18 from the server-side storage unit 26 that stores the model parameter 20 in association with the model selection information 18 and the electronic device 12, the model parameter corresponding to the model selection information 18.
  • a server-side control unit 24 that controls reading 20 from the server-side storage unit 26 and transmitting the 20 to the electronic device 12 is provided.
  • the parameter setting unit 52 of the electronic device 12 acquires and sets the model parameter 20 corresponding to the model selection information 18 from the server device 16. May be good.
  • the input / output model 70 suitable for the usage status (particularly, these external changes) of the electronic pen 14 or the electronic device 12 can be selectively set, and the pen state detection accuracy is maintained. It will be easier.
  • the touch IC 36 acquires a signal distribution indicating a change in capacitance due to the approach of the pen-side electrode of the electronic pen 14 from the touch sensor 46, and inputs a feature amount related to the acquired signal distribution as an input to the electronic pen 14.
  • the state of the electronic pen 14 is estimated according to the input / output model 70 that outputs the state amount of the electronic pen 14, and the input differs depending on the types of the electronic pen 14, the electronic device 12, and the touch sensor 46, and the combination of two or more of the users.
  • the output model 70 is configured to be configurable.
  • the electronic device 12 is an information acquisition unit that acquires model selection information 18 regarding the types of the electronic pen 14, the electronic device 12, and the touch sensor 46, and two or more combinations of the users.
  • the touch IC 36 includes a parameter setting unit 52 that sets a model parameter 20 that can identify the input / output model 70 corresponding to the acquired model selection information 18 and the model parameter 20.
  • the server device 16 has a server-side storage unit 26 that stores the model parameter 20 in association with the model selection information 18, and a model parameter corresponding to the model selection information 18 when the model selection information 18 is received from the electronic device 12.
  • a server-side control unit 24 that controls reading 20 from the server-side storage unit 26 and transmitting the 20 to the electronic device 12 is provided.
  • the input / output model 70 suitable for the usage status (particularly, combination thereof) of the electronic pen 14 and the electronic device 12 by the user can be selectively set, and the pen state detection accuracy is maintained. It will be easier.
  • the electronic device 12 may be configured so that the input / output model 70 can be set when the electronic pen 14 is detected. This makes it possible to set a suitable input / output model 70 in a situation where the electronic pen 14 is actually used.
  • FIG. 16 is an overall configuration diagram of the input system 100 in the first modification.
  • the input system 10 includes at least one electronic device 102, at least one electronic pen 104, and a server device 16 having the same configuration as in the case of FIG.
  • the electronic device 102 basically has the same configuration as the electronic device 12 shown in FIG. However, it is assumed that the electronic device 102 is used offline by setting to stop the function of the communication module 38.
  • the electronic pen 104 performs wireless communication with an external device by using a wireless communication means different from the pen side electrode, for example, Bluetooth (registered trademark), WiFi, a fifth generation mobile communication system (so-called 5G), or the like. It has a wireless communication function. As a result, each electronic pen 104 can be connected to the network NT via the relay device 106.
  • a wireless communication means different from the pen side electrode for example, Bluetooth (registered trademark), WiFi, a fifth generation mobile communication system (so-called 5G), or the like. It has a wireless communication function.
  • each electronic pen 104 can be connected to the network NT via the relay device 106.
  • the above-mentioned input system 100 can perform the same operation according to the sequence shown in FIG.
  • the electronic device 102 transmits an uplink signal including the model selection information 18 and the identification information (that is, the device ID) of the electronic device 12 acquired in step S2 to the electronic pen 104.
  • the electronic pen 104 transmits the data including the model selection information 18 and the device ID acquired by reception to the server device 16 in a state of being associated with the identification information (that is, the pen ID) of the electronic pen 104.
  • the model selection information 18 is supplied to the server device 16.
  • step S6 the server device 16 transmits data including the model parameter 20 and the device ID selected in step S5 to the electronic pen 104 having the pen ID associated with the corresponding model selection information 18. Then, the electronic pen 104 transmits a downlink signal including the model parameter 20 and the device ID acquired by reception to the electronic device 102. In this way, the model parameter 20 is supplied to the electronic device 102.
  • the parameter setting unit 52 of the electronic device 102 electronically sets the model parameter 20 corresponding to the model selection information 18. It may be obtained from the pen 14 and set.
  • the model parameter 20 suitable for the usage status of the electronic pen 104 or the electronic device 102 is selected and set.
  • FIG. 17 is a block diagram showing an example of the configuration of the electronic device 110 in the second modification.
  • the electronic device 110 includes a touch panel display 32, a display drive IC 34, a touch IC 36, a communication module 38, a host processor 112, and a memory 114.
  • the host processor 112 is different from the configuration shown in FIG. 2 in that it further includes a model selection unit 28. Further, the memory 114 is different from the configuration shown in FIG. 2 in that a plurality of sets of model parameters 20 are stored. In this way, by incorporating a part of the functions of the server device 16 (FIG. 1) into the electronic device 110, the same operation can be performed according to the sequence shown in FIG. 3 without providing the server device 16.
  • steps S4, S5, S6, and S7 relating to data transmission / reception can be omitted.
  • the host processor 112 (more specifically, the model selection unit 28) of the electronic device 110 uses the model selection information 18 acquired in step S2 as a search key, and a plurality of sets stored in the memory 114.
  • the model parameter 20 that can specify the input / output model 70 corresponding to the model selection information 18 may be selected.
  • the parameter setting unit 52 selects model selection information from the plurality of sets of model parameters 20 stored in the memory 114.
  • the model parameter 20 corresponding to 18 may be selected and set.
  • the model parameter 20 suitable for the usage status of the electronic pen 14 or the electronic device 110 is selected and set without providing the server device 16.
  • the input / output model 70 is set triggered by the detection of the electronic pen 14, but the timing of setting is not limited to this.
  • the touch IC 36 may be configured so that the input / output model 70 can be dynamically set when the external change of the electronic pen 14 or the electronic device 12 is detected.
  • the touch IC 36 can dynamically set the input / output model 70 when it detects a change in the types of the electronic pen 14, the electronic device 12, and the touch sensor 46, and two or more combinations of the users. It may be configured in.
  • the input / output model 70 is constructed using the neural network shown in FIG. 7, but the machine learning method is not limited to this.
  • various methods may be adopted, including a logistic regression model, a support vector machine (SVM), a decision tree, a random forest, and a boosting method.
  • the data definition of the model parameter 20 may be a table showing various coefficients that specify the function, a state quantity, or a correction amount thereof, in addition to the learning parameters.

Abstract

本発明は、ペン状態検出回路、方法及び装置、並びにパラメータ提供装置に関する。ペン状態検出回路(36)は、静電容量方式のタッチセンサ(46)を有する電子機器(12)に組み込まれ、電子ペン(14)が有するペン側電極(60,62)の接近に伴う静電容量の変化を示す信号分布をタッチセンサ(46)から取得し、信号分布に関する特徴量を入力とし、電子ペン(14)の状態量を出力とする入出力モデル(70)に従って電子ペン(14)の状態を推定し、電子ペン(14)又は電子機器(12)の外形的変化に応じて異なる入出力モデル(70)を設定可能に構成される。

