WO2021175381A1 - Procédé et système de détection améliorée de l'environnement - Google Patents
Procédé et système de détection améliorée de l'environnement Download PDFInfo
- Publication number
- WO2021175381A1 WO2021175381A1 PCT/DE2021/200016 DE2021200016W WO2021175381A1 WO 2021175381 A1 WO2021175381 A1 WO 2021175381A1 DE 2021200016 W DE2021200016 W DE 2021200016W WO 2021175381 A1 WO2021175381 A1 WO 2021175381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pose
- surroundings
- person
- environment
- image
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
Definitions
- the invention relates to a method and a system for improved environment recognition based on pose recognition.
- document EP2580739A2 shows monocular 3D pose assessment and tracking by recognition.
- Document US2009175540A1 likewise shows a system, a method and a computer program product for assessing a pose of a human upper body.
- the pose is represented by a skeleton representation.
- a rectangular bounding box is placed around the recognized pedestrian, since it is difficult to capture the exact contour. This is also shown in the figures of EP2580739A2. This approach is also used for other objects such as vehicles in order to be able to quickly estimate the maximum dimensions of the respective object.
- the surroundings detection sensor is preferably a mono camera, a stereo camera or a surround view system.
- the determination of the one or more poses is carried out by means of contour finding (e.g. by means of a keypoint detector). After finding the contour, semantic segmentation can be carried out, for example, in order to be able to better recognize the individual body parts and their alignment.
- contour finding e.g. by means of a keypoint detector.
- semantic segmentation can be carried out, for example, in order to be able to better recognize the individual body parts and their alignment.
- classifying the pose (s) it is preferred to classify according to special poses over time, pose accumulations in the image and / or special pose positions.
- the entrainment of an object is determined based on specific poses over time.
- the object carried by a person is particularly preferably determined based on special poses over time.
- Special postures can be deduced from the special poses over time, which are typical if a person is carrying an object. For example, based on the posture it can be recognized that a person is pushing a stroller or a walker. pulling a suitcase or the like or recognizing a wheelchair. This information can in turn be used to adjust the driving behavior accordingly, e.g. at a zebra crossing. This information is important in order to avoid a collision of the vehicle with the object carried by adapting the driving strategy.
- the assignment of the poses to the respective objects can be carried out, for example, by means of a recognition system (e.g. neural network, look-up table).
- a recognition system e.g. neural network, look-up table.
- the object does not have to be recognized directly.
- Topographical properties of the vehicle environment are preferably determined based on a special pose position.
- elevations in the area such as, for example Bridges or houses are meant to be / are recognized.
- the information that pedestrians usually walk on the ground can be used to estimate the course of the road. If there are deviations, this allows conclusions to be drawn about peculiarities in the course of the road. For example, when a pose is recognized above the vanishing point, it can be concluded that there are bridges or high adjoining houses, when people are recognized at windows. This information about the presence of vertical structures can in turn be helpful in order to start corresponding algorithms, for example extrinsic / intrinsic auto-calibration.
- certain landmarks in the vehicle environment are determined based on the accumulation of poses. For example, based on accumulation patterns over time, for example, a traffic light or a pedestrian crossing can be inferred. For this purpose, the posture, line of sight or general orientation of the people can be recognized by means of the pose representation. This information can be used, for example, as a landmark for localization. An accumulation a little further away from the road and pointing away from the road could indicate a point of interest. Accumulations next to a stopping point can be an indication of stops, e.g. a bus stop.
- an accumulation of pedestrians or cyclists who were recognized over time on the basis of the special movement pattern of the pose could indicate paths next to the street (e.g. pedestrian paths or cycle paths). If these accumulations are recognized directly on the road, this can be an indication of a marathon / bike race, a demonstration or a move be. This information can then be used, for example, to optimize route planning.
- a system for improved environment recognition based on pose recognition comprising at least one environment detection sensor for recording an image of the surroundings or a sequence of images of the surroundings and a data processing device which is designed to analyze the recorded image of the surroundings and to one or more person (s) detect, perform a pose recognition of the person (s), classify the pose and
- Fig. 2 a schematic representation of the system according to an embodiment of the invention.
- FIG. 1 shows a schematic flow diagram of an embodiment of the invention.
- step S1 an image of the surroundings or a sequence of images of the surroundings is recorded by means of at least one surroundings detection sensor of a vehicle.
- step S2 one or more people are detected in the image of the surroundings or in the sequence of images of the surroundings.
- step S3 one or more Pose (s) of the one or more person (s) determined.
- step S4 the pose or the poses of the one or more person (s) are classified.
- features in the vehicle environment are determined based on the classification of the pose (s).
- FIG. 2 shows a schematic representation of the system according to an embodiment of the invention.
- a system 1 for recognizing road users, in particular people in road traffic is shown in a schematic representation.
- the system 1 comprises at least one environment detection sensor 2 and a data processing device 3.
- Data processing devices 3 are connected via a data connection D, by means of which image data can be transmitted from the optical sensor 2 to the data processing device. It would be conceivable that the data processing device is connected to one or more actuators which, based on the results of the data processing device, control the vehicle accordingly.
- the data connection D is preferably designed to be wired. However, wireless connections such as WLAN, Bluetooth, etc. would also be conceivable.
- the at least one surroundings detection sensor 2 is a mono camera, a stereo camera or a surround view system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Abstract
L'invention concerne un procédé de détection améliorée de l'environnement sur la base d'une reconnaissance de poses, comprenant les étapes suivantes : - enregistrement (S1) d'une image de l'environnement ou d'une suite d'images de l'environnement au moyen d'au moins un capteur de détection de l'environnement (2) d'un véhicule ; - détection (S2) d'une ou plusieurs personne(s) dans l'image de l'environnement ou dans la suite d'images de l'environnement ; - détermination (S3) d'une ou plusieurs pose(s) de l'au moins une personne ; - classification (S4) de la ou des pose(s) de la ou des personne(s) ; - et détermination (S5) de caractéristiques dans l'environnement du véhicule sur la base de la classification de la ou des pose(s).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020202905.9 | 2020-03-06 | ||
DE102020202905.9A DE102020202905A1 (de) | 2020-03-06 | 2020-03-06 | Verfahren und ein System zur verbesserten Umgebungserkennung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021175381A1 true WO2021175381A1 (fr) | 2021-09-10 |
Family
ID=74874605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2021/200016 WO2021175381A1 (fr) | 2020-03-06 | 2021-02-16 | Procédé et système de détection améliorée de l'environnement |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102020202905A1 (fr) |
WO (1) | WO2021175381A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090175540A1 (en) | 2007-12-21 | 2009-07-09 | Honda Motor Co., Ltd. | Controlled human pose estimation from depth image streams |
DE102011011870A1 (de) * | 2010-02-23 | 2011-08-25 | Conti Temic microelectronic GmbH, 90411 | Komponenten-basierte Detektion, Klassifikation, Verfolgung und Prädikation von Objekten |
EP2580739A2 (fr) | 2010-06-12 | 2013-04-17 | Toyota Motor Europe NV/SA | Estimation et suivi par détection de poses en trois dimensions (3d) monoculaires |
US20170057497A1 (en) * | 2015-08-28 | 2017-03-02 | Delphi Technologies, Inc. | Pedestrian-intent-detection for automated vehicles |
-
2020
- 2020-03-06 DE DE102020202905.9A patent/DE102020202905A1/de active Pending
-
2021
- 2021-02-16 WO PCT/DE2021/200016 patent/WO2021175381A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090175540A1 (en) | 2007-12-21 | 2009-07-09 | Honda Motor Co., Ltd. | Controlled human pose estimation from depth image streams |
DE102011011870A1 (de) * | 2010-02-23 | 2011-08-25 | Conti Temic microelectronic GmbH, 90411 | Komponenten-basierte Detektion, Klassifikation, Verfolgung und Prädikation von Objekten |
EP2580739A2 (fr) | 2010-06-12 | 2013-04-17 | Toyota Motor Europe NV/SA | Estimation et suivi par détection de poses en trois dimensions (3d) monoculaires |
US20170057497A1 (en) * | 2015-08-28 | 2017-03-02 | Delphi Technologies, Inc. | Pedestrian-intent-detection for automated vehicles |
Also Published As
Publication number | Publication date |
---|---|
DE102020202905A1 (de) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Low et al. | Simple robust road lane detection algorithm | |
DE102015203016B4 (de) | Verfahren und Vorrichtung zur optischen Selbstlokalisation eines Kraftfahrzeugs in einem Umfeld | |
WO2016026568A1 (fr) | Procédé et dispositif de comptage sans contact d'essieux d'un véhicule et système de comptage d'essieux pour trafic routier | |
DE112013001424T5 (de) | Objekterkennungsvorrichtung | |
DE102007013023A1 (de) | Probabilistische Rasterkarte | |
CN105956608A (zh) | 一种基于深度学习的目标定位、分类算法 | |
DE102018104270A1 (de) | Verfahren zum Vorhersagen des Verhaltens mindestens eines Fußgängers | |
DE102018133441A1 (de) | Verfahren und System zum Bestimmen von Landmarken in einer Umgebung eines Fahrzeugs | |
DE102016226204B4 (de) | Erfassungssystem für ein zielobjekt und ein verfahren zur erfassung eines zielobjekts | |
EP2116958B1 (fr) | Procédé et dispositif de détermination du déroulement de voie dans la zone devant un véhicule | |
DE102011109569A1 (de) | Verfahren zur Fahrspurerkennung mittels einer Kamera | |
DE102017106535A1 (de) | Strassenoberflächenzustand-Erkennung mit Multi-Scale Fusion | |
DE102016210534A1 (de) | Verfahren zum Klassifizieren einer Umgebung eines Fahrzeugs | |
DE102014221803A1 (de) | Verfahren und Vorrichtung zum Bestimmen einer momentan vorliegenden Fahrsituation | |
EP3520023B1 (fr) | Détection et validation d'objets provenant d'images séquentielles d'une caméra | |
WO2020104551A1 (fr) | Reconnaissance d'objets au moyen d'un système de détection de véhicules | |
EP3520020B1 (fr) | Classification de signaux routiers dans une zone environnante d'un véhicule automobile | |
DE102021003567A1 (de) | Verfahren zur Erkennung von Objektbeziehungen und Attributierungen aus Sensordaten | |
CN105718908A (zh) | 一种基于衣帽特征与姿态检测的交警检测方法和系统 | |
DE102015006569A1 (de) | Verfahren zur bildbasierten Erkennung des Straßentyps | |
EP3704631A2 (fr) | Procédé de calcul d'un éloignement entre un véhicule automobile et un objet | |
WO2021175381A1 (fr) | Procédé et système de détection améliorée de l'environnement | |
WO2019057252A1 (fr) | Procédé et dispositif de détection de voies de circulation, système d'aide à la conduite et véhicule | |
DE102015204529A1 (de) | Verfahren und Vorrichtung zur Objekterkennung in einem Fortbewegungsmittel | |
DE102018109680A1 (de) | Verfahren zum Unterscheiden von Fahrbahnmarkierungen und Bordsteinen durch parallele zweidimensionale und dreidimensionale Auswertung; Steuereinrichtung; Fahrassistenzsystem; sowie Computerprogrammprodukt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21712034 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21712034 Country of ref document: EP Kind code of ref document: A1 |