WO2021176561A1 - Detection device, dispensing device, and dispensing method - Google Patents

Detection device, dispensing device, and dispensing method Download PDF

Info

Publication number
WO2021176561A1
WO2021176561A1 PCT/JP2020/008923 JP2020008923W WO2021176561A1 WO 2021176561 A1 WO2021176561 A1 WO 2021176561A1 JP 2020008923 W JP2020008923 W JP 2020008923W WO 2021176561 A1 WO2021176561 A1 WO 2021176561A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispensing
liquid
detection device
light
detection
Prior art date
Application number
PCT/JP2020/008923
Other languages
French (fr)
Japanese (ja)
Inventor
雪夫 小野
稔章 平塚
隼司 石塚
貴之 野田
曽根原 剛志
庄司 智広
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/008923 priority Critical patent/WO2021176561A1/en
Publication of WO2021176561A1 publication Critical patent/WO2021176561A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • This disclosure relates to a detection device, a dispensing device and a dispensing method.
  • Genome medicine has started in earnest, and three oncogene panel diagnostic agents have been covered by insurance.
  • the gene profiling test used in oncogene panel diagnosis is a comprehensive next-generation DNA sequencer (NGS) that extracts nucleic acids from blood and pathological specimens collected from cancer patients and uses gene mutation test kit reagents. It is to be analyzed. Based on the analyzed results, after the treatment policy is decided by a group of specialists such as doctors, pathologists, bioinformaticians, pharmacists, etc., anti-cancer drugs, molecular-targeted drugs, or immune checkpoints suitable for the patient Inhibitors are provided.
  • NGS next-generation DNA sequencer
  • nucleic acid sample amplification step There are various pretreatment steps for nucleic acid samples, but in the nucleic acid sample amplification step, the concentration adjustment of the double-stranded nucleic acid solution after library preparation keeps the initial nucleic acid concentration to some extent in order to carry out the amplification reaction in a reproducible manner. Need to be aligned with. Also, when loading the amplified nucleic acid sample into the flow cell for sequencing, it is necessary to adjust the nucleic acid concentration to be suitable for the sequencing.
  • the quantification and concentration adjustment of the nucleic acid extracted by the nucleic acid extractor has been performed manually. That is, in order to adjust the nucleic acid concentration, the nucleic acid concentration was quantified, and the amount of dispensing or dilution was manually determined according to the concentration.
  • sample quality confirmation with a pretreatment automation device already on the market is performed by a dedicated measuring device provided in the device, the pretreatment automation device is generally large.
  • the number of dispensings increases dramatically as the number of processed samples increases, the overall processing time tends to increase.
  • the incubator 6 of the reaction vessel 1 is arranged, and the fluorescence detection unit 7 for performing fluorescence measurement in the reaction vessel 1 is arranged below the incubator 6, and each of these container racks.
  • the enzyme reagent dispensing mechanism 8 and the lid catching mechanism 9 are installed on the transfer device 10 arranged so as to be horizontally movable above the chip disposal unit 5 and the incubator 6. ” Is described (see the abstract of the same document).
  • the nucleic acid detection device of Patent Document 1 has a dispensing device and a fluorescence detection unit, but since the nucleic acid is only detected by fluorescence, the presence or absence of nucleic acid can be detected, but the desired nucleic acid concentration can be obtained. To adjust, it is necessary to perform a separate operation such as measuring the concentration. Even if the nucleic acid detection device of Patent Document 1 is provided with a measuring device for measuring the nucleic acid concentration, it is considered that the entire device becomes large. As a result, it becomes difficult to install the device in a laboratory such as a hospital where the sample is collected, and it becomes impossible to measure the concentration of the nucleic acid of the sample on the spot, so that the total processing time of the sample increases. there is a possibility.
  • the present disclosure provides a technique that enables rapid measurement of the concentration of an analysis target in a liquid.
  • the detection device of the present disclosure is a detection device that detects light from an analysis target in a liquid, and is a detection device that detects a light source that irradiates the liquid with light and light from the analysis target in the liquid. And, at least, the detection unit is arranged in a dispensing chip to which the liquid is sucked.
  • the detection device of the present disclosure it is possible to quickly measure the light from the analysis target in the liquid sucked into the dispensing chip. Issues, configurations and effects other than the above will be clarified by the following description of the embodiments.
  • FIG. 1B It is a schematic diagram which shows the dispensing apparatus which concerns on 1st Embodiment. It is schematic cross-sectional view which shows the internal structure of the chip which concerns on 1st Embodiment. It is a B arrow view of FIG. 1B. It is a flowchart which shows the dispensing method using the dispensing apparatus which concerns on 1st Embodiment. It is a flowchart which shows the dispensing method using the dispensing apparatus which concerns on 1st Embodiment. It is a schematic diagram which shows the dispensing apparatus which concerns on 2nd Embodiment. It is the schematic sectional drawing which shows the internal structure of the chip which concerns on 2nd Embodiment. It is a B arrow view of FIG. 4B.
  • a nucleic acid is used as a concentration analysis target
  • a liquid (detected liquid) dispensed by the dispensing device of the present disclosure is a mixture of a solution containing nucleic acid and a fluorescent dye that binds to nucleic acid. Make it a liquid.
  • the analysis target is not limited to nucleic acid
  • the dye that binds to the analysis target is not limited to the fluorescent dye.
  • fluorescent dyes for nucleic acid staining include 3,6-bis (dimethylamino) acridines hydrochloride, ethidium bromide, propidium iodide, ethidium homodimer, SYTOX Green, POPO-1, BOBO-1, YOYO-1, TOTO. -1, SYBR (registered trademark) Gold, SYBR Green I, SYBR Green II and the like.
  • the above fluorescent dye may be used as the standard fluorescent dye used when determining the calibration curve used for measuring the concentration of nucleic acid.
  • tetramethylrhodamine isothiocyanate Texas Red, Cy3, Cy5, HNPP (2-hydroxy- 3-naphthoic acid-2'-phenylanilidephosphate), Alexa Fluor (registered trademark) 488, Alexa Fluor 546 and the like may be used.
  • a mixed solution of these fluorescent dyes and a nucleic acid solution of known concentration can be used in the preparation of the calibration curve.
  • FIG. 1A is a schematic view showing a dispensing device 100 according to the first embodiment. As shown in FIG. 1A, the dispensing device 100 includes a chip 1 and a main body 2.
  • the dispensing device 100 can be, for example, a cylinder-driven pneumatic electric pipette.
  • the main body 2 has a built-in dispensing mechanism necessary for the dispensing operation (suction operation and discharge operation) by the dispensing device 100, and the dispensing mechanism is a cylinder in which a plunger is built. , Has a motor for reciprocating the plunger.
  • the chip 1 can be attached to and detached from the main body 2, and may be disposable.
  • the liquid to be detected 101 liquid is sucked into the tip of the chip 1 by the suction operation of the dispensing device 100, and is discharged from the chip 1 by the discharging operation of the dispensing device 100.
  • a fluorescence detection device 10 (detection device) is provided above the region where the liquid to be detected 101 is sucked.
  • the fluorescence detection device 10 is connected to the main body 2 by a cable 3. The details will be described later, but to outline the operation of the fluorescence detection device 10, the light to be detected 101 is irradiated to detect fluorescence from the fluorescence-labeled nucleic acid (analysis target) present in the detection liquid 101. , The detection result is output to the main body 2.
  • the main body 2 has a calculation unit 21, a power supply unit 22, and a switch 23.
  • a small microcomputer system such as iOS (registered trademark) or Raspberry Pi (registered trademark) can be used.
  • the calculation unit 21 transmits an instruction value according to a predetermined suction amount or discharge amount to the above-mentioned dispensing mechanism (not shown), and drives the plunger based on the instruction value to obtain a predetermined amount.
  • the liquid to be detected 101 can be sucked and discharged.
  • a storage device such as a memory built in the main body 2 stores upper and lower limits of the suction amount and the discharge amount of the liquid by the dispensing device 100.
  • an input unit (not shown) for setting the suction amount can be provided in the main body 2 so that the user can appropriately set the suction amount and the discharge amount.
  • the power supply unit 22 supplies power to each component (calculation unit 21, dispensing mechanism, etc.) of the main body 2 to drive them.
  • the power supply unit 22 also supplies power to the fluorescence detection device 10 via the cable 3.
  • the power supply unit 22 may be, for example, a small battery, or may be a mechanism that receives power from an external power supply line and supplies power to each component of the main body 2 and the fluorescence detection device 10.
  • the switch 23 is provided for the user to instruct the timing of suction and discharge of the liquid. For example, when the switch 23 is pressed by the user, the calculation unit 21 detects that the switch 23 is turned on and starts the suction operation by the dispensing mechanism, and when the switch 23 is pressed again by the user, the dispensing is performed. The discharge operation by the mechanism is started.
  • FIG. 1B is a schematic cross-sectional view showing the internal configuration of the chip 1.
  • the fluorescence detection device 10 is supported by the chip 1 by the support 4.
  • the fluorescence detection device 10 can be attached to and detached from the chip 1.
  • a flexible material such as rubber or resin can be used.
  • a vent 5 is provided between the support 4 and the fluorescence detection device 10.
  • the fluorescence detection device 10 includes a substrate 11, a light receiving element 12 (detection unit), a fluorescence filter 13, a light emitting element 14 (light source), a convex lens 15 (condensing lens), a current / voltage conversion circuit 16 (detection unit), and an AD conversion circuit 17. It has a (detection unit) and a light source drive circuit 18.
  • the light emitting element 14 and the light receiving element 12 are provided on the substrate 11 so as to face the liquid to be detected 101.
  • the light emitting element 14 and the light receiving element 12 may be independently provided on the substrate 11, or an element in which they are integrated may be provided on the substrate 11.
  • the light emitting element 14 irradiates the liquid to be detected 101 with light (excitation light).
  • an element whose central wavelength of the emitted light is close to the excitation wavelength of the fluorescent dye contained in the liquid to be detected 101 can be used.
  • a specific example of the light emitting element 14 for example, a light emitting diode (LED) or the like which can be easily miniaturized, is inexpensive, has low power consumption, and has a long life can be used.
  • Examples of the material of the light emitting diode include indium gallium nitride, gallium nitride, zinc selenide, zinc oxide, perovskite semiconductor, gallium aluminum gallium arsenide, and gallium arsenide.
  • a convex lens 15 is provided after the light emitting element 14 (on the side of the liquid to be detected 101). As a result, the light from the light emitting element 14 can be focused, and the excitation light can be irradiated to an arbitrary place at a predetermined distance with respect to the liquid to be detected 101.
  • the light receiving element 12 detects the light emitted from the liquid to be detected 101 (the fluorescence emitted by the fluorescent dye in the liquid to be detected 101 by the irradiation of the light from the light emitting element 14), and outputs a current signal.
  • an element capable of detecting the wavelength of fluorescence emitted by the fluorescent dye can be used.
  • an element that converts light into an electric current such as a photomultiplier tube (PMT), a photodiode (PD), and a phototransistor, can be used.
  • the fluorescence filter 13 is provided in front of the light receiving element 12 (on the side of the liquid to be detected 101), and causes light of a specific wavelength to enter the light receiving element 12.
  • the fluorescence filter 13 one that transmits the fluorescence wavelength of the fluorescent dye and cuts the excitation wavelength of the light emitting element 14 can be used.
  • the number of light receiving elements 12 and light emitting elements 14 may be one or a plurality, respectively, as shown in the figure.
  • the current-voltage conversion circuit 16 converts the current signal output from the light receiving element 12 into a voltage signal
  • the AD conversion circuit 17 converts the voltage signal into a digital signal
  • the calculation unit 21 (FIG. 1A) via the cable 3.
  • a digital signal (detection result) is transmitted to.
  • the light source drive circuit 18 controls the irradiation of light by the light emitting element 14.
  • As the drive method of the light source for example, a constant current drive method, a current limiting resistance method, a high frequency drive method, or the like can be adopted.
  • the light source drive circuit 18 can control the lighting or extinguishing of the light emitting element 14 by an external trigger, for example, an on / off operation by a user of the switch 23 provided in the main body 2.
  • the calculation unit 21 reads the digital signal received from the AD conversion circuit 17 and digitizes it as a voltage value. After that, the calculation unit 21 uses a calibration curve prepared based on the fluorescence measurement value (voltage value) of the fluorescence standard solution having a known nucleic acid concentration measured in advance, and corresponds to the quantified voltage value of the liquid to be detected 101. Calculate the concentration of nucleic acid in. Further, the calculation unit 21 determines the discharge amount of the liquid to be detected 101 based on the calculated nucleic acid concentration and the suction amount of the dispensing device 100, and transmits an indicated value to the dispensing mechanism according to the determined discharge amount. ..
  • calculation unit 21 may be mounted on the substrate 11 of the fluorescence detection device 10.
  • the calculation result (voltage value, nucleic acid concentration, suction amount, discharge amount, etc.) by the calculation unit 21 may be displayed on a display unit (not shown) provided in the main body unit 2.
  • FIG. 1C is a view taken along the line B of FIG. 1B.
  • FIG. 1B is a cross-sectional view taken along the line AA shown in FIG. 1C.
  • the support 4 is an annular member, and the four corners of the rectangular plate-shaped substrate 11 are supported by the support 4, and a part of each side of the substrate 11 and the support 4 are supported.
  • the gap is a vent 5. Since the vent 5 is formed, the liquid to be detected 101 can be sucked and discharged by the cylinder drive.
  • the vent 5 does not have to be a gap provided between the substrate 11 and the support 4, and may be in the form of a through hole provided in the substrate 11 itself.
  • the support 4 may be formed of a breathable material (for example, a porous material such as sponge or urethane) to serve as a vent.
  • the support 4 can be one annular member, but a plurality of arcuate members may be used in combination. Further, the shape of the support 4 is not limited to the annular shape, and other shapes may be adopted depending on the dimensions and shape of the substrate 11. As described above, the number, material, and shape of the support 4 are not limited as long as the substrate 11 can be supported in the chip 1.
  • FIG. 2 is a flowchart showing a dispensing method using the dispensing device 100 according to the present embodiment.
  • the user manually performs the dispensing operation using the dispensing device 100.
  • the method of FIG. 2 is performed to prepare a calibration curve using a standard solution containing nucleic acid of known concentration and a fluorescent dye.
  • step S11 the user mounts the support 4 and the fluorescence detection device 10 inside the chip 1, connects the fluorescence detection device 10 and the main body 2 with a cable 3, and mounts the chip 1 on the main body 2. ..
  • the main body 2 and the fluorescence detection device 10 may be previously connected by a cable 3 and a chip 1 provided with a support 4 inside may be supplied to the user.
  • the user only needs to insert the fluorescence detection device 10 into the chip 1 and attach the chip 1 to the main body 2, so that the operation is simple.
  • the dispensing device 100 in the state shown in FIG. 1A may be provided to the user. As described above, there is no particular limitation on to what stage the dispensing device 100 is provided to the user in an assembled state.
  • step S12 the user immerses the tip of the chip 1 in a fluorescent standard solution having a known nucleic acid concentration, and turns on the switch 23 for starting the suction operation.
  • the calculation unit 21 detects that the switch 23 is turned on, it transmits an instruction value to the dispensing mechanism to drive the plunger, thereby sucking a predetermined amount of the fluorescent standard solution into the chip 1.
  • step S13 the calculation unit 21 transmits an instruction to the light source drive circuit 18 to irradiate the fluorescence standard solution with excitation light from the light emitting element 14.
  • the light receiving element 12 detects fluorescence from the fluorescence standard solution in the chip 1, it outputs a detection signal to the current-voltage conversion circuit 16.
  • step S14 the current-voltage conversion circuit 16 converts the detection signal into a voltage signal
  • the AD conversion circuit 17 converts the voltage signal (analog signal) into a digital signal
  • the calculation unit 21 receives the digital signal
  • the calculation unit 21 calculates the voltage value based on the digital signal.
  • the calculated voltage value is stored in, for example, a storage device (not shown) built in the main body 2.