Description

[規則37.2に基づきISAが決定した発明の名称] 入出力モデルを設定可能なペン状態検出回路
 本発明は、ペン状態検出回路、方法及び装置、並びにパラメータ提供装置に関する。
 従来から、電子ペンと電子機器を組み合わせてなる筆記入力システムが知られている。この類のシステムでは、電子ペンの指示位置が、電子機器によって精度よく検出されることが望ましい。例えば、特許文献1には、電子ペンの指示位置を暫定的に検出し、当該指示位置に対応する位置較正値を求め、位置較正値に基づいて指示位置を補正する方法が開示されている。より具体的には、表示パネル上に描画されたテストパターンをユーザの電子ペンでなぞらせることで、指示位置の理想値に対応する検出値が得られる旨が記載されている。
国際公開第2019/013222号パンフレット
 ところで、筆記入力システムの使用を続ける中で、何らかの理由により電子ペン又は電子機器の外形が変化することがある。同様に、このシステムの使用を続ける中で、電子ペンや電子機器などの組み合わせが変わることがある。これにより、電子ペンが有するペン側電極と、電子機器に組み込まれるセンサ電極の間の幾何学的関係が変更され、静電容量の変化を示す信号分布の形状的傾向が異なってくる。
 例えば、特許文献1に開示された補正方法を用いて1の入出力モデルを定めた後、この一律的な入出力モデルに従って信号分布から電子ペンの状態を推定する場合、上記した外形又は組み合わせの変更に伴い、ペン状態の検出精度が低下することもあり得る。このように、特許文献1に開示された方法において、検出精度の維持という観点で、改良の余地が十分に残されている。
 本発明は、上記した問題に鑑みてなされたものであり、その目的は、電子ペン又は電子機器の利用状況にかかわらず、ペン状態の検出精度を維持可能なペン状態検出回路、方法及び装置、並びにパラメータ提供装置を提供することにある。
 第1の本発明におけるペン状態検出回路は、複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれた回路であって、電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って前記電子ペンの状態を推定する推定ステップと、を実行し、前記電子ペン又は前記電子機器の外形的変化に応じて異なる入出力モデルを設定可能に構成される。
 第2の本発明におけるペン状態検出方法は、複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれたペン状態検出回路が、電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って、前記電子ペンの状態を推定する推定ステップと、を実行し、前記電子ペン又は前記電子機器の外形的変化に応じて異なる入出力モデルが設定される。
 第3の本発明におけるペン状態検出装置は、上記したペン状態検出回路と、前記電子ペン又は前記電子機器の外形に関するモデル選択情報を取得する情報取得部と、前記情報取得部により取得された前記モデル選択情報に対応する前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、を備える。
 第4の本発明におけるパラメータ提供装置は、上記したペン状態検出回路と、前記電子ペン又は前記電子機器の外形に関するモデル選択情報を取得する情報取得部と、前記情報取得部が取得した前記モデル選択情報に応じて選択された前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、を備えるペン状態検出装置との間で相互に通信可能に構成される装置であって、前記モデルパラメータを前記モデル選択情報と対応付けて記憶する記憶部と、前記ペン状態検出装置から前記モデル選択情報を受信した場合、前記モデル選択情報に対応するモデルパラメータを前記記憶部から読み出して前記ペン状態検出装置に送信する制御を行う制御部と、を備える。
 第5の本発明におけるペン状態検出回路は、複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれた回路であって、電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って、前記電子ペンの状態を推定する推定ステップと、を実行し、前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに応じて異なる入出力モデルを設定可能に構成される。
 第6の本発明におけるペン状態検出方法は、複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれたペン状態検出回路が、電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って、前記電子ペンの状態を推定する推定ステップと、を実行し、前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに応じて異なる入出力モデルが設定される。
 第7の本発明におけるペン状態検出方法は、上記したペン状態検出回路と、前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに関するモデル選択情報を取得する情報取得部と、前記情報取得部により取得された前記モデル選択情報に対応する前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、を備える。
 第8の本発明におけるパラメータ提供装置は、上記したペン状態検出回路と、前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに関するモデル選択情報を取得する情報取得部と、前記情報取得部により取得された前記モデル選択情報に対応する前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、を備えるペン状態検出装置との間で相互に通信可能に構成される装置であって、前記モデルパラメータを前記モデル選択情報と対応付けて記憶する記憶部と、前記ペン状態検出装置から前記モデル選択情報を受信した場合、前記モデル選択情報に対応するモデルパラメータを前記記憶部から読み出して前記ペン状態検出装置に送信する制御を行う制御部と、を備える。
 本発明によれば、電子ペン又は電子機器の利用状況にかかわらず、ペン状態の検出精度が維持されやすくなる。
本発明の一実施形態におけるペン状態推定装置としての電子機器が組み込まれた入力システムの全体構成図である。 図1における電子機器の構成の一例を示すブロック図である。 図1に示す入力システムの動作に関するシーケンス図である。 図1の電子ペンを部分的に示す模式図である。 電子ペンのコンタクト状態時にタッチセンサから検出される第1信号分布の一例を示す図である。 電子ペンのコンタクト状態時にタッチセンサから検出される第2信号分布の一例を示す図である。 指示位置に関する推定誤差の傾向を示す図である。 図2のタッチICにより実装される入出力モデルの一例を示す模式的な構成図である。 電子機器のタッチ面が上凸状に湾曲した状態を示す概略断面図である。 タッチ面の湾曲前後にわたる信号分布の変化を示す図である。 パラメータDBの第1テーブルが有するデータ構造の一例を示す図である。 電子機器のタッチ面に保護フィルムを貼り付けた状態を示す概略断面図である。 保護フィルムの貼付前後にわたる信号分布の変化を示す図である。 パラメータDBの第2テーブルが有するデータ構造の一例を示す図である。 電子ペンのチップ電極が摩耗した状態を示す概略側面図である。 チップ電極の摩耗前後にわたる信号分布の変化を示す図である。 パラメータDBの第3テーブルが有するデータ構造の一例を示す図である。 パラメータDBの第4テーブルが有するデータ構造の一例を示す図である。 パラメータDBの第5テーブルが有するデータ構造の一例を示す図である。 第1変形例における入力システムの全体構成図である。 第2変形例における電子機器の構成の一例を示すブロック図である。
[入力システム10の構成]
<全体構成>
 図1は、本発明の一実施形態におけるペン状態検出装置としての電子機器12が組み込まれた入力システム10の全体構成図である。この入力システム10は、電子ペン14を用いた筆記入力に対する再現性が高いデジタルインク(あるいはインクデータ)を生成可能に構成される。デジタルインクのデータ形式、いわゆる「インク記述言語」として、例えば、WILL(Wacom Ink Layer Language)、InkML(Ink Markup Language)、ISF(Ink Serialized Format)が挙げられる。
 この入力システム10は、具体的には、少なくとも1台の電子機器12と、少なくとも1本の電子ペン14と、サーバ装置16(「パラメータ提供装置」に相当)と、を含んで構成される。各々の電子機器12は、ネットワークNTを介してサーバ装置16と相互に通信可能である。
 電子機器12は、タッチパネルディスプレイ32(図2)を備える汎用機器又は専用機器である。汎用機器の例として、タブレット型端末、スマートフォン、パーソナルコンピュータなどが挙げられる。一方、専用機器の例として、デジタルサイネージ(いわゆる電子看板)、ウェアラブル端末などが挙げられる。
 電子ペン14は、ペン型のポインティングデバイスであり、電子機器12との間で形成される静電結合を介して一方向又は双方向に通信可能に構成されている。ユーザは、電子ペン14を把持し、所定のタッチ面にペン先を押し当てながら移動させることで、電子機器12に絵や文字を書き込むことができる。この電子ペン14は、例えば、アクティブ静電結合方式(AES)又は電磁誘導方式(EMR)のスタイラスである。
 サーバ装置16は、モデルパラメータ20の提供に関わる統括的な制御を行うコンピュータであり、クラウド型あるいはオンプレミス型のいずれであってもよい。ここで、サーバ装置16を単体のコンピュータとして図示しているが、これに代わって、サーバ装置16は、分散システムを構築するコンピュータ群であってもよい。サーバ装置16は、具体的には、サーバ側通信部22と、サーバ側制御部24と、サーバ側記憶部26と、を含んで構成される。
