WO2021174383A1 - 音频处理方法、设备、可移动平台和计算机可读存储介质 - Google Patents

音频处理方法、设备、可移动平台和计算机可读存储介质 Download PDF

Info

Publication number
WO2021174383A1
WO2021174383A1 PCT/CN2020/077433 CN2020077433W WO2021174383A1 WO 2021174383 A1 WO2021174383 A1 WO 2021174383A1 CN 2020077433 W CN2020077433 W CN 2020077433W WO 2021174383 A1 WO2021174383 A1 WO 2021174383A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio collection
audio
collection device
devices
correlation
Prior art date
Application number
PCT/CN2020/077433
Other languages
English (en)
French (fr)
Inventor
薛政
莫品西
边云锋
刘洋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/077433 priority Critical patent/WO2021174383A1/zh
Priority to CN202080002826.5A priority patent/CN112204999A/zh
Publication of WO2021174383A1 publication Critical patent/WO2021174383A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/342Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone

Definitions

  • the present disclosure relates to the field of audio processing, and in particular, to an audio processing method, device, removable platform, and computer-readable storage medium.
  • the embodiment of the present disclosure also provides an audio processing device, including;
  • the processor is configured to execute the executable instructions stored in the memory to perform the following operations:
  • Acquire at least one characteristic parameter of the sound signal determine at least one audio acquisition device of the plurality of audio acquisition devices as a target audio acquisition device according to the at least one characteristic parameter, and output the sound of the target audio acquisition device Signal.
  • a plurality of audio collection devices the plurality of audio collection devices respectively face different directions;
  • the embodiment of the present disclosure also provides a computer-readable storage medium, which stores executable instructions, and when the executable instructions are executed by one or more processors, the one or more processors can execute the foregoing Audio processing method.
  • Fig. 1 is a flowchart of an audio processing method according to an embodiment of the disclosure.
  • Figure 2 shows a schematic diagram of the movable platform.
  • FIG. 3 is a flowchart of determining at least one audio collection device among a plurality of audio collection devices as a target audio collection device according to at least one characteristic parameter in the audio processing method according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of determining the target audio collection device according to the correlation when outputting a target audio collection device in the audio processing method of the embodiment of the disclosure.
  • Fig. 7 is a flowchart of determining at least one audio collection device among multiple audio collection devices as a target audio collection device according to at least one characteristic parameter in an audio processing method according to another embodiment of the present disclosure.
  • Figures 8, 9, and 10 are schematic diagrams of the three structures of the movable platform.
  • FIG. 11 is a schematic structural diagram of an audio collection device and an audio processing device separately arranged in an embodiment of the disclosure.
  • FIG. 12 is a schematic structural diagram of an audio processing device according to an embodiment of the disclosure.
  • FIG. 13 is a schematic structural diagram of a movable platform according to an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of the structure of the movable platform and the remote controller of the movable platform according to an embodiment of the disclosure.
  • An embodiment of the present disclosure provides an audio processing method. As shown in FIG. 1, the audio processing method includes:
  • Step S101 Acquire sound signals collected by a plurality of audio collection devices, which are set on a movable platform and face different directions;
  • Step S102 Acquire at least one characteristic parameter of the sound signal, determine at least one audio acquisition device of the plurality of audio acquisition devices as a target audio acquisition device according to the at least one characteristic parameter, and output the target audio acquisition The sound signal of the device.
  • Audio processing equipment includes any equipment with sound processing functions, such as, but not limited to, audio recording equipment, audio playback equipment, audio transmission equipment, and equipment that processes collected sounds.
  • the processing of the collected sound includes, but is not limited to, amplification, filtering, enhancement, speech recognition, and the like.
  • Examples of audio processing devices may include mobile devices such as voice recorders, cameras, video cameras, mobile terminals (mobile phones, tablet computers, etc.), and handheld pan-tilts.
  • the audio processing device may be a remote control device of the movable platform, for example, a remote control on the ground, a mobile phone, a PC, and other terminals.
  • the audio processing method of this embodiment will be described by taking the audio collection device installed on a movable platform as an example.
  • the movable platform includes a plurality of audio collection devices, and the plurality of audio collection devices are arranged on the movable platform and respectively face different directions.
  • the movable platform includes at least one surface, and the one or more surfaces form an outline of the movable platform, and a plurality of audio collection devices are distributed on the one or more surfaces of the movable platform.
  • at least one surface of the movable platform includes: multiple surfaces facing different directions, and multiple audio collection devices are respectively distributed on at least part of the multiple surfaces.
  • the audio processing method of this embodiment distributes multiple audio collection devices on at least part of the surface of the movable platform, so that the wind noise suppression effect on the wind in all directions is uniform, and it can suppress or even avoid the distortion of the sound signal. , Can get a more natural sound reception effect in wind noise scenes, and can be applied to a mobile platform with multiple microphones.
  • the sound signals collected by multiple audio collection devices distributed on one or more surfaces of the movable platform are acquired through step S101.
  • sound signals are collected by four microphones, and the collected sound signals are generally time-domain signals. It is assumed that the time domain signals collected by the first microphone 201, the second microphone 202, the third microphone 203, and the fourth microphone 204 are: x1, x2, x3, and x4, respectively.
  • step S102 At least one characteristic parameter of the sound signal is first acquired.
  • the coordinate system is established with the center of the movable platform as the origin, and the movable platform is subjected to the upper right wind, and the angle between the wind direction and the y axis is ⁇ .
  • the movable platform collects surrounding environmental sounds through a microphone, it will be affected by wind noise.
  • the sound signal collected by the microphone includes not only the environmental sound signal, but also the wind noise signal.
  • the first microphone 201 and the second microphone 202 distributed on the windward side are particularly affected by wind noise.
  • the correlation of the sound signals of two adjacent microphones is closely related to wind noise.
  • the probability that the sound signal has wind noise is lower; if the correlation between the two sound signals is lower, the sound signal has wind noise The higher the probability.
  • the correlation between the sound signals of two adjacent microphones is higher, the two microphones are less affected by wind noise; if the correlation between the sound signals of the two adjacent microphones is lower, the two microphones are affected by wind noise. The greater the impact of wind noise. It can be seen that the correlation of sound signals can reflect wind noise. Therefore, the characteristic parameter of correlation is selected in step S102.
  • At least one of the plurality of audio acquisition devices is determined as the target audio acquisition device according to the at least one characteristic parameter, and the target audio acquisition device is output Sound signal.
  • the above steps include:
  • Step S301 Obtain the correlation between the sound signals of all two adjacent audio collection devices among the multiple audio collection devices;
  • step S301 the correlation values of the sound signals of all two adjacent audio collection devices are calculated.
  • the time-domain signal collected by the microphone is converted into a frequency-domain signal, and then the correlation value is calculated by the cross-spectrum calculation formula.
