WO2021174865A1 - 指纹感测系统 - Google Patents

指纹感测系统 Download PDF

Info

Publication number
WO2021174865A1
WO2021174865A1 PCT/CN2020/121897 CN2020121897W WO2021174865A1 WO 2021174865 A1 WO2021174865 A1 WO 2021174865A1 CN 2020121897 W CN2020121897 W CN 2020121897W WO 2021174865 A1 WO2021174865 A1 WO 2021174865A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sensing system
sensing
fingerprint sensing
light
Prior art date
Application number
PCT/CN2020/121897
Other languages
English (en)
French (fr)
Inventor
傅同龙
王伟榕
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Priority to US17/768,856 priority Critical patent/US20230260315A1/en
Priority to KR1020227017017A priority patent/KR20220082075A/ko
Publication of WO2021174865A1 publication Critical patent/WO2021174865A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element

Definitions

  • the invention relates to a sensing system, in particular to a fingerprint sensing system.
  • Electronic products such as smart phones and mobile devices are one of the necessary tools in people's lives.
  • electronic products are equipped with external environment sensing devices. For example, sensing the light intensity of ambient light or sensing the distance between an external object and the display of an electronic product. Sensing the light intensity of the ambient light helps the electronic product adjust the display brightness of the display, so that the user experience is better.
  • sensing the distance between the external object and the display of the electronic product also helps the electronic product to determine whether the display screen of the display needs to be turned off. For example, when a user is talking, or when an electronic product is placed in a bag or pocket.
  • the above-mentioned external environment sensing requires an additional corresponding sensing device in the electronic product, which not only increases the production cost, but also occupies the front position of the electronic product, thereby affecting the size of the display screen.
  • the present invention is directed to a fingerprint sensing system that can be used to sense changes in the light field of the external environment.
  • the changes in the light field include characteristics such as light intensity, color and frequency of light intensity changes.
  • the fingerprint sensing system of an embodiment of the present invention is arranged under the display.
  • the fingerprint sensing system includes a sensor and a controller.
  • the sensor has a plurality of sensing pixels arranged in an array, wherein the sensing pixels include at least one functional sensing pixel.
  • the controller is electrically connected with the sensor. The controller calculates the ambient light field parameter according to the signal obtained by the at least one functional sensing pixel.
  • the controller calculates environmental parameters according to the ambient light signals obtained by the functional sensing pixels, the fingerprint sensing system can be used to sense the external environment. Therefore, the cost of the electronic product using the embodiment of the present invention is lower.
  • FIG. 1 is a schematic diagram of a fingerprint sensing system suitable for sensing the intensity of ambient light according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention, a plurality of sensing pixels form an ambient light sensing pixel;
  • FIG. 7 is a schematic diagram of a distribution diagram of ambient light sensing pixels in a fingerprint sensing system according to an embodiment of the present invention.
  • 8A to 8D respectively illustrate schematic diagrams of the distribution of ambient light sensing pixels in a fingerprint sensing system according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a fingerprint sensing system suitable for sensing the distance between an object and a display according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • the ambient light sensing pixels and distance sensing pixels An illustration of the distribution map.
  • FIG. 1 is a schematic diagram of a fingerprint sensing system suitable for sensing ambient light intensity according to an embodiment of the present invention. Please refer to FIG. 1, the fingerprint sensing system 100 is disposed under the display 200. The fingerprint sensing system 100 includes a sensor 110 and a controller 150.
  • the display 200 is, for example, a display panel (for example, a transparent display panel), a touch display panel (for example, a transparent touch display panel), or a combination of the above and a finger pressure plate.
  • the display 200 is, for example, an organic light-emitting diode display panel (OLED display panel), but the present invention is not limited to this.
  • the display 200 may be a touch display panel, such as an organic light emitting diode display panel with multiple touch electrodes.
  • the plurality of touch electrodes may be formed on the outer surface of the organic light emitting diode display panel or embedded in the organic light emitting diode display panel, and the plurality of touch electrodes may perform touch detection in a self-capacitance or mutual capacitance manner .
  • the display 200 may be a combination of a finger pressure plate and a display panel or a combination of a finger pressure plate and a touch display panel.
  • the senor 110 may be disposed on the substrate 140.
  • the substrate 140 may be a printed circuit board (Printed Circuit Board, PCB) or a flexible printed circuit board (Flexible Printed Circuit, FPC).
  • the sensor 110 may be a thin film transistor (TFT), a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS), or a charge coupled device (CCD) light sensor.
  • TFT thin film transistor
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the sensor 110 has a plurality of sensing pixels 112 arranged in an array, and each sensing pixel 112 may include at least one photodiode, but the present invention is not limited thereto.
  • the sensing pixel 112 includes at least one functional sensing pixel.
  • the functional sensing pixels in the sensing pixels 112 are ambient light sensing pixels 112-1 and 112-2.
  • the fingerprint sensing system 100 is placed under ambient light 300.
  • the present invention does not limit the source or form of the ambient light 300.
  • the ambient light 300 passes through the display 200 and the optical layer 130 and is received by the ambient light sensing pixels 112-1 and 112-2.
  • the controller 150 is electrically connected to the sensor 110.
  • the controller 150 calculates environmental parameters based on the signals obtained by the sensing pixels. In FIG. 1, the environmental parameter is the light intensity of the ambient light 300.
  • the fingerprint sensing system 100 further includes an optical layer 130.
  • the optical layer 130 is disposed between the display 200 and the sensor 110.
  • the optical layer 130 may be a lens layer, such as a lens group or a micro-lens layer, but the invention is not limited thereto.
  • the optical layer 130 since the optical layer 130 may be a lens layer, the optical layer 130 facilitates light focusing. Therefore, the light intensity of the ambient light 300 sensed by the fingerprint sensing system 100 The signal-to-noise ratio of the fingerprint image and the signal-to-noise ratio of the fingerprint image obtained are high.
  • the fingerprint sensing system 100 further includes a filter pixel pattern layer 120.
  • the filter pixel pattern layer 120 is disposed on part of the ambient light sensing pixels 112-1 and 112-2, and is disposed between the optical layer 130 and the sensor 110.
  • the filter pixel pattern layer 120 includes at least one filter pixel 122-1, 122-2.
  • Each filter pixel 122-1, 122-2 is, for example, a multilayer interference film, a thin film using the principle of surface plasmon resonance (Surface Plasmon Resonance), or a diffraction grating (Diffraction Grating) film, but the present invention does not take this as limit.
  • the transmission spectra of the filter pixels 122-1 and 122-2 may be the same or different from each other.
  • the filter pixel pattern layer 120 is directly arranged on the ambient light sensing pixels 112-1 and 112-2, and is arranged on all the ambient light sensing pixels 112-1 and 112-2.
  • the transmission spectra of the filter pixels 122-1 and 122-2 of the filter pixel pattern layer 120 are different from each other, for example, the transmission spectrum of the visible light wavelength range is 400 nm to 700 nm or the transmission spectrum of the near infrared light wavelength range is 700 nm to 1000 nm.
  • the ambient light 300 respectively penetrates the filter pixels 122-1 and 122-2 and is received by the ambient light sensing pixels 112-1 and 112-2, so that the ambient light sensing pixels 112-1 and 112- 2 Obtained signals E1 and E2 respectively.
  • the controller 150 calculates the light intensity of the ambient light 300 according to the ratio E1/E2 between the signals E1 and E2, and can also refer to the ratio between the intensity of the unfiltered pixel layer and the ratio between E1 and E2 to obtain the intensity of the ambient light 300 .
  • the controller 150 of the fingerprint sensing system 100 calculates the light intensity of the ambient light 300 based on the ratio E1/E2 between the signals obtained by the ambient light sensing pixels 112-1 and 112-2, it calculates The reliability of the light intensity of the output ambient light 300 is relatively high.
  • the characteristics of the frequency of the change in the intensity of the ambient light can be obtained.
  • Fig. 2 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention. Please refer to FIG. 2.
  • the fingerprint sensing system 100A of FIG. 2 is similar to the fingerprint sensing system 100 of FIG. 200, and the optical layer 130A is not disposed between the filter pixel pattern layer 120 and the display 200.
  • the optical layer 130A may be a structure layer with a collimator effect that limits the light receiving angle, for example, a light guide plate with optical fiber elements, or collimating elements with light-transmitting areas and light-shielding areas alternately arranged.
  • the optical layer 130A of the fingerprint sensing system 100A is not disposed between the ambient light sensing pixels 112-1, 112-2 and the display 200, and the optical layer 130A It can be a structure layer with a limited light receiving angle. Therefore, in addition to the optical layer 130A shielding large-angle stray light, which improves the signal-to-noise ratio of fingerprint sensing, the ambient light sensing pixels 112-1 and 112-2 can still be used. The large-angle incident ambient light 300 is received, so that the fingerprint sensing system 100A can still have a good light intensity sensing effect of the ambient light 300.
  • Fig. 3 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention.
  • the fingerprint sensing system 100B of FIG. 3 is similar to the fingerprint sensing system 100 of FIG. Optical pixel pattern layer 120B.
  • FIG. 3 illustrates that the filter pixel pattern layer 120B is not provided at the position corresponding to the ambient light sensing pixel 112-2.
  • the manufacturing cost of the fingerprint sensing system 100B is lower.
  • Fig. 4 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention.
  • the fingerprint sensing system 100C of FIG. 4 is similar to the fingerprint sensing system 100A of FIG. Pattern layer 120B.
  • the manufacturing cost of the fingerprint sensing system 100C is lower.
  • Fig. 5 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention. Please refer to FIG. 5.
  • the fingerprint sensing system 100D of FIG. 5 is similar to the fingerprint sensing system 100 of FIG. 1, and the main difference is that the fingerprint sensing system 100D of FIG.
  • the material of the light-transmitting layer 160 is, for example, a transparent material such as glass.
  • the filter pixel pattern layer 120 is directly disposed on the position of the light-transmitting layer 160 corresponding to the ambient light sensing pixels 112-1 and 112-2.
  • FIG. 5 illustrates that the filter pixel pattern layer 120 is preferably disposed on the surface of the light-transmitting layer 160 facing the sensor 110, but the present invention is not limited to this.
  • the filter pixel pattern layer 120 may also be disposed on the surface of the light-transmitting layer 160 away from the sensor 110.
  • the filter pixel pattern layer 120 is not suitable for being directly disposed on the sensing pixel 112 in the manufacturing process, since the filter pixel pattern layer 120 can be directly disposed on the light-transmitting layer 160, the fingerprint sensing system of the embodiment of the present invention
  • the 100D filter pixel pattern layer 120 can adopt many types or types of materials, which makes the fingerprint sensing system 100D more flexible in the manufacturing process.
  • the light-transmitting layer 160 may also be replaced by an IR cut-off filter.
  • the filter pixel pattern layer 120 may be directly disposed on the infrared cut filter.
  • the reflected light beam received by the fingerprint sensing device 100D may be visible light, and the design direction of the transmission spectrum of the filter pixel pattern layer 120 also only needs to be in the visible light band.
  • Fig. 6 is a schematic diagram of a fingerprint sensing system according to an embodiment of the present invention, in which a plurality of sensing pixels form an ambient light sensing pixel.
  • each ambient light sensing pixel 112-1 and 112-2 is one of a plurality of sensing pixels 112 of the sensor 110.
  • each ambient light sensing pixel 112-1A may be composed of a plurality of sensing pixels 112. Please refer to FIG. 6, which illustrates an ambient light sensing pixel 112-1A composed of four sensing pixels 112.
  • the controller 150 can use methods such as binning to improve the obtained
  • the signal-to-noise ratio of the ambient light 300 signal increases the calculated signal-to-noise ratio of the light intensity of the ambient light 300.
  • FIG. 7 is a schematic diagram of a distribution diagram of ambient light sensing pixels in a fingerprint sensing system according to an embodiment of the present invention.
  • FIG. 7 illustrates a preferred arrangement of the ambient light sensing pixels 112-1, 112-2, 112-3, 112-4, 112-5 and the filter pixel pattern layer 120.
  • the ambient light sensing pixels 112-1, 112-2, 112-3, 112-4, 112-5 are symmetrically distributed at the center position P of the sensor 110.
  • the filter pixel pattern layer 120 includes three different transmission spectra, wherein the filter pixels 122-2R and 122-4R have the same transmission spectrum (for example, a red pixel), and the filter pixel 122-2G has another transmission spectrum.
  • One transmission spectrum (for example, green pixels) and the filter pixels 122-1B and 122-5B are another transmission spectrum (for example, blue pixels).
  • filter pixels with the same transmission spectrum are symmetrically distributed at the center position P of the array in which the sensing pixels 112 are arranged.
  • the ambient light sensing pixels 112-1, 112-2, 112-3, 112-4, 112-5 and the filter pixels having the same transmission spectrum in the filter pixel pattern layer 120 are all The center positions P of the sensors 110 are symmetrically distributed. Therefore, the sensing capabilities of the fingerprint sensing system at different angles are approximately the same, which improves the reliability of the obtained light intensity of the ambient light 300.
  • FIGS. 8A to 8D respectively illustrate schematic diagrams of the distribution of ambient light sensing pixels in a fingerprint sensing system according to an embodiment of the present invention. Please refer to FIGS. 8A to 8D.
  • FIGS. 8A to 8D illustrate that there are many options for the arrangement of the filter pixel pattern layer 120. Similar to FIG. 7, the ambient light sensing pixels in FIGS. 8A to 8D and the filter pixels having the same transmission spectrum in the filter pixel pattern layer 120 are all symmetrically or uniformly distributed at the center position P of the sensor 110, and the filter pixels
  • the optical pixel pattern layer 120 includes at least two filter pixels.
  • the filter pixel pattern layer 120 includes at least three different transmission spectra, as shown in FIGS. 8A and 8B.
  • the controller 150 calculates the color temperature of the ambient light 300 according to the ratio between the signals obtained by the ambient light sensing pixels 112-1, 112-2, 112-3, and 112-4.
  • the ambient light sensing pixel of the fingerprint sensing system may be configured as only one of the sensing pixels 112.
  • the transmission spectrum of the filter pixel corresponding to the ambient light sensing pixel is preferably similar to the curve of the visual spectrum of the human eye. That is, the filter pixel pattern layer 120 includes only one transmission spectrum.
  • the controller calculates the light intensity of the ambient light according to the signals obtained by the ambient light sensing pixels. Therefore, the fingerprint sensing system can provide both fingerprint and ambient light intensity sensing at the same time, so that the cost of electronic products using the embodiments of the present invention is lower.
  • FIG. 9 is a schematic diagram of a fingerprint sensing system suitable for sensing the distance between an object and a display according to another embodiment of the present invention. Please refer to FIG. 9.
  • the fingerprint sensing system 100' of FIG. 9 is similar to the fingerprint sensing system 100 of FIG.
  • the fingerprint sensing system 100' further includes a first light source 170-1.
  • the first light source 170-1 may be a light emitting diode or a laser diode, and emits the first light beam B1.
  • the wavelength of the first light beam B1 preferably falls within the range of the infrared light spectrum, such as 850 nanometers, 940 nanometers, or 1350 nanometers.
  • the first distance sensing pixel 112-1' is less affected by sunlight.
  • the manufacturing process of the first distance sensing pixel 112-1' is relatively simple.
  • the opening angle ⁇ of the first beam B1 falls within a range of ⁇ 30 degrees. In a preferred embodiment, the opening angle ⁇ of the first beam B1 falls within a range of ⁇ 10 degrees.
  • the first light source 170-1 is disposed on the side of the sensor 110 adjacent to the first distance sensing pixel 112-1', wherein the first distance sensing pixel 112-1' is located in the peripheral area of the sensor 110.
  • the controller 150 is electrically connected to the sensor 110 and the first light source 170-1.
  • the controller 150 controls the first light source 170-1 to emit the first light beam B1, so that the first light beam B1 irradiates the object O to generate the first reflected light beam RB1.
  • the object O is, for example, the user's face, the user's bag or pocket, or the like.
  • the controller 150 calculates the object O and the phase difference of the light source modulation signal according to the light intensity or the optical path difference (Time of Flight) of the first reflected light beam RB1 obtained by the first distance sensing pixel 112-1'. The distance between the displays 200.
  • the sensing element needs to detect the time when the light is reflected by the object O, and then the distance between the object O and the display 200 can be calculated.
  • the light source needs to modulate its intensity over time, and the sensing element detects the phase difference between the object O reflection and the light source modulation to obtain the distance between the object O and the display 200.
  • Fig. 10 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • the fingerprint sensing system 100A' of FIG. 10 is similar to the fingerprint sensing system 100' of FIG. 9, and the main difference is that the optical layer 130A is not disposed on the first distance sensing pixel 112-1' and the display Between 200.
  • the optical layer 130A of the fingerprint sensing system 100A' is not disposed between the first distance sensing pixel 112-1' and the display 200, and the optical layer 130A can be a light-limiting structure layer.
  • the advantages of the optical layer 130A of the fingerprint sensing system 100A are similar and will not be repeated here.
  • Fig. 11 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • the fingerprint sensing system 100B' further includes a filter pixel pattern layer 120'.
  • the filter pixel pattern layer 120' includes at least one filter pixel and includes at least one transmission spectrum. The range of the transmission spectrum of the filter pixel is preferably such that the first reflected light beam RB1 can penetrate.
  • the filter pixel pattern layer 120' is, for example, an infrared bandpass filter (IR bandpass filter).
  • the filter pixel pattern layer 120' is disposed on the first distance sensing pixel 112-1', and is disposed between the optical layer 130 and the sensor 110.
  • the filter pixel pattern layer 120' is directly disposed on the first distance sensing pixel 112-1'.
  • the fingerprint sensing system 100B' further includes a filter layer 180 disposed between the optical layer 130 and the sensor 110.
  • the spectral type of the filter layer 180 should match the wavelength band of the irradiation beam used for fingerprint sensing.
  • the filter layer 180 may be an infrared cut filter layer.
  • the filter layer 180 is disposed on a plurality of sensing pixels other than the first distance sensing pixel 112-1'.
  • the filter layer 180 may be directly disposed on the sensing pixel 112.
  • the advantage of directly disposing the filter pixel pattern layer 120' on the first distance sensing pixel 112-1' or disposing the filter layer 180 directly on the sensing pixel 112 is similar to the fingerprint sensing system 100 of FIG. 1, I won't repeat them here.
  • Fig. 12 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • the fingerprint sensing system 100C' of FIG. 12 is similar to the fingerprint sensing system 100B' of FIG.
  • the light-transmitting layer 160 is disposed between the optical layer 130 and the sensor 110, wherein the filter pixel pattern layer 120' is directly disposed on the position of the light-transmitting layer 160 corresponding to the first distance sensing pixel 112-1', and the filter layer 180 It is directly disposed on the area of the light-transmitting layer 160 corresponding to the sensing pixel 112 except the first distance sensing pixel 112-1'.
  • the advantages of directly disposing the filter pixel pattern layer 120' and the filter layer 180 on the light-transmitting layer 160 are similar to those of FIG. 5, and will not be repeated here.
  • FIG. 13 is a schematic diagram of a fingerprint sensing system according to another embodiment of the present invention.
  • the fingerprint sensing system 100D' of FIG. 13 is similar to the fingerprint sensing system 100' of FIG. 9, and the main difference is that the fingerprint sensing system 100D' also includes a second light source 170-2.
  • the second light source 170-2 may be a light emitting diode or a laser diode for emitting the second light beam B2.
  • the wavelength of the second light beam B2 preferably falls within the range of the infrared light spectrum, such as 850 nanometers, 940 nanometers, or 1350 nanometers.
  • the second light source 170-2 is electrically connected to the controller 150.
  • the functional sensing pixels include a first distance sensing pixel 112-1' and at least one second distance sensing pixel 112-2'.
  • the first distance sensing pixel 112-1' and the second distance sensing pixel 112-2' are located in the peripheral area of the array in which the sensing pixels 112 are arranged.
  • the second light source 170-2 is arranged on the side of the array of the sensing pixels 112 adjacent to the second distance sensing pixel 112-2'.
  • the first light source 170-1 and the second light source 170-2 are respectively disposed on different sides of the array in which the sensing pixels 112 are arranged.
  • the controller 150 controls the second light source 170-2 to emit the second light beam B2, so that the second light beam B2 irradiates the object O to generate the second reflected light beam RB2.
  • the controller 150 calculates the distance between the object O and the display 200 according to the light intensity of the second reflected light beam RB2 obtained by the second distance sensing pixel 112-2'.
  • the first distance sensing pixel 112-1' and the second distance sensing pixel 112-2' may be configured to sense different distance ranges, respectively.
  • the first distance sensing pixel 112-1' is configured to sense a longer distance range
  • the second distance sensing pixel 112-2' is configured to sense a closer distance range.
  • the controller 150 controls the first light source 170-1 and the second light source 170-2 to emit the first light beam B1 and the second light beam B2 at different timings, so that the first distance sensing pixel 112-1 'Affected by the first reflected light beam RB1 and the second distance sensing pixel 112-2' is less affected by the second reflected light beam RB2.
  • the controller 150 may calculate the relative angle between the object O and the display 200 according to the light intensity of the first reflected light beam RB1 and the second reflected light beam RB2. For example, the controller 150 may calculate the first distance between the object O and the display 200 according to the light intensity of the first reflected light beam RB1, and calculate the first distance between the object O and the display 200 according to the light intensity of the second reflected light beam RB2. Two distance. Therefore, the controller 150 calculates the relative angle between the object O and the display 200 according to the relationship between the first distance and the second distance.
  • the controller can detect the light intensity or optical path difference or light source of the reflected light beam obtained by the distance sensing pixels.
  • the phase difference of the modulated signal calculates the distance between the object and the display. Therefore, the fingerprint sensing system can provide fingerprint and distance sensing at the same time, so that the cost of electronic products using the embodiments of the present invention is lower.
  • the functional sensing pixel is a fingerprint sensing system suitable for sensing both the intensity of ambient light and the distance between the object and the display according to another embodiment of the present invention, the ambient light sensing pixels and distance sensing pixels An illustration of the distribution map.
  • the number of functional sensing pixels may be multiple, and the functional sensing pixels include ambient light sensing pixels 112-1, 112-2, 112-3 , 112-4, 112-5, and the first distance sensing pixel 112-1'.
  • the fingerprint sensing system can provide fingerprint, ambient light, and distance sensing at the same time.
  • the functional sensing pixel further includes a second distance sensing pixel, as shown in FIG. 13.
  • the components in the fingerprint sensing system and the relationship between the components are similar to those in FIG. 1 to FIG. 13, and will not be repeated here.
  • the controller calculates environmental parameters according to the signals obtained by the functional sensing pixels. Therefore, the fingerprint sensing The system can provide fingerprint and environmental parameter sensing at the same time, so that the cost of electronic products using the embodiments of the present invention is lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供一种设置于显示器下的指纹感测系统。指纹感测系统包括传感器以及控制器。传感器具有多个排成阵列的感测像素,其中这些感测像素包括至少一功能感测像素。控制器与传感器电性连接。控制器根据至少一功能感测像素所取得的信号计算出环境参数。指纹感测系统可用于感测外界环境,且成本较低。

Description

指纹感测系统 技术领域
本发明涉及一种感测系统,尤其涉及一种指纹感测系统。
背景技术
智能手机、移动装置等电子产品为目前人们生活上必备的工具之一。一般来说,这类的电子产品都设有外界环境的感测装置。例如感测环境光的光强度或是感测外界物体与电子产品的显示器之间的距离。感测环境光的光强度有助于电子产品调整显示器的显示亮度,使得用户的体验较佳。另外,感测外界物体与电子产品的显示器之间的距离也有助电子产品判断是否需关闭显示器的显示画面。例如,用户通话时,或电子产品放置于包包或口袋中的情况。
然而,上述外界环境的感测需在电子产品内额外加装对应的感测装置,不但使生产成本提高,也占用了电子产品正面的位置,进而影响了显示画面的大小。
发明内容
本发明是针对一种指纹感测系统,其可用于感测外界环境光场变化,光场变化包含光强,色彩与光强度变化的频率等特性。
本发明的一实施例的指纹感测系统设置于显示器下。指纹感测系统包括传感器以及控制器。传感器具有多个排成阵列的感测像素,其中这些感测像素包括至少一功能感测像素。控制器与传感器电性连接。控制器根据至少一功能感测像素所取得的信号计算出环境光场参数。
基于上述,在本发明的一实施例的指纹感测系统中,由于控制器根据功能感测像素所取得的环境光的信号计算出环境参数,因此,指纹感测系统可用于感测外界环境,使得使用本发明的实施例的电子产品的成本较低。
附图说明
图1是根据本发明一实施例的一种适于感测环境光强度的指纹感测系统示意图;
图2是根据本发明一实施例的指纹感测系统示意图;
图3是根据本发明一实施例的指纹感测系统示意图;
图4是根据本发明一实施例的指纹感测系统示意图;
图5是根据本发明一实施例的指纹感测系统示意图;
图6是根据本发明一实施例的指纹感测系统中,多个感测像素形成一个环境光感测像素示意图;
图7是根据本发明一实施例的指纹感测系统中,环境光感测像素的分布图的一种示意;
图8A至图8D分别示意了根据本发明一实施例的指纹感测系统中,环境光感测像素的分布示意图;
图9是根据本发明另一实施例的一种适于感测物体与显示器之间距离的指纹感测系统示意图;
图10是根据本发明另一实施例的指纹感测系统示意图;
图11是根据本发明另一实施例的指纹感测系统示意图;
图12是根据本发明另一实施例的指纹感测系统示意图;
图13是根据本发明另一实施例的指纹感测系统示意图;
图14是根据本发明另一实施例的一种同时适于感测环境光强度以及适于感测物体与显示器之间距离的指纹感测系统中,环境光感测像素以及距离感测像素的分布图的一种示意。
附图标记说明
100、100A、100B、100C、100D、100’、100A’、100B’、100C’、100D’:指纹感测系统
110:传感器
112:感测像素
112-1、112-1A、112-2、112-3、112-4、112-5:环境光感测像素
112-1’:第一距离感测像素
112-2’:第二距离感测像素
120、120B、120’:滤光像素图案层
122-1、122-1B、122-2、122-2R、122-3G、122-4R、122-5B:滤光像素
130、130A:光学层
140:基板
150:控制器
160:透光层
170-1:第一光源
170-2:第二光源
180:滤光层
200:显示器
300:环境光
B1:第一光束
B2:第二光束
C1、C2:曲线
O:物体
P:中心位置
RB1:第一反射光束
RB2:第二反射光束
θ:张角
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。
图1是根据本发明一实施例的一种适于感测环境光强度的指纹感测系统示意图。请参考图1,指纹感测系统100设置于显示器200下。指纹感测系统100包括传感器110以及控制器150。
在本实施例中,显示器200例如是显示面板(例如为透明显示面板)、触控显示面板(例如为透明触控显示面板)或上述与指压板的组合。举例而言,显示器200例如为有机发光二极管显示面板(Organic Light-Emitting Diode display panel,OLED display panel),但本发明并不限于此。替代地,显示器200可以是触控显示面板,如具有多个触控电极的有机发光二极管显示面板。 所述多个触控电极可以形成在有机发光二极管显示面板的外表面上或是内嵌于有机发光二极管显示面板中,且多个触控电极可以通过自容或互容的方式进行触控检测。或者,显示器200可以是指压板与显示面板的组合或指压板与触控显示面板的组合。
在本实施例中,传感器110可设置在基板140上。基板140可为印刷电路板(Printed Circuit Board,PCB)或软性印刷电路板(Flexible Printed Circuit,FPC)。传感器110可为薄膜晶体管(thin film transistor,TFT)、互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)、电荷耦合器件(charge coupled device,CCD)的光传感器。此外,传感器110具有多个排成阵列的感测像素112,且每个感测像素112可以包含至少一个光电二极管(photodiode),但本发明并不限于此。在进行指纹感测时,使用者将手指靠近或放置于显示器200上,而显示器200会发出照射光束照射至手指,并经手指反射后产生反射光束。反射光束会依序传递通过显示器200以及光学层130,并且传递至传感器110以进行指纹感测。除此之外,感测像素112包括至少一功能感测像素。在图1中,感测像素112中的功能感测像素为环境光感测像素112-1、112-2。
在本实施例中,指纹感测系统100置于环境光300下。本发明并不限制环境光300的来源或形式。环境光300通过显示器200与光学层130后被环境光感测像素112-1、112-2接收。控制器150与传感器110电性连接。控制器150根据感测像素所取得的信号计算出环境参数。在图1中,环境参数为环境光300的光强度。
在本实施例中,指纹感测系统100还包括光学层130。光学层130设置在显示器200与传感器110之间。光学层130可为透镜层,例如是透镜组或是微透镜(micro-lens)层,但本发明并不以此为限。在本发明的一实施例的指纹感测系统100中,由于光学层130可为透镜层,光学层130有利于光的聚焦,因此,指纹感测系统100所感测到的环境光300的光强度的信噪比以及取得的指纹影像的信噪比较高。
在本实施例中,指纹感测系统100还包括滤光像素图案层120。滤光像素图案层120设置在部分的环境光感测像素112-1、112-2上,且设置在光学层130与传感器110之间。详细来说,滤光像素图案层120包括至少一滤光 像素122-1、122-2。每一滤光像素122-1、122-2例如是多层干涉膜、使用表面等离激元共振(Surface Plasmon Resonance)原理的薄膜或衍射光栅(Diffraction Grating)膜,但本发明不以此为限。在本实施例中,滤光像素122-1、122-2的透射光谱(transmittance spectrum)可彼此相同或不同。
以图1为例,滤光像素图案层120直接设置在环境光感测像素112-1、112-2上,且设置在全部的环境光感测像素112-1、112-2上。滤光像素图案层120的滤光像素122-1、122-2的透射光谱彼此不同,例如可见光波段400纳米至700纳米的透射光谱或近红外光波段700纳米至1000纳米的透射光谱。在图1中,环境光300分别穿透滤光像素122-1、122-2后被环境光感测像素112-1、112-2所接收,使环境光感测像素112-1、112-2分别取得了信号E1、E2。控制器150根据信号E1及E2之间的比例E1/E2计算出环境光300的光强度,也可参考没有滤光像素层的强度与E1和E2之间的比例关系来得到环境光300的强度。在本发明的一实施例的指纹感测系统100中,由于滤光像素图案层120直接设置在环境光感测像素112-1、112-2上,因此,指纹感测系统100的成本较低且整体厚度较小。再者,由于指纹感测系统100的控制器150是根据环境光感测像素112-1、112-2所取得的信号之间的比例E1/E2计算出环境光300的光强度,因此,计算出的环境光300的光强度的可靠性较高。此外,从E1或E2的强度随时间的变化可得到环境光强度变化的频率的特性。
图2是根据本发明一实施例的指纹感测系统示意图。请参考图2,图2的指纹感测系统100A与图1的指纹感测系统100相似,且其主要差异在于:光学层130A不设置在环境光感测像素112-1、112-2与显示器200之间,且光学层130A不设置在滤光像素图案层120与显示器200之间。在本实施例中,光学层130A可为具有准直器效果的限光接收角度的结构层,例如是具有光纤元件的光导板,或是具有透光区域与遮光区域交错排列的准直元件。在本发明的一实施例的指纹感测系统100A中,由于指纹感测系统100A的光学层130A不设置在环境光感测像素112-1、112-2与显示器200之间,且光学层130A可为限光接收角度的结构层,因此,除了光学层130A遮蔽了大角度的杂散光,使得指纹感测的信噪比提高之外,环境光感测像素112-1、112-2仍可接收到大角度入射的环境光300,使得指纹感测系统100A仍可有良好的 环境光300的光强度感测效果。
图3是根据本发明一实施例的指纹感测系统示意图。请参考图3,图3的指纹感测系统100B与图1的指纹感测系统100相似,且其主要差异在于:至少其中的一个环境光感测像素112-1、112-2上不设置滤光像素图案层120B。图3示意了在对应环境光感测像素112-2的位置上不设置滤光像素图案层120B。在本发明的一实施例的指纹感测系统100B中,由于指纹感测系统100B不需在每个环境光感测像素112-1、112-2所对应的位置上都设置滤光像素图案层120B,因此,指纹感测系统100B的制造成本较低。
图4是根据本发明一实施例的指纹感测系统示意图。请参考图4,图4的指纹感测系统100C与图2的指纹感测系统100A相似,且其主要差异在于:至少一个环境光感测像素112-1、112-2上不设置滤光像素图案层120B。在本发明的一实施例的指纹感测系统100C中,由于指纹感测系统100C不需在每个环境光感测像素112-1、112-2所对应的位置上都设置滤光像素图案层120B,因此,指纹感测系统100C的制造成本较低。
图5是根据本发明一实施例的指纹感测系统示意图。请参考图5,图5的指纹感测系统100D与图1的指纹感测系统100相似,且其主要差异在于:图5的指纹感测系统100D还包括透光层160。在本实施例中,透光层160的材质例如是玻璃等透明材质。滤光像素图案层120直接设置在透光层160对应环境光感测像素112-1、112-2的位置上。再者,图5示意了滤光像素图案层120较佳是设置在透光层160朝向传感器110的表面上,但本发明不以此为限。在一实施例中,滤光像素图案层120也可设置在透光层160远离传感器110的表面上。当滤光像素图案层120在制程上不适合直接设置在感测像素112上时,由于滤光像素图案层120可直接设置在透光层160上,因此本发明的实施例的指纹感测系统100D的滤光像素图案层120可采用的型态或材质的类型较多,使得指纹感测系统100D在制造过程上较为灵活。
在另一实施例中,透光层160也可以红外截止滤光器(IR cut-off filter)取代。也就是说,滤光像素图案层120可直接设置在红外截止滤光器上。此时,指纹感测装置100D接收的反射光束可为可见光,滤光像素图案层120的透射光谱的设计方向也只需针对可见光的波段。
图6是根据本发明一实施例的指纹感测系统中,多个感测像素形成一个 环境光感测像素示意图。在图1至图5所示的指纹感测系统中,每一环境光感测像素112-1、112-2为传感器110的多个感测像素112的其中之一。在另一实施例中,每一环境光感测像素112-1A可由多个感测像素112组成。请参考图6,图6示意了由四个感测像素112组成的环境光感测像素112-1A。在本发明一实施例的指纹感测系统中,由于环境光感测像素112-1A由多个感测像素112组成,因此,控制器150可利用例如像素合并(binning)等方式提高所取得的环境光300信号的信噪比,使得计算出来的环境光300的光强度的信噪比也提高。
图7是根据本发明一实施例的指纹感测系统中,环境光感测像素的分布图的一种示意。图7示意了环境光感测像素112-1、112-2、112-3、112-4、112-5以及滤光像素图案层120的较佳设置方式。在图7中,环境光感测像素112-1、112-2、112-3、112-4、112-5以传感器110的中心位置P对称地分布。在一实施例中,滤光像素图案层120包括了三种不同的透射光谱,其中滤光像素122-2R与122-4R为同一种透射光谱(例如红色像素)、滤光像素122-2G另一种透射光谱(例如绿色像素)且滤光像素122-1B与122-5B为另一种透射光谱(例如蓝色像素)。在本实施例中,具有相同透射光谱的滤光像素以感测像素112所排成的阵列的中心位置P对称地分布。在一实施例中,由于环境光感测像素112-1、112-2、112-3、112-4、112-5以及滤光像素图案层120中具有相同透射光谱的滤光像素,都以传感器110的中心位置P对称地分布,因此,指纹感测系统在不同角度的感测能力大致相同,使得取得的环境光300的光强度的可靠度提高。
图8A至图8D分别示意了根据本发明一实施例的指纹感测系统中,环境光感测像素的分布示意图。请参考图8A至图8D,图8A至图8D示意了滤光像素图案层120的设置方式可有多种选择。相似于图7,图8A至图8D中的环境光感测像素以及滤光像素图案层120中具有相同透射光谱的滤光像素,都以传感器110的中心位置P对称或均匀地分布,且滤光像素图案层120包括至少二个滤光像素。
在另一实施例中,滤光像素图案层120包括至少三种不同的透射光谱,如图8A与图8B所示。控制器150根据环境光感测像素112-1、112-2、112-3、112-4所取得的信号之间的比例计算出环境光300的色温。
此外,在一实施例中,指纹感测系统的环境光感测像素可仅被配置为感测像素112中的其中之一。此时,环境光感测像素所对应的滤光像素的透射光谱较佳是与人眼的视觉光谱的曲线相似。也就是说,滤光像素图案层120仅包括一种透射光谱。
基于上述,在本发明一实施例的指纹感测系统中,由于功能感测像素为环境光感测像素,控制器根据环境光感测像素所取得的信号计算出环境光的光强度,因此,指纹感测系统可同时提供指纹以及环境光强度的感测,使得使用本发明实施例的电子产品的成本较低。
图9是根据本发明另一实施例的一种适于感测物体与显示器之间距离的指纹感测系统示意图。请参考图9,图9指纹感测系统100’与图1的指纹感测系统100相似,且两者之间的主要差异在于:指纹感测系统100’的功能感测像素包括至少一第一距离感测像素112-1’,其中环境参数为物体O与显示器200之间的距离。
在本实施例中,指纹感测系统100’还包括第一光源170-1。第一光源170-1可为发光二极管或激光二极管,发出第一光束B1。第一光束B1的波长较佳是落在红外光的频谱的范围内,例如850纳米、940纳米或1350纳米。当第一光束B1的波长选择为940纳米或1350纳米时,第一距离感测像素112-1’受太阳光的影响较小。当第一光束B1的波长选择为850纳米时,第一距离感测像素112-1’的制造过程较为简单。在一实施例中,第一光束B1的张角θ落在±30度的范围内。在一较佳的实施例中,第一光束B1的张角θ落在±10度的范围内。
在本实施例中,第一光源170-1设置于传感器110邻近第一距离感测像素112-1’的一侧,其中第一距离感测像素112-1’位于传感器110的外围区域。
在本实施例中,控制器150与传感器110以及第一光源170-1电性连接。控制器150控制第一光源170-1发出第一光束B1,使第一光束B1照射至物体O而产生第一反射光束RB1。物体O例如是用户的脸部、使用者的包包或口袋等。再者,控制器150根据第一距离感测像素112-1’所取得的第一反射光束RB1的光强度或光程差(Time of Flight)或光源调变信号的相位差计算出物体O与显示器200之间的距离。例如,第一反射光束RB1的光强度越大代表物体O逐渐接近,或第一反射光束RB1的光强度越小代表物体O逐渐远 离。如感测其光程差的参数,感测元件需检测光由物体O反射回来的时间,即可计算其物体O与显示器200之间的距离。如感测其光源调变的信号相位差时,光源需随时间调变其强度,感测元件检测物体O反射相对光源调变的相位差以得到物体O与显示器200之间的距离。
图10是根据本发明另一实施例的指纹感测系统示意图。请参考图10,图10的指纹感测系统100A’与图9的指纹感测系统100’相似,且其主要差异在于:光学层130A不设置在第一距离感测像素112-1’与显示器200之间。在本实施例中,指纹感测系统100A’的光学层130A不设置在第一距离感测像素112-1’与显示器200之间且光学层130A可为限光结构层的优点与图2的指纹感测系统100A的光学层130A的优点相似,在此不再赘述。
图11是根据本发明另一实施例的指纹感测系统示意图。请参考图11,在本实施例中,指纹感测系统100B’还包括滤光像素图案层120’。滤光像素图案层120’包括至少一滤光像素,且包括至少一种透射光谱。滤光像素的透射光谱的范围较佳是使第一反射光束RB1可穿透。滤光像素图案层120’例如是红外光带通滤光器(IR bandpass filter)。在本实施例中,滤光像素图案层120’设置在第一距离感测像素112-1’上,且设置在光学层130与传感器110之间。在图11中,滤光像素图案层120’直接设置在第一距离感测像素112-1’上。
在一实施例中,指纹感测系统100B’还包括滤光层180,设置在光学层130与传感器110之间。滤光层180的光谱型态应配合用于指纹感测的照射光束的波段。例如,滤光层180可为红外截止滤光层。在此实施例中,滤光层180设置在除第一距离感测像素112-1’之外的多个感测像素上。在一实施例中,滤光层180可直接设置在感测像素112上。将滤光像素图案层120’直接设置在第一距离感测像素112-1’上或将滤光层180直接设置在感测像素112上的优点,与图1的指纹感测系统100相似,在此不再赘述。
图12是根据本发明另一实施例的指纹感测系统的示意图。图12的指纹感测系统100C’与图12的指纹感测系统100B’相似,且其主要差异在于:指纹感测系统100C’还包括透光层160。透光层160设置在光学层130与传感器110之间,其中滤光像素图案层120’直接设置在透光层160对应第一距离感测像素112-1’的位置上,且滤光层180直接设置在透光层160对应除第一距离感测像素112-1’之外的感测像素112的区域上。将滤光像素图案层120’以 及滤光层180直接设置在透光层160上的优点与图5相似,在此不再赘述。
图13是根据本发明另一实施例的指纹感测系统示意图。图13的指纹感测系统100D’与图9的指纹感测系统100’相似,且其主要差异在于:指纹感测系统100D’还包括第二光源170-2。在本实施例中,第二光源170-2可为发光二极管或激光二极管,用以发出第二光束B2。第二光束B2的波长较佳是落在红外光的频谱的范围内,例如850纳米、940纳米或1350纳米。第二光源170-2与控制器150电性连接。再者,功能感测像素为多个,功能感测像素包括第一距离感测像素112-1’以及至少一第二距离感测像素112-2’。
在本实施例中,第一距离感测像素112-1’以及第二距离感测像素112-2’位于感测像素112所排成的阵列的外围区域。第二光源170-2设置在感测像素112所排成的阵列于邻近于第二距离感测像素112-2’的一侧。而且,第一光源170-1与第二光源170-2分别设置在感测像素112所排成的阵列的不同的两侧。
在本实施例中,控制器150控制第二光源170-2发出第二光束B2,使第二光束B2照射至物体O而产生第二反射光束RB2。控制器150根据第二距离感测像素112-2’所取得的第二反射光束RB2的光强度计算出物体O与显示器200之间的距离。在一实施例中,第一距离感测像素112-1’与第二距离感测像素112-2’可被配置为分别感测不同的距离范围。例如,第一距离感测像素112-1’被配置为感测较远的距离范围,且第二距离感测像素112-2’被配置为感测较近的距离范围。此时,第一光束B1的光强度大于第二光束B2的光强度。在另一实施例中,控制器150控制第一光源170-1与第二光源170-2分别在不同的时序发出第一光束B1与第二光束B2,使第一距离感测像素112-1’受第一反射光束RB1的影响以及第二距离感测像素112-2’受第二反射光束RB2的影响较低。
在一实施例中,控制器150可根据第一反射光束RB1与第二反射光束RB2的光强度计算出物体O与显示器200之间相对角度。例如,控制器150可根据第一反射光束RB1的光强度计算出物体O与显示器200之间的第一距离,并根据第二反射光束RB2的光强度计算出物体O与显示器200之间的第二距离。因此,控制器150再根据第一距离与第二距离之间的关系计算出物体O与显示器200之间相对角度。
基于上述,在本发明的一实施例的指纹感测系统中,由于功能感测像素包括距离感测像素,控制器可根据距离感测像素所取得的反射光束的光强度或光程差或光源调变信号的相位差计算出物体与显示器之间的距离,因此,指纹感测系统可同时提供指纹以及距离的感测,使得使用本发明实施例的电子产品的成本较低。
图14是根据本发明另一实施例的一种同时适于感测环境光强度以及适于感测物体与显示器之间距离的指纹感测系统中,环境光感测像素以及距离感测像素的分布图的一种示意。请参考图14,在本发明一实施例的指纹感测系统中,功能感测像素的数量可为多个,功能感测像素包括环境光感测像素112-1、112-2、112-3、112-4、112-5以及第一距离感测像素112-1’。也就是说,指纹感测系统可同时提供指纹、环境光以及距离感测。在另一实施例中,功能感测像素还包括第二距离感测像素,如图13所示。指纹感测系统中的各元件以及各元件之间的关系皆与图1至图13相似,在此不再赘述。
综上所述,在本发明的一实施例的指纹感测系统中,由于感测像素包括功能感测像素,控制器根据功能感测像素所取得的信号计算出环境参数,因此,指纹感测系统可同时提供指纹以及环境参数的感测,使得使用本发明实施例的电子产品的成本较低。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (51)

  1. 一种指纹感测系统,其特征在于,设置于显示器下,且包括:
    传感器,具有多个排成阵列的感测像素,其中所述多个感测像素包括至少一功能感测像素;以及
    控制器,与所述传感器电性连接;
    其中所述控制器根据所述至少一功能感测像素所取得的信号计算出环境参数。
  2. 根据权利要求1所述的指纹感测系统,其特征在于,还包括:
    光学层,设置在所述显示器与所述传感器之间。
  3. 根据权利要求2所述的指纹感测系统,其特征在于,所述光学层为透镜层。
  4. 根据权利要求2所述的指纹感测系统,其特征在于,所述光学层为限光结构层。
  5. 根据权利要求4所述的指纹感测系统,其特征在于,所述光学层不设置在所述至少一功能感测像素与所述显示器之间。
  6. 根据权利要求2所述的指纹感测系统,其特征在于,所述至少一功能感测像素包括至少一环境光感测像素,所述环境参数为环境光的光强度。
  7. 根据权利要求6所述的指纹感测系统,其特征在于,还包括:
    滤光像素图案层,设置在全部的所述至少一环境光感测像素上。
  8. 根据权利要求6所述的指纹感测系统,其特征在于,还包括:
    滤光像素图案层,设置在部分的所述至少一环境光感测像素上。
  9. 根据权利要求8所述的指纹感测系统,其特征在于,所述滤光像素图案层设置在所述光学层与所述传感器之间。
  10. 根据权利要求8所述的指纹感测系统,其特征在于,所述滤光像素图案层直接设置在所述至少一环境光感测像素上。
  11. 根据权利要求8所述的指纹感测系统,其特征在于,还包括:
    透光层,设置在所述光学层与所述传感器之间,其中所述滤光像素图案层直接设置在所述透光层对应所述至少一环境光感测像素的位置上。
  12. 根据权利要求11所述的指纹感测系统,其特征在于,所述至少一环境光感测像素为多个环境光感测像素,所述多个环境光感测像素以所述传感 器中心位置对称或均匀地分布。
  13. 根据权利要求12所述的指纹感测系统,其特征在于,所述滤光像素图案层包括至少二滤光像素,所述至少二滤光像素以所述传感器的中心位置对称或均匀地分布。
  14. 根据权利要求12所述的指纹感测系统,其特征在于,所述滤光像素图案层包括至少二滤光像素,且包括至少两种不同的透射光谱,其中具有相同透射光谱的滤光像素以所述传感器的中心位置对称或均匀地分布。
  15. 根据权利要求12所述的指纹感测系统,其特征在于,所述控制器根据所述多个环境光感测像素所取得的信号之间的比例计算出所述环境光的所述光强度,或从所述信号随时间的变化取得所述环境光强度变化的频率。
  16. 根据权利要求12所述的指纹感测系统,其特征在于,所述滤光像素图案层包括至少三种不同的透射光谱,所述控制器根据所述多个环境光感测像素所取得的信号之间的比例计算出所述环境光的色温。
  17. 根据权利要求2所述的指纹感测系统,其特征在于,所述至少一功能感测像素包括至少一第一距离感测像素,所述环境参数为物体与所述显示器之间的距离,所述指纹感测系统还包括:
    第一光源,用以发出第一光束;
    其中所述控制器控制所述第一光源发出所述第一光束,使所述第一光束照射至所述物体而产生第一反射光束,所述控制器根据所述至少一第一距离感测像素所取得的所述第一反射光束的光强度、光程差或光源调变信号的相位差计算出所述物体与所述显示器之间的距离。
  18. 根据权利要求17所述的指纹感测系统,其特征在于,所述第一光源设置于所述传感器邻近所述至少一第一距离感测像素的一侧。
  19. 根据权利要求17所述的指纹感测系统,其特征在于,所述至少一第一距离感测像素位于所述传感器的外围区域。
  20. 根据权利要求17所述的指纹感测系统,其特征在于,还包括:
    滤光像素图案层,设置在所述至少一第一距离感测像素上。
  21. 根据权利要求20所述的指纹感测系统,其特征在于,所述滤光像素图案层设置在所述光学层与所述传感器之间。
  22. 根据权利要求20所述的指纹感测系统,其特征在于,所述滤光像素 图案层直接设置在所述至少一第一距离感测像素上。
  23. 根据权利要求20所述的指纹感测系统,其特征在于,还包括:
    滤光层,设置在除所述至少一第一距离感测像素之外的多个感测像素上,且设置在所述光学层与所述传感器之间。
  24. 根据权利要求23所述的指纹感测系统,其特征在于,还包括:
    透光层,设置在所述光学层与所述传感器之间,其中所述滤光像素图案层直接设置在所述透光层对应所述至少一第一距离感测像素的位置上。
  25. 根据权利要求24所述的指纹感测系统,其特征在于,所述滤光层直接设置在所述透光层对应除所述至少一第一距离感测像素之外的所述多个感测像素的区域上。
  26. 根据权利要求24所述的指纹感测系统,其特征在于,还包括:
    第二光源,用以发出第二光束,且与所述控制器电性连接;
    其中所述至少一功能感测像素为多个功能感测像素,所述多个功能感测像素包括所述至少一第一距离感测像素以及至少一第二距离感测像素;
    所述控制器控制所述第二光源发出所述第二光束,使所述第二光束照射至所述物体而产生第二反射光束,所述控制器根据所述至少一第二距离感测像素所取得的所述第二反射光束的光强度、光程差或光源调变信号的相位差计算出所述物体与所述显示器之间的距离。
  27. 根据权利要求26所述的指纹感测系统,其特征在于,所述第二光源设置于所述传感器邻近所述至少一第二距离感测像素的一侧。
  28. 根据权利要求26所述的指纹感测系统,其特征在于,所述第一光源与所述第二光源分别设置在所述传感器不同的两侧。
  29. 根据权利要求26所述的指纹感测系统,其特征在于,所述控制器根据所述第一反射光束与所述第二反射光束的光强度计算出所述物体与所述显示器之间的相对角度。
  30. 根据权利要求2所述的指纹感测系统,其特征在于,所述至少一功能感测像素为多个功能感测像素,所述多个功能感测像素包括至少一环境光感测像素以及至少一第一距离感测像素,所述环境参数包括环境光的光强度以及物体与所述显示器之间的距离,所述指纹感测系统还包括:
    第一光源,用以发出第一光束;以及
    控制器,与所述传感器以及所述第一光源电性连接;
    其中
    所述控制器控制所述第一光源发出所述第一光束,使所述第一光束照射至所述物体而产生第一反射光束,所述控制器根据所述至少一第一距离感测像素所取得的所述第一反射光束的光强度、光程差或光源调变信号的相位差计算出所述物体与所述显示器之间的距离。
  31. 根据权利要求30所述的指纹感测系统,其特征在于,还包括:
    滤光像素图案层,设置在全部的所述至少一环境光感测像素上。
  32. 根据权利要求30所述的指纹感测系统,其特征在于,还包括:
    滤光像素图案层,设置在部分的所述至少一环境光感测像素上。
  33. 根据权利要求32所述的指纹感测系统,其特征在于,所述滤光像素图案层设置在所述光学层与所述传感器之间。
  34. 根据权利要求32所述的指纹感测系统,其特征在于,所述滤光像素图案层直接设置在所述至少一环境光感测像素上。
  35. 根据权利要求32所述的指纹感测系统,其特征在于,所述滤光像素图案层的一部分设置在所述至少一第一距离感测像素上。
  36. 根据权利要求35所述的指纹感测系统,其特征在于,所述滤光像素图案层直接设置在所述至少一第一距离感测像素上。
  37. 根据权利要求32所述的指纹感测系统,其特征在于,还包括:
    滤光层,设置在除所述至少一环境光感测像素以及除所述至少一第一距离感测像素之外的多个感测像素上,且设置在所述光学层与所述传感器之间。
  38. 根据权利要求37所述的指纹感测系统,其特征在于,还包括:
    透光层,设置在所述光学层与所述传感器之间,其中所述滤光像素图案层直接设置在所述透光层对应所述至少一环境光感测像素的位置上。
  39. 根据权利要求38所述的指纹感测系统,其特征在于,所述滤光像素图案层直接设置在所述透光层对应所述至少一第一距离感测像素的位置上。
  40. 根据权利要求38所述的指纹感测系统,其特征在于,所述滤光层直接设置在所述透光层对应除所述至少一环境光感测像素以及除所述至少一第一距离感测像素之外的所述多个感测像素的区域上。
  41. 根据权利要求32所述的指纹感测系统,其特征在于,所述至少一环 境光感测像素为多个环境光感测像素,所述多个环境光感测像素以所述传感器中心位置对称或均匀地分布。
  42. 根据权利要求41所述的指纹感测系统,其特征在于,所述滤光像素图案层包括至少二个滤光像素,所述至少二个滤光像素中对应所述至少一环境光感测像素的滤光像素以所述传感器中心位置对称或均匀地分布。
  43. 根据权利要求41所述的指纹感测系统,其特征在于,所述滤光像素图案层包括至少二个滤光像素,且包括至少两种不同的透射光谱,其中所述滤光像素图案层对应所述至少一环境光感测像素的滤光像素中具有相同透射光谱的滤光像素以所述传感器中心位置对称或均匀地分布。
  44. 根据权利要求41所述的指纹感测系统,其特征在于,所述控制器根据所述多个环境光感测像素所取得的信号之间的比例计算出所述环境光的所述光强度,或从所述信号随时间的变化取得到所述环境光强度变化的频率。
  45. 根据权利要求41所述的指纹感测系统,其特征在于,所述滤光像素图案层中对应所述至少一环境光感测像素的部分包括至少三种不同的透射光谱,所述控制器根据所述多个环境光感测像素所取得的信号之间的比例计算出所述环境光的色温。
  46. 根据权利要求30所述的指纹感测系统,其特征在于,所述第一光源设置于所述传感器邻近所述至少一第一距离感测像素的一侧。
  47. 根据权利要求30所述的指纹感测系统,其特征在于,所述至少一第一距离感测像素位于所述传感器的外围区域。
  48. 根据权利要求38所述的指纹感测系统,其特征在于,还包括:
    第二光源,用以发出第二光束,且与所述控制器电性连接;
    其中所述多个功能感测像素还包括至少一第二距离感测像素;
    所述控制器控制所述第二光源发出所述第二光束,使所述第二光束照射至所述物体而产生第二反射光束,所述控制器根据所述至少一第二距离感测像素所取得的所述第二反射光束的光强度、光程差或光源调变信号的相位差计算出所述物体与所述显示器之间的距离。
  49. 根据权利要求48所述的指纹感测系统,其特征在于,所述第二光源设置于所述传感器邻近所述至少一第二距离感测像素的一侧。
  50. 根据权利要求48所述的指纹感测系统,其特征在于,所述第一光源 与所述第二光源分别设置在所述传感器不同的两侧。
  51. 根据权利要求48所述的指纹感测系统,其特征在于,所述控制器根据所述第一反射光束与所述第二反射光束的光强度计算出所述物体与所述显示器之间的相对角度。
PCT/CN2020/121897 2020-03-02 2020-10-19 指纹感测系统 WO2021174865A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/768,856 US20230260315A1 (en) 2020-03-02 2020-10-19 Fingerprint sensing system
KR1020227017017A KR20220082075A (ko) 2020-03-02 2020-10-19 지문 감지 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202062984272P 2020-03-02 2020-03-02
US62/984,272 2020-03-02
US202062986796P 2020-03-09 2020-03-09
US62/986,796 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021174865A1 true WO2021174865A1 (zh) 2021-09-10

Family

ID=73953965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121897 WO2021174865A1 (zh) 2020-03-02 2020-10-19 指纹感测系统

Country Status (5)

Country Link
US (1) US20230260315A1 (zh)
KR (1) KR20220082075A (zh)
CN (2) CN212624089U (zh)
TW (2) TWI751745B (zh)
WO (1) WO2021174865A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212624089U (zh) * 2020-03-02 2021-02-26 神盾股份有限公司 指纹感测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235871A1 (en) * 2010-03-29 2011-09-29 Raytheon Company Textured pattern sensing using partial-coherence speckle interferometry
CN103220534A (zh) * 2012-01-20 2013-07-24 宏达国际电子股份有限公司 图像撷取装置与方法
CN105303154A (zh) * 2014-07-31 2016-02-03 义隆电子股份有限公司 主动式像素感测装置及其操作方法
CN105987712A (zh) * 2014-09-24 2016-10-05 原相科技股份有限公司 光学传感器及光学感测系统
US20170336894A1 (en) * 2013-05-07 2017-11-23 Egis Technology Inc. Apparatus and Method for TFT Fingerprint Sensor
CN109313706A (zh) * 2018-09-25 2019-02-05 深圳市汇顶科技股份有限公司 指纹识别装置、方法和终端设备
CN110381181A (zh) * 2019-06-28 2019-10-25 信利光电股份有限公司 前置距离感应方法、电子装置、存储介质和移动终端
CN112149628A (zh) * 2020-03-02 2020-12-29 神盾股份有限公司 指纹感测系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318199B (zh) * 2014-06-23 2020-03-24 上海箩箕技术有限公司 复合式光学传感器及其制作方法和使用方法
US10410037B2 (en) * 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical sensor module for on-screen fingerprint sensing implementing imaging lens, extra illumination or optical collimator array
WO2016205832A1 (en) * 2015-06-18 2016-12-22 Shenzhen Huiding Technology Co., Ltd. Multifunction fingerprint sensor having optical sensing capability
US10229316B2 (en) * 2016-01-29 2019-03-12 Synaptics Incorporated Compound collimating system using apertures and collimators
US10984213B2 (en) * 2018-03-27 2021-04-20 Shenzhen GOODIX Technology Co., Ltd. 3-dimensional optical topographical sensing of fingerprints using under-screen optical sensor module
US11175177B2 (en) * 2018-12-19 2021-11-16 Synaptics Incorporated Systems and methods for detecting ambient light or proximity with an optical sensor
TWM587306U (zh) * 2019-08-01 2019-12-01 陳金明 曲面指紋辨識裝置
CN111325168A (zh) * 2020-02-26 2020-06-23 武汉华星光电技术有限公司 显示面板及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235871A1 (en) * 2010-03-29 2011-09-29 Raytheon Company Textured pattern sensing using partial-coherence speckle interferometry
CN103220534A (zh) * 2012-01-20 2013-07-24 宏达国际电子股份有限公司 图像撷取装置与方法
US20170336894A1 (en) * 2013-05-07 2017-11-23 Egis Technology Inc. Apparatus and Method for TFT Fingerprint Sensor
CN105303154A (zh) * 2014-07-31 2016-02-03 义隆电子股份有限公司 主动式像素感测装置及其操作方法
CN105987712A (zh) * 2014-09-24 2016-10-05 原相科技股份有限公司 光学传感器及光学感测系统
CN109313706A (zh) * 2018-09-25 2019-02-05 深圳市汇顶科技股份有限公司 指纹识别装置、方法和终端设备
CN110381181A (zh) * 2019-06-28 2019-10-25 信利光电股份有限公司 前置距离感应方法、电子装置、存储介质和移动终端
CN112149628A (zh) * 2020-03-02 2020-12-29 神盾股份有限公司 指纹感测系统

Also Published As

Publication number Publication date
US20230260315A1 (en) 2023-08-17
TWM605907U (zh) 2020-12-21
CN112149628A (zh) 2020-12-29
TWI751745B (zh) 2022-01-01
KR20220082075A (ko) 2022-06-16
TW202134942A (zh) 2021-09-16
CN212624089U (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN109416732B (zh) 能够检测指纹的显示器
US10331932B2 (en) Optical sensor device and a fingerprint sensor apparatus
TWI633493B (zh) 取像裝置
CN108153027B (zh) 一种显示装置
WO2021174842A1 (zh) 指纹识别装置、显示面板、设备及指纹识别方法
GB2587269A (en) Electronic device display for through-display imaging
TW202011097A (zh) 顯示面板
TWI680397B (zh) 感測板及具有感測板的顯示器
TWI730519B (zh) 液晶顯示裝置
US20220050990A1 (en) Fingerprint sensing module
US20200410202A1 (en) Optical fingerprint sensors
US20200193120A1 (en) Fingerprint identification apparatus
CN107209588A (zh) 非接触输入装置和方法
CN111837132A (zh) 指纹检测的装置和电子设备
US10734463B2 (en) Color-insensitive window coatings for ambient light sensors
WO2021174865A1 (zh) 指纹感测系统
WO2021213005A1 (zh) 电子装置
US20220004734A1 (en) Fingerprint recognition apparatus
TW202245240A (zh) 光學感測裝置
WO2021217325A1 (zh) 纹路识别装置以及对向基板
CN110232298B (zh) 光学指纹传感器模组
TWI772621B (zh) 屏下式感測控制方法
CN110717437B (zh) 光学准直器、指纹识别装置、显示基板、显示装置
WO2023121541A1 (en) An optical fingerprint sensor and a method for detecting a fingerprint
TW202219825A (zh) 取像裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017017

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923094

Country of ref document: EP

Kind code of ref document: A1