WO2021176588A1 - ウェアラブルデバイス、発汗分析装置、および発汗分析方法 - Google Patents

ウェアラブルデバイス、発汗分析装置、および発汗分析方法 Download PDF

Info

Publication number
WO2021176588A1
WO2021176588A1 PCT/JP2020/009102 JP2020009102W WO2021176588A1 WO 2021176588 A1 WO2021176588 A1 WO 2021176588A1 JP 2020009102 W JP2020009102 W JP 2020009102W WO 2021176588 A1 WO2021176588 A1 WO 2021176588A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
sweat
base material
light
wearable device
Prior art date
Application number
PCT/JP2020/009102
Other languages
English (en)
French (fr)
Inventor
優生 橋本
石原 隆子
啓 桑原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022504835A priority Critical patent/JP7420213B2/ja
Priority to PCT/JP2020/009102 priority patent/WO2021176588A1/ja
Priority to US17/909,252 priority patent/US20230089467A1/en
Publication of WO2021176588A1 publication Critical patent/WO2021176588A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4261Evaluating exocrine secretion production
    • A61B5/4266Evaluating exocrine secretion production sweat secretion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B10/0064Devices for taking samples of body liquids for taking sweat or sebum samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/14517Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for sweat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • A61B2560/0412Low-profile patch shaped housings

