WO2021176516A1 - Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method - Google Patents

Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method Download PDF

Info

Publication number
WO2021176516A1
WO2021176516A1 PCT/JP2020/008692 JP2020008692W WO2021176516A1 WO 2021176516 A1 WO2021176516 A1 WO 2021176516A1 JP 2020008692 W JP2020008692 W JP 2020008692W WO 2021176516 A1 WO2021176516 A1 WO 2021176516A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
interference power
measurement result
interference
Prior art date
Application number
PCT/JP2020/008692
Other languages
French (fr)
Japanese (ja)
Inventor
和雅 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021570001A priority Critical patent/JP7045533B2/en
Priority to PCT/JP2020/008692 priority patent/WO2021176516A1/en
Publication of WO2021176516A1 publication Critical patent/WO2021176516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present disclosure relates to a wireless communication device for measuring a radio wave environment, a wireless communication system, a control circuit, a storage medium, and a radio wave monitoring method.
  • the 2.4 GHz band ISM (Industry-Science-Medical) band is easy to use in new wireless communication systems because anyone can use it without a license if it meets certain technical standards.
  • ISM Industry-Science-Medical
  • various wireless communication systems coexist, and radio waves from other systems can be jamming radio waves for the own system, so that the radio wave environment is not necessarily good. Therefore, it is important to keep track of the radio wave environment during operation in order to operate the wireless communication system in a stable manner. If the radio wave environment can be grasped, it is possible to take measures such as refraining from using frequency channels with poor communication quality and changing the antenna installation position when the radio wave environment deteriorates.
  • Patent Document 1 describes a technique in which a wireless communication device scans each frequency channel used in its own system in order before communication, selects a good channel as a radio wave environment with few interfering waves, and performs wireless communication with an opposite wireless device. Is disclosed.
  • the present disclosure has been made in view of the above, and an object of the present invention is to obtain a wireless communication device capable of improving the measurement accuracy of the radio wave environment while suppressing the use of time and frequency for measuring the radio wave environment. ..
  • the present disclosure discloses the first radio in a wireless communication system in which a first wireless communication device and a second wireless communication device perform wireless communication while changing the distance. It is a wireless communication device that is a communication device.
  • the wireless communication device has a first interference measuring unit that measures interference power in a non-transmission section for a specified period immediately before or immediately after receiving a wireless packet and outputs a first interference power measurement result, and a wireless communication device. Based on the distance between the second wireless communication device and the wireless communication device, the interference power is measured by the null symbols distributed in the packet, and the second interference measurement unit that outputs the second interference power measurement result is output. It is characterized by including a selection unit that selects and outputs at least one of a first interference power measurement result and a second interference power measurement result.
  • the wireless communication device has the effect of improving the measurement accuracy of the radio wave environment while suppressing the use of time and frequency for measuring the radio wave environment.
  • the figure which shows the configuration example of the wireless communication system which concerns on this Embodiment Block diagram showing a configuration example of a mobile station according to this embodiment
  • FIG. 1 A flowchart showing the operation of the mobile station according to the present embodiment.
  • the figure which shows the structural example of the processing circuit when the processing circuit provided in the mobile station which concerns on this Embodiment is realized by a processor and a memory.
  • the figure which shows the example of the processing circuit when the processing circuit provided in the mobile station which concerns on this Embodiment is configured by the dedicated hardware.
  • FIG. 1 is a diagram showing a configuration example of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 includes mobile stations 1a, 1b, 1c, cages 2a, 2b, 2c, base stations 3a, 3b, 3c, hoistways 4a, 4b, 4c, a wired network 5, and a radio wave environment monitoring device. 6 and.
  • a mobile station 1a, a car 2a, a base station 3a, and a hoistway 4a constitute a control system for one elevator.
  • the mobile station 1b, the car 2b, the base station 3b, and the hoistway 4b constitute one elevator control system
  • the mobile station 1c, the car 2c, the base station 3c, and the hoistway 4c constitute one elevator. It constitutes the control system of.
  • the mobile station 1a and the base station 3a perform one-to-one wireless communication
  • the mobile station 1b and the base station 3b perform one-to-one wireless communication
  • the mobile station 1c and the base station 3c perform one pair.
  • Wireless communication is performed in 1.
  • the mobile stations 1a, 1b and 1c when the mobile stations 1a, 1b and 1c are not distinguished, they are referred to as mobile stations 1, when the baskets 2a, 2b and 2c are not distinguished, they are referred to as baskets 2, and when the base stations 3a, 3b and 3c are not distinguished.
  • a base station 3 Is referred to as a base station 3, and may be referred to as a hoistway 4 when the hoistways 4a, 4b, and 4c are not distinguished.
  • Mobile station 1 is a wireless communication device installed on the car 2.
  • the mobile station 1 transmits information such as the position information of the car 2 and the button operation information in the car 2 to the base station 3.
  • the car 2 moves up and down in the hoistway 4 by a hoist (not shown) according to the control from the elevator control panel (not shown).
  • the base station 3 is a wireless communication device in which an antenna is installed on the ceiling in the hoistway 4 and is connected to an elevator control panel in a machine room (not shown) on the ceiling of the hoistway 4.
  • the base station 3 transmits instructions such as opening and closing of the door, floor number display information, and the like to the mobile station 1 according to the information from the elevator control panel.
  • the hoistway 4 is a path through which the car 2 moves in the vertical direction. In the example of FIG. 1, it is assumed that there are three hoistways 4 in one building.
  • the wired network 5 is a network to which the base station 3 is connected.
  • the wired network 5 is used to collect information from each base station 3 in the radio wave environment monitoring device 6.
  • the radio wave environment monitoring device 6 aggregates information on the radio wave environment measured by the mobile station 1, the base station 3, and the like.
  • the radio wave environment is, for example, interference power indicating the amount of interference in the mobile station 1, the base station 3, and the like.
  • the wireless communication system 10 is a wireless communication system in which the mobile station 1 and the base station 3 perform wireless communication while changing the distance.
  • the wireless communication system 10 is an example of a system in which control information is transmitted by wireless communication, unlike a conventional elevator in which control information is exchanged between the car 2 and the machine room described above by a control cable.
  • the present invention is not limited to this.
  • the wireless communication system 10 is another radio in which the mobile station 1 moves along a certain travel path while the distance between the mobile station 1 and the base station 3 changes, and the received signal level changes according to the distance. It can also be applied to communication systems.
  • FIG. 2 is a block diagram showing a configuration example of the mobile station 1 according to the present embodiment.
  • the mobile station 1 includes an antenna 101, an RF (Radio Frequency) unit 102, a modulation / demodulation processing unit 103, a transmission / reception control unit 104, a first interference measurement unit 105, a second interference measurement unit 106, and a selection unit. 107 and.
  • RF Radio Frequency
  • the antenna 101 radiates a radio signal into the air at the time of transmission and receives the radio signal propagating in the air.
  • the RF unit 102 When transmitting a radio signal, the RF unit 102 converts the digitally modulated signal into an analog signal and frequency-converts it into a carrier frequency. Further, when receiving a radio signal, the RF unit 102 frequency-converts the analog signal received from the antenna 101 into a baseband and converts it into a digital signal.
  • the modulation / demodulation processing unit 103 performs signal processing such as coding and modulation on the transmitted data at the time of transmission, and performs signal processing such as demodulation and decoding on the received signal at the time of reception.
  • the transmission / reception control unit 104 controls the transmission / reception of signals. Further, the transmission / reception control unit 104 controls to transmit the interference power measurement result measured by the first interference measurement unit 105 and the second interference measurement unit 106 and selected by the selection unit 107 to the base station 3.
  • the first interference measuring unit 105 measures the interference power in the non-transmission section for a specified period immediately before or immediately after receiving the radio packet which is the received signal signal processed by the modulation / demodulation processing unit 103.
  • the first interference measuring unit 105 outputs the first interference power measurement result, which is the measurement result of the interference power, to the selection unit 107.
  • the second interference measuring unit 106 measures the interference power with a null symbol in the OFDM (Orthogonal Frequency Division Multiplexing) symbol included in the data unit of the radio packet which is the received signal signal processed by the modulation / demodulation processing unit 103.
  • the null symbol is a symbol in which no signal is superimposed, which is distributed in the data part in the radio packet.
  • the second interference measurement unit 106 outputs the second interference power measurement result, which is the measurement result of the interference power, to the selection unit 107.
  • the selection unit 107 selects the interference power measurement results measured by the first interference measurement unit 105 and the second interference measurement unit 106. Specifically, the selection unit 107 selects and outputs at least one of the first interference power measurement result and the second interference power measurement result based on the distance between the base station 3 and the mobile station 1. ..
  • the car 2 moves up and down in the hoistway 4.
  • the destination information is wirelessly transmitted to the base station 3 via the mobile station 1.
  • the base station 3 transmits the received destination information to the elevator control panel in the machine room.
  • the elevator control panel drives the hoist according to the destination information and moves the car 2 to the top floor.
  • the elevator control panel stops the hoisting machine and transmits instruction information for opening the door of the car 2, that is, a door opening instruction to the base station 3.
  • the base station 3 wirelessly transmits a door opening instruction to the mobile station 1.
  • the mobile station 1 transmits the door opening instruction to the control device of the car 2.
  • the control device of the car 2 opens the door of the car 2 according to the door opening instruction.
  • the position information of the car 2 is grasped by the driving amount of the hoisting machine in the elevator control panel, and the car 2 recognizes the precise position information of the hoistway 4, and the elevator passes through the mobile station 1 and the base station 3. It is transmitted to the control panel.
  • FIG. 3 is a diagram showing a state of wireless transmission between the base station 3 and the mobile station 1 according to the present embodiment.
  • the horizontal axis represents time and the vertical axis represents frequency channels.
  • the base station 3 and the mobile station 1 perform wireless transmission while performing frequency hopping while performing wireless transmission by TDD (Time Division Duplex). Specifically, the base station 3 and the mobile station 1 transmit and receive wireless packets while switching frequency channels in a time unit called a slot to perform downlink communication from the base station 3 to the mobile station 1 and to the mobile station 1. Uplink communication from the mobile station 1 to the base station 3 is performed.
  • TDD Time Division Duplex
  • the hopping sequence is set so that different frequency channels are used at the same time between each combination of the base station 3 and the mobile station 1 that perform wireless communication in each hoistway 4, that is, between the hoistways 4. It is determined, and it is assumed that mutual communication between the hoistways 4 is prevented from interfering with each other. Time synchronization between the hoistways 4 is performed, for example, via the wired network 5.
  • FIG. 4 is a diagram showing an example of radio packets transmitted / received between the base station 3 and the mobile station 1 according to the present embodiment.
  • the wireless packet shown in FIG. 4 is a wireless packet transmitted in each slot shown in FIG. 3, and is composed of a preamble unit 41 and a data unit 42.
  • the preamble unit 41 is a section in which a known signal is transmitted.
  • the wireless communication device on the receiving side synchronizes the frequency and time by the reception processing of the preamble unit 41, and thereafter performs the reception processing of the data unit 42 according to the synchronization information.
  • the data unit 42 is an area in which net information to be transmitted is stored.
  • the data unit 42 is, for example, a signal modulated by OFDM.
  • FIG. 5 is a diagram showing an example of a data unit 42 included in a radio packet transmitted / received between the base station 3 and the mobile station 1 according to the present embodiment.
  • the horizontal axis represents time, that is, the OFDM symbol
  • the vertical axis represents frequency, that is, subcarriers.
  • Null symbols are distributed in a distributed manner with respect to the data symbols mapped in OFDM.
  • the null symbol is a symbol on which no signal is superimposed in the wireless communication device on the transmitting side.
  • the RF unit 102 converts the radio wave received by the antenna 101 into a baseband digital signal.
  • the modulation / demodulation processing unit 103 performs signal processing such as demodulation and decoding on the baseband digital signal converted by the RF unit 102.
  • the first interference measuring unit 105 measures the received power in a specified measurement period while sliding the measurement target time with respect to the signal processed by the modulation / demodulation processing unit 103, that is, the wireless packet.
  • the measurement period is assumed to be, for example, one tenth to one hundredth of the length of the wireless packet. If the measurement period is too long, the measurement accuracy will be high, but the transmission band will be wasted.
  • the modulation / demodulation processing unit 103 detects the preamble unit 41 of the wireless packet and estimates timing information, frequency deviation information, and the like. Based on the timing information estimated by the modulation / demodulation processing unit 103, the transmission / reception control unit 104 causes interference power with respect to the first interference measurement unit 105 in the first interference measurement area 43 immediately before the wireless packet shown in FIG. Is instructed to output the measured interference power measurement result to the selection unit 107. When the signal processing for the preamble unit 41 is completed, the modulation / demodulation processing unit 103 shifts to the demodulation processing of the data unit 42.
  • the modulation / demodulation processing unit 103 performs frequency conversion for each OFDM symbol on the data unit 42, outputs the power of each null symbol to the second interference measurement unit 106, and outputs each data symbol from the null symbol around each data symbol. Calculate the average value of the interference power corresponding to.
  • the interfering power corresponding to each data symbol is used to calculate the reliability of the data symbol.
  • the modulation / demodulation processing unit 103 performs error correction processing by increasing the reliability, that is, the likelihood, for a data symbol having a large interference power, and increasing the reliability, that is, the likelihood, for a data symbol having a small interference power.
  • the modulation / demodulation processing unit 103 can realize highly reliable wireless communication even in a radio wave environment where there is a lot of interference.
  • the amount of information that can be transmitted is reduced by the amount of the null symbol, but if the transmission power is constant, the power amount of the null symbol can be added to the data symbol. be.
  • the increase in the coding rate is offset by the increase in the signal power.
  • the second interference measurement unit 106 averages the power of the null symbol output from the modulation / demodulation processing unit 103, that is, the power measured in the second interference measurement area 44 shown in FIG. 5 over the entire wireless packet. And output to the selection unit 107 as the second interference power measurement result.
  • FIG. 6 is a diagram showing leakage from an adjacent subcarrier in power measurement with a null symbol according to the present embodiment.
  • FIG. 6 shows an example in which the interference power is measured by the subcarrier of the null symbol sandwiched between the two data symbols.
  • leakage from adjacent subcarriers actually enters at a level about 30 dB lower than the level of the data subcarrier, which is higher than leakage from adjacent subcarriers.
  • small interference power cannot be measured. That is, when the signal level of the desired wave is small, that is, when the base station 3 and the mobile station 1 are separated from each other, it is possible to measure a low level interference wave.
  • the signal level of the desired wave is large, that is, when the base station 3 and the mobile station 1 are close to each other, it becomes difficult to measure a low level interference wave.
  • the selection unit 107 selects the interference power measurement result measured by the first interference measurement unit 105, and the mobile station 1 and the base station When the distance from 3 is long, the interference power measurement result measured by the second interference measurement unit 106 is selected. As a result, the selection unit 107 has a high-precision interference power measurement result measured for the entire wireless packet at a position where the distance between the base station 3 and the mobile station 1 is long and the signal power is small and therefore the influence of the interference wave is large. Can be obtained.
  • the selection unit 107 obtains an interference power measurement result having a short measurement period but a wide dynamic range at a position where the distance between the base station 3 and the mobile station 1 is short and the signal power is large and therefore the influence of the interference wave is small. be able to.
  • the signal level of the desired wave is high, the low level interference wave basically has little effect on communication, but the received power may temporarily decrease due to instantaneous value fluctuations, shadow wings, etc., and it reaches a low level. It is important that the interference power can be measured.
  • the selection unit 107 can determine whether the distance between the mobile station 1 and the base station 3 is close or far, for example, by using a threshold value for determining the distance between the mobile station 1 and the base station 3. Is.
  • the selection unit 107 outputs the selected interference power measurement result to the transmission / reception control unit 104.
  • the transmission / reception control unit 104 controls to wirelessly transmit the interference power measurement result acquired from the selection unit 107 to the base station 3 together with other control information.
  • the base station 3 outputs the received interference power measurement result to the radio wave environment monitoring device 6 together with the position information at the time of measurement, the frequency channel information at the time of measurement, and the like.
  • the base station 3 may receive the position information at the time of measurement from the system side that controls the elevator such as the elevator control panel, or may estimate it from the reception level of the desired wave.
  • the radio wave environment monitoring device 6 accumulates the acquired interference power measurement results while averaging them according to the position information at the time of measurement and the frequency channel information at the time of measurement.
  • FIG. 7 is a diagram showing an example of the interference power measurement result stored in the radio wave environment monitoring device 6 according to the present embodiment.
  • FIG. 7 shows a state in which the radio wave environment monitoring device 6 maps and accumulates the interference power measurement result corresponding to the position of the car 2 at the time of measurement and the frequency channel at the time of measurement.
  • the radio wave environment monitoring device 6 issues a warning when the interference power exceeds a certain threshold value by observing aging, and sets the transmission rate, the number of continuous transmissions, etc. according to the interference power of the frequency channel used for transmission. Change it. As a result, the radio wave environment monitoring device 6 can operate the wireless communication system 10 more stably.
  • the radio wave environment monitoring device 6 uses the accumulated information as the amount of interference, that is, the interference power, but in combination with the reception power of the desired wave, the signal power to the interference power ratio is SIR (Signal-).
  • the to-interference ratio) may be calculated and accumulated. In this case, the radio wave environment monitoring device 6 can be evaluated more in line with the communication quality.
  • the first interference measuring unit 105 measures the interference power in the non-transmission section immediately before receiving the radio packet
  • the interference power may be measured in the non-transmission section immediately after receiving the radio packet. good.
  • the radio packet length is short with respect to the slot length, and there is a margin before and after the radio packet with respect to the slot. Therefore, the first interference measuring unit 105 can also measure the interference power in the non-transmission section immediately after receiving the wireless packet.
  • the non-transmission section immediately after receiving the wireless packet is specifically the area on the right side of the data unit 42 of the wireless packet shown in FIG.
  • the selection unit 107 switches between the interference power measurement result of the first interference measurement unit 105 and the interference power measurement result of the second interference measurement unit 106 according to the position of the car 2, but the present invention is not limited to this. ..
  • the selection unit 107 may always use the interference power measurement result of the first interference measurement unit 105, and may combine the interference power measurement result of the second interference measurement unit 106 when the position of the car 2 is far. Further, in the wireless communication system 10, the function of the selection unit 107 may be provided to the base station 3, the radio wave environment monitoring device 6, and the like.
  • the base station 3 can also measure the interference power in the same manner.
  • the base station 3 collects only the interference power measurement result when the car 2 is in a distant position, or in addition to the interference power measurement result of the first interference measurement unit 105, only when the car 2 is in a distant position.
  • the interference power measurement result of the interference measurement unit 106 of 2 may be extracted.
  • the wireless communication system 10 is a first wireless communication device as in the present embodiment when the first wireless communication device measures the interference power and transmits the interference power measurement result to the second wireless communication device. May be the mobile station 1 and the second wireless communication device may be the base station 3. Contrary to the present embodiment, the first wireless communication device is the base station 3 and the second wireless communication device is moved. It may be station 1.
  • FIG. 8 is a flowchart showing the operation of the mobile station 1 according to the present embodiment.
  • the RF unit 102 converts the radio packet received by the antenna 101 into a baseband digital signal (step S1).
  • the modulation / demodulation processing unit 103 performs signal processing such as demodulation and decoding of the wireless packet (step S2).
  • the first interference measurement unit 105 measures the interference power of the wireless packet in the first interference measurement area 43 (step S3).
  • the first interference measuring unit 105 outputs the first interference power measurement result, which is the result of measuring the interference power, to the selection unit 107.
  • the second interference measurement unit 106 measures the interference power of the wireless packet in the second interference measurement area 44 (step S4).
  • the second interference measuring unit 106 outputs the second interference power measurement result, which is the result of measuring the interference power, to the selection unit 107.
  • the base station 3 and the mobile station 1 perform wireless transmission while performing frequency hopping while performing wireless transmission by TDD
  • the first interference measuring unit 105 and the second interference measuring unit 105 and the second The interference measuring unit 106 measures the interference power for each frequency channel.
  • the selection unit 107 selects at least one of the first interference power measurement result and the second interference power measurement result based on the position of the car 2, that is, the distance between the base station 3 and the mobile station 1 (step). S5). Specifically, the selection unit 107 selects the first interference power measurement result when the distance between the base station 3 and the mobile station 1 is less than the threshold value, and the distance between the base station 3 and the mobile station 1 is equal to or larger than the threshold value. In the case of, the second interference power measurement result is selected.
  • the selection unit 107 selects the first interference power measurement result when the distance between the base station 3 and the mobile station 1 is less than the threshold value, and when the distance between the base station 3 and the mobile station 1 is greater than or equal to the threshold value, the selection unit 107 selects the first interference power measurement result.
  • the first interference power measurement result and the second interference power measurement result are selected.
  • the selection unit 107 outputs the selected interference power measurement result to the transmission / reception control unit 104.
  • the threshold value is for determining whether the distance between the base station 3 and the mobile station 1 is short or long.
  • the distance between the base station 3 and the mobile station 1 is less than the threshold value, it means that the distance between the base station 3 and the mobile station 1 is short, and the distance between the base station 3 and the mobile station 1 is equal to or larger than the threshold value.
  • the case of means that the distance between the base station 3 and the mobile station 1 is long.
  • the antenna 101 is an antenna element.
  • the RF unit 102 is an analog circuit, an analog digital converter, a digital analog converter, or the like that performs frequency conversion or the like.
  • the modulation / demodulation processing unit 103, the transmission / reception control unit 104, the first interference measurement unit 105, the second interference measurement unit 106, and the selection unit 107 are realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • the processing circuit is also called a control circuit.
  • FIG. 9 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the mobile station 1 according to the present embodiment is realized by a processor and a memory.
  • the processing circuit 90 shown in FIG. 9 is a control circuit and includes a processor 91 and a memory 92.
  • each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit 90 includes a memory 92 for storing a program in which the processing of the mobile station 1 is eventually executed. It can be said that this program is a program for causing the mobile station 1 to execute each function realized by the processing circuit 90.
  • This program may be provided by a storage medium in which the program is stored, or may be provided by other means such as a communication medium.
  • the first interference measuring unit 105 measures the interference power in the non-transmission section for a specified period immediately before or immediately after receiving the wireless packet, and outputs the first interference power measurement result.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 is, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM). This includes semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disc), and the like.
  • FIG. 10 is a diagram showing an example of a processing circuit 93 when the processing circuit included in the mobile station 1 according to the present embodiment is configured by dedicated hardware.
  • the processing circuit 93 shown in FIG. 10 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. The thing is applicable.
  • the processing circuit a part may be realized by dedicated hardware and a part may be realized by software or firmware.
  • the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
  • the mobile station 1 measures the interference power in the non-transmission section immediately before the reception of the wireless packet and the null symbol in the wireless packet, and the base station. It was decided to select as the interference power measurement result according to the distance between 3 and the mobile station 1. As a result, the mobile station 1 can obtain the interference power measurement result having a wide dynamic range regardless of the position of the car 2 while suppressing the dedicated time for measuring the interference power and maintaining the transmission efficiency. Is.
  • the mobile station 1 can acquire a highly accurate interference power measurement result with a large number of measurement samples especially at a position where the power of the desired wave is small and the influence of the interference power is large. It becomes possible to realize a stable wireless communication system 10. In this way, the mobile station 1 can improve the measurement accuracy of the radio wave environment while suppressing the use of time and frequency for measuring the radio wave environment.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication device according to the present invention, which is a first wireless communication device in a wireless communication system in which the first wireless communication device wirelessly communicates with a second wireless communication device with the distance therebetween varying, comprises: a first interference measuring unit (105) that measures an interference power during a non-transmission section that is a specified time period immediately before or immediately after receipt of a wireless packet, thereby outputting a first interference power measurement result; a second interference measuring unit (106) that measures an interference power by use of null symbols dispersed in the wireless packet, thereby outputting a second interference power measurement result; and a selection unit (107) that, on the basis of the distance between the second wireless communication device and the wireless communication device, selects and outputs at least one of the first interference power measurement result or the second interference power measurement result.

Description

無線通信装置、無線通信システム、制御回路、記憶媒体および電波監視方法Wireless communication devices, wireless communication systems, control circuits, storage media and radio wave monitoring methods
 本開示は、電波環境を測定する無線通信装置、無線通信システム、制御回路、記憶媒体および電波監視方法に関する。 The present disclosure relates to a wireless communication device for measuring a radio wave environment, a wireless communication system, a control circuit, a storage medium, and a radio wave monitoring method.
 周波数は有限な資源であることから、新しい無線通信システムを構築する場合に、専用に新たな周波数を割り当てることは難しい。2.4GHz帯のISM(Industry-Science-Medical)帯などは、一定の技術基準を満たせば免許不要で誰でも使用できることから、新しい無線通信システムで利用しやすい。一方で、ISM帯は、様々な無線通信システムが混在し、他のシステムからの電波は自システムにとって妨害電波と成り得ることから、必ずしも電波環境としては良好ではない。従って、電波環境を運用中に常に把握することは、無線通信システムを安定的に運用するために重要である。電波環境を把握することができれば、例えば、通信品質の悪い周波数チャネルの使用を控える、電波環境が悪化した場合にアンテナの設置位置を変える、などの対策を講じることが可能になる。 Since frequencies are a finite resource, it is difficult to allocate new frequencies exclusively when constructing a new wireless communication system. The 2.4 GHz band ISM (Industry-Science-Medical) band is easy to use in new wireless communication systems because anyone can use it without a license if it meets certain technical standards. On the other hand, in the ISM band, various wireless communication systems coexist, and radio waves from other systems can be jamming radio waves for the own system, so that the radio wave environment is not necessarily good. Therefore, it is important to keep track of the radio wave environment during operation in order to operate the wireless communication system in a stable manner. If the radio wave environment can be grasped, it is possible to take measures such as refraining from using frequency channels with poor communication quality and changing the antenna installation position when the radio wave environment deteriorates.
 他システムからの妨害波などの電波環境を把握するにあたり、新たな装置を設けることはコストの面から望ましくなく、自システムで使用している装置で電波環境も測定できることが望ましい。特許文献1には、無線通信機が、通信前に自システムで使用する各周波数チャネルを順にスキャンし、妨害波の少ない電波環境として良好なチャネルを選択し、対向無線装置と無線通信を行う技術が開示されている。 In grasping the radio wave environment such as interference waves from other systems, it is not desirable to install a new device from the viewpoint of cost, and it is desirable that the device used in the own system can also measure the radio wave environment. Patent Document 1 describes a technique in which a wireless communication device scans each frequency channel used in its own system in order before communication, selects a good channel as a radio wave environment with few interfering waves, and performs wireless communication with an opposite wireless device. Is disclosed.
特許第4861920号公報Japanese Patent No. 4861920
 電波環境を測定するためには、自システムが通信を行っていない時間および周波数で測定を行う必要がある。しかしながら、特許文献1のように測定のために専用の時間を設けることは、周波数利用効率の観点から望ましくない、という問題があった。測定を行っている間、無線通信システムは、本来の目的である情報の伝達ができないためである。特に、無線伝送した情報を使用して移動する物体の制御を行うような無線通信システムは、常に一定周期で無線伝送を行う必要があり、また、通信頻度も高く電波環境を測定するための専用の時間を設けることが困難である。 In order to measure the radio wave environment, it is necessary to measure at the time and frequency when the own system is not communicating. However, there is a problem that it is not desirable from the viewpoint of frequency utilization efficiency to provide a dedicated time for measurement as in Patent Document 1. This is because the wireless communication system cannot transmit information, which is the original purpose, during the measurement. In particular, wireless communication systems that control moving objects using wirelessly transmitted information must always perform wireless transmission at regular intervals, and are dedicated to measuring the radio wave environment with high communication frequency. It is difficult to set the time for.
 本開示は、上記に鑑みてなされたものであって、電波環境測定のための時間および周波数の使用を抑制しつつ、電波環境の測定精度を向上可能な無線通信装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present invention is to obtain a wireless communication device capable of improving the measurement accuracy of the radio wave environment while suppressing the use of time and frequency for measuring the radio wave environment. ..
 上述した課題を解決し、目的を達成するために、本開示は、第1の無線通信装置と第2の無線通信装置とが距離を変化させつつ無線通信を行う無線通信システムにおける第1の無線通信装置である無線通信装置である。無線通信装置は、無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定し、第1の干渉電力測定結果を出力する第1の干渉測定部と、無線パケット内に分散されたヌルシンボルで干渉電力を測定し、第2の干渉電力測定結果を出力する第2の干渉測定部と、第2の無線通信装置と無線通信装置との距離に基づいて、第1の干渉電力測定結果または第2の干渉電力測定結果のうち少なくとも1つを選択して出力する選択部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present disclosure discloses the first radio in a wireless communication system in which a first wireless communication device and a second wireless communication device perform wireless communication while changing the distance. It is a wireless communication device that is a communication device. The wireless communication device has a first interference measuring unit that measures interference power in a non-transmission section for a specified period immediately before or immediately after receiving a wireless packet and outputs a first interference power measurement result, and a wireless communication device. Based on the distance between the second wireless communication device and the wireless communication device, the interference power is measured by the null symbols distributed in the packet, and the second interference measurement unit that outputs the second interference power measurement result is output. It is characterized by including a selection unit that selects and outputs at least one of a first interference power measurement result and a second interference power measurement result.
 本開示に係る無線通信装置は、電波環境測定のための時間および周波数の使用を抑制しつつ、電波環境の測定精度を向上できる、という効果を奏する。 The wireless communication device according to the present disclosure has the effect of improving the measurement accuracy of the radio wave environment while suppressing the use of time and frequency for measuring the radio wave environment.
本実施の形態に係る無線通信システムの構成例を示す図The figure which shows the configuration example of the wireless communication system which concerns on this Embodiment 本実施の形態に係る移動局の構成例を示すブロック図Block diagram showing a configuration example of a mobile station according to this embodiment 本実施の形態に係る基地局と移動局との間の無線伝送の様子を示す図The figure which shows the state of the wireless transmission between the base station and the mobile station which concerns on this embodiment. 本実施の形態に係る基地局と移動局との間の送受信される無線パケットの例を示す図The figure which shows the example of the radio packet sent and received between the base station and the mobile station which concerns on this embodiment. 本実施の形態に係る基地局と移動局との間の送受信される無線パケットに含まれるデータ部の例を示す図The figure which shows the example of the data part included in the radio packet transmitted and received between the base station and the mobile station which concerns on this Embodiment. 本実施の形態に係るヌルシンボルでの電力測定における隣接サブキャリアからの漏洩を示す図The figure which shows the leakage from the adjacent subcarrier in the power measurement by the null symbol which concerns on this embodiment. 本実施の形態に係る電波環境監視装置に蓄積されている干渉電力測定結果の例を示す図The figure which shows the example of the interference power measurement result stored in the radio wave environment monitoring apparatus which concerns on this embodiment. 本実施の形態に係る移動局の動作を示すフローチャートA flowchart showing the operation of the mobile station according to the present embodiment. 本実施の形態に係る移動局が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図The figure which shows the structural example of the processing circuit when the processing circuit provided in the mobile station which concerns on this Embodiment is realized by a processor and a memory. 本実施の形態に係る移動局が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図The figure which shows the example of the processing circuit when the processing circuit provided in the mobile station which concerns on this Embodiment is configured by the dedicated hardware.
 以下に、本開示の実施の形態に係る無線通信装置、無線通信システム、制御回路、記憶媒体および電波監視方法を図面に基づいて詳細に説明する。 Hereinafter, the wireless communication device, the wireless communication system, the control circuit, the storage medium, and the radio wave monitoring method according to the embodiment of the present disclosure will be described in detail with reference to the drawings.
実施の形態.
 図1は、本実施の形態に係る無線通信システム10の構成例を示す図である。無線通信システム10は、移動局1a,1b,1cと、かご2a,2b,2cと、基地局3a,3b,3cと、昇降路4a,4b,4cと、有線ネットワーク5と、電波環境監視装置6と、を備える。無線通信システム10では、移動局1a、かご2a、基地局3a、および昇降路4aによって、1つのエレベーターの制御系を構成している。同様に、移動局1b、かご2b、基地局3b、および昇降路4bによって、1つのエレベーターの制御系を構成し、移動局1c、かご2c、基地局3c、および昇降路4cによって、1つのエレベーターの制御系を構成している。無線通信システム10において、移動局1aおよび基地局3aは1対1で無線通信を行い、移動局1bおよび基地局3bは1対1で無線通信を行い、移動局1cおよび基地局3cは1対1で無線通信を行う。
Embodiment.
FIG. 1 is a diagram showing a configuration example of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 includes mobile stations 1a, 1b, 1c, cages 2a, 2b, 2c, base stations 3a, 3b, 3c, hoistways 4a, 4b, 4c, a wired network 5, and a radio wave environment monitoring device. 6 and. In the wireless communication system 10, a mobile station 1a, a car 2a, a base station 3a, and a hoistway 4a constitute a control system for one elevator. Similarly, the mobile station 1b, the car 2b, the base station 3b, and the hoistway 4b constitute one elevator control system, and the mobile station 1c, the car 2c, the base station 3c, and the hoistway 4c constitute one elevator. It constitutes the control system of. In the wireless communication system 10, the mobile station 1a and the base station 3a perform one-to-one wireless communication, the mobile station 1b and the base station 3b perform one-to-one wireless communication, and the mobile station 1c and the base station 3c perform one pair. Wireless communication is performed in 1.
 以降の説明において、移動局1a,1b,1cを区別しない場合は移動局1と称し、かご2a,2b,2cを区別しない場合はかご2と称し、基地局3a,3b,3cを区別しない場合は基地局3と称し、昇降路4a,4b,4cを区別しない場合は昇降路4と称することがある。なお、図1に示す無線通信システム10では、昇降路4、すなわちエレベーターの制御系が3つであるが、一例であり、2つ以下または4つ以上であってもよい。 In the following description, when the mobile stations 1a, 1b and 1c are not distinguished, they are referred to as mobile stations 1, when the baskets 2a, 2b and 2c are not distinguished, they are referred to as baskets 2, and when the base stations 3a, 3b and 3c are not distinguished. Is referred to as a base station 3, and may be referred to as a hoistway 4 when the hoistways 4a, 4b, and 4c are not distinguished. In the wireless communication system 10 shown in FIG. 1, there are three hoistways 4, that is, elevator control systems, but this is an example and may be two or less or four or more.
 移動局1は、かご2上に設置された無線通信装置である。移動局1は、かご2の位置情報、かご2内のボタン操作情報などの情報を、基地局3に伝送する。 Mobile station 1 is a wireless communication device installed on the car 2. The mobile station 1 transmits information such as the position information of the car 2 and the button operation information in the car 2 to the base station 3.
 かご2は、エレベーターにおいて、図示しないエレベーター制御盤からの制御に従って、図示しない巻き上げ機によって昇降路4内を上下方向に移動する。 In the elevator, the car 2 moves up and down in the hoistway 4 by a hoist (not shown) according to the control from the elevator control panel (not shown).
 基地局3は、アンテナが昇降路4内の天井に設置され、昇降路4の天井上の図示しない機械室にあるエレベーター制御盤に接続された無線通信装置である。基地局3は、エレベーター制御盤からの情報に従って、移動局1に対して、戸開、戸閉などの指示、階数表示情報などを伝送する。 The base station 3 is a wireless communication device in which an antenna is installed on the ceiling in the hoistway 4 and is connected to an elevator control panel in a machine room (not shown) on the ceiling of the hoistway 4. The base station 3 transmits instructions such as opening and closing of the door, floor number display information, and the like to the mobile station 1 according to the information from the elevator control panel.
 昇降路4は、かご2が上下方向に移動する経路である。図1の例では、1つのビル内に3つの昇降路4がある場合を想定している。 The hoistway 4 is a path through which the car 2 moves in the vertical direction. In the example of FIG. 1, it is assumed that there are three hoistways 4 in one building.
 有線ネットワーク5は、基地局3が接続されたネットワークである。有線ネットワーク5は、各基地局3からの情報を電波環境監視装置6に集約するために使用される。 The wired network 5 is a network to which the base station 3 is connected. The wired network 5 is used to collect information from each base station 3 in the radio wave environment monitoring device 6.
 電波環境監視装置6は、移動局1、基地局3などで測定された電波環境の情報を集約する。電波環境とは、例えば、移動局1、基地局3などでの干渉量を示す干渉電力である。 The radio wave environment monitoring device 6 aggregates information on the radio wave environment measured by the mobile station 1, the base station 3, and the like. The radio wave environment is, for example, interference power indicating the amount of interference in the mobile station 1, the base station 3, and the like.
 無線通信システム10は、移動局1と基地局3とが距離を変化させつつ無線通信を行う無線通信システムである。本実施の形態では、無線通信システム10は、かご2と前述の機械室との間の制御情報のやりとりを制御ケーブルによって行う従来のエレベーターと異なり、無線通信によって制御情報の伝達を行うシステムを例にして説明するが、これに限定されない。無線通信システム10は、移動局1と基地局3との間の距離が変わりながら移動局1が一定の走行路を通って移動し、距離に応じて受信信号レベルが変化するような他の無線通信システムにおいても適用可能である。 The wireless communication system 10 is a wireless communication system in which the mobile station 1 and the base station 3 perform wireless communication while changing the distance. In the present embodiment, the wireless communication system 10 is an example of a system in which control information is transmitted by wireless communication, unlike a conventional elevator in which control information is exchanged between the car 2 and the machine room described above by a control cable. However, the present invention is not limited to this. The wireless communication system 10 is another radio in which the mobile station 1 moves along a certain travel path while the distance between the mobile station 1 and the base station 3 changes, and the received signal level changes according to the distance. It can also be applied to communication systems.
 移動局1および基地局3の構成について説明する。本実施の形態では、移動局1および基地局3は同様の構成とするため、移動局1を例にして説明する。図2は、本実施の形態に係る移動局1の構成例を示すブロック図である。移動局1は、アンテナ101と、RF(Radio Frequency)部102と、変復調処理部103と、送受信制御部104と、第1の干渉測定部105と、第2の干渉測定部106と、選択部107と、を備える。 The configuration of the mobile station 1 and the base station 3 will be described. In the present embodiment, since the mobile station 1 and the base station 3 have the same configuration, the mobile station 1 will be described as an example. FIG. 2 is a block diagram showing a configuration example of the mobile station 1 according to the present embodiment. The mobile station 1 includes an antenna 101, an RF (Radio Frequency) unit 102, a modulation / demodulation processing unit 103, a transmission / reception control unit 104, a first interference measurement unit 105, a second interference measurement unit 106, and a selection unit. 107 and.
 アンテナ101は、送信時に無線信号を空中に放射するとともに、空中を伝搬してきた無線信号を受信する。 The antenna 101 radiates a radio signal into the air at the time of transmission and receives the radio signal propagating in the air.
 RF部102は、無線信号の送信時において、デジタル変調された信号をアナログ信号に変換し、キャリア周波数に周波数変換する。また、RF部102は、無線信号の受信時において、アンテナ101から受信したアナログ信号をベースバンドに周波数変換し、デジタル信号に変換する。 When transmitting a radio signal, the RF unit 102 converts the digitally modulated signal into an analog signal and frequency-converts it into a carrier frequency. Further, when receiving a radio signal, the RF unit 102 frequency-converts the analog signal received from the antenna 101 into a baseband and converts it into a digital signal.
 変復調処理部103は、送信時には送信データに対して符号化、変調などの信号処理を行い、受信時には受信信号に対して復調、復号などの信号処理を行う。 The modulation / demodulation processing unit 103 performs signal processing such as coding and modulation on the transmitted data at the time of transmission, and performs signal processing such as demodulation and decoding on the received signal at the time of reception.
 送受信制御部104は、信号の送受信の制御を行う。また、送受信制御部104は、第1の干渉測定部105および第2の干渉測定部106で測定され、選択部107で選択された干渉電力測定結果を基地局3に送信する制御を行う。 The transmission / reception control unit 104 controls the transmission / reception of signals. Further, the transmission / reception control unit 104 controls to transmit the interference power measurement result measured by the first interference measurement unit 105 and the second interference measurement unit 106 and selected by the selection unit 107 to the base station 3.
 第1の干渉測定部105は、変復調処理部103で信号処理された受信信号である無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定する。第1の干渉測定部105は、干渉電力の測定結果である第1の干渉電力測定結果を選択部107に出力する。 The first interference measuring unit 105 measures the interference power in the non-transmission section for a specified period immediately before or immediately after receiving the radio packet which is the received signal signal processed by the modulation / demodulation processing unit 103. The first interference measuring unit 105 outputs the first interference power measurement result, which is the measurement result of the interference power, to the selection unit 107.
 第2の干渉測定部106は、変復調処理部103で信号処理された受信信号である無線パケットのデータ部に含まれるOFDM(Orthogonal Frequency Division Multiplexing)シンボル内のヌルシンボルで干渉電力を測定する。ヌルシンボルは、無線パケット内のデータ部において分散された、何も信号が重畳されていないシンボルである。第2の干渉測定部106は、干渉電力の測定結果である第2の干渉電力測定結果を選択部107に出力する。 The second interference measuring unit 106 measures the interference power with a null symbol in the OFDM (Orthogonal Frequency Division Multiplexing) symbol included in the data unit of the radio packet which is the received signal signal processed by the modulation / demodulation processing unit 103. The null symbol is a symbol in which no signal is superimposed, which is distributed in the data part in the radio packet. The second interference measurement unit 106 outputs the second interference power measurement result, which is the measurement result of the interference power, to the selection unit 107.
 選択部107は、第1の干渉測定部105および第2の干渉測定部106で測定された干渉電力測定結果を取捨選択する。具体的には、選択部107は、基地局3と移動局1との距離に基づいて、第1の干渉電力測定結果または第2の干渉電力測定結果のうち少なくとも1つを選択して出力する。 The selection unit 107 selects the interference power measurement results measured by the first interference measurement unit 105 and the second interference measurement unit 106. Specifically, the selection unit 107 selects and outputs at least one of the first interference power measurement result and the second interference power measurement result based on the distance between the base station 3 and the mobile station 1. ..
 つづいて、無線通信システム10の動作について説明する。図1において、かご2は、昇降路4内を上下移動する。例えば、最下階にいるかご2内で、最上階の行き先ボタンが押されると、行き先情報が、移動局1を介して、基地局3に無線伝送される。基地局3は、受信した行き先情報を機械室内のエレベーター制御盤に伝送する。エレベーター制御盤は、行き先情報に従って巻き上げ機を駆動し、かご2を最上階まで移動させる。エレベーター制御盤は、かご2が最上階に到達すると巻き上げ機を停止させ、かご2のドアを開くための指示情報、すなわち戸開指示を基地局3に伝達する。基地局3は、移動局1に戸開指示を無線伝送する。移動局1は、戸開指示をかご2の制御装置に伝送する。かご2の制御装置は、戸開指示に従ってかご2のドアの開放を行う。かご2の位置情報は、エレベーター制御盤において、巻き上げ機の駆動量によって把握されているとともに、かご2が昇降路4の精密な位置情報を認識し、移動局1および基地局3を介してエレベーター制御盤に伝送される。 Next, the operation of the wireless communication system 10 will be described. In FIG. 1, the car 2 moves up and down in the hoistway 4. For example, when the destination button on the top floor is pressed in the car 2 on the bottom floor, the destination information is wirelessly transmitted to the base station 3 via the mobile station 1. The base station 3 transmits the received destination information to the elevator control panel in the machine room. The elevator control panel drives the hoist according to the destination information and moves the car 2 to the top floor. When the car 2 reaches the top floor, the elevator control panel stops the hoisting machine and transmits instruction information for opening the door of the car 2, that is, a door opening instruction to the base station 3. The base station 3 wirelessly transmits a door opening instruction to the mobile station 1. The mobile station 1 transmits the door opening instruction to the control device of the car 2. The control device of the car 2 opens the door of the car 2 according to the door opening instruction. The position information of the car 2 is grasped by the driving amount of the hoisting machine in the elevator control panel, and the car 2 recognizes the precise position information of the hoistway 4, and the elevator passes through the mobile station 1 and the base station 3. It is transmitted to the control panel.
 図3は、本実施の形態に係る基地局3と移動局1との間の無線伝送の様子を示す図である。図3において、横軸は時間を示し、縦軸は周波数チャネルを示す。本実施の形態では、基地局3および移動局1は、TDD(Time Division Duplex)によって無線伝送を行いつつ、周波数ホッピングを行いながら無線伝送を行う。具体的には、基地局3および移動局1は、スロットと呼称される時間単位で、周波数チャネルを切り替えながら無線パケットの送受信を行うことで、基地局3から移動局1へのdownlink通信、および移動局1から基地局3へのuplink通信を行う。なお、無線通信システム10では、各昇降路4において無線通信を行う基地局3および移動局1の各組み合わせ、すなわち昇降路4間において、同時刻には異なる周波数チャネルを使用するようにホッピングシーケンスが決められており、昇降路4間で互いの通信が干渉となることを防止しているものとする。昇降路4間の時刻同期は、例えば、有線ネットワーク5を介して行われる。 FIG. 3 is a diagram showing a state of wireless transmission between the base station 3 and the mobile station 1 according to the present embodiment. In FIG. 3, the horizontal axis represents time and the vertical axis represents frequency channels. In the present embodiment, the base station 3 and the mobile station 1 perform wireless transmission while performing frequency hopping while performing wireless transmission by TDD (Time Division Duplex). Specifically, the base station 3 and the mobile station 1 transmit and receive wireless packets while switching frequency channels in a time unit called a slot to perform downlink communication from the base station 3 to the mobile station 1 and to the mobile station 1. Uplink communication from the mobile station 1 to the base station 3 is performed. In the wireless communication system 10, the hopping sequence is set so that different frequency channels are used at the same time between each combination of the base station 3 and the mobile station 1 that perform wireless communication in each hoistway 4, that is, between the hoistways 4. It is determined, and it is assumed that mutual communication between the hoistways 4 is prevented from interfering with each other. Time synchronization between the hoistways 4 is performed, for example, via the wired network 5.
 図4は、本実施の形態に係る基地局3と移動局1との間の送受信される無線パケットの例を示す図である。図4に示す無線パケットは、図3で示される各スロットで伝送される無線パケットであり、プリアンブル部41と、データ部42と、から構成される。プリアンブル部41は、既知信号が伝送される区間である。受信側の無線通信装置は、プリアンブル部41の受信処理によって周波数および時間の同期を行い、以降、同期情報に従って、データ部42の受信処理を行う。データ部42は、伝送すべき正味の情報が格納された領域である。データ部42は、例えば、OFDMで変調された信号である。 FIG. 4 is a diagram showing an example of radio packets transmitted / received between the base station 3 and the mobile station 1 according to the present embodiment. The wireless packet shown in FIG. 4 is a wireless packet transmitted in each slot shown in FIG. 3, and is composed of a preamble unit 41 and a data unit 42. The preamble unit 41 is a section in which a known signal is transmitted. The wireless communication device on the receiving side synchronizes the frequency and time by the reception processing of the preamble unit 41, and thereafter performs the reception processing of the data unit 42 according to the synchronization information. The data unit 42 is an area in which net information to be transmitted is stored. The data unit 42 is, for example, a signal modulated by OFDM.
 図5は、本実施の形態に係る基地局3と移動局1との間の送受信される無線パケットに含まれるデータ部42の例を示す図である。図5において、横軸は時間、すなわちOFDMシンボルを示し、縦軸は周波数、すなわちサブキャリアを示す。OFDM内にマッピングされたデータシンボルに対して、分散的にヌルシンボルが配置されている。ヌルシンボルは、送信側の無線通信装置において、何も信号が重畳されていないシンボルである。 FIG. 5 is a diagram showing an example of a data unit 42 included in a radio packet transmitted / received between the base station 3 and the mobile station 1 according to the present embodiment. In FIG. 5, the horizontal axis represents time, that is, the OFDM symbol, and the vertical axis represents frequency, that is, subcarriers. Null symbols are distributed in a distributed manner with respect to the data symbols mapped in OFDM. The null symbol is a symbol on which no signal is superimposed in the wireless communication device on the transmitting side.
 移動局1では、アンテナ101で受信された電波を、RF部102がベースバンドのデジタル信号に変換する。その後、送受信制御部104からの制御に従って、変復調処理部103は、RF部102で変換されたベースバンドのデジタル信号に対して復調、復号などの信号処理を行う。第1の干渉測定部105は、変復調処理部103で信号処理された信号、すなわち無線パケットに対して、測定対象時間をスライドさせながら、規定された測定期間で受信電力の測定を行う。測定期間は、例えば、無線パケットの長さに対して数十分の一から数百分の一の長さを想定している。測定期間をあまり長くすると、測定精度は高くなるが、伝送帯域に無駄が生じることなる。 In the mobile station 1, the RF unit 102 converts the radio wave received by the antenna 101 into a baseband digital signal. After that, according to the control from the transmission / reception control unit 104, the modulation / demodulation processing unit 103 performs signal processing such as demodulation and decoding on the baseband digital signal converted by the RF unit 102. The first interference measuring unit 105 measures the received power in a specified measurement period while sliding the measurement target time with respect to the signal processed by the modulation / demodulation processing unit 103, that is, the wireless packet. The measurement period is assumed to be, for example, one tenth to one hundredth of the length of the wireless packet. If the measurement period is too long, the measurement accuracy will be high, but the transmission band will be wasted.
 変復調処理部103は、無線パケットのプリアンブル部41の検出、およびタイミング情報、周波数偏差情報などの推定を行う。送受信制御部104は、変復調処理部103で推定されたタイミング情報に基づいて、第1の干渉測定部105に対して、図4に示す無線パケットの直前の第1の干渉測定領域43で干渉電力を測定した干渉電力測定結果を選択部107に出力する指示を行う。変復調処理部103は、プリアンブル部41に対する信号処理が終わると、データ部42の復調処理に移行する。変復調処理部103は、データ部42に対してOFDMシンボル毎に周波数変換を行い、各ヌルシンボルの電力を第2の干渉測定部106に出力するとともに、各データシンボル周辺のヌルシンボルから各データシンボルに対応した干渉電力の平均値を算出する。各データシンボルに対応した干渉電力は、データシンボルの信頼度を算出するために使用される。変復調処理部103は、例えば、干渉電力の大きいデータシンボルは信頼度、すなわち尤度を低くし、干渉電力の小さいデータシンボルは信頼度、すなわち尤度を高くして誤り訂正処理を行う。これにより、変復調処理部103は、干渉が多い電波環境下においても、高信頼な無線通信を実現することが可能になる。 The modulation / demodulation processing unit 103 detects the preamble unit 41 of the wireless packet and estimates timing information, frequency deviation information, and the like. Based on the timing information estimated by the modulation / demodulation processing unit 103, the transmission / reception control unit 104 causes interference power with respect to the first interference measurement unit 105 in the first interference measurement area 43 immediately before the wireless packet shown in FIG. Is instructed to output the measured interference power measurement result to the selection unit 107. When the signal processing for the preamble unit 41 is completed, the modulation / demodulation processing unit 103 shifts to the demodulation processing of the data unit 42. The modulation / demodulation processing unit 103 performs frequency conversion for each OFDM symbol on the data unit 42, outputs the power of each null symbol to the second interference measurement unit 106, and outputs each data symbol from the null symbol around each data symbol. Calculate the average value of the interference power corresponding to. The interfering power corresponding to each data symbol is used to calculate the reliability of the data symbol. For example, the modulation / demodulation processing unit 103 performs error correction processing by increasing the reliability, that is, the likelihood, for a data symbol having a large interference power, and increasing the reliability, that is, the likelihood, for a data symbol having a small interference power. As a result, the modulation / demodulation processing unit 103 can realize highly reliable wireless communication even in a radio wave environment where there is a lot of interference.
 なお、ヌルシンボルが配置されることによって、ヌルシンボルの分、伝送できる情報量が減ることになるが、送信電力が一定ならば、ヌルシンボルでの電力分をデータシンボルに上乗せすることが可能である。伝送レートが十分に確保され、ある程度符号化レートが低い、すなわち冗長度が高い無線システムにおいては、符号化レートの上昇分は信号電力の上昇分により相殺される。 By arranging the null symbol, the amount of information that can be transmitted is reduced by the amount of the null symbol, but if the transmission power is constant, the power amount of the null symbol can be added to the data symbol. be. In a wireless system in which the transmission rate is sufficiently secured and the coding rate is low to some extent, that is, the redundancy is high, the increase in the coding rate is offset by the increase in the signal power.
 第2の干渉測定部106は、変復調処理部103から出力されるヌルシンボルの電力、すなわち、図5に示す第2の干渉測定領域44の部分で測定された電力を無線パケット全体に渡って平均化し、第2の干渉電力測定結果として選択部107に出力する。 The second interference measurement unit 106 averages the power of the null symbol output from the modulation / demodulation processing unit 103, that is, the power measured in the second interference measurement area 44 shown in FIG. 5 over the entire wireless packet. And output to the selection unit 107 as the second interference power measurement result.
 図6は、本実施の形態に係るヌルシンボルでの電力測定における隣接サブキャリアからの漏洩を示す図である。図6は、2つのデータシンボルで挟まれたヌルシンボルのサブキャリアで干渉電力を測定した例を示している。干渉電力の測定においては、実装上、量子化ノイズなどによって、実質的にはデータサブキャリアのレベルから30dB前後低いレベルに隣接サブキャリアからの漏れ込みが入り、隣接サブキャリアからの漏れ込みよりも小さい干渉電力を測定することができないという問題がある。つまり、所望波の信号レベルが小さいとき、すなわち基地局3と移動局1とが互いに離れている場合、低いレベルの干渉波を測定することが可能である。一方で、所望波の信号レベルが大きいとき、すなわち基地局3と移動局1とが互いに近い距離にある場合、低いレベルの干渉波を測定することが困難になる。 FIG. 6 is a diagram showing leakage from an adjacent subcarrier in power measurement with a null symbol according to the present embodiment. FIG. 6 shows an example in which the interference power is measured by the subcarrier of the null symbol sandwiched between the two data symbols. In the measurement of interference power, due to quantization noise, etc., leakage from adjacent subcarriers actually enters at a level about 30 dB lower than the level of the data subcarrier, which is higher than leakage from adjacent subcarriers. There is a problem that small interference power cannot be measured. That is, when the signal level of the desired wave is small, that is, when the base station 3 and the mobile station 1 are separated from each other, it is possible to measure a low level interference wave. On the other hand, when the signal level of the desired wave is large, that is, when the base station 3 and the mobile station 1 are close to each other, it becomes difficult to measure a low level interference wave.
 以上を踏まえて、選択部107は、移動局1と基地局3との距離が近いときは、第1の干渉測定部105で測定された干渉電力測定結果を選択し、移動局1と基地局3との距離が遠いときは、第2の干渉測定部106で測定された干渉電力測定結果を選択する。これにより、選択部107は、基地局3と移動局1との距離が遠く、信号電力が小さいため干渉波の影響が大きい位置においては、無線パケット全体で測定された精度の高い干渉電力測定結果を得ることができる。また、選択部107は、基地局3と移動局1との距離が近く、信号電力が大きいため干渉波の影響が少ない位置においては、測定期間は短いがダイナミックレンジの広い干渉電力測定結果を得ることができる。所望波の信号レベルが大きいときは、基本的に低いレベルの干渉波が通信に及ぼす影響は少ないが、瞬時値変動、シャドーウィングなどによって受信電力が一時的に低くなることはあり、低いレベルまで干渉電力を測定可能であることは重要である。選択部107は、移動局1と基地局3との距離が近いか遠いかについて、例えば、移動局1と基地局3との距離の遠近を判定するための閾値を用いて判定することが可能である。 Based on the above, when the distance between the mobile station 1 and the base station 3 is short, the selection unit 107 selects the interference power measurement result measured by the first interference measurement unit 105, and the mobile station 1 and the base station When the distance from 3 is long, the interference power measurement result measured by the second interference measurement unit 106 is selected. As a result, the selection unit 107 has a high-precision interference power measurement result measured for the entire wireless packet at a position where the distance between the base station 3 and the mobile station 1 is long and the signal power is small and therefore the influence of the interference wave is large. Can be obtained. Further, the selection unit 107 obtains an interference power measurement result having a short measurement period but a wide dynamic range at a position where the distance between the base station 3 and the mobile station 1 is short and the signal power is large and therefore the influence of the interference wave is small. be able to. When the signal level of the desired wave is high, the low level interference wave basically has little effect on communication, but the received power may temporarily decrease due to instantaneous value fluctuations, shadow wings, etc., and it reaches a low level. It is important that the interference power can be measured. The selection unit 107 can determine whether the distance between the mobile station 1 and the base station 3 is close or far, for example, by using a threshold value for determining the distance between the mobile station 1 and the base station 3. Is.
 選択部107は、選択した干渉電力測定結果を送受信制御部104に出力する。送受信制御部104は、選択部107から取得した干渉電力測定結果を、他の制御情報と一緒に基地局3に無線伝送する制御を行う。基地局3は、受信した干渉電力測定結果を、測定時の位置情報、測定時の周波数チャネル情報などと一緒に電波環境監視装置6に出力する。なお、基地局3は、測定時の位置情報について、エレベーター制御盤などエレベーターを制御するシステム側からもらうようにしてもよいし、所望波の受信レベルから推定するようにしてもよい。 The selection unit 107 outputs the selected interference power measurement result to the transmission / reception control unit 104. The transmission / reception control unit 104 controls to wirelessly transmit the interference power measurement result acquired from the selection unit 107 to the base station 3 together with other control information. The base station 3 outputs the received interference power measurement result to the radio wave environment monitoring device 6 together with the position information at the time of measurement, the frequency channel information at the time of measurement, and the like. The base station 3 may receive the position information at the time of measurement from the system side that controls the elevator such as the elevator control panel, or may estimate it from the reception level of the desired wave.
 電波環境監視装置6は、取得した干渉電力測定結果を、測定時の位置情報、測定時の周波数チャネル情報に応じて平均化しながら蓄積していく。図7は、本実施の形態に係る電波環境監視装置6に蓄積されている干渉電力測定結果の例を示す図である。図7は、電波環境監視装置6が、干渉電力測定結果を、測定時のかご2の位置および測定時の周波数チャネルに対応してマッピングして蓄積している状態を示している。電波環境監視装置6は、例えば、経年変化を見て干渉電力が一定の閾値を超えた場合に警告を発したり、伝送に使用する周波数チャネルの干渉電力に応じて伝送レート、連送数などを変更したりする。これにより、電波環境監視装置6は、無線通信システム10をより安定的に運用することが可能になる。 The radio wave environment monitoring device 6 accumulates the acquired interference power measurement results while averaging them according to the position information at the time of measurement and the frequency channel information at the time of measurement. FIG. 7 is a diagram showing an example of the interference power measurement result stored in the radio wave environment monitoring device 6 according to the present embodiment. FIG. 7 shows a state in which the radio wave environment monitoring device 6 maps and accumulates the interference power measurement result corresponding to the position of the car 2 at the time of measurement and the frequency channel at the time of measurement. The radio wave environment monitoring device 6 issues a warning when the interference power exceeds a certain threshold value by observing aging, and sets the transmission rate, the number of continuous transmissions, etc. according to the interference power of the frequency channel used for transmission. Change it. As a result, the radio wave environment monitoring device 6 can operate the wireless communication system 10 more stably.
 なお、本実施の形態では、電波環境監視装置6は、集積する情報を干渉量、すなわち干渉電力としたが、所望波の受信電力と組み合わせて、信号電力対干渉電力比であるSIR(Signal-to-Interference Ratio)を算出して蓄積するようにしてもよい。この場合、電波環境監視装置6は、より通信品質に即した評価が可能になる。 In the present embodiment, the radio wave environment monitoring device 6 uses the accumulated information as the amount of interference, that is, the interference power, but in combination with the reception power of the desired wave, the signal power to the interference power ratio is SIR (Signal-). The to-interference ratio) may be calculated and accumulated. In this case, the radio wave environment monitoring device 6 can be evaluated more in line with the communication quality.
 また、第1の干渉測定部105は、無線パケットを受信する直前の無送信区間の干渉電力を測定していたが、無線パケットの受信直後の無送信区間で干渉電力を測定するようにしてもよい。図3に示すように、スロット長に対して無線パケット長は短く、スロットに対して無線パケットの前後に余裕がある。そのため、第1の干渉測定部105は、無線パケットの受信直後の無送信区間で干渉電力を測定することも可能である。無線パケットの受信直後の無送信区間は、具体的には、図4に示す無線パケットのデータ部42の右側の領域である。 Further, although the first interference measuring unit 105 measures the interference power in the non-transmission section immediately before receiving the radio packet, the interference power may be measured in the non-transmission section immediately after receiving the radio packet. good. As shown in FIG. 3, the radio packet length is short with respect to the slot length, and there is a margin before and after the radio packet with respect to the slot. Therefore, the first interference measuring unit 105 can also measure the interference power in the non-transmission section immediately after receiving the wireless packet. The non-transmission section immediately after receiving the wireless packet is specifically the area on the right side of the data unit 42 of the wireless packet shown in FIG.
 また、選択部107は、かご2の位置に応じて第1の干渉測定部105の干渉電力測定結果と第2の干渉測定部106の干渉電力測定結果を切り替えるようにしたが、これに限定されない。選択部107は、第1の干渉測定部105の干渉電力測定結果は常に使用し、かご2の位置が遠いときに第2の干渉測定部106の干渉電力測定結果を組み合わせるようしてもよい。また、無線通信システム10では、選択部107の機能を、基地局3、電波環境監視装置6などに持たせるようにしてもよい。 Further, the selection unit 107 switches between the interference power measurement result of the first interference measurement unit 105 and the interference power measurement result of the second interference measurement unit 106 according to the position of the car 2, but the present invention is not limited to this. .. The selection unit 107 may always use the interference power measurement result of the first interference measurement unit 105, and may combine the interference power measurement result of the second interference measurement unit 106 when the position of the car 2 is far. Further, in the wireless communication system 10, the function of the selection unit 107 may be provided to the base station 3, the radio wave environment monitoring device 6, and the like.
 なお、本実施の形態では、移動局1が干渉電力を測定する場合について説明したが、基地局3も同様に干渉電力を測定することが可能である。基地局3は、かご2が遠い位置にあるときの干渉電力測定結果だけを収集する、または、第1の干渉測定部105の干渉電力測定結果に加え、かご2が遠い位置にあるときだけ第2の干渉測定部106の干渉電力測定結果を抽出するようにしてもよい。 Although the case where the mobile station 1 measures the interference power has been described in the present embodiment, the base station 3 can also measure the interference power in the same manner. The base station 3 collects only the interference power measurement result when the car 2 is in a distant position, or in addition to the interference power measurement result of the first interference measurement unit 105, only when the car 2 is in a distant position. The interference power measurement result of the interference measurement unit 106 of 2 may be extracted.
 無線通信システム10は、第1の無線通信装置が干渉電力を測定して干渉電力測定結果を第2の無線通信装置に送信する場合において、本実施の形態のように、第1の無線通信装置を移動局1とし、第2の無線通信装置を基地局3としてもよいし、本実施の形態とは反対に、第1の無線通信装置を基地局3とし、第2の無線通信装置を移動局1としてもよい。 The wireless communication system 10 is a first wireless communication device as in the present embodiment when the first wireless communication device measures the interference power and transmits the interference power measurement result to the second wireless communication device. May be the mobile station 1 and the second wireless communication device may be the base station 3. Contrary to the present embodiment, the first wireless communication device is the base station 3 and the second wireless communication device is moved. It may be station 1.
 移動局1の動作を、フローチャートを用いて説明する。図8は、本実施の形態に係る移動局1の動作を示すフローチャートである。移動局1において、RF部102は、アンテナ101で受信された無線パケットをベースバンドのデジタル信号に変換する(ステップS1)。変復調処理部103は、無線パケットに対して復調、復号などの信号処理を行う(ステップS2)。 The operation of mobile station 1 will be explained using a flowchart. FIG. 8 is a flowchart showing the operation of the mobile station 1 according to the present embodiment. In the mobile station 1, the RF unit 102 converts the radio packet received by the antenna 101 into a baseband digital signal (step S1). The modulation / demodulation processing unit 103 performs signal processing such as demodulation and decoding of the wireless packet (step S2).
 第1の干渉測定部105は、無線パケットに対して第1の干渉測定領域43で干渉電力を測定する(ステップS3)。第1の干渉測定部105は、干渉電力を測定した結果である第1の干渉電力測定結果を選択部107に出力する。第2の干渉測定部106は、無線パケットに対して第2の干渉測定領域44で干渉電力を測定する(ステップS4)。第2の干渉測定部106は、干渉電力を測定した結果である第2の干渉電力測定結果を選択部107に出力する。なお、前述のように、基地局3と移動局1とは、TDDによって無線伝送を行いつつ、周波数ホッピングを行いながら無線伝送を行っていることから、第1の干渉測定部105および第2の干渉測定部106は、周波数チャネル毎の干渉電力を測定することとする。 The first interference measurement unit 105 measures the interference power of the wireless packet in the first interference measurement area 43 (step S3). The first interference measuring unit 105 outputs the first interference power measurement result, which is the result of measuring the interference power, to the selection unit 107. The second interference measurement unit 106 measures the interference power of the wireless packet in the second interference measurement area 44 (step S4). The second interference measuring unit 106 outputs the second interference power measurement result, which is the result of measuring the interference power, to the selection unit 107. As described above, since the base station 3 and the mobile station 1 perform wireless transmission while performing frequency hopping while performing wireless transmission by TDD, the first interference measuring unit 105 and the second interference measuring unit 105 and the second The interference measuring unit 106 measures the interference power for each frequency channel.
 選択部107は、かご2の位置、すなわち基地局3と移動局1との距離に基づいて、第1の干渉電力測定結果または第2の干渉電力測定結果のうち少なくとも1つを選択する(ステップS5)。具体的には、選択部107は、基地局3と移動局1との距離が閾値未満の場合は第1の干渉電力測定結果を選択し、基地局3と移動局1との距離が閾値以上の場合は第2の干渉電力測定結果を選択する。または、選択部107は、基地局3と移動局1との距離が閾値未満の場合は第1の干渉電力測定結果を選択し、基地局3と移動局1との距離が閾値以上の場合は第1の干渉電力測定結果および第2の干渉電力測定結果を選択する。選択部107は、選択した干渉電力測定結果を送受信制御部104に出力する。前述のように、閾値は、基地局3と移動局1との距離が近いか遠いかを判定するためのものである。すなわち、基地局3と移動局1との距離が閾値未満の場合とは、基地局3と移動局1との距離が近いことを意味し、基地局3と移動局1との距離が閾値以上の場合とは、基地局3と移動局1との距離が遠いことを意味する。 The selection unit 107 selects at least one of the first interference power measurement result and the second interference power measurement result based on the position of the car 2, that is, the distance between the base station 3 and the mobile station 1 (step). S5). Specifically, the selection unit 107 selects the first interference power measurement result when the distance between the base station 3 and the mobile station 1 is less than the threshold value, and the distance between the base station 3 and the mobile station 1 is equal to or larger than the threshold value. In the case of, the second interference power measurement result is selected. Alternatively, the selection unit 107 selects the first interference power measurement result when the distance between the base station 3 and the mobile station 1 is less than the threshold value, and when the distance between the base station 3 and the mobile station 1 is greater than or equal to the threshold value, the selection unit 107 selects the first interference power measurement result. The first interference power measurement result and the second interference power measurement result are selected. The selection unit 107 outputs the selected interference power measurement result to the transmission / reception control unit 104. As described above, the threshold value is for determining whether the distance between the base station 3 and the mobile station 1 is short or long. That is, when the distance between the base station 3 and the mobile station 1 is less than the threshold value, it means that the distance between the base station 3 and the mobile station 1 is short, and the distance between the base station 3 and the mobile station 1 is equal to or larger than the threshold value. The case of means that the distance between the base station 3 and the mobile station 1 is long.
 つづいて、移動局1および基地局3のハードウェア構成について説明する。前述のように、移動局1および基地局3は同様の構成のため移動局1を例にして説明する。移動局1において、アンテナ101はアンテナ素子である。RF部102は、周波数変換などを行うアナログ回路、アナログデジタルコンバータ、デジタルアナログコンバータなどである。変復調処理部103、送受信制御部104、第1の干渉測定部105、第2の干渉測定部106、および選択部107は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。処理回路は制御回路とも呼ばれる。 Next, the hardware configuration of the mobile station 1 and the base station 3 will be described. As described above, since the mobile station 1 and the base station 3 have the same configuration, the mobile station 1 will be described as an example. In the mobile station 1, the antenna 101 is an antenna element. The RF unit 102 is an analog circuit, an analog digital converter, a digital analog converter, or the like that performs frequency conversion or the like. The modulation / demodulation processing unit 103, the transmission / reception control unit 104, the first interference measurement unit 105, the second interference measurement unit 106, and the selection unit 107 are realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware. The processing circuit is also called a control circuit.
 図9は、本実施の形態に係る移動局1が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路90の構成例を示す図である。図9に示す処理回路90は制御回路であり、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、移動局1の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能を移動局1に実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。 FIG. 9 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the mobile station 1 according to the present embodiment is realized by a processor and a memory. The processing circuit 90 shown in FIG. 9 is a control circuit and includes a processor 91 and a memory 92. When the processing circuit 90 is composed of the processor 91 and the memory 92, each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit 90, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit 90 includes a memory 92 for storing a program in which the processing of the mobile station 1 is eventually executed. It can be said that this program is a program for causing the mobile station 1 to execute each function realized by the processing circuit 90. This program may be provided by a storage medium in which the program is stored, or may be provided by other means such as a communication medium.
 上記プログラムは、第1の干渉測定部105が、無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定し、第1の干渉電力測定結果を出力する第1のステップと、第2の干渉測定部106が、無線パケット内に分散されたヌルシンボルで干渉電力を測定し、第2の干渉電力測定結果を出力する第2のステップと、選択部107が、第2の無線通信装置と無線通信装置との距離に基づいて、第1の干渉電力測定結果または第2の干渉電力測定結果のうち少なくとも1つを選択して出力する第3のステップと、を移動局1に実行させるプログラムであるとも言える。 In the above program, the first interference measuring unit 105 measures the interference power in the non-transmission section for a specified period immediately before or immediately after receiving the wireless packet, and outputs the first interference power measurement result. The first step, the second step 106 in which the second interference measuring unit 106 measures the interference power with the null symbols distributed in the wireless packet, and the second step and the selection unit 107 output the second interference power measurement result. , A third step of selecting and outputting at least one of the first interference power measurement result or the second interference power measurement result based on the distance between the second wireless communication device and the wireless communication device. It can be said that this is a program that causes the mobile station 1 to execute the above.
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 92 is, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM). This includes semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disc), and the like.
 図10は、本実施の形態に係る移動局1が備える処理回路を専用のハードウェアで構成する場合の処理回路93の例を示す図である。図10に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 FIG. 10 is a diagram showing an example of a processing circuit 93 when the processing circuit included in the mobile station 1 according to the present embodiment is configured by dedicated hardware. The processing circuit 93 shown in FIG. 10 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. The thing is applicable. As for the processing circuit, a part may be realized by dedicated hardware and a part may be realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
 以上説明したように、本実施の形態によれば、無線通信システム10において、移動局1は、無線パケットの受信直前の無送信区間および無線パケット内のヌルシンボルにおいて干渉電力を測定し、基地局3と移動局1との距離に応じて干渉電力測定結果として取捨選択することとした。これにより、移動局1は、干渉電力の測定のための専用の時間を抑えつつ、伝送効率は維持したまま、かご2の位置によらず、ダイナミックレンジの広い干渉電力測定結果を得ることが可能である。移動局1は、特に、所望波の電力が小さく干渉電力の影響が大きい位置に対しては測定サンプル数が多く精度の高い干渉電力測定結果を取得でき、的確に電波環境を把握して、より安定した無線通信システム10を実現することが可能になる。このように、移動局1は、電波環境測定のための時間および周波数の使用を抑制しつつ、電波環境の測定精度を向上させることができる。 As described above, according to the present embodiment, in the wireless communication system 10, the mobile station 1 measures the interference power in the non-transmission section immediately before the reception of the wireless packet and the null symbol in the wireless packet, and the base station. It was decided to select as the interference power measurement result according to the distance between 3 and the mobile station 1. As a result, the mobile station 1 can obtain the interference power measurement result having a wide dynamic range regardless of the position of the car 2 while suppressing the dedicated time for measuring the interference power and maintaining the transmission efficiency. Is. The mobile station 1 can acquire a highly accurate interference power measurement result with a large number of measurement samples especially at a position where the power of the desired wave is small and the influence of the interference power is large. It becomes possible to realize a stable wireless communication system 10. In this way, the mobile station 1 can improve the measurement accuracy of the radio wave environment while suppressing the use of time and frequency for measuring the radio wave environment.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1,1a,1b,1c 移動局、2a,2b,2c かご、3a,3b,3c 基地局、4a,4b,4c 昇降路、5 有線ネットワーク、6 電波環境監視装置、10 無線通信システム、41 プリアンブル部、42 データ部、43 第1の干渉測定領域、44 第2の干渉測定領域、101 アンテナ、102 RF部、103 変復調処理部、104 送受信制御部、105 第1の干渉測定部、106 第2の干渉測定部、107 選択部。 1,1a, 1b, 1c mobile station, 2a, 2b, 2c basket, 3a, 3b, 3c base station, 4a, 4b, 4c hoistway, 5 wired network, 6 radio environment monitoring device, 10 wireless communication system, 41 preamble Unit, 42 data unit, 43 first interference measurement area, 44 second interference measurement area, 101 antenna, 102 RF unit, 103 modulation / demodulation processing unit, 104 transmission / reception control unit, 105 first interference measurement unit, 106 second Interference measurement unit, 107 selection unit.

Claims (8)

  1.  第1の無線通信装置と第2の無線通信装置とが距離を変化させつつ無線通信を行う無線通信システムにおける前記第1の無線通信装置である無線通信装置であって、
     無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定し、第1の干渉電力測定結果を出力する第1の干渉測定部と、
     前記無線パケット内に分散されたヌルシンボルで干渉電力を測定し、第2の干渉電力測定結果を出力する第2の干渉測定部と、
     前記第2の無線通信装置と前記無線通信装置との距離に基づいて、前記第1の干渉電力測定結果または前記第2の干渉電力測定結果のうち少なくとも1つを選択して出力する選択部と、
     を備えることを特徴とする無線通信装置。
    A wireless communication device which is the first wireless communication device in a wireless communication system in which a first wireless communication device and a second wireless communication device perform wireless communication while changing the distance.
    A first interference measuring unit that measures interference power in a non-transmission section for a specified period immediately before or immediately after receiving a radio packet and outputs a first interference power measurement result, and a first interference measuring unit.
    A second interference measuring unit that measures the interference power with the null symbols distributed in the radio packet and outputs the second interference power measurement result, and the second interference measuring unit.
    With a selection unit that selects and outputs at least one of the first interference power measurement result or the second interference power measurement result based on the distance between the second wireless communication device and the wireless communication device. ,
    A wireless communication device characterized by comprising.
  2.  前記選択部は、前記距離が閾値未満の場合は前記第1の干渉電力測定結果を選択し、前記距離が前記閾値以上の場合は前記第2の干渉電力測定結果を選択する、
     ことを特徴とする請求項1に記載の無線通信装置。
    The selection unit selects the first interference power measurement result when the distance is less than the threshold value, and selects the second interference power measurement result when the distance is greater than or equal to the threshold value.
    The wireless communication device according to claim 1.
  3.  前記選択部は、前記距離が閾値未満の場合は前記第1の干渉電力測定結果を選択し、前記距離が前記閾値以上の場合は前記第1の干渉電力測定結果および前記第2の干渉電力測定結果を選択する、
     ことを特徴とする請求項1に記載の無線通信装置。
    When the distance is less than the threshold value, the selection unit selects the first interference power measurement result, and when the distance is equal to or more than the threshold value, the first interference power measurement result and the second interference power measurement result. Select the result,
    The wireless communication device according to claim 1.
  4.  前記第2の無線通信装置とは周波数ホッピングを行いながら通信を行い、
     前記第1の干渉測定部および前記第2の干渉測定部は、周波数チャネル毎の干渉電力を測定する、
     ことを特徴とする請求項1から3のいずれか1つに記載の無線通信装置。
    Communicate with the second wireless communication device while performing frequency hopping.
    The first interference measuring unit and the second interference measuring unit measure the interference power for each frequency channel.
    The wireless communication device according to any one of claims 1 to 3, wherein the wireless communication device is characterized.
  5.  請求項1から4のいずれか1つに記載の無線通信装置である第1の無線通信装置と、
     第2の無線通信装置と、
     を備え、
     前記第1の無線通信装置と前記第2の無線通信装置とが距離を変化させつつ無線通信を行うことを特徴とする無線通信システム。
    The first wireless communication device, which is the wireless communication device according to any one of claims 1 to 4,
    The second wireless communication device and
    With
    A wireless communication system characterized in that the first wireless communication device and the second wireless communication device perform wireless communication while changing the distance.
  6.  第1の無線通信装置と第2の無線通信装置とが距離を変化させつつ無線通信を行う無線通信システムにおける前記第1の無線通信装置である無線通信装置を制御するための制御回路であって、
     無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定し、第1の干渉電力測定結果を出力、
     前記無線パケット内に分散されたヌルシンボルで干渉電力を測定し、第2の干渉電力測定結果を出力、
     前記第2の無線通信装置との距離に基づいて、前記第1の干渉電力測定結果または前記第2の干渉電力測定結果のうち少なくとも1つを選択して出力、
     を無線通信装置に実施させることを特徴とする制御回路。
    A control circuit for controlling a wireless communication device, which is the first wireless communication device in a wireless communication system in which a first wireless communication device and a second wireless communication device perform wireless communication while changing the distance. ,
    The interference power is measured in the non-transmission section for a specified period immediately before or immediately after receiving the wireless packet, and the first interference power measurement result is output.
    The interference power is measured by the null symbols distributed in the radio packet, and the second interference power measurement result is output.
    Based on the distance to the second wireless communication device, at least one of the first interference power measurement result or the second interference power measurement result is selected and output.
    A control circuit characterized by having a wireless communication device carry out the above.
  7.  第1の無線通信装置と第2の無線通信装置とが距離を変化させつつ無線通信を行う無線通信システムにおける前記第1の無線通信装置である無線通信装置を制御するためのプログラムを記憶した記憶媒体であって、
     前記プログラムは、
     無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定し、第1の干渉電力測定結果を出力、
     前記無線パケット内に分散されたヌルシンボルで干渉電力を測定し、第2の干渉電力測定結果を出力、
     前記第2の無線通信装置との距離に基づいて、前記第1の干渉電力測定結果または前記第2の干渉電力測定結果のうち少なくとも1つを選択して出力、
     を無線通信装置に実施させることを特徴とする記憶媒体。
    A storage that stores a program for controlling a wireless communication device which is the first wireless communication device in a wireless communication system in which a first wireless communication device and a second wireless communication device perform wireless communication while changing the distance. It ’s a medium,
    The program
    The interference power is measured in the non-transmission section for a specified period immediately before or immediately after receiving the wireless packet, and the first interference power measurement result is output.
    The interference power is measured by the null symbols distributed in the radio packet, and the second interference power measurement result is output.
    Based on the distance to the second wireless communication device, at least one of the first interference power measurement result or the second interference power measurement result is selected and output.
    A storage medium characterized by having a wireless communication device carry out the above.
  8.  第1の無線通信装置と第2の無線通信装置とが距離を変化させつつ無線通信を行う無線通信システムにおける前記第1の無線通信装置である無線通信装置の電波監視方法であって、
     第1の干渉測定部が、無線パケットを受信する直前または受信した直後の規定された期間の無送信区間で干渉電力を測定し、第1の干渉電力測定結果を出力する第1のステップと、
     第2の干渉測定部が、前記無線パケット内に分散されたヌルシンボルで干渉電力を測定し、第2の干渉電力測定結果を出力する第2のステップと、
     選択部が、前記第2の無線通信装置と前記無線通信装置との距離に基づいて、前記第1の干渉電力測定結果または前記第2の干渉電力測定結果のうち少なくとも1つを選択して出力する第3のステップと、
     を含むことを特徴とする電波監視方法。
    A radio wave monitoring method for a wireless communication device, which is the first wireless communication device in a wireless communication system in which a first wireless communication device and a second wireless communication device perform wireless communication while changing the distance.
    The first step, in which the first interference measuring unit measures the interference power in the non-transmission section for a specified period immediately before or immediately after receiving the radio packet and outputs the first interference power measurement result,
    The second step, in which the second interference measuring unit measures the interference power with the null symbols distributed in the radio packet and outputs the second interference power measurement result,
    The selection unit selects and outputs at least one of the first interference power measurement result and the second interference power measurement result based on the distance between the second wireless communication device and the wireless communication device. The third step to do and
    A radio wave monitoring method characterized by including.
PCT/JP2020/008692 2020-03-02 2020-03-02 Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method WO2021176516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021570001A JP7045533B2 (en) 2020-03-02 2020-03-02 Wireless communication equipment, wireless communication systems, control circuits, storage media and radio wave monitoring methods
PCT/JP2020/008692 WO2021176516A1 (en) 2020-03-02 2020-03-02 Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008692 WO2021176516A1 (en) 2020-03-02 2020-03-02 Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method

Publications (1)

Publication Number Publication Date
WO2021176516A1 true WO2021176516A1 (en) 2021-09-10

Family

ID=77612932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008692 WO2021176516A1 (en) 2020-03-02 2020-03-02 Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method

Country Status (2)

Country Link
JP (1) JP7045533B2 (en)
WO (1) WO2021176516A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012656A (en) * 2003-06-20 2005-01-13 Nec Corp Sir measuring apparatus and method
JP2016105604A (en) * 2013-09-24 2016-06-09 三菱電機株式会社 Transmitter
JP2017503402A (en) * 2013-12-13 2017-01-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated CSI feedback in LTE / LTE advanced systems using unlicensed spectrum
JP2018117335A (en) * 2017-01-19 2018-07-26 パナソニック株式会社 Base station, terminal, wireless communication system, and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012656A (en) * 2003-06-20 2005-01-13 Nec Corp Sir measuring apparatus and method
JP2016105604A (en) * 2013-09-24 2016-06-09 三菱電機株式会社 Transmitter
JP2017503402A (en) * 2013-12-13 2017-01-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated CSI feedback in LTE / LTE advanced systems using unlicensed spectrum
JP2018117335A (en) * 2017-01-19 2018-07-26 パナソニック株式会社 Base station, terminal, wireless communication system, and communication method

Also Published As

Publication number Publication date
JP7045533B2 (en) 2022-03-31
JPWO2021176516A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
KR101958320B1 (en) Techniques for transmitting on multiple carriers of a shared radio frequency spectrum band
US9072105B2 (en) Interference-control method and femto base station
CN110603862B (en) Method and apparatus for reporting power headroom
US8724524B2 (en) Wireless communication apparatus and wireless communication method
US8737921B2 (en) Communication system of detecting victim terminal and performing interference coordination in multi-cell environments
US20140029516A1 (en) Method and apparatus for simultaneously performing frequency resource sensing and data transmission in a wireless communication system
KR100975700B1 (en) Method and system for controlling power in a communication system
US11304213B2 (en) Dynamic uplink reuse in a C-RAN
US10154479B2 (en) User terminal, base station and radio communication method
US20190149252A1 (en) Controlling the channel occupancy measurement quality
KR101977668B1 (en) Method and apparatus for trnasmitting and receiving a uplink signal in a communication system
IL195540A (en) Common control channel uplink power control for adaptive modulation and coding techniques
US20070014254A1 (en) Method and apparatus for measuring uplink data throughput in WiBro repeater
US9026120B2 (en) Large cell base station and communication control method
JP5173626B2 (en) Centralized control base station and signal control method
CN102868513A (en) Frequency domain unscheduled transmission in a tdd wireless communications system
US9048973B2 (en) Base station device
EP3387778B1 (en) Interlace pattern selection for low cm/papr transmission
WO2011099623A1 (en) Low-power base station and wireless control method
CN107735970B (en) Network node, user equipment and method thereof
US20220225243A1 (en) First and second communication devices for power control in groupcast communication
EP3298708A1 (en) Validation sub-system for telecommunication system
WO2021176516A1 (en) Wireless communication device, wireless communication system, control circuit, storage medium, and radio wave monitoring method
GB2504366A (en) Reducing self-interference between a co-located transmitter and receiver by controlling transmit power in accordance with quality of received signal
KR20110101318A (en) Apparatus and method for controlling uplink interference in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923001

Country of ref document: EP

Kind code of ref document: A1