 サーバ側通信部22は、外部装置に対して電気信号を送受信するインターフェースである。これにより、サーバ装置16は、電子機器12からモデル選択情報18を受信し、モデルパラメータ20を電子機器12に送信することができる。
 サーバ側制御部24は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)を含む処理演算装置によって構成される。サーバ側制御部24は、サーバ側記憶部26に格納されたプログラムを読み出して実行することで、後で詳述するモデル選択部28として機能する。
 サーバ側記憶部26は、非一過性であり、かつコンピュータ読み取り可能な記憶媒体、例えば、ハードディスクドライブ(HDD:Hard Disk Drive)又はソリッドステートドライブ(SSD:Solid State Drive)から構成される。これにより、サーバ側記憶部26には、モデルパラメータ20に関するデータベース(以下、パラメータDB30)が構築されている。
 図2は、図1における電子機器12の構成の一例を示すブロック図である。この電子機器12は、具体的には、タッチパネルディスプレイ32と、表示駆動IC(Integrated Circuit)34と、タッチIC36(「ペン状態検出回路」に相当)と、通信モジュール38と、ホストプロセッサ40と、メモリ42と、を含んで構成される。
 タッチパネルディスプレイ32は、コンテンツを可視的に表示可能な表示パネル44と、平面視にて表示パネル44と重なるように配置される面状のタッチセンサ46と、を含んで構成される。本図の例では、タッチセンサ46は、表示パネル44に外側から取り付ける「外付け型」のセンサであるが、これに代えて表示パネル44と一体的に構成される「内蔵型」(さらに分類すると、オンセル型又はインセル型)のセンサであってもよい。
 表示パネル44は、モノクロ画像又はカラー画像を表示可能であり、例えば、液晶パネル、有機EL(Electro-Luminescence)パネル、電子ペーパーから構成される。なお、表示パネル44に可撓性をもたせることで、ユーザは、電子機器12のタッチ面を湾曲又は屈曲させた状態のまま、手書きによる入力操作を行うことができる。
 タッチセンサ46は、複数のセンサ電極を面状に配置してなる静電容量方式のセンサである。このタッチセンサ46は、具体的には、センサ座標系のX軸の位置を検出するための複数本のXライン電極47(図10A参照)と、Y軸の位置を検出するための複数本のYライン電極48(同図参照)と、を含んで構成される。この場合、Xライン電極47は、Y軸方向に延びて設けられるとともに、X軸方向に沿って等間隔に配置されている。Yライン電極48は、X軸方向に延びて設けられるとともに、Y軸方向に沿って等間隔に配置されている。なお、タッチセンサ46は、上記した相互容量方式のセンサに代えて、ブロック状の電極を二次元格子状に配置した自己容量方式のセンサであってもよい。
 表示駆動IC34は、表示パネル44と電気的に接続され、かつ表示パネル44の駆動制御を行う集積回路である。表示駆動IC34は、ホストプロセッサ40から供給された表示信号に基づいて表示パネル44を駆動する。これにより、表示パネル44上には、デジタルインク58が示すコンテンツが表示される。
 タッチIC36は、タッチセンサ46と電気的に接続され、かつタッチセンサ46の駆動制御を行う集積回路である。タッチIC36は、ホストプロセッサ40から供給された制御信号に基づいてタッチセンサ46を駆動する。これにより、タッチIC36は、電子ペン14の状態を検出する「ペン検出機能」や、ユーザの指などによるタッチを検出する「タッチ検出機能」を実行する。
 このペン検出機能は、例えば、タッチセンサ46のスキャン機能、ダウンリンク信号の受信・解析機能、電子ペン14の状態(例えば、位置、姿勢、筆圧)の推定機能、電子ペン14に対する指令を含むアップリンク信号の生成・送信機能を含む。また、タッチ検出機能は、例えば、タッチセンサ46の二次元スキャン機能、タッチセンサ46上の検出マップの取得機能、検出マップ上の領域分類機能(例えば、指、手の平などの分類)を含む。
 このように、電子ペン14及びタッチセンサ46による入力機能と、表示パネル44による出力機能を組み合わせることで、グラフィカル・ユーザ・インターフェース(GUI)が構築される。
 通信モジュール38は、外部装置との間で有線通信又は無線通信を行う通信機能を有する。これにより、これにより、電子機器12は、モデル選択情報18をサーバ装置16に送信し、サーバ装置16からモデルパラメータ20を受信することができる。
 ホストプロセッサ40は、CPU、GPU、あるいはMPU(Micro-Processing Unit)を含む処理演算装置によって構成される。ホストプロセッサ40は、メモリ42に格納されたプログラムを読み出して実行することで、情報取得部50、パラメータ設定部52、インク生成部54及び描画処理部56として機能する。
 メモリ42は、非一過性であり、かつ、コンピュータ読み取り可能な記憶媒体で構成されている。ここで、コンピュータ読み取り可能な記憶媒体は、HDDを含む記憶装置、あるいは、光磁気ディスク、ROM、CD-ROM、フラッシュメモリ等の可搬媒体である。本図の例では、メモリ42には、モデル選択情報18、モデルパラメータ20、及びデジタルインク58が格納されている。
[入力システム10の動作]
 ペン状態推定装置としての電子機器12が組み込まれた入力システム10は、以上のように構成される。続いて、入力システム10の動作、具体的には、電子機器12、電子ペン14、及びサーバ装置16の連携動作について、図3のシーケンス図を参照しながら説明する。このシーケンス図のステップS1,S9は電子ペン14及び電子機器12の協働により、ステップS4~S6はサーバ装置16によりそれぞれ実行される。一方、残りのステップは電子機器12により実行される。
 図3のステップS1において、電子機器12のホストプロセッサ40は、ユーザの筆記入力に用いられる電子ペン14を検出する。具体的には、電子機器12は、自機の周辺にある電子ペン14とのペアリングを試み、このペアリングの成功を通じて電子ペン14を検出する。あるいは、電子機器12は、ユーザが電子ペン14に関する情報を入力する操作を受け付けることで、当該電子ペン14を検出してもよい。
 ステップS2において、電子機器12の情報取得部50は、電子ペン14及び/又は自機からモデル選択情報18を取得する。モデル選択情報18とは、後述する入出力モデル70の選択に必要な情報であり、具体的には、[1]電子ペン14又は電子機器12の外形に関する情報、[2]電子ペン14、電子機器12、及びタッチセンサ46の種別、並びにユーザのうちの2以上の組み合わせに関する情報である。
 ステップS3において、電子機器12は、ステップS2で取得されたモデル選択情報18を含むデータを、電子機器12の識別情報(つまり、機器ID)と対応付けた状態でサーバ装置16に送信する。
 ステップS4において、サーバ装置16は、電子機器12からのデータの受信を通じて、モデル選択情報18を取得する。
 ステップS5において、サーバ側制御部24(より詳しくは、モデル選択部28)は、ステップS4で取得されたモデル選択情報18を検索キーとして、サーバ側記憶部26に構築されるパラメータDB30を参照する。これにより、複数組のモデルパラメータ20のうち、モデル選択情報18に対応する入出力モデル70を特定可能な1組のモデルパラメータ20が選択される。
 ステップS6において、サーバ装置16は、ステップS5で選択されたモデルパラメータ20を含むデータを、該当するモデル選択情報18に紐付けられた機器IDを有する電子機器12に送信する。
 ステップS7において、電子機器12は、サーバ装置16からのデータの受信を通じて、モデルパラメータ20を取得する。このモデルパラメータ20は、電子機器12のメモリ42に格納される。
 ステップS8において、ホストプロセッサ40(より詳しくは、パラメータ設定部52)は、ステップS7で取得されたモデルパラメータ20を、タッチIC36が利用可能な態様にて設定を行う。例えば、ホストプロセッサ40は、モデルパラメータ20の各値を、それぞれ対応するメモリ又はレジスタの記憶領域にそれぞれ書き込む。
 ステップS9において、電子機器12は、電子ペン14と連携して所望の筆記動作を行う。具体的には、インク生成部54は、電子ペン14の指示位置の軌跡を示すストロークデータと、該ストロークデータに関連するメタ情報を対応付けてなるデジタルインク58を生成する。このメタ情報には、例えば、文書メタデータ、意味データ、装置データ、分類データ、文脈データなどが含まれる。
 描画処理部56は、メモリ42から読み出したデジタルインク58を解析し、ストロークデータに対して所望のラスタライズ処理を行い、描画対象のコンテンツを示す表示信号を生成する。表示駆動IC34は、ホストプロセッサ40から供給された表示信号に基づき表示パネル44を駆動する。これにより、表示パネル44上には可視化されたコンテンツが表示される。
[ペン状態の検出動作]
 このようにして、図3に示すシーケンス動作が終了する。続いて、タッチIC36によるペン状態の検出動作について、図4~図7を参照しながら説明する。
<入力値及び出力値の一例>
 図4は、図1の電子ペン14を部分的に示す模式図である。電子ペン14の先端には、概略円錐状のチップ電極60と、無底円錐台状のアッパー電極62が同軸的に設けられている。チップ電極60及びアッパー電極62はそれぞれ、発振回路64が生成する信号(いわゆるダウンリンク信号)を出力するためのペン側電極である。発振回路64が発振周波数を変更したり送信先を時分割で切り替えたりすることで、電子ペン14は、チップ電極60及びアッパー電極62を介して2種類のダウンリンク信号を出力することができる。
 電子機器12のタッチIC36(図2)は、チップ電極60の接近に伴う静電容量(より詳しくは、相互容量又は自己容量)の変化を示す信号分布(以下、第1信号分布)を、複数本のXライン電極47から取得する。第1信号分布は、典型的には、位置Q1に1つのピークをもつ形状を有する。ここで、位置Q1は、チップ電極60の頂部(位置P1)をセンサ平面上に投影した位置に相当する。