Definitions

  • the present invention relates to a wearable device, a perspiration analyzer, and a perspiration analysis method.
  • Living organisms such as the human body have tissues that perform electrical activities such as muscles and nerves, and in order to keep them operating normally, the concentration of electrolytes in the body is kept constant mainly by the functions of the autonomic nervous system and endocrine system. There is a mechanism to keep it.
  • Non-Patent Document 1 as a conventional typical technique for measuring the amount of sweating, the change in the amount of water vapor during sweating is measured.
  • the amount of perspiration is estimated based on the humidity difference from the outside air, it is necessary to replace the air in the measurement system with an air pump.
  • miniaturization of the device is indispensable even when the measurement technology for monitoring the sweating amount of the user and the electrolyte concentration in the sweat is realized by the wearable device.
  • the air pump for replacing the air in the measurement system occupies a relatively large volume, so that the entire device It can be said that there is a problem in miniaturization.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a wearable device capable of measuring a physical quantity of sweat without using an air pump for replacing air in a measurement system. And.
  • the wearable device is a wearable device to be attached to a living body, and includes a base material having a first surface and a second surface opposite to the first surface, and the above-mentioned.
  • a second flow path that is connected and the other end opens to the second surface, and a second flow path that is provided on the second surface and is secreted from the skin of the living body that is transported from the first flow path via the second flow path.
  • a water-absorbing structure configured to absorb the sweat, a light source arranged on the base material and configured to emit light toward the second flow path, and the light source facing the light source. It is provided with a light receiving element arranged on a base material, receiving the light emitted from the light source and transmitted through the second flow path, and converting the received light into an electric signal and outputting the light.
  • the diameter of the second flow path is smaller than the diameter of the first flow path.
  • the sweat analysis apparatus relates to the sweating of the living body based on the frequency of occurrence of the maximum value or the minimum value of the electric signal output from the wearable device and the light receiving element. It includes a first calculation circuit configured to calculate a physical quantity, and an output unit configured to output the calculated physical quantity related to sweating.
  • the first surface is arranged in contact with the skin of a living body, and the first surface is formed on a base material having a second surface opposite to the first surface.
  • the water absorbing structure provided on the second surface is formed in the third step of absorbing the sweat transported from the first flow path through the second flow path and inside the base material.
  • one end is an opening to the first surface of the base material, and one end is a first flow path extending along the direction of the second surface opposite to the first surface of the base material.
  • a second flow path that is connected to the other end and has a smaller diameter than the first flow path that opens on the second surface, and water absorption that absorbs sweat transported from the first flow path via the second flow path. It has a structure. Therefore, the physical quantity related to sweat can be measured without using an air pump for replacing the air in the measurement system.
  • FIG. 1 is a cross-sectional view of a wearable device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an electric signal obtained by the wearable device according to the present embodiment.
  • FIG. 3A is a diagram for explaining the state of sweat in the flow path corresponding to the electric signal of FIG. 2.
  • FIG. 3B is a diagram for explaining the state of sweat in the flow path corresponding to the electric signal of FIG. 2.
  • FIG. 3C is a diagram for explaining the state of sweat in the flow path corresponding to the electric signal of FIG.
  • FIG. 4 is a block diagram showing a functional configuration of a sweat analysis apparatus including a wearable device according to the present embodiment.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the sweat analysis apparatus including the wearable device according to the present embodiment.
  • FIG. 6 is a flowchart for explaining the operation of the sweat analysis apparatus including the wearable device according to the present embodiment.
  • FIG. 1 is a diagram schematically showing a cross section of the wearable device 1.
  • the wearable device 1 collects the base material 10 to be attached to the user (living body) and the sweat SW secreted from the sweat glands of the user's skin SK provided on the base material 10 in a liquid state, and collects them in a liquid state at regular volume intervals. It is provided with a mechanism for discharging the sweat SW to the outside of the second flow path 12.
  • the mechanism for collecting the sweat SW and discharging it to the outside of the second flow path 12 has a first surface 10a, and the first surface 10a is arranged in contact with the user's skin SK.
  • a first flow path 11 formed on the material 10 and the base material 10, one end opening on the first surface 10a and extending along the direction of the second surface 10b opposite to the first surface 10a of the base material 10.
  • a second flow path 12 formed on the base material 10 and connected to multiple ends of the first flow path 11 and opened on the second surface 10b, and a second flow path 12 provided on the second surface 10b, from the first flow path 11 to the second flow path.
  • FIG. 1 is a schematic cross-sectional view of the wearable device 1.
  • the wearable device 1 includes a base material 10 mounted on the user, a first flow path 11 and a second flow path 12 formed on the base material 10, a water absorption structure 13, a first optical waveguide 14a, and a second. It includes an optical waveguide 14b, a light source 15, and a light receiving element 16.
  • the base material 10 is arranged so that the first surface 10a is in contact with the user's skin SK.
  • the base material 10 has a second surface 10b opposite to the first surface 10a.
  • the second surface 10b is a surface formed on the base material 10 at a position away from the skin SK.
  • the base material 10 has, for example, a rectangular parallelepiped outer shape.
  • a non-conductive or conductive resin, alloy, or the like can be used, but in the present embodiment, a case where a non-conductive material is used will be described as an example.
  • the first flow path 11 is formed on the base material 10, and one end of the first flow path 11 opens on the first surface 10a and extends along the direction of the second surface 10b of the base material 10. One end of the first flow path 11 forms an opening 11a on the first surface 10a. Further, the other end of the first flow path 11 is connected to the second flow path 12 described later.
  • the opening 11a formed on the first surface 10a on one end side of the first flow path 11 is arranged in contact with the skin SK, and sweat SW is collected from the opening 11a.
  • the first flow path 11 has, for example, a circular or rectangular cross-sectional shape.
  • the first flow path 11 can be formed to have a flow path width larger than the flow path length.
  • the second flow path 12 is formed in the base material 10, one end of which is connected to the other end of the first flow path 11, and the other end of which is open to the second surface 10b of the base material 10. On the second surface 10b, an opening 12a is formed in which the second flow path 12 penetrates the base material 10. Further, as shown in FIG. 1, the diameter of the second flow path 12 is sufficiently smaller than the diameter of the first flow path 11.
  • the second flow path has a thin tube and has a cross-sectional area of about 1 mm 2 or 1 mm 2 or less.
  • the cross-sectional shape of the second flow path 12 can be, for example, a circle or a rectangle. Further, the flow path length of the second flow path 12 may be formed to be longer than the flow path length of the first flow path 11.
  • the sweat SW secreted from the sweat glands is used by using the second flow path 12 having a cross-sectional area sufficiently smaller than the cross-sectional area of the first flow path 11.
  • the sweat SW can be transported from the first flow path 11 to the second flow path 12 by further utilizing the capillary phenomenon.
  • the inner wall of the second flow path 12 may be surface-processed with a material having high wettability against sweat SW.
  • the water absorption structure 13 is provided on the second surface 10b of the base material 10 and absorbs the sweat SW transported from the first flow path 11 to the second flow path 12. More specifically, the water absorbing structure 13 is arranged in contact with the opening 12a formed at one end of the second flow path 12. The water absorption structure 13 absorbs the sweat SW transported from the first flow path 11 to the second flow path 12 from the contact region with the opening 12a.
  • the water-absorbing structure 13 can be realized by fibers such as cotton and silk, a porous ceramic substrate, a hydrophilic flow path, and the like. Further, the water absorption structure 13 can have a rectangular sheet-like or plate-like shape corresponding to the shape of the second surface 10b of the base material 10, and is an opening 12a which is an outlet of the second flow path 12. Cover.
  • the sweat SW when sweat SW is secreted from the sweat glands of the skin SK, the sweat SW flows into the first flow path 11 from the opening 11a which is the entrance of the first flow path 11, and the sweat SW further flows into the first flow path 11. It flows into the flow path 12 and reaches the opening 12a, which is the outlet of the second flow path 12. Then, as shown in FIG. 3B, the water absorption structure 13 absorbs the sweat SW held in the second flow path 12. Once the sweat SW held in the second flow path 12 is absorbed by the water absorbing structure 13, the sweat SW does not exist in the second flow path 12.
  • the sweat SW secreted from the sweat glands of the user's skin SK increases again or is continuously secreted, as shown in FIG. 3C
  • the sweat SW is transported into the second flow path 12 and has a water absorption structure again. It comes into contact with the body 13 and absorbs the sweat SW corresponding to the volume of the second flow path 12. In this way, with the secretion of the sweat SW, the cycle of appearance and disappearance of the sweat SW in the second flow path 12 is repeated at a cycle linked to the sweating rate.
  • the light source 15 is arranged on the base material 10 and emits light toward the second flow path 12.
  • the light source 15 is composed of, for example, a laser diode. As shown in FIG. 1, the light source 15 may be arranged on the side surface of the base material 10, for example.
  • the light receiving element 16 is composed of a photodiode or the like, and is arranged on the base material 10 so as to face the light source 15.
  • the light receiving element 16 receives light emitted from the light source 15 and transmitted through the second flow path 12 through which the sweat SW is transported.
  • the light receiving element 16 converts the received light into an electric signal and outputs the light.
  • the light receiving element 16 may be arranged on the side surface of the base material 10 so as to face the light source 15, for example. In this way, the light source 15 and the light receiving element 16 are arranged so as to sandwich the second flow path 12, and the optical paths from the light source 15 to the light receiving element 16 intersect the second flow path 12.
  • the first optical waveguide 14a and the second optical waveguide 14b form an optical path from the light source 15 to the light receiving element 16. More specifically, the first optical waveguide 14a is provided inside the base material 10 and is arranged between the light source 15 and the second flow path 12. The second optical waveguide 14b is provided inside the base material 10 and is arranged between the second flow path 12 and the light receiving element 16.
  • a light source 15 is provided at one end of the first optical waveguide 14a, and the light emitted from the light source 15 propagates to the other end.
  • the light output from the other end of the first optical waveguide 14a passes through the second flow path 12 and is incident on one end of the second optical waveguide 14b.
  • the second optical waveguide 14b propagates the incident light to the other end side.
  • a light receiving element 16 is provided at the other end of the second optical waveguide 14b, and the propagated light is received.
  • the wearable device 1 is manufactured, for example, by forming an optical waveguide that functions as a core having a first optical waveguide 14a and a second optical waveguide 14b, and arranging a light source 15 and a light receiving element 16 at both ends. Further, a base material 10 that functions as a clad having a refractive index lower than that of the core is formed so as to cover the periphery of the optical waveguide. After that, the first flow path 11 is formed on the first surface 10a of the base material 10, and the second flow path is further formed on the second surface 10b of the base material 10. Finally, the wearable device 1 is formed by bonding the surface of the water absorbing structure 13 formed in a plate shape to the second surface 10b of the base material 10 on which the opening 12a, which is the outlet of the second flow path 12, is formed. Can be.
  • the sweat analysis device 100 includes a wearable device 1, an acquisition unit 20, a first calculation circuit 21, a second calculation circuit 22, a storage unit 23, and an output unit 24.
  • the acquisition unit 20 acquires the electric signal obtained by the wearable device 1.
  • the acquisition unit 20 performs signal processing such as amplification of the acquired electric signal, noise removal, and AD conversion.
  • the time-series data of the acquired electric signal is stored in the storage unit 23.
  • the time-series data of the electric signal acquired by the acquisition unit 20 is, for example, as shown in FIG. 2, a waveform having a peak corresponding to the cycle of appearance and disappearance of the sweat SW in the second flow path 12 described above.
  • FIG. 2 shows an electric signal showing a light receiving amount (light intensity) which is a physical quantity related to sweat SW optically measured by the wearable device 1 by the light source 15, the light receiving element 16, the first optical waveguide 14a, and the second optical waveguide 14b. This is an example.
  • FIG. 2 shows the amount of light received by the light receiving element 16, and the horizontal axis shows the time. Further, FIGS. 3A, 3B, and 3C show the states of the sweat SW flowing through the second flow path 12 at each time (a), (b), and (c) of FIG.
  • the time-series data of the electric signal showing the amount of received light in FIG. 2 has a waveform such as a periodic pulse waveform.
  • the sweat SW is transported to the second flow path 12, the water level of the sweat SW rises with time, and the light source 15 to the light receiving element 16 Crosses the optical path of.
  • the amount of light received (light intensity) transmitted through the liquid layer of the sweat SW is smaller than that in the case where air is contained in the second flow path 12 as a medium. Further, the amount of received light changes according to the amount of sweat SW transported to the second flow path 12, that is, the amount of the air layer and sweat SW contained in the medium.
  • the light emitted from the light source 15 is received by the light receiving element 16 only through the air layer of the second flow path 12.
  • the sweat SW is transported to the second flow path 12 again, and the light from the light source 15 is the air layer.
  • the medium changes and permeates in the order of the liquid layer of the sweat SW, and is received by the light receiving element 16.
  • the first calculation circuit 21 calculates the physical quantity related to sweating from the frequency of occurrence of the maximum value or the minimum value of the electric signal. For example, in the first calculation circuit 21, the number of appearances (or disappearances) of the sweat SW in the second flow path 12 in the volume of the second flow path 12 obtained in advance from the time series data of the electric signal (FIG. 2). The amount of sweating is calculated by multiplying the number of peaks).
  • the first calculation circuit 21 contacts the volume of the second flow path 12 with the cycle of appearance (or disappearance) of the sweat SW in the second flow path 12 and the opening 11a which is the inlet of the first flow path 11.
  • the sweating rate per unit area is calculated by dividing by the area of the skin SK.
  • the cross-sectional area of the opening 11a can be used as the area of the skin SK.
  • the second calculation circuit 22 calculates the concentration of a predetermined component contained in the sweat SW from the maximum value or the minimum value of the electric signal obtained by the wearable device 1. For example, the second calculation circuit 22 calculates the concentration of components (water, sodium chloride, urea, lactic acid, etc.) contained in the sweat SW. More specifically, the second calculation circuit 22 uses the laser wavelength of the light source 15 as the absorption wavelength of the component of the specific sweat SW, and the light received by the light receiving element 16 when the sweat SW is transported to the second flow path 12. A specific sweat component concentration can be calculated from the amount of light received.
  • the storage unit 23 stores the time-series data of the electric signal acquired from the wearable device 1 by the acquisition unit 20. Further, the storage unit 23 stores in advance information about the volume of the second flow path 12 and the laser wavelength of the light source 15.
  • the output unit 24 outputs the sweating amount, the sweating speed, and the component concentration of the sweat SW calculated by the first calculation circuit 21 and the second calculation circuit 22.
  • the output unit 24 can display the calculation result on a display device (not shown), for example.
  • the output unit 24 may send the calculation result from the communication I / F 105 described later to an external communication terminal device (not shown).
  • the sweat analysis apparatus 100 is provided by, for example, a computer including an MCU 101, a memory 102, an AFE103, an ADC 104, and a communication I / F 105 connected via a bus, and a program for controlling these hardware resources. It can be realized.
  • an externally provided wearable device 1 is connected to the sweat analysis apparatus 100 via a bus.
  • the sweat analysis apparatus 100 includes a power supply 106, and supplies power to the entire apparatus other than the wearable device 1 shown in FIGS. 4 and 5.
  • the memory 102 stores in advance a program for the MCU (MicroControl Unit) 101 to perform various controls and calculations.
  • the MCU 101 and the memory 102 realize each function of the sweat analysis apparatus 100 including the acquisition unit 20, the first calculation circuit 21, and the second calculation circuit 22 shown in FIG.
  • the AFE (Analog Front End) 103 is a circuit that amplifies a weak electric signal indicating an analog current value measured by the wearable device 1.
  • the ADC (Analog-to-Digital Converter) 104 is a circuit that converts an analog signal amplified by the AFE 103 into a digital signal at a predetermined sampling frequency.
  • the AFE 103 and the ADC 104 realize the acquisition unit 20 described with reference to FIG.
  • the memory 102 is realized by a non-volatile memory such as a flash memory or a volatile memory such as a DRAM.
  • the memory 102 temporarily stores the time series data of the signal output from the ADC 104.
  • the memory 102 realizes the storage unit 23 described with reference to FIG.
  • the memory 102 has a program storage area for storing a program for the sweat analysis apparatus 100 to perform the sweat analysis process. Further, for example, it may have a backup area for backing up the above-mentioned data, programs, and the like.
  • the communication I / F 105 is an interface circuit for communicating with various external electronic devices via the communication network NW.
  • the communication I / F105 for example, communication interfaces and antennas compatible with wired and wireless data communication standards such as LTE, 3G, 4G, 5G, Bluetooth (registered trademark), Bluetooth Low Energy, and Ethernet (registered trademark) are used. Be done.
  • the output unit 24 described with reference to FIG. 4 is realized by the communication I / F 105.
  • the sweat analysis apparatus 100 acquires time information from a clock built in the MCU 101 or a time server (not shown) and uses it as a sampling time.
  • the acquisition unit 20 acquires an electric signal indicating the amount of received light from the wearable device 1 (step S1).
  • the acquisition unit 20 amplifies the electric signal (step S2). More specifically, the AFE 103 amplifies the weak current signal measured by the wearable device 1.
  • the acquisition unit 20 AD-converts the electric signal amplified in step S2 (step S3).
  • the ADC 104 converts the analog signal amplified by the AFE 103 into a digital signal at a predetermined sampling frequency.
  • the time-series data of the electric signal converted into the digital signal is stored in the storage unit 23 (step S4).
  • the first calculation circuit 21 calculates the sweating amount of the user from the frequency of occurrence of the maximum value or the minimum value of the acquired electric signal (step S5). After that, the first calculation circuit 21 calculates the sweating rate from the frequency of occurrence of the maximum value or the minimum value of the electric signal (step S6).
  • the second calculation circuit 22 calculates the concentration of a predetermined component contained in the sweat SW from the maximum value or the minimum value of the acquired electric signal (step S7). After that, when the measurement is completed (step S8: YES), the output unit 24 outputs a calculation result including the sweating amount, the sweating rate, and the component concentration (step S9). On the other hand, if the measurement is not completed (step S8: NO), the process returns to step S1.
  • the first calculation circuit 21 may be configured to calculate either the amount of perspiration or the rate of perspiration. Further, depending on the setting, it is possible to calculate one or two values of the sweating amount, the sweating rate, and the component concentration, and the order in which these values are calculated is arbitrary.
  • a second flow path 12 smaller than the diameter of the first flow path 11 is formed on the base material 10, and the sweat SW becomes the first as the sweating occurs.
  • the sweat SW becomes the first as the sweating occurs.
  • the water absorption structure 13 provided in the opening 12a which is the outlet of the second flow path 12
  • the sweat SW corresponding to the volume of the second flow path 12 is released. It is absorbed by the water absorption structure 13. Therefore, the physical quantity related to sweat can be measured without using an air pump. Further, from the measured physical quantity related to sweat, the physical quantity related to sweating such as the amount of sweating and the sweating rate and the components contained in sweat can be measured.
  • the wearable device 1 collects the sweat SW in a liquid state without using an air pump and discharges the sweat SW from the second flow path 12 at regular intervals, so that the size of the wearable device 1 is further reduced. can. As a result, the size of the perspiration analyzer 100 can be reduced.
  • the case where the first optical waveguide 14a and the second optical waveguide 14b are provided on the base material 10 has been described as an example. However, if an optical path from the light source 15 to the light receiving element 16 intersecting the second flow path 12 can be formed, the optical waveguide may be omitted.
  • 1 ... wearable device 10 ... base material, 10a ... first surface, 10b ... second surface, 11 ... first flow path, 11a, 12a ... opening, 12 ... second flow path, 13 ... water absorbing structure, 14a ... 1st optical waveguide, 14b ... 2nd optical waveguide, 15 ... light source, 16 ... light receiving element, 20 ... acquisition unit, 21 ... first calculation circuit, 22 ... second calculation circuit, 23 ... storage unit, 24 ... output unit, 100 ... sweat analyzer, 101 ... MCU, 102 ... memory, 103 ... AFE, 104 ... ADC, 105 ... communication I / F, 106 ... power supply, SW ... sweat, SK ... skin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

生体に装着されるウェアラブルデバイス(1)であって、第1面(10a)を有する基材(10)と、基材(10)に形成され、一端が第1面(10a)に開口し、第1面(10a)と反対側の第2面(10b)の方向に沿って延びる第1流路(11)と、基材(10)に形成され、一端が第1流路(11)の他端と接続し、他端が第2面(10b)に開口する第2流路(12)と、第2面(10b)に設けられ、第1流路(11)から第2流路(12)を介して輸送される生体の皮膚(SK)から分泌された汗(SW)を吸収する吸水構造体(13)と、第2流路(12)に向けて光を出射する光源(15)と向かい合うように基材(10)に配置され、光源(15)から出射され、第2流路(12)を透過した光を受光し、受光された光を電気信号に変換して出力する受光素子(16)とを備え、第2流路(12)の径は、第1流路(11)の径よりも小さい。

Description

ウェアラブルデバイス、発汗分析装置、および発汗分析方法
 本発明は、ウェアラブルデバイス、発汗分析装置、および発汗分析方法に関する。
 人体などの生体には筋肉や神経等の電気的な活動を行う組織があり、これらを正常に稼働させ続けるために、主に自律神経系と内分泌系の働きにより、体内の電解質濃度を一定に保つ仕組みが備わっている。
 例えば、人体が暑熱環境に長時間にわたって暴露されたり、過度な運動等を行うと、発汗で体内の水分が大量に失われ、電解質濃度が正常値から外れることが生じ得る。このような場合、熱中症に代表されるさまざまな諸症状が人体に生じることとなる。そのため、身体の脱水状況を把握する上では、発汗量や汗の中の電解質濃度をモニタリングすることは、有益な手法の1つといえる。
 例えば、非特許文献1では、従来の代表的な発汗量の計測技術として、発汗時の水蒸気量の変化を計測している。非特許文献1に記載の技術では、外気との湿度差に基づいて発汗量が推定されるため、エアーポンプを用いて計測系の空気を入れ替える必要がある。
 ところで、近年、ICT産業の発展やコンピュータの小型化および軽量化により、ユーザに装着されるウェアラブルデバイスが普及しつつある。ウェアラブルデバイスは、ヘルスケアやフィットネス分野での活用が注目されている。
 例えば、ユーザの発汗量や汗の中の電解質濃度をモニタリングする測定技術をウェアラブルデバイスで実現する場合においても、デバイスの小型化は必要不可欠である。例えば、非特許文献1に記載されている発汗量の測定技術をウェアラブルデバイスで実現しようとした場合、計測系の空気を入れ替えるためのエアーポンプが比較的大きな体積を占めてしまうため、装置全体の小型化に課題があるといえる。
鶴岡 典子,河野 隆宏,松永 忠雄,永富 良一,芳賀 洋一,"小型発汗計の開発とストレス負荷及び温熱負荷時の発汗計測",生体医工学,54巻5号,pp.207-217,2016.
 本発明は、上述した課題を解決するためになされたものであり、計測系の空気を入れ替えるためのエアーポンプを用いることなく、汗の物理量を測定することができるウェアラブルデバイスを提供することを目的とする。
 上述した課題を解決するために、本発明に係るウェアラブルデバイスは、生体に装着されるウェアラブルデバイスであって、第1面と前記第1面と反対側の第2面を有する基材と、前記基材に形成され、一端が前記第1面に開口し、前記第2面の方向に沿って延びる第1流路と、前記基材に形成され、一端が前記第1流路の他端と接続し、他端が前記第2面に開口する第2流路と、前記第2面に設けられ、前記第1流路から前記第2流路を介して輸送される前記生体の皮膚から分泌された汗を吸収するように構成された吸水構造体と、前記基材に配置され、前記第2流路に向けて光を出射するように構成された光源と、前記光源と向かい合うように前記基材に配置され、前記光源から出射され、前記第2流路を透過した前記光を受光し、受光された前記光を電気信号に変換して出力するように構成された受光素子とを備え、前記第2流路の径は、前記第1流路の径よりも小さいことを特徴とする。
 上述した課題を解決するために、本発明に係る発汗分析装置は、上記ウェアラブルデバイスと、前記受光素子より出力された前記電気信号の極大値または極小値の発生の頻度より、前記生体の発汗に関する物理量を算出するように構成された第1算出回路と、算出された前記発汗に関する物理量を出力するように構成された出力部とを備える。
 上述した課題を解決するために、本発明に係る発汗分析方法は、第1面が生体の皮膚に接して配置され、前記第1面と反対側の第2面を有する基材に形成され、一端が前記第1面に開口し、前記第2面の方向に沿って延びる第1流路に前記皮膚から分泌された汗を輸送させる第1ステップと、前記基材に形成され、前記第1流路の径よりも小さい径を有し、一端が前記第1流路の他端と接続し、他端が前記第2面に開口する第2流路に前記汗を輸送させる第2ステップと、前記第2面に設けられた吸水構造体に、前記第1流路から前記第2流路を介して輸送される前記汗を吸収させる第3ステップと、前記基材の内部に形成され、前記第2流路を交差する光導波路の一端に設けられた光源から、前記光導波路の他端に向けて光を出射する第4ステップと、前記光導波路の前記他端に設けられた受光素子が、前記光源から出射され、前記第2流路を透過した前記光を受光し、受光された前記光を電気信号に変換して出力する第5ステップと、前記第5ステップで出力された前記電気信号から、前記生体の発汗に関する物理量および前記汗に含まれる所定の成分の濃度の少なくともいずれかを算出する第6ステップと、前記第6ステップでの算出結果を出力する第7ステップとを備える。
 本発明によれば、一端が基材の第1面に開口し、基材の第1面と反対側の第2面の方向に沿って延びる第1流路と、一端が第1流路の他端と接続し、他端が第2面に開口する第1流路よりも径が小さい第2流路と、第1流路から第2流路を介して輸送される汗を吸収する吸水構造体とを備える。そのため、計測系の空気を入れ替えるためのエアーポンプを用いることなく、汗に関する物理量を測定できる。
図1は、本発明の実施の形態に係るウェアラブルデバイスの断面図である。 図2は、本実施の形態に係るウェアラブルデバイスで得られた電気信号を説明するための図である。 図3Aは、図2の電気信号に対応する流路内の汗の状態を説明するための図である。 図3Bは、図2の電気信号に対応する流路内の汗の状態を説明するための図である。 図3Cは、図2の電気信号に対応する流路内の汗の状態を説明するための図である。 図4は、本実施の形態に係るウェアラブルデバイスを備える発汗分析装置の機能構成を示すブロック図である。 図5は、本実施の形態に係るウェアラブルデバイスを備える発汗分析装置のハードウェア構成の一例を示すブロック図である。 図6は、本実施の形態に係るウェアラブルデバイスを備える発汗分析装置の動作を説明するためのフローチャートである。
 以下、本発明の好適な実施の形態について、図1から図6を参照して詳細に説明する。
 [発明の概要]
 まず、本発明の実施の形態に係るウェアラブルデバイス1の概要について、図1を参照して説明する。
 図1は、ウェアラブルデバイス1の断面を模式的に示した図である。ウェアラブルデバイス1は、ユーザ(生体)に装着される基材10と、基材10に設けられた、ユーザの皮膚SKの汗腺から分泌された汗SWを液体の状態で回収し、一定体積ごとに汗SWを第2流路12の外へ排出する機構とを備える。
 本実施の形態において、汗SWを回収して、第2流路12の外へ排出する機構は、第1面10aを有し、第1面10aがユーザの皮膚SKに接して配置される基材10と、基材10に形成され、一端が第1面10aに開口し、基材10の第1面10aと反対側の第2面10bの方向に沿って延びる第1流路11と、基材10に形成され、第1流路11の多端と接続し、第2面10bに開口する第2流路12と、第2面10bに設けられ、第1流路11から第2流路12を介して輸送される皮膚SKの汗腺より分泌された汗SWを吸収する吸水構造体13とを含む。また、第2流路の径は、第1流路の径よりも小さい。
 [ウェアラブルデバイスの構成]
 次に、本発明の実施の形態について図1から図6を参照して説明する。図1は、ウェアラブルデバイス1の断面の模式図である。
 ウェアラブルデバイス1は、ユーザに装着される基材10と、基材10に形成された第1流路11および第2流路12と、吸水構造体13と、第1光導波路14aと、第2光導波路14bと、光源15と、受光素子16とを備える。
 基材10は、第1面10aがユーザの皮膚SKに接して配置される。基材10は、第1面10aとは反対側の第2面10bを有する。第2面10bは、基材10において、皮膚SKから遠ざかる位置に形成された面である。基材10は、例えば、直方体の外形を有する。基材10の材料としては、非導電性あるいは導電性の樹脂、合金などを用いることができるが、本実施の形態では、非導電性の材料を用いる場合を例に挙げて説明する。
 第1流路11は、基材10に形成され、第1流路11の一端が第1面10aに開口し、基材10の第2面10bの方向に沿って延びている。第1流路11の一端は、第1面10aに開口11aを形成している。また、第1流路11の他端は、後述の第2流路12と接続している。
 第1流路11の一端側の第1面10aに形成された開口11aは、皮膚SKに接して配置され、開口11aから汗SWが収集される。皮膚SKの汗腺から継続的に汗SWが分泌されると、液体の汗SWの水位が第1流路11の他端にまで到達する。図1に示すように、第1流路11は、例えば、円形や矩形の断面形状を有する。また、第1流路11は、流路長よりも流路幅を大きく形成することができる。
 第2流路12は、基材10に形成され、一端が第1流路11の他端と接続し、他端が基材10の第2面10bに開口する。第2面10bには、第2流路12が基材10を貫通して形成された開口12aが形成されている。また、図1に示すように第2流路12の径は、第1流路11の径よりも十分に小さい。例えば、第2流路は細管を有し、1mm程度あるいは1mm以下の断面積を有する。第2流路12の断面形状は、例えば、円形や矩形などとすることができる。また、第2流路12の流路長は、第1流路11の流路長よりも長くなるように形成してもよい。
 本実施の形態において、図1に示すように、第1流路11の断面積と比較して十分に小さい断面積を有する第2流路12とを用いることで、汗腺から分泌された汗SWの浸透圧に加えて、毛細管現象をさらに利用して、汗SWを第1流路11から第2流路12へと輸送することができる。なお、第2流路12の内壁は、汗SWに対して濡れ性が高い材料で表面加工されていてもよい。
 吸水構造体13は、基材10の第2面10bに設けられ、第1流路11から第2流路12に輸送される汗SWを吸収する。より詳細には、吸水構造体13は、第2流路12の一端に形成された開口12aに接して配置される。吸水構造体13は、第1流路11から第2流路12を介して輸送される汗SWを開口12aとの接触領域から吸収する。
 吸水構造体13は、綿や絹などの繊維、多孔質セラミック基板、親水性の流路などで実現することができる。また、吸水構造体13は、基材10の第2面10bの形状に対応する、例えば、矩形のシート状あるいは板状の形状とすることができ、第2流路12の出口である開口12aを覆う。
 図3Aに示すように、皮膚SKの汗腺から汗SWが分泌されると、汗SWは第1流路11の入口である開口11aから第1流路11へ流入し、さらに汗SWは第2流路12に流れ込み第2流路12の出口である開口12aに到達する。すると、図3Bに示すように、吸水構造体13は、第2流路12に保持されている汗SWを吸収する。一旦第2流路12に保持されていた汗SWが吸水構造体13で吸収されると、第2流路12内に汗SWが存在しなくなる。
 その後、ユーザの皮膚SKの汗腺から分泌される汗SWが再び増加、あるいは継続的に分泌されると、図3Cに示すように、第2流路12内に汗SWが輸送され、再び吸水構造体13に接触し、第2流路12の体積分の汗SWが吸収される。このように、汗SWの分泌に伴って、第2流路12内における汗SWの出現と消失のサイクルを発汗速度に連動した周期で繰り返す。
 光源15は、基材10に配置され、第2流路12に向けて光を出射する。光源15は、例えば、レーザーダイオードで構成される。光源15は、図1に示すように、例えば、基材10の側面に配置してもよい。
 受光素子16は、フォトダイオードなどで構成され、光源15と向かい合うように基材10に配置される。受光素子16は、光源15から出射され、汗SWが輸送される第2流路12を透過した光を受光する。受光素子16は、受光した光を電気信号に変換して出力する。受光素子16は、図1に示すように、例えば、光源15と向かい合うように、基材10の側面に配置されていてもよい。このように、光源15と受光素子16とは、第2流路12を挟むように配置され、光源15から受光素子16までの光路は、第2流路12を交差する。
 第1光導波路14aと第2光導波路14bとは、光源15から受光素子16までの光路を形成する。より詳細には、第1光導波路14aは、基材10の内部に設けられ、光源15と第2流路12との間に配置される。第2光導波路14bは、基材10の内部に設けられ、第2流路12と受光素子16との間に配置される。
 第1光導波路14aの一端には光源15が設けられ、光源15から出射された光を他端に伝搬する。第1光導波路14aの他端から出力される光は、第2流路12を透過して、第2光導波路14bの一端に入射される。第2光導波路14bは、入射された光を他端側へ伝搬する。第2光導波路14bの他端には受光素子16が設けられており、伝搬された光が受光される。
 ウェアラブルデバイス1は、例えば、第1光導波路14aおよび第2光導波路14bを有するコアとして機能する光導波路を形成し、両端に光源15と受光素子16を配置することで作製される。さらに、この光導波路の周囲を覆うように、コアよりも屈折率の低いクラッドとして機能する基材10を形成する。その後、基材10の第1面10aに第1流路11を形成し、さらに、基材10の第2面10bに第2流路を形成する。最後に、板状に形成された吸水構造体13の面を、第2流路12の出口である開口12aが形成されている基材10の第2面10bと貼り合わせることで、ウェアラブルデバイス1とすることができる。
 [発汗分析装置の機能ブロック]
 次に、上述したウェアラブルデバイス1を備える発汗分析装置100の機能構成について、図4のブロック図を参照して説明する。
 発汗分析装置100は、ウェアラブルデバイス1と、取得部20と、第1算出回路21と、第2算出回路22と、記憶部23と、出力部24とを備える。
 取得部20は、ウェアラブルデバイス1で得られた電気信号を取得する。取得部20は、取得した電気信号の増幅、ノイズの除去、AD変換などの信号処理を行う。取得された電気信号の時系列データは、記憶部23に蓄積される。取得部20によって取得される電気信号の時系列データは、例えば、図2に示すように、上述した第2流路12における汗SWの出現および消失のサイクルに応じたピークを有する波形となる。
 図2は、光源15、受光素子16、および第1光導波路14a、第2光導波路14bによってウェアラブルデバイス1が光学的に測定した汗SWに関する物理量である受光量(光強度)を示した電気信号の一例である。
 図2の縦軸は受光素子16によって受光された光の受光量を示しており、横軸は時間を示す。また、図3A、図3B、図3Cは、図2の各時刻(a)、(b)、(c)での第2流路12を流れる汗SWの状態を示している。
 図2の受光量を示す電気信号の時系列データは、周期的なパルス波形のような波形を有する。図2に示す時刻(a)では、図3Aに示すように、ウェアラブルデバイス1において、第2流路12に汗SWが輸送され汗SWの水位が時間とともに上昇し、光源15から受光素子16までの光路と交差する。汗SWの液体層を透過した光の受光量(光強度)は、第2流路12内に空気が媒質として含まれている場合と比較して、受光量は減少する。また、第2流路12に輸送される汗SWの量、つまり、媒質に含まれる空気層および汗SWの量に応じて受光量が変化する。
 図2の時刻(b)では、図3Bに示すように、光源15から出射された光は、第2流路12の空気層のみを介して受光素子16で受光される。その後、一定の時間にわたって発汗量が生ずると、図2の時刻(c)に対応する図3Cに示すように、再び汗SWが第2流路12に輸送され、光源15からの光が空気層から汗SWの液体層の順に媒質が変化しながら透過して、受光素子16で受光される。
 図4に戻り、第1算出回路21は、電気信号の極大値または極小値の発生の頻度より、発汗に関する物理量を算出する。例えば、第1算出回路21は、電気信号の時系列データから、予め求められている第2流路12の体積に、汗SWの第2流路12内における出現(あるいは消失)回数(図2のピークの数)を乗ずることで、発汗量を算出する。
 また、第1算出回路21は、第2流路12の体積を、第2流路12における汗SWの出現(あるいは消失)の周期と、第1流路11の入口である開口11aと接触する皮膚SKの面積で除算することで、単位面積当たりの発汗速度を算出する。なお、皮膚SKの面積として開口11aの断面積を用いることができる。
 第2算出回路22は、ウェアラブルデバイス1で得られた電気信号の極大値または極小値から、汗SWに含まれる所定の成分の濃度を算出する。例えば、第2算出回路22は、汗SWに含まれる成分(水、塩化ナトリウム、尿素、乳酸など)の濃度を算出する。より詳細には、第2算出回路22は、光源15のレーザ波長を特定の汗SWの成分の吸収波長とし、汗SWが第2流路12に輸送される際の受光素子16での光の受光量から、特定の汗の成分濃度を算出することができる。
 記憶部23は、取得部20によってウェアラブルデバイス1から取得された電気信号の時系列データを記憶する。また、記憶部23には、第2流路12の体積、光源15のレーザ波長に関する情報が予め記憶されている。
 出力部24は、第1算出回路21および第2算出回路22で算出された発汗量、発汗速度、および汗SWの成分濃度を出力する。出力部24は、例えば、図示されない表示装置に算出結果を表示することができる。あるいは、出力部24は、後述の通信I/F105より、図示されない外部の通信端末装置に算出結果を送出してもよい。
 [発汗分析装置のハードウェア構成]
 次に、上述した機能を有するウェアラブルデバイス1を備える発汗分析装置100を実現するハードウェア構成の一例について、図5を参照して説明する。
 図5に示すように、発汗分析装置100は、例えば、バスを介して接続されるMCU101、メモリ102、AFE103、ADC104、通信I/F105を備えるコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。発汗分析装置100には、例えば、外部に設けられたウェアラブルデバイス1がバスを介して接続されている。また、発汗分析装置100は、電源106を備え、図4および図5に示すウェアラブルデバイス1以外の装置全体への電源供給を行う。
 メモリ102には、MCU(Micro Control Unit)101が各種制御や演算を行うためのプログラムが予め格納されている。MCU101とメモリ102とによって、図4に示した取得部20、第1算出回路21、第2算出回路22を含む発汗分析装置100の各機能が実現される。
 AFE(Analog Front End)103は、ウェアラブルデバイス1で測定されたアナログの電流値を示す微弱な電気信号を増幅する回路である。
 ADC(Analog-to-Digital Converter)104は、AFE103で増幅されたアナログ信号を所定のサンプリング周波数でデジタル信号に変換する回路である。AFE103およびADC104は、図4で説明した取得部20を実現する。
 メモリ102は、フラッシュメモリなどの不揮発性メモリや、DRAMなどの揮発性メモリなどで実現される。メモリ102は、ADC104より出力された信号の時系列データを一時的に記憶する。メモリ102は、図4で説明した記憶部23を実現する。
 また、メモリ102は、発汗分析装置100が発汗分析処理を行うためのプログラムを格納するプログラム格納領域を有する。さらには、例えば、上述したデータやプログラムやなどをバックアップするためのバックアップ領域などを有していてもよい。
 通信I/F105は、通信ネットワークNWを介して各種外部電子機器との通信を行うためのインターフェース回路である。
 通信I/F105としては、例えば、LTE、3G、4G、5G、Bluetooth(登録商標)、Bluetooth Low Energy、Ethernet(登録商標)などの有線や無線によるデータ通信規格に対応した通信インターフェースおよびアンテナが用いられる。通信I/F105によって、図4で説明した出力部24が実現される。
 なお、発汗分析装置100は、MCU101に内蔵されている時計、あるいは、図示されないタイムサーバから時刻情報を取得してサンプリング時刻として用いる。
 [発汗分析方法]
 次に、上述した構成を有するウェアラブルデバイス1を備えた発汗分析装置100の動作について、図6のフローチャートを用いて説明する。事前にウェアラブルデバイス1がユーザに装着されて、電源106がONとなり発汗分析装置100が起動すると、以下の処理が実行される。
 まず、取得部20は、ウェアラブルデバイス1から受光量を示す電気信号を取得する(ステップS1)。次に、取得部20は、電気信号を増幅する(ステップS2)。より詳細には、AFE103は、ウェアラブルデバイス1で測定された微弱な電流信号を増幅する。
 次に、取得部20は、ステップS2で増幅された電気信号をAD変換する(ステップS3)。具体的には、ADC104が、AFE103で増幅されたアナログ信号を所定のサンプリング周波数でデジタル信号に変換する。デジタル信号に変換された電気信号の時系列データは記憶部23に記憶される(ステップS4)。
 次に、第1算出回路21は、取得された電気信号の極大値または極小値の発生の頻度より、ユーザの発汗量を算出する(ステップS5)。その後、第1算出回路21は、電気信号の極大値または極小値の発生の頻度より発汗速度を算出する(ステップS6)。
 次に、第2算出回路22は、取得された電気信号の極大値または極小値から、汗SWに含まれる所定の成分の濃度を算出する(ステップS7)。その後、測定が終了すると(ステップS8:YES)、出力部24は、発汗量、発汗速度、および成分濃度を含む算出結果を出力する(ステップS9)。一方、測定が終了していない場合には(ステップS8:NO)、処理は、ステップS1に戻される。
 なお、第1算出回路21は、発汗量および発汗速度のいずれかを算出する構成としてもよい。また、設定により、発汗量、発汗速度、および成分濃度のうちのいずれか1つあるいは2つの値を算出する構成とすることもでき、これらの値が算出される順番は任意である。
 以上説明したように、本実施の形態によれば、ウェアラブルデバイス1は、第1流路11の径よりも小さい第2流路12が基材10に形成され、発汗に伴って汗SWが第1流路11から第2流路12に輸送され、第2流路12の出口である開口12aに設けられている吸水構造体13に接触すると、第2流路12の体積分の汗SWが吸水構造体13に吸収される。そのため、エアーポンプを用いることなく、汗に関する物理量を測定することができる。また、測定された汗に関する物理量から、発汗量や発汗速度などの発汗に関する物理量や汗に含まれる成分を測定できる。
 本実施の形態に係るウェアラブルデバイス1は、エアーポンプを用いることなく汗SWを液体の状態で回収し、一定体積ごとに第2流路12から排出するので、ウェアラブルデバイス1のサイズをより小型化できる。また、その結果として、発汗分析装置100のサイズを小型化することができる。
 なお、説明した実施の形態では、第1光導波路14aおよび第2光導波路14bを基材10に設ける場合を例に挙げて説明した。しかし、光源15から第2流路12を交差する受光素子16までの光路が形成できれば、光導波路を省略してもよい。
 以上、本発明のウェアラブルデバイス、発汗分析装置、および発汗分析方法における実施の形態について説明したが、本発明は説明した実施の形態に限定されるものではなく、請求項に記載した発明の範囲において当業者が想定し得る各種の変形を行うことが可能である。
1…ウェアラブルデバイス、10…基材、10a…第1面、10b…第2面、11…第1流路、11a、12a…開口、12…第2流路、13…吸水構造体、14a…第1光導波路、14b…第2光導波路、15…光源、16…受光素子、20…取得部、21…第1算出回路、22…第2算出回路、23…記憶部、24…出力部、100…発汗分析装置、101…MCU、102…メモリ、103…AFE、104…ADC、105…通信I/F、106…電源、SW…汗、SK…皮膚。

Claims (6)

  1.  生体に装着されるウェアラブルデバイスであって、
     第1面と前記第1面と反対側の第2面を有する基材と、
     前記基材に形成され、一端が前記第1面に開口し、前記第2面の方向に沿って延びる第1流路と、
     前記基材に形成され、一端が前記第1流路の他端と接続し、他端が前記第2面に開口する第2流路と、
     前記第2面に設けられ、前記第1流路から前記第2流路を介して輸送される前記生体の皮膚から分泌された汗を吸収するように構成された吸水構造体と、
     前記基材に配置され、前記第2流路に向けて光を出射するように構成された光源と、
     前記光源と向かい合うように前記基材に配置され、前記光源から出射され、前記第2流路を透過した前記光を受光し、受光された前記光を電気信号に変換して出力するように構成された受光素子と
     を備え、
     前記第2流路の径は、前記第1流路の径よりも小さい
     ことを特徴とするウェアラブルデバイス。
  2.  請求項1に記載のウェアラブルデバイスにおいて、
     前記光源から前記受光素子までの光路は、前記第2流路と交差する
     ことを特徴とするウェアラブルデバイス。
  3.  請求項1または請求項2に記載のウェアラブルデバイスにおいて、
     前記基材の内部に設けられ、前記光源と前記第2流路との間に配置される第1光導波路と、
     前記基材の内部に設けられ、前記第2流路と前記受光素子との間に配置される第2光導波路と
     をさらに備え、
     前記第1光導波路と前記第2光導波路とは、前記光源から前記受光素子までの光路を形成する
     ことを特徴とするウェアラブルデバイス。
  4.  請求項1から3のいずれか1項に記載のウェアラブルデバイスと、
     前記受光素子より出力された前記電気信号の極大値または極小値の発生の頻度より、前記生体の発汗に関する物理量を算出するように構成された第1算出回路と、
     算出された前記発汗に関する物理量を出力するように構成された出力部と
     を備える発汗分析装置。
  5.  請求項4に記載の発汗分析装置において、
     前記受光素子より出力された前記電気信号の極大値または極小値から、前記汗に含まれる所定の成分の濃度を算出するように構成された第2算出回路をさらに備え、
     前記出力部は、前記第2算出回路で算出された前記濃度を出力するように構成されている
     ことを特徴とする発汗分析装置。
  6.  第1面が生体の皮膚に接して配置され、前記第1面と反対側の第2面を有する基材に形成され、一端が前記第1面に開口し、前記第2面の方向に沿って延びる第1流路に前記皮膚から分泌された汗を輸送させる第1ステップと、
     前記基材に形成され、前記第1流路の径よりも小さい径を有し、一端が前記第1流路の他端と接続し、他端が前記第2面に開口する第2流路に前記汗を輸送させる第2ステップと、
     前記第2面に設けられた吸水構造体に、前記第1流路から前記第2流路を介して輸送される前記汗を吸収させる第3ステップと、
     前記基材の内部に形成され、前記第2流路を交差する光導波路の一端に設けられた光源から、前記光導波路の他端に向けて光を出射する第4ステップと、
     前記光導波路の前記他端に設けられた受光素子が、前記光源から出射され、前記第2流路を透過した前記光を受光し、受光された前記光を電気信号に変換して出力する第5ステップと、
     前記第5ステップで出力された前記電気信号から、前記生体の発汗に関する物理量および前記汗に含まれる所定の成分の濃度の少なくともいずれかを算出する第6ステップと、
     前記第6ステップでの算出結果を出力する第7ステップと
     を備える発汗分析方法。
PCT/JP2020/009102 2020-03-04 2020-03-04 ウェアラブルデバイス、発汗分析装置、および発汗分析方法 WO2021176588A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022504835A JP7420213B2 (ja) 2020-03-04 2020-03-04 発汗分析装置、および発汗分析方法
PCT/JP2020/009102 WO2021176588A1 (ja) 2020-03-04 2020-03-04 ウェアラブルデバイス、発汗分析装置、および発汗分析方法
US17/909,252 US20230089467A1 (en) 2020-03-04 2020-03-04 Wearable Device, Perspiration Analysis Device, and Perspiration Analysis Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009102 WO2021176588A1 (ja) 2020-03-04 2020-03-04 ウェアラブルデバイス、発汗分析装置、および発汗分析方法

Publications (1)

Publication Number Publication Date
WO2021176588A1 true WO2021176588A1 (ja) 2021-09-10

Family

ID=77613153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009102 WO2021176588A1 (ja) 2020-03-04 2020-03-04 ウェアラブルデバイス、発汗分析装置、および発汗分析方法

Country Status (3)

Country Link
US (1) US20230089467A1 (ja)
JP (1) JP7420213B2 (ja)
WO (1) WO2021176588A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049273A (ja) * 2003-07-30 2005-02-24 Aisin Seiki Co Ltd マイクロ流体制御システム
WO2011090869A2 (en) * 2010-01-19 2011-07-28 Avery Dennison Corporation Medication regimen compliance monitoring systems and methods
JP2017198577A (ja) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 生体情報計測装置
WO2018057695A1 (en) * 2016-09-21 2018-03-29 University Of Cincinnati Accurate enzymatic sensing of sweat analytes
WO2019232305A1 (en) * 2018-05-31 2019-12-05 Donaldson Company, Inc. Droplet sensors for fuel systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049273A (ja) * 2003-07-30 2005-02-24 Aisin Seiki Co Ltd マイクロ流体制御システム
WO2011090869A2 (en) * 2010-01-19 2011-07-28 Avery Dennison Corporation Medication regimen compliance monitoring systems and methods
JP2017198577A (ja) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 生体情報計測装置
WO2018057695A1 (en) * 2016-09-21 2018-03-29 University Of Cincinnati Accurate enzymatic sensing of sweat analytes
WO2019232305A1 (en) * 2018-05-31 2019-12-05 Donaldson Company, Inc. Droplet sensors for fuel systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANCIS, JESSICA ET AL.: "Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement", LAB ON A CHIP, vol. 19, 2019, pages 178 - 185, XP055679527, DOI: 10.1039/C8LC00968F *

Also Published As

Publication number Publication date
US20230089467A1 (en) 2023-03-23
JPWO2021176588A1 (ja) 2021-09-10
JP7420213B2 (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
Lin et al. Wearable biosensors for body computing
Mirjalali et al. Wearable sensors for remote health monitoring: potential applications for early diagnosis of Covid‐19
JP2017198577A (ja) 生体情報計測装置
CN202681920U (zh) 一种基于压缩感知的穿戴式体征监护器
Wang et al. Stretchable optical sensing patch system integrated heart rate, pulse oxygen saturation, and sweat pH detection
CN102293648A (zh) 生物信号检测电极和生物信号检测装置
CN203408032U (zh) 人体局部皮肤油脂检测系统
US20220322997A1 (en) Wearable Sensor, Perspiration Analysis Device and Method
Du et al. Hybrid nanogenerator for biomechanical energy harvesting, motion state detection, and pulse sensing
Bongard et al. Discrepancies between total and nutritional skin microcirculation in patients with peripheral arterial occlusive disease (PAOD).
WO2020099220A1 (en) Device, system and method for estimating an analyte concentration in sweat as released by a sweat gland
WO2021176588A1 (ja) ウェアラブルデバイス、発汗分析装置、および発汗分析方法
CN111089839B (zh) 一种分析人体表液的柔性无线集成皮肤视觉传感系统
CN203303037U (zh) 一种测量人体温度及呼吸频率光纤光栅传感器
Chen et al. Bio-inspired fractal textile device for rapid sweat collection and monitoring
US20220287599A1 (en) Wearable Sensor, Perspiration Analysis Device and Method
WO2021176586A1 (ja) ウェアラブルデバイス、発汗分析装置、および発汗分析方法
WO2021176503A1 (ja) ウェアラブルデバイス、発汗分析装置、および発汗分析方法
CN102469963A (zh) 一种可测量体温的血氧测量仪
Liu et al. A ratiometric fluorescent fiber sensor based on integrated silica and tellurite glass for real-time human thermal monitoring
CN205246533U (zh) 糖尿病患者呼吸气中的丙酮检测装置
CN103549963A (zh) 植入式实时动态血糖监测设备
WO2021176587A1 (ja) ウェアラブルデバイス、発汗分析装置、および発汗分析方法
CN106198945A (zh) 低功耗葡萄糖移动检测装置
JP7338782B2 (ja) ウェアラブルデバイス、発汗分析装置、および発汗分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922738

Country of ref document: EP

Kind code of ref document: A1