WO2021172751A1 - Cone beam ct apparatus equipped with dynamically controllable collimator - Google Patents

Cone beam ct apparatus equipped with dynamically controllable collimator Download PDF

Info

Publication number
WO2021172751A1
WO2021172751A1 PCT/KR2021/000517 KR2021000517W WO2021172751A1 WO 2021172751 A1 WO2021172751 A1 WO 2021172751A1 KR 2021000517 W KR2021000517 W KR 2021000517W WO 2021172751 A1 WO2021172751 A1 WO 2021172751A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
rotator
rays
area
control unit
Prior art date
Application number
PCT/KR2021/000517
Other languages
French (fr)
Korean (ko)
Inventor
정홍
Original Assignee
주식회사 에이치디엑스윌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치디엑스윌 filed Critical 주식회사 에이치디엑스윌
Publication of WO2021172751A1 publication Critical patent/WO2021172751A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Definitions

  • the present invention relates to a cone-beam CT apparatus having a collimator capable of dynamic control, and more particularly, to a cone-beam CT apparatus that eliminates the need to move the rotational center of a rotator to a central position of an area to be photographed during cone-beam CT imaging. will be.
  • Cone-beam CT uses an area detector to detect cone-shaped transmitted X-rays two-dimensionally, and uses this to acquire three-dimensional volume information, so that three-dimensional and multi-dimensional images can be reconstructed with only one rotational scan of a subject. am.
  • cone-beam CT an area capable of reconstructing a 3D image from data obtained through rotational scan is defined as a field of view (FOV), and the shape and size of the FOV is determined according to the geometric arrangement of the X-ray beam and the rotation axis.
  • FOV field of view
  • the maximum FOV the maximum area that can be diagnosed by one rotation imaging using cone beam CT
  • the subject can be photographed according to the maximum FOV of the cone beam CT.
  • the rotator 3 in order to implement cone beam CT, the rotator 3 is disposed so that the rotating center 4 is located at the center of the area to be imaged, and the rotator 3 ) is to arrange the X-ray generator 1 and the X-ray detector 2 in opposite directions and place the subject to be photographed between them, so that the maximum FOV photographing and restoration area 6 is more than 360° or 180°. It rotates to a slightly larger angle and shoots.
  • FIGS. 1(a) and (b) are diagrams showing the implementation of the conventional pre-FOV method in FIGS. 1(a) and (b), respectively.
  • the conventional pre-FOV method places the rotating center 4 in the center of the pre-FOV photographing and restoration area 7 to be photographed, and in the other areas After adjusting and fixing the collimator 5 so that the X-rays do not reach, the rotator 3 is rotated to proceed with shooting.
  • the center of the rotating center 4 and the photographing and restoration area 7 coincides with each other. Only a specific portion of the X-ray detection unit 2 is irradiated with X-rays. However, in this case, the problem of deterioration of the X-ray detection unit 2 occurs, and it becomes difficult to photograph a subject while using most of the range of the X-ray detection unit 2 .
  • the collimator 5 is fixed and the rotator 3 is rotated to use most of the range of the X-ray detection unit 2, since the rotating center 4 must move, the As the turning radius increases, the cone beam CT equipment becomes larger.
  • the scale of cone beam CT is quite large compared to the subject, and in institutions such as hospitals using cone beam CT, the small cone beam CT is preferred because the X-ray imaging room is very narrow.
  • An object of the present invention is to dynamically control the collimator for each angle at which data of the selected detection area is obtained when the rotator rotates during cone beam CT imaging, so that the rotation center of the rotator does not need to be moved to the center position of the area to be photographed.
  • An object of the present invention is to provide a cone-beam CT device that can be miniaturized.
  • the present invention for solving the above problems is a cone beam CT apparatus having a collimator capable of dynamic control, the apparatus of the present invention comprising: an X-ray generator for emitting cone-beam X-rays toward a subject; a collimator for limiting the irradiation area of X-rays through the opening so that the X-rays emitted from the X-ray generator can be irradiated only to the selected imaging area; an X-ray detection unit irradiated through the collimator and detecting X-rays passing through the subject; and a rotator in which the X-ray generator, the collimator, and the X-ray detector are disposed in a longitudinal direction.
  • control unit for controlling the driving of the collimator and rotating the rotator with respect to a rotation center
  • control unit has a center of the selected imaging area spaced apart from a rotation center of the rotator and when the rotator rotates, the selected The position of the opening of the collimator may be adjusted so that only the imaging area can be irradiated with X-rays.
  • the controller may differently adjust the opening position of the collimator according to the rotation angle of the rotator.
  • the controller may rotate the rotator in a state in which the positions of the center of the selected photographing area and the rotation center of the rotator are respectively fixed.
  • the collimator includes first and second plates, and the control unit may move the first and second plates in one direction perpendicular to the radial direction of X-rays.
  • the first and second plates when the rotator rotates, when the selected imaging area is biased to the right of the maximum FOV imaging and restoration area based on the X-ray generator, the first and second plates may be moved to the left when the selected imaging region is biased toward the left of the maximum FOV imaging and restoration region based on the X-ray generator.
  • the collimator may be formed of four rectangular-shaped plates positioned above, below, left, and right, respectively, with respect to the traveling direction of X-rays radiated from the X-ray generator.
  • the opening position of the collimator is continuously changed during the rotation of the rotator, so that the rotational center of the rotator is adjusted. Since there is no need to move to the central position of the area to be photographed, the device can be miniaturized.
  • FIGS. 1(a) and (b) are diagrams showing the implementation of the conventional pre-FOV method in FIGS. 1(a) and (b), respectively.
  • FIG. 3 is a block diagram showing a generally large cone beam CT.
  • FIG. 4 is a block diagram showing a schematic configuration of a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention.
  • the X-ray irradiation direction according to the dynamic control of the collimator is a view viewed from the top of the rotator .
  • FIGS. 7A and 7B are diagrams exemplarily illustrating a collimator capable of dynamic control according to an embodiment of the present invention.
  • FIGS. 8A and 8B are diagrams illustrating detection images obtained through a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a schematic configuration of a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention. 5 and 6, respectively, in the cone beam CT apparatus according to the embodiment of the present invention, when the rotator 40 is positioned at 0 ° and 90 °, the X-ray irradiation direction according to the dynamic control of the collimator 20 rotator It is a view seen from the top of (40).
  • the cone beam CT apparatus includes an X-ray generator 10 , a collimator 20 , an X-ray detector 30 , a rotator 40 , and a controller 50 . do.
  • the X-ray generator 10 is an X-ray generator that generates X-rays in the form of a cone-beam toward a subject. 10) passes through the collimator 20 at the X-ray focus point and is incident on the X-ray detector 30 .
  • the collimator 20 may limit the irradiation area of the X-rays through the opening 21 so that the X-rays emitted from the X-ray generator 10 can be irradiated only to the selected imaging area 60 .
  • the opening position or range of the collimator 20 may be adjusted by the control unit 50 for each photographing position for each rotation angle.
  • the selected photographing area 60 is a partial area to be photographed among the subjects.
  • the free FOV method which is a technique necessary to photograph a small area as needed with the maximum FOV in one device, It corresponds to the free FOV shooting and restoration area.
  • the photographing area 60 selected together with the subject may be fixed.
  • the collimator 20 may include first and second plates 201 and 202 formed on both sides with the opening 21 therebetween.
  • the first plate 201 may be disposed on the right side when viewed from the X-ray generator 10
  • the second plate 202 may be disposed on the left side when viewed from the X-ray generator 10 .
  • the shape of the opening 21 of the collimator 20 may be set in various shapes according to the configuration of the collimator 20 , and the detailed configuration of the collimator 20 will be described later.
  • the X-ray detector 30 may detect X-rays irradiated through the collimator 20 and transmitted through the subject.
  • the X-ray detection unit 30 has a detection area 31 formed to have a predetermined length in the direction perpendicular to the X-ray irradiation direction.
  • the selected detection area 31 in the free FOV method applied to the present invention corresponds to a part of the maximum detection area of the entire X-ray detector because X-rays are irradiated through the collimator 20 . Also, referring to FIGS. 5 and 6 , the selected detection area 31 may correspond to different positions among the detection areas of the entire X-ray detector according to the photographing direction of the subject.
  • the data received from the X-ray detector 30 is transmitted to the image processing unit 32 , and the image processing unit 32 may reconstruct a 3D image from the data.
  • the X-ray generator 10 , the collimator 20 , and the X-ray detector 30 are disposed in the longitudinal direction.
  • the X-ray generator 10 , the collimator 20 , and the X-ray detector 30 may be directly or indirectly connected to the rotator 40 located thereon, respectively.
  • the X-ray generator 10 , the collimator 20 , and the X-ray detector 30 may be sequentially arranged in a straight line in the longitudinal direction of the rotator 40 .
  • the rotation driving unit 41 rotates the rotator 40 once with respect to the rotation center (C r ) after fixing the subject while the scanning process using the cone beam CT device is in progress.
  • One rotation means, for example, rotating the selected photographing area 60 at an angle slightly larger than 360° or 180°.
  • the rotator 40 may rotate once with respect to the rotation center (C r ) for each photographing by the rotation driving unit 41 , and not only forward rotation but also reverse rotation is possible.
  • the X-ray generator 10 , the collimator 20 , and the X-ray detector 30 interlocked with the rotator 40 also rotate.
  • the control unit 50 dynamically controls the driving of the collimator 20 , and may rotate the rotator 40 with respect to the rotation center C r . That is, the control unit 50 may adjust the opening position of the collimator 20 , and may drive the rotation driving unit 41 to rotate the rotator 40 . As described above, since the rotator 40 is interlocked with the collimator 20 , when the control unit 50 rotates the rotator 40 , the collimator 20 is also rotated.
  • the control unit 50 controls the center (C f ) of the selected imaging area to be spaced apart from the rotation center of the rotator 40, and when the rotator 40 rotates, a collimator ( 20) this opening position can be adjusted.
  • the control unit 50 may move the first and second plates 201 and 202 together in one direction perpendicular to the radial direction of X-rays.
  • the controller 50 may differently adjust the opening position of the collimator 20 according to the rotation angle of the rotator 40 so that only the selected imaging area 60 is exposed to X-rays. As the opening position of the collimator 20 is adjusted, the selected detection area 31 to which the X-rays reach also varies according to the rotation angle of the rotator 40 .
  • the selected imaging area 60 is on the right side of the maximum FOV imaging and restoration area 6 when viewed from the X-ray generator 10 .
  • the collimator 20 is controlled so that the X-rays can be irradiated to the selected imaging area 60 on the right side.
  • the opening position is adjusted by (50).
  • the controller 50 may move the first and second plates 201 and 202 to the right to direct the radiated X-rays to match the range of the selected imaging area 60 on the right. At this time, the first and second plates 201 and 202 move together to the right.
  • the object is detected through the X-rays irradiated to the selected detection area 31 on the right side, which is a part of the maximum detection area of the X-ray detection unit 30 .
  • the opening position is adjusted by the control unit 50 so that X-rays can be irradiated.
  • the controller 50 may move the first and second plates 201 and 202 to the left to direct the radiated X-rays to match the range of the selected imaging area 60 on the left. At this time, the first and second plates 201 and 202 move together to the left.
  • the object is detected through the X-rays irradiated to the left selected detection area 31 which is a part of the maximum detection area of the X-ray detector 30 .
  • the collimator 20 controls the X-rays to be irradiated to the selected imaging area 60 .
  • the opening position can be adjusted by (50). In addition, this is applicable even when the selected imaging area 60 has at least two coordinates of top, bottom, left, and right on a two-dimensional plane in the direction in which the X-rays are irradiated at the same time.
  • the selected photographing area 60 of the subject exists within the maximum FOV photographing and restoration area 6
  • the rotation center (C r ) of the rotator 40 is the center of the selected photographing area (C f ) and spaced apart.
  • the controller 50 may rotate the rotator 40 while the positions of the center C f of the selected imaging area and the rotation center C r of the rotator 40 are fixed, respectively. That is, even when the rotator 40 rotates, the position of the center (C f ) of the selected imaging area with respect to the rotation center (C r ) of the rotator does not change.
  • the center (C f ) of the selected imaging area and the center of rotation (C r ) of the rotator are fixed, respectively, so that X-rays can be irradiated only to the selected imaging area 60. Since the opening position of 20 is adjusted, the rotation radius of the rotator 40 does not change. Accordingly, miniaturization of the cone beam CT apparatus can be achieved.
  • 7A and 7B are diagrams exemplarily illustrating a collimator capable of dynamic control according to an embodiment of the present invention.
  • 8A and 8B are diagrams illustrating detection images obtained through a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention.
  • the collimator 20 of the cone beam CT apparatus has an image centering on the traveling direction of X-rays radiated from the X-ray generator 10, It may be formed of four rectangular-shaped plates 22 positioned on the lower, left, and right sides.
  • the first and second plates 201 may be opposite two plates among the four plates 22 .
  • the control unit 50 may dynamically control each of the plates 22 .
  • Each plate 22 may be moved in a direction selected from among up, down, left, and right along a plurality of axes 23 and rails 24 extending in a horizontal or vertical direction by the control unit 50 .
  • Each shaft 22 receives rotational power through a motor, and a screw groove portion may be formed on an outer peripheral surface of the shaft 22 .
  • Each plate 22 includes an extension plate 221 extending toward one axis 23 , and an enclosure-type moving part 222 having a hollow body may be formed at an end of the extension plate 221 .
  • the moving part 222 is fitted to each shaft 23 , and can move horizontally or vertically along the shaft 23 .
  • a threaded portion is formed on the inner peripheral surface of the moving part 222 of the housing type, and may be engaged with the outer peripheral surface of the shaft 22 .
  • the upper and lower plates may move up and down along an axis extending in a vertical direction, and the left and right plates may move left and right along an axis extending in a horizontal direction.
  • the upper and lower plates may move toward or away from each other in a vertical direction, and the left and right plates may move toward or away from each other in a horizontal direction.
  • control unit 50 may narrow the opening range of the collimator while moving the position of each plate 22 shown in FIG. 7(a) to the position of FIG. 7(b), and vice versa. case is possible.
  • the configuration for adjusting the opening range of the collimator is shown as an example in (a) and (b) of FIG. 7 , the configuration is not limited thereto, and for example, the upper and lower plates, or the left and right plates are set in the same direction. It is also possible to adjust the opening position of the collimator while moving.
  • the user adjusts the aperture range of the collimator to photograph the first selected photographing area 60 through the control unit 50, and then automatically positions the collimator's opening to photograph only the selected photographing area 60 according to the rotation of the rotator 40 can be set to adjust.
  • the control unit 50 determines that the selected imaging area 60 is biased to the left or right of the maximum FOV imaging and restoration area 6 based on the X-ray generator 10 .
  • the left and right plates can be moved together to the left or right, respectively.
  • the control unit 50 rotates the rotator 40, the selected imaging area 60 is biased toward the upper or lower side of the maximum FOV imaging and restoration area 6 with respect to the X-ray generator 10,
  • the upper and lower plates can be moved together upwards or downwards, respectively.
  • the movements of the left and right plates and the upper and lower plates may be performed individually or simultaneously.
  • the center (C f ) of the selected imaging area 60 and the rotation center (C r ) of the rotator are respectively Filming may proceed in a fixed state.
  • the position of the detection region 31 of the X-ray detection unit 30 changes during imaging, most of the area of the X-ray detection unit 30 can be irradiated with X-rays according to one rotation of the rotator 40 . have.
  • the collimator 20 partially blocks the X-rays emitted from the X-ray generator 10 , so that the X-ray detection unit It can be seen that the image area obtained in (30) is narrowed.
  • the collimator when the rotator rotates during cone beam CT imaging, automatically and dynamically controls the collimator for each angle at which data of the selected detection area is obtained to continue the aperture range of the collimator during rotation of the rotator. By changing it, it is not necessary to move the rotational center of the rotator to the central position of the area to be photographed, and thus the device can be miniaturized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to a cone beam CT apparatus equipped with a dynamically controllable collimator. The apparatus of the present invention comprises: an X-ray generation unit for radiating cone beam-shaped X-rays toward a subject; a collimator which limits the irradiation area of the X-rays through an opening portion so that the X-rays radiated from the X-ray generation unit are emitted to only a selected image-capture area; an X-ray detection unit for detecting the X-rays that are emitted through the collimator and pass through the subject; a rotator on which the X-ray generation unit, the collimator, and the X-ray detection unit are arranged in the longitudinal direction; and a control unit which controls the operation of the collimator and rotates the rotator about a rotation center. The control unit may control the opening position of the collimator so that the X-rays are emitted to only the selected image-capture area when the rotator rotates while the center of the selected image-capture area is spaced apart from the rotation center of the rotator.

Description

동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치Cone-beam CT device with collimator capable of dynamic control
본 발명은 동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치에 관한 것으로서, 보다 상세하게는 콘빔 CT 촬영 중 로테이터의 회전 중심을 촬영하고자 하는 영역의 중심 위치로 이동시킬 필요가 없도록 하는 콘빔 CT 장치에 관한 것이다.The present invention relates to a cone-beam CT apparatus having a collimator capable of dynamic control, and more particularly, to a cone-beam CT apparatus that eliminates the need to move the rotational center of a rotator to a central position of an area to be photographed during cone-beam CT imaging. will be.
콘빔 CT는 면적검출기를 사용하여 원추형의 투과 X선을 2차원적으로 검출하고, 이를 이용하여 3차원 체적 정보를 획득함으로써 피사체에 대한 1회전 스캔만으로 3차원 및 다면 영상을 재구성할 수 있도록 하는 장치이다.Cone-beam CT uses an area detector to detect cone-shaped transmitted X-rays two-dimensionally, and uses this to acquire three-dimensional volume information, so that three-dimensional and multi-dimensional images can be reconstructed with only one rotational scan of a subject. am.
콘빔 CT에 있어서, 회전 스캔을 통하여 얻어진 데이터로부터 3차원 영상 재구성이 가능한 영역을 FOV(Field of View)로 정의하며, FOV의 모양과 크기는 X선 빔과 회전축의 기하학적 배치에 따라 결정된다. 또한, 콘빔 CT를 이용하여 1회전 촬영으로 진단 가능한 최대영역을 최대 FOV라고 하며, 콘빔 CT의 최대 FOV에 따라 피사체를 촬영할 수 있게 된다.In cone-beam CT, an area capable of reconstructing a 3D image from data obtained through rotational scan is defined as a field of view (FOV), and the shape and size of the FOV is determined according to the geometric arrangement of the X-ray beam and the rotation axis. In addition, the maximum area that can be diagnosed by one rotation imaging using cone beam CT is called the maximum FOV, and the subject can be photographed according to the maximum FOV of the cone beam CT.
도 1의 (a), (b)는 각각 종래의 콘빔 CT에 있어서 전체 X선 검출부(2)의 범위를 전부 사용하는 경우, 로테이터(3)가 0° 및 90°에 위치했을 때, 로테이터(3)의 상부로부터 바라본 도면이다.1 (a) and (b) are, respectively, in the case of using the entire range of the entire X-ray detection unit 2 in the conventional cone beam CT, when the rotator 3 is positioned at 0° and 90°, the rotator ( 3) is a view from the top.
도 1의 (a), (b)를 참조하면, 일반적으로 콘빔 CT를 구현하기 위해서는 촬영하고자 하는 영역의 중심에 로테이팅 센터(4)가 위치하도록 로테이터(3)가 배치되며, 상기 로테이터(3)는 X선 발생부(1)와 X선 검출부(2)를 서로 반대방향으로 배치하고 촬영하고자 하는 피사체를 그 사이에 배치하여, 최대 FOV 촬영 및 복원 영역(6)을 360° 또는 180°보다 약간 더 큰 각도로 회전하여 촬영하게 된다.1 (a) and (b), in general, in order to implement cone beam CT, the rotator 3 is disposed so that the rotating center 4 is located at the center of the area to be imaged, and the rotator 3 ) is to arrange the X-ray generator 1 and the X-ray detector 2 in opposite directions and place the subject to be photographed between them, so that the maximum FOV photographing and restoration area 6 is more than 360° or 180°. It rotates to a slightly larger angle and shoots.
그러나 콘빔 CT를 이용할 경우 항상 최대 FOV를 모두 촬영할 필요는 없으며, 필요에 따라 최대 FOV 내의 관심영역만을 촬영함으로써 피사체에 피폭 선량을 저감화시키는 것이 바람직하다. 이때, 하나의 장비에서 최대 FOV와 더불어 필요에 따라 작은 영역을 촬영하고자 할 때 필요한 기술을 프리 FOV(free FOV) 방식이라 한다.However, when cone beam CT is used, it is not always necessary to photograph all the maximum FOV, and it is desirable to reduce the exposure dose to the subject by photographing only the region of interest within the maximum FOV if necessary. At this time, a technique required to photograph a small area as needed along with the maximum FOV in one device is called a free FOV method.
도 2의 (a), (b)는 각각 도 1의 (a), (b)에 있어서 종래의 프리 FOV 방식의 구현을 나타낸 도면이다.2(a) and 2(b) are diagrams showing the implementation of the conventional pre-FOV method in FIGS. 1(a) and (b), respectively.
도 2의 (a), (b)를 참조하면, 종래의 프리 FOV 방식은 로테이팅 센터(4)를 촬영하고자 하는 프리 FOV 촬영 및 복원 영역(7)의 중심에 위치하게 하고, 이외의 영역에는 X선이 도달하지 않도록 콜리메이터(5)를 조절하여 고정한 후 로테이터(3)를 회전시켜 촬영을 진행하게 된다.Referring to (a) and (b) of Figure 2, the conventional pre-FOV method places the rotating center 4 in the center of the pre-FOV photographing and restoration area 7 to be photographed, and in the other areas After adjusting and fixing the collimator 5 so that the X-rays do not reach, the rotator 3 is rotated to proceed with shooting.
다만, 이 경우에는 촬영 중 로테이팅 센터(4)를 촬영하고자 하는 프리 FOV 촬영 및 복원 영역(7)의 중심으로 움직여야 하기 때문에 콘빔 CT 장비가 대형화되는 문제점이 있다.However, in this case, since the rotating center 4 has to be moved to the center of the pre-FOV imaging and restoration area 7 to be photographed during imaging, there is a problem in that the cone beam CT equipment is enlarged.
상세하게는, 도 2의 (a)에서 도 2의 (b)로 로테이터(3)를 회전시켜 촬영을 진행하는 경우, 로테이팅 센터(4)와 촬영 및 복원 영역(7)의 중심이 일치하므로 X선 검출부(2)의 특정 부분에만 X선이 조사된다. 그러나, 이 경우 X선 검출부(2)가 열화되는 문제가 발생할 뿐만 아니라 X선 검출부(2)의 대부분의 범위를 사용하면서 피사체를 촬영하기가 어렵게 된다.In detail, in the case of rotating the rotator 3 in FIG. 2 (a) to (b) in FIG. 2 and proceeding with the photographing, the center of the rotating center 4 and the photographing and restoration area 7 coincides with each other. Only a specific portion of the X-ray detection unit 2 is irradiated with X-rays. However, in this case, the problem of deterioration of the X-ray detection unit 2 occurs, and it becomes difficult to photograph a subject while using most of the range of the X-ray detection unit 2 .
만약, 콜리메이터(5)가 고정된 상태에서, X선 검출부(2)의 대부분의 범위를 사용하도록 로테이터(3)를 회전시키는 경우에는, 로테이팅 센터(4)가 움직여야 하므로, 로테이터(3)의 회전 반경이 넓어지며 콘빔 CT 장비가 대형화되는 것이다.If the collimator 5 is fixed and the rotator 3 is rotated to use most of the range of the X-ray detection unit 2, since the rotating center 4 must move, the As the turning radius increases, the cone beam CT equipment becomes larger.
그러나, 도 3에 도시된 바와 같이, 일반적으로 콘빔 CT의 규모는 피사체에 비하여 상당히 크며, 콘빔 CT를 사용하는 병원 등의 기관에서는 X선 촬영실이 매우 협소하기 때문에 소형의 콘빔 CT를 선호하게 된다.However, as shown in FIG. 3 , in general, the scale of cone beam CT is quite large compared to the subject, and in institutions such as hospitals using cone beam CT, the small cone beam CT is preferred because the X-ray imaging room is very narrow.
따라서, 장치를 소형화하면서도 프리 FOV 방식을 효과적으로 구현할 수 있는 콘빔 CT 장치가 요구되고 있는 실정이다.Accordingly, there is a need for a cone beam CT apparatus capable of effectively implementing a free FOV method while reducing the size of the apparatus.
본 발명의 목적은 콘빔 CT 촬영 중 로테이터가 회전할 때, 선택된 검출영역의 데이터를 얻는 각도마다 콜리메이터를 동적 제어하여 상기 로테이터의 회전 중심을 촬영하고자 하는 영역의 중심 위치로 이동시킬 필요가 없어 장치를 소형화할 수 있는 콘빔 CT 장치를 제공함에 있다.An object of the present invention is to dynamically control the collimator for each angle at which data of the selected detection area is obtained when the rotator rotates during cone beam CT imaging, so that the rotation center of the rotator does not need to be moved to the center position of the area to be photographed. An object of the present invention is to provide a cone-beam CT device that can be miniaturized.
위와 같은 과제를 해결하기 위한 본 발명은 동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치로서, 본 발명의 장치는, 피사체를 향하여 콘빔 형태의 X선을 방사하는 X선 발생부; 상기 X선 발생부에서 방사되는 X선이 선택된 촬영영역으로만 조사될 수 있도록, 개구부를 통해 X선의 조사영역을 제한하는 콜리메이터; 상기 콜리메이터를 통해 조사되어 피사체를 투과한 X선을 검출하는 X선 검출부; 및 상기 X선 발생부, 상기 콜리메이터, 및 상기 X선 검출부가 길이방향으로 배치된 로테이터; 상기 콜리메이터의 구동을 제어하며, 상기 로테이터를 회전 중심에 대하여 회전시키는 제어부를 포함하며, 상기 제어부는, 상기 선택된 촬영영역의 중심이 상기 로테이터의 회전 중심과 이격되며 상기 로테이터가 회전할 때, 상기 선택된 촬영영역에만 X선이 조사될 수 있도록 상기 콜리메이터의 개구 위치를 조절할 수 있다.The present invention for solving the above problems is a cone beam CT apparatus having a collimator capable of dynamic control, the apparatus of the present invention comprising: an X-ray generator for emitting cone-beam X-rays toward a subject; a collimator for limiting the irradiation area of X-rays through the opening so that the X-rays emitted from the X-ray generator can be irradiated only to the selected imaging area; an X-ray detection unit irradiated through the collimator and detecting X-rays passing through the subject; and a rotator in which the X-ray generator, the collimator, and the X-ray detector are disposed in a longitudinal direction. and a control unit for controlling the driving of the collimator and rotating the rotator with respect to a rotation center, wherein the control unit has a center of the selected imaging area spaced apart from a rotation center of the rotator and when the rotator rotates, the selected The position of the opening of the collimator may be adjusted so that only the imaging area can be irradiated with X-rays.
본 발명의 실시예에 따르면, 상기 제어부는, 상기 로테이터의 회전 각도에 따라 상기 콜리메이터의 개구 위치를 다르게 조절할 수 있다.According to an embodiment of the present invention, the controller may differently adjust the opening position of the collimator according to the rotation angle of the rotator.
본 발명의 실시예에 따르면, 상기 제어부는, 상기 선택된 촬영영역의 중심과 상기 로테이터의 회전 중심의 위치가 각각 고정된 상태에서 상기 로테이터를 회전시킬 수 있다.According to an embodiment of the present invention, the controller may rotate the rotator in a state in which the positions of the center of the selected photographing area and the rotation center of the rotator are respectively fixed.
본 발명의 실시예에 따르면, 상기 콜리메이터는 제1 및 제2 플레이트를 포함하며, 상기 제어부는, 상기 제1 및 제2 플레이트를 X선의 방사방향과 수직한 일방향으로 이동시킬 수 있다.According to an embodiment of the present invention, the collimator includes first and second plates, and the control unit may move the first and second plates in one direction perpendicular to the radial direction of X-rays.
본 발명의 실시예에 따르면, 상기 제어부는 상기 로테이터가 회전할 때, 상기 선택된 촬영영역이 상기 X선 발생부를 기준으로 최대 FOV 촬영 및 복원 영역의 우측에 치우친 경우, 상기 제1 및 제2 플레이트를 우측으로 이동시키며, 상기 선택된 촬영영역이 상기 X선 발생부를 기준으로 최대 FOV 촬영 및 복원 영역의 좌측에 치우친 경우, 상기 제1 및 제2 플레이트를 좌측으로 이동시킬 수 있다.According to an embodiment of the present invention, when the rotator rotates, when the selected imaging area is biased to the right of the maximum FOV imaging and restoration area based on the X-ray generator, the first and second plates The first and second plates may be moved to the left when the selected imaging region is biased toward the left of the maximum FOV imaging and restoration region based on the X-ray generator.
본 발명의 실시예에 따르면, 상기 콜리메이터는, 상기 X선 발생부에서 방사되는 X선의 진행방향을 중심으로 각각 상, 하, 좌, 우측에 위치하는 4개의 사각 형상의 플레이트로 형성될 수 있다.According to an embodiment of the present invention, the collimator may be formed of four rectangular-shaped plates positioned above, below, left, and right, respectively, with respect to the traveling direction of X-rays radiated from the X-ray generator.
본 발명에 따르면, 콘빔 CT 촬영 중 로테이터가 회전할 때, 선택된 검출영역의 데이터를 얻는 각도마다 콜리메이터를 자동으로 동적 제어하여 로테이터의 회전 중에 콜리메이터의 개구 위치를 계속 변화시킴으로써, 상기 로테이터의 회전 중심을 촬영하고자 하는 영역의 중심 위치로 이동시킬 필요가 없어 장치를 소형화할 수 있다.According to the present invention, when the rotator rotates during cone beam CT imaging, by automatically and dynamically controlling the collimator for each angle at which data of the selected detection area is obtained, the opening position of the collimator is continuously changed during the rotation of the rotator, so that the rotational center of the rotator is adjusted. Since there is no need to move to the central position of the area to be photographed, the device can be miniaturized.
도 1의 (a), (b)는 각각 종래의 콘빔 CT에 있어서 전체 X선 검출부의 범위를 전부 사용하는 경우, 로테이터가 0° 및 90°에 위치했을 때, 로테이터(3)의 상부로부터 바라본 도면이다.1 (a), (b) is a view from the top of the rotator 3 when the rotator is positioned at 0° and 90° when the entire range of the X-ray detector is used in the conventional cone beam CT, respectively. It is a drawing.
도 2의 (a), (b)는 각각 도 1의 (a), (b)에 있어서 종래의 프리 FOV 방식의 구현을 나타낸 도면이다.2(a) and 2(b) are diagrams showing the implementation of the conventional pre-FOV method in FIGS. 1(a) and (b), respectively.
도 3은 일반적으로 대형인 콘빔 CT를 나타낸 블록도이다.3 is a block diagram showing a generally large cone beam CT.
도 4는 본 발명의 실시예에 따른 동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치의 개략적인 구성을 나타낸 블록도이다.4 is a block diagram showing a schematic configuration of a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention.
도 5 및 도 6는 각각 본 발명의 실시예에 따른 콘빔 CT 장치에 있어서, 로테이터가 0° 및 90°에 위치했을 때, 콜리메이터의 동적 제어에 따른 X선의 조사 방향을 로테이터의 상부로부터 바라본 도면이다.5 and 6, respectively, in the cone beam CT apparatus according to the embodiment of the present invention, when the rotator is positioned at 0° and 90°, the X-ray irradiation direction according to the dynamic control of the collimator is a view viewed from the top of the rotator .
도 7의 (a), (b)는 본 발명의 실시예에 따른 동적 제어가 가능한 콜리메이터를 예시적으로 나타낸 도면이다.7A and 7B are diagrams exemplarily illustrating a collimator capable of dynamic control according to an embodiment of the present invention.
도 8의 (a), (b)는 본 발명의 실시예에 따른 동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치를 통해 얻은 검출 이미지를 나타낸 도면이다.8A and 8B are diagrams illustrating detection images obtained through a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 설명한다. 그리고 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, detailed contents for carrying out the present invention will be described with reference to the accompanying drawings. In the description of the present invention, when it is determined that the subject matter of the present invention may be unnecessarily obscured as it is obvious to those skilled in the art with respect to related known functions, the detailed description thereof will be omitted.
도 4는 본 발명의 실시예에 따른 동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치의 개략적인 구성을 나타낸 블록도이다. 도 5 및 도 6은 각각 본 발명의 실시예에 따른 콘빔 CT 장치에 있어서, 로테이터(40)가 0° 및 90°에 위치했을 때, 콜리메이터(20)의 동적 제어에 따른 X선의 조사 방향을 로테이터(40)의 상부로부터 바라본 도면이다.4 is a block diagram showing a schematic configuration of a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention. 5 and 6, respectively, in the cone beam CT apparatus according to the embodiment of the present invention, when the rotator 40 is positioned at 0 ° and 90 °, the X-ray irradiation direction according to the dynamic control of the collimator 20 rotator It is a view seen from the top of (40).
도 4를 참조하면, 본 발명의 실시예에 따른 콘빔 CT 장치는, X선 발생부(10), 콜리메이터(20), X선 검출부(30), 로테이터(40), 및 제어부(50)를 포함한다.Referring to FIG. 4 , the cone beam CT apparatus according to an embodiment of the present invention includes an X-ray generator 10 , a collimator 20 , an X-ray detector 30 , a rotator 40 , and a controller 50 . do.
도 5 및 도 6을 참조하면, X선 발생부(10)는 피사체를 향하여 콘빔(cone-beam) 형태의 X선을 발생시키는 X선 발생장치로서, 콘빔 형태의 X선은 X선 발생부(10)의 X선 초점에서 콜리메이터(20)를 통과하여 X선 검출부(30)에 입사된다.5 and 6, the X-ray generator 10 is an X-ray generator that generates X-rays in the form of a cone-beam toward a subject. 10) passes through the collimator 20 at the X-ray focus point and is incident on the X-ray detector 30 .
콜리메이터(20)는 X선 발생부(10)에서 방사되는 X선이 선택된 촬영영역(60)으로만 조사될 수 있도록, 개구부(21)를 통해 X선의 조사영역을 제한할 수 있다. 로테이터(40)가 1회전 시, 제어부(50)에 의해 회전각도별 촬영 위치마다 콜리메이터(20)의 개구 위치 또는 범위가 조절될 수 있다.The collimator 20 may limit the irradiation area of the X-rays through the opening 21 so that the X-rays emitted from the X-ray generator 10 can be irradiated only to the selected imaging area 60 . When the rotator 40 rotates once, the opening position or range of the collimator 20 may be adjusted by the control unit 50 for each photographing position for each rotation angle.
여기서, 선택된 촬영영역(60)이란 피사체 중 촬영하고자 하는 일부 영역으로서, 하나의 장비에서 최대 FOV와 더불어 필요에 따라 작은 영역을 촬영하고자 할 때 필요한 기술인 프리 FOV(free FOV) 방식의 적용에 있어서, 프리 FOV 촬영 및 복원 영역에 해당한다. 촬영시 피사체와 함께 선택된 촬영영역(60)은 고정될 수 있다.Here, the selected photographing area 60 is a partial area to be photographed among the subjects. In the application of the free FOV method, which is a technique necessary to photograph a small area as needed with the maximum FOV in one device, It corresponds to the free FOV shooting and restoration area. When photographing, the photographing area 60 selected together with the subject may be fixed.
콜리메이터(20)는 개구부(21)를 사이에 두고 양측에 형성된 제1 및 제2 플레이트(201, 202)를 포함할 수 있다. 제1 플레이트(201)는 X선 발생부(10)에서 볼 때 우측에 배치되며, 제2 플레이트(202)는 X선 발생부(10)에서 볼 때 좌측에 배치될 수 있다.The collimator 20 may include first and second plates 201 and 202 formed on both sides with the opening 21 therebetween. The first plate 201 may be disposed on the right side when viewed from the X-ray generator 10 , and the second plate 202 may be disposed on the left side when viewed from the X-ray generator 10 .
콜리메이터(20)의 개구부(21) 형상은 콜리메이터(20)의 구성에 따라 다양한 형태로 설정될 수 있으며, 콜리메이터(20)의 상세 구성에 대하여는 후술한다.The shape of the opening 21 of the collimator 20 may be set in various shapes according to the configuration of the collimator 20 , and the detailed configuration of the collimator 20 will be described later.
X선 검출부(30)는 콜리메이터(20)를 통해 조사되어 피사체를 투과한 X선을 검출할 수 있다. X선 검출부(30)는 X선의 조사방향과 수직방향의 일정 길이로 형성된 검출영역(31)을 갖는다.The X-ray detector 30 may detect X-rays irradiated through the collimator 20 and transmitted through the subject. The X-ray detection unit 30 has a detection area 31 formed to have a predetermined length in the direction perpendicular to the X-ray irradiation direction.
본 발명에 적용되는 프리 FOV 방식에 있어서의 선택된 검출영역(31)은 X선이 콜리메이터(20)를 통해 조사되므로 전체 X선 검출부의 최대 검출영역의 일부에 해당한다. 또한, 도 5 및 도 6을 참조하면, 선택된 검출영역(31)은 피사체의 촬영 방향에 따라 전체 X선 검출부의 검출영역 중 서로 다른 위치에 해당할 수 있다.The selected detection area 31 in the free FOV method applied to the present invention corresponds to a part of the maximum detection area of the entire X-ray detector because X-rays are irradiated through the collimator 20 . Also, referring to FIGS. 5 and 6 , the selected detection area 31 may correspond to different positions among the detection areas of the entire X-ray detector according to the photographing direction of the subject.
또한, X선 검출부(30)로부터 수신된 데이터는 영상처리부(32)로 전달되어, 영상처리부(32)는 상기 데이터로부터 3차원 영상을 재구성할 수 있다.In addition, the data received from the X-ray detector 30 is transmitted to the image processing unit 32 , and the image processing unit 32 may reconstruct a 3D image from the data.
로테이터(40)는 X선 발생부(10), 콜리메이터(20), 및 X선 검출부(30)가 길이방향으로 배치되어 있다. X선 발생부(10), 콜리메이터(20), 및 X선 검출부(30)는 각각 상부에 위치한 로테이터(40)에 직간접적으로 연결될 수 있다. X선 발생부(10), 콜리메이터(20), 및 X선 검출부(30)는 상기 로테이터(40)의 길이방향의 일직선상으로 순서대로 배열될 수 있다.In the rotator 40 , the X-ray generator 10 , the collimator 20 , and the X-ray detector 30 are disposed in the longitudinal direction. The X-ray generator 10 , the collimator 20 , and the X-ray detector 30 may be directly or indirectly connected to the rotator 40 located thereon, respectively. The X-ray generator 10 , the collimator 20 , and the X-ray detector 30 may be sequentially arranged in a straight line in the longitudinal direction of the rotator 40 .
본 발명에 따른 회전구동부(41)는 콘빔 CT 장치를 이용한 스캔과정이 진행되는 동안 피사체를 고정시킨 후 로테이터(40)를 회전 중심(C r)에 대하여 1회전시킨다. 1회전이란, 예를 들어 선택된 촬영영역(60)을 360° 또는 180°보다 약간 더 큰 각도로 회전함을 의미한다.The rotation driving unit 41 according to the present invention rotates the rotator 40 once with respect to the rotation center (C r ) after fixing the subject while the scanning process using the cone beam CT device is in progress. One rotation means, for example, rotating the selected photographing area 60 at an angle slightly larger than 360° or 180°.
로테이터(40)는 회전구동부(41)에 의하여 촬영시마다 회전 중심(C r)에 대하여 1회전할 수 있으며, 정방향 회전뿐만 아니라 역방향 회전도 가능하다. 로테이터(40)의 회전시, 로테이터(40)와 연동된 X선 발생부(10), 콜리메이터(20), 및 X선 검출부(30)도 함께 회전하게 된다. The rotator 40 may rotate once with respect to the rotation center (C r ) for each photographing by the rotation driving unit 41 , and not only forward rotation but also reverse rotation is possible. When the rotator 40 is rotated, the X-ray generator 10 , the collimator 20 , and the X-ray detector 30 interlocked with the rotator 40 also rotate.
제어부(50)는 콜리메이터(20)의 구동을 동적 제어하며, 로테이터(40)를 회전 중심(C r)에 대하여 회전시킬 수 있다. 즉, 제어부(50)는 콜리메이터(20)의 개구 위치를 조절하며, 회전구동부(41)를 구동하여 로테이터(40)를 회전시킬 수 있다. 상술한 바와 같이, 로테이터(40)는 콜리메이터(20)와 연동되므로, 제어부(50)가 로테이터(40)를 회전시킬 때, 콜리메이터(20)도 함께 회전된다.The control unit 50 dynamically controls the driving of the collimator 20 , and may rotate the rotator 40 with respect to the rotation center C r . That is, the control unit 50 may adjust the opening position of the collimator 20 , and may drive the rotation driving unit 41 to rotate the rotator 40 . As described above, since the rotator 40 is interlocked with the collimator 20 , when the control unit 50 rotates the rotator 40 , the collimator 20 is also rotated.
제어부(50)는 선택된 촬영영역의 중심(C f)이 로테이터(40)의 회전 중심과 이격되며 로테이터(40)가 회전할 때, 선택된 촬영영역(60)에만 X선이 조사될 수 있도록 콜리메이터(20)이 개구 위치를 조절할 수 있다.The control unit 50 controls the center (C f ) of the selected imaging area to be spaced apart from the rotation center of the rotator 40, and when the rotator 40 rotates, a collimator ( 20) this opening position can be adjusted.
제어부(50)는 제1 및 제2 플레이트(201, 202)를 X선의 방사방향과 수직한 일방향으로 함께 이동시킬 수 있다.The control unit 50 may move the first and second plates 201 and 202 together in one direction perpendicular to the radial direction of X-rays.
제어부(50)는 선택된 촬영영역(60)에만 X선이 노출되도록 로테이터(40)의 회전 각도에 따라 콜리메이터(20)의 개구 위치를 다르게 조절할 수 있다. 콜리메이터(20)의 개구 위치가 조절됨에 따라, X선이 도달하는 선택된 검출영역(31)도 로테이터(40)의 회전 각도에 따라 달라지게 된다.The controller 50 may differently adjust the opening position of the collimator 20 according to the rotation angle of the rotator 40 so that only the selected imaging area 60 is exposed to X-rays. As the opening position of the collimator 20 is adjusted, the selected detection area 31 to which the X-rays reach also varies according to the rotation angle of the rotator 40 .
예를 들어, 로테이터(40)가 0° 위치일 때의 도 5를 참조하면, 선택된 촬영영역(60)이 X선 발생부(10)에서 볼 때 최대 FOV 촬영 및 복원 영역(6)의 우측에 치우친 경우(이하에서, 우측 및 좌측의 구분은 X선 발생부(10)에서 볼 때를 기준으로 함), 콜리메이터(20)는 우측의 선택된 촬영영역(60)으로 X선이 조사될 수 있도록 제어부(50)에 의하여 개구 위치가 조절된다.For example, referring to FIG. 5 when the rotator 40 is at the 0° position, the selected imaging area 60 is on the right side of the maximum FOV imaging and restoration area 6 when viewed from the X-ray generator 10 . In the case of bias (hereinafter, the division of the right and left sides is based on the view from the X-ray generator 10), the collimator 20 is controlled so that the X-rays can be irradiated to the selected imaging area 60 on the right side. The opening position is adjusted by (50).
상세하게는, 제어부(50)는 제1 및 제2 플레이트(201, 202)를 우측으로 이동시켜 방사되는 X선을 우측의 선택된 촬영영역(60)의 범위에 맞게 향하도록 할 수 있다. 이때, 제1 및 제2 플레이트(201, 202)는 우측으로 함께 이동하게 된다.In detail, the controller 50 may move the first and second plates 201 and 202 to the right to direct the radiated X-rays to match the range of the selected imaging area 60 on the right. At this time, the first and second plates 201 and 202 move together to the right.
이에 따라, X선 검출부(30)의 최대 검출영역의 일부인 우측의 선택된 검출영역(31)에 조사된 X선을 통해 피사체의 검출이 수행된다.Accordingly, the object is detected through the X-rays irradiated to the selected detection area 31 on the right side, which is a part of the maximum detection area of the X-ray detection unit 30 .
로테이터(40)가 90° 위치일 때의 도 6을 참조하면, 선택된 촬영영역(60)이 최대 FOV 촬영 및 복원 영역(6)의 좌측에 치우친 경우, 콜리메이터(20)는 좌측의 선택된 촬영영역(60)으로 X선이 조사될 수 있도록 제어부(50)에 의하여 개구 위치가 조절된다.Referring to FIG. 6 when the rotator 40 is at the 90° position, if the selected imaging area 60 is biased to the left of the maximum FOV imaging and restoration area 6, the collimator 20 is located on the left side of the selected imaging area ( 60), the opening position is adjusted by the control unit 50 so that X-rays can be irradiated.
상세하게는, 제어부(50)는 제1 및 제2 플레이트(201, 202)를 좌측으로 이동시켜 방사되는 X선을 좌측의 선택된 촬영영역(60)의 범위에 맞게 향하도록 할 수 있다. 이때, 제1 및 제2 플레이트(201, 202)는 좌측으로 함께 움직이게 된다.In detail, the controller 50 may move the first and second plates 201 and 202 to the left to direct the radiated X-rays to match the range of the selected imaging area 60 on the left. At this time, the first and second plates 201 and 202 move together to the left.
이에 따라, X선 검출부(30)의 최대 검출영역의 일부인 좌측의 선택된 검출영역(31)에 조사된 X선을 통해 피사체의 검출이 수행된다.Accordingly, the object is detected through the X-rays irradiated to the left selected detection area 31 which is a part of the maximum detection area of the X-ray detector 30 .
상기에서는 선택된 촬영영역(60)이 우측 및 좌측에 치우친 경우를 예시로 하여 설명하였지만, 상측 및 하측에 치우친 경우도 마찬가지로 콜리메이터(20)는 선택된 촬영영역(60)으로 X선이 조사될 수 있도록 제어부(50)에 의해 개구 위치가 조절될 수 있다. 또한, 이는 선택된 촬영영역(60)이 X선이 조사되는 방향으로의 2차원 평면상에서 상, 하, 좌, 우측 중 적어도 2개의 좌표를 동시에 갖는 경우에도 적용 가능하다.In the above description, the case where the selected imaging area 60 is biased to the right and left has been described as an example, but in the case where the selected imaging area 60 is biased toward the upper and lower sides, the collimator 20 controls the X-rays to be irradiated to the selected imaging area 60 . The opening position can be adjusted by (50). In addition, this is applicable even when the selected imaging area 60 has at least two coordinates of top, bottom, left, and right on a two-dimensional plane in the direction in which the X-rays are irradiated at the same time.
또한, 도 5 및 도 6을 참조하면, 최대 FOV 촬영 및 복원 영역(6) 내에 피사체의 선택된 촬영영역(60)이 존재하며, 로테이터(40)의 회전 중심(C r)은 선택된 촬영영역의 중심(C f)과 이격되어 있다.In addition, referring to FIGS. 5 and 6 , the selected photographing area 60 of the subject exists within the maximum FOV photographing and restoration area 6 , and the rotation center (C r ) of the rotator 40 is the center of the selected photographing area (C f ) and spaced apart.
제어부(50)는 선택된 촬영영역의 중심(C f)과 로테이터(40)의 회전 중심(C r)의 위치가 각각 고정된 상태에서 로테이터(40)를 회전시킬 수 있다. 즉, 로테이터(40)가 회전하더라도 선택된 촬영영역의 중심(C f)이 로테이터의 회전 중심(C r)에 대하여 그 위치가 변하지 않게 된다.The controller 50 may rotate the rotator 40 while the positions of the center C f of the selected imaging area and the rotation center C r of the rotator 40 are fixed, respectively. That is, even when the rotator 40 rotates, the position of the center (C f ) of the selected imaging area with respect to the rotation center (C r ) of the rotator does not change.
즉, 로테이터의 회전 중심(C r)의 위치가 고정되어 있으므로, 로테이터(3)의 회전 반경이 로테이터(3)의 회전에 따라 변하지 않게 된다.That is, since the position of the rotation center (C r ) of the rotator is fixed, the rotation radius of the rotator 3 does not change according to the rotation of the rotator 3 .
만약, 로테이터(40)의 회전시, 콜리메이터(5)가 고정된 상태에서 로테이터(40)를 회전시키는 경우에는, 로테이터의 회전 중심(C r)이 움직여야 하므로 로테이터(40)의 회전 반경이 넓어지며 콘빔 CT 장치가 대형화되는 문제점이 발생한다.When the rotator 40 rotates, when the rotator 40 is rotated in a state in which the collimator 5 is fixed, the rotational center of the rotator (C r ) must move, so that the rotation radius of the rotator 40 is widened. There is a problem in that the cone beam CT device is enlarged.
본 발명에서는 로테이터(40)가 회전하더라도, 선택된 촬영영역의 중심(C f)과 로테이터의 회전 중심(C r)이 각각 고정된 상태에서 선택된 촬영영역(60)에만 X선이 조사될 수 있도록 콜리메이터(20)의 개구 위치가 조절되므로, 로테이터(40)의 회전 반경이 변하지 않게 된다. 따라서, 콘빔 CT 장치의 소형화가 달성될 수 있다.In the present invention, even when the rotator 40 rotates, the center (C f ) of the selected imaging area and the center of rotation (C r ) of the rotator are fixed, respectively, so that X-rays can be irradiated only to the selected imaging area 60. Since the opening position of 20 is adjusted, the rotation radius of the rotator 40 does not change. Accordingly, miniaturization of the cone beam CT apparatus can be achieved.
도 7의 (a), (b)는 본 발명의 실시예에 따른 동적 제어가 가능한 콜리메이터를 예시적으로 나타낸 도면이다. 도 8의 (a), (b)는 본 발명의 실시예에 따른 동적 제어가 가능한 콜리메이터를 구비한 콘빔 CT 장치를 통해 얻은 검출 이미지를 나타낸 도면이다.7A and 7B are diagrams exemplarily illustrating a collimator capable of dynamic control according to an embodiment of the present invention. 8A and 8B are diagrams illustrating detection images obtained through a cone beam CT apparatus having a collimator capable of dynamic control according to an embodiment of the present invention.
도 7의 (a), (b)를 참조하면, 본 발명의 실시예에 따른 콘빔 CT 장치의 콜리메이터(20)는 X선 발생부(10)에서 방사되는 X선의 진행방향을 중심으로 각각 상, 하, 좌, 우측에 위치하는 4개의 사각 형상의 플레이트(22)로 형성될 수 있다.Referring to (a) and (b) of Figure 7, the collimator 20 of the cone beam CT apparatus according to the embodiment of the present invention has an image centering on the traveling direction of X-rays radiated from the X-ray generator 10, It may be formed of four rectangular-shaped plates 22 positioned on the lower, left, and right sides.
제1 및 제2 플레이트(201)는 4개의 플레이트(22) 중 대향하는 2개의 플레이트일 수 있다.The first and second plates 201 may be opposite two plates among the four plates 22 .
제어부(50)는 상기 플레이트(22)를 각각 동적으로 제어할 수 있다. 제어부(50)에 의해 각각의 플레이트(22)는 수평 또는 수직방향으로 연장된 복수의 축(23)과 레일(24)을 따라 상, 하, 좌, 우측 중 선택된 방향으로 이동할 수 있다. 각각의 축(22)은 모터를 통해 회전 동력을 받으며, 축(22)의 외주면에는 나사홈부가 형성될 수 있다.The control unit 50 may dynamically control each of the plates 22 . Each plate 22 may be moved in a direction selected from among up, down, left, and right along a plurality of axes 23 and rails 24 extending in a horizontal or vertical direction by the control unit 50 . Each shaft 22 receives rotational power through a motor, and a screw groove portion may be formed on an outer peripheral surface of the shaft 22 .
각각의 플레이트(22)는 하나의 축(23) 측으로 연장된 연장 플레이트(221)를 포함하고, 연장 플레이트(221)의 말단에는 중공을 갖는 함체형의 이동부(222)가 형성될 수 있다. 이동부(222)는 각각의 축(23)에 끼워지며, 축(23)을 따라 수평 또는 수직방향으로 이동할 수 있다. 한편, 함체형의 이동부(222)의 내주면에는 나사산부가 형성되어 축(22)의 외주면과 치합될 수 있다.Each plate 22 includes an extension plate 221 extending toward one axis 23 , and an enclosure-type moving part 222 having a hollow body may be formed at an end of the extension plate 221 . The moving part 222 is fitted to each shaft 23 , and can move horizontally or vertically along the shaft 23 . On the other hand, a threaded portion is formed on the inner peripheral surface of the moving part 222 of the housing type, and may be engaged with the outer peripheral surface of the shaft 22 .
상측 및 하측 플레이트는 수직 방향으로 연장된 축을 따라 상하로 이동할 수 있으며, 좌측 및 우측 플레이트는 수평 방향으로 연장된 축을 따라 좌우로 이동할 수 있다. 상측 및 하측 플레이트는 수직방향으로 서로 가까워지거나 멀어지는 방향으로 이동할 수 있으며, 좌측 및 우측 플레이트는 수평방향으로 서로 가까워지거나 멀어지는 방향으로 이동할 수 있다.The upper and lower plates may move up and down along an axis extending in a vertical direction, and the left and right plates may move left and right along an axis extending in a horizontal direction. The upper and lower plates may move toward or away from each other in a vertical direction, and the left and right plates may move toward or away from each other in a horizontal direction.
예를 들어, 제어부(50)가 도 7의 (a)의 도시된 각각의 플레이트(22)의 위치를 도 7의 (b)의 위치로 이동시키면서 콜리메이터의 개구 범위를 좁힐 수 있으며, 그 반대의 경우도 가능하다.For example, the control unit 50 may narrow the opening range of the collimator while moving the position of each plate 22 shown in FIG. 7(a) to the position of FIG. 7(b), and vice versa. case is possible.
또한, 도 7의 (a), (b)에는 콜리메이터의 개구 범위를 조절하는 구성이 일 예시로 나타나 있으나, 이에 제한되지 않고, 예를 들어 상측 및 하측 플레이트, 또는 좌측 및 우측 플레이트를 각각 같은 방향으로 이동하면서 콜리메이터의 개구 위치를 조절하는 것도 가능하다.In addition, although the configuration for adjusting the opening range of the collimator is shown as an example in (a) and (b) of FIG. 7 , the configuration is not limited thereto, and for example, the upper and lower plates, or the left and right plates are set in the same direction. It is also possible to adjust the opening position of the collimator while moving.
사용자는 제어부(50)를 통해 먼저 선택된 촬영영역(60)을 촬영하도록 콜리메이터의 개구 범위를 조절한 후, 로테이터(40)의 회전에 따라 선택된 촬영영역(60)만을 촬영하도록 자동으로 콜리메이터의 개구 위치를 조절하도록 설정할 수 있다.The user adjusts the aperture range of the collimator to photograph the first selected photographing area 60 through the control unit 50, and then automatically positions the collimator's opening to photograph only the selected photographing area 60 according to the rotation of the rotator 40 can be set to adjust.
예를 들어, 제어부(50)는 로테이터(40)가 회전할 때, 선택된 촬영역역(60)이 X선 발생부(10)를 기준으로 최대 FOV 촬영 및 복원 영역(6)의 좌측 또는 우측에 치우친 경우, 좌측 및 우측 플레이트를 각각 좌측 또는 우측으로 함께 이동시킬 수 있다.For example, when the rotator 40 rotates, the control unit 50 determines that the selected imaging area 60 is biased to the left or right of the maximum FOV imaging and restoration area 6 based on the X-ray generator 10 . In this case, the left and right plates can be moved together to the left or right, respectively.
한편, 제어부(50)는 로테이터(40)가 회전할 때, 선택된 촬영역역(60)이 X선 발생부(10)를 기준으로 최대 FOV 촬영 및 복원 영역(6)의 상측 또는 하측에 치우친 경우, 상측 및 하측 플레이트를 각각 상측 또는 하측으로 함께 이동시킬 수 있다.On the other hand, when the control unit 50 rotates the rotator 40, the selected imaging area 60 is biased toward the upper or lower side of the maximum FOV imaging and restoration area 6 with respect to the X-ray generator 10, The upper and lower plates can be moved together upwards or downwards, respectively.
한편, 좌측 및 우측 플레이트와 상측 및 하측 플레이트의 상기 이동은 개별적으로 또는 동시에 진행될 수 있다.Meanwhile, the movements of the left and right plates and the upper and lower plates may be performed individually or simultaneously.
이를 통해, 선택된 촬영영역(60)이 최대 FOV 촬영 영역 중 어느 위치에 있더라도, 로테이터(40)의 회전시 선택된 촬영영역(60)의 중심(C f)과 로테이터의 회전 중심(C r)이 각각 고정된 상태에서 촬영이 진행될 수 있다. 동시에, 촬영시 X-선 검출부(30) 중 검출영역(31)의 위치가 변하므로, 로테이터(40)의 일 회전에 따라 X-선 검출부(30)의 대부분의 면적에 X선이 조사될 수 있다.Through this, even if the selected imaging area 60 is located at any position among the maximum FOV imaging area, when the rotator 40 is rotated, the center (C f ) of the selected imaging area 60 and the rotation center (C r ) of the rotator are respectively Filming may proceed in a fixed state. At the same time, since the position of the detection region 31 of the X-ray detection unit 30 changes during imaging, most of the area of the X-ray detection unit 30 can be irradiated with X-rays according to one rotation of the rotator 40 . have.
도 8의 (a), (b)를 참조하면, 본 발명의 실시예에 따른 콘빔 CT 장치는 콜리메이터(20)가 X선 발생부(10)로부터 방사되는 X선을 일부 가림으로써, X선 검출부(30)에서 얻게 되는 영상 영역이 좁아지는 것을 확인할 수 있다.Referring to (a) and (b) of FIG. 8 , in the cone beam CT apparatus according to an embodiment of the present invention, the collimator 20 partially blocks the X-rays emitted from the X-ray generator 10 , so that the X-ray detection unit It can be seen that the image area obtained in (30) is narrowed.
상술한 본 발명의 실시예들의 콘빔 CT 장치에 따르면, 콘빔 CT 촬영 중 로테이터가 회전할 때, 선택된 검출영역의 데이터를 얻는 각도마다 콜리메이터를 자동으로 동적 제어하여 로테이터의 회전 중에 콜리메이터의 개구 범위를 계속 변화시킴으로써, 상기 로테이터의 회전 중심을 촬영하고자 하는 영역의 중심 위치로 이동시킬 필요가 없어 장치를 소형화할 수 있다.According to the cone beam CT apparatus of the embodiments of the present invention described above, when the rotator rotates during cone beam CT imaging, the collimator automatically and dynamically controls the collimator for each angle at which data of the selected detection area is obtained to continue the aperture range of the collimator during rotation of the rotator. By changing it, it is not necessary to move the rotational center of the rotator to the central position of the area to be photographed, and thus the device can be miniaturized.
이 분야의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명의 보호범위가 제한될 수도 없음을 다시 한 번 첨언한다.The scope of protection in this field is not limited to the description and expression of the embodiments explicitly described above. In addition, it is added once again that the protection scope of the present invention cannot be limited due to obvious changes or substitutions in the technical field to which the present invention pertains.
[부호의 설명][Explanation of code]
10: X선 발생부 10: X-ray generator
20: 콜리메이터20: collimator
30: X선 검출부 30: X-ray detection unit
31: 선택된 검출영역31: selected detection area
40: 로테이터 40: Rotator
41: 회전 구동부41: rotation drive unit
50: 제어부 50: control unit
60: 선택된 촬영영역 60: Selected shooting area
C f: 선택된 촬영영역의 중심 C f : Center of the selected shooting area
C r: 로테이터의 회전 중심C r : center of rotation of the rotator

Claims (6)

  1. 피사체를 향하여 콘빔 형태의 X선을 방사하는 X선 발생부;an X-ray generator that radiates X-rays in the form of cone beams toward the subject;
    상기 X선 발생부에서 방사되는 X선이 선택된 촬영영역으로만 조사될 수 있도록, 개구부를 통해 X선의 조사영역을 제한하는 콜리메이터;a collimator for limiting the irradiation area of X-rays through the opening so that the X-rays emitted from the X-ray generator can be irradiated only to the selected imaging area;
    상기 콜리메이터를 통해 조사되어 피사체를 투과한 X선을 검출하는 X선 검출부; 및an X-ray detection unit irradiated through the collimator and detecting X-rays passing through the subject; and
    상기 X선 발생부, 상기 콜리메이터, 및 상기 X선 검출부가 길이방향으로 배치된 로테이터;a rotator in which the X-ray generator, the collimator, and the X-ray detector are disposed in a longitudinal direction;
    상기 콜리메이터의 구동을 제어하며, 상기 로테이터를 회전 중심에 대하여 회전시키는 제어부를 포함하며,A control unit for controlling the driving of the collimator and rotating the rotator with respect to a center of rotation,
    상기 제어부는, 상기 선택된 촬영영역의 중심이 상기 로테이터의 회전 중심과 이격되며 상기 로테이터가 회전할 때, 상기 선택된 촬영영역에만 X선이 조사될 수 있도록 상기 콜리메이터의 개구 위치를 조절하는 것을 특징으로 하는, 콘빔 CT 장치.The control unit, the center of the selected photographing area is spaced apart from the rotation center of the rotator, and when the rotator rotates, adjusting the opening position of the collimator so that only the selected photographing area can be irradiated with X-rays , a cone-beam CT device.
  2. 제1항에 있어서,According to claim 1,
    상기 제어부는, 상기 로테이터의 회전 각도에 따라 상기 콜리메이터의 개구 위치를 다르게 조절하는 것을 특징으로 하는, 콘빔 CT 장치.The control unit, Cone-beam CT apparatus, characterized in that for adjusting the opening position of the collimator differently according to the rotation angle of the rotator.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는, 상기 선택된 촬영영역의 중심과 상기 로테이터의 회전 중심의 위치가 각각 고정된 상태에서 상기 로테이터를 회전시키는 것을 특징으로 하는, 콘빔 CT 장치.The control unit, the cone beam CT apparatus, characterized in that the rotation of the rotator in a state in which the positions of the center of the selected imaging area and the rotation center of the rotator are respectively fixed.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 콜리메이터는 제1 및 제2 플레이트를 포함하며,The collimator includes first and second plates,
    상기 제어부는, 상기 제1 및 제2 플레이트를 X선의 방사방향과 수직한 일방향으로 이동시키는 것을 특징으로 하는, 콘빔 CT 장치.The control unit, Cone beam CT apparatus, characterized in that the movement of the first and second plates in one direction perpendicular to the radiation direction of X-rays.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제어부는 상기 로테이터가 회전할 때,When the control unit rotates the rotator,
    상기 선택된 촬영영역이 상기 X선 발생부를 기준으로 최대 FOV 촬영 및 복원 영역의 우측에 치우친 경우, 상기 제1 및 제2 플레이트를 우측으로 이동시키며,When the selected imaging area is biased to the right of the maximum FOV imaging and restoration area based on the X-ray generator, the first and second plates are moved to the right,
    상기 선택된 촬영영역이 상기 X선 발생부를 기준으로 최대 FOV 촬영 및 복원 영역의 좌측에 치우친 경우, 상기 제1 및 제2 플레이트를 좌측으로 이동시키는 것을 특징으로 하는, 콘빔 CT 장치.When the selected imaging region is biased to the left of the maximum FOV imaging and restoration region based on the X-ray generator, the first and second plates are moved to the left.
  6. 제1항에 있어서,According to claim 1,
    상기 콜리메이터는, 상기 X선 발생부에서 방사되는 X선의 진행방향을 중심으로 각각 상, 하, 좌, 우측에 위치하는 4개의 사각 형상의 플레이트로 형성된 것을 특징으로 하는, 콘빔 CT 장치.The collimator is a cone beam CT device, characterized in that it is formed of four rectangular plates positioned on the upper, lower, left, and right sides of the X-rays radiated from the X-ray generator, respectively.
PCT/KR2021/000517 2020-02-27 2021-01-14 Cone beam ct apparatus equipped with dynamically controllable collimator WO2021172751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200024419A KR20210109304A (en) 2020-02-27 2020-02-27 A cone-beam ct apparatus with dynamically controlled collimator
KR10-2020-0024419 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172751A1 true WO2021172751A1 (en) 2021-09-02

Family

ID=77491309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000517 WO2021172751A1 (en) 2020-02-27 2021-01-14 Cone beam ct apparatus equipped with dynamically controllable collimator

Country Status (2)

Country Link
KR (1) KR20210109304A (en)
WO (1) WO2021172751A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076319B1 (en) * 2011-03-29 2011-10-26 주식회사 윌메드 A cone-beam ct apparatus with dynamically controlled collimator
JP6053772B2 (en) * 2011-07-04 2016-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adapt the scanning motion of the X-ray imaging device
JP2019005312A (en) * 2017-06-27 2019-01-17 ゼネラル・エレクトリック・カンパニイ Radiographic imaging apparatus, imaging method, and control program
JP2019015540A (en) * 2017-07-04 2019-01-31 キヤノン電子管デバイス株式会社 X-ray imaging device, x-ray imaging method, and collimator
JP6545353B2 (en) * 2015-07-14 2019-07-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Imaging with modulated X-ray radiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076319B1 (en) * 2011-03-29 2011-10-26 주식회사 윌메드 A cone-beam ct apparatus with dynamically controlled collimator
JP6053772B2 (en) * 2011-07-04 2016-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adapt the scanning motion of the X-ray imaging device
JP6545353B2 (en) * 2015-07-14 2019-07-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Imaging with modulated X-ray radiation
JP2019005312A (en) * 2017-06-27 2019-01-17 ゼネラル・エレクトリック・カンパニイ Radiographic imaging apparatus, imaging method, and control program
JP2019015540A (en) * 2017-07-04 2019-01-31 キヤノン電子管デバイス株式会社 X-ray imaging device, x-ray imaging method, and collimator

Also Published As

Publication number Publication date
KR20210109304A (en) 2021-09-06

Similar Documents

Publication Publication Date Title
JP3779301B2 (en) X-ray diagnostic equipment
WO2017135782A1 (en) X-ray collimator and x-ray imaging apparatus using same
US8290119B2 (en) Adjustable scanner
US8503603B2 (en) Adjustable scanner
WO2017073997A1 (en) X-ray image capture apparatus
WO2011074867A2 (en) Intra-oral scanner
WO2014058255A1 (en) X-ray apparatus and method of obtaining x-ray image
JP7071410B2 (en) X-ray tomography equipment with added scanner function
WO2012153990A2 (en) X-ray imaging apparatus
WO2014088193A1 (en) Portable x-ray imaging system and operating table apparatus using same
WO2013137523A1 (en) X-ray photographing apparatus
WO2013162218A1 (en) Radiation scanning system
WO2012115371A2 (en) X-ray ct imaging apparatus
WO2013036074A2 (en) Apparatus for panoramic x-ray imaging and method for panoramic x-ray imaging of a dental arch using same
WO2017073996A1 (en) X-ray ct scanning apparatus and scanning method thereof
WO2021172751A1 (en) Cone beam ct apparatus equipped with dynamically controllable collimator
WO2016111432A1 (en) Image photographing method and device
WO2014054899A1 (en) X-ray imaging device
JPH0966054A (en) X-ray radiographic system
JPH0819534A (en) X-ray photographing device serving also for panorama cephalo photographing and cephalo x-ray photographing device
WO2016175386A2 (en) X-ray imaging device and method
WO2017003223A1 (en) Image acquisition device and method
WO2016064072A1 (en) X-ray imaging device
WO2014168288A1 (en) X-ray imaging device and imaging method for x-ray imaging device
WO2013069842A1 (en) Computed tomography device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761793

Country of ref document: EP

Kind code of ref document: A1