  • the user performs the above steps S12 to S14 for a plurality of fluorescent standard solutions having different concentrations.
  • step S15 the calculation unit 21 creates a calibration curve from the voltage value calculated for the fluorescence standard solution of each concentration and the concentration of the fluorescence standard solution at that time.
  • the state inside the chip 1 without a solution is used as the background.
  • the created calibration curve is stored in a storage device (not shown).
  • FIG. 3 is a flowchart showing a dispensing method using the dispensing device 100 according to the present embodiment. The method of FIG. 3 is carried out to dispense the nucleic acid to be detected 101 containing the nucleic acid of unknown concentration and measure the nucleic acid concentration.
  • step S21 the user prepares the dispensing device 100 in the same manner as in step S11 of FIG.
  • step S22 the user immerses the tip of the chip 1 in the liquid to be detected 101 having an unknown nucleic acid concentration, and turns on the switch 23 for starting the suction operation.
  • the calculation unit 21 detects that the switch 23 is turned on, it transmits an instruction value to the dispensing mechanism to drive the plunger, thereby detecting a nucleic acid having an unknown concentration and a fluorescent dye in the chip 1.
  • a predetermined amount of the liquid 101 is sucked. Let A be the suction amount of the liquid to be detected 101. Further, the upper limit of the suction amount of the dispensing device 100 is set to B.
  • step S23 the calculation unit 21 transmits an instruction to the light source drive circuit 18 to irradiate the liquid to be detected 101 with excitation light from the light emitting element 14.
  • the light receiving element 12 detects fluorescence from the liquid to be detected 101 in the chip 1, it outputs a detection signal to the current-voltage conversion circuit 16.
  • step S24 the voltage value (V) is calculated by the calculation unit 21 in the same manner as in step S14 of FIG.
  • step S25 the calculation unit 21 reads the calibration curve from the storage device and obtains the nucleic acid concentration (C1) corresponding to the voltage value (V) calculated in step S24 based on the calibration curve.
  • step S26 the calculation unit 21 calculates the required discharge amount (D) of the liquid to be detected 101 from the obtained nucleic acid concentration (C1) and the required concentration (C2).
  • step S27 the calculation unit 21 determines the discharge amount (F) of the liquid to be detected 101 based on the required discharge amount (D).
  • the required discharge amount (D) is equal to or less than the lower limit (E) of the discharge amount of the dispensing device 100 (D ⁇ E)
  • the lower limit of the discharge amount (E) is set as the discharge amount (F).
  • the discharge amount (F) is referred to as the discharge amount (F). do.
  • step S28 the user turns on the switch 23 for instructing the discharge.
  • the calculation unit 21 detects that the switch 23 is turned on, it transmits an indicated value according to the discharge amount (F) to the dispensing mechanism, and drives the plunger to discharge the liquid to be detected 101.
  • the fluorescence detection device 10 (detection device) according to the first embodiment is provided inside the chip 1 and receives light from the liquid to be detected 101 (liquid) sucked into the chip 1 as a light receiving element. Detect by 12.
  • the distance between the light receiving element 12 and the liquid surface can be shortened, and only air exists between them, so that the fluorescence from the liquid to be detected 101 can be emitted. It can be detected with high sensitivity.
  • the device for detecting fluorescence is housed in the chip 1, fluorescence can be detected only by sucking the liquid to be detected 101. Therefore, the time for performing the process for detecting fluorescence can be shortened. Further, it is not necessary to provide the fluorescence detection unit in the apparatus as in Patent Document 1, and it is possible to suppress the increase in size of the apparatus.
  • the distance between the liquid surface of the liquid to be detected 101 and the light emitting element 14 can be made as close as possible, so that it is not necessary to increase the light emitting intensity of the light source. As a result, a large light source such as a laser light source or a shading means becomes unnecessary.
  • the calculation unit 21 measures the concentration of nucleic acid (analysis target) in the detected liquid 101 based on the fluorescence detection result of the fluorescence detection device 10, and the detected liquid The discharge amount of 101 is determined.
  • the concentration of nucleic acid in the sucked liquid 101 to be detected and discharge a desired amount of the liquid 101 to be detected by one dispensing operation.
  • the user only presses the switch 23 during suction and discharge of the liquid to be detected 101.
  • the calculation unit 21 of the dispensing device 100 can also calculate the nucleic acid concentration with high accuracy.
  • the fluorescence detection device 10 in which both the light emitting element 14 and the light receiving element 12 are mounted on the substrate 11 has been described. If the fluorescence from the liquid to be detected 101 can be detected by the light receiving element 12 inside the chip 1, the arrangement of each element of the fluorescence detection device 10 can be appropriately changed. Therefore, in the second embodiment, we propose an example in which the arrangement of the light receiving element 12 and the light emitting element 14 is changed.
  • FIG. 4A is a schematic view showing the configuration of the dispensing device 200 according to the second embodiment. As shown in FIG. 4A, the appearance configuration of the dispensing device 200 is the same as that of the dispensing device 100 of the first embodiment, and thus the description thereof will be omitted.
  • FIG. 4B is a schematic cross-sectional view showing the internal configuration of the chip 1 of the dispensing device 200.
  • a fluorescence detection device 20 is provided inside the chip 1.
  • the components of the fluorescence detection device 20 are the same as those of the fluorescence detection device 10 according to the first embodiment, but in this embodiment, the arrangement of the light receiving element 12 and the light emitting element 14 is different. Specifically, only the light receiving element 12 and the fluorescence filter 13 are provided at the center of the surface of the substrate 11 facing the liquid to be detected 101.
  • a plurality of light emitting elements 14 and convex lenses 15 are provided on the inner peripheral surface of the fluorescence detection device 20.
  • the light emitting element 14 is supported by the support 6 on the inner peripheral surface of the chip 1.
  • the light emitting element 14 and the substrate 11 are connected by, for example, wiring (not shown).
  • the circuit of the substrate 11 and the light emitting element 14 is a printed circuit board circuit, or a single-sided substrate, a double-sided substrate, a multilayer substrate, or a single-sided substrate, a double-sided substrate, or a multilayer board in which a circuit pattern arrangement is constructed by vapor deposition, gravure printing, or inkjet printing of a conductive thin film or a conductor. It may be connected by a build-up board.
  • FIG. 4C is a view taken along the line B of FIG. 4B. Note that FIG. 4B is a cross-sectional view taken along the line AA shown in FIG. 4C. As shown in FIG. 4C, four light emitting elements 14 and four convex lenses 15 are provided at intervals of 90 degrees along the circumferential direction of the chip 1, and the light receiving element 12 is the chip 1 when viewed from below the dispensing device 200. It is located on the central axis, and the light emitting element 14 is located around the light receiving element 12.
  • the number and arrangement intervals of the light emitting element 14 and the convex lens 15 are not limited to those shown in FIG. 4C, and can be set arbitrarily.
  • the light receiving element 12 is arranged on the central axis in the chip 1, and the light emitting element 14 is arranged along the inner circumference of the chip 1. ..
  • the light of the light emitting element 14 can be more efficiently irradiated to the liquid to be detected 101 as compared with the first embodiment, so that the detection efficiency of the low-concentration fluorescent sample is improved. be able to.
  • the light detection result (digital signal) by the fluorescence detection device 10 is transmitted to the calculation unit 21 of the main body 2 via the cable 3, that is, by wire.
  • the third embodiment an example of wirelessly transmitting the detection result of the fluorescence detection device 10 to the outside is proposed.
  • FIG. 5A is a schematic view showing the dispensing device 300 according to the third embodiment.
  • the dispensing device 300 is different from the dispensing device 200 of the first embodiment in that the main body 2 further includes a receiving unit 24 and a transmitting unit 25 (wireless communication circuit).
  • the receiving unit 24 receives the light detection result by the fluorescence detection device 30.
  • the transmission unit 25 wirelessly transmits, for example, the calculation result of the calculation unit 21 to an external computer terminal or the like.
  • FIG. 5B is a schematic cross-sectional view showing the internal configuration of the chip 1 of the dispensing device 300.
  • the components of the fluorescence detection device 30 are the same as those of the fluorescence detection device 10 according to the first embodiment, but in the fluorescence detection device 30, the wireless communication circuit 31 and the battery 32 are further mounted on the substrate 11. It is provided in.
  • the battery 32 supplies power to each component provided on the substrate 11.
  • the wireless communication circuit 31 wirelessly transmits the digital signal generated by the AD conversion circuit 17 to the receiving unit 24 of the main unit 2.
  • known methods such as Bluetooth (registered trademark), Wi-Fi, and infrared rays can be adopted.
  • the receiving unit 24 receives the digital signal from the wireless communication circuit 31, it outputs the digital signal to the arithmetic unit 21.
  • the receiving unit 24, the transmitting unit 25, and the processing unit that executes the arithmetic processing in the arithmetic unit 21 do not necessarily have to be provided in the main body 2, but may be provided in an external device.
  • a computer terminal such as a smartphone 110, a personal computer 120, a tablet, or a mobile phone may execute the processing of the receiving unit 24, the transmitting unit 25, and the arithmetic unit 21.
  • data on the concentration of nucleic acid and the discharge amount of the liquid to be detected 101 may be displayed on the screen of the computer terminal. In this way, when the processing of the arithmetic unit 21 is executed on the computer terminal, an application or the like for executing the necessary processing on the computer terminal may be installed.
  • the dispensing device 300 according to the third embodiment adopts a configuration in which the detection result by the fluorescence detecting device 30 provided in the chip 1 is wirelessly transmitted to the main body or an external device. ..
  • the dispensing device 100 of the first embodiment it is not necessary to connect the fluorescence detection device 30 in the chip 1 and the main body 2 with a cable, which facilitates assembly.
  • the pipette type dispensing devices 100 to 300 operated by the user have been described.
  • the dispensing devices 100 to 300 of each embodiment can also be mounted on a device that automatically dispenses and analyzes a liquid. Therefore, in the present embodiment, we propose an automatic dispensing device that automatically performs the dispensing operation.
  • the automatic dispensing device of the present embodiment can be incorporated into an analyzer such as a preprocessing automation device of a next-generation sequencer, for example.
  • the automatic dispensing device incorporated in such a pretreatment automation device can be used, for example, for quality confirmation (measurement of nucleic acid concentration) of a nucleic acid solution having an unknown concentration prepared by the pretreatment automation device.
  • FIG. 6 is a schematic view showing the automatic dispensing device 400 according to the fourth embodiment.
  • the automatic dispensing device 400 includes a dispensing device 300, a moving mechanism 401, a control unit 402, a display unit 403, and a reaction vessel 102 containing the liquid to be detected 101, which are the same as those in the third embodiment.
  • An empty container 103 for discharging the liquid to be detected 101 is provided.
  • the dispensing device 100 of the first embodiment or the dispensing device 200 of the second embodiment may be used.
  • the moving mechanism 401 has, for example, a holding portion for holding the dispensing device 300 and an actuator for moving the holding portion in the horizontal and vertical directions, and moves the dispensing device 300 in the horizontal and vertical directions.
  • a rail for moving the dispensing device 300 in the vertical direction and the left-right direction on the paper surface is shown, but a rail for moving the dispensing device in the front-rear direction is further provided. May be.
  • the control unit 402 controls the drive of the moving mechanism 401. Further, the control unit 402 instructs the start of the suction operation and the discharge operation by the dispensing device 300. Further, the control unit 402 may execute the calculation process of the calculation unit 21 (not shown in FIG. 6) described in the first embodiment (FIGS. 2 and 3).
  • the display unit 403 displays the data processed by the calculation unit 21 or the control unit 402 of the dispensing device 300.
  • the control unit 402 drives the moving mechanism 401 to immerse the tip of the chip 1 of the dispensing device 300 in the reaction vessel 102 containing the liquid to be detected 101, and instructs the dispensing device 300 to start the suction operation.
  • the calculation unit 21 of the dispensing device 300 drives the plunger to suck the liquid to be detected 101 into the chip 1.
  • the control unit 402 drives the moving mechanism 401 to pull up the dispensing device 300.
  • the calculation unit 21 of the dispensing device 300 causes the fluorescence detection device 30 to irradiate the light and detect the light from the liquid to be detected 101.
  • the fluorescence detection device 30 wirelessly transmits a detection result (digital signal) to the calculation unit 21 of the main body unit 2. At this time, the fluorescence detection device 30 may transmit a detection result (digital signal) to the control unit 402.
  • the calculation unit 21 or the control unit 402 calculates the concentration of nucleic acid in the liquid to be detected 101 and determines the discharge amount of the liquid to be detected 101. After that, the control unit 402 drives the moving mechanism 401 to move the dispensing device 300 so that the tip portion of the tip 1 is located inside the container 103, and then starts the dispensing operation to the dispensing device 300. Send instructions. When the instruction to start the discharge operation is input, the calculation unit 21 drives the plunger to discharge the liquid to be detected 101 into the container 103 according to the determined discharge amount.
  • the analyzer may be configured to further supply the required amount of diluent to the container 103.
  • the automatic dispensing device includes the dispensing device 300 provided with the fluorescence detection device 30 in the chip 1, and automatically executes the dispensing operation by the dispensing device 300. ..
  • the concentration of nucleic acid in the liquid to be detected 101 prepared by the analyzer can be measured simply by incorporating the automatic dispensing device into the analyzer, so that the size of the analyzer can be suppressed. Since such a small analyzer can be installed in one laboratory (for example, a place where a sample is collected such as a hospital), the pretreatment of the nucleic acid sequencer can be rapidly performed on the spot. Further, since the concentration of nucleic acid can be calculated and the required amount can be discharged only by one dispensing operation, an increase in processing time is suppressed.
  • the light emitting element 14 of the fluorescence detection device provided in the chip 1 irradiates the liquid to be detected 101 with light.
  • the light emitting element 14 may irradiate light from the outside of the chip 1.
  • the automatic dispensing device 400 of the fourth embodiment is provided with a light source unit for irradiating light from below or laterally of the dispensing device 300, the nucleic acid concentration in the liquid to be detected 101 is measured.
  • the dispensing device 300 is moved above or laterally to the light source unit to irradiate the chip 1 with light.
  • the fluorescence detection device can be downsized by the amount of the light emitting element 14 and the light source drive circuit 18. As a result, the fluorescence detection device can be attached to the chip 1 having a smaller capacity, so that the concentration of nucleic acid in the liquid to be detected 101 can be accurately measured even when the amount of the liquid to be detected 101 is very small. be able to.
  • a fluorescent dye is bound to the nucleic acid in the liquid to be detected 101, and the concentration of the nucleic acid is measured by detecting the fluorescence.
  • the target for measuring the concentration is not limited to nucleic acid, and the light to be detected is not limited to fluorescence.
  • a liquid containing an analysis target and a dye that can be bound to the analysis target may be used as the liquid to be detected 101, and the wavelength of the color emitted by the dye may be detected.
  • the present disclosure is not limited to the embodiments described above, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present disclosure in an easy-to-understand manner, and does not necessarily have all the configurations described.
  • a part of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of another embodiment with respect to a part of the configuration of each embodiment.
  • Dispensing device 400 Automatic dispensing device 101 ... Liquid 102 to be detected ... Reaction container 103 ... Container 1 ... Chip 2 ... Main body 3 ... Cable 4, 6 ... Support 5 ... Vents 10, 20 , 30 ... Fluorescence detection device 11 ... Substrate 12 ... Light receiving element 13 ... Fluorescent filter 14 ... Light emitting element 15 ... Convex lens 16 ... Current / voltage conversion circuit 17 ... AD conversion circuit 18 ... Light source drive circuit 21 ... Calculation unit 22 ... Power supply unit 23 ... Switch 24 ... Receiver 25 ... Transmitter 31 ... Wireless communication circuit 32 ... Battery

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A detection device of the present disclosure detects light from an analyte in a liquid, wherein the detection device is characterized: by comprising a light source that projects light to the liquid, and a detection unit that detects light from the analyte in the liquid; and in that at least the detection unit is disposed in a dispensing tip by which the liquid is suctioned.

Description

検出装置、分注装置及び分注方法Detection device, dispensing device and dispensing method
 本開示は、検出装置、分注装置及び分注方法に関する。 This disclosure relates to a detection device, a dispensing device and a dispensing method.
 ゲノム医療が本格的にスタートし、3つのがん遺伝子パネル診断薬が保険適用された。がん遺伝子パネル診断で用いられる遺伝子プロファイリング検査とは、がん患者から採取した血液や病理検体から核酸を抽出し、遺伝子変異検査キット試薬を用いて、次世代DNAシーケンサ(NGS)で網羅的に解析するものである。解析された結果に基づいて、医師、病理医、バイオインフォマティシャン、薬剤師などの専門家集団により治療方針が決定された後に、患者に合った抗がん剤、分子標的薬、若しくは免疫チェックポイント阻害剤が提供される。しかしながら、遺伝子パネル検査には高額な費用が掛かることに加えて、一人の患者が保険適用内で使用できる回数は1回のみであることから、検査は全て成功することが求められる。その一方で、現状は10~20%の検体が解析結果不良となっている。 Genome medicine has started in earnest, and three oncogene panel diagnostic agents have been covered by insurance. The gene profiling test used in oncogene panel diagnosis is a comprehensive next-generation DNA sequencer (NGS) that extracts nucleic acids from blood and pathological specimens collected from cancer patients and uses gene mutation test kit reagents. It is to be analyzed. Based on the analyzed results, after the treatment policy is decided by a group of specialists such as doctors, pathologists, bioinformaticians, pharmacists, etc., anti-cancer drugs, molecular-targeted drugs, or immune checkpoints suitable for the patient Inhibitors are provided. However, in addition to the high cost of genetic panel testing, all tests are required to be successful because one patient can only use it once within the insurance coverage. On the other hand, at present, 10 to 20% of the samples have poor analysis results.
 核酸サンプルの前処理工程は種々存在するが、核酸サンプルの増幅工程において、ライブラリ調製後の二本鎖核酸溶液の濃度調整は、増幅反応を再現よく実施するために、初期の核酸濃度をある程度一定に揃える必要がある。また、増幅された核酸サンプルをシーケンスするためのフローセルにローディングする際にも、シーケンスに適した核酸濃度に調整する必要がある。 There are various pretreatment steps for nucleic acid samples, but in the nucleic acid sample amplification step, the concentration adjustment of the double-stranded nucleic acid solution after library preparation keeps the initial nucleic acid concentration to some extent in order to carry out the amplification reaction in a reproducible manner. Need to be aligned with. Also, when loading the amplified nucleic acid sample into the flow cell for sequencing, it is necessary to adjust the nucleic acid concentration to be suitable for the sequencing.
 従来、核酸抽出装置により抽出された核酸の定量及び濃度調整は用手で行われていた。つまり、核酸の濃度を調整するには、核酸濃度を定量し、その濃度に合わせて用手で分注又は希釈量を決定していた。これらの一連の工程は、ステップ数が多く、専門の知識を有することもあり、テクニシャンの習熟度に依存しないよう自動化のニーズが高まっている。 Conventionally, the quantification and concentration adjustment of the nucleic acid extracted by the nucleic acid extractor has been performed manually. That is, in order to adjust the nucleic acid concentration, the nucleic acid concentration was quantified, and the amount of dispensing or dilution was manually determined according to the concentration. These series of processes have a large number of steps and may have specialized knowledge, and there is an increasing need for automation so as not to depend on the proficiency level of the technician.
 既に市販されている前処理自動化装置でのサンプル品質確認(QC)は、装置内に設けられた専用の測定装置で行われるため、一般には前処理自動化装置は大型である。また、処理サンプルの増加に伴い分注回数が飛躍的に増大するため、全体の処理時間が長くなる傾向にある。 Since sample quality confirmation (QC) with a pretreatment automation device already on the market is performed by a dedicated measuring device provided in the device, the pretreatment automation device is generally large. In addition, since the number of dispensings increases dramatically as the number of processed samples increases, the overall processing time tends to increase.
 特許文献1には、核酸検出装置において、「反応容器1のインキュベーター6が配置され、その下方に、反応容器1内の蛍光測定を行うための蛍光検出部7が配置され、これらの各容器ラック、チップ廃棄部5及びインキュベーター6の上方を水平移動可能に配設された移送装置10上に酵素試薬分注機構8と、蓋キャッチ機構9とが設置されている。」という構成を採用することが記載されている(同文献の要約参照)。 In Patent Document 1, in the nucleic acid detection device, "the incubator 6 of the reaction vessel 1 is arranged, and the fluorescence detection unit 7 for performing fluorescence measurement in the reaction vessel 1 is arranged below the incubator 6, and each of these container racks. , The enzyme reagent dispensing mechanism 8 and the lid catching mechanism 9 are installed on the transfer device 10 arranged so as to be horizontally movable above the chip disposal unit 5 and the incubator 6. ” Is described (see the abstract of the same document).
特開2009-77639号公報Japanese Unexamined Patent Publication No. 2009-77369
 特許文献1の核酸検出装置は、分注装置と蛍光検出部を有しているが、核酸を蛍光により検出するのみであるため、核酸の有無を検出することはできるものの、所望の核酸濃度に調整するには、濃度の測定など別途の操作を行う必要がある。特許文献1の核酸検出装置に対し核酸濃度を測定するための測定装置を設けたとしても、装置全体が大型化すると考えられる。結果として、病院などの、検体を採取する検査施設に装置を設置することが難しくなり、サンプルの核酸の濃度測定をその場で実施することができなくなるので、サンプルの全体の処理時間が増加する可能性がある。 The nucleic acid detection device of Patent Document 1 has a dispensing device and a fluorescence detection unit, but since the nucleic acid is only detected by fluorescence, the presence or absence of nucleic acid can be detected, but the desired nucleic acid concentration can be obtained. To adjust, it is necessary to perform a separate operation such as measuring the concentration. Even if the nucleic acid detection device of Patent Document 1 is provided with a measuring device for measuring the nucleic acid concentration, it is considered that the entire device becomes large. As a result, it becomes difficult to install the device in a laboratory such as a hospital where the sample is collected, and it becomes impossible to measure the concentration of the nucleic acid of the sample on the spot, so that the total processing time of the sample increases. there is a possibility.
 そこで、本開示は、液体中の分析対象の濃度を迅速に測定可能とする技術を提供する。 Therefore, the present disclosure provides a technique that enables rapid measurement of the concentration of an analysis target in a liquid.
 本開示の検出装置は、液体中の分析対象からの光を検出する検出装置であって、前記液体に対し光を照射する光源と、前記液体中の前記分析対象からの光を検出する検出部と、を備え、少なくとも前記検出部が、前記液体が吸引される分注チップ内に配置されることを特徴とする。 The detection device of the present disclosure is a detection device that detects light from an analysis target in a liquid, and is a detection device that detects a light source that irradiates the liquid with light and light from the analysis target in the liquid. And, at least, the detection unit is arranged in a dispensing chip to which the liquid is sucked.
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例を如何なる意味に於いても限定するものではない。
Further features relating to this disclosure will become apparent from the description herein and the accompanying drawings. In addition, the aspects of the present disclosure are achieved and realized by the combination of elements and various elements and the following detailed description and the aspect of the appended claims.
The description of the present specification is merely a typical example, and does not limit the scope of claims or application examples of the present disclosure in any sense.
 本開示の検出装置によれば、分注チップ内に吸引された液体中の分析対象からの光を迅速に測定可能とすることができる。
 上記以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the detection device of the present disclosure, it is possible to quickly measure the light from the analysis target in the liquid sucked into the dispensing chip.
Issues, configurations and effects other than the above will be clarified by the following description of the embodiments.
第1の実施形態に係る分注装置を示す模式図である。It is a schematic diagram which shows the dispensing apparatus which concerns on 1st Embodiment. 第1の実施形態に係るチップの内部の構成を示す概略断面図である。It is schematic cross-sectional view which shows the internal structure of the chip which concerns on 1st Embodiment. 図1BのB矢視図である。It is a B arrow view of FIG. 1B. 第1の実施形態に係る分注装置を用いた分注方法を示すフローチャートである。It is a flowchart which shows the dispensing method using the dispensing apparatus which concerns on 1st Embodiment. 第1の実施形態に係る分注装置を用いた分注方法を示すフローチャートである。It is a flowchart which shows the dispensing method using the dispensing apparatus which concerns on 1st Embodiment. 第2の実施形態に係る分注装置を示す模式図である。It is a schematic diagram which shows the dispensing apparatus which concerns on 2nd Embodiment. 第2の実施形態に係るチップの内部の構成を示す概略断面図である。It is the schematic sectional drawing which shows the internal structure of the chip which concerns on 2nd Embodiment. 図4BのB矢視図である。It is a B arrow view of FIG. 4B. 第3の実施形態に係る分注装置を示す模式図である。It is a schematic diagram which shows the dispensing apparatus which concerns on 3rd Embodiment. 第3の実施形態に係るチップの内部及び外部の構成を示す概略断面図である。It is a schematic cross-sectional view which shows the structure inside and outside of the chip which concerns on 3rd Embodiment. 第4の実施形態に係る自動分注装置を示す模式図である。It is a schematic diagram which shows the automatic dispensing apparatus which concerns on 4th Embodiment.
 本開示についての実施形態を以下に述べる。各実施形態の構成要素を形成するための工程及び構成品などは、以下の記載に限定されない。また、構成要素の形状及び機能について言及する場合においては、特に明示した場合を除き、その構成要素の形状及び配置に類似する形状又は機能を有するものを含む。また、構成要素を一部変更しても、主たる機能が失われるものでなければ、その構成品については変更前と同等とみなす。 An embodiment of the present disclosure will be described below. The steps and components for forming the components of each embodiment are not limited to the following descriptions. In addition, when the shape and function of a component are referred to, unless otherwise specified, those having a shape or function similar to the shape and arrangement of the component are included. In addition, even if some of the components are changed, if the main functions are not lost, the components are considered to be the same as before the change.
 本開示においては、一例として、濃度の分析対象を核酸とし、本開示の分注装置により分注される液体(被検出液)を、核酸を含む溶液と、核酸と結合する蛍光色素との混合液とする。ただし、本開示の技術の適用において、分析対象は核酸に限定されず、分析対象に結合する色素も、蛍光色素に限定されない。 In the present disclosure, as an example, a nucleic acid is used as a concentration analysis target, and a liquid (detected liquid) dispensed by the dispensing device of the present disclosure is a mixture of a solution containing nucleic acid and a fluorescent dye that binds to nucleic acid. Make it a liquid. However, in the application of the technique of the present disclosure, the analysis target is not limited to nucleic acid, and the dye that binds to the analysis target is not limited to the fluorescent dye.
 核酸染色用の蛍光色素としては、例えば3,6-ビス(ジメチルアミノ)アクリジン塩酸塩、臭化エチジウム、ヨウ化プロピジウム、エチジウムホモダイマー、SYTOX Green、POPO-1、BOBO-1、YOYO-1、TOTO-1、SYBR(登録商標) Gold、SYBR Green I、SYBR Green IIなどが挙げられる。核酸の濃度測定に用いる検量線を求める際に用いる標準蛍光色素としては、上記の蛍光色素を用いてもよいが、例えばテトラメチルローダミンイソチオシアネート、Texas Red、Cy3、Cy5、HNPP(2-hydroxy-3-naphthoic acid-2'-phenylanilide phosphate)、Alexa Fluor(登録商標)488、Alexa Fluor546などを用いてもよい。検量線の作成において、これらの蛍光色素と濃度既知の核酸溶液との混合溶液を使用することができる。 Examples of fluorescent dyes for nucleic acid staining include 3,6-bis (dimethylamino) acridines hydrochloride, ethidium bromide, propidium iodide, ethidium homodimer, SYTOX Green, POPO-1, BOBO-1, YOYO-1, TOTO. -1, SYBR (registered trademark) Gold, SYBR Green I, SYBR Green II and the like. The above fluorescent dye may be used as the standard fluorescent dye used when determining the calibration curve used for measuring the concentration of nucleic acid. For example, tetramethylrhodamine isothiocyanate, Texas Red, Cy3, Cy5, HNPP (2-hydroxy- 3-naphthoic acid-2'-phenylanilidephosphate), Alexa Fluor (registered trademark) 488, Alexa Fluor 546 and the like may be used. A mixed solution of these fluorescent dyes and a nucleic acid solution of known concentration can be used in the preparation of the calibration curve.
[第1の実施形態]
<分注装置の構成>
 図1Aは、第1の実施形態に係る分注装置100を示す模式図である。図1Aに示すように、分注装置100は、チップ1及び本体部2を備える。
[First Embodiment]
<Configuration of dispensing device>
FIG. 1A is a schematic view showing a dispensing device 100 according to the first embodiment. As shown in FIG. 1A, the dispensing device 100 includes a chip 1 and a main body 2.
 分注装置100は、例えばシリンダ駆動による空気圧方式の電動ピペットとすることができる。図示は省略しているが、本体部2には、分注装置100による分注動作(吸引動作及び吐出動作)に必要な分注機構が内蔵され、分注機構は、プランジャが内蔵されるシリンダ、プランジャを往復摺動させるためのモータなどを有する。 The dispensing device 100 can be, for example, a cylinder-driven pneumatic electric pipette. Although not shown, the main body 2 has a built-in dispensing mechanism necessary for the dispensing operation (suction operation and discharge operation) by the dispensing device 100, and the dispensing mechanism is a cylinder in which a plunger is built. , Has a motor for reciprocating the plunger.
 チップ1は、本体部2に着脱可能とすることができ、ディスポーザブルとしてもよい。被検出液101(液体)は、分注装置100の吸引動作によってチップ1の先端部に吸引され、分注装置100の吐出動作によってチップ1から吐出される。 The chip 1 can be attached to and detached from the main body 2, and may be disposable. The liquid to be detected 101 (liquid) is sucked into the tip of the chip 1 by the suction operation of the dispensing device 100, and is discharged from the chip 1 by the discharging operation of the dispensing device 100.
 チップ1の内部には、被検出液101が吸引される領域の上方に、蛍光検出装置10(検出装置)が設けられる。蛍光検出装置10は、ケーブル3により本体部2に接続される。詳細は後述するが、蛍光検出装置10の動作を概説すると、被検出液101に対し光を照射し、被検出液101中に存在する蛍光標識された核酸(分析対象)からの蛍光を検出し、検出結果を本体部2に出力する。 Inside the chip 1, a fluorescence detection device 10 (detection device) is provided above the region where the liquid to be detected 101 is sucked. The fluorescence detection device 10 is connected to the main body 2 by a cable 3. The details will be described later, but to outline the operation of the fluorescence detection device 10, the light to be detected 101 is irradiated to detect fluorescence from the fluorescence-labeled nucleic acid (analysis target) present in the detection liquid 101. , The detection result is output to the main body 2.
 本体部2は、演算部21、電源部22及びスイッチ23を有する。演算部21のハードウェア構成としては、例えばArduino(登録商標)やRaspberry Pi(登録商標)などの小型マイコンシステムを用いることができる。 The main body 2 has a calculation unit 21, a power supply unit 22, and a switch 23. As the hardware configuration of the arithmetic unit 21, for example, a small microcomputer system such as Arduino (registered trademark) or Raspberry Pi (registered trademark) can be used.
 演算部21は、上記の分注機構(不図示)に対し、所定の吸引量又は吐出量に応じた指示値を送信し、当該指示値に基づいてプランジャを駆動することにより、所定量での被検出液101の吸引及び吐出を可能とする。本体部2に内蔵されるメモリなどの記憶装置(不図示)には、分注装置100による液体の吸引量及び吐出量の上限及び下限が記憶されている。また、ユーザが吸引量及び吐出量を適宜設定できるように、吸引量を設定するための入力部(不図示)を本体部2に設けることもできる。 The calculation unit 21 transmits an instruction value according to a predetermined suction amount or discharge amount to the above-mentioned dispensing mechanism (not shown), and drives the plunger based on the instruction value to obtain a predetermined amount. The liquid to be detected 101 can be sucked and discharged. A storage device (not shown) such as a memory built in the main body 2 stores upper and lower limits of the suction amount and the discharge amount of the liquid by the dispensing device 100. Further, an input unit (not shown) for setting the suction amount can be provided in the main body 2 so that the user can appropriately set the suction amount and the discharge amount.
 電源部22は、本体部2の各構成要素(演算部21、分注機構など)に対し、これらを駆動するための電源を供給する。また、電源部22は、ケーブル3を介して蛍光検出装置10にも電源を供給する。電源部22は、例えば小型電池であってもよいし、外部の電源供給ラインから受電して、本体部2の各構成要素や蛍光検出装置10に電力を供給する機構であってもよい。このように、本体部2に電源部22を設けることにより、蛍光検出装置10に電源部を設ける必要がないため、蛍光検出装置10が単純な構成となり、小型化を実現することができる。 The power supply unit 22 supplies power to each component (calculation unit 21, dispensing mechanism, etc.) of the main body 2 to drive them. The power supply unit 22 also supplies power to the fluorescence detection device 10 via the cable 3. The power supply unit 22 may be, for example, a small battery, or may be a mechanism that receives power from an external power supply line and supplies power to each component of the main body 2 and the fluorescence detection device 10. By providing the power supply unit 22 in the main body 2 in this way, it is not necessary to provide the power supply unit in the fluorescence detection device 10, so that the fluorescence detection device 10 has a simple configuration and can be miniaturized.
 スイッチ23は、ユーザが液体の吸引及び吐出のタイミングを指示するために設けられる。例えばユーザによりスイッチ23が押されると、演算部21は、スイッチ23がオンになったことを検知して、分注機構による吸引動作を開始し、ユーザによりもう一度スイッチ23が押されると、分注機構による吐出動作を開始する。 The switch 23 is provided for the user to instruct the timing of suction and discharge of the liquid. For example, when the switch 23 is pressed by the user, the calculation unit 21 detects that the switch 23 is turned on and starts the suction operation by the dispensing mechanism, and when the switch 23 is pressed again by the user, the dispensing is performed. The discharge operation by the mechanism is started.
 図1Bは、チップ1の内部の構成を示す概略断面図である。図1Bにおいては、チップ1のうち蛍光検出装置10が存在する領域のみを図示している。図1Bに示すように、蛍光検出装置10は支持体4によりチップ1に支持される。蛍光検出装置10は、チップ1に対し着脱可能とすることができる。支持体4の材質としては、例えばゴムや樹脂など、柔軟性がある材料を用いることができる。支持体4と、蛍光検出装置10との間には通気口5が設けられている。 FIG. 1B is a schematic cross-sectional view showing the internal configuration of the chip 1. In FIG. 1B, only the region of the chip 1 in which the fluorescence detection device 10 exists is shown. As shown in FIG. 1B, the fluorescence detection device 10 is supported by the chip 1 by the support 4. The fluorescence detection device 10 can be attached to and detached from the chip 1. As the material of the support 4, a flexible material such as rubber or resin can be used. A vent 5 is provided between the support 4 and the fluorescence detection device 10.
 蛍光検出装置10は、基板11、受光素子12(検出部)、蛍光フィルタ13、発光素子14(光源)、凸レンズ15(集光レンズ)、電流電圧変換回路16(検出部)、AD変換回路17(検出部)及び光源駆動回路18を有する。 The fluorescence detection device 10 includes a substrate 11, a light receiving element 12 (detection unit), a fluorescence filter 13, a light emitting element 14 (light source), a convex lens 15 (condensing lens), a current / voltage conversion circuit 16 (detection unit), and an AD conversion circuit 17. It has a (detection unit) and a light source drive circuit 18.
 発光素子14及び受光素子12は、被検出液101に対向するように基板11上に設けられている。発光素子14及び受光素子12は、それぞれ独立して基板11に設けられてもよいし、これらが一体となった素子を基板11に設けることもできる。 The light emitting element 14 and the light receiving element 12 are provided on the substrate 11 so as to face the liquid to be detected 101. The light emitting element 14 and the light receiving element 12 may be independently provided on the substrate 11, or an element in which they are integrated may be provided on the substrate 11.
 発光素子14は、被検出液101に対し光(励起光)を照射する。発光素子14としては、発する光の中心波長が被検出液101に含まれる蛍光色素の励起波長に近いものを用いることができる。発光素子14の具体例としては、例えば発光ダイオード(LED)などの小型化が容易で安価かつ低消費電力・長寿命のものを用いることができる。発光ダイオードの材質としてはインジウム窒化ガリウム、窒化ガリウム、セレン化亜鉛、酸化亜鉛、ペロブスカイト半導体、アルミニウムガリウムヒ素、ガリウムヒ素などが挙げられる。 The light emitting element 14 irradiates the liquid to be detected 101 with light (excitation light). As the light emitting element 14, an element whose central wavelength of the emitted light is close to the excitation wavelength of the fluorescent dye contained in the liquid to be detected 101 can be used. As a specific example of the light emitting element 14, for example, a light emitting diode (LED) or the like which can be easily miniaturized, is inexpensive, has low power consumption, and has a long life can be used. Examples of the material of the light emitting diode include indium gallium nitride, gallium nitride, zinc selenide, zinc oxide, perovskite semiconductor, gallium aluminum gallium arsenide, and gallium arsenide.
 発光素子14の後段(被検出液101側)には凸レンズ15が設けられている。これにより、発光素子14からの光を集光して、被検出液101に対して所定の距離で、任意の場所に励起光を照射することができる。 A convex lens 15 is provided after the light emitting element 14 (on the side of the liquid to be detected 101). As a result, the light from the light emitting element 14 can be focused, and the excitation light can be irradiated to an arbitrary place at a predetermined distance with respect to the liquid to be detected 101.
 受光素子12は、被検出液101から発せられる光(発光素子14からの光の照射により被検出液101中の蛍光色素が発する蛍光)を検出して、電流信号を出力する。受光素子12としては、蛍光色素が発する蛍光の波長を検出可能なものを用いることができる。受光素子12の具体例としては、例えば光電子増倍管(PMT)、フォトダイオード(PD)、フォトトランジスタなど、光を電流に変換する素子を用いることができる。 The light receiving element 12 detects the light emitted from the liquid to be detected 101 (the fluorescence emitted by the fluorescent dye in the liquid to be detected 101 by the irradiation of the light from the light emitting element 14), and outputs a current signal. As the light receiving element 12, an element capable of detecting the wavelength of fluorescence emitted by the fluorescent dye can be used. As a specific example of the light receiving element 12, an element that converts light into an electric current, such as a photomultiplier tube (PMT), a photodiode (PD), and a phototransistor, can be used.
 蛍光フィルタ13は、受光素子12の前段(被検出液101側)に設けられ、特定の波長の光を受光素子12に入射させる。例えば、蛍光フィルタ13は、蛍光色素の蛍光波長を透過し、発光素子14の励起波長をカットするものを用いることができる。 The fluorescence filter 13 is provided in front of the light receiving element 12 (on the side of the liquid to be detected 101), and causes light of a specific wavelength to enter the light receiving element 12. For example, as the fluorescence filter 13, one that transmits the fluorescence wavelength of the fluorescent dye and cuts the excitation wavelength of the light emitting element 14 can be used.
 受光素子12及び発光素子14の数は、図示のようにそれぞれ1つであってもよいし、複数個であってもよい。 The number of light receiving elements 12 and light emitting elements 14 may be one or a plurality, respectively, as shown in the figure.
 電流電圧変換回路16は、受光素子12から出力される電流信号を電圧信号に変換し、AD変換回路17は、電圧信号をデジタル信号に変換し、ケーブル3を介して演算部21(図1A)にデジタル信号(検出結果)を送信する。 The current-voltage conversion circuit 16 converts the current signal output from the light receiving element 12 into a voltage signal, and the AD conversion circuit 17 converts the voltage signal into a digital signal, and the calculation unit 21 (FIG. 1A) via the cable 3. A digital signal (detection result) is transmitted to.
 光源駆動回路18は、発光素子14による光の照射を制御する。光源の駆動方式としては、例えば定電流駆動方式、電流制限抵抗方式、高周波駆動方式などを採用することができる。光源駆動回路18は、例えば、本体部2に設けられたスイッチ23のユーザによるオン/オフ操作など、外部トリガにより発光素子14の点灯又は消灯を制御することができる。 The light source drive circuit 18 controls the irradiation of light by the light emitting element 14. As the drive method of the light source, for example, a constant current drive method, a current limiting resistance method, a high frequency drive method, or the like can be adopted. The light source drive circuit 18 can control the lighting or extinguishing of the light emitting element 14 by an external trigger, for example, an on / off operation by a user of the switch 23 provided in the main body 2.
 演算部21は、AD変換回路17から受信したデジタル信号を読み取り、電圧値として数値化する。その後、演算部21は、予め測定した核酸濃度既知の蛍光標準溶液についての蛍光測定値(電圧値)に基づいて作成した検量線を用いて、数値化した電圧値に対応する、被検出液101中の核酸の濃度を算出する。また、演算部21は、算出した核酸の濃度と分注装置100の吸引量とに基づいて、被検出液101の吐出量を決定し、決定した吐出量に従って分注機構に指示値を送信する。 The calculation unit 21 reads the digital signal received from the AD conversion circuit 17 and digitizes it as a voltage value. After that, the calculation unit 21 uses a calibration curve prepared based on the fluorescence measurement value (voltage value) of the fluorescence standard solution having a known nucleic acid concentration measured in advance, and corresponds to the quantified voltage value of the liquid to be detected 101. Calculate the concentration of nucleic acid in. Further, the calculation unit 21 determines the discharge amount of the liquid to be detected 101 based on the calculated nucleic acid concentration and the suction amount of the dispensing device 100, and transmits an indicated value to the dispensing mechanism according to the determined discharge amount. ..
 なお、演算部21が本体部2に実装されている例を示したが、蛍光検出装置10の基板11に演算部21を実装してもよい。 Although the example in which the calculation unit 21 is mounted on the main body 2 is shown, the calculation unit 21 may be mounted on the substrate 11 of the fluorescence detection device 10.
 演算部21による演算結果(電圧値、核酸濃度、吸引量、吐出量など)は、本体部2に設けられた表示部(不図示)に表示されてもよい。 The calculation result (voltage value, nucleic acid concentration, suction amount, discharge amount, etc.) by the calculation unit 21 may be displayed on a display unit (not shown) provided in the main body unit 2.
 図1Cは、図1BのB矢視図である。なお、図1Bは、図1Cに示したA-A線による断面図である。図1Cに示すように、支持体4は環状の部材であり、矩形の板状の基板11の四隅が支持体4により支持され、基板11の各辺の一部と支持体4との間の隙間が通気口5となっている。通気口5が形成されていることにより、シリンダ駆動による被検出液101の吸引及び吐出が可能となる。なお、通気口5は、基板11と支持体4との間に設けられた隙間でなくてもよく、基板11自体に設けられた貫通孔の形態であってもよい。また、支持体4を通気性のある材料(例えば、スポンジ、ウレタンなどの多孔質材料)で形成して通気口としてもよい。 FIG. 1C is a view taken along the line B of FIG. 1B. Note that FIG. 1B is a cross-sectional view taken along the line AA shown in FIG. 1C. As shown in FIG. 1C, the support 4 is an annular member, and the four corners of the rectangular plate-shaped substrate 11 are supported by the support 4, and a part of each side of the substrate 11 and the support 4 are supported. The gap is a vent 5. Since the vent 5 is formed, the liquid to be detected 101 can be sucked and discharged by the cylinder drive. The vent 5 does not have to be a gap provided between the substrate 11 and the support 4, and may be in the form of a through hole provided in the substrate 11 itself. Further, the support 4 may be formed of a breathable material (for example, a porous material such as sponge or urethane) to serve as a vent.
 図1Cに示すように、支持体4は1つの環状部材とすることができるが、円弧状の部材を複数個組み合わせて用いてもよい。また、支持体4の形状も環状に限定されず、基板11の寸法及び形状などに応じて他の形状を採用することもできる。このように、支持体4は、チップ1内に基板11を支持できるものであれば、個数、材質、形状に限定はない。 As shown in FIG. 1C, the support 4 can be one annular member, but a plurality of arcuate members may be used in combination. Further, the shape of the support 4 is not limited to the annular shape, and other shapes may be adopted depending on the dimensions and shape of the substrate 11. As described above, the number, material, and shape of the support 4 are not limited as long as the substrate 11 can be supported in the chip 1.
<分析方法>
 図2は、本実施形態に係る分注装置100を用いた分注方法を示すフローチャートである。なお、本実施形態においては、ユーザが分注装置100を用いてマニュアルで分注操作を行うこととする。図2の方法は、濃度既知の核酸と蛍光色素とを含む標準溶液を用いて検量線を作成するために実行される。
<Analysis method>
FIG. 2 is a flowchart showing a dispensing method using the dispensing device 100 according to the present embodiment. In this embodiment, the user manually performs the dispensing operation using the dispensing device 100. The method of FIG. 2 is performed to prepare a calibration curve using a standard solution containing nucleic acid of known concentration and a fluorescent dye.
 ステップS11において、ユーザは、チップ1の内部に支持体4及び蛍光検出装置10を装着し、ケーブル3により蛍光検出装置10と本体部2とを接続して、チップ1を本体部2に装着する。代替的に、予め本体部2と蛍光検出装置10とが予めケーブル3により接続されたものと、内部に支持体4が設けられたチップ1とがユーザに供給されてもよい。この場合、ユーザは、蛍光検出装置10をチップ1内に挿入してチップ1を本体部2に装着するだけでよいので、操作が簡便である。もちろん、図1Aに示した状態の分注装置100がユーザに提供されてもよい。このように、分注装置100がどの段階まで組み立てられた状態でユーザに提供されるかについては、特に限定はない。 In step S11, the user mounts the support 4 and the fluorescence detection device 10 inside the chip 1, connects the fluorescence detection device 10 and the main body 2 with a cable 3, and mounts the chip 1 on the main body 2. .. Alternatively, the main body 2 and the fluorescence detection device 10 may be previously connected by a cable 3 and a chip 1 provided with a support 4 inside may be supplied to the user. In this case, the user only needs to insert the fluorescence detection device 10 into the chip 1 and attach the chip 1 to the main body 2, so that the operation is simple. Of course, the dispensing device 100 in the state shown in FIG. 1A may be provided to the user. As described above, there is no particular limitation on to what stage the dispensing device 100 is provided to the user in an assembled state.
 ステップS12において、ユーザは、核酸濃度既知の蛍光標準溶液にチップ1の先端部を浸漬し、吸引動作を開始するためのスイッチ23をオンにする。演算部21は、スイッチ23がオンになったことを検知すると、分注機構に指示値を送信してプランジャを駆動することにより、チップ1内に蛍光標準溶液を所定量吸引する。 In step S12, the user immerses the tip of the chip 1 in a fluorescent standard solution having a known nucleic acid concentration, and turns on the switch 23 for starting the suction operation. When the calculation unit 21 detects that the switch 23 is turned on, it transmits an instruction value to the dispensing mechanism to drive the plunger, thereby sucking a predetermined amount of the fluorescent standard solution into the chip 1.
 ステップS13において、演算部21は、光源駆動回路18に指示を送信し、発光素子14から蛍光標準溶液に対し励起光を照射させる。受光素子12は、チップ1内の蛍光標準溶液からの蛍光を検出すると、検出信号を電流電圧変換回路16に出力する。 In step S13, the calculation unit 21 transmits an instruction to the light source drive circuit 18 to irradiate the fluorescence standard solution with excitation light from the light emitting element 14. When the light receiving element 12 detects fluorescence from the fluorescence standard solution in the chip 1, it outputs a detection signal to the current-voltage conversion circuit 16.
 ステップS14において、電流電圧変換回路16は検出信号を電圧信号に変換し、AD変換回路17は電圧信号(アナログ信号)をデジタル信号に変換し、ケーブル3を介して演算部21にデジタル信号を送信する。演算部21は、デジタル信号を受信すると、デジタル信号に基づいて電圧値を算出する。算出した電圧値は、例えば本体部2に内蔵される記憶装置(不図示)に保存される。 In step S14, the current-voltage conversion circuit 16 converts the detection signal into a voltage signal, the AD conversion circuit 17 converts the voltage signal (analog signal) into a digital signal, and transmits the digital signal to the arithmetic unit 21 via the cable 3. do. When the calculation unit 21 receives the digital signal, the calculation unit 21 calculates the voltage value based on the digital signal. The calculated voltage value is stored in, for example, a storage device (not shown) built in the main body 2.
 検量線作成のために、ユーザは、複数の異なる濃度の蛍光標準溶液について上記ステップS12~S14を実施する。 In order to prepare a calibration curve, the user performs the above steps S12 to S14 for a plurality of fluorescent standard solutions having different concentrations.
 ステップS15において、演算部21は、各濃度の蛍光標準溶液について算出した電圧値とそのときの蛍光標準溶液の濃度から、検量線を作成する。なお、溶液無しのチップ1内の状態をバックグラウンドとする。作成した検量線は、記憶装置(不図示)に保存される。 In step S15, the calculation unit 21 creates a calibration curve from the voltage value calculated for the fluorescence standard solution of each concentration and the concentration of the fluorescence standard solution at that time. The state inside the chip 1 without a solution is used as the background. The created calibration curve is stored in a storage device (not shown).
 図3は、本実施形態に係る分注装置100を用いた分注方法を示すフローチャートである。図3の方法は、濃度未知の核酸を含む被検出液101を分注して核酸濃度を測定するために実行される。 FIG. 3 is a flowchart showing a dispensing method using the dispensing device 100 according to the present embodiment. The method of FIG. 3 is carried out to dispense the nucleic acid to be detected 101 containing the nucleic acid of unknown concentration and measure the nucleic acid concentration.
 ステップS21において、ユーザは、図2のステップS11と同様にして、分注装置100を準備する。 In step S21, the user prepares the dispensing device 100 in the same manner as in step S11 of FIG.
 ステップS22において、ユーザは、核酸濃度未知の被検出液101にチップ1の先端部を浸漬し、吸引動作を開始するためのスイッチ23をオンにする。演算部21は、スイッチ23がオンになったことを検知すると、分注機構に指示値を送信してプランジャを駆動することにより、チップ1内に濃度未知の核酸と蛍光色素とを含む被検出液101を所定量吸引する。被検出液101の吸引量をAとする。また、分注装置100の吸引量の上限をBとする。 In step S22, the user immerses the tip of the chip 1 in the liquid to be detected 101 having an unknown nucleic acid concentration, and turns on the switch 23 for starting the suction operation. When the calculation unit 21 detects that the switch 23 is turned on, it transmits an instruction value to the dispensing mechanism to drive the plunger, thereby detecting a nucleic acid having an unknown concentration and a fluorescent dye in the chip 1. A predetermined amount of the liquid 101 is sucked. Let A be the suction amount of the liquid to be detected 101. Further, the upper limit of the suction amount of the dispensing device 100 is set to B.
 ステップS23において、演算部21は、光源駆動回路18に指示を送信し、発光素子14から被検出液101に対し励起光を照射させる。受光素子12は、チップ1内の被検出液101からの蛍光を検出すると、検出信号を電流電圧変換回路16に出力する。 In step S23, the calculation unit 21 transmits an instruction to the light source drive circuit 18 to irradiate the liquid to be detected 101 with excitation light from the light emitting element 14. When the light receiving element 12 detects fluorescence from the liquid to be detected 101 in the chip 1, it outputs a detection signal to the current-voltage conversion circuit 16.
 ステップS24において、図2のステップS14と同様にして、演算部21により電圧値(V)を算出する。 In step S24, the voltage value (V) is calculated by the calculation unit 21 in the same manner as in step S14 of FIG.
 ステップS25において、演算部21は、記憶装置から検量線を読み出し、検量線に基づいて、ステップS24において算出した電圧値(V)に対応する核酸濃度(C1)を求める。 In step S25, the calculation unit 21 reads the calibration curve from the storage device and obtains the nucleic acid concentration (C1) corresponding to the voltage value (V) calculated in step S24 based on the calibration curve.
 ステップS26において、演算部21は、求めた核酸濃度(C1)と必要濃度(C2)から、被検出液101の必要吐出量(D)を算出する。必要吐出量(D)は、D=C2×(1/C1)で算出される。 In step S26, the calculation unit 21 calculates the required discharge amount (D) of the liquid to be detected 101 from the obtained nucleic acid concentration (C1) and the required concentration (C2). The required discharge amount (D) is calculated by D = C2 × (1 / C1).
 ステップS27において、演算部21は、必要吐出量(D)に基づいて、被検出液101の吐出量(F)を決定する。ここで、例えば必要吐出量(D)が分注装置100の吐出量の下限(E)以下の場合(D≦E)には、吐出量下限(E)を吐出量(F)とする。また、例えば必要吐出量(D)が吸引量の上限(B)以上である場合(D≧B)には、チップ1内に吸引されている被検出液101の全量を吐出量(F)とする。必要吐出量(D)が、分注装置100の吐出量下限(E)より大きく吸引量上限(B)未満である場合(E<D<B)には、必要吐出量(D)=吐出量(F)とする。 In step S27, the calculation unit 21 determines the discharge amount (F) of the liquid to be detected 101 based on the required discharge amount (D). Here, for example, when the required discharge amount (D) is equal to or less than the lower limit (E) of the discharge amount of the dispensing device 100 (D ≦ E), the lower limit of the discharge amount (E) is set as the discharge amount (F). Further, for example, when the required discharge amount (D) is equal to or higher than the upper limit (B) of the suction amount (D ≧ B), the total amount of the liquid to be detected 101 sucked into the chip 1 is referred to as the discharge amount (F). do. When the required discharge amount (D) is larger than the discharge amount lower limit (E) of the dispensing device 100 and less than the suction amount upper limit (B) (E <D <B), the required discharge amount (D) = discharge amount. Let it be (F).
 ステップS28において、ユーザは、吐出を指示するためのスイッチ23をオンにする。演算部21は、スイッチ23がオンになったことを検知すると、吐出量(F)に応じた指示値を分注機構に送信し、プランジャを駆動して被検出液101を吐出させる。 In step S28, the user turns on the switch 23 for instructing the discharge. When the calculation unit 21 detects that the switch 23 is turned on, it transmits an indicated value according to the discharge amount (F) to the dispensing mechanism, and drives the plunger to discharge the liquid to be detected 101.
<技術的効果>
 以上のように、第1の実施形態に係る蛍光検出装置10(検出装置)は、チップ1の内部に設けられ、チップ1内に吸引された被検出液101(液体)からの光を受光素子12により検出する。このような構成を有することにより、受光素子12と液面との間の距離を近くすることができ、かつこれらの間に存在するのは空気のみとなるため、被検出液101からの蛍光を高感度に検出することができる。また、蛍光検出のための装置がチップ1内に収まるため、被検出液101を吸引するだけで蛍光を検出することができる。したがって、蛍光検出のための処理を行う時間を短縮できる。さらに、特許文献1のように蛍光検出部を装置に設ける必要がなくなり、装置の大型化を抑制することができる。
<Technical effect>
As described above, the fluorescence detection device 10 (detection device) according to the first embodiment is provided inside the chip 1 and receives light from the liquid to be detected 101 (liquid) sucked into the chip 1 as a light receiving element. Detect by 12. By having such a configuration, the distance between the light receiving element 12 and the liquid surface can be shortened, and only air exists between them, so that the fluorescence from the liquid to be detected 101 can be emitted. It can be detected with high sensitivity. Further, since the device for detecting fluorescence is housed in the chip 1, fluorescence can be detected only by sucking the liquid to be detected 101. Therefore, the time for performing the process for detecting fluorescence can be shortened. Further, it is not necessary to provide the fluorescence detection unit in the apparatus as in Patent Document 1, and it is possible to suppress the increase in size of the apparatus.
 発光素子14もチップ1内に設けられていることにより、被検出液101の液面と発光素子14との距離を限りなく近づけることができるので、光源の発光強度を増大させる必要がない。結果として、例えばレーザ光源などの大型の光源や遮光手段が不要となる。 Since the light emitting element 14 is also provided in the chip 1, the distance between the liquid surface of the liquid to be detected 101 and the light emitting element 14 can be made as close as possible, so that it is not necessary to increase the light emitting intensity of the light source. As a result, a large light source such as a laser light source or a shading means becomes unnecessary.
 第1の実施形態に係る分注装置100は、演算部21が、蛍光検出装置10の蛍光の検出結果に基づいて被検出液101中の核酸(分析対象)の濃度を測定し、被検出液101の吐出量を決定する。このような構成により、1回の分注操作で、吸引した被検出液101中の核酸の濃度を測定して、所望の量の被検出液101を吐出することが可能となる。上述のように、ユーザは、被検出液101の吸引時と吐出時にスイッチ23を押すだけである。したがって、分析対象を含む被検出液101を分注した後、核酸濃度を測定し、必要量を再度分注するといった複数の操作が不要となるので、被検出液101の品質確認を簡便かつ迅速に実施することができる。また、上記のように、受光素子12は被検出液101からの蛍光を高感度に検出することができるので、分注装置100の演算部21による核酸濃度の算出も高精度となる。 In the dispensing device 100 according to the first embodiment, the calculation unit 21 measures the concentration of nucleic acid (analysis target) in the detected liquid 101 based on the fluorescence detection result of the fluorescence detection device 10, and the detected liquid The discharge amount of 101 is determined. With such a configuration, it is possible to measure the concentration of nucleic acid in the sucked liquid 101 to be detected and discharge a desired amount of the liquid 101 to be detected by one dispensing operation. As described above, the user only presses the switch 23 during suction and discharge of the liquid to be detected 101. Therefore, it is not necessary to perform a plurality of operations such as measuring the nucleic acid concentration and re-dispensing the required amount after dispensing the liquid to be detected 101 containing the analysis target, so that the quality of the liquid to be detected 101 can be confirmed easily and quickly. Can be carried out. Further, as described above, since the light receiving element 12 can detect the fluorescence from the liquid to be detected 101 with high sensitivity, the calculation unit 21 of the dispensing device 100 can also calculate the nucleic acid concentration with high accuracy.
[第2の実施形態]
 第1の実施形態において、基板11に発光素子14及び受光素子12のいずれもが搭載されている蛍光検出装置10について説明した。チップ1内部において受光素子12により被検出液101からの蛍光を検出可能であれば、蛍光検出装置10の各素子の配置は適宜変更することができる。そこで、第2の実施形態においては、受光素子12及び発光素子14の配置を変更した例を提案する。
[Second Embodiment]
In the first embodiment, the fluorescence detection device 10 in which both the light emitting element 14 and the light receiving element 12 are mounted on the substrate 11 has been described. If the fluorescence from the liquid to be detected 101 can be detected by the light receiving element 12 inside the chip 1, the arrangement of each element of the fluorescence detection device 10 can be appropriately changed. Therefore, in the second embodiment, we propose an example in which the arrangement of the light receiving element 12 and the light emitting element 14 is changed.
<分注装置の構成例>
 図4Aは、第2の実施形態に係る分注装置200の構成を示す模式図である。図4Aに示すように、分注装置200の外観構成は、第1の実施形態の分注装置100と同様であるため説明を省略する。
<Configuration example of dispensing device>
FIG. 4A is a schematic view showing the configuration of the dispensing device 200 according to the second embodiment. As shown in FIG. 4A, the appearance configuration of the dispensing device 200 is the same as that of the dispensing device 100 of the first embodiment, and thus the description thereof will be omitted.
 図4Bは、分注装置200のチップ1の内部の構成を示す概略断面図である。図4Bに示すように、チップ1の内部には蛍光検出装置20が設けられている。蛍光検出装置20の構成要素は、第1の実施形態に係る蛍光検出装置10と同様であるが、本実施形態においては、受光素子12及び発光素子14の配置が異なっている。具体的には、基板11の被検出液101との対向する面の中心部に、受光素子12及び蛍光フィルタ13のみが設けられている。発光素子14及び凸レンズ15は、蛍光検出装置20の内周面上に複数設けられている。また、発光素子14は、チップ1の内周面において支持体6により支持される。発光素子14と基板11とは、例えば図示しない配線により接続されている。例えば、基板11と発光素子14の回路は、プリント基板回路、又は、導電体薄膜若しくは導電体を蒸着、グラビア印刷若しくはインクジェット印刷することにより回路パターン配列を構築した片面基板、両面基板、多層基板若しくはビルドアップ基板により接続してもよい。 FIG. 4B is a schematic cross-sectional view showing the internal configuration of the chip 1 of the dispensing device 200. As shown in FIG. 4B, a fluorescence detection device 20 is provided inside the chip 1. The components of the fluorescence detection device 20 are the same as those of the fluorescence detection device 10 according to the first embodiment, but in this embodiment, the arrangement of the light receiving element 12 and the light emitting element 14 is different. Specifically, only the light receiving element 12 and the fluorescence filter 13 are provided at the center of the surface of the substrate 11 facing the liquid to be detected 101. A plurality of light emitting elements 14 and convex lenses 15 are provided on the inner peripheral surface of the fluorescence detection device 20. Further, the light emitting element 14 is supported by the support 6 on the inner peripheral surface of the chip 1. The light emitting element 14 and the substrate 11 are connected by, for example, wiring (not shown). For example, the circuit of the substrate 11 and the light emitting element 14 is a printed circuit board circuit, or a single-sided substrate, a double-sided substrate, a multilayer substrate, or a single-sided substrate, a double-sided substrate, or a multilayer board in which a circuit pattern arrangement is constructed by vapor deposition, gravure printing, or inkjet printing of a conductive thin film or a conductor. It may be connected by a build-up board.
 図4Cは、図4BのB矢視図である。なお、図4Bは、図4Cに示したA-A線による断面図である。図4Cに示すように、発光素子14及び凸レンズ15がチップ1の周方向に沿って90度間隔で4つ設けられており、分注装置200の下方から見て、受光素子12がチップ1の中心軸上に位置し、発光素子14が受光素子12の周囲に位置している。 FIG. 4C is a view taken along the line B of FIG. 4B. Note that FIG. 4B is a cross-sectional view taken along the line AA shown in FIG. 4C. As shown in FIG. 4C, four light emitting elements 14 and four convex lenses 15 are provided at intervals of 90 degrees along the circumferential direction of the chip 1, and the light receiving element 12 is the chip 1 when viewed from below the dispensing device 200. It is located on the central axis, and the light emitting element 14 is located around the light receiving element 12.
 なお、発光素子14及び凸レンズ15の数や配置の間隔については、図4Cに示すものに限定されず、任意に設定することができる。 The number and arrangement intervals of the light emitting element 14 and the convex lens 15 are not limited to those shown in FIG. 4C, and can be set arbitrarily.
<技術的効果>
 以上のように、第2の実施形態に係る分注装置200においては、チップ1内の中心軸上に受光素子12が配置され、チップ1の内周に沿って発光素子14が配置されている。このような構造を採用することにより、第1の実施形態と比較して、発光素子14の光をより効率的に被検出液101に照射できるため、低濃度の蛍光試料の検出効率を向上することができる。
<Technical effect>
As described above, in the dispensing device 200 according to the second embodiment, the light receiving element 12 is arranged on the central axis in the chip 1, and the light emitting element 14 is arranged along the inner circumference of the chip 1. .. By adopting such a structure, the light of the light emitting element 14 can be more efficiently irradiated to the liquid to be detected 101 as compared with the first embodiment, so that the detection efficiency of the low-concentration fluorescent sample is improved. be able to.
[第3の実施形態]
 第1の実施形態においては、蛍光検出装置10による光の検出結果(デジタル信号)を、ケーブル3を介して、すなわち有線で本体部2の演算部21に送信することを説明した。これに対し、第3の実施形態においては、蛍光検出装置10の検出結果を無線で外部に送信する例を提案する。
[Third Embodiment]
In the first embodiment, it has been described that the light detection result (digital signal) by the fluorescence detection device 10 is transmitted to the calculation unit 21 of the main body 2 via the cable 3, that is, by wire. On the other hand, in the third embodiment, an example of wirelessly transmitting the detection result of the fluorescence detection device 10 to the outside is proposed.
<分注装置の構成>
 図5Aは、第3の実施形態に係る分注装置300を示す模式図である。図5Aに示すように、分注装置300は、本体部2が受信部24及び送信部25(無線通信回路)をさらに備える点で、第1の実施形態の分注装置200と異なっている。受信部24は、蛍光検出装置30による光の検出結果を受信する。送信部25は、例えば演算部21による演算結果を外部のコンピュータ端末等に無線により送信する。
<Configuration of dispensing device>
FIG. 5A is a schematic view showing the dispensing device 300 according to the third embodiment. As shown in FIG. 5A, the dispensing device 300 is different from the dispensing device 200 of the first embodiment in that the main body 2 further includes a receiving unit 24 and a transmitting unit 25 (wireless communication circuit). The receiving unit 24 receives the light detection result by the fluorescence detection device 30. The transmission unit 25 wirelessly transmits, for example, the calculation result of the calculation unit 21 to an external computer terminal or the like.
 図5Bは、分注装置300のチップ1の内部の構成を示す概略断面図である。図4Bに示すように、蛍光検出装置30の構成要素は、第1の実施形態に係る蛍光検出装置10と同様であるが、蛍光検出装置30は、無線通信回路31及び電池32がさらに基板11に設けられている。電池32は、基板11に設けられた各構成要素に電源を供給する。 FIG. 5B is a schematic cross-sectional view showing the internal configuration of the chip 1 of the dispensing device 300. As shown in FIG. 4B, the components of the fluorescence detection device 30 are the same as those of the fluorescence detection device 10 according to the first embodiment, but in the fluorescence detection device 30, the wireless communication circuit 31 and the battery 32 are further mounted on the substrate 11. It is provided in. The battery 32 supplies power to each component provided on the substrate 11.
 無線通信回路31は、AD変換回路17が生成したデジタル信号を、無線により本体部2の受信部24に送信する。無線通信方式としては、例えばBluetooth(登録商標)、Wi-Fi、赤外線など、公知の方式を採用できる。受信部24は、無線通信回路31からデジタル信号を受信すると、演算部21に出力する。 The wireless communication circuit 31 wirelessly transmits the digital signal generated by the AD conversion circuit 17 to the receiving unit 24 of the main unit 2. As the wireless communication method, known methods such as Bluetooth (registered trademark), Wi-Fi, and infrared rays can be adopted. When the receiving unit 24 receives the digital signal from the wireless communication circuit 31, it outputs the digital signal to the arithmetic unit 21.
 受信部24及び送信部25、並びに演算部21において演算処理を実行する処理部は、必ずしも本体部2に設けられている必要はなく、外部の装置に設けられていてもよい。例えばスマートフォン110、パーソナルコンピュータ120、タブレット、携帯電話などのコンピュータ端末が、受信部24、送信部25及び演算部21の処理を実行するようにしてもよい。また、コンピュータ端末の画面に、核酸の濃度や被検出液101の吐出量に関するデータを表示するようにしてもよい。このように、コンピュータ端末において演算部21の処理を実行させる場合、コンピュータ端末において必要な処理を実行するためのアプリケーション等をインストール可能にしておいてもよい。 The receiving unit 24, the transmitting unit 25, and the processing unit that executes the arithmetic processing in the arithmetic unit 21 do not necessarily have to be provided in the main body 2, but may be provided in an external device. For example, a computer terminal such as a smartphone 110, a personal computer 120, a tablet, or a mobile phone may execute the processing of the receiving unit 24, the transmitting unit 25, and the arithmetic unit 21. Further, data on the concentration of nucleic acid and the discharge amount of the liquid to be detected 101 may be displayed on the screen of the computer terminal. In this way, when the processing of the arithmetic unit 21 is executed on the computer terminal, an application or the like for executing the necessary processing on the computer terminal may be installed.
<分注方法>
 第3の実施形態に係る分注装置300を用いた分注方法については、第1の実施形態(図2及び図3)とほぼ同様であるため、説明を省略する。
<Dispensing method>
Since the dispensing method using the dispensing device 300 according to the third embodiment is almost the same as that of the first embodiment (FIGS. 2 and 3), the description thereof will be omitted.
<技術的効果>
 以上のように、第3の実施形態に係る分注装置300は、チップ1内に設けられた蛍光検出装置30による検出結果を、無線により本体部又は外部装置に送信する構成を採用している。これにより、第1の実施形態の分注装置100と比較して、チップ1内の蛍光検出装置30と本体部2とをケーブルで接続する必要がないため、組み立てが容易となる。
<Technical effect>
As described above, the dispensing device 300 according to the third embodiment adopts a configuration in which the detection result by the fluorescence detecting device 30 provided in the chip 1 is wirelessly transmitted to the main body or an external device. .. As a result, as compared with the dispensing device 100 of the first embodiment, it is not necessary to connect the fluorescence detection device 30 in the chip 1 and the main body 2 with a cable, which facilitates assembly.
[第4の実施形態]
 第1~第3の実施形態においては、ユーザが操作を行うピペット式の分注装置100~300について説明した。各実施形態の分注装置100~300は、自動で液体を分注して分析を行う装置に搭載することも可能である。そこで、本実施形態においては、分注動作を自動で行う自動分注装置を提案する。ここで、本実施形態の自動分注装置は、例えば次世代シーケンサの前処理自動化装置などの分析装置に組み込むことができる。このような前処理自動化装置に組み込まれた自動分注装置は、例えば、前処理自動化装置で調製した濃度未知の核酸溶液の品質確認(核酸濃度の測定)のために用いることができる。
[Fourth Embodiment]
In the first to third embodiments, the pipette type dispensing devices 100 to 300 operated by the user have been described. The dispensing devices 100 to 300 of each embodiment can also be mounted on a device that automatically dispenses and analyzes a liquid. Therefore, in the present embodiment, we propose an automatic dispensing device that automatically performs the dispensing operation. Here, the automatic dispensing device of the present embodiment can be incorporated into an analyzer such as a preprocessing automation device of a next-generation sequencer, for example. The automatic dispensing device incorporated in such a pretreatment automation device can be used, for example, for quality confirmation (measurement of nucleic acid concentration) of a nucleic acid solution having an unknown concentration prepared by the pretreatment automation device.
<自動分析装置の構成>
 図6は、第4の実施形態に係る自動分注装置400を示す模式図である。図6に示すように、自動分注装置400は、第3の実施形態と同様の分注装置300、移動機構401、制御部402、表示部403、被検出液101を収容する反応容器102、被検出液101が吐出される空の容器103を備える。なお、分注装置300の代わりに、第1の実施形態の分注装置100又は第2の実施形態の分注装置200を用いてもよい。
<Configuration of automatic analyzer>
FIG. 6 is a schematic view showing the automatic dispensing device 400 according to the fourth embodiment. As shown in FIG. 6, the automatic dispensing device 400 includes a dispensing device 300, a moving mechanism 401, a control unit 402, a display unit 403, and a reaction vessel 102 containing the liquid to be detected 101, which are the same as those in the third embodiment. An empty container 103 for discharging the liquid to be detected 101 is provided. Instead of the dispensing device 300, the dispensing device 100 of the first embodiment or the dispensing device 200 of the second embodiment may be used.
 移動機構401は、例えば分注装置300を保持する保持部と、保持部を水平方向及び鉛直方向に移動させるアクチュエータとを有し、分注装置300を水平方向及び鉛直方向に移動させる。なお、図6に示す移動機構401においては、分注装置300を鉛直方向及び紙面左右方向に移動させるためのレールが図示されているが、前後方向に分注装置を移動させるレールがさらに設けられていてもよい。 The moving mechanism 401 has, for example, a holding portion for holding the dispensing device 300 and an actuator for moving the holding portion in the horizontal and vertical directions, and moves the dispensing device 300 in the horizontal and vertical directions. In the moving mechanism 401 shown in FIG. 6, a rail for moving the dispensing device 300 in the vertical direction and the left-right direction on the paper surface is shown, but a rail for moving the dispensing device in the front-rear direction is further provided. May be.
 制御部402は、移動機構401の駆動を制御する。また、制御部402は、分注装置300による吸引動作及び吐出動作の開始を指示する。さらに、第1の実施形態(図2及び図3)で説明した演算部21(図6では不図示)の演算処理を制御部402で実行するようにしてもよい。 The control unit 402 controls the drive of the moving mechanism 401. Further, the control unit 402 instructs the start of the suction operation and the discharge operation by the dispensing device 300. Further, the control unit 402 may execute the calculation process of the calculation unit 21 (not shown in FIG. 6) described in the first embodiment (FIGS. 2 and 3).
 表示部403は、分注装置300の演算部21又は制御部402において処理されたデータを表示する。 The display unit 403 displays the data processed by the calculation unit 21 or the control unit 402 of the dispensing device 300.
<分注方法>
 本実施形態の自動分注装置400を用いた分注方法を概説する。核酸濃度の測定及び吐出量の決定の基本的な手順については第1の実施形態(図2及び図3)と同様であるので、ここでは説明を省略する。
<Dispensing method>
The dispensing method using the automatic dispensing device 400 of the present embodiment will be outlined. Since the basic procedure for measuring the nucleic acid concentration and determining the discharge amount is the same as that in the first embodiment (FIGS. 2 and 3), description thereof will be omitted here.
 まず、制御部402は、移動機構401を駆動して、被検出液101を収容する反応容器102に分注装置300のチップ1の先端を浸漬し、分注装置300に吸引動作の開始の指示を送信する。分注装置300の演算部21は、吸引動作開始の指示が入力されると、プランジャを駆動してチップ1内に被検出液101を吸引する。被検出液101の吸引が終了すると、制御部402は、移動機構401を駆動して分注装置300を引き上げる。その後、分注装置300の演算部21は、蛍光検出装置30による光の照射及び被検出液101からの光の検出を実施させる。蛍光検出装置30は、無線により本体部2の演算部21に検出結果(デジタル信号)を送信する。このとき、蛍光検出装置30は、制御部402に対し検出結果(デジタル信号)を送信してもよい。 First, the control unit 402 drives the moving mechanism 401 to immerse the tip of the chip 1 of the dispensing device 300 in the reaction vessel 102 containing the liquid to be detected 101, and instructs the dispensing device 300 to start the suction operation. To send. When the instruction to start the suction operation is input, the calculation unit 21 of the dispensing device 300 drives the plunger to suck the liquid to be detected 101 into the chip 1. When the suction of the liquid to be detected 101 is completed, the control unit 402 drives the moving mechanism 401 to pull up the dispensing device 300. After that, the calculation unit 21 of the dispensing device 300 causes the fluorescence detection device 30 to irradiate the light and detect the light from the liquid to be detected 101. The fluorescence detection device 30 wirelessly transmits a detection result (digital signal) to the calculation unit 21 of the main body unit 2. At this time, the fluorescence detection device 30 may transmit a detection result (digital signal) to the control unit 402.
 演算部21又は制御部402は、被検出液101中の核酸の濃度を算出し、被検出液101の吐出量を決定する。その後、制御部402は、移動機構401を駆動して、容器103の内部にチップ1の先端部が位置するように分注装置300を移動させたのち、分注装置300に吐出動作の開始の指示を送信する。演算部21は、吐出動作開始の指示が入力されると、決定した吐出量に従い、プランジャを駆動して容器103内に被検出液101を吐出させる。 The calculation unit 21 or the control unit 402 calculates the concentration of nucleic acid in the liquid to be detected 101 and determines the discharge amount of the liquid to be detected 101. After that, the control unit 402 drives the moving mechanism 401 to move the dispensing device 300 so that the tip portion of the tip 1 is located inside the container 103, and then starts the dispensing operation to the dispensing device 300. Send instructions. When the instruction to start the discharge operation is input, the calculation unit 21 drives the plunger to discharge the liquid to be detected 101 into the container 103 according to the determined discharge amount.
 容器103に吐出された被検出液101は、その量及び核酸の濃度が算出されたものであるため、前処理自動化装置などの分析装置におけるその後の処理に使用することができる。例えば、容器103に必要量の希釈液をさらに供給するように、分析装置を構成してもよい。 Since the amount of the liquid to be detected 101 discharged into the container 103 and the concentration of nucleic acid have been calculated, it can be used for subsequent processing in an analyzer such as a pretreatment automation device. For example, the analyzer may be configured to further supply the required amount of diluent to the container 103.
<技術的効果>
 以上のように、第4の実施形態に係る自動分注装置は、チップ1内に蛍光検出装置30が設けられた分注装置300を備え、分注装置300による分注動作を自動で実行する。これにより、自動分注装置を分析装置に組み込むだけで、分析装置で調製された被検出液101中の核酸の濃度を測定することができるので、分析装置の大型化を抑制できる。このような小型の分析装置は、1つの検査施設(例えば病院など、検体を採取した場所)に設置することができるので、核酸シーケンサの前処理をその場で迅速に実施することができる。また、1度の分注動作のみで核酸の濃度を算出し、必要量を吐出することができるので、処理時間の増大が抑制される。
<Technical effect>
As described above, the automatic dispensing device according to the fourth embodiment includes the dispensing device 300 provided with the fluorescence detection device 30 in the chip 1, and automatically executes the dispensing operation by the dispensing device 300. .. As a result, the concentration of nucleic acid in the liquid to be detected 101 prepared by the analyzer can be measured simply by incorporating the automatic dispensing device into the analyzer, so that the size of the analyzer can be suppressed. Since such a small analyzer can be installed in one laboratory (for example, a place where a sample is collected such as a hospital), the pretreatment of the nucleic acid sequencer can be rapidly performed on the spot. Further, since the concentration of nucleic acid can be calculated and the required amount can be discharged only by one dispensing operation, an increase in processing time is suppressed.
[変形例]
<変形例1>
 第1~第4の実施形態においては、チップ1内に設けられた蛍光検出装置の発光素子14から被検出液101に光を照射することを説明した。代替的に、発光素子14は、チップ1の外部から光を照射するようにしてもよい。例えば、第4の実施形態の自動分注装置400に対し、分注装置300の下方又は横方向から光を照射するための光源部を設けて、被検出液101中の核酸濃度の測定時に、当該光源部の上方又は横方向に分注装置300を移動させて、チップ1に対し光を照射する。
[Modification example]
<Modification example 1>
In the first to fourth embodiments, it has been described that the light emitting element 14 of the fluorescence detection device provided in the chip 1 irradiates the liquid to be detected 101 with light. Alternatively, the light emitting element 14 may irradiate light from the outside of the chip 1. For example, when the automatic dispensing device 400 of the fourth embodiment is provided with a light source unit for irradiating light from below or laterally of the dispensing device 300, the nucleic acid concentration in the liquid to be detected 101 is measured. The dispensing device 300 is moved above or laterally to the light source unit to irradiate the chip 1 with light.
 このような構成を採用することにより、発光素子14及び光源駆動回路18の分だけ蛍光検出装置を小型化することができる。結果として、より少ない容量のチップ1にも蛍光検出装置を取り付けることができるので、被検出液101の量がごく微量である場合にも、被検出液101中の核酸の濃度を精度よく測定することができる。 By adopting such a configuration, the fluorescence detection device can be downsized by the amount of the light emitting element 14 and the light source drive circuit 18. As a result, the fluorescence detection device can be attached to the chip 1 having a smaller capacity, so that the concentration of nucleic acid in the liquid to be detected 101 can be accurately measured even when the amount of the liquid to be detected 101 is very small. be able to.
<変形例2>
 以上、被検出液101中の核酸に蛍光色素を結合させて、その蛍光を検出することにより核酸の濃度を測定することを説明した。しかしながら、濃度の測定対象は核酸に限定されず、また、検出する光も蛍光に限定されない。例えば、分析対象と、分析対象に結合可能な色素とを含む液体を被検出液101として、色素の発する色の波長を検出するようにしてもよい。
<Modification 2>
In the above, it has been described that a fluorescent dye is bound to the nucleic acid in the liquid to be detected 101, and the concentration of the nucleic acid is measured by detecting the fluorescence. However, the target for measuring the concentration is not limited to nucleic acid, and the light to be detected is not limited to fluorescence. For example, a liquid containing an analysis target and a dye that can be bound to the analysis target may be used as the liquid to be detected 101, and the wavelength of the color emitted by the dye may be detected.
<その他>
 本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除又は置換することもできる。
<Others>
The present disclosure is not limited to the embodiments described above, but includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present disclosure in an easy-to-understand manner, and does not necessarily have all the configurations described. In addition, a part of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of another embodiment with respect to a part of the configuration of each embodiment.
100、200、300…分注装置
400…自動分注装置
101…被検出液
102…反応容器
103…容器
1…チップ
2…本体部
3…ケーブル
4、6…支持体
5…通気口
10、20、30…蛍光検出装置
11…基板
12…受光素子
13…蛍光フィルタ
14…発光素子
15…凸レンズ
16…電流電圧変換回路
17…AD変換回路
18…光源駆動回路
21…演算部
22…電源部
23…スイッチ
24…受信部
25…送信部
31…無線通信回路
32…電池
100, 200, 300 ... Dispensing device 400 ... Automatic dispensing device 101 ... Liquid 102 to be detected ... Reaction container 103 ... Container 1 ... Chip 2 ... Main body 3 ... Cable 4, 6 ... Support 5 ... Vents 10, 20 , 30 ... Fluorescence detection device 11 ... Substrate 12 ... Light receiving element 13 ... Fluorescent filter 14 ... Light emitting element 15 ... Convex lens 16 ... Current / voltage conversion circuit 17 ... AD conversion circuit 18 ... Light source drive circuit 21 ... Calculation unit 22 ... Power supply unit 23 ... Switch 24 ... Receiver 25 ... Transmitter 31 ... Wireless communication circuit 32 ... Battery

Claims (15)

  1.  液体中の分析対象からの光を検出する検出装置であって、
     前記液体に対し光を照射する光源と、
     前記液体中の前記分析対象からの光を検出する検出部と、を備え、
     少なくとも前記検出部が、前記液体が吸引される分注チップ内に配置されることを特徴とする検出装置。
    A detector that detects light from an analysis target in a liquid.
    A light source that irradiates the liquid with light,
    A detection unit for detecting light from the analysis target in the liquid is provided.
    A detection device characterized in that at least the detection unit is arranged in a dispensing chip to which the liquid is sucked.
  2.  請求項1に記載の検出装置であって、
     前記光源が、前記分注チップ内に配置されることを特徴とする検出装置。
    The detection device according to claim 1.
    A detection device characterized in that the light source is arranged in the dispensing chip.
  3.  請求項1に記載の検出装置であって、
     前記光の検出結果を無線により前記検出装置の外部に送信する無線通信部をさらに備えることを特徴とする検出装置。
    The detection device according to claim 1.
    A detection device further comprising a wireless communication unit that wirelessly transmits the light detection result to the outside of the detection device.
  4.  請求項1に記載の検出装置であって、
     前記光源の後段に配置される集光レンズをさらに備えることを特徴とする検出装置。
    The detection device according to claim 1.
    A detection device further comprising a condenser lens arranged after the light source.
  5.  請求項1に記載の検出装置であって、
     前記検出部の前段に配置され、特定の波長の光を透過するフィルタをさらに備えることを特徴とする検出装置。
    The detection device according to claim 1.
    A detection device that is arranged in front of the detection unit and further includes a filter that transmits light of a specific wavelength.
  6.  請求項1に記載の検出装置であって、
     前記検出部を少なくとも有し、前記分注チップ内に配置される基板をさらに備え、
     前記基板に通気口が設けられていることを特徴とする検出装置。
    The detection device according to claim 1.
    A substrate having at least the detection unit and further provided in the dispensing chip.
    A detection device characterized in that the substrate is provided with a vent.
  7.  分析対象を含む液体を分注する分注装置であって、
     請求項1に記載の検出装置と、
     前記分注チップと、
     前記分注チップ内において前記検出装置を支持する支持体と、
     前記分注チップが装着され、分注機構を有する本体部と、
     前記検出装置から、前記光の検出結果を受信して演算を行う演算部と、を備え、
     前記演算部は、前記検出結果に基づいて、前記液体中の前記分析対象の濃度を算出することを特徴とする分注装置。
    A dispensing device that dispenses the liquid containing the analysis target.
    The detection device according to claim 1 and
    With the dispensing tip
    A support that supports the detection device in the dispensing chip, and
    The main body to which the dispensing tip is mounted and having a dispensing mechanism,
    A calculation unit that receives the light detection result from the detection device and performs a calculation is provided.
    The calculation unit is a dispensing device, which calculates the concentration of the analysis target in the liquid based on the detection result.
  8.  請求項7に記載の分注装置であって、
     前記演算部が、前記分析対象の濃度に基づいて前記液体の吐出量を決定することを特徴とする分注装置。
    The dispensing device according to claim 7.
    A dispensing device, wherein the calculation unit determines a discharge amount of the liquid based on the concentration of the analysis target.
  9.  請求項8に記載の分注装置であって、
     前記演算部が、前記濃度と、前記分注装置の上限吸引量又は下限吐出量とに基づいて、前記液体の吐出量を決定することを特徴とする分注装置。
    The dispensing device according to claim 8.
    A dispensing device, wherein the calculation unit determines a discharge amount of the liquid based on the concentration and an upper limit suction amount or a lower limit discharge amount of the dispensing device.
  10.  請求項7に記載の分注装置であって、
     前記演算部が、前記本体部に配置されることを特徴とする分注装置。
    The dispensing device according to claim 7.
    A dispensing device in which the calculation unit is arranged in the main body unit.
  11.  請求項7に記載の分注装置であって、
     前記支持体が、前記分注チップ内に通気口を形成するように前記検出装置を支持することを特徴とする分注装置。
    The dispensing device according to claim 7.
    A dispensing device, characterized in that the support supports the detection device so as to form a vent in the dispensing chip.
  12.  請求項7に記載の分注装置であって、
     前記検出装置が、前記検出結果を無線により前記検出装置の外部のコンピュータ端末に送信する無線通信部をさらに備え、
     前記コンピュータ端末が前記演算部の処理を実行することを特徴とする分注装置。
    The dispensing device according to claim 7.
    The detection device further includes a wireless communication unit that wirelessly transmits the detection result to a computer terminal outside the detection device.
    A dispensing device characterized in that the computer terminal executes the processing of the arithmetic unit.
  13.  請求項7に記載の分注装置であって、
     前記分注装置を移動させる移動機構と、
     前記移動機構の駆動を制御する制御部と、をさらに備えることを特徴とする分注装置。
    The dispensing device according to claim 7.
    A moving mechanism for moving the dispensing device and
    A dispensing device further comprising a control unit for controlling the drive of the moving mechanism.
  14.  請求項7に記載の分注装置を用いた液体の分注方法であって、
     前記分注チップ内に前記検出装置を配置することと、
     前記分注機構の動作により前記分注チップ内に前記液体を吸引することと、
     前記光源により、前記液体に光を照射することと、
     前記検出部により、前記液体からの光を検出することと、
     前記演算部により、前記検出部の前記光の検出結果に基づいて、前記液体中の前記分析対象の濃度を算出することと、を含む分注方法。
    A method for dispensing a liquid using the dispensing device according to claim 7.
    Placing the detection device in the dispensing chip and
    By sucking the liquid into the dispensing tip by the operation of the dispensing mechanism,
    Irradiating the liquid with light by the light source
    The detection unit detects the light from the liquid and
    A dispensing method comprising calculating the concentration of the analysis target in the liquid by the calculation unit based on the detection result of the light of the detection unit.
  15.  請求項14に記載の分注方法であって、
     前記演算部により、前記分析対象の濃度に基づいて前記液体の吐出量を決定することを特徴とする分注方法。
    The dispensing method according to claim 14.
    A dispensing method characterized in that the calculation unit determines the discharge amount of the liquid based on the concentration of the analysis target.
PCT/JP2020/008923 2020-03-03 2020-03-03 Detection device, dispensing device, and dispensing method WO2021176561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008923 WO2021176561A1 (en) 2020-03-03 2020-03-03 Detection device, dispensing device, and dispensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008923 WO2021176561A1 (en) 2020-03-03 2020-03-03 Detection device, dispensing device, and dispensing method

Publications (1)

Publication Number Publication Date
WO2021176561A1 true WO2021176561A1 (en) 2021-09-10

Family

ID=77613190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008923 WO2021176561A1 (en) 2020-03-03 2020-03-03 Detection device, dispensing device, and dispensing method

Country Status (1)

Country Link
WO (1) WO2021176561A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170332A (en) * 2007-01-12 2008-07-24 Anritsu Sanki System Co Ltd Dispensing device
US20100167412A1 (en) * 2008-12-31 2010-07-01 Caibin Xiao Sensor system for determining concentration of chemical and biological analytes
WO2019073622A1 (en) * 2017-10-13 2019-04-18 佳則 山口 Pipette tip for inspection and pipette-type inspection device using said pipette tip for inspection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170332A (en) * 2007-01-12 2008-07-24 Anritsu Sanki System Co Ltd Dispensing device
US20100167412A1 (en) * 2008-12-31 2010-07-01 Caibin Xiao Sensor system for determining concentration of chemical and biological analytes
WO2019073622A1 (en) * 2017-10-13 2019-04-18 佳則 山口 Pipette tip for inspection and pipette-type inspection device using said pipette tip for inspection

Similar Documents

Publication Publication Date Title
JP7218458B2 (en) Automatic analysis device and automatic analysis method
US11693019B2 (en) Automated liquid-phase immunoassay apparatus
US8663557B2 (en) Analyzer
TWI628283B (en) Optical measuring device for reaction vessel and method therefor
JP2024032714A (en) automatic analyzer
KR20230145526A (en) Substance preparation evaluation system
JP6029971B2 (en) Sample analyzer and position adjustment method for piercer
US9046505B2 (en) Sample preparation apparatus
EP3227667B1 (en) Test apparatus and control method thereof
WO2012050198A1 (en) Automated nucleic acid processor and automated nucleic acid processing method using multi function dispensing unit
US11291992B2 (en) On-site diagnostic system and the method thereof
US11309856B2 (en) Femtowatt non-vacuum tube detector assembly
WO2011074273A1 (en) Automatic analyzing device
US9915601B2 (en) Method for examining microorganisms and examination apparatus for microorganisms
JP4818744B2 (en) Sample measuring device
JP2010133870A (en) Automatic analyzer and precision management method of automatic analyzer
JP2022000633A (en) Device for reading IVD assay
KR102532148B1 (en) Point-of-birth system and instrument, biochemical cartridge, and methods for newborn screening
JP3933499B2 (en) Sample analyzer and sample analysis system, and containers and racks used in them.
WO2021176561A1 (en) Detection device, dispensing device, and dispensing method
JP5517807B2 (en) Analysis equipment
JP5290752B2 (en) Automatic discrimination method of control liquid
JP6785296B2 (en) Fluorescence measurement of biological samples using two reagents
JP2007322394A (en) Dispensing device and automated analyzer
CN111944678A (en) Portable nucleic acid colorimetric detection device and use method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP