WO2021174522A1 - A method for the alkylation of amines - Google Patents

A method for the alkylation of amines Download PDF

Info

Publication number
WO2021174522A1
WO2021174522A1 PCT/CN2020/078148 CN2020078148W WO2021174522A1 WO 2021174522 A1 WO2021174522 A1 WO 2021174522A1 CN 2020078148 W CN2020078148 W CN 2020078148W WO 2021174522 A1 WO2021174522 A1 WO 2021174522A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
metal
compound
metal element
group
Prior art date
Application number
PCT/CN2020/078148
Other languages
French (fr)
Inventor
Fan Jiang
Stephane Streiff
Julien Rabih RACHET
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to EP20922861.8A priority Critical patent/EP4114820A4/en
Priority to PCT/CN2020/078148 priority patent/WO2021174522A1/en
Priority to CN202080098151.9A priority patent/CN115210214A/en
Publication of WO2021174522A1 publication Critical patent/WO2021174522A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel

Definitions

  • the present invention pertains to a method for the alkylation of amines.
  • N, N, N', N”, N”-pentamethyldiethylenetriamine is used in the formation of rigid foam polyurethane.
  • Current technology for PMDTA production relies on the methylation of diethylenetriamine (DETA) in the presence of hydrogen by using formaldehyde as methyl source. This methodology is selective towards PMDTA.
  • formaldehyde CMR compound raises HSE concerns.
  • US Patent No. 5105013 teaches a process for the preparation of permethylated amines, particularly pentamethyldiethylenetriamine, by the reductive methylation of diethylenetriamine in the presence of hydrogen, formaldehyde aqueous solution, a catalyst, and a solvent. The reaction was carried out in two reaction phases and the flow rate of formaldehyde must be well controlled.
  • the present invention therefore pertains to a method for preparing a compound having general formula (I) by reacting a compound having general formula (II) with an alcohol having general formula (III) in the presence of hydrogen and a metal catalyst:
  • - R is an alkyl, alkenyl or alkynyl
  • - n is an integer between 0 and 20
  • - m is an integer between 1 and 3
  • - p is an integer between 0 and 2
  • the method of the invention enables to alkylate amines by using an environmentally friendly alkylation agent.
  • the invention also concerns a mixture comprising:
  • Fig. 1 is an image of temperature-yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 3;
  • Fig. 2 is an image of H 2 pressure-yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 4;
  • Fig. 3 is an image of time-yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 5;
  • Fig. 4 is an image of mass ratio (Cat/DETA) -yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 6;
  • Fig. 5 is an image of concentration (DETA in methanol) -yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 7.
  • Ratios, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also all the individual numerical values or sub-ranges encompassed within that range as if each numerical value or sub-range is explicitly recited.
  • the compound having general formula (II) is a compound having general formula (IV) :
  • n is an integer between 0 and 20, preferably between 0 and 9, and more preferably between 0 and 4.
  • the compound having general formula (II) is a compound having general formula (V) :
  • n is an integer between 0 and 20, preferably between 0 and 9, and more preferably between 0 and 4.
  • the compound having general formula (II) is a compound having general formula (VI) :
  • n is an integer between 0 and 20, preferably between 0 and 9, and more preferably between 0 and 4.
  • the compound having general formula (II) can be selected from the group consisting of dimethylenetriamine, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, dipentylenetriamine, dihexylenetriamine, diheptylenetriamine, dioctylenetriamine, dinonylenetriamine, didecylenetriamine, methylenediamine, ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, hexylenediamine, heptylenediamine, octylenediamine, nonylenediamine, and decylenediamine, triaminomethylamine, tris (2-aminoethyl) amine, tris (3-aminopropyl) amine, tris (4-aminobutyl) amine, tris (5-aminopentyl) amine, tris (6-aminohexyl) amine, tris (7-aminoh
  • the compound having general formula (II) can be selected from the group consisting of diethylenetriamine, dipropylenetriamine, dibutylenetriamine, dipentylenetriamine, ethylenediamine, propylenediamine, butylenediamine and pentylenediamine.
  • R may be straight or branched. More preferably, R may be a C 1 -C 10 straight or branched alkyl.
  • Examples of the alcohol having general formula (III) are methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 2-propanol, 2-butanol and 3-butanol.
  • the alcohol having general formula (III) can be selected from the group consisting of methanol, ethanol, 1-propanol and 2-propanol.
  • the alcohol may comprise traces of corresponding aldehyde and/or carboxylic acid.
  • methanol may comprise traces of formaldehyde and/or formic acid
  • ethanol may comprise traces of acetaldehyde and/or acetic acid
  • propanol may comprise traces of propionaldehyde and/or propanoic acid.
  • the alcohol may contain 0.01-10000 ppm corresponding aldehyde and/or carboxylic acid.
  • Preferred reactions of the present invention are the following:
  • the metal catalyst may comprise at least one metal element in elemental form and/or at least one metal oxide of at least one metal element, wherein the metal element is selected from (i) elements of group IA except hydrogen, (ii) elements of group IIA, (iii) elements of group IIIA, (iv) elements of group IVA except carbon, (v) arsenic, antimony, bismuth, tellurium, polonium and astatine, (vi) elements of groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB, (vii) lanthanides and (viii) actinides.
  • the metal element is selected from (i) elements of group IA except hydrogen, (ii) elements of group IIA, (iii) elements of group IIIA, (iv) elements of group IVA except carbon, (v) arsenic, antimony, bismuth, tellurium, polonium and astatine, (vi) elements of groups IB, IIB, IIIB, IVB, VB,
  • the metal catalyst according to present invention can be a supported or unsupported catalyst.
  • the support to the metal catalyst is not particularly limited. It can notably be a metal oxide chosen in the group consisting of aluminum oxide (Al 2 O 3 ) , silicon dioxide (SiO 2 ) , titanium oxide (TiO 2 ) , zirconium dioxide (ZrO 2 ) , calcium oxide (CaO) , magnesium oxide (MgO) , lanthanum oxide (La 2 O 3 ) , niobium dioxide (NbO 2 ) , cerium oxide (CeO 2 ) and mixtures thereof.
  • Al 2 O 3 aluminum oxide
  • SiO 2 silicon dioxide
  • TiO 2 titanium oxide
  • ZrO 2 zirconium dioxide
  • CaO calcium oxide
  • MgO magnesium oxide
  • La 2 O 3 lanthanum oxide
  • NbO 2 niobium dioxide
  • CeO 2 cerium oxide
  • the support can also be a zeolite.
  • Zeolites are substances having a crystalline structure and a unique ability to change ions. People skilled in the art can easily understand how to obtain those zeolites by preparation method reported, such as zeolite L is described in US 4503023 or commercial purchase, such as ZSM available from ZEOLYST.
  • the support of catalyst can even be Kieselguhr, clay or carbon.
  • metals are the elements in the periodic system which are located left to the diagonal extending from boron (atomic number 5) to astatine (atomic number 85) ) .
  • Metals of group IA Li, Na, K, Rb, Cs, Fr are also known as alkali metals and metals of group IIA (Be, Mg, Ca, Sr Ba and Ra) are generally referred to as alkaline earth metals.
  • the metals of group IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB are often referred to as transition metals.
  • This group comprises the elements with atomic number 21 to 30 (Sc to Zn) , 39 to 48 (Y to Cd) , 72 to 80 (Hf to Hg) and 104 to 112 (Hf to Cn) .
  • the lanthanides encompass the metals with atomic number 57 to 71 and the actinides the metals with the atomic number 89 to 103.
  • metalloids are sometimes also referred to as metalloids.
  • the term metalloid is generally designating an element which has properties between those of metals and non-metals. Typically, metalloids have a metallic appearance but are relatively brittle and have a moderate electrical conductivity.
  • the six commonly recognized metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium.
  • Other elements also recognized as metalloids include aluminum, polonium, and astatine. On a standard periodic table all of these elements may be found in a diagonal region of the p-block, extending from boron at one end, to astatine at the other (as indicated above) .
  • the metal element is selected from elements of groups IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB. More preferably, the metal element is selected from elements of groups IA, IIA, IIIA, IVA, IB, IIB, VIB, VIIB and VIIIB.
  • the metal catalyst comprises two, three, or four metal elements, which are present in elemental form and/or in metal oxide form.
  • Metal oxide compounds comprise typically at least one oxygen atom and at least one metal atom which is chemically bound to the oxygen atom; the electronegativity of the oxygen atom is obviously higher than the electronegativity of the metal atom.
  • the metal oxide compound of the present invention may be a single oxide or a mixed oxide.
  • a single metal oxide is typically composed of one or more metal atom (s) of a same, unique metal element and one or more oxygen atom (s) .
  • the metal atom comprised in the single metal oxide can be notably:
  • Ln a lanthanide Ln, as in CeO 2 and in Ln 2 O 3 , or
  • a mixed metal oxide is typically composed of one or more metal atom (s) of different metal elements and one or more oxygen atom (s) .
  • Many metals can form mixed oxides with one or more other metals.
  • Mixed oxide minerals appear in a great variety in nature and synthetic mixed oxides find use as components of different materials used in advanced technological applications.
  • ZnO Al, ZnO: Cu, ZnO: Ag, ZnO: Ga, ZnO: Mg, ZnO: Cd, ZnO: In, ZnO: Sn, ZnO: Sc, ZnO: Y, ZnO: Co, ZnO: Mn, ZnO: Cr and ZnO: B
  • cuprates superconductors such as YBa 2 Cu 3 O 7-x , Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 CaCu 2 O 8 , Bi 2 Sr 2 Ca 2 Cu 3 O 6 , Tl 2 Ba 2 CuO 6 , Tl 2 Ba 2 CaCu 2 O 8 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , TlBa 2 Ca 3 Cu 4 O 11 , HgBa 2 CuO 4 , HgBa 2 CaCu 2 O 6 and HgBa 2 Ca 2 Cu 3 O 8 ,
  • A Ni, Mg, Mn, Fe, Co, Zn, Cu, Ca, Sr, Ba or Pb
  • Ln represents a lanthanide metal
  • perovskites such as LaGaO 3 , Na 1-x Bi x TiO 3 with 0 ⁇ x ⁇ 1,
  • IGZO indium-gallium-zinc oxide
  • ITO indium - mixed oxides of indium and tin, commonly referred to as ITO, which denotes a solid solution of indium (III) oxide (In 2 O 3 ) and tin (IV) oxide (SnO 2 ) , consisting essentially of or consisting of from 80 wt. %up to 95 wt. %of In 2 O 3 and from 5 wt. %to 20 wt. %of SnO 2 , in some cases about 90 wt. %In 2 O 3 and about 10 wt. %SnO 2 ; in particular for organic electronic device applications, ITO has been profitably used in the recent past.