 同様に、タッチIC36は、アッパー電極62の接近に伴う静電容量の変化を示す信号分布(以下、第2信号分布)を、複数本のXライン電極47から取得する。第2信号分布は、典型的には、位置Q2に1つ又は2つのピークをもつ形状を有する。ここで、位置Q2は、アッパー電極62の肩部(位置P2)をセンサ平面上に投影した位置に相当する。また、後述する位置Q3は、アッパー電極62の上底面の中心(位置P3)をセンサ平面上に投影した位置に相当する。
 図5A及び図5Bは、電子ペン14のコンタクト状態時にタッチセンサ46から検出される信号分布の一例を示す図である。より詳しくは、図5Aは第1信号分布を示すとともに、図5Bは第2信号分布を示している。グラフの横軸は電子ペン14の指示位置を基準とする相対位置(単位:mm)を示すとともに、グラフの縦軸は[0,1]に正規化された信号値(単位:なし)を示している。この信号値は、電子ペン14が接近した時に「正」になるように正負の符号が定義されている。第1及び第2信号分布はそれぞれ、電子ペン14の傾斜角度に応じて形状が変化する。本図では、傾斜角度をそれぞれ変化させて得られた3本の曲線を重ねて表記している。
 図5Aに示すように、第1信号分布は、傾斜角度の大きさにかかわらず、概ね類似した形状を有する。なぜならば、電子ペン14を使用する間、通常、チップ電極60の頂部がセンサ平面に最も近い位置にあり、位置Q1が位置P1に概ね一致するからである。一方、図5Bに示すように、第2信号分布は、傾斜角度の変化に応じてピークの位置又は個数が大きく変化する。なぜならば、電子ペン14を使用する間、通常、アッパー電極62の肩部のいずれかの箇所がセンサ平面に最も近い位置にあり、位置Q1,Q2の間の距離が傾斜角度に応じて変化するからである。
 この位置Q1,Q2の座標を用いて、電子ペン14の位置・姿勢(以下、ペン状態ともいう)を推定することができる。例えば、指示位置は、図4に示す位置Q1に相当する。また、傾斜角度は、センサ平面と電子ペン14の軸とのなす角θに相当する。つまり、センサ平面に対して水平な状態ではθ=0°となり、センサ平面に対して垂直な状態ではθ=90°となる。なお、電子ペン14の傾き状態を示す物理量は、上記した角度の他に、例えば方位を用いてもよい。
 図6は、指示位置に関する推定誤差の傾向を示す図である。グラフの横軸は指示位置の実際値(単位:mm)を示すとともに、グラフの縦軸は指示位置の推定値(単位:mm)を示している。ここでは、Xライン電極47の幅方向の中点をX=0(mm)と定義している。なお、推定誤差が0の場合、原点Oを通る傾き1の直線が得られる。
 例えば、信号分布は、等間隔(ピッチΔX)でサンプリングされた信号値の集合であることから、信号分布のピーク(つまり、指示位置)をより正確に推定するために補間演算が行われる。ところが、補間関数の種類によってはフィッティング誤差が発生し、ピッチ単位で周期的な「補間近似誤差」が生じてしまう。
 また、アッパー電極62の位置P3(図5参照)を基準として傾斜角度を推定する場合において、θ=0°では位置Q2が位置Q3に一致するため、傾斜角度に起因する推定誤差は生じない。ところが、θ>0°の場合、位置Q2,Q3のずれにより、傾斜角度が小さく見積もられる。その結果、得られる推定値が正方向(つまり、電子ペン14の傾斜方向)にシフトし、いわゆる「オフセット誤差」が生じてしまう。
 このように、互いに位置及び形状が異なる2つのペン側電極を用いてペン状態を推定する際、上記した補間近似誤差及びオフセット誤差によって、指示位置又は傾斜角度の推定精度がばらつく場合がある。そこで、以下の入出力モデル70を導入することで、この2種類の誤差を同時に減らし、ペン状態の推定精度を向上させることができる。
<入出力モデル70の構成例>
 図7は、図2のタッチIC36により実装される入出力モデル70の一例を示す模式的な構成図である。入出力モデル70は、信号分布に関する特徴量を入力とし、電子ペン14の状態量を出力とするモデルである。この入出力モデル70は、具体的には、前段演算器72、後段演算器74、及び加算器76が直列的に順次接続されてなるニューラルネットワークである。なお、ネットワーク構造は本図の例に限られることなく、様々な構成を採用してもよい。
 前段演算器72は、電子ペン14の傾斜角度を推定する第1推定手段として機能する。後段演算器74及び加算器76は、電子ペン14の指示位置を推定する第2推定手段として機能する。図面の丸印は、ニューラルネットワークのニューロンに相当する演算ユニットを示している。「T」の演算ユニットには、チップ電極60に対応する「第1局所特徴量」の各値が格納される。「U」の演算ユニットには、アッパー電極62に対応する「第2局所特徴量」の各値が格納される。「A」の演算ユニットには「傾斜角度」が格納される。「P」の演算ユニットには「相対位置」が格納される。
 前段演算器72は、例えば、入力層72i、中間層72m、及び出力層72oからなる階層型のニューラルネット演算器である。入力層72iは、第2局所特徴量の各値を入力するためのN個の演算ユニットから構成される。中間層72mは、M個(ここでは、M=N)の演算ユニットから構成される。出力層72oは、傾斜角度を出力するための1個の演算ユニットから構成される。ここで、第2局所特徴量とは、第2信号分布のうちピークを含む部分(「第2局所分布」ともいう)に関する形状的特徴を示す特徴量である。この第2局所特徴量は、例えば、第2局所分布の傾き又は該傾きの絶対値であってもよいし、第2局所分布そのものであってもよい。
 後段演算器74は、例えば、入力層74i、中間層74m、及び出力層74oからなる階層型のニューラルネット演算器である。入力層74iは、第1局所特徴量の各値及び傾斜角度を入力するための(N+1)個の演算ユニットから構成される。中間層74mは、例えば、M個(ここでは、M=N)の演算ユニットから構成される。出力層74oは、基準位置と指示位置の間の相対位置を出力するための1個の演算ユニットから構成される。ここで、第1局所特徴量とは、第1信号分布のうちピークを含む部分(「第1局所分布」ともいう)に関する形状的特徴を示す特徴量である。この第1局所特徴量は、例えば、第1局所分布の傾き又は該傾きの絶対値であってもよいし、第1局所分布そのものであってもよい。
 加算器76は、センサ座標系における第1局所分布の基準点の位置(つまり、基準位置)に後段演算器74からの相対位置を加算することで、電子ペン14の指示位置を出力する。この基準位置は、例えば、第1局所分布の立ち上がり位置、立ち下がり位置、ピーク位置、あるいはこれらの近傍位置のいずれであってもよい。なお、指示位置は、第1局所分布のピーク中心に相当する位置であり、Xライン電極47(あるいは、Yライン電極48)のピッチよりも高い分解能を有する。
 入出力モデル70の演算規則は、モデルパラメータ20の各値によって定められる。モデルパラメータ20は、例えば、演算ユニットの活性化関数を記述する係数、演算ユニット間の結合強度を含む「可変パラメータ」と、学習モデルのアーキテクチャを特定するための「固定パラメータ」(いわゆるハイパーパラメータ)から構成される。ハイパーパラメータの例として、各層を構成する演算ユニットの個数、中間層の数が挙げられる。例えば、アーキテクチャが固定されている場合、モデルパラメータ20は可変パラメータのみから構成されてもよい。
 このモデルパラメータ20は、例えば、実際の測定又は計算機シミュレーションにより得られた教師データを用いる「教師あり学習」を通じて決定される。例えば、「実際の測定」の場合、センサ平面上の複数の位置をランダムに選択し、それぞれの位置における信号分布を測定することで教師データが作成される。また、「計算機シミュレーション」の場合、電磁界解析又は電気回路解析を含む物理シミュレーションや、標本化処理、補間処理又はノイズ付与を含む数学シミュレーションを用いて教師データが作成される。
 そして、タッチIC36は、入出力モデル70に従って推定された指示位置及び傾斜角度を含むデータをホストプロセッサ40に供給する。例えば、タッチIC36は、1次元モデル演算を2回繰り返してX軸座標値、Y軸座標値をそれぞれ推定し、ホストプロセッサ40に指示位置の座標値(X,Y)を供給してもよい。あるいは、タッチIC36は、2次元モデル演算を1回行って指示位置の座標値(X,Y)を同時に推定し、ホストプロセッサ40に座標値(X,Y)を供給してもよい。
[モデルパラメータ20の選択]
 ところで、入力システム10の使用を続ける中で、何らかの理由により電子ペン14又は電子機器12の外形が変化することがある。この「外形の変化(あるいは、外形的変化)」とは、外側から視た形状(いわゆる外観)が物理的に変化することを意味する。あるいは、「外形的変化」とは、同一な製品やペン先タイプやセンサ電極製品など静的には同じ情報で示される状態であるにもかかわらず、時間(利用状態や経時的)によって変化する、電子ペン14と電子機器12とのインターフェースの電気的あるいは磁気的結合状態の動的な変化を伴う変形をいう。すなわち、[1]湾曲や屈曲を含む可逆的な変化、又は[2]部分的な摩耗・交換や、別部材の一体化・除去を含む不可逆的な変化のいずれであってもよい。
 同様に、この入力システム10の使用を続ける中で、電子ペン14や電子機器12などの組み合わせが変わることがある。これにより、電子ペン14が有するペン側電極と、電子機器12に組み込まれるセンサ電極の間の幾何学的関係が変更され、静電容量の変化を示す信号分布の形状的傾向が異なってくる。その結果、固定的に実装される入出力モデル70では、ペン状態の検出精度を十分に確保できない状況が起こり得る。
 そこで、サーバ装置16は、入出力特性が異なる複数組のモデルパラメータ20を保持しておき、電子ペン14又は電子機器12の利用状況に適した1組のモデルパラメータ20を選択・供給する。以下、図2のステップS5におけるモデル選択部28の選択動作について、図8A~図15を参照しながら説明する。
<第1例>
 図8Aは、電子機器12のタッチ面が上凸状に湾曲した状態を示す概略断面図である。本図の例では、下側から上側にわたって、Xライン電極47、Yライン電極48、及び表面カバー80が積層された状態が示されている。電子ペン14が電子機器12のタッチ面に接近する際、チップ電極60と、該チップ電極60から相対的に近い位置にある3本のXライン電極47の間でそれぞれ静電結合が形成される。以下、図面の中央、左側、及び右側における静電容量がC1,C2,C3であるとする。本図から理解されるように、電子機器12の湾曲の有無又は曲率に応じて、チップ電極60とXライン電極47の間の幾何学的な位置関係が変化する。これに伴い、静電容量C1,C2,C3の相対的大小関係が変化する。
 図8Bは、タッチ面の湾曲前後にわたる信号分布の変化を示す図である。グラフの横軸はX軸方向の位置(単位:mm)を示すとともに、グラフの縦軸は信号値(単位:なし)を示している。本図から理解されるように、「湾曲時」の信号分布は、「平坦時」の場合と比べて、幅が狭くなるとともにピークが高くなる傾向がある。そこで、このような分布形状の違いを考慮し、電子機器12のタッチ面が平坦である場合、あるいは湾曲又は屈曲している場合に適した複数組のモデルパラメータ20が準備される。
 図9は、図1のパラメータDB30が有するデータ構造の第1例を示す図である。パラメータDB30の第1テーブルは、電子ペン14の種別を示す「ペン種別」と、タッチセンサ46の湾曲の度合いを示す「センサ湾曲度」と、モデルパラメータ20の組名を示す「パラメータセット名」と、の間の対応関係を示すテーブル形式のデータである。「ペン種別」は、例えば、電子ペン14の製品名、型番、製造ロット、製造業者などにより分類される。「センサ湾曲度」は、例えば、なし・あり・小さい・大きいなどにより定性的に分類されてもよいし、曲率や曲げ角度などにより定量的に分類されてもよい。
 この場合、電子機器12の情報取得部50は、モデル選択情報18として、ペン種別及びセンサ湾曲度をそれぞれ取得する(図3のステップS2)。このペン種別は、電子ペン14からのダウンリンク信号に含まれる種別情報であってもよいし、ユーザによる電子機器12の操作を通じて入力された種別情報であってもよい。また、センサ湾曲度は、タッチセンサ46に設けられる歪みセンサ(不図示)による検出値であってもよいし、ユーザによる電子機器12の操作を通じて入力された測定値であってもよい。
 第1例のように、モデル選択情報18が電子機器12の外形に関する情報を含む場合、電子機器12のタッチ面が平坦であるか、湾曲又は屈曲しているかに応じて異なる入出力モデル70が選択されてもよい。これにより、タッチセンサ46の曲げ状態に適したペン状態の検出が可能となる。
<第2例>
 図10Aは、電子機器12のタッチ面に保護フィルム82を貼り付けた状態を示す概略断面図である。本図の例では、下側から上側にわたって、Xライン電極47、Yライン電極48、表面カバー80、及び保護フィルム82が積層された状態が示されている。保護フィルム82は、電子機器12のユーザが必要に応じて貼付可能なオプション部材である。本図から理解されるように、電子ペン14のチップ電極60が電子機器12のタッチ面に接触する状態下、保護フィルム82の有無又は厚みに応じて、チップ電極60とXライン電極47(又はYライン電極48)の間の離間距離が変化する。これにより、静電結合に伴って形成される静電容量の大きさが変化する。
 図10Bは、保護フィルム82の貼付前後にわたる信号分布の変化を示す図である。グラフの横軸はX軸方向の位置(単位:mm)を示すとともに、グラフの縦軸は信号値(単位:なし)を示している。本図から理解されるように、「保護フィルムあり」の信号分布は、「保護フィルムなし」の場合と比べて、信号値のレベルが全体的に低くなる傾向がある。そこで、このような分布形状の違いを考慮し、電子機器12のタッチ面に設けられる保護フィルム82の有無、又は該保護フィルム82の厚みに適した複数組のモデルパラメータ20が準備される。
 図11は、図1のパラメータDB30が有するデータ構造の第2例を示す図である。パラメータDB30の第2テーブルは、タッチセンサ46の種別を示す「センサ種別」と、電子機器12の種別を示す「機器種別」と、保護フィルム82の被覆状態を示す「フィルム状態」と、モデルパラメータ20の組名を示す「パラメータセット名」と、の間の対応関係を示すテーブル形式のデータである。「センサ種別」は、例えば、タッチセンサ46の製品名、型番、製造ロット、製造業者などにより分類される。「機器種別」は、例えば、電子機器12の製品名、型番、製造ロット、製造業者などにより分類される。「フィルム状態」は、例えば、保護フィルム82の有無、厚み、製品名などにより分類される。具体的には、フィルム状態は、なし・あり・薄い・厚いなどにより定性的に分類されてもよいし、厚みの測定値(単位:μm)などにより定量的に分類されてもよい。
 この場合、電子機器12の情報取得部50は、モデル選択情報18として、センサ種別、機器種別、及びフィルム状態をそれぞれ取得する(図3のステップS2)。このセンサ種別は、電子機器12を構成する電子部品(例えば、タッチIC36)に格納される種別情報であってもよいし、ユーザによる電子機器12の操作を通じて入力された種別情報であってもよい。また、この機器種別は、電子機器12のメモリ42に格納される種別情報であってもよい。また、フィルム状態は、ユーザによる電子機器12の操作を通じて入力された状態情報であってもよい。
 第2例のように、モデル選択情報18が電子機器12の外形に関する情報を含む場合、電子機器12のタッチ面に設けられる保護フィルム82の有無、又は該保護フィルム82の厚みに応じて異なる入出力モデル70が選択されてもよい。これにより、保護フィルム82の被覆状態に適したペン状態の検出が可能となる。
<第3例>
 図12Aは、電子ペン14のチップ電極60が摩耗した状態を示す概略側面図である。ユーザは、電子ペン14の端部を電子機器12のタッチ面に接触させながら筆記操作を行う。そうすると、初期状態のチップ電極60は、摩耗によって摩耗部90が除去され、鈍った先端形状を有する残存部92に変形してしまう。つまり、チップ電極60とセンサ電極(例えば、Xライン電極47)の間の幾何学的関係が変化し、これに伴って信号分布が変形する。
 図12Bは、チップ電極60の摩耗前後にわたる信号分布の変化を示す図である。グラフの横軸はX軸方向の位置(単位:mm)を示すとともに、グラフの縦軸は信号値(単位:なし)を示している。本図から理解されるように、「摩耗状態」の信号分布は、「初期状態」の場合と比べて、幅が広くなるとともにピークが低くなる傾向がある。そこで、このような分布形状の違いを考慮し、チップ電極60の摩耗の有無又は摩耗の度合いに適した複数組のモデルパラメータ20が準備される。
 図13は、図1のパラメータDB30が有するデータ構造の第3例を示す図である。パラメータDB30の第3テーブルは、電子ペン14の種別を示す「ペン種別」と、チップ電極60の摩耗の有無又は度合いを示す「ペン先摩耗度」と、モデルパラメータ20の組名を示す「パラメータセット名」と、の間の対応関係を示すテーブル形式のデータである。「ペン種別」は、例えば、電子ペン14の製品名、型番、製造ロット、製造業者などにより分類される。「ペン先摩耗度」は、例えば、なし・あり・小さい・大きいなどにより定性的に分類されてもよいし、摩耗部90の長さ、残存部92の長さ・曲率などにより定量的に分類されてもよい。
 この場合、電子機器12の情報取得部50は、モデル選択情報18として、ペン種別及びペン先摩耗度をそれぞれ取得する(図3のステップS2)。このペン種別は、電子ペン14からのダウンリンク信号に含まれる種別情報であってもよいし、ユーザによる電子機器12の操作を通じて入力された種別情報であってもよい。また、ペン先摩耗度は、カメラによるチップ電極60の撮像画像又は該画像に対する解析処理を通じて得られる測定値であってもよいし、ユーザによる電子機器12の操作を通じて入力された測定値であってもよい。
 第3例のように、モデル選択情報18が電子ペン14の外形に関する情報を含む場合、チップ電極60の摩耗の有無又は摩耗の度合いに応じて異なる入出力モデル70が選択されてもよい。これにより、チップ電極60の摩耗状態に適したペン状態の検出が可能となる。
<第4例>
 電子ペン14又は電子機器12の外形的変化がない理想的な状態であっても、電子ペン14とタッチセンサ46の組み合わせによって信号分布の出現傾向が異なる場合がある。そこで、このような分布形状の違いを考慮し、電子ペン14及びタッチセンサ46の種別組み合わせに適した複数組のモデルパラメータ20が準備される。
 図14は、図1のパラメータDB30が有するデータ構造の第4例を示す図である。パラメータDB30の第4テーブルは、電子ペン14の種別を示す「ペン種別」と、タッチセンサ46の種別を示す「センサ種別」と、モデルパラメータ20の組名を示す「パラメータセット名」と、の間の対応関係を示すテーブル形式のデータである。なお、ペン種別及びセンサ種別の具体例については上記した第1~第3例の場合と同様であるため、その詳しい説明を省略する。
 第4例のように、モデル選択情報18が電子ペン14の種別及びタッチセンサ46の種別を含む場合、これらの種別組み合わせに応じて異なる入出力モデル70が選択されてもよい。これにより、電子ペン14及びタッチセンサ46の組み合わせに適したペン状態の検出が可能となる。
<第5例>
 例えば、同一の電子ペン14であっても、ユーザによる把持方法によって信号分布の出現傾向が異なる場合がある。そこで、このような分布形状の違いを考慮し、ユーザと機器(例えば、電子ペン14)の組み合わせに適した複数組のモデルパラメータ20が準備される。
 図15は、図1のパラメータDB30が有するデータ構造の第5例を示す図である。パラメータDB30の第5テーブルは、ユーザの識別情報を示す「ユーザID」と、電子ペン14の種別を示す「ペン種別」と、モデルパラメータ20の組名を示す「パラメータセット名」と、の間の対応関係を示すテーブル形式のデータである。「ユーザID」は、サーバ装置16により一元的に管理される識別情報である。「ペン種別」は、第1例と同様に、電子ペン14の製品名、型番、製造ロット、製造業者などにより分類される。
 この場合、電子機器12の情報取得部50は、モデル選択情報18として、ユーザID及びペン種別をそれぞれ取得する(図3のステップS2)。ユーザIDは、デジタルインク58の生成アプリケーションのアカウント情報であってもよいし、電子機器12に付与されたホスト名であってもよい。また、このペン種別は、電子ペン14からのダウンリンク信号に含まれる種別情報であってもよいし、ユーザによる電子機器12の操作を通じて入力された種別情報であってもよい。
 第5例のように、モデル選択情報18が電子ペン14、電子機器12、及びタッチセンサ46のうちのいずれか1つの種別を含む場合、この種別とユーザの組み合わせに応じて異なる入出力モデル70が選択されてもよい。これにより、ユーザによる各種機器の使用方法の傾向に合ったペン状態の検出が可能となる。
<第6例>
 第4,第5例では、電子ペン14の種別を含む組み合わせについて説明したが、これに限られず様々な組み合わせを考慮してもよい。具体的には、電子ペン14、電子機器12、及びタッチセンサ46の種別、並びにユーザのうちの2以上の組み合わせであってもよい。あるいは、上記した第1~第3例における電子ペン14又は電子機器12の外形的変化を併せた組み合わせであってもよい。
[実施形態による効果]
 以上のように、ペン状態検出回路としてのタッチIC36は、複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサ46を有する電子機器12に組み込まれる。タッチIC36は、電子ペン14が有するペン側電極(チップ電極60,アッパー電極62)の接近に伴う静電容量の変化を示す信号分布をタッチセンサ46から取得し、この信号分布に関する特徴量を入力とし、電子ペン14の状態量を出力とする入出力モデル70に従って電子ペン14の状態を推定し、電子ペン14又は電子機器12の外形的変化に応じて異なる入出力モデル70を設定可能に構成される。
 また、ペン状態検出装置としての電子機器12は、上記したタッチIC36の他に、電子ペン14又は電子機器12の外形に関するモデル選択情報18を取得する情報取得部50と、取得されたモデル選択情報18に対応する入出力モデル70を特定可能なモデルパラメータ20をタッチIC36に設定するパラメータ設定部52を備える。
 また、パラメータ提供装置としてのサーバ装置16は、上記した電子機器12との間で相互に通信可能に構成される。そして、サーバ装置16は、モデルパラメータ20をモデル選択情報18と対応付けて記憶するサーバ側記憶部26と、電子機器12からモデル選択情報18を受信した場合、モデル選択情報18に対応するモデルパラメータ20をサーバ側記憶部26から読み出して電子機器12に送信する制御を行うサーバ側制御部24を備える。特に、電子機器12がサーバ装置16と双方向に通信可能である場合、電子機器12のパラメータ設定部52は、モデル選択情報18に対応するモデルパラメータ20をサーバ装置16から取得して設定してもよい。
 このように構成することで、電子ペン14又は電子機器12の利用状況(特に、これらの外形的変化)に適した入出力モデル70を選択的に設定可能となり、ペン状態の検出精度が維持されやすくなる。
 また、タッチIC36は、電子ペン14が有するペン側電極の接近に伴う静電容量の変化を示す信号分布をタッチセンサ46から取得し、取得された信号分布に関する特徴量を入力とし、電子ペン14の状態量を出力とする入出力モデル70に従って電子ペン14の状態を推定し、電子ペン14、電子機器12、及びタッチセンサ46の種別、並びにユーザのうちの2以上の組み合わせに応じて異なる入出力モデル70を設定可能に構成される。
 また、電子機器12は、上記したタッチIC36の他に、電子ペン14、電子機器12、及びタッチセンサ46の種別、並びにユーザのうちの2以上の組み合わせに関するモデル選択情報18を取得する情報取得部50と、取得されたモデル選択情報18に対応する入出力モデル70を特定可能なモデルパラメータ20をタッチIC36に設定するパラメータ設定部52を備える。また、サーバ装置16は、モデルパラメータ20をモデル選択情報18と対応付けて記憶するサーバ側記憶部26と、電子機器12からモデル選択情報18を受信した場合、モデル選択情報18に対応するモデルパラメータ20をサーバ側記憶部26から読み出して電子機器12に送信する制御を行うサーバ側制御部24を備える。
 このように構成することで、ユーザによる電子ペン14及び電子機器12の利用状況(特に、これらの組み合わせ)に適した入出力モデル70を選択的に設定可能となり、ペン状態の検出精度が維持されやすくなる。
 また、電子機器12は、電子ペン14の検出を契機として入出力モデル70を設定可能に構成されてもよい。これにより、電子ペン14が実際に使用される状況にて、適した入出力モデル70を設定することができる。
[変形例]
 なお、本発明は上記した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。あるいは、技術的に矛盾が生じない範囲で各々の構成を任意に組み合わせてもよい。
<第1変形例>
 図16は、第1変形例における入力システム100の全体構成図である。この入力システム10は、少なくとも1台の電子機器102と、少なくとも1本の電子ペン104と、図1の場合と同様の構成を有するサーバ装置16と、を含んで構成される。
 電子機器102は、基本的には、図2に示す電子機器12と同様の構成を有する。ただし、通信モジュール38の機能を停止する設定がなされることで、電子機器102がオフラインで使用されている場合を想定する。
 電子ペン104は、ペン側電極とは異なる無線通信手段、例えば、Bluetooth(登録商標)、WiFi、第5世代移動通信システム(いわゆる5G)などを用いて、外部装置との間で無線通信を行う無線通信機能を備える。これにより、各々の電子ペン104は、中継装置106を介してネットワークNTに接続可能である。
 上記した入力システム100は、図3に示すシーケンスに沿って同様の動作を行うことができる。例えば、ステップS3において、電子機器102は、ステップS2で取得されたモデル選択情報18及び電子機器12の識別情報(つまり、機器ID)を含むアップリンク信号を電子ペン104に送信する。そして、電子ペン104は、受信によって取得したモデル選択情報18及び機器IDを含むデータを、電子ペン104の識別情報(つまり、ペンID)と対応付けた状態でサーバ装置16に送信する。このようにして、モデル選択情報18がサーバ装置16に供給される。
 また、ステップS6において、サーバ装置16は、ステップS5で選択されたモデルパラメータ20及び機器IDを含むデータを、該当するモデル選択情報18に紐付けられたペンIDを有する電子ペン104に送信する。そして、電子ペン104は、受信によって取得したモデルパラメータ20及び機器IDを含むダウンリンク信号を電子機器102に送信する。このようにして、モデルパラメータ20が電子機器102に供給される。
 このように、電子機器102及びサーバ装置16が電子ペン104を中継して双方向に通信可能である場合、電子機器102のパラメータ設定部52は、モデル選択情報18に対応するモデルパラメータ20を電子ペン14から取得して設定してもよい。これにより、電子機器102とサーバ装置16の間で直接的に通信ができない場合であっても、電子ペン104又は電子機器102の利用状況に適したモデルパラメータ20の選択・設定が行われる。
<第2変形例>
 図17は、第2変形例における電子機器110の構成の一例を示すブロック図である。この電子機器110は、具体的には、タッチパネルディスプレイ32と、表示駆動IC34と、タッチIC36と、通信モジュール38と、ホストプロセッサ112と、メモリ114と、を含んで構成される。
 ホストプロセッサ112は、モデル選択部28をさらに備える点で、図2に示す構成とは異なっている。また、メモリ114は、複数組のモデルパラメータ20を記憶している点で、図2に示す構成とは異なっている。このように、サーバ装置16(図1)の機能の一部を電子機器110に組み込むことで、サーバ装置16を設けることなく、図3に示すシーケンスに沿って同様の動作を行うことができる。
 具体的には、図3のシーケンスのうちデータの送受信に関するステップS4,S5,S6,S7を省略することができる。この場合、ステップS5において、電子機器110のホストプロセッサ112(より詳しくは、モデル選択部28)は、ステップS2で取得されたモデル選択情報18を検索キーとして、メモリ114に記憶されている複数組のモデルパラメータ20のうち、モデル選択情報18に対応する入出力モデル70を特定可能なモデルパラメータ20を選択すればよい。
 このように、電子機器110のメモリ114が複数組のモデルパラメータ20を記憶可能である場合、パラメータ設定部52は、メモリ114に記憶されている複数組のモデルパラメータ20の中から、モデル選択情報18に対応するモデルパラメータ20を選択して設定してもよい。これにより、サーバ装置16を設けることなく、電子ペン14又は電子機器110の利用状況に適したモデルパラメータ20の選択・設定が行われる。
<その他の変形例>
 上記した実施形態では、電子ペン14の検出が契機となって入出力モデル70が設定されているが、設定のタイミングはこれに限られない。例えば、タッチIC36は、電子ペン14又は電子機器12の外形的変化を検出したことを契機として、入出力モデル70を動的に設定可能に構成されてもよい。あるいは、タッチIC36は、電子ペン14、電子機器12、及びタッチセンサ46の種別、並びにユーザのうちの2以上の組み合わせの変更を検出したことを契機として、入出力モデル70を動的に設定可能に構成されてもよい。
 上記した実施形態では、図7に示すニューラルネットワークを用いて入出力モデル70を構築しているが、機械学習の手法はこれに限られない。例えば、ロジスティック回帰モデル、サポートベクターマシン(SVM)、ディシジョンツリー、ランダムフォレスト、ブースティング法を含む様々な手法を採用してもよい。あるいは、モデルパラメータ20のデータ定義は、学習パラメータの他にも、関数を特定する各種係数、あるいは状態量又はその補正量を示すテーブルなどであってもよい。
[符号の説明]
10,100‥入力システム、12,102,110‥電子機器(ペン状態検出装置)、14,104‥電子ペン、16‥サーバ装置(パラメータ提供装置)、18‥モデル選択情報、20‥モデルパラメータ、28‥モデル選択部、30‥パラメータDB、36‥タッチIC(ペン状態検出回路)、46‥タッチセンサ、47‥Xライン電極(センサ電極)、48‥Yライン電極(センサ電極)、60‥チップ電極(ペン側電極)、62‥アッパー電極(ペン側電極)、70‥入出力モデル、80‥表面カバー、82‥保護フィルム、90‥摩耗部、92‥残存部

Claims (19)

  1.  複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれたペン状態検出回路であって、
     電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、
     取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って前記電子ペンの状態を推定する推定ステップと、
     を実行し、
     前記電子ペン又は前記電子機器の外形的変化に応じて異なる入出力モデルを設定可能に構成されるペン状態検出回路。
  2.  前記外形的変化は、静的には同じ情報で示される状態であるにもかかわらず、時間によって変化する、前記電子ペンと前記電子機器の間のインターフェースの電気的あるいは磁気的結合状態の動的な変化である、
     請求項1に記載のペン状態検出回路。
  3.  前記電子機器のタッチ面が平坦であるか、湾曲又は屈曲しているかに応じて異なる入出力モデルを設定可能に構成される、
     請求項1に記載のペン状態検出回路。
  4.  前記電子機器のタッチ面に設けられる保護フィルムの有無、又は該保護フィルムの厚みに応じて異なる入出力モデルを設定可能に構成される、
     請求項1に記載のペン状態検出回路。
  5.  前記ペン側電極の摩耗の有無又は摩耗の度合いに応じて異なる入出力モデルを設定可能に構成される、
     請求項1に記載のペン状態検出回路。
  6.  前記電子ペンの検出を契機として前記入出力モデルを設定可能に構成される、
     請求項1~5のいずれか1項に記載のペン状態検出回路。
  7.  複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれたペン状態検出回路が、
     電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、
     取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って、前記電子ペンの状態を推定する推定ステップと、
     を実行し、
     前記電子ペン又は前記電子機器の外形的変化に応じて異なる入出力モデルが設定される、ペン状態検出方法。
  8.  請求項1~6のいずれか1項に記載のペン状態検出回路と、
     前記電子ペン又は前記電子機器の外形に関するモデル選択情報を取得する情報取得部と、
     前記情報取得部により取得された前記モデル選択情報に対応する前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、
     を備えるペン状態検出装置。
  9.  請求項1~6のいずれか1項に記載のペン状態検出回路と、
     前記電子ペン又は前記電子機器の外形に関するモデル選択情報を取得する情報取得部と、
     前記情報取得部が取得した前記モデル選択情報に応じて選択された前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、
     を備えるペン状態検出装置との間で相互に通信可能に構成されるパラメータ提供装置であって、
     前記モデルパラメータを前記モデル選択情報と対応付けて記憶する記憶部と、
     前記ペン状態検出装置から前記モデル選択情報を受信した場合、前記モデル選択情報に対応するモデルパラメータを前記記憶部から読み出して前記ペン状態検出装置に送信する制御を行う制御部と、
     を備えるパラメータ提供装置。
  10.  複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれたペン状態検出回路であって、
     電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、
     取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って、前記電子ペンの状態を推定する推定ステップと、
     を実行し、
     前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに応じて異なる入出力モデルを設定可能に構成されるペン状態検出回路。
  11.  前記電子ペン及び前記タッチセンサの種別の組み合わせに応じて異なる入出力モデルを設定可能に構成される、
     請求項10に記載のペン状態検出回路。
  12.  前記電子ペン、前記電子機器、及び前記タッチセンサのうちのいずれか1つの種別及びユーザの組み合わせに応じて異なる入出力モデルを設定可能に構成される、
     請求項10に記載のペン状態検出回路。
  13.  前記電子ペンの検出を契機として前記入出力モデルを設定可能に構成される、
     請求項10~12のいずれか1項に記載のペン状態検出回路。
  14.  複数のセンサ電極を面状に配置してなる静電容量方式のタッチセンサを有する電子機器に組み込まれたペン状態検出回路が、
     電子ペンが有するペン側電極の接近に伴う静電容量の変化を示す信号分布を前記タッチセンサから取得する取得ステップと、
     取得された前記信号分布に関する特徴量を入力とし、前記電子ペンの状態量を出力とする入出力モデルに従って、前記電子ペンの状態を推定する推定ステップと、
     を実行し、
     前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに応じて異なる入出力モデルが設定されるペン状態検出方法。
  15.  請求項10~13のいずれか1項に記載のペン状態検出回路と、
     前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに関するモデル選択情報を取得する情報取得部と、
     前記情報取得部により取得された前記モデル選択情報に対応する前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、
     を備えるペン状態検出装置。
  16.  請求項10~13のいずれか1項に記載のペン状態検出回路と、
     前記電子ペン、前記電子機器、及び前記タッチセンサの種別、並びにユーザのうちの2以上の組み合わせに関するモデル選択情報を取得する情報取得部と、
     前記情報取得部により取得された前記モデル選択情報に対応する前記入出力モデルを特定可能なモデルパラメータを前記ペン状態検出回路に設定するパラメータ設定部と、
     を備えるペン状態検出装置との間で相互に通信可能に構成されるパラメータ提供装置であって、
     前記モデルパラメータを前記モデル選択情報と対応付けて記憶する記憶部と、
     前記ペン状態検出装置から前記モデル選択情報を受信した場合、前記モデル選択情報に対応するモデルパラメータを前記記憶部から読み出して前記ペン状態検出装置に送信する制御を行う制御部と、
     を備えるパラメータ提供装置。
  17.  前記モデルパラメータを前記モデル選択情報と対応付けて記憶するパラメータ提供装置と双方向に通信可能であり、
     前記パラメータ設定部は、前記モデル選択情報に対応する前記モデルパラメータを前記パラメータ提供装置から取得して設定する、
     請求項8又は15に記載のペン状態検出装置。
  18.  前記モデルパラメータを前記モデル選択情報と対応付けて記憶するパラメータ提供装置と前記電子ペンを経由して双方向に通信可能であり、
     前記パラメータ設定部は、前記モデル選択情報に対応する前記モデルパラメータを前記電子ペンから取得して設定する、
     請求項8又は15に記載のペン状態検出装置。
  19.  複数組のモデルパラメータを記憶するメモリをさらに備え、
     前記パラメータ設定部は、前記メモリに記憶されている複数組のモデルパラメータの中から、前記モデル選択情報に対応する前記モデルパラメータを選択して設定する、
     請求項8又は15に記載のペン状態検出装置。
PCT/JP2020/009227 2020-03-04 2020-03-04 入出力モデルを設定可能なペン状態検出回路 WO2021176609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/009227 WO2021176609A1 (ja) 2020-03-04 2020-03-04 入出力モデルを設定可能なペン状態検出回路
JP2022504852A JP7472262B2 (ja) 2020-03-04 2020-03-04 入出力モデルを設定可能なペン状態検出回路
US17/876,963 US20220365621A1 (en) 2020-03-04 2022-07-29 Pen state detection circuit, method, and device, and parameter supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009227 WO2021176609A1 (ja) 2020-03-04 2020-03-04 入出力モデルを設定可能なペン状態検出回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/876,963 Continuation US20220365621A1 (en) 2020-03-04 2022-07-29 Pen state detection circuit, method, and device, and parameter supply device

Publications (1)

Publication Number Publication Date
WO2021176609A1 true WO2021176609A1 (ja) 2021-09-10

Family

ID=77613188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009227 WO2021176609A1 (ja) 2020-03-04 2020-03-04 入出力モデルを設定可能なペン状態検出回路

Country Status (3)

Country Link
US (1) US20220365621A1 (ja)
JP (1) JP7472262B2 (ja)
WO (1) WO2021176609A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437921A (ja) * 1990-06-01 1992-02-07 Canon Inc アナログ式タッチパネル制御装置
EP2192750A2 (en) * 2008-11-10 2010-06-02 Lg Electronics Inc. Mobile terminal using flexible display and method of controlling the mobile terminal
JP2011180914A (ja) * 2010-03-02 2011-09-15 Toshiba Tec Corp 表示入力装置および表示入力方法
US20130082950A1 (en) * 2011-09-29 2013-04-04 Samsung Electronics Co. Ltd. Input apparatus and input method of a portable terminal using a pen
JP2017511930A (ja) * 2014-02-26 2017-04-27 クアルコム,インコーポレイテッド ホストベースのタッチ処理に関する最適化
JP2019156263A (ja) * 2018-03-15 2019-09-19 株式会社東海理化電機製作所 操作位置検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839400B2 (en) * 2002-01-25 2010-11-23 Autodesk, Inc. Volume management system for volumetric displays
US20090085892A1 (en) * 2006-03-01 2009-04-02 Kenichiro Ishikura Input device using touch panel
JP2010244772A (ja) * 2009-04-03 2010-10-28 Sony Corp 静電容量式タッチ部材及びその製造方法、並びに静電容量式タッチ検出装置
KR101995403B1 (ko) * 2012-09-14 2019-07-02 삼성전자 주식회사 스타일러스 펜, 이를 이용한 입력 처리 방법 및 그 전자 장치
WO2019013222A1 (ja) * 2017-07-14 2019-01-17 株式会社ワコム ペン座標とポインタの表示位置との間のズレを補正する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437921A (ja) * 1990-06-01 1992-02-07 Canon Inc アナログ式タッチパネル制御装置
EP2192750A2 (en) * 2008-11-10 2010-06-02 Lg Electronics Inc. Mobile terminal using flexible display and method of controlling the mobile terminal
JP2011180914A (ja) * 2010-03-02 2011-09-15 Toshiba Tec Corp 表示入力装置および表示入力方法
US20130082950A1 (en) * 2011-09-29 2013-04-04 Samsung Electronics Co. Ltd. Input apparatus and input method of a portable terminal using a pen
JP2017511930A (ja) * 2014-02-26 2017-04-27 クアルコム,インコーポレイテッド ホストベースのタッチ処理に関する最適化
JP2019156263A (ja) * 2018-03-15 2019-09-19 株式会社東海理化電機製作所 操作位置検出装置

Also Published As

Publication number Publication date
US20220365621A1 (en) 2022-11-17
JPWO2021176609A1 (ja) 2021-09-10
JP7472262B2 (ja) 2024-04-22

Similar Documents

Publication Publication Date Title
US10649552B2 (en) Input method and electronic device using pen input device
CN106104434B (zh) 使用触摸屏设备确定用户利手和定向
KR101793769B1 (ko) 추정 편향 응답을 사용하여 물체 정보를 결정하기 위한 시스템 및 방법
US8269720B2 (en) Input device having the function of recognizing hybrid coordinates and operating method of the same
US8836653B1 (en) Extending host device functionality using a mobile device
CN103793080A (zh) 电子设备和绘制方法
US10521105B2 (en) Detecting primary hover point for multi-hover point device
KR20140037026A (ko) 추정 강체 운동 응답을 사용하여 물체 정보를 결정하기 위한 시스템 및 방법
CN108475137A (zh) 使用混合估计方法减轻共模显示噪声
KR20150021975A (ko) 전자 디바이스용 입력 방법 및 입력 디바이스, 이러한 방법을 수행하는 명령이 저장되어 있는 비일시적 컴퓨터 판독 가능 저장 매체
WO2020202734A1 (ja) ペン状態検出回路、システム及び方法
KR20160013009A (ko) 정보 처리 장치, 정보 처리 방법 및 프로그램
CN106404234A (zh) 力传感器
WO2018098771A1 (zh) 确定方位角或姿态的方法、触控输入装置、触控屏及系统
WO2021176609A1 (ja) 入出力モデルを設定可能なペン状態検出回路
US9733775B2 (en) Information processing device, method of identifying operation of fingertip, and program
US10338718B2 (en) Likelihood detection of pressing finger in two-finger touch
US20240053835A1 (en) Pen state detection circuit and method, and input system
JP7199607B1 (ja) 情報処理システム及び情報処理プログラム
WO2023281954A1 (ja) 情報処理装置、方法、プログラム及びシステム
KR101460531B1 (ko) 터치 인식 장치, 터치 인식 장치의 구동 방법, 및 이를 이용한 단말기
US20160098080A1 (en) Finger-touch tracking system
CN114627243A (zh) 一种触控笔三维模型自动构建装置、方法及计算机可读介质
TWI557608B (zh) 電子裝置的輸入裝置及其設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922650

Country of ref document: EP

Kind code of ref document: A1