  • the time domain signals x1, x2, x3, and x4 collected by the first microphone 201, the second microphone 202, the third microphone 203, and the fourth microphone 204 are respectively converted into Frequency domain signals X1, X2, X3 and X4.
  • r i and j respectively represent the numbers of the microphones
  • r ij represents the correlation value of the sound signals of the microphone i and the microphone j.
  • the range of r ij is between 0 and 1. The closer the r ij is to 1, the higher the correlation between two adjacent microphones; the closer the r ij is to 0, the lower the correlation between the two adjacent microphones.
  • the correlation value r 34 between the third microphone 203 and the fourth microphone 204.
  • step S302 is used to determine the target audio collection device according to the correlations.
  • the target audio collection device is determined according to the correlation and includes:
  • Step S401 For each audio collection device, determine the sum of the correlations between the audio collection device and the sound signals of two audio collection devices adjacent to the audio collection device;
  • the target microphone is less affected by wind noise.
  • the microphone corresponding to the maximum value is used as the target microphone. Assuming that the value of R3total is the largest, the third microphone 203 is output as the target microphone.
  • the target audio collection device since multiple audio collection devices face different directions, and the target audio collection device is determined according to at least one characteristic parameter, it can obtain good wind from all directions.
  • Noise suppression effect that is, the wind noise suppression effect for different wind directions is uniform.
  • the entire method only calculates the correlation value of the sound signal, the sound signal itself is not processed in the process of determining the target audio collection device, thereby effectively suppressing or even avoiding the distortion of the sound signal, which can be used in wind noise scenes. Get a more natural sound effect. Compared with the prior art, the wind noise suppression effect is improved, and the sound signal quality is improved.
  • determining the target audio collection device according to the correlation may further include:
  • Step S501 Determine a group of two adjacent audio collection devices with the greatest correlation
  • Step S502 Determine one audio collection device in the group of two adjacent audio collection devices as the target audio collection device.
  • the energy of the sound signal can be used to judge the wind direction.
  • the greater the energy of the sound signal collected by the microphone the more likely the microphone will face the direction of the incoming wind, that is, the more likely the direction of the microphone will be opposite to the wind direction; the lower the energy of the sound signal collected by the microphone, the more likely the microphone will not face the direction of the incoming wind. That is, the direction of the microphone is more likely to be the same as the wind direction.
  • the characteristic parameter of signal energy can be selected to obtain the signal energy of the sound signals of the two adjacent audio acquisition devices in the group, and then Among the two adjacent audio collection devices in the group, the audio collection device with the smaller signal energy is determined as the target audio collection device. Assuming that the correlation value r 34 between the third microphone 203 and the fourth microphone 204 is the largest, if the sound signal energy of the third microphone 203 is less than the sound signal energy of the fourth microphone 204, the third microphone 203 is determined as the target audio collection device Otherwise, the fourth microphone 204 is determined as the target audio collection device.
  • a group of two adjacent audio collection devices with the greatest correlation includes: a first audio collection device and a second audio collection device.
  • the first audio collection device is determined as the target audio collection device; otherwise, the second audio collection device is determined as the target audio collection device.
  • the correlation value r 34 between the third microphone 203 and the fourth microphone 204 is the largest.
  • determine the average value of the correlation value r 23 between the third microphone 203 and the second microphone 202 and the correlation value r 34 between the third microphone 203 and the fourth microphone 204 R3avr (r 23 +r 34 )/2.
  • the above describes the scenario where only one target audio capture device is output. In some scenarios, it may be necessary to output multiple target audio capture devices. For example, for a mobile platform with stereo function, it is necessary to output sound signals collected by multiple audio collection devices. In this case, if the movable platform is in a wind noise environment, it is necessary to determine multiple target audio collection devices to output sound signals.
  • the target audio collection devices determined according to the correlation include:
  • Step S601 Sort all the two adjacent audio acquisition devices according to the order of the correlation from the largest to the smallest, to obtain a correlation ranking table;
  • Step S602 Select at least one group of two adjacent audio collection devices at the front of the correlation ranking table
  • Step S603 Determine at least part of the audio collection devices in the at least one group of two adjacent audio collection devices as the target audio collection devices.
  • the correlation value r 23 between the second microphone 202 and the third microphone 203 and the correlation value r 34 between the third microphone 203 and the fourth microphone 204 are obtained to obtain a correlation ranking table.
  • the microphones 204 are all determined to be target audio collection devices.
  • the target audio collection device since the multiple audio collection devices installed on the movable platform face different directions, and the target audio collection device is determined according to the characteristic parameters of the sound signal, it can obtain good results from all directions. Good wind noise suppression effect.
  • the entire method only calculates the energy of the sound signal, the sound signal itself is not processed in the process of determining the target audio collection device, which effectively suppresses or even avoids the distortion of the sound signal, which can be obtained in the wind noise scene More natural sound effect. Compared with the prior art, the wind noise suppression effect is improved, and the sound signal quality is improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种音频处理方法、设备、可移动平台和计算机可读存储介质,音频处理方法,包括:获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。

Description

音频处理方法、设备、可移动平台和计算机可读存储介质 技术领域
本公开涉及音频处理领域,尤其涉及一种音频处理方法、设备、可移动平台和计算机可读存储介质。
背景技术
很多设备具有音频采集功能,这些设备通过采集周围的环境声音,以实现对环境声音的录制、播放、传输。在很多应用场景中,音频采集设备需要在户外进行声音采集。由于户外环境风的存在,采集到的声音信号的质量会受到风噪的影响。现有技术中,对风噪进行抑制的效果不理想,风噪场景的拾音一直是音频处理领域的长期问题。
发明内容
本公开实施例提供了一种音频处理方法,包括:
获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;
获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。
本公开实施例还提供了一种音频处理设备,包括;
存储器,用于存储可执行指令;
处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;
获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。
本公开实施例还提供了一种可移动平台,包括:
多个音频采集设备,所述多个音频采集设备分别朝向不同方向;以及
上述音频处理设备。
本公开实施例还提供了一种计算机可读存储介质,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行上述音频处理方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的音频处理方法的流程图。
图2显示了可移动平台的一种结构示意图。
图3为本公开实施例的音频处理方法中,根据至少一个特征参数将多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备的流程图。
图4为本公开实施例的音频处理方法中,输出一个目标音频采集设备时,根据相关性确定目标音频采集设备的流程图。
图5为本公开实施例的音频处理方法中,输出一个目标音频采集设备时,根据相关性确定目标音频采集设备的另一流程图。
图6为本公开实施例的音频处理方法中,输出多个目标音频采集设备时,根据相关性确定目标音频采集设备的流程图。
图7为本公开另一实施例的音频处理方法中,根据至少一个特征参数将多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备的流程图。
图8、图9、图10可移动平台的三种结构示意图。
图11为本公开实施例的音频采集设备和音频处理设备分离设置的结构示意图。
图12为本公开实施例的音频处理设备的结构示意图。
图13为本公开实施例的可移动平台的结构示意图。
图14为本公开实施例的可移动平台和可移动平台的遥控器的结构示意图。
具体实施方式
虽然现有技术存在降风噪的技术方案,但是都存在不同程度的缺陷。例如,对于结构降风噪方案,其对不同方向风的风噪抑制效果差异较大。即结构防风方案一般只对部分方向风具有风噪抑制效果,对其他方向风的风噪抑制效果较差。因此,整体风噪抑制效果不理想。对于算法降风噪方案,虽然能够达到一定的降风噪效果,但是在对风噪进行抑制的同时,会影响声音信号的质量,造成声音信号的失真。
本公开提供了一种音频处理方法、设备以及可移动平台。本公开的音频处理方法、设备以及可移动平台对各个方向风的风噪抑制效果均一,并能抑制甚至避免对声音信号造成失真,可在风噪场景中获得更自然的收音效果,可应用在具有多个麦克风的电子设备。
下面将结合实施例和实施例中的附图,对本公开技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开一实施例提供了一种音频处理方法,如图1所示,该音频处理方法包括:
步骤S101:获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;
步骤S102:获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。
本实施例的音频处理方法可以通过音频处理设备执行。音频处理设备可以设置于可移动平台,该可移动平台还包括音频采集设备。音频采集设备包括任何具有声音采集功能的设备,例如但不限于,麦克风。本实施例所称的可移动平台可以包括:无人车、无人机、无人船等可移动载体、以及录音笔、相机、摄像机、移动终端(手机、平板电脑等)、手持云台等移动设备。可移动平台还可以与遥控设备通信连接,遥控设备用于对可移动平台进行控制。
音频处理设备还可以与音频采集设备分离设置。音频处理设备包括任何具有声音处理功能的设备,例如但不限于,音频录制设备、音频播放设 备、音频传输设备、以及对采集的声音进行处理的设备。所述对采集的声音进行处理例如但不限于,放大、滤波、增强、语言识别等。作为音频处理设备的示例,可以包括录音笔、相机、摄像机、移动终端(手机、平板电脑等)、手持云台等移动设备。当音频采集设备安装在可移动平台时,音频处理设备可以是可移动平台的遥控设备,例如,地面端的遥控器、手机、PC等终端。
以下以音频采集设备安装在可移动平台为例,对本实施例的音频处理方法进行说明。
可移动平台包括多个音频采集设备,并且多个音频采集设备设置于可移动平台且分别朝向不同方向。在可选的实施方式中,可移动平台包括至少一个表面,这一个或多个表面形成可移动平台的轮廓,而多个音频采集设备分布于可移动平台的这一个或多个表面。作为一种实施方式,可移动平台的至少一个表面包括:分别朝向不同方向的多个表面,且多个音频采集设备分别分布于这些多个表面中的至少部分表面。
本实施例的音频处理方法通过将多个音频采集设备分别分布于可移动平台多个表面的至少部分表面,从而对各个方向风的风噪抑制效果均一,并能抑制甚至避免对声音信号造成失真,可在风噪场景中获得更自然的收音效果,可应用在具有多个麦克风的可移动平台。
以下参照图2对本实施例进行说明。图2所示为可移动平台的结构示意图。可移动平台总体上为六面体结构。可移动平台包括四个音频采集设备:第一麦克风201、第二麦克风202、第三麦克风203和第四麦克风204。以图2的视角看,第一麦克风201、第二麦克风202、第三麦克风203和第四麦克风204分别分布在可移动平台的上表面211、右表面212、下表面213和左表面214,所以第一麦克风201、第二麦克风202、第三麦克风203和第四麦克风204分别朝向四个不同的方向。本领域技术人员应当理解的是,图2仅是对麦克风和可移动平台的示意性显示,本实施例对麦克风的具体安装形式不做限定。例如麦克风可以和可移动平台的表面相平齐,也可以突出于可移动平台的表面,或嵌入到可移动平台内并与外部环境连通。麦克风可以可拆卸地安装(包括:徒手、利用工具)在可移动平台的表面,也可以不可拆卸地固定在可移动平台的表面。
本实施例的音频处理方法,通过步骤S101获取分布于可移动平台的一个或多个表面的多个音频采集设备采集的声音信号。对于图2所示的可移动平台,由四个麦克风分别采集声音信号,所采集的声音信号一般为时域信号。假定第一麦克风201、第二麦克风202、第三麦克风203和第四麦克风204采集的时域信号分别为:x1、x2、x3和x4。
当通过步骤S101采集到声音信号后,在步骤S102中,首先获取声音信号的至少一个特征参数。
当可移动平台处于风噪场景时,如图2所示,以可移动平台的中心作为原点设立坐标系,则可移动平台受到右上方向的来风,风向与y轴的夹角为α。在这种情况下,当可移动平台通过麦克风采集周围的环境声音时会受到风噪的影响。麦克风采集的声音信号中不仅包括环境声音信号,还包括风噪信号。这其中,分布在迎风面的第一麦克风201和第二麦克风202受风噪影响尤其明显。
对于具有多个麦克风的可移动平台,相邻两个麦克风的声音信号的相关性与风噪密切相关。对于相邻的两个麦克风信号来说,若二者声音信号的相关性越高,则声音信号存在风噪的概率越低;若二者声音信号的相关性越低,则声音信号存在风噪的概率越高。或者可以说,若相邻两个麦克风声音信号的相关性越高,则该两个麦克风受风噪影响越小;若相邻两个麦克风声音信号的相关性越低,则该两个麦克风受风噪影响越大。由此可见,声音信号的相关性可以反应风噪情况。因此,在步骤S102选取相关性这一特征参数。
当获取到声音信号的至少一个特征参数后,再根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。可选的,如图3所示,上述步骤包括:
步骤S301:获取所述多个音频采集设备中所有的相邻两个所述音频采集设备的声音信号之间的相关性;
步骤S302:根据所述相关性确定所述目标音频采集设备。
在步骤S301中,计算所有的相邻两个音频采集设备的声音信号的相关值。首先将麦克风采集的时域信号转换为频域信号,再通过互谱计算公 式计算相关值。
对于图2所示的可移动平台的音频处理设备,首先将第一麦克风201、第二麦克风202、第三麦克风203和第四麦克风204采集的时域信号x1、x2、x3和x4分别转换为频域信号X1、X2、X3和X4。
然后利用下述互谱计算公式计算所有的相邻麦克风之间的相关值:
Figure PCTCN2020077433-appb-000001
i,j分别表示麦克风的编号,r ij表示麦克风i与麦克风j的声音信号的相关值。r ij的范围在0~1之间,r ij越接近1,则相邻两个麦克风的相关性越高;r ij越接近0,相邻两个麦克风的相关性越低。通过上述方式,可计算出第一麦克风201与第二麦克风202的相关值r 12、第一麦克风201与第四麦克风的204相关值r 14、第二麦克风202与第三麦克风203的相关值r 23、第三麦克风203与第四麦克风204的相关值r 34
得到所有的相邻两个音频采集设备的相关性后,利用步骤S302根据相关性确定出目标音频采集设备。
如图4所示,当仅需要输出一个目标音频采集设备时,根据相关性确定目标音频采集设备包括:
步骤S401:对于每个音频采集设备,确定该音频采集设备与和该音频采集设备相邻的两个音频采集设备的声音信号的相关性之和;
步骤S402:将所述相关性之和的最大值所对应的音频采集设备确定为所述目标音频采集设备。
如图2所示的可移动平台的音频处理设备,首先,对于第一麦克风201,计算第一麦克风201与第二麦克风202、第一麦克风201与第四麦克风204的相关值之和:R1total=r 12+r 14;对于第二麦克风202,计算第二麦克风202与第一麦克风201、第二麦克风202与第三麦克风203的相关值之和:R2total=r 12+r 23;对于第三麦克风203,计算第三麦克风203与第二麦克风202、第三麦克风203与第四麦克风204的相关值之和:R3total=r 23+r 34;对于第四麦克风204,计算第四麦克风204与第一麦克风201、第四麦克 风204与第三麦克风203的相关值之和:R4total=r 14+r 34
这样如果目标麦克风与其相邻两个麦克风的相关性都相对较大,则目标麦克风受到风噪的影响较小。通过比较R1total、R2total、R3total和R4total的大小,将最大值所对应的麦克风作为目标麦克风。假定R3total的值最大,则将第三麦克风203作为目标麦克风输出。
由此可见,本实施例的音频处理方法,由于多个音频采集设备分别朝向不同的方向,并根据至少一个特征参数确定目标音频采集设备,因此对各个方向的来风都能取得很好的风噪抑制效果,即对不同风向的风噪抑制效果均一。同时,由于整个方法仅仅计算了声音信号的相关值,在确定目标音频采集设备的过程中并未对声音信号本身进行处理,从而有效地抑制甚至避免了声音信号的失真,可在风噪场景中获得更自然的收音效果。相对于现有技术,提高了风噪抑制效果,改善了声音信号质量。
以上仅是示例性的实施方式。在另一实施方式中,当仅需要输出一个目标音频采集设备时,如图5所示,根据相关性确定目标音频采集设备还可以包括:
步骤S501:确定相关性最大的一组相邻的两个音频采集设备;
步骤S502:将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备。
对于图2所示的可移动平台,从第一麦克风201与第二麦克风202的相关值r 12、第一麦克风201与第四麦克风204的相关值r 14、第二麦克风202与第三麦克风203的相关值r 23、第三麦克风203与第四麦克风204的相关值r 34中,确定相关性最大的一组相邻的两个音频采集设备。假定第三麦克风203与第四麦克风204的相关值r 34的值最大,则选择第三麦克风203与第四麦克风204。
当可移动平台处于风噪场景时,由于风噪对声音信号的低频干扰较大,风噪会明显增大声音信号的能量。因此,可利用声音信号的能量对风向进行判断。麦克风采集的声音信号能量越大,则该麦克风越可能朝向来风方向,即该麦克风的朝向越可能与风向相对;麦克风采集的声音信号能量越小,则该麦克风越可能不朝向来风方向,即该麦克风的朝向越可能与风向相同。
因此,当相关性最大的一组相邻的两个音频采集设备确定后,可选取信号能量这一特征参数,获取该组相邻的两个音频采集设备的声音信号的信号能量,并将该组相邻的两个音频采集设备中的信号能量较小的音频采集设备确定为目标音频采集设备。假定第三麦克风203与第四麦克风204的相关值r 34的值最大,若第三麦克风203的声音信号能量小于第四麦克风204的声音信号能量,则将第三麦克风203确定为目标音频采集设备,反之,则将第四麦克风204确定为目标音频采集设备。
以上仅是一种示例性的实施方式,在另一实施方式中,也可以不通过声音信号的能量确定目标音频采集设备,而是根据音频采集设备的相关性均值来确定目标音频采集设备。
具体来说,假设相关性最大的一组相邻的两个音频采集设备包括:第一音频采集设备和第二音频采集设备。
首先,确定第一音频采集设备和第二音频采集设备的声音信号之间的相关性、与第一音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第一相关性均值;
然后,确定第一音频采集设备和第二音频采集设备的声音信号之间的相关性、与第二音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第二相关性均值;
当上述第一相关性均值大于上述相关性第二均值时,将第一音频采集设备确定为目标音频采集设备;否则,将第二音频采集设备确定为目标音频采集设备。
对于图2所示的可移动平台,假定第三麦克风203与第四麦克风204的相关值r 34最大。首先,确定第三麦克风203与第二麦克风202的相关值r 23、与第三麦克风203与第四麦克风204的相关值r 34的均值R3avr=(r 23+r 34)/2。然后,确定第四麦克风204与第三麦克风203的相关值r 34、与第四麦克风204与第一麦克风201的相关值r 14的均值R4avr=(r 34+r 14)/2。最后比较R3avr与R4avr的大小。如果R3avr大于R4avr,则将第三麦克风203确定为目标音频采集设备;否则,将第四麦克风204确定为目标音频采集设备。
同样,通过上述实施方式,均能对各个方向的来风都能取得很好的风 噪抑制效果,在确定目标音频采集设备的过程中均未对声音信号本身进行处理,从而有效地抑制甚至避免了声音信号的失真,可在风噪场景中获得更自然的收音效果。
以上对仅输出一个目标音频采集设备的场景进行了说明。在有些场景中,可能需要输出多个目标音频采集设备。例如,对于具有立体声功能的可移动平台,需要输出多个音频采集设备采集的声音信号。在这种情况下,如果可移动平台处于风噪环境中,就需要确定多个目标音频采集设备来输出声音信号。
如图6所示,当需要输出多个目标音频采集设备时,根据相关性确定目标音频采集设备包括:
步骤S601:按照相关性从大到小的顺序,对所有的相邻两个所述音频采集设备排序,得到相关性排序表;
步骤S602:选择所述相关性排序表前部的至少一组相邻的两个音频采集设备;
步骤S603:将所述至少一组相邻的两个音频采集设备中的至少部分音频采集设备确定为所述目标音频采集设备。
对于图2所示的可移动平台,首先按照相关性从大到小的顺序,将第一麦克风201与第二麦克风202的相关值r 12、第一麦克风201与第四麦克风204的相关值r 14、第二麦克风202与第三麦克风203的相关值r 23、第三麦克风203与第四麦克风204的相关值r 34,得到相关性排序表。
假定r 34>r 23>r 14>r 12,相关性排序表如下所示:
相关值 麦克风编号
r 34 第三麦克风、第四麦克风
r 23 第二麦克风、第三麦克风
r 14 第一麦克风、第四麦克风
r 12 第一麦克风、第二麦克风
然后,选择相关性排序表前部的一组相邻的两个音频采集设备,即选择相关性最大的一组麦克风:第三麦克风203、第四麦克风204,并将第三麦克风203、第四麦克风204都确定为目标音频采集设备。
当然也可以根据音频处理设备的实际功能,选择三、四或更多个目标 采集设备。比如,如果需要输出三个麦克风的声音信号,可选择相关性排序表前部的两组相邻的音频采集设备,即第三麦克风203、第四麦克风204、以及第二麦克风202,并将第二麦克风202、第三麦克风203和第四麦克风204都确定为目标音频采集设备。
本实施例的音频处理方法,还包括:当输出目标音频采集设备的声音信号后,对输出的目标音频采集设备的声音信号进行处理。如前所述,本实施例的处理可以包括但不限于:录制、播放、传输、放大、滤波、增强、语言识别等。
以上对本公开一实施例的音频处理方法进行了说明。本公开另一实施例也提供了一种音频处理方法,以下对该本实施例的音频处理方法进行介绍。其中与上一实施例相同或相似之处不再赘述。
本公开另一实施例的音频处理方法,在获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备的步骤中,选取音频采集设备采集的声音信号的能量作为该特征参数。
当可移动平台处于风噪场景时,由于风噪对声音信号的低频干扰较大,风噪会明显增大声音信号的能量。因此,可利用声音信号的能量确定目标音频采集设备。音频采集设备的声音信号能量越大,该音频采集设备受风噪影响越大;音频采集设备的声音信号能量越小,该音频采集设备受风噪影响越小。
如图7所示,确定目标音频采集设备的步骤,包括:
步骤S701:获取所述音频采集设备的声音信号的信号能量;
步骤S702:将所述信号能量较小的至少一个所述音频采集设备确定为所述目标音频采集设备。
对于图2所示的可移动平台,首先分别检测第一麦克风201、第二麦克风202、第三麦克风203与第四麦克风204的声音信号的能量P1、P2、P3和P4。然后将信号能量较小的至少一个麦克风确定为目标麦克风。
假定第一麦克风201、第二麦克风202、第三麦克风203与第四麦克风204的声音信号的能量大小关系为:P1>P2>P4>P3,则可将声音信号能量最小的第三麦克风203作为目标麦克风。如果需要输出多个目标麦克 风,例如两个目标麦克风,则将声音信号能量较小的第三麦克风203和第四麦克风204作为目标麦克风。
由此可见,本实施例的音频处理方法,由于多个音频采集设备分别朝向不同的方向,并根据声音信号的能量确定目标音频采集设备,因此对各个方向的来风都能取得很好的风噪抑制效果。同时,由于整个方法仅仅计算了声音信号的能量,在确定目标音频采集设备的过程中并未对声音信号本身进行处理,从而有效地抑制甚至避免了声音信号的失真,可在风噪场景中获得更自然的收音效果。相对于现有技术,提高了风噪抑制效果,改善了声音信号质量。
以上以图2的可移动平台为例,对本公开实施例的音频处理方法进行说明。但本领域技术人员应当理解,图2的可移动平台只是一种示例,本公开的可移动平台并不以此为限。
可移动平台的表面可以是如图2所示的平面,也可以是非平面,例如曲面、或不规则表面。如图8所示,可移动平台810的表面为曲面,以图8的视角看,第一麦克风801、第二麦克风802、第三麦克风803和第四麦克风804分别分布在可移动平台801的上表面811、左表面812、下表面813和右表面814。可移动平台的表面数量不限于四个,可以是三个、或五个以上。如图9所示,可移动平台910的轮廓呈六边形,六个麦克风901、902、903、904、905、906分别分布在可移动平台的六个表面。可移动平台的轮廓也可以仅由一个曲面围成。所述曲面可以是球面或椭球面。如图10所示,可移动平台1010的轮廓为圆形,第一麦克风1001、第二麦克风1002、第三麦克风1003分别分布于球面的朝向不同方向的不同位置。
本公开对音频采集设备的数量和位置也不做限制,音频采集设备的设置方式可以非常灵活。可以如图2、8和9所示,在可移动平台的每个表面均设置一个麦克风。也可以在每个表面设置两个以上的麦克风,或者也可以仅在可移动平台的部分表面设置一个或多个麦克风。麦克风可以设置在表面的中心位置,当然也可以设置在偏离表面中心的位置。
作为一种实施方式,多个音频采集设备在可移动平台的表面均匀分布。所谓均匀分布是指各个音频采集设备之间的距离或夹角均是相同的。换句话说,相邻两个音频采集设备与可移动平台中心的连线之间的夹角为: 360/N,其中,N为音频采集设备的数量,且N≥3。例如,对于图2所示的可移动平台,四个麦克风之间的夹角为360/4=90度;对于图10所示的可移动平台,三个麦克风之间的夹角为360/3=120度。通过均匀分布的多个音频采集设备,可进一步提高对各个风向的风噪抑制效果,改善声音信号质量。
以上以音频采集设备安装在可移动平台为例,对本公开的音频处理方法进行了说明。如前所述,音频处理设备可以集成在可移动平台上,也可以是可移动平台的遥控设备。如图11所示,在无人机1110机身的四个表面1111、1112、1113、1114分别安装有麦克风1101、1102、1103、1104,麦克风朝向不同的方向。地面的遥控设备1120用于对无人机进行控制,同时作为音频处理设备。无人机与遥控设备之间通过无线通信的方式传输数据。麦克风采集的声音信号可通过无线通信传输给遥控设备。
对于音频处理设备与可移动平台分离设置的场景,本公开实施例的音频处理方法的执行方式与上述音频处理设备安装在可移动平台类似,不同的是,无人机上的麦克风采集的声音信号需要通过无线通信传输给遥控设备,再由遥控设备确定目标麦克风。即首先获取多个麦克风采集的声音信号,并将声音信号过无线通信传输给遥控设备。在遥控设备处,获取声音信号的至少一个特征参数,根据至少一个特征参数将多个麦克风中的至少一个麦克风确定为目标麦克风,并输出目标麦克风的声音信号。
同样的,由于安装在可移动平台的多个音频采集设备分别朝向不同的方向,并根据声音信号的能量确定目标音频采集设备,因此对各个方向的来风都能取得很好的风噪抑制效果。同时,由于整个方法仅仅计算了声音信号的能量,在确定目标音频采集设备的过程中并未对声音信号本身进行处理,从而有效地抑制甚至避免了声音信号的失真,可在风噪场景中获得更自然的收音效果。相对于现有技术,提高了风噪抑制效果,改善了声音信号质量。
本公开又一实施例还提供了一种音频处理设备,如图12所示,包括:
存储器1212,用于存储可执行指令;
处理器1211,用于执行存储器1212中存储的可执行指令,以执行如下操作:
获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;
获取声音信号的至少一个特征参数,根据至少一个特征参数将多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出目标音频采集设备的声音信号。
音频采集设备例如可以是麦克风。可移动平台包括:形成可移动平台轮廓的至少一个表面,多个麦克风分布于可移动平台的至少一个表面。如图13所示,麦克风1301、1302、1303、1304分别安装在可移动平台1310四个表面。音频处理设备1210包括上述存储器1212和处理器1211。可移动平台1310可以具有任意数量和形状的表面,可灵活设置麦克风的数量和位置,只要多个麦克风分别朝向不同方向即可。如图14所示,麦克风1401、1402、1403、1404分别安装在可移动平台1410表面。可移动平台1410可以具有任意数量和形状的表面,可灵活设置麦克风的数量和位置,只要多个麦克风分别朝向不同方向即可。遥控设备1420包括音频处理设备1210,音频处理设备1210包括上述存储器1212和处理器1211。
可移动平台具有分别朝向不同方向的多个表面,多个音频采集设备分别分布于多个表面中的至少部分表面。所示表面可以是平面、曲面的至少一种。在一个示例中,至少一个表面包括:一个曲面,多个音频采集设备分别分布于曲面的朝向不同方向的不同位置。
可选的,多个音频采集设备在至少一个表面上均匀分布。均匀分布是指相邻两个音频采集设备与可移动平台中心的连线之间的夹角为:360/N,其中,N为音频采集设备的数量,且N≥3。
本实施例可将相关性、信号能量的至少一个作为一个特征参数。根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备的操作,包括:
获取所述多个音频采集设备中所有的相邻两个所述音频采集设备的声音信号之间的相关性;
根据所述相关性确定所述目标音频采集设备。
当需要输出多个目标音频采集设备时,根据所述相关性确定所述目标音频采集设备的操作,包括:
按照相关性从大到小的顺序,对所有的相邻两个所述音频采集设备排序,得到相关性排序表;
选择所述相关性排序表前部的的至少一组相邻的两个音频采集设备;
将所述至少一组相邻的两个音频采集设备中的至少部分音频采集设备确定为所述目标音频采集设备。
当需要输出一个目标音频采集设备时,根据所述相关性确定所述目标音频采集设备的操作,包括:
对于每个音频采集设备,确定该音频采集设备与和该音频采集设备相邻的两个音频采集设备的声音信号的相关性之和;
将所述相关性之和的最大值所对应的音频采集设备确定为所述目标音频采集设备。
或者,
确定相关性最大的一组相邻的两个音频采集设备;
将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备。
将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备的操作,包括:
获取该组相邻的两个音频采集设备的声音信号的信号能量;
将该组相邻的两个音频采集设备中的所述信号能量较小的音频采集设备确定为所述目标音频采集设备。
假设该组相邻的两个音频采集设备包括:第一音频采集设备和第二音频采集设备;
将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备的操作,包括:
确定所述第一音频采集设备和所述第二音频采集设备的声音信号之间的相关性、与所述第一音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第一相关性均值;
确定所述第一音频采集设备和所述第二音频采集设备的声音信号之间的相关性、与所述第二音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第二相关性均值;
当所述第一相关性均值大于所述相关性第二均值,将所述第一音频采集设备确定为所述目标音频采集设备;否则,将所述第二音频采集设备确定为所述目标音频采集设备。
此外,本实施例确定为目标音频采集设备的操作,还可以包括:
获取所述音频采集设备的声音信号的信号能量;
将所述信号能量较小的至少一个所述音频采集设备确定为所述目标音频采集设备。
本实施例的音频处理设备,由于安装在可移动平台的多个音频采集设备分别朝向不同的方向,并根据声音信号的特征参数确定目标音频采集设备,因此对各个方向的来风都能取得很好的风噪抑制效果。同时,由于整个方法仅仅计算了声音信号的能量,在确定目标音频采集设备的过程中并未对声音信号本身进行处理,从而有效地抑制甚至避免了声音信号的失真,可在风噪场景中获得更自然的收音效果。相对于现有技术,提高了风噪抑制效果,改善了声音信号质量。
本公开实施例还提供了一种可移动平台,包括:
多个音频采集设备,所述多个音频采集设备分别朝向不同方向;以及
上述实施例所述的音频处理设备。
图13和图14示出了可移动平台的两种结构示意图。如图13所示,麦克风1301、1302、1303、1304分别安装在可移动平台1310四个表面。音频处理设备1210设置在可移动平台,包括上述存储器1212和处理器1211。可移动平台1310可以具有任意数量和形状的表面,可灵活设置麦克风的数量和位置,只要多个麦克风分别朝向不同方向即可。如图14所示,麦克风1401、1402、1403、1404分别安装在可移动平台1410表面。可移动平台1410可以具有任意数量和形状的表面,可灵活设置麦克风的数量和位置,只要多个麦克风分别朝向不同方向即可。音频处理设备1210与可移动平台1410分离,并设置在可移动平台1410的遥控设备1420,音频处理设备1210包括上述存储器1212和处理器1211。
本实施例的可移动平台,多个音频采集设备设置于可移动平台且分别朝向不同方向,通过获取多个音频采集设备采集的声音信号以及声音信号的至少一个特征参数,根据至少一个特征参数将多个音频采集设备中的至 少一个音频采集设备确定为目标音频采集设备,并输出目标音频采集设备的声音信号。
本实施例的可移动平台,由于安装在可移动平台的多个音频采集设备分别朝向不同的方向,并根据声音信号的特征参数确定目标音频采集设备,因此对各个方向的来风都能取得很好的风噪抑制效果。同时,由于整个方法仅仅计算了声音信号的能量,在确定目标音频采集设备的过程中并未对声音信号本身进行处理,从而有效地抑制甚至避免了声音信号的失真,可在风噪场景中获得更自然的收音效果。相对于现有技术,提高了风噪抑制效果,改善了声音信号质量。
本公开再一实施例还提供了一种计算机可读存储介质,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行上述实施例的音频处理方法。
计算机可读存储介质,例如可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,可读存储介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介质。可读存储介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
另外,计算机程序可被配置为具有例如包括计算机程序模块的计算机程序代码。应当注意,模块的划分方式和个数并不是固定的,本领域技术人员可以根据实际情况使用合适的程序模块或程序模块组合,当这些程序模块组合被计算机(或处理器)执行时,使得计算机可以执行本公开所述所述的无人机的仿真方法的流程及其变形。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的 普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本公开实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (34)

  1. 一种音频处理方法,其特征在于,包括:
    获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;
    获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。
  2. 如权利要求1所述的音频处理方法,其特征在于,所述可移动平台包括:形成所述可移动平台轮廓的至少一个表面;所述多个音频采集设备分布于所述至少一个表面。
  3. 如权利要求2所述的音频处理方法,其特征在于,所述至少一个表面包括:分别朝向所述不同方向的多个表面;所述多个音频采集设备分别分布于所述多个表面中的至少部分表面。
  4. 如权利要求3所述的音频处理方法,其特征在于,所述表面包括:平面、曲面的至少一种。
  5. 如权利要求2所述的音频处理方法,其特征在于,所述至少一个表面包括:一个曲面,所述多个音频采集设备分别分布于所述曲面的朝向所述不同方向的不同位置。
  6. 如权利要求2至5任一项所述的音频处理方法,其特征在于,所述多个音频采集设备在所述至少一个表面上均匀分布。
  7. 如权利要求6所述的音频处理方法,其特征在于,相邻两个所述音频采集设备与所述可移动平台中心的连线之间的夹角为:360/N,其中,N为所述音频采集设备的数量,且N≥3。
  8. 如权利要求1所述的音频处理方法,其特征在于,所述音频采集设备包括:麦克风。
  9. 如权利要求1所述的音频处理方法,其特征在于,所述至少一个特征参数包括:相关性、信号能量的至少一种。
  10. 如权利要求9所述的音频处理方法,其特征在于,所述根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,包括:
    获取所述多个音频采集设备中所有的相邻两个所述音频采集设备的声音信号之间的相关性;
    根据所述相关性确定所述目标音频采集设备。
  11. 如权利要求10所述的音频处理方法,其特征在于,所述目标音频采集设备的数量为多个;所述根据所述相关性确定所述目标音频采集设备,包括:
    按照相关性从大到小的顺序,对所有的相邻两个所述音频采集设备排序,得到相关性排序表;
    选择所述相关性排序表前部的至少一组相邻的两个音频采集设备;
    将所述至少一组相邻的两个音频采集设备中的至少部分音频采集设备确定为所述目标音频采集设备。
  12. 如权利要求10所述的音频处理方法,其特征在于,所述目标音频采集设备的数量为一个;所述根据所述相关性确定所述目标音频采集设备,包括:
    对于每个音频采集设备,确定该音频采集设备与和该音频采集设备相邻的两个音频采集设备的声音信号的相关性之和;
    将所述相关性之和的最大值所对应的音频采集设备确定为所述目标音频采集设备。
  13. 如权利要求10所述的音频处理方法,其特征在于,所述目标音频采集设备的数量为一个;所述根据所述相关性确定所述目标音频采集设备,包括:
    确定相关性最大的一组相邻的两个音频采集设备;
    将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备。
  14. 如权利要求13所述的音频处理方法,其特征在于,所述将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备,包括:
    获取该组相邻的两个音频采集设备的声音信号的信号能量;
    将该组相邻的两个音频采集设备中的所述信号能量较小的音频采集设备确定为所述目标音频采集设备。
  15. 如权利要求13所述的音频处理方法,其特征在于,该组相邻的两个音频采集设备包括:第一音频采集设备和第二音频采集设备;
    所述将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备,包括:
    确定所述第一音频采集设备和所述第二音频采集设备的声音信号之间的相关性、与所述第一音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第一相关性均值;
    确定所述第一音频采集设备和所述第二音频采集设备的声音信号之间的相关性、与所述第二音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第二相关性均值;
    当所述第一相关性均值大于所述相关性第二均值,将所述第一音频采集设备确定为所述目标音频采集设备;否则,将所述第二音频采集设备确定为所述目标音频采集设备。
  16. 如权利要求9所述的音频处理方法,其特征在于,所述根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,包括:
    获取所述音频采集设备的声音信号的信号能量;
    将所述信号能量较小的至少一个所述音频采集设备确定为所述目标音频采集设备。
  17. 一种音频处理设备,其特征在于,包括;
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    获取多个音频采集设备采集的声音信号,所述多个音频采集设备设置于可移动平台且分别朝向不同方向;
    获取所述声音信号的至少一个特征参数,根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备,并输出所述目标音频采集设备的声音信号。
  18. 如权利要求17所述的音频处理设备,其特征在于,所述多个音频采集设备设置于可移动平台,所述可移动平台包括:形成所述可移动平 台轮廓的至少一个表面;所述多个音频采集设备分布于所述至少一个表面。
  19. 如权利要求18所述的音频处理设备,其特征在于,所述至少一个表面包括:分别朝向所述不同方向的多个表面;所述多个音频采集设备分别分布于所述多个表面中的至少部分表面。
  20. 如权利要求19所述的音频处理设备,其特征在于,所述表面包括:平面、曲面的至少一种。
  21. 如权利要求18所述的音频处理设备,其特征在于,所述至少一个表面包括:一个曲面,所述多个音频采集设备分别分布于所述曲面的朝向所述不同方向的不同位置。
  22. 如权利要求18至21任一项所述的音频处理设备,其特征在于,所述多个音频采集设备在所述至少一个表面上均匀分布。
  23. 如权利要求22所述的音频处理设备,其特征在于,相邻两个所述音频采集设备与所述可移动平台中心的连线之间的夹角为:360/N,其中,N为所述音频采集设备的数量,且N≥3。
  24. 如权利要求17所述的音频处理设备,其特征在于,所述音频采集设备包括:麦克风。
  25. 如权利要求17所述的音频处理设备,其特征在于,所述至少一个特征参数包括:相关性、信号能量的至少一种。
  26. 如权利要求25所述的音频处理设备,其特征在于,所述根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备的操作,包括:
    获取所述多个音频采集设备中所有的相邻两个所述音频采集设备的声音信号之间的相关性;
    根据所述相关性确定所述目标音频采集设备。
  27. 如权利要求26所述的音频处理设备,其特征在于,所述目标音频采集设备的数量为多个;所述根据所述相关性确定所述目标音频采集设备的操作,包括:
    按照相关性从大到小的顺序,对所有的相邻两个所述音频采集设备排序,得到相关性排序表;
    选择所述相关性排序表前部的的至少一组相邻的两个音频采集设备;
    将所述至少一组相邻的两个音频采集设备中的至少部分音频采集设备确定为所述目标音频采集设备。
  28. 如权利要求26所述的音频处理设备,其特征在于,所述目标音频采集设备的数量为一个;所述根据所述相关性确定所述目标音频采集设备的操作,包括:
    对于每个音频采集设备,确定该音频采集设备与和该音频采集设备相邻的两个音频采集设备的声音信号的相关性之和;
    将所述相关性之和的最大值所对应的音频采集设备确定为所述目标音频采集设备。
  29. 如权利要求26所述的音频处理设备,其特征在于,所述目标音频采集设备的数量为一个;所述根据所述相关性确定所述目标音频采集设备的操作,包括:
    确定相关性最大的一组相邻的两个音频采集设备;
    将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备。
  30. 如权利要求29所述的音频处理设备,其特征在于,所述将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备的操作,包括:
    获取该组相邻的两个音频采集设备的声音信号的信号能量;
    将该组相邻的两个音频采集设备中的所述信号能量较小的音频采集设备确定为所述目标音频采集设备。
  31. 如权利要求29所述的音频处理设备,其特征在于,该组相邻的两个音频采集设备包括:第一音频采集设备和第二音频采集设备;
    所述将该组相邻的两个音频采集设备中的一个音频采集设备确定为所述目标音频采集设备的操作,包括:
    确定所述第一音频采集设备和所述第二音频采集设备的声音信号之间的相关性、与所述第一音频采集设备和其另一相邻的音频采集设备的声音信号之间的相关性的第一相关性均值;
    确定所述第一音频采集设备和所述第二音频采集设备的声音信号之间的相关性、与所述第二音频采集设备和其另一相邻的音频采集设备的声 音信号之间的相关性的第二相关性均值;
    当所述第一相关性均值大于所述相关性第二均值,将所述第一音频采集设备确定为所述目标音频采集设备;否则,将所述第二音频采集设备确定为所述目标音频采集设备。
  32. 如权利要求25所述的音频处理设备,其特征在于,所述根据所述至少一个特征参数将所述多个音频采集设备中的至少一个音频采集设备确定为目标音频采集设备的操作,包括:
    获取所述音频采集设备的声音信号的信号能量;
    将所述信号能量较小的至少一个所述音频采集设备确定为所述目标音频采集设备。
  33. 一种可移动平台,其特征在于,包括:
    多个音频采集设备,所述多个音频采集设备分别朝向不同方向;以及
    如权利要求17-32任一项所述的音频处理设备。
  34. 一种计算机可读存储介质,其特征在于,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行如权利要求1至16中任一项权利要求所述的音频处理方法。
PCT/CN2020/077433 2020-03-02 2020-03-02 音频处理方法、设备、可移动平台和计算机可读存储介质 WO2021174383A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/077433 WO2021174383A1 (zh) 2020-03-02 2020-03-02 音频处理方法、设备、可移动平台和计算机可读存储介质
CN202080002826.5A CN112204999A (zh) 2020-03-02 2020-03-02 音频处理方法、设备、可移动平台和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077433 WO2021174383A1 (zh) 2020-03-02 2020-03-02 音频处理方法、设备、可移动平台和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021174383A1 true WO2021174383A1 (zh) 2021-09-10

Family

ID=74033944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077433 WO2021174383A1 (zh) 2020-03-02 2020-03-02 音频处理方法、设备、可移动平台和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112204999A (zh)
WO (1) WO2021174383A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117795978A (zh) * 2021-09-28 2024-03-29 深圳市大疆创新科技有限公司 音频采集方法、系统及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163622A1 (en) * 2010-12-28 2012-06-28 Stmicroelectronics Asia Pacific Pte Ltd Noise detection and reduction in audio devices
CN102750946A (zh) * 2011-02-26 2012-10-24 帕拉贡股份公司 用于机动车辆的语音操纵装置以及用于选择话筒以运行语音操纵装置的方法
CN105336340A (zh) * 2015-09-30 2016-02-17 中国电子科技集团公司第三研究所 一种用于低空目标声探测系统的风噪抑制方法和装置
CN106303837A (zh) * 2015-06-24 2017-01-04 联芯科技有限公司 双麦克风的风噪检测及抑制方法、系统
CN109348322A (zh) * 2018-09-07 2019-02-15 歌尔科技有限公司 一种防风噪方法、前馈降噪系统、耳机及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428275B2 (en) * 2007-06-22 2013-04-23 Sanyo Electric Co., Ltd. Wind noise reduction device
JP6334895B2 (ja) * 2013-11-15 2018-05-30 キヤノン株式会社 信号処理装置及びその制御方法、プログラム
CN109309889B (zh) * 2018-09-30 2020-08-11 歌尔科技有限公司 一种声音采集设备及其信号处理方法、装置、设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163622A1 (en) * 2010-12-28 2012-06-28 Stmicroelectronics Asia Pacific Pte Ltd Noise detection and reduction in audio devices
CN102750946A (zh) * 2011-02-26 2012-10-24 帕拉贡股份公司 用于机动车辆的语音操纵装置以及用于选择话筒以运行语音操纵装置的方法
CN106303837A (zh) * 2015-06-24 2017-01-04 联芯科技有限公司 双麦克风的风噪检测及抑制方法、系统
CN105336340A (zh) * 2015-09-30 2016-02-17 中国电子科技集团公司第三研究所 一种用于低空目标声探测系统的风噪抑制方法和装置
CN109348322A (zh) * 2018-09-07 2019-02-15 歌尔科技有限公司 一种防风噪方法、前馈降噪系统、耳机及存储介质

Also Published As

Publication number Publication date
CN112204999A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
EP2926572B1 (en) Collaborative sound system
JP2014518053A (ja) 指向性マイクアレイを用いた信号分離システム及びその提供方法
CN103181192A (zh) 利用多麦克风的三维声音捕获和再现
US9838821B2 (en) Method, apparatus, computer program code and storage medium for processing audio signals
US11575988B2 (en) Apparatus, method and computer program for obtaining audio signals
CN111918169B (zh) 基于多波束成形麦克风阵列的会议音箱及其声波拾取方法
CN107181845A (zh) 一种麦克风确定方法和终端
KR20210035725A (ko) 혼합 오디오 신호를 저장하고 지향성 오디오를 재생하기 위한 방법 및 시스템
WO2021174383A1 (zh) 音频处理方法、设备、可移动平台和计算机可读存储介质
WO2017112070A1 (en) Controlling audio beam forming with video stream data
US9232072B2 (en) Participant controlled spatial AEC
TW202143750A (zh) 使用自我調整網路來對全景聲係數進行變換
CN112333602B (zh) 信号处理方法、信号处理设备、计算机可读存储介质及室内用播放系统
CN110858943B (zh) 收音处理装置及其收音处理方法
CN113179476A (zh) 配置参数的获取方法、配置方法、电子设备及存储装置
JP2002062900A (ja) 収音装置及び受信装置
WO2020034095A1 (zh) 音频信号处理装置及方法
KR102343811B1 (ko) 음성 검출 방법
US20180182379A1 (en) Media capture and process system
WO2023088156A1 (zh) 一种声速矫正方法以及装置
WO2023130206A1 (en) Multi-channel speaker system and method thereof
CN116782096A (zh) 外放设备声音设置确定的方法、装置及存储介质
CN117376757A (zh) 拾音方法、处理器、电子设备及计算机存储介质
WO2023249957A1 (en) Speech enhancement and interference suppression
Khalilian et al. A glimpse of 3d acoustics for immersive communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922983

Country of ref document: EP

Kind code of ref document: A1