  • the metal catalyst according to the present invention can be Raney catalysts such as Raney nickel, Raney cobalt and Raney copper.
  • the metal catalyst comprises Metal element A and optionally Metal element B, which are present in elemental form and/or in metal oxide form, wherein:
  • Metal element A is at least one metal element selected from elements of groups IB and VIIIB, and
  • Metal element B is at least one metal element selected from the group consisting of Al, Na, Mn, Mg, Si, Zn, Ni, Cr, K, Li, Cs, Be, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Nb, W, Mo, Tc, Re, Fe, Ru, Co, Ag, Cd, Hg, Ga, Pb, Bi, Ce, and mixtures thereof.
  • Metal element A is Cu or Co and Metal element B is at least one metal element selected from the group consisting of Al, Na, Mn, Mg, Si, Zn, Ni, Cr and mixtures thereof.
  • Metal element A can be supported on a support in this embodiment.
  • Said support can be Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , ZnO, MgO, NbO 2 , CeO 2 and mixtures thereof.
  • the weight ratio of Metal element A based on the total weight of the catalyst is from 20 to 100 wt%.
  • the metal catalyst may comprise Metal element A being Cu, and Metal element B being Al, Zn and Na.
  • the weight ratio of Cu based on the total weight of the catalyst is from 35 to 55 wt%.
  • the weight ratio of Al based on the total weight of the catalyst is from 3 to 7 wt%.
  • the weight ratio of Zn based on the total weight of the catalyst is from10 to 30 wt%.
  • the weight ratio of Na based on the total weight of the catalyst is from 0 to 1 wt%.
  • the metal catalyst may comprise Metal element A being Cu, and Metal element B being Al and Mn.
  • the weight ratio of Cu based on the total weight of the catalyst is from 40 to 65 wt%.
  • the weight ratio of Al based on the total weight of the catalyst is from 20 to 40 wt%.
  • the weight ratio of Mn based on the total weight of the catalyst is from 2 to 20 wt%.
  • the metal catalyst may comprise Metal element A being Cu and Metal element B being Si.
  • the weight ratio of Cu based on the total weight of the catalyst is from 85 to 100 wt%.
  • the weight ratio of Si based on the total weight of the catalyst is from 0.005 to 10 wt%.
  • the metal catalyst may comprise Metal element A being Cu, and Metal element B being Mg, Cr and Si.
  • the weight ratio of Cu based on the total weight of the catalyst is from 60 to 90 wt%.
  • the weight ratio of Mg based on the total weight of the catalyst is from 0 to 5 wt%.
  • the weight ratio of Cr based on the total weight of the catalyst is from 0 to 3 wt%.
  • the weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%.
  • the metal catalyst may comprise Metal element A being Cu, and Metal element B being Al and Si.
  • the weight ratio of Cu based on the total weight of the catalyst is from 40 to 80 wt%.
  • the weight ratio of Al based on the total weight of the catalyst is from 0 to 6 wt%.
  • the weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%
  • the metal catalyst may comprise Metal element A being Cu, and Metal element B being Ni and Si.
  • the weight ratio of Cu based on the total weight of the catalyst is from 45 to 95 wt%.
  • the weight ratio of Ni based on the total weight of the catalyst is from 0 to 10 wt%.
  • the weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%.
  • the metal catalyst may comprise Metal element A being Cu, and Metal element B being Cr and Si.
  • the weight ratio of Cu based on the total weight of the catalyst is from 50 to 95 wt%.
  • the weight ratio of Cr based on the total weight of the catalyst is from 0 to 40 wt%.
  • the weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%.
  • the metal catalyst according to the present invention can further comprise at least one metal sulphide compound.
  • metal sulphide compounds comprise typically at least one sulphur atom and at least one metal atom which is chemically bound to the sulphur atom; the electronegativity of the sulphur atom is obviously higher than the electronegativity of the metal atom.
  • the (or at least one) metal atom comprised in the metal sulphide compound can be notably:
  • the metal catalyst according to the present invention can further comprise at least one metal carbide compound.
  • Metal carbide compounds comprise typically at least one carbon atom and at least one metal atom which is chemically bound to the carbon atom; the electronegativity of the carbon atom is obviously higher than the electronegativity of the metal atom.
  • the (or at least one) metal atom comprised in the metal carbide compound can be notably:
  • LaC 2 lanthanum percarbide
  • Ln 2 C 3 sesquicarbide, wherein Ln denotes a lanthanide
  • the metal catalyst according to the present invention can further comprise at least one metal nitride compound.
  • Metal nitride compounds comprise typically at least one nitrogen atom and at least one metal atom which is chemically bound to the nitrogen atom; the electronegativity of the nitrogen atom is obviously higher than the electronegativity of the metal atom.
  • the (or at least one) metal atom comprised in the metal nitride compound can be notably:
  • the metal nitride is an oxynitride (i.e. a compound that qualifies as metal nitride compound and as metal oxide compound) . Examples thereof are:
  • TaON tantalum oxynitride
  • perovskite oxynitrides such as CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaON 2 and BaNbO 2 N, and
  • the metal catalyst is composed of metal element in elemental form and/or metal oxide.
  • the metal catalyst according to the present invention can be obtained by pre-reduction of commercial catalysts, such as T-4489 P, T-8031 P from Süd-Chemie, T-4419 P from Clariant and Pricat CU 60/35 P, Pricat CU 50/8 P, Pricat 60/8 P from Johnson Matthey.
  • commercial catalysts such as T-4489 P, T-8031 P from Süd-Chemie, T-4419 P from Clariant and Pricat CU 60/35 P, Pricat CU 50/8 P, Pricat 60/8 P from Johnson Matthey.
  • the skilled person can pre-reduce the commercial catalysts by some well-known ways.
  • the metal catalyst can be obtained by in situ-reduction. That is to say, the commercial catalysts can be in situ-reduced during the reaction of the compound having general formula (II) with the alcohol having general formula (III) in the presence of hydrogen.
  • the weight ratio of the metal catalyst to the compound having general formula (II) is from 0.1 to 10 and preferably from 0.2 to 2.
  • the weight ratio of the compound having general formula (II) to the alcohol having general formula (III) may be from 0.0001 to 0.1 and preferably from 0.001 to 0.05.
  • the alcohol having general formula (III) is the reactant and also the only solvent of the compound having general formula (II) .
  • the reaction may also be carried out in the presence of a second solvent other than the alcohol having general formula (III) as long as the second solvent does not participate in the reaction in place of the alcohol.
  • solvent examples include water, formaldehyde (traces) , formic acid (traces) , benzene, toluene, dimethyl ether, etc.
  • the concentration of the compound having general formula (II) in the solvent may be from 0.01wt%to 9wt%, preferably from 0.1wt%to 5wt%and more preferably from 0.1wt%to 2.5wt%.
  • reaction of the compound having general formula (II) with the alcohol having general formula (III) is desirably carried out under a hydrogen pressure in a range of 15-70 bar, and more preferably 20-50 bar.
  • hydrogen may be added during the reaction to make up for the consumption or continuously circulated through the reaction zone.
  • the reaction may be carried out in the presence of an inert atmosphere such as N 2 or Ar.
  • the reaction time may be from 4 to 24h and preferably from 10 to 20h.
  • the reaction temperature may be from 140°C to 220°C and preferably from 180°C to 200°C.
  • the invention also concerns a mixture comprising:
  • the mixture may further comprise a second solvent selected from the group consisting of water, formaldehyde, formic acid, benzene, toluene and dimethyl ether.
  • a second solvent selected from the group consisting of water, formaldehyde, formic acid, benzene, toluene and dimethyl ether.
  • the mixture may further comprise a compound having general formula (I) .
  • the compound having general formula (I) , the compound having general formula (II) , the alcohol having general formula (III) , the metal catalyst and the solvent have the same meaning as above defined.
  • a gas mixture consisting of H 2 /Ar or H 2 /N 2 in 1/3 to 1/10 ratio is flew through the tube from one outlet to another which is connected directly to the atmosphere.
  • the tube is weighed with and without catalyst to get the real weight ofthe catalyst.
  • the catalyst is used freshly after reduction, or kept in a glove box filled with argon.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 30 bar of hydrogen.
  • the sealing ofthe reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for 10 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 30 bar of hydrogen.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for 20 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. The liquid was firstly weighed and then filtered and analyzed by GC affording 28%yield of PMDTA.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to the temperatures described in Table 4 for 10 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with hydrogen till the pressures described in Table 5.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for 10 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
  • Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.12g) .
  • a clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for time described in Table 6 with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
  • Pre-reduced copper containing catalyst Pricat 60/8P was weighed to a certain amount described in Table 7. A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for 10 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
  • Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.13 g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 40 bar of hydrogen.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for 20 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
  • Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.12 g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
  • the autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen.
  • the sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and ifthe pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200°C for 10 hours with 500 rounds/min stirring speed.
  • the reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood.
  • To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration. The yield of PMDTA was 68.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention pertains to a method for the alkylation of amines. In particular, the present invention relates to a method for preparing N, N, N', N", N"-pentamethyldiethylenetriamine by reacting diethylenetriamine with methanol in the presence of hydrogen and a metal catalyst.

Description

A method for the alkylation of amines TECHNICAL FIELD
The present invention pertains to a method for the alkylation of amines.
BACKGROUND
N, N, N', N”, N”-pentamethyldiethylenetriamine (PMDTA) is used in the formation of rigid foam polyurethane. Current technology for PMDTA production relies on the methylation of diethylenetriamine (DETA) in the presence of hydrogen by using formaldehyde as methyl source. This methodology is selective towards PMDTA. However, the use of formaldehyde (CMR compound) raises HSE concerns.
For example, US Patent No. 5105013 teaches a process for the preparation of permethylated amines, particularly pentamethyldiethylenetriamine, by the reductive methylation of diethylenetriamine in the presence of hydrogen, formaldehyde aqueous solution, a catalyst, and a solvent. The reaction was carried out in two reaction phases and the flow rate of formaldehyde must be well controlled.
Hence, there is still a need to develop an environmentally friendly process to prepare PMDTA in high yield and selectivity, which can overcome the drawbacks in prior arts.
SUMMARY OF THE INVENTION
The present invention therefore pertains to a method for preparing a compound having general formula (I) by reacting a compound having general formula (II) with an alcohol having general formula (III) in the presence of hydrogen and a metal catalyst:
Figure PCTCN2020078148-appb-000001
wherein:
- R is an alkyl, alkenyl or alkynyl,
- n is an integer between 0 and 20,
- m is an integer between 1 and 3,
- p is an integer between 0 and 2, and
- p+m=3.
The method of the invention enables to alkylate amines by using an environmentally friendly alkylation agent.
Advantageously, it is not necessary to control the flow rate of alkylation agent by using the method according to the present invention.
The invention also concerns a mixture comprising:
(i) A compound having general formula (II) ,
(ii) An alcohol having general formula (III) ,
(iii) Hydrogen, and
(iv) A metal catalyst.
BRIEF DESCRIPTION OF DRAWINGS
Fig. 1 is an image of temperature-yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 3;
Fig. 2 is an image of H 2 pressure-yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 4;
Fig. 3 is an image of time-yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 5;
Fig. 4 is an image of mass ratio (Cat/DETA) -yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 6;
Fig. 5 is an image of concentration (DETA in methanol) -yield curve of reaction of DETA with methanol over Pricat Cu 60/8P of Example 7.
DEFINITIONS
Throughout the description, including the claims, the term "comprising one" should be understood as being synonymous with the term "comprising at least one" , unless otherwise specified, and "between" should be understood as being inclusive of the limits.
As used herein, the terminology " (C n-C m) " in reference to an organic group, wherein n and m are both integers, indicates that the group may contain from n carbon atoms to m carbon atoms per group.
The articles “a” , “an” and “the” are used to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.
The term “and/or” includes the meanings “and” , “or” and also all the other possible combinations of the elements connected to this term.
It is specified that, in the continuation of the description, unless otherwise indicated, the values at the limits are included in the ranges of values which are given.
Ratios, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also all the individual numerical values or sub-ranges encompassed within that range as if each numerical value or sub-range is explicitly recited.
DETAILS OF THE INVENTION
In some embodiments, the compound having general formula (II) is a compound having general formula (IV) :
Figure PCTCN2020078148-appb-000002
wherein n is an integer between 0 and 20, preferably between 0 and 9, and more preferably between 0 and 4.
In some embodiments, the compound having general formula (II) is a compound having general formula (V) :
Figure PCTCN2020078148-appb-000003
wherein n is an integer between 0 and 20, preferably between 0 and 9, and more preferably between 0 and 4.
In some embodiments, the compound having general formula (II) is a compound having general formula (VI) :
Figure PCTCN2020078148-appb-000004
wherein n is an integer between 0 and 20, preferably between 0 and 9, and more preferably between 0 and 4.
The compound having general formula (II) can be selected from the group consisting of dimethylenetriamine, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, dipentylenetriamine, dihexylenetriamine, diheptylenetriamine, dioctylenetriamine, dinonylenetriamine, didecylenetriamine, methylenediamine, ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, hexylenediamine, heptylenediamine, octylenediamine, nonylenediamine, and decylenediamine, triaminomethylamine, tris (2-aminoethyl) amine, tris (3-aminopropyl) amine, tris (4-aminobutyl) amine, tris (5-aminopentyl) amine, tris (6-aminohexyl) amine, tris (7-aminoheptyl) amine, tris (8-aminooctyl) amine, tris (9-aminononyl) amine and tris (10-aminodecyl) amine.
Preferably, the compound having general formula (II) can be selected from the group consisting of diethylenetriamine, dipropylenetriamine, dibutylenetriamine, dipentylenetriamine, ethylenediamine, propylenediamine, butylenediamine and pentylenediamine.
Preferably, R may be straight or branched. More preferably, R may be a C 1-C 10 straight or branched alkyl.
Examples of the alcohol having general formula (III) are methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 2-propanol, 2-butanol and 3-butanol.
Preferably, the alcohol having general formula (III) can be selected from the group consisting of methanol, ethanol, 1-propanol and 2-propanol.
The alcohol may comprise traces of corresponding aldehyde and/or carboxylic acid. For example, methanol may comprise traces of formaldehyde and/or formic acid, ethanol may comprise traces of acetaldehyde and/or acetic acid, and propanol may comprise traces of propionaldehyde and/or propanoic acid. In a specific embodiment, the alcohol may contain 0.01-10000 ppm corresponding aldehyde and/or carboxylic acid.
Preferred reactions of the present invention are the following:
- Reaction of diethylenetriamine with methanol to produce N, N, N', N”, N”-pentamethyldiethylenetriamine;
- Reaction of diethylenetriamine with ethanol to produce N, N, N', N”, N”-pentaethyldiethylenetriamine;
- Reaction of diethylenetriamine with 1-propanol to produce N, N, N', N”, N”-pentapropyldiethylenetriamine;
- Reaction of diethylenetriamine with 2-propanol to produce N, N, N', N”, N”-pentaisopropyldiethylenetriamine;
- Reaction of dipropylenetriamine with methanol to produce N, N, N', N”, N”-pentamethyldipropylenetriamine;
- Reaction of dipropylenetriamine with ethanol to produce N, N, N', N”, N”-pentaethyldipropylenetriamine;
- Reaction of dipropylenetriamine with 1-propanol to produce N, N, N', N”, N”-pentapropyldipropylenetriamine;
- Reaction of dipropylenetriamine with 2-propanol to produce N, N, N', N”, N”-pentaisopropyldipropylenetriamine;
- Reaction of ethylenediamine with methanol to produce N, N, N', N'-tetramethylethane-1, 2-diamine;
- Reaction of ethylenediamine with ethanol to produce N, N, N', N'-tetraethylethane-1, 2-diamine;
- Reaction of ethylenediamine with 1-propanol to produce N, N, N', N'-tetrapropylethane-1, 2-diamine;
- Reaction of ethylenediamine with 2-propanol to produce N, N, N', N'-tetraisopropylethane-1, 2-diamine;
- Reaction of propylenediamine with methanol to produce N, N, N', N'-tetramethylpropane-1, 3-diamine;
- Reaction of propylenediamine with ethanol to produce N, N, N', N'-tetraethylpropane-1, 3-diamine;
- Reaction of propylenediamine with 1-propanol to produce N, N, N', N'-tetrapropylpropane-1, 3-diamine;
- Reaction of propylenediamine with 2-propanol to produce N, N, N', N'-tetraisopropylpropane-1, 3-diamine;
- Reaction of tris (2-aminoethyl) amine with methanol to produce tris [2- (dimethylamino) ethyl] amine;
- Reaction of tris (2-aminoethyl) amine with ethanol to tris [2- (diethylamino) ethyl] amine;
- Reaction of tris (2-aminoethyl) amine with 1-propanol to produce tris [2- (di-n-propylamino) ethyl] amine;
- Reaction of tris (2-aminoethyl) amine with 2-propanol to produce tris [2- (di-iso-propylamino) ethyl] amine.
- Reaction of tris (3-aminopropyl) amine with methanol to produce tris [3- (dimethylamino) propyl] amine;
- Reaction of tris (3-aminopropyl) amine with ethanol to tris [3- (diethylamino) propyl] amine;
- Reaction of tris (3-aminopropyl) amine with 1-propanol to produce tris [3- (di-n-propylamino) propyl] amine;
- Reaction of tris (3-aminopropyl) amine with 2-propanol to produce tris [3- (di-iso-propylamino) propyl] amine.
The metal catalyst may comprise at least one metal element in elemental form and/or at least one metal oxide of at least one metal element, wherein the metal element is selected from (i) elements of group IA except hydrogen, (ii) elements of group IIA, (iii) elements of group IIIA, (iv) elements of group IVA except carbon, (v) arsenic, antimony, bismuth, tellurium, polonium and astatine, (vi) elements of groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB, (vii) lanthanides and (viii) actinides.
The metal catalyst according to present invention can be a supported or unsupported catalyst.
The support to the metal catalyst is not particularly limited. It can notably be a metal oxide chosen in the group consisting of aluminum oxide (Al 2O 3) , silicon dioxide (SiO 2) , titanium oxide (TiO 2) , zirconium dioxide (ZrO 2) , calcium oxide (CaO) , magnesium oxide (MgO) , lanthanum oxide (La 2O 3) , niobium dioxide (NbO 2) , cerium oxide (CeO 2) and mixtures thereof.
The support can also be a zeolite. Zeolites are substances having a crystalline structure and a unique ability to change ions. People skilled in the art can easily understand how to obtain those zeolites by preparation method reported, such as zeolite L is described in US 4503023 or commercial purchase, such as ZSM available from ZEOLYST.
The support of catalyst can even be Kieselguhr, clay or carbon.
For the avoidance of doubt, the different groups of elements are herein numbered in accordance with the CAS system.
Generally, metals are the elements in the periodic system which are located left to the diagonal extending from boron (atomic number 5) to astatine (atomic number 85) ) .
Metals of group IA (Li, Na, K, Rb, Cs, Fr) are also known as alkali metals and metals of group IIA (Be, Mg, Ca, Sr Ba and Ra) are generally referred to as alkaline earth metals.
The metals of group IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB are often referred to as transition metals. This group comprises the elements with atomic number 21 to 30 (Sc to Zn) , 39 to 48 (Y to Cd) , 72 to 80 (Hf to Hg) and 104 to 112 (Hf to Cn) .
The lanthanides encompass the metals with atomic number 57 to 71 and the actinides the metals with the atomic number 89 to 103.
Some of the elements encompassed by the description above and understood to be metals for the purpose of the present invention, are sometimes also referred to as metalloids. The term metalloid is generally designating an element which has properties between those of metals and non-metals. Typically, metalloids have a metallic appearance but are relatively brittle and have a moderate electrical conductivity. The six commonly recognized metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Other elements also recognized as metalloids include aluminum, polonium, and astatine. On a standard periodic table all of these elements may be found in a diagonal region of the p-block, extending from boron at one end, to astatine at the other (as indicated above) .
Preferably, the metal element is selected from elements of groups IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB. More preferably, the metal element is selected from elements of groups IA, IIA, IIIA, IVA, IB, IIB, VIB, VIIB and VIIIB.
In some embodiments, the metal catalyst comprises two, three, or four metal elements, which are present in elemental form and/or in metal oxide form.
Metal oxide compounds comprise typically at least one oxygen atom and at least one metal atom which is chemically bound to the oxygen atom; the electronegativity of the oxygen atom is obviously higher than the electronegativity of the metal atom.
The metal oxide compound of the present invention may be a single oxide or a mixed oxide.
A single metal oxide is typically composed of one or more metal atom (s) of a same, unique metal element and one or more oxygen atom (s) .
The metal atom comprised in the single metal oxide can be notably:
- a metal of group IA, as in Li 2O, Na 2O, K 2O, Rb 2O and Cs 2O
- a metal of group IIA, as in BeO, MgO, CaO, SrO and BaO
- a metal of group IIIA, as in B 2O 3, Al 2O 3, Ga 2O 3, In 2O 3 and Tl 2O 3
- a metal of group IVA, as in SiO 2, GeO 2, SnO 2, Sn 2O 3, Sn 3O 4 and PbO 2
- arsenic as in As 2O 3, antimony as in Sb 2O 3, bismuth as in Bi 2O 3, tellurium as in TeO 2, or polonium as in PoO 2
- a metal of group IB, as in CuO, Cu 2O, AgO, Ag 2O 2, Ag 2O 3 and Ag 3O 4
- a metal of group IIB, as in ZnO, CdO and HgO
- a metal of group IIIB, as in Sc 2O 3 and Y 2O 3
- a metal of group IVB, as in TiO 2 and ZrO 2
- a metal of group VB, as in VO 2, V 2O 5, Nb 2O 5, Ta 2O 5
- a metal of group VIB, as in Cr 2O 3, MoO 3, MoO 2 and WO 3
- a metal of group VIIB, as in Tc 2O 7, ReO 2, ReO 3, Re 2O 7, MnO, Mn 2O 3, Mn 3O 4 and Mn 2O 7
- a metal of group VIIIB, as in FeO, Fe 2O 3, Fe 3O 4, CoO, Co 3O 4, NiO, PdO and RuO 2
- a lanthanide Ln, as in CeO 2 and in Ln 2O 3, or
- an actinide, as in ThO 2.
A mixed metal oxide is typically composed of one or more metal atom (s) of different metal elements and one or more oxygen atom (s) . Many metals can form mixed oxides with one or more other metals. Mixed oxide minerals appear in a great variety in nature and synthetic mixed oxides find use as components of different materials used in advanced technological applications.
Only by way of example a number of mixed oxides are described below:
- transparent conducting doped zinc oxides, such as ZnO: Al, ZnO: Cu, ZnO: Ag, ZnO: Ga, ZnO: Mg, ZnO: Cd, ZnO: In, ZnO: Sn, ZnO: Sc, ZnO: Y, ZnO: Co, ZnO: Mn, ZnO: Cr and ZnO: B
- cuprates superconductors, such as YBa 2Cu 3O 7-x, Bi 2Sr 2CuO 6, Bi 2Sr 2CaCu 2O 8, Bi 2Sr 2Ca 2Cu 3O 6, Tl 2Ba 2CuO 6, Tl 2Ba 2CaCu 2O 8, Tl 2Ba 2Ca 2Cu 3O 10, TlBa 2Ca 3Cu 4O 11, HgBa 2CuO 4, HgBa 2CaCu 2O 6 and HgBa 2Ca 2Cu 3O 8,
- ACrO 4 with A=Zn, Cd, Cu, Ca, Pb, Ba or Sr
- AWO 4 and AMoO 4 where A=Ni, Mg, Mn, Fe, Co, Zn, Cu, Ca, Sr, Ba  or Pb
- ATaO 4 and ANbO 4 where A=Cr, Fe, Rh or V
- ASbO 4 where A=Al, Cr, Fe, Rh or Ga
- AVO 4 where A=Cr, Fe, Al, In, Bi, Fe or Al
- Y 1-x-yGd xLn yBO 3 where Ln represents a lanthanide metal, 0<x<1 and 0<y<1
- A 3NbO 7 where A=Bi, Y or a lanthanide metal
- perovskites, such as LaGaO 3, Na 1-xBi xTiO 3 with 0<x<1,
- perovskite oxides, such as La 1-xSr xMeO 3-δ (Me=Co or Cu) with 0<x<1,
- ion conductors, such as Bi 2V 1.9Cu 0.1O 5.35, Ge 0.9Gd 0.1O 1.95 or La 0.9Sr 0.1Ga 0.8Mg 0.2O 2.85, (ZrO 20.9 (Y 2O 30.1
- CuZnFe 2O 4, CoMn 2O 4, PbCrO 4
- Zr 1-xTi xO 2, Ba 6Ti 17O 40, BaZrO 3, PbTiO 3, SrTiO 3, Ba 1-xSr xTiO 3, PbZrO 3, PbTi 1-xZr xO 3 where 0<x<1
- doped yttrium oxides and lanthanide oxides, namely Y 2O 3: Ln and Ln 2O 3: Ln wherein Ln is a lanthanide atom,
- titanium-tin mixed oxide Sn 1-xTi xO 2 with 0<x<1,
- yttrium, rhodium or lanthanide niobates, tantalates and vanadates A 1-xX xMeO 4 where A=Y, Rh or Ln, X=Bi or Ln provided A and X are different from each other, Ln represents a lanthanide atom, Me=Nb, Ta or V and 1≥x>0
- indium-gallium-zinc oxide (IGZO) of formula InGaZn 2O 5
- transparent conducting Delafossite CuFeO 2 and other related ternary compounds of Delafossite structure of general chemical formula A xX yO z where A is Ag, Pd or Pt and X is Co, Cr, Sr, Ba, Al, Ga, In, Sc, Y, La, Pr, Nd, Sm or Eu, and wherein x, y and z values are depending on the oxidation states of A and X
- transparent conducting Delafossite-type quaternary compounds: CuA 2/3Sb 1/3O 2 where A=Mn, Ca, Al, AgA 2/3Sb 1/3O 2 (A=Ni, Zn) , and 
- mixed oxides of indium and tin, commonly referred to as ITO, which denotes a solid solution of indium (III) oxide (In 2O 3) and tin (IV) oxide (SnO 2) , consisting essentially of or consisting of from 80 wt. %up to 95 wt. %of In 2O 3 and from 5 wt. %to 20 wt. %of SnO 2, in some cases about 90 wt. %In 2O 3 and about 10 wt. %SnO 2; in particular for  organic electronic device applications, ITO has been profitably used in the recent past.
In one preferred embodiment, the metal catalyst according to the present invention can be Raney catalysts such as Raney nickel, Raney cobalt and Raney copper.
In another preferred embodiment, the metal catalyst comprises Metal element A and optionally Metal element B, which are present in elemental form and/or in metal oxide form, wherein:
- Metal element A is at least one metal element selected from elements of groups IB and VIIIB, and
- Metal element B is at least one metal element selected from the group consisting of Al, Na, Mn, Mg, Si, Zn, Ni, Cr, K, Li, Cs, Be, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Nb, W, Mo, Tc, Re, Fe, Ru, Co, Ag, Cd, Hg, Ga, Pb, Bi, Ce, and mixtures thereof.
Preferably, Metal element A is Cu or Co and Metal element B is at least one metal element selected from the group consisting of Al, Na, Mn, Mg, Si, Zn, Ni, Cr and mixtures thereof.
In this embodiment, Metal element A can be supported on a support in this embodiment. Said support can be Al 2O 3, SiO 2, TiO 2, ZrO 2, ZnO, MgO, NbO 2, CeO 2 and mixtures thereof.
The weight ratio of Metal element A based on the total weight of the catalyst is from 20 to 100 wt%.
In some embodiments, the metal catalyst may comprise Metal element A being Cu, and Metal element B being Al, Zn and Na. The weight ratio of Cu based on the total weight of the catalyst is from 35 to 55 wt%. The weight ratio of Al based on the total weight of the catalyst is from 3 to 7 wt%. The weight ratio of Zn based on the total weight of the catalyst is from10 to 30 wt%. The weight ratio of Na based on the total weight of the catalyst is from 0 to 1 wt%.
In some embodiments, the metal catalyst may comprise Metal element A being Cu, and Metal element B being Al and Mn. The weight ratio of Cu based on the total weight of the catalyst is from 40 to 65 wt%. The weight ratio of Al based on the total weight of the catalyst is from 20 to 40 wt%. The weight ratio of Mn based on the total weight of the catalyst is from 2 to 20 wt%.
In some embodiments, the metal catalyst may comprise Metal element A being Cu and Metal element B being Si. The weight ratio of Cu based on the total weight of the catalyst is from 85 to 100 wt%. The weight ratio of Si  based on the total weight of the catalyst is from 0.005 to 10 wt%.
In some embodiments, the metal catalyst may comprise Metal element A being Cu, and Metal element B being Mg, Cr and Si. The weight ratio of Cu based on the total weight of the catalyst is from 60 to 90 wt%. The weight ratio of Mg based on the total weight of the catalyst is from 0 to 5 wt%. The weight ratio of Cr based on the total weight of the catalyst is from 0 to 3 wt%. The weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%.
In some embodiments, the metal catalyst may comprise Metal element A being Cu, and Metal element B being Al and Si. The weight ratio of Cu based on the total weight of the catalyst is from 40 to 80 wt%. The weight ratio of Al based on the total weight of the catalyst is from 0 to 6 wt%. The weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%
In some embodiments, the metal catalyst may comprise Metal element A being Cu, and Metal element B being Ni and Si. The weight ratio of Cu based on the total weight of the catalyst is from 45 to 95 wt%. The weight ratio of Ni based on the total weight of the catalyst is from 0 to 10 wt%. The weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%.
In some embodiments, the metal catalyst may comprise Metal element A being Cu, and Metal element B being Cr and Si. The weight ratio of Cu based on the total weight of the catalyst is from 50 to 95 wt%. The weight ratio of Cr based on the total weight of the catalyst is from 0 to 40 wt%. The weight ratio of Si based on the total weight of the catalyst is from 0 to 10 wt%.
The metal catalyst according to the present invention can further comprise at least one metal sulphide compound.
Then, metal sulphide compounds comprise typically at least one sulphur atom and at least one metal atom which is chemically bound to the sulphur atom; the electronegativity of the sulphur atom is obviously higher than the electronegativity of the metal atom.
The (or at least one) metal atom comprised in the metal sulphide compound can be notably:
- a metal of group IA, as in Li 2S, Li 2CdSnS 4
- a metal of group IIA, as in BaGa 2GeS 6
- a metal of group IIIA, as in CuInS 2or Cu 2ZnSnS 4 (CZTS)
- a metal of group IVA, as in PbS or Pb 2S 3
- antimony as in Sb 2S 3, or bismuth as in Bi 2S 3
- a metal of group IB as in CuS, Cu 2S or Ag 2S
- a metal of group IIB as in ZnS, CdS or PbHgS
- a metal of group IVB, as in TiS 2
- a metal of group VB, as in NbS 2
- a metal of group VIB, as in MoS 2
- a metal of group VIIB, as in FeS 2 or Co 9S 8
- a metal of group VIIIB, as in CoN, FeN, Co 3N or Ni 3N 2, or
- a lanthanide, as in LaN or LaTaON 2.
The metal catalyst according to the present invention can further comprise at least one metal carbide compound.
Metal carbide compounds comprise typically at least one carbon atom and at least one metal atom which is chemically bound to the carbon atom; the electronegativity of the carbon atom is obviously higher than the electronegativity of the metal atom.
The (or at least one) metal atom comprised in the metal carbide compound can be notably:
- a metal of group IA, as in Na 2C 2 (sodium percarbide) and Li 4C 3 (lithium sequicarbide)
- a metal of group IIA, as in Be 2C, CaC 2 (calcium percarbide) and Mg 2C 3 (magnesium sesquicarbide)
- a metal of group IIIA, as in B 4C which is an example of a covalent carbide
- a metal of group IVA, as in SiC which is another example of a covalent carbide
- bismuth, as in BiC
- a metal of group IVB, as in TiC and HfC
- a metal of group VB, as in TaC and VC
- a metal of group VIB, as in Cr 3C 2, Mo 2C 5 and WC
- a metal of group VIIIB, as in Fe 3C, or
- a lanthanide, as in LaC 2 (lanthanum percarbide) and Ln 2C 3 (sesquicarbide, wherein Ln denotes a lanthanide) .
The metal catalyst according to the present invention can further comprise at least one metal nitride compound.
Metal nitride compounds comprise typically at least one nitrogen atom and at least one metal atom which is chemically bound to the nitrogen atom; the  electronegativity of the nitrogen atom is obviously higher than the electronegativity of the metal atom.
The (or at least one) metal atom comprised in the metal nitride compound can be notably:
- a metal of group IA, as in Li 3N, or in LiMoN 2 and Li 7MnN 4 lithium transition metal nitrides
- a metal of group IIA, as in CaTaO 2N, SrTaO 2N, BaTaO 2N or BaNbO 2N
- a metal of group IIIA, as in AlN, InN or GaN
- a metal of group IVA, as in Si 3N 4 or Si 2N 2O
- a metal of group IIIB, as in ScN or YN
- a metal of group IVB, as in TiN, ZrN or HfN
- a metal of group VB, as in TaON
- a metal of group VIB, as in CrN, Cr 2N, MoN, Mo 2N, WN, W 2N
- a metal of group VIIB, as in Li 7MnN 4, TcN
- a metal of group VIIIB, as in CoN, FeN, Co 3N, Ni 3N 2, or
- a lanthanide, as in LaN or LaTaON 2.
In some embodiments, the metal nitride is an oxynitride (i.e. a compound that qualifies as metal nitride compound and as metal oxide compound) . Examples thereof are:
- tantalum oxynitride (TaON)
- perovskite oxynitrides, such as CaTaO 2N, SrTaO 2N, BaTaO 2N, LaTaON 2 and BaNbO 2N, and
- silicon oxynitride (Si 2N 2O) .
In a preferred embodiment, the metal catalyst is composed of metal element in elemental form and/or metal oxide.
The metal catalyst according to the present invention can be obtained by pre-reduction of commercial catalysts, such as T-4489 P, T-8031 P from Süd-Chemie, T-4419 P from Clariant and Pricat CU 60/35 P, Pricat CU 50/8 P, Pricat 60/8 P from Johnson Matthey. The skilled person can pre-reduce the commercial catalysts by some well-known ways.
Alternatively, the metal catalyst can be obtained by in situ-reduction. That is to say, the commercial catalysts can be in situ-reduced during the reaction of the compound having general formula (II) with the alcohol having general formula (III) in the presence of hydrogen.
The weight ratio of the metal catalyst to the compound having general formula (II) is from 0.1 to 10 and preferably from 0.2 to 2.
The weight ratio of the compound having general formula (II) to the alcohol having general formula (III) may be from 0.0001 to 0.1 and preferably from 0.001 to 0.05.
According to the method of the present invention, in a preferred embodiment, the alcohol having general formula (III) is the reactant and also the only solvent of the compound having general formula (II) . It can understood by the skilled person that the reaction may also be carried out in the presence of a second solvent other than the alcohol having general formula (III) as long as the second solvent does not participate in the reaction in place of the alcohol. Examples of such solvent are water, formaldehyde (traces) , formic acid (traces) , benzene, toluene, dimethyl ether, etc.
The concentration of the compound having general formula (II) in the solvent may be from 0.01wt%to 9wt%, preferably from 0.1wt%to 5wt%and more preferably from 0.1wt%to 2.5wt%.
Although not specifically limited, the reaction of the compound having general formula (II) with the alcohol having general formula (III) is desirably carried out under a hydrogen pressure in a range of 15-70 bar, and more preferably 20-50 bar. Optionally, hydrogen may be added during the reaction to make up for the consumption or continuously circulated through the reaction zone.
The reaction may be carried out in the presence of an inert atmosphere such as N 2 or Ar.
The reaction time may be from 4 to 24h and preferably from 10 to 20h.
The reaction temperature may be from 140℃ to 220℃ and preferably from 180℃ to 200℃.
The invention also concerns a mixture comprising:
(i) A compound having general formula (II) ,
(ii) An alcohol having general formula (III) ,
(iii) Hydrogen, and
(iv) A metal catalyst.
The mixture may further comprise a second solvent selected from the group consisting of water, formaldehyde, formic acid, benzene, toluene and dimethyl ether.
The mixture may further comprise a compound having general formula (I) .
The compound having general formula (I) , the compound having general formula (II) , the alcohol having general formula (III) , the metal catalyst and the solvent have the same meaning as above defined.
EXAMPLES
The technical features and technical effects of the present invention will be further described below in conjunction with the following examples so that the skilled in the art would fully understand the present invention. It will be readily understood by the skilled in the art that the examples herein are for illustrative purposes only and the scope of the present invention is not limited thereto.
Materials
- Cu based catalyst (T-4489 P) from Süd-Chemie
- Cu based catalyst (T-8031 P) from Süd-Chemie
- Cu based catalyst (Pricat CU 60/35 P) Johnson Matthey
- Cu based catalyst (Pricat 60/8 P) Johnson Matthey
- Cu based catalyst (T-4419 P) from Clariant
- Raney Cobalt from W.R. Grace
Table 1 ICP results
Figure PCTCN2020078148-appb-000005
Analytical equipment information:
Perkin Elmer ICP-OES 8000
Electric balance with 0.0001g precision
CEM 6 microwave oven
IKA heating plate
1 mL transfer pipette
100 μL transfer pipette
50ml ICP tube
Software of ICP: Winlab32 for ICP Version 5.4.0.0687
Analytical conditions:
- Preparation: Weigh 50mg sample, add 3ml H 3PO 4 and 3ml H 2SO 4, heat at 280C with heating plate, until sample totally dissolved, when the solution left until 3-4 ml, dilute with DI water and add 10ppm Sc as an internal standard solution to 50ml. Then dilute 10 times to test high concentration elements.
- Reagents and Solution: Distilled de-ionized Ultra High Quality (UHQ chemical resistivity: 18MΩcm -1) water (Millipore) , Phosphoric acid, AR grade, 85%, Sulfuric acid, AR grade, 98%ICP multi-element standard solution IV, Merck
- Instrument setting: Perkin Elemer 8000 ICP-OES was used for the determination of three elements. The operation parameters of ICP-OES were set as recommended by the manufacturer. The ICP-OES operating conditions are listed in Table 2.
Table 2 ICP operating parameters
Figure PCTCN2020078148-appb-000006
Pre-reduction of catalysts:
Weigh Cu based catalyst in Table 1 into a glass tube with 2 outlets, one of which is then connected to a gas tube from one side, and the part containing catalyst is surrounded by a programmable heating oven.
At room temperature, a gas mixture consisting of H 2/Ar or H 2/N 2 in 1/3 to 1/10 ratio is flew through the tube from one outlet to another which is connected directly to the atmosphere.
After 10 minutes of gas flow, heat the oven with a program at a 1℃/min speed from room temperature to 200℃, and keep at 200℃ 0.5-4 hours depending on the amount ofcatalyst.
After the reduction, stop heating and let the temperature reduced to room temperature. Purge the reduced catalyst with pure nitrogen or argon for 10 minutes at room temperature, and plug the both outlets of the tube with rubber stopper immediately.
The tube is weighed with and without catalyst to get the real weight ofthe catalyst.
The catalyst is used freshly after reduction, or kept in a glove box filled with argon.
Example 1:
Pre-reduced copper containing catalyst described in Table 3 was weighed (0.13g) . Aclean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA (1.8 mmol, 0.18g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 30 bar of hydrogen. The sealing ofthe reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for 10 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
Figure PCTCN2020078148-appb-000007
Table 3 Effects of different catalysts on reaction
Figure PCTCN2020078148-appb-000008
Example 2:
Cobalt containing catalyst Raney Cobalt without reduction was weighed (catalyst/DETA wt/wt=1: 1) and washed with methanol. A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (0.75 mol, 30mL) and then DETA (1.8 mmol, 0.18g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 30 bar of hydrogen. The sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for 20 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. The liquid was firstly weighed and then filtered and analyzed by GC affording 28%yield of PMDTA.
Example 3:
Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.13g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA (1.8 mmol, 0.18g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen. The sealing of the reactor is checked by waiting 1 hour at room temperature without  stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to the temperatures described in Table 4 for 10 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
Figure PCTCN2020078148-appb-000009
Table 4 Influence of temperature on the reaction
Figure PCTCN2020078148-appb-000010
Example 4:
Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.13g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA (1.8 mmol, 0.18g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with hydrogen till the pressures described in Table 5. The sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for 10 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl,  the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
Figure PCTCN2020078148-appb-000011
Table 5 Influence of pressure on the reaction
Figure PCTCN2020078148-appb-000012
Example 5:
Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.12g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA (1.8 mmol, 0.18g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen. The sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for time described in Table 6 with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
Figure PCTCN2020078148-appb-000013
Table 6 Influence of reaction time on the reaction
Figure PCTCN2020078148-appb-000014
Example 6:
Pre-reduced copper containing catalyst Pricat 60/8P was weighed to a certain amount described in Table 7. A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA (1.8 mmol, 0.18g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen. The sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for 10 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
Table 7 Influence of the amount of catalyst on the reaction
Figure PCTCN2020078148-appb-000015
Example 7:
Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.13 g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA with a certain quantity described in Table 8 were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 40 bar of hydrogen. The sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and if the pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for 20 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration.
Figure PCTCN2020078148-appb-000016
Table 8 Influence of the concentration of DETA on the reaction
Figure PCTCN2020078148-appb-000017
Example 8:
Pre-reduced copper containing catalyst Pricat 60/8P was weighed (0.12 g) . A clean autoclave was charged under nitrogen after vacuum&nitrogen exchanges for 3 times, catalyst was transferred into autoclave immediately.
Methanol (1.2 mol, 48mL) and then DETA (2.7 mmol, 0.28 g) were charged into autoclave under nitrogen subsequently.
The autoclave was well sealed under nitrogen, and purged by hydrogen 10 bar and evacuated for 10 times, finally purged with 50 bar of hydrogen. The sealing of the reactor is checked by waiting 1 hour at room temperature without stirring, and ifthe pressure remains unchanged then the reactor is well-sealed. Then the reactor was stirred with mechanical stirring for 1 hour at ambient temperature to allow the absorption of the hydrogen, followed by heating up to 200℃ for 10 hours with 500 rounds/min stirring speed. The reactor was cooled down to ambient temperature and the hydrogen gas was evacuated carefully in fume hood. To the reaction mixture was added internal standard bisphenyl with accurate weight. After complete dissolving of bisphenyl, the liquid was firstly weighed and then filtered and analyzed by GC. The conversion and yields were calculated using internal standard calibration. The yield of PMDTA was 68.1%.

Claims (15)

  1. A method for preparing a compound having general formula (I) by reacting a compound having general formula (II) with an alcohol having general formula (III) in the presence of hydrogen and a metal catalyst:
    Figure PCTCN2020078148-appb-100001
    wherein:
    - R is an alkyl, alkenyl or alkynyl,
    - n is an integer between 0 and 20,
    - m is an integer between 1 and 3,
    - p is an integer between 0 and 2, and
    - p+m=3.
  2. The method according to claim 1, wherein R is a C 1-C 10 straight or branched alkyl.
  3. The method according to claim 1 or 2, wherein the compound having general formula (II) is a compound having general formula (IV) , (V) or (VI) :
    Figure PCTCN2020078148-appb-100002
    Figure PCTCN2020078148-appb-100003
    wherein n is an integer between 0 and 20.
  4. The method according to any one of claims 1 to 3, wherein the compound having general formula (II) is selected from the group consisting of dimethylenetriamine, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, dipentylenetriamine, dihexylenetriamine, diheptylenetriamine, dioctylenetriamine, dinonylenetriamine, didecylenetriamine, methylenediamine, ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, hexylenediamine, heptylenediamine, octylenediamine, nonylenediamine, and decylenediamine, triaminomethylamine, tris (2-aminoethyl) amine, tris (3-aminopropyl) amine, tris (4-aminobutyl) amine, tris (5-aminopentyl) amine, tris (6-aminohexyl) amine, tris (7-aminoheptyl) amine, tris (8-aminooctyl) amine, tris (9-aminononyl) amine and tris (10-aminodecyl) amine.
  5. The method according to any one of claims 1 to 4, wherein the metal catalyst comprises at least one metal element in elemental form and/or at least one metal oxide of at least one metal element, wherein the metal element is selected from (i) elements of group IA except hydrogen, (ii) elements of group IIA, (iii) elements of group IIIA, (iv) elements of group IVA except carbon, (v) arsenic, antimony, bismuth, tellurium, polonium and astatine, (vi) elements of groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIIIB, (vii) lanthanides and (viii) actinides.
  6. The method according to any one of claims 1 to 5, wherein the metal catalyst is Raney catalysts such as Raney nickel, Raney cobalt and Raney copper.
  7. The method according to any one of claims 1 to 5, wherein the metal catalyst comprises Metal element A and optionally Metal element B, which are present in elemental form and/or in metal oxide form, wherein:
    - Metal element A is at least one metal element selected from elements of groups IB and VIIIB, and
    - Metal element B is at least one metal element selected from the group consisting of Al, Na, Mn, Mg, Si, Zn, Ni, Cr, K, Li, Cs, Be, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Nb, W, Mo, Tc, Re, Fe, Ru, Co, Ag, Cd, Hg, Ga, Pb, Bi, Ce and mixtures thereof.
  8. The method according to claim 7, wherein:
    - Metal element A is Cu or Co, and
    - Metal element B is at least one metal element selected from the group consisting of Al, Na, Mn, Mg, Si, Zn, Ni, Cr and mixtures thereof.
  9. The method according to any one of claims 1 to 8, wherein the weight ratio of the metal catalyst to the compound having general formula (II) is from 0.1 to 10 and preferably from 0.2 to 2.
  10. The method according to any one of claims 1 to 9, wherein the weight ratio of the compound having general formula (II) to the alcohol having general formula (III) is from 0.0001 to 0.1 and preferably from 0.001 to 0.05.
  11. The method according to any one of claims 1 to 10, wherein the reaction is carried out in the presence of a solvent and the concentration of the compound having general formula (II) in the solvent is from 0.01wt%to 9wt%, preferably from 0.1wt%to 5wt%and more preferably from 0.1wt%to 2.5wt%.
  12. The method according to any one of claims 1 to 11, wherein the reaction of the compound having general formula (II) with the alcohol having general formula (III) is carried out under a hydrogen pressure in a range of 20-50bar.
  13. The method according to any one of claims 1 to 12, wherein the reaction time of the compound having general formula (II) with the alcohol having general formula (III) is from 10 to 20 h.
  14. The method according to any one of claims 1 to 13, wherein the reaction temperature is from 180℃ to 200℃.
  15. A mixture comprising:
    (i) A compound having general formula (II) ,
    (ii) An alcohol having general formula (III) ,
    (iii) Hydrogen, and
    (iv) A metal catalyst.
PCT/CN2020/078148 2020-03-06 2020-03-06 A method for the alkylation of amines WO2021174522A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20922861.8A EP4114820A4 (en) 2020-03-06 2020-03-06 A method for the alkylation of amines
PCT/CN2020/078148 WO2021174522A1 (en) 2020-03-06 2020-03-06 A method for the alkylation of amines
CN202080098151.9A CN115210214A (en) 2020-03-06 2020-03-06 Process for alkylating amines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078148 WO2021174522A1 (en) 2020-03-06 2020-03-06 A method for the alkylation of amines

Publications (1)

Publication Number Publication Date
WO2021174522A1 true WO2021174522A1 (en) 2021-09-10

Family

ID=77612825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078148 WO2021174522A1 (en) 2020-03-06 2020-03-06 A method for the alkylation of amines

Country Status (3)

Country Link
EP (1) EP4114820A4 (en)
CN (1) CN115210214A (en)
WO (1) WO2021174522A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984873A (en) * 2004-05-13 2007-06-20 巴斯福股份公司 Method for the continuous production of an amine
CN101489979A (en) * 2006-07-14 2009-07-22 巴斯夫欧洲公司 Method for producing an amine
CN107074735A (en) * 2014-11-10 2017-08-18 罗地亚经营管理公司 For reacting the method to form amine by direct aminatin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984873A (en) * 2004-05-13 2007-06-20 巴斯福股份公司 Method for the continuous production of an amine
CN101489979A (en) * 2006-07-14 2009-07-22 巴斯夫欧洲公司 Method for producing an amine
CN107074735A (en) * 2014-11-10 2017-08-18 罗地亚经营管理公司 For reacting the method to form amine by direct aminatin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIA-MIN HUANG,ET.AL.: "N-Alkylation of Ethylenediamine with Alcohols Catalyzed by CuO-NiO/γ-Al2O3", CHEMICAL PAPERS, vol. 66, no. 4, 31 December 2012 (2012-12-31), pages 304 - 307, XP035021878, ISSN: 0366-6352, DOI: 10.2478/s11696-012-0140-8 *
See also references of EP4114820A4 *
TETSU YAMAKAWA,ET. AL.: "Alkylation of Ethylenediamine with Alcohols by Use of Cu-based Catalysts in the Liquid Phase", CATALYSIS COMMUNICATIONS., vol. 5, no. 6, 13 April 2004 (2004-04-13), pages 291 - 295, XP055027567, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2004.03.004 *

Also Published As

Publication number Publication date
EP4114820A4 (en) 2024-01-17
EP4114820A1 (en) 2023-01-11
CN115210214A (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US20090011930A1 (en) Cerium Compositions and Methods of Making the Same
KR920006032A (en) Iron-antimony-molybdenum-containing oxide catalyst composition and preparation method thereof
WO2011017237A2 (en) Polymeric precursors for caigs and aigs silver-containing photovoltaics
WO2021174522A1 (en) A method for the alkylation of amines
GB2045106A (en) Process for preparation of copper-iron-aluminum hydrogenation catalysts
EP0057010B1 (en) Process for the production of ethylene glycol and/or glycollic acid esters, and catalyst therefor
EP0423241B1 (en) Process for making superconductors and their precursors
KR20020074709A (en) Process of preparing azithromycin and crystalline 9-deoxo-9a-aza-9a-homoerythromycin a hydrate used therein
US3023079A (en) Method for the preparation of selenides and tellurides
CN109608649A (en) A kind of Cu-Eu heterometallocenes organic backbone and its preparation and application with catalytic activity
JP4656292B2 (en) Method for producing metal alkanolamine compounds
AU2011217344B2 (en) Method for the production of ether carboxylates
CN113880705A (en) Method for preparing tris (2,4-pentanedionato) ruthenium
US3023080A (en) Method for the preparation of selenides and tellurides
KR100738232B1 (en) Method of preparing mixed metal oxide catalyst and method of producing long chain aliphatic tertiary amine using the catalyst
NO743491L (en)
KR101802915B1 (en) Method for the production of ether carboxylates
US5149682A (en) Manufacturing method for superconducting ceramics and products thereof
EP0382376A1 (en) Method for the preparation of high purity copper alkoxides
EP0844251A1 (en) Process for the production of ruthenium (III) acetate solution
Teixidor et al. Transition metal complexes with 1, 3-bis-(2-hydroxyphenyl)-1, 3-propanedione—I: Mononuclear complexes
US7342140B2 (en) Method for the production of polyetherols
CN111375409B (en) Method for manufacturing Ti ion doped CuO catalyst
GB1458336A (en) Preparation of anilines
De Guire et al. Guanidine oxalate: a new reagent for coprecipitation in the synthesis of multicomponent ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020922861

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE