WO2021172505A1 - Ophthalmologic imaging apparatus - Google Patents

Ophthalmologic imaging apparatus Download PDF

Info

Publication number
WO2021172505A1
WO2021172505A1 PCT/JP2021/007299 JP2021007299W WO2021172505A1 WO 2021172505 A1 WO2021172505 A1 WO 2021172505A1 JP 2021007299 W JP2021007299 W JP 2021007299W WO 2021172505 A1 WO2021172505 A1 WO 2021172505A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
light
measurement light
fundus
optical
Prior art date
Application number
PCT/JP2021/007299
Other languages
French (fr)
Japanese (ja)
Inventor
佳洋 角谷
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2022503742A priority Critical patent/JPWO2021172505A1/ja
Publication of WO2021172505A1 publication Critical patent/WO2021172505A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to an ophthalmologic imaging device for photographing the fundus by projecting light onto the fundus of the eye to be inspected while scanning the measurement light from the light source and receiving the reflected light from the fundus.
  • Patent Document 1 has been proposed.
  • Patent Document 1 is a scanning fundus photography apparatus that scans a laser beam two-dimensionally, projects it onto the fundus, receives reflected light from the fundus, and photographs the fundus, and is an objective composed of a plurality of lenses. There is disclosed a scanning fundus photography apparatus capable of photographing the fundus with high image quality by blocking harmful reflected light rays derived from the lens surface reflection of the lens.
  • the laser light affects the human body, and depending on how it is used, it causes an excessive burden on the eye to be inspected, which is a problem.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an ophthalmologic imaging apparatus capable of reducing the burden on the eye to be inspected.
  • the ophthalmologic imaging apparatus includes an optical device unit for scanning the measurement light from the light source, incidenting it on the fundus of the eye to be inspected, and receiving the return light reflected by the fundus, and the light is reflected by the fundus.
  • An ophthalmologic imaging device that captures an image of the fundus of the eye based on the return light, wherein the measurement light is scanned with a predetermined position of the eye to be inspected as a scanning turning point, and the measuring light intermittently scans the scanning turning point. It is characterized by including a control unit that controls the optical device unit so as to pass through.
  • the optical apparatus unit includes a first scanning device that scans the measurement light in the first direction and a second scanning device that scans the measurement light in the second direction.
  • the first scanning device and the control unit so as to execute a raster scan in which scanning in the first direction is repeated a plurality of times while scanning once in a predetermined range predetermined in the second direction. It is characterized by controlling a second scanning device.
  • control unit further has the optical device unit so that the outside of the passable range in which the measurement light can pass and reach the eye to be inspected is also a scanning range. It is characterized in that the measurement light passing through the scanning turning point is made intermittent light.
  • control unit further controls the optical device unit so as to modulate the measurement light output from the light source, and transmits the measurement light passing through the scanning turning point. It is characterized by intermittent light.
  • the modulation is further characterized in that the measurement light is modulated by a direct modulation, an electro-optical modulation, an acoustic-optical modulation, or an optical chopper.
  • FIG. 1 is a block diagram showing an example of a configuration of an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention.
  • the ophthalmologic imaging device 100 includes an optical device unit 60, a control unit 70, an input device 80, and a display device 90.
  • FIG. 2 is an optical diagram showing an example of the configuration of an optical device unit in an ophthalmologic imaging device corresponding to at least one of the embodiments of the present invention.
  • the optical device unit 60 is roughly divided into a light projecting optical system 1, a scanning optical system 2, an objective lens optical system 3, and a light receiving optical system 4.
  • the configuration of the optical device unit 60 shown in FIG. 2 is an example, and the same functions as those of the light projecting optical system 1, the scanning optical system 2, the objective lens optical system 3, and the light receiving optical system 4 are realized. If possible, the configuration may be different from that shown in FIG.
  • each of the light projecting optical system 1, the scanning optical system 2, the objective lens optical system 3, and the light receiving optical system 4 of the optical device unit 60 of FIG. 1 are controlled by the control unit 70. It is given as an example of a configuration that can be a target, and is only an example. Therefore, there is a possibility that a configuration other than this is a control target.
  • the projection optical system 1 is composed of, for example, a laser light source 10, a projection lens 11, a projection pinhole 12, and a projection focus lens 13.
  • a laser light source 10 a laser light source for each of the three colors R, G, and B for color photographing and a NIR laser (near-infrared laser) for alignment are used.
  • NIR laser near-infrared laser
  • an optical member that superimposes the optical axes of these plurality of light sources on one is required.
  • the laser light from the laser light source 10 passes through the light projecting lens 11 and is incident on the light projecting pin hole 12 arranged at a position conjugate with the fundus conjugate surface, and the diameter of the laser light is narrowed by the light projecting pin hole 12.
  • the projection focus lens 13 is movable along the optical axis direction of the light source unit 10, and adjusts the focus of the laser beam with respect to the fundus 50b of the eye 50 to be inspected.
  • the laser light transmitted through the projection focus lens 13 is incident on the optical path dividing mirror (pupil dividing mirror) 14.
  • the scanning optical system 2 is composed of, for example, a first scanning device 20, scanning relay lenses 21 and 22, and a second scanning device 23.
  • the laser light incident on the optical path dividing mirror 14 is reflected there and is incident on the first scanning device 20.
  • the first scanning device 20 is a device for scanning the laser beam in the first direction.
  • the laser light scanned by the first scanning device 20 is incident on the second scanning device 23 via the scanning relay lenses 21 and 22.
  • the second scanning device 23 is a device for scanning the laser beam in the second direction orthogonal to the first direction.
  • scanning by the first scanning device 20 is performed at a higher speed than scanning by the second scanning device 23.
  • a polygon mirror (rotating multifaceted mirror) may be adopted as the first scanning device 20, and a galvano mirror (vibration mirror) may be adopted as the second scanning device 23. Then, the laser light reflected by the second scanning device 23 is incident on the objective lens optical system 3.
  • the objective lens optical system 3 is composed of a first lens group 30 and a second lens group 31.
  • the laser light scanned by the first scanning device 20 and the second scanning device 23 enters the pupil 50a of the eye 50 to be inspected through the first lens group 30 and the second lens group 31 as measurement light, and is projected onto the fundus 50b. ..
  • the fundus 50b is raster-scanned with laser light.
  • the laser light projected on the fundus 50b is reflected by the fundus 50b, and the reflected light travels in the same optical path in the opposite direction and passes through the objective lens optical system 3.
  • the objective lens optical system 3 is configured such that the fundus conjugate surface 32 exists between the first lens group 30 and the second lens group 31, and the fundus image is formed on the fundus conjugate surface 32. ..
  • the position indicated by reference numeral 50a is the position of the scanning turning point described later.
  • the laser light that has passed through the objective lens optical system 3 is reverse-scanned in the second direction and the first direction by the scanning optical system 2, and becomes a light beam having a light beam thicker than the light ray before being incident on the scanning optical system 2 to divide the optical path. It is incident on the mirror 14. Since the center of the optical path dividing mirror 14 is arranged so as to coincide with the optical axis and the reflected light from the outside of the mirror is passed through the light receiving optical system 4, the optical path is divided into a light projecting light path and a light receiving light path. On the other hand, the optical path on the side to be inspected from the optical path dividing mirror 14 is a common optical path for the light projecting optical system 1 and the light receiving optical system 4.
  • the light-receiving optical system 4 is composed of, for example, a light-receiving focus lens 40, a light-shielding member 41, a light-receiving pinhole 42, a light-receiving lens 43, a condenser lens 44, and a light-receiving element 45.
  • the reflected light from the fundus 50b that has passed through the optical path dividing mirror 14 passes through the light receiving focus lens 40 and the light receiving pin hole 42, passes through the light receiving lens 43 and the condensing lens 44, and is then received by the light receiving element 45.
  • the light receiving element 45 includes a light receiving element that receives a laser light source of each of the three colors R, G, and B for color photographing, and a light receiving element that receives an IR laser for alignment.
  • a light receiving element that receives a laser light source of each of the three colors R, G, and B for color photographing
  • a light receiving element that receives an IR laser for alignment.
  • an optical member that separates the laser light of each color into these plurality of elements is required.
  • the light receiving pinhole 42 is arranged near a position conjugate with the fundus 50b
  • the light shielding member 41 is arranged near a position conjugate with the lens surface of the objective lens optical system 3, which is harmful from the lens surface of the objective lens optical system 3. The reflected light is blocked to avoid the occurrence of a central spot image (false image).
  • the light receiving element 45 is composed of, for example, a photodiode, and sends the luminance information of each point of the fundus 50b that has been raster-scanned to the control unit 70.
  • the control unit 70 constructs a fundus image from the scanning position of the fundus 50b and its brightness information.
  • the diopter adjustment mechanism for adjusting the diopter of the eye 50 to be inspected is provided in the light emitting optical system 1 and the light receiving optical system 4, respectively.
  • the light projecting focus lens 13 of the light projecting optical system 1 and the light receiving focus lens 40 of the light receiving optical system 4 are used as lenses for diopter adjustment, and the light projecting focus lens 13 and the light receiving focus lens 40 are used as light.
  • Diopter adjustment can be performed by moving them in conjunction with each other along the axis.
  • the light-shielding member 41 also moves along the optical axis in conjunction with the light-emitting focus lens 13 and the light-receiving focus lens 40.
  • the control unit 70 includes, for example, a drive control unit 71, an image generation unit 72, and a storage unit 73.
  • the drive control unit 71 has a function of executing control of each unit to be controlled by the optical device unit 60.
  • Examples of the control target of the optical device unit 60 include a laser light source 10, a projection focus lens 13, a first scanning device 20, a second scanning device 23, a light receiving focus lens 40, a light shielding member 41, and a light receiving element 45. Be done.
  • the image generation unit 72 has a function of constructing a fundus image from the information of the received data corresponding to each scanning position of the fundus 50b received by the light receiving element 45.
  • the storage unit 73 has a function of storing various programs for drive control and also storing data of the fundus image generated by the image generation unit 72.
  • the input device 80 has a function of receiving an input operation from the operator of the ophthalmologic imaging device 100.
  • the input device 80 corresponds to, for example, an input device such as a mouse, a keyboard, and a touch panel, as well as operation buttons when configured as a dedicated device.
  • the display device 90 has a function of displaying a fundus image or the like generated by the image generation unit 72.
  • FIG. 7 is an explanatory diagram showing a scanning method in the ophthalmologic imaging apparatus of the comparative example.
  • the range through which the light beam (measurement light) from the light source can pass and reach the eye to be inspected is the "passable range”
  • the range in which the measurement light is scanned by the scanning device is the "scanning range”
  • the range to be photographed is defined as the range to be photographed.
  • the passable range can be set by the lens barrel, the diaphragm, the lens diameter, and the like constituting the optical device unit 60.
  • the photographing range and the scanning range match, and the photographing range and the scanning range are included in the passable range.
  • the high-speed scan for the first scan horizontal direction
  • the low-speed scan for the second direction vertical direction
  • the following problems are concerned.
  • FIG. 3 is an explanatory diagram for explaining the path of the measurement light when the eye to be inspected is observed from the side when taking a picture with the fundus photography device.
  • it is necessary to change the angle of incidence of the measurement light on the eye to be inspected for scanning. Almost always, there is a scanning turning point where the measurement light passes. Therefore, in the method of constantly scanning within the passable range as in the comparative example, the measurement light is continuously irradiated to the scanning turning point. As a result, the burden on the pupil where the scanning turning point is located and the cornea, iris, and crystalline lens around the pupil tends to increase.
  • the first embodiment is characterized in that the measurement light passing through the scanning turning point is made intermittent light by setting the outside of the passable range as the scanning range.
  • FIG. 4 is an explanatory diagram showing an example of a scanning method in an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention.
  • the scanning method shown in FIG. 4 shows a state of overscan in which the measurement light is also scanned outside the passable range. Assuming that the direction from right to left is the first direction which is the scanning direction of the first scanning device 20, and the direction from top to bottom is the second direction which is the scanning direction of the second scanning device 23, two scans are performed. The directions are orthogonal and the scanning range is rectangular. Further, in the present embodiment, as shown in FIG. 4, a scanning range is set outside the passable range.
  • the measurement light that scans within the passable range (indicated by the solid line) will be incident on the eye to be inspected as in the comparative example, but the measurement light that scans outside the passable range (indicated by the alternate long and short dash line) will be incident on the eye to be inspected.
  • the time of scanning outside the passable range is the non-irradiation time at the scanning turning point because the light is not incident on the scanning turning point.
  • the optical device is designed so that the scanning range of the first scanning device 20 covers a predetermined range outside the scanning relay lens 21 or the first lens group 30 where light does not enter, and / or the second scanning. It is conceivable to design or adjust the optical device so that the scanning range of the device 23 is targeted to a predetermined range outside where light does not enter the first lens group 30.
  • a galvano mirror is adopted as an example of the second scanning device 23, a method of designing an optical device so as to overscan in the second scanning direction and uniformly performing control by the control unit 70 and a control unit.
  • a method of variably controlling the swing angle of the galvano mirror to switch overscan on / off can be considered.
  • the measurement light of the entire scanning range by the first scanning device 20 passes through the scanning relay lens 21, but a part of the measurement light is blocked between the scanning relay lenses 21 and 22 to limit the passable range. Therefore, it is conceivable to set the time for scanning outside the passable range to the non-irradiation time at the scanning turning point. Further, the measurement light of the entire scanning range is passed through to the scanning optical system 2 in the previous stage of the first lens group 30, but a part of the measurement light emitted by the objective lens optical system 3 after the first lens group 30 is emitted.
  • an optical device unit for scanning the measurement light from the light source, incidenting it on the fundus of the eye to be inspected, and receiving the return light reflected by the fundus.
  • This is an ophthalmologic imaging device that captures an image of the fundus of the eye based on the return light reflected by the fundus.
  • the control unit is provided with a control unit that controls the optical device unit so that the light passes through the optical device unit, and the control unit has an optical device unit so that the outside of the passable range that defines the range through which the measurement light can pass and reaches the eye to be inspected is also the scanning range. Since the measurement light passing through the scanning turning point is changed to intermittent light, it is possible to reduce the burden on the eye to be inspected at the time of photographing as compared with the comparative example.
  • the time for scanning within the passable range is compared. If the same scanning time as the shooting is assigned, the time required for the shooting is 1.5 times that of the comparative example. According to this method, even if the total power of the measurement light emitted in the vicinity of the scanning turning point is the same, the irradiation power per unit time with respect to the measurement time can be reduced, so that the eye to be inspected at the time of photographing. The burden on the device can be reduced.
  • the measurement light is treated as a continuous wave, and it is necessary to evaluate it based on the limit value for the continuous wave device in "ISO 15004-2", which is the optical hazard standard for the ocular optical device.
  • the device is treated as a pulse device, which is a standard of an ophthalmic optical device, "ISO”. The evaluation will be based on the limit value for pulse equipment in "15004-2".
  • the standard for the limit value for the pulse device is relaxed rather than the limit value for the continuous wave device, so the method of the first embodiment can reduce the burden on the eye to be inspected. Not only that, it has the advantage of being easy to meet the standards of ophthalmic optical devices for photographing the fundus.
  • the shooting range and the scanning range are the same as in the comparative example, but the measurement light passing through the scanning turning point is transmitted by modulating the measurement light output from the light source. It is characterized by intermittent light.
  • FIG. 5 is an explanatory diagram showing an example of a scanning method in an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention.
  • the scanning method shown in FIG. 5 represents a state in which the measurement light output from the laser light source 10 is modulated into so-called pulse-shaped intermittent light in which the irradiation period and the non-irradiation period change periodically.
  • the direction of scanning from right to left is the first direction which is the scanning direction of the first scanning device 20
  • the direction of scanning from top to bottom is the second direction which is the scanning direction of the second scanning device 23.
  • the scanning range is rectangular.
  • the scanning range of the second embodiment is within the passable range of the measurement light unlike the first embodiment, but the measurement light modulated in a pulse shape is used. Therefore, the measurement light passing through the scanning turning point is regarded as intermittent light.
  • any means may be used as long as the measurement light can be modulated in a pulse shape.
  • the modulation method for example, in addition to direct modulation that directly controls the current flowing through the laser light source 10, an external modulation method such as an electro-optical modulator (EOM), an acousto-optic modulator (AOM), or an optical chopper can be adopted.
  • EOM electro-optical modulator
  • AOM acousto-optic modulator
  • optical chopper an optical chopper
  • the pulse duration is required to be less than 0.25 seconds, that is, 4 Hz or more, as a condition adopted in "ISO 15004-2", which is an optical hazard standard for ophthalmic optical equipment. Further, it is preferable to determine the balance between the number of samplings and the shooting time.
  • an on period (irradiation period) appears at least once at each point to be sampled, and there is also an off period (non-irradiation period) between adjacent sampling points. Need to appear. That is, it is necessary that one cycle or more elapses at one sampling point. For example, as a shooting condition, when the number of scans is 3000 and 3000 points are sampled per scan, it is necessary to sample a total of 9 million points, and if the shooting time is 0.4 seconds, one time. In order to sample without omission in shooting, it is preferable to modulate the frequency so that the frequency is 22.5 MHz or higher. Further, there may be a method of setting to match the sampling rate of the sampling board (for example, 240 MHz).
  • an optical device unit for scanning the measurement light from the light source, incidenting it on the fundus of the eye to be inspected, and receiving the return light reflected by the fundus.
  • This is an ophthalmologic imaging device that captures an image of the fundus of the eye based on the return light reflected by the fundus.
  • the control unit is provided to control the optical device unit so as to pass through the optical device unit, and the control unit controls the optical device unit so as to modulate the measurement light output from the light source, and intermittently transmits the measurement light passing through the scanning turning point. Since the light is used, it is possible to reduce the burden on the eye to be inspected at the time of photographing as compared with the comparative example.
  • the duty ratio ratio of the irradiation period in one cycle
  • the irradiation time of the measurement light is halved as compared with the case where the modulation is not performed under the same conditions. Therefore, it is possible to reduce the irradiation energy for the scanning turning point and reduce the burden on the eye to be inspected at the time of photographing.
  • FIG. 6 is a table showing a comparison of scanning methods in an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention.
  • the comparative example shown in FIG. 7 is carried out, the overscan described in the first embodiment is carried out, and the laser modulation described in the second embodiment is carried out. Is compared with.
  • the irradiation power is the same, but the measurement time is 1.5 times, so that per unit time. It is possible to reduce the irradiation power. Under the conditions illustrated as the comparative example of FIG. 6, the irradiation power becomes 127.3 (mW / cm 2 ), which exceeds the limit value of the irradiation power of the continuous wave device of 100 (mW / cm 2 ), which is considered unsuitable. turn into.
  • the irradiation energy per imaging is 6.4 ⁇ 10-2 (J / cm 2 ). Is 1.5 (J / cm 2 ) or less, which is the limit value of the irradiation energy per imaging in the case of the pulse device, and it can be seen that it conforms to the standard of the standard in the case of the pulse device.
  • the laser modulation is irradiated as compared with the comparative example. It is possible to halve the energy.
  • the irradiation energy per imaging is 3.2 ⁇ 10-2 (J / cm 2 ), which is the limit value of the irradiation energy per imaging in the case of the pulse device. It is 1.3 (J / cm 2 ) or less, and it can be seen that it conforms to the standard of the standard in the case of pulse equipment.
  • Ophthalmic imaging device 1
  • Floodlight optical system 2 Scanning optical system 3
  • Objective lens optical system 4 Light receiving optical system 10
  • Laser light source 11
  • Floodlight lens 12
  • Floodlight pinhole 13
  • Floodlight focus lens 14
  • Optical path split mirror 20
  • Horizontal scanning device 21
  • Scanning relay Lens 22 Scanning relay lens 23
  • Vertical scanning device 30
  • 1st lens group 31
  • 2nd lens group 32
  • Fundus conjugate surface 40
  • Light receiving focus lens 41
  • Light shielding member Light receiving pinhole
  • Light receiving lens 44 Condensing lens 45
  • Light receiving element 50 Eye to be inspected 50a Eye ( Position of scanning turning point)
  • Fundus 60
  • Control unit 71
  • Drive control unit 72
  • Image generation unit 72
  • Storage unit 80
  • Input device 90 Display device 90 Display device

Abstract

Provided is an ophthalmologic imaging apparatus that captures an image of an ocular fundus on the basis of return light reflected by the ocular fundus, the apparatus comprising: an optical device unit that, in order to make it possible to reduce the burden on an eye to be inspected, scans measurement light from a light source, causes the measurement light to enter the ocular fundus of the eye to be inspected, and receives the return light reflected by the ocular fundus; and a control unit that controls the optical device unit so that the measurement light is scanned with a predetermined position of the eye to be inspected as a scanning turning point and the measurement light intermittently passes through the scanning turning point.

Description

眼科撮影装置Ophthalmologic imaging equipment
 本発明は、光源からの測定光を走査しつつ被検眼の眼底に投光し、眼底からの反射光を受光して眼底を撮影するための眼科撮影装置に関するものである。 The present invention relates to an ophthalmologic imaging device for photographing the fundus by projecting light onto the fundus of the eye to be inspected while scanning the measurement light from the light source and receiving the reflected light from the fundus.
 従来、光源からの測定光を走査しつつ被検眼の眼底に投光し、眼底からの反射光を受光して眼底を撮影するための眼科撮影装置が知られている。このような眼科撮影装置として、例えば、特許文献1が提案されている。 Conventionally, there is known an ophthalmologic imaging device for photographing the fundus of the eye by projecting the light measured from the light source onto the fundus of the eye to be inspected and receiving the reflected light from the fundus. As such an ophthalmologic imaging apparatus, for example, Patent Document 1 has been proposed.
 特許文献1には、レーザー光を2次元走査して眼底に投光し、眼底からの反射光を受光して眼底を撮影する走査型眼底撮影装置であって、複数のレンズから構成される対物レンズのレンズ面反射に由来する有害反射光線を遮光して眼底を高画質で撮影することを可能にした走査型眼底撮影装置が開示されている。 Patent Document 1 is a scanning fundus photography apparatus that scans a laser beam two-dimensionally, projects it onto the fundus, receives reflected light from the fundus, and photographs the fundus, and is an objective composed of a plurality of lenses. There is disclosed a scanning fundus photography apparatus capable of photographing the fundus with high image quality by blocking harmful reflected light rays derived from the lens surface reflection of the lens.
国際公開2019/045094号International Publication No. 2019/045094
 ただし、レーザー光は人体に影響するものであり、その利用方法によっては被検眼の過度な負担につながる点が問題となる。 However, the laser light affects the human body, and depending on how it is used, it causes an excessive burden on the eye to be inspected, which is a problem.
 本発明は、上記問題点に鑑みなされたものであり、被検眼の負担の低減を可能にする眼科撮影装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an ophthalmologic imaging apparatus capable of reducing the burden on the eye to be inspected.
 本発明に係る眼科撮影装置は、光源からの測定光を走査して被検眼の眼底に入射させ、眼底で反射された戻り光を受光するための光学装置部を備え、前記眼底で反射された戻り光に基づいて前記眼底の画像を撮影する眼科撮影装置であって、前記被検眼の所定位置を走査旋回点として前記測定光を走査させると共に、前記測定光が断続的に前記走査旋回点を通過するよう、前記光学装置部を制御する制御部を備えることを特徴とする。 The ophthalmologic imaging apparatus according to the present invention includes an optical device unit for scanning the measurement light from the light source, incidenting it on the fundus of the eye to be inspected, and receiving the return light reflected by the fundus, and the light is reflected by the fundus. An ophthalmologic imaging device that captures an image of the fundus of the eye based on the return light, wherein the measurement light is scanned with a predetermined position of the eye to be inspected as a scanning turning point, and the measuring light intermittently scans the scanning turning point. It is characterized by including a control unit that controls the optical device unit so as to pass through.
 また、本発明に係る眼科撮影装置において、さらに、前記光学装置部は、前記測定光を第1方向に走査する第1走査デバイスと、前記測定光を第2方向に走査する第2走査デバイスとを備え、前記制御部は、前記第2方向に予め定められた所定範囲だけ1回走査する間に前記第1方向の走査を複数回繰り返すラスタスキャンを実行するように、前記第1走査デバイス及び第2走査デバイスを制御することを特徴とする。 Further, in the ophthalmologic imaging apparatus according to the present invention, the optical apparatus unit includes a first scanning device that scans the measurement light in the first direction and a second scanning device that scans the measurement light in the second direction. The first scanning device and the control unit so as to execute a raster scan in which scanning in the first direction is repeated a plurality of times while scanning once in a predetermined range predetermined in the second direction. It is characterized by controlling a second scanning device.
 また、本発明に係る眼科撮影装置において、さらに、前記制御部は、前記測定光が通過して被検眼に到達できる範囲を定めた通過可能範囲の外側も走査範囲となるように前記光学装置部を制御し、前記走査旋回点を通過する前記測定光を断続的な光にすることを特徴とする。 Further, in the ophthalmologic imaging apparatus according to the present invention, the control unit further has the optical device unit so that the outside of the passable range in which the measurement light can pass and reach the eye to be inspected is also a scanning range. It is characterized in that the measurement light passing through the scanning turning point is made intermittent light.
 また、本発明に係る眼科撮影装置において、さらに、前記制御部は、前記光源から出力させる前記測定光を変調するように前記光学装置部を制御し、前記走査旋回点を通過する前記測定光を断続的な光にすることを特徴とする。 Further, in the ophthalmologic imaging apparatus according to the present invention, the control unit further controls the optical device unit so as to modulate the measurement light output from the light source, and transmits the measurement light passing through the scanning turning point. It is characterized by intermittent light.
 また、本発明に係る眼科撮影装置において、さらに、前記変調は、直接変調、電気光学変調、音響光学変調、又は光チョッパによって前記測定光を変調するものであることを特徴とする。 Further, in the ophthalmologic imaging apparatus according to the present invention, the modulation is further characterized in that the measurement light is modulated by a direct modulation, an electro-optical modulation, an acoustic-optical modulation, or an optical chopper.
 本願の実施の形態により1又は2以上の不足が解決される。 According to the embodiment of the present application, one or two or more shortages are solved.
本発明の実施の形態の少なくとも1つに対応する眼科撮影装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the ophthalmologic imaging apparatus corresponding to at least one of the embodiments of this invention. 本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における光学装置部の構成の一例を示す光学図である。It is an optical figure which shows an example of the structure of the optical apparatus part in the ophthalmologic imaging apparatus corresponding to at least one of the Embodiments of this invention. 眼底撮影装置における撮影の際の被検眼を側面から観察した場合の測定光の経路を説明するための説明図である。It is explanatory drawing for demonstrating the path of the measurement light at the time of observing the eye to be examined from the side surface at the time of photographing by the fundus photography apparatus. 本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における走査方法の一例を表した説明図である。It is explanatory drawing which showed an example of the scanning method in the ophthalmologic imaging apparatus corresponding to at least one of the Embodiments of this invention. 本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における走査方法の一例を表した説明図である。It is explanatory drawing which showed an example of the scanning method in the ophthalmologic imaging apparatus corresponding to at least one of the Embodiments of this invention. 本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における走査方法の対比を行った表図である。It is a chart which contrasted the scanning method in the ophthalmologic imaging apparatus corresponding to at least one of the Embodiments of this invention. 比較例の眼科撮影装置における走査方法を表した説明図である。It is explanatory drawing which showed the scanning method in the ophthalmologic imaging apparatus of a comparative example.
 以下、本発明の実施形態の例について図面を参照して説明する。なお、以下で説明する各実施形態の例における各種構成要素は、矛盾等が生じない範囲で適宜組み合わせ可能である。また、ある実施形態の例として説明した内容については、他の実施形態においてその説明を省略している場合がある。また、各実施形態の特徴部分に関係しない動作や処理については、その内容を省略している場合がある。 Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings. It should be noted that the various components in the examples of the respective embodiments described below can be appropriately combined as long as there is no contradiction or the like. Further, with respect to the contents described as an example of a certain embodiment, the description may be omitted in another embodiment. In addition, the contents of operations and processes not related to the characteristic portion of each embodiment may be omitted.
[第1の実施の形態]
 以下、図面を参照しながら、本発明の第1の実施の形態に係る眼科撮影装置の例について説明する。図1は、本発明の実施の形態の少なくとも1つに対応する眼科撮影装置の構成の一例を示すブロック図である。図1に示すように、眼科撮影装置100は、光学装置部60と、制御部70と、入力装置80と、表示装置90とを備えている。
[First Embodiment]
Hereinafter, an example of the ophthalmologic imaging apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a configuration of an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention. As shown in FIG. 1, the ophthalmologic imaging device 100 includes an optical device unit 60, a control unit 70, an input device 80, and a display device 90.
 図2は、本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における光学装置部の構成の一例を示す光学図である。図1及び図2に示すように、光学装置部60は、大まかに分けて、投光光学系1、走査光学系2、対物レンズ光学系3、及び、受光光学系4によって構成されている。なお、図2に示す光学装置部60の構成は一例であり、投光光学系1、走査光学系2、対物レンズ光学系3、及び、受光光学系4のそれぞれと同様の機能を実現することが可能であれば、図2と異なる構成であってもよい。また、図1の光学装置部60の投光光学系1、走査光学系2、対物レンズ光学系3、及び、受光光学系4のそれぞれに含まれる構成として例示したものは、制御部70による制御対象と成り得る構成の一例として挙げたものであり、あくまで一例であるので、これ以外の構成が制御対象となる可能性も当然存在する。 FIG. 2 is an optical diagram showing an example of the configuration of an optical device unit in an ophthalmologic imaging device corresponding to at least one of the embodiments of the present invention. As shown in FIGS. 1 and 2, the optical device unit 60 is roughly divided into a light projecting optical system 1, a scanning optical system 2, an objective lens optical system 3, and a light receiving optical system 4. The configuration of the optical device unit 60 shown in FIG. 2 is an example, and the same functions as those of the light projecting optical system 1, the scanning optical system 2, the objective lens optical system 3, and the light receiving optical system 4 are realized. If possible, the configuration may be different from that shown in FIG. Further, those illustrated as configurations included in each of the light projecting optical system 1, the scanning optical system 2, the objective lens optical system 3, and the light receiving optical system 4 of the optical device unit 60 of FIG. 1 are controlled by the control unit 70. It is given as an example of a configuration that can be a target, and is only an example. Therefore, there is a possibility that a configuration other than this is a control target.
 投光光学系1は、例えば、レーザー光源10、投光レンズ11、投光ピンホール12、投光フォーカスレンズ13によって構成される。レーザー光源10は、一例としては、カラー撮影のためのR、G、Bの3色それぞれのレーザー光源と、アライメント用のNIRレーザー(near-infrared laser:近赤外レーザー)が用いられる。簡略化のために図示は省略しているが、これら複数の光源の光軸を1つに重ねる光学部材が必要となる。レーザー光源10からのレーザー光は、投光レンズ11を通過して眼底共役面と共役な位置に配置された投光ピンホール12に入射し、投光ピンホール12で径が絞られたレーザー光は、投光フォーカスレンズ13に入射される。投光フォーカスレンズ13は、光源部10の光軸方向に沿って移動可能となっており、レーザー光のピントを被検眼50の眼底50bに対して調整する。投光フォーカスレンズ13を透過したレーザー光は、光路分割ミラー(瞳分割ミラー)14に入射される。 The projection optical system 1 is composed of, for example, a laser light source 10, a projection lens 11, a projection pinhole 12, and a projection focus lens 13. As an example, as the laser light source 10, a laser light source for each of the three colors R, G, and B for color photographing and a NIR laser (near-infrared laser) for alignment are used. Although not shown for the sake of simplicity, an optical member that superimposes the optical axes of these plurality of light sources on one is required. The laser light from the laser light source 10 passes through the light projecting lens 11 and is incident on the light projecting pin hole 12 arranged at a position conjugate with the fundus conjugate surface, and the diameter of the laser light is narrowed by the light projecting pin hole 12. Is incident on the projection focus lens 13. The projection focus lens 13 is movable along the optical axis direction of the light source unit 10, and adjusts the focus of the laser beam with respect to the fundus 50b of the eye 50 to be inspected. The laser light transmitted through the projection focus lens 13 is incident on the optical path dividing mirror (pupil dividing mirror) 14.
 走査光学系2は、例えば、第1走査デバイス20、走査リレーレンズ21、22、及び、第2走査デバイス23によって構成される。光路分割ミラー14に入射したレーザー光はそこで反射されて、第1走査デバイス20に入射される。第1走査デバイス20は、レーザー光を第1方向に走査するためのデバイスである。第1走査デバイス20によって走査されたレーザー光は、走査リレーレンズ21、22を介して、第2走査デバイス23に入射される。第2走査デバイス23は、レーザー光を第1方向と直交する第2方向に走査するためのデバイスである。ここで、本実施の形態では、後述する眼底へのラスタスキャンを実現するため、第1走査デバイス20による走査を第2走査デバイス23による走査よりも高速に行う。その点において、例えば、第1走査デバイス20としてポリゴンミラー(回転多面鏡)を採用しても良く、第2走査デバイス23としてガルバノミラー(振動鏡)を採用しても良い。そして、第2走査デバイス23によって反射されたレーザー光は、対物レンズ光学系3に入射される。 The scanning optical system 2 is composed of, for example, a first scanning device 20, scanning relay lenses 21 and 22, and a second scanning device 23. The laser light incident on the optical path dividing mirror 14 is reflected there and is incident on the first scanning device 20. The first scanning device 20 is a device for scanning the laser beam in the first direction. The laser light scanned by the first scanning device 20 is incident on the second scanning device 23 via the scanning relay lenses 21 and 22. The second scanning device 23 is a device for scanning the laser beam in the second direction orthogonal to the first direction. Here, in the present embodiment, in order to realize a raster scan to the fundus, which will be described later, scanning by the first scanning device 20 is performed at a higher speed than scanning by the second scanning device 23. In that respect, for example, a polygon mirror (rotating multifaceted mirror) may be adopted as the first scanning device 20, and a galvano mirror (vibration mirror) may be adopted as the second scanning device 23. Then, the laser light reflected by the second scanning device 23 is incident on the objective lens optical system 3.
 対物レンズ光学系3は、第1レンズ群30と第2レンズ群31で構成される。第1走査デバイス20及び第2走査デバイス23で走査されたレーザー光は、測定光として第1レンズ群30及び第2レンズ群31を経て被検眼50の瞳50aに入射し眼底50bに投影される。その結果、眼底50bはレーザー光でラスタスキャンされる。眼底50bに投影されたレーザー光は眼底50bで反射され、その反射光は、同じ光路を逆方向に進み、対物レンズ光学系3を通過する。ここで、対物レンズ光学系3は、その第1レンズ群30と第2レンズ群31間に眼底共役面32が存在するように構成されており、当該眼底共役面32に眼底像が形成される。なお、符号50aで示した位置が後述する走査旋回点の位置となる。 The objective lens optical system 3 is composed of a first lens group 30 and a second lens group 31. The laser light scanned by the first scanning device 20 and the second scanning device 23 enters the pupil 50a of the eye 50 to be inspected through the first lens group 30 and the second lens group 31 as measurement light, and is projected onto the fundus 50b. .. As a result, the fundus 50b is raster-scanned with laser light. The laser light projected on the fundus 50b is reflected by the fundus 50b, and the reflected light travels in the same optical path in the opposite direction and passes through the objective lens optical system 3. Here, the objective lens optical system 3 is configured such that the fundus conjugate surface 32 exists between the first lens group 30 and the second lens group 31, and the fundus image is formed on the fundus conjugate surface 32. .. The position indicated by reference numeral 50a is the position of the scanning turning point described later.
 対物レンズ光学系3を通過したレーザー光は、走査光学系2で第2方向、第1方向に逆走査され、走査光学系2に入射する前の光線より太い光束を持つ光線となって光路分割ミラー14に入射する。光路分割ミラー14は、中心が光軸に一致して配置され、ミラー外部からの反射光を受光光学系4に通すので、光路を投光光路と受光光路に分割する。一方、光路分割ミラー14より被検眼側の光路は投光光学系1並びに受光光学系4に対して共通な光路となっている。 The laser light that has passed through the objective lens optical system 3 is reverse-scanned in the second direction and the first direction by the scanning optical system 2, and becomes a light beam having a light beam thicker than the light ray before being incident on the scanning optical system 2 to divide the optical path. It is incident on the mirror 14. Since the center of the optical path dividing mirror 14 is arranged so as to coincide with the optical axis and the reflected light from the outside of the mirror is passed through the light receiving optical system 4, the optical path is divided into a light projecting light path and a light receiving light path. On the other hand, the optical path on the side to be inspected from the optical path dividing mirror 14 is a common optical path for the light projecting optical system 1 and the light receiving optical system 4.
 受光光学系4は、例えば、受光フォーカスレンズ40、遮光部材41、受光ピンホール42、受光レンズ43、集光レンズ44、受光素子45によって構成される。光路分割ミラー14を通過した眼底50bからの反射光は、受光フォーカスレンズ40、受光ピンホール42を通過して、受光レンズ43と集光レンズ44を経た後に受光素子45で受光される。受光素子45は、一例としては、カラー撮影のためのR、G、Bの3色それぞれのレーザー光源を受光する受光素子と、アライメント用のIRレーザーを受光する受光素子を備える。簡略化のために図示は省略しているが、これら複数の素子へ各色のレーザー光を分離させる光学部材が必要となる。受光ピンホール42は、眼底50bと共役な位置近傍に配置され、遮光部材41は、対物レンズ光学系3のレンズ面と共役な位置近傍に配置され、対物レンズ光学系3のレンズ面からの有害反射光を遮光して中心スポット像(偽像)の発生を回避する。 The light-receiving optical system 4 is composed of, for example, a light-receiving focus lens 40, a light-shielding member 41, a light-receiving pinhole 42, a light-receiving lens 43, a condenser lens 44, and a light-receiving element 45. The reflected light from the fundus 50b that has passed through the optical path dividing mirror 14 passes through the light receiving focus lens 40 and the light receiving pin hole 42, passes through the light receiving lens 43 and the condensing lens 44, and is then received by the light receiving element 45. As an example, the light receiving element 45 includes a light receiving element that receives a laser light source of each of the three colors R, G, and B for color photographing, and a light receiving element that receives an IR laser for alignment. Although not shown for the sake of simplicity, an optical member that separates the laser light of each color into these plurality of elements is required. The light receiving pinhole 42 is arranged near a position conjugate with the fundus 50b, and the light shielding member 41 is arranged near a position conjugate with the lens surface of the objective lens optical system 3, which is harmful from the lens surface of the objective lens optical system 3. The reflected light is blocked to avoid the occurrence of a central spot image (false image).
 受光素子45は、例えばフォトダイオードで構成され、ラスタスキャンされた眼底50bの各点の輝度情報を制御部70に送る。制御部70は、眼底50bの走査位置とその輝度情報から眼底像を構築する。 The light receiving element 45 is composed of, for example, a photodiode, and sends the luminance information of each point of the fundus 50b that has been raster-scanned to the control unit 70. The control unit 70 constructs a fundus image from the scanning position of the fundus 50b and its brightness information.
 また、被検眼50の視度調節のための視度調節機構を投光光学系1と受光光学系4にそれぞれ設けることが好ましい。本実施の形態においては、投光光学系1の投光フォーカスレンズ13と受光光学系4の受光フォーカスレンズ40を視度調節のためのレンズとし、投光フォーカスレンズ13と受光フォーカスレンズ40を光軸に沿って連動して移動させることで視度調節を実行可能とする。また、遮光部材41も同様に、投光フォーカスレンズ13と受光フォーカスレンズ40に連動して光軸に沿って移動する。 Further, it is preferable that the diopter adjustment mechanism for adjusting the diopter of the eye 50 to be inspected is provided in the light emitting optical system 1 and the light receiving optical system 4, respectively. In the present embodiment, the light projecting focus lens 13 of the light projecting optical system 1 and the light receiving focus lens 40 of the light receiving optical system 4 are used as lenses for diopter adjustment, and the light projecting focus lens 13 and the light receiving focus lens 40 are used as light. Diopter adjustment can be performed by moving them in conjunction with each other along the axis. Similarly, the light-shielding member 41 also moves along the optical axis in conjunction with the light-emitting focus lens 13 and the light-receiving focus lens 40.
 制御部70は、例えば、駆動制御部71と、画像生成部72と、記憶部73を備えている。駆動制御部71は、光学装置部60の制御対象の各部の制御を実行する機能を有する。光学装置部60の制御対象としては、例えば、レーザー光源10、投光フォーカスレンズ13、第1走査デバイス20、第2走査デバイス23、受光フォーカスレンズ40、遮光部材41、及び、受光素子45が挙げられる。画像生成部72は、受光素子45で受信した眼底50bの各走査位置に対応した受信データの情報から眼底画像を構築する機能を有する。記憶部73は、駆動制御のための各種プログラムを記憶するとともに、画像生成部72において生成された眼底画像のデータを記憶する機能を有する。 The control unit 70 includes, for example, a drive control unit 71, an image generation unit 72, and a storage unit 73. The drive control unit 71 has a function of executing control of each unit to be controlled by the optical device unit 60. Examples of the control target of the optical device unit 60 include a laser light source 10, a projection focus lens 13, a first scanning device 20, a second scanning device 23, a light receiving focus lens 40, a light shielding member 41, and a light receiving element 45. Be done. The image generation unit 72 has a function of constructing a fundus image from the information of the received data corresponding to each scanning position of the fundus 50b received by the light receiving element 45. The storage unit 73 has a function of storing various programs for drive control and also storing data of the fundus image generated by the image generation unit 72.
 入力装置80は、眼科撮影装置100の操作者からの入力操作を受付ける機能を備えている。入力装置80としては、例えば、マウス、キーボード、タッチパネルなどの入力デバイスのほか、専用装置として構成した場合の操作ボタンなどが該当する。表示装置90は、画像生成部72において生成された眼底画像などを表示する機能を有する。 The input device 80 has a function of receiving an input operation from the operator of the ophthalmologic imaging device 100. The input device 80 corresponds to, for example, an input device such as a mouse, a keyboard, and a touch panel, as well as operation buttons when configured as a dedicated device. The display device 90 has a function of displaying a fundus image or the like generated by the image generation unit 72.
 次に、本実施の形態の走査方法を説明する前提となる比較例の走査方法を説明する。図7は、比較例の眼科撮影装置における走査方法を表した説明図である。なお、以下において、光源からの光線(測定光)が通過して被検眼に到達できる範囲を「通過可能範囲」、走査デバイスによって測定光が走査される範囲を「走査範囲」、撮影したい範囲を「撮影範囲」と称することもある。ここで、通過可能範囲は、光学装置部60を構成する鏡筒や絞り、レンズ径などによって設定可能である。比較例では、撮影範囲と走査範囲が一致しており、撮影範囲と走査範囲が通過可能範囲に含まれている。前述の通り、ラスタスキャンでは、走査範囲において、第2方向(上下方向)に対する低速走査を1回行う間に第1走査(左右方向)に対する高速走査を繰り返し実行する。ラスタスキャンによる効率的な眼底撮影を考えた場合、走査範囲を撮影範囲と一致させる比較例のような設定は有効であるが、その一方、次のような問題が懸念される。 Next, the scanning method of the comparative example, which is a premise for explaining the scanning method of the present embodiment, will be described. FIG. 7 is an explanatory diagram showing a scanning method in the ophthalmologic imaging apparatus of the comparative example. In the following, the range through which the light beam (measurement light) from the light source can pass and reach the eye to be inspected is the "passable range", the range in which the measurement light is scanned by the scanning device is the "scanning range", and the range to be photographed is defined as the range to be photographed. Sometimes referred to as the "shooting range". Here, the passable range can be set by the lens barrel, the diaphragm, the lens diameter, and the like constituting the optical device unit 60. In the comparative example, the photographing range and the scanning range match, and the photographing range and the scanning range are included in the passable range. As described above, in the raster scan, the high-speed scan for the first scan (horizontal direction) is repeatedly executed while the low-speed scan for the second direction (vertical direction) is performed once in the scanning range. When considering efficient fundus photography by raster scanning, a setting such as a comparative example in which the scanning range is matched with the imaging range is effective, but on the other hand, the following problems are concerned.
 図3は、眼底撮影装置における撮影の際の被検眼を側面から観察した場合の測定光の経路を説明するための説明図である。被検眼の眼底の所定範囲を撮影するためには被検眼に対する測定光の入射角度を変化させて走査する必要があるが、この図3に示すように、測定光の入射角度を変化させてもほぼ必ず測定光が通過する箇所である走査旋回点が生じる。そのため、比較例のように常に通過可能範囲内を走査する方法では、この走査旋回点に測定光が照射され続けることになる。その結果、走査旋回点が位置する瞳孔や、その周辺にある角膜、虹彩、水晶体の負担が大きくなり易い。 FIG. 3 is an explanatory diagram for explaining the path of the measurement light when the eye to be inspected is observed from the side when taking a picture with the fundus photography device. In order to capture a predetermined range of the fundus of the eye to be inspected, it is necessary to change the angle of incidence of the measurement light on the eye to be inspected for scanning. Almost always, there is a scanning turning point where the measurement light passes. Therefore, in the method of constantly scanning within the passable range as in the comparative example, the measurement light is continuously irradiated to the scanning turning point. As a result, the burden on the pupil where the scanning turning point is located and the cornea, iris, and crystalline lens around the pupil tends to increase.
 そこで、この第1の実施の形態は、通過可能範囲の外側も走査範囲とすることによって、走査旋回点を通過する測定光を断続的な光とすることを特徴とする。 Therefore, the first embodiment is characterized in that the measurement light passing through the scanning turning point is made intermittent light by setting the outside of the passable range as the scanning range.
 図4は、本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における走査方法の一例を表した説明図である。この図4に示す走査方法は、測定光を通過可能範囲の外側も走査するオーバースキャンの様子を表している。右から左へ向かう方向を第1走査デバイス20の走査方向である第1の方向とし、上から下へ向かう方向を第2走査デバイス23の走査方向である第2の方向とすると、2つの走査方向は直交し、走査範囲は長方形となる。更に、本実施の形態では、図4に示すように、通過可能範囲の外側にも走査範囲を設定する。通過可能範囲内を走査する測定光(実線で表示)は比較例と同様に被検眼に入射されることになるが、通過可能範囲の外側を走査する測定光(一点鎖線で表示)は被検眼に入射されないことになるため、通過可能範囲の外側を走査している時間は、走査旋回点においては非照射時間となる。 FIG. 4 is an explanatory diagram showing an example of a scanning method in an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention. The scanning method shown in FIG. 4 shows a state of overscan in which the measurement light is also scanned outside the passable range. Assuming that the direction from right to left is the first direction which is the scanning direction of the first scanning device 20, and the direction from top to bottom is the second direction which is the scanning direction of the second scanning device 23, two scans are performed. The directions are orthogonal and the scanning range is rectangular. Further, in the present embodiment, as shown in FIG. 4, a scanning range is set outside the passable range. The measurement light that scans within the passable range (indicated by the solid line) will be incident on the eye to be inspected as in the comparative example, but the measurement light that scans outside the passable range (indicated by the alternate long and short dash line) will be incident on the eye to be inspected. The time of scanning outside the passable range is the non-irradiation time at the scanning turning point because the light is not incident on the scanning turning point.
 ここで、通過可能範囲の外側も走査範囲にするには、種々の構成が考えられる。例えば、第1走査デバイス20による走査範囲を走査リレーレンズ21、又は第1レンズ群30に光が入射しない外側の所定範囲まで対象となるように光学装置を設計し、及び/又は、第2走査デバイス23による走査範囲を第1レンズ群30に光が入射しない外側の所定範囲まで対象となるように光学装置を設計、又は調整することが考えられる。なお、第2走査デバイス23の例としてガルバノミラーを採用する場合、第2走査方向についてオーバースキャンとなるように光学装置を設計して制御部70での制御は一律に実行する手法と、制御部70においてガルバノミラーの振り角を可変的に制御してオーバースキャンのオン/オフを切り替える制御を行う手法とが考えられる。また、第1走査デバイス20による全ての走査範囲の測定光が走査リレーレンズ21を通過するが、走査リレーレンズ21、22の間において測定光の一部を遮光して通過可能範囲を制限することで、通過可能範囲の外側を走査する時間を走査旋回点における非照射時間に設定する構成が考えられる。また、第1レンズ群30の前段における走査光学系2までは全ての走査範囲の測定光を通過させるが、第1レンズ群30以降の対物レンズ光学系3において射出される測定光の一部を遮光して通過可能範囲を制限することで、結果として通過可能範囲の外側を走査する時間を走査旋回点における非照射時間に設定する構成が考えられる。当然、これらは構成の一例に過ぎず、本実施の形態はこれらに限定されるものではない。 Here, various configurations can be considered in order to make the outside of the passable range also the scanning range. For example, the optical device is designed so that the scanning range of the first scanning device 20 covers a predetermined range outside the scanning relay lens 21 or the first lens group 30 where light does not enter, and / or the second scanning. It is conceivable to design or adjust the optical device so that the scanning range of the device 23 is targeted to a predetermined range outside where light does not enter the first lens group 30. When a galvano mirror is adopted as an example of the second scanning device 23, a method of designing an optical device so as to overscan in the second scanning direction and uniformly performing control by the control unit 70 and a control unit. In 70, a method of variably controlling the swing angle of the galvano mirror to switch overscan on / off can be considered. Further, the measurement light of the entire scanning range by the first scanning device 20 passes through the scanning relay lens 21, but a part of the measurement light is blocked between the scanning relay lenses 21 and 22 to limit the passable range. Therefore, it is conceivable to set the time for scanning outside the passable range to the non-irradiation time at the scanning turning point. Further, the measurement light of the entire scanning range is passed through to the scanning optical system 2 in the previous stage of the first lens group 30, but a part of the measurement light emitted by the objective lens optical system 3 after the first lens group 30 is emitted. By blocking the light and limiting the passable range, it is conceivable to set the time for scanning outside the passable range to the non-irradiation time at the scanning turning point. Of course, these are only examples of configurations, and the present embodiment is not limited to these.
 以上のように、第1の実施の形態の一側面として、光源からの測定光を走査して被検眼の眼底に入射させ、眼底で反射された戻り光を受光するための光学装置部を備え、眼底で反射された戻り光に基づいて眼底の画像を撮影する眼科撮影装置であって、被検眼の所定位置を走査旋回点として測定光を走査させると共に、測定光が断続的に走査旋回点を通過するよう、光学装置部を制御する制御部を備え、制御部は、測定光が通過して被検眼に到達できる範囲を定めた通過可能範囲の外側も走査範囲となるように光学装置部を制御し、走査旋回点を通過する測定光を断続的な光にするようにしたので、比較例よりも撮影時の被検眼の負担を低減することが可能となる。 As described above, as one aspect of the first embodiment, an optical device unit for scanning the measurement light from the light source, incidenting it on the fundus of the eye to be inspected, and receiving the return light reflected by the fundus is provided. This is an ophthalmologic imaging device that captures an image of the fundus of the eye based on the return light reflected by the fundus. The control unit is provided with a control unit that controls the optical device unit so that the light passes through the optical device unit, and the control unit has an optical device unit so that the outside of the passable range that defines the range through which the measurement light can pass and reaches the eye to be inspected is also the scanning range. Since the measurement light passing through the scanning turning point is changed to intermittent light, it is possible to reduce the burden on the eye to be inspected at the time of photographing as compared with the comparative example.
 すなわち、仮に、通過可能範囲内を走査する時間(面積)と通過可能範囲の外側を走査する時間(面積)の比率を2対1とした場合、通過可能範囲内を走査する時間が比較例の撮影と同じ走査時間を割り当てると、撮影に要する時間は比較例の1.5倍となる。この手法によれば、走査旋回点近傍に照射される測定光の総パワーは同じであっても、測定時間に対する単位時間当たりの照射パワーを低減することが可能となるので、撮影時の被検眼の負担を低減することができる。比較例の場合の測定光は連続波の扱いとなり、眼光学機器の光ハザードの規格である「ISO 15004-2」における連続波機器に関する限界値を基準として評価する必要がある。これに対して、この第1の実施の形態のようにオーバースキャンする構成において連続照射する時間が0.25秒以下であればパルス機器としての扱いになり、眼光学機器の規格である「ISO 15004-2」におけるパルス機器に関する限界値を基準として評価することになる。「ISO 15004-2」においては、連続波機器に関する限界値よりもパルス機器に関する限界値の方が基準が緩和されているため、第1の実施の形態の手法は、被検眼に対する負担を軽減可能なだけではなく、眼底を撮影するための眼光学機器の基準を満たし易いというメリットがある。 That is, assuming that the ratio of the time (area) for scanning within the passable range to the time (area) for scanning outside the passable range is 2: 1, the time for scanning within the passable range is compared. If the same scanning time as the shooting is assigned, the time required for the shooting is 1.5 times that of the comparative example. According to this method, even if the total power of the measurement light emitted in the vicinity of the scanning turning point is the same, the irradiation power per unit time with respect to the measurement time can be reduced, so that the eye to be inspected at the time of photographing. The burden on the device can be reduced. In the case of the comparative example, the measurement light is treated as a continuous wave, and it is necessary to evaluate it based on the limit value for the continuous wave device in "ISO 15004-2", which is the optical hazard standard for the ocular optical device. On the other hand, in the overscan configuration as in the first embodiment, if the continuous irradiation time is 0.25 seconds or less, the device is treated as a pulse device, which is a standard of an ophthalmic optical device, "ISO". The evaluation will be based on the limit value for pulse equipment in "15004-2". In "ISO 15004-2", the standard for the limit value for the pulse device is relaxed rather than the limit value for the continuous wave device, so the method of the first embodiment can reduce the burden on the eye to be inspected. Not only that, it has the advantage of being easy to meet the standards of ophthalmic optical devices for photographing the fundus.
 [第2の実施の形態]
 以下、図面を参照しながら、本発明の第2の実施の形態に係る眼科撮影装置の例について説明する。なお、この第2の実施の形態における眼科撮影装置の構成は、図1及び図2を用いて説明を行った第1の実施の形態と同様であるため、説明を省略する。
[Second Embodiment]
Hereinafter, an example of the ophthalmologic imaging apparatus according to the second embodiment of the present invention will be described with reference to the drawings. Since the configuration of the ophthalmologic imaging apparatus in the second embodiment is the same as that in the first embodiment described with reference to FIGS. 1 and 2, the description thereof will be omitted.
 ここで、この第2の実施の形態は、比較例と同様に撮影範囲と走査範囲が一致している一方、光源から出力させる測定光を変調することによって、走査旋回点を通過する測定光を断続的な光とすることを特徴とする。 Here, in the second embodiment, the shooting range and the scanning range are the same as in the comparative example, but the measurement light passing through the scanning turning point is transmitted by modulating the measurement light output from the light source. It is characterized by intermittent light.
 図5は、本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における走査方法の一例を表した説明図である。この図5に示す走査方法は、レーザー光源10から出力させる測定光を照射期間と非照射期間が周期的に変化するいわゆるパルス状といえる断続的な光に変調した状態を表している。右から左へ走査する方向を第1走査デバイス20の走査方向である第1の方向とし、上から下へ走査する方向を第2走査デバイス23の走査方向である第2の方向としたとき、2つの走査方向を直行するように設定する場合、走査範囲は長方形となる。この図5に示すように、第2の実施の形態の走査範囲は、第1の実施の形態と異なり測定光の通過可能範囲内に収めているが、パルス状に変調した測定光を用いることで、走査旋回点を通過する測定光を断続的な光としている。 FIG. 5 is an explanatory diagram showing an example of a scanning method in an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention. The scanning method shown in FIG. 5 represents a state in which the measurement light output from the laser light source 10 is modulated into so-called pulse-shaped intermittent light in which the irradiation period and the non-irradiation period change periodically. When the direction of scanning from right to left is the first direction which is the scanning direction of the first scanning device 20, and the direction of scanning from top to bottom is the second direction which is the scanning direction of the second scanning device 23. When the two scanning directions are set to be orthogonal, the scanning range is rectangular. As shown in FIG. 5, the scanning range of the second embodiment is within the passable range of the measurement light unlike the first embodiment, but the measurement light modulated in a pulse shape is used. Therefore, the measurement light passing through the scanning turning point is regarded as intermittent light.
 測定光をパルス状に変調することができればどのような手段であってもよい。変調方法としては、例えば、レーザー光源10に流れる電流を直接制御する直接変調のほか、電気光学変調器(EOM)、音響光学変調器(AOM)、光チョッパなどの外部変調の手法が採用し得る。変調周波数については、眼光学機器の光ハザードの規格である「ISO 15004-2」で採用されている条件として、パルスの持続時間が0.25秒未満、すなわち4Hz以上であることが求められる。また、サンプリング数と撮影時間との兼ね合いで決定することが好ましい。一回の撮影でサンプリングを行うためには、サンプリングしたい各点において少なくとも1回はオン期間(照射期間)が登場する必要があり、隣接するサンプリング点の間でとオフ期間(非照射期間)も登場させる必要がある。すなわち、1つのサンプリング点において1周期以上経過する必要がある。例えば、撮影条件として、走査本数3000本とし、1走査あたり3000点をサンプリングする場合、合計9百万点についてサンプリングする必要があり、仮に0.4秒の撮影時間であるとすると、1回の撮影で漏れなくサンプリングするためには22.5MHz以上の周波数となるように変調することが好ましい。さらに、サンプリングボードのサンプリングレートに合わせる(例えば、240MHz)という設定の仕方もあり得る。 Any means may be used as long as the measurement light can be modulated in a pulse shape. As the modulation method, for example, in addition to direct modulation that directly controls the current flowing through the laser light source 10, an external modulation method such as an electro-optical modulator (EOM), an acousto-optic modulator (AOM), or an optical chopper can be adopted. .. Regarding the modulation frequency, the pulse duration is required to be less than 0.25 seconds, that is, 4 Hz or more, as a condition adopted in "ISO 15004-2", which is an optical hazard standard for ophthalmic optical equipment. Further, it is preferable to determine the balance between the number of samplings and the shooting time. In order to perform sampling in one shot, it is necessary that an on period (irradiation period) appears at least once at each point to be sampled, and there is also an off period (non-irradiation period) between adjacent sampling points. Need to appear. That is, it is necessary that one cycle or more elapses at one sampling point. For example, as a shooting condition, when the number of scans is 3000 and 3000 points are sampled per scan, it is necessary to sample a total of 9 million points, and if the shooting time is 0.4 seconds, one time. In order to sample without omission in shooting, it is preferable to modulate the frequency so that the frequency is 22.5 MHz or higher. Further, there may be a method of setting to match the sampling rate of the sampling board (for example, 240 MHz).
 以上のように、第2の実施の形態の一側面として、光源からの測定光を走査して被検眼の眼底に入射させ、眼底で反射された戻り光を受光するための光学装置部を備え、眼底で反射された戻り光に基づいて眼底の画像を撮影する眼科撮影装置であって、被検眼の所定位置を走査旋回点として測定光を走査させると共に、測定光が断続的に走査旋回点を通過するよう、光学装置部を制御する制御部を備え、制御部は、光源から出力させる測定光を変調するように光学装置部を制御し、走査旋回点を通過する測定光を断続的な光にするようにしたので、比較例よりも撮影時の被検眼の負担を低減することが可能となる。 As described above, as one aspect of the second embodiment, an optical device unit for scanning the measurement light from the light source, incidenting it on the fundus of the eye to be inspected, and receiving the return light reflected by the fundus is provided. This is an ophthalmologic imaging device that captures an image of the fundus of the eye based on the return light reflected by the fundus. The control unit is provided to control the optical device unit so as to pass through the optical device unit, and the control unit controls the optical device unit so as to modulate the measurement light output from the light source, and intermittently transmits the measurement light passing through the scanning turning point. Since the light is used, it is possible to reduce the burden on the eye to be inspected at the time of photographing as compared with the comparative example.
 すなわち、仮に、デューティー比(一周期における照射期間の比率)が0.5となるように変調を行ったとすると、同じ条件において変調しない場合と比較して、測定光の照射時間を半分にすることができるので、走査旋回点に対する照射エネルギーを低減させて撮影時の被検眼の負担を低減することができる。 That is, if modulation is performed so that the duty ratio (ratio of the irradiation period in one cycle) is 0.5, the irradiation time of the measurement light is halved as compared with the case where the modulation is not performed under the same conditions. Therefore, it is possible to reduce the irradiation energy for the scanning turning point and reduce the burden on the eye to be inspected at the time of photographing.
 図6は、本発明の実施の形態の少なくとも1つに対応する眼科撮影装置における走査方法の対比を行った表図である。この図6では、図7に示した比較例を実施した場合と、第1の実施の形態で説明したオーバースキャンを実施した場合と、第2の実施の形態で説明したレーザー変調を実施した場合とを比較している。 FIG. 6 is a table showing a comparison of scanning methods in an ophthalmologic imaging apparatus corresponding to at least one of the embodiments of the present invention. In FIG. 6, the comparative example shown in FIG. 7 is carried out, the overscan described in the first embodiment is carried out, and the laser modulation described in the second embodiment is carried out. Is compared with.
 この図6に示すように、比較例と第1の実施の形態で採用したオーバースキャンとを比較すると、照射パワーは同じであるが、測定時間が1.5倍であるため、単位時間当たりの照射パワーを低減することが可能となる。この図6の比較例として例示した条件では、照射パワーが127.3(mW/cm)となり連続波機器の照射パワーの限界値である100(mW/cm)を超えてしまうため不適合となってしまう。これに対して、同じ条件のレーザー光源を用いてオーバースキャンした第1の実施の形態の場合には、1撮影あたりの照射エネルギーが6.4×10-2(J/cm)となり、これは、パルス機器の場合の1撮影あたりの照射エネルギーの限界値である1.5(J/cm)以下であり、パルス機器の場合の規格の基準に適合していることが分かる。 As shown in FIG. 6, when the comparative example and the overscan adopted in the first embodiment are compared, the irradiation power is the same, but the measurement time is 1.5 times, so that per unit time. It is possible to reduce the irradiation power. Under the conditions illustrated as the comparative example of FIG. 6, the irradiation power becomes 127.3 (mW / cm 2 ), which exceeds the limit value of the irradiation power of the continuous wave device of 100 (mW / cm 2 ), which is considered unsuitable. turn into. On the other hand, in the case of the first embodiment overscanned using a laser light source under the same conditions, the irradiation energy per imaging is 6.4 × 10-2 (J / cm 2 ). Is 1.5 (J / cm 2 ) or less, which is the limit value of the irradiation energy per imaging in the case of the pulse device, and it can be seen that it conforms to the standard of the standard in the case of the pulse device.
 また、図6に示すように、比較例と第2の実施の形態で採用したレーザー変調とを比較すると、デューティー比が0.5の場合には、比較例と比較してレーザー変調は、照射エネルギーを半減させることが可能となる。第2の実施の形態の場合には、1撮影あたりの照射エネルギーが3.2×10-2(J/cm)となり、これは、パルス機器の場合の1撮影あたりの照射エネルギーの限界値である1.3(J/cm)以下であり、パルス機器の場合の規格の基準に適合していることが分かる。 Further, as shown in FIG. 6, when the comparative example and the laser modulation adopted in the second embodiment are compared, when the duty ratio is 0.5, the laser modulation is irradiated as compared with the comparative example. It is possible to halve the energy. In the case of the second embodiment, the irradiation energy per imaging is 3.2 × 10-2 (J / cm 2 ), which is the limit value of the irradiation energy per imaging in the case of the pulse device. It is 1.3 (J / cm 2 ) or less, and it can be seen that it conforms to the standard of the standard in the case of pulse equipment.
 100      眼科撮影装置
 1        投光光学系
 2        走査光学系
 3        対物レンズ光学系
 4        受光光学系
 10       レーザー光源
 11       投光レンズ
 12       投光ピンホール
 13       投光フォーカスレンズ
 14       光路分割ミラー
 20       水平走査デバイス
 21       走査リレーレンズ
 22       走査リレーレンズ
 23       垂直走査デバイス
 30       第1レンズ群
 31       第2レンズ群
 32       眼底共役面
 40       受光フォーカスレンズ
 41       遮光部材
 42       受光ピンホール
 43       受光レンズ
 44       集光レンズ
 45       受光素子
 50       被検眼
 50a      瞳(走査旋回点の位置)
 50b      眼底
 60       光学装置部
 70       制御部
 71       駆動制御部
 72       画像生成部
 73       記憶部
 80       入力装置
 90       表示装置
100 Ophthalmic imaging device 1 Floodlight optical system 2 Scanning optical system 3 Objective lens optical system 4 Light receiving optical system 10 Laser light source 11 Floodlight lens 12 Floodlight pinhole 13 Floodlight focus lens 14 Optical path split mirror 20 Horizontal scanning device 21 Scanning relay Lens 22 Scanning relay lens 23 Vertical scanning device 30 1st lens group 31 2nd lens group 32 Fundus conjugate surface 40 Light receiving focus lens 41 Light shielding member 42 Light receiving pinhole 43 Light receiving lens 44 Condensing lens 45 Light receiving element 50 Eye to be inspected 50a Eye ( Position of scanning turning point)
50b Fundus 60 Optical device 70 Control unit 71 Drive control unit 72 Image generation unit 73 Storage unit 80 Input device 90 Display device

Claims (5)

  1.  光源からの測定光を走査して被検眼の眼底に入射させ、眼底で反射された戻り光を受光するための光学装置部を備え、前記眼底で反射された戻り光に基づいて前記眼底の画像を撮影する眼科撮影装置であって、
     前記被検眼の所定位置を走査旋回点として前記測定光を走査させると共に、前記測定光が断続的に前記走査旋回点を通過するよう、前記光学装置部を制御する制御部を備える
     ことを特徴とする眼科撮影装置。
    An optical device unit for scanning the measurement light from the light source to enter the fundus of the eye to be inspected and receiving the return light reflected by the fundus is provided, and the image of the fundus is based on the return light reflected by the fundus. It is an ophthalmologic imaging device that photographs
    The measurement light is scanned with a predetermined position of the eye to be inspected as a scanning turning point, and a control unit for controlling the optical device unit is provided so that the measurement light intermittently passes through the scanning turning point. Optometry imaging device.
  2.  前記光学装置部は、前記測定光を第1方向に走査する第1走査デバイスと、前記測定光を第2方向に走査する第2走査デバイスとを備え、
     前記制御部は、前記第2方向に予め定められた所定範囲だけ1回走査する間に前記第1方向の走査を複数回繰り返すラスタスキャンを実行するように、前記第1走査デバイス及び第2走査デバイスを制御する
     請求項1に記載の眼科撮影装置。
    The optical device unit includes a first scanning device that scans the measurement light in the first direction and a second scanning device that scans the measurement light in the second direction.
    The control unit performs the first scanning device and the second scanning so as to execute a raster scan in which the scanning in the first direction is repeated a plurality of times while scanning once in a predetermined range predetermined in the second direction. The ophthalmologic imaging apparatus according to claim 1, wherein the device is controlled.
  3.  前記制御部は、前記測定光が通過して被検眼に到達できる範囲を定めた通過可能範囲の外側も走査範囲となるように前記光学装置部を制御し、前記走査旋回点を通過する前記測定光を断続的な光にする
     請求項1又は2に記載の眼科撮影装置。
    The control unit controls the optical device unit so that the outside of the passable range in which the measurement light can pass and reaches the eye to be inspected is also a scanning range, and the measurement passes through the scanning turning point. The ophthalmologic imaging apparatus according to claim 1 or 2, wherein the light is made intermittent.
  4.  前記制御部は、前記光源から出力させる前記測定光を変調するように前記光学装置部を制御し、前記走査旋回点を通過する前記測定光を断続的な光にする
     請求項1から請求項3の何れかに記載の眼科撮影装置。
    The control unit controls the optical device unit so as to modulate the measurement light output from the light source, and makes the measurement light passing through the scanning turning point intermittent light. The ophthalmologic imaging apparatus according to any one of.
  5.  前記変調は、直接変調、電気光学変調、音響光学変調、又は光チョッパによって前記測定光を変調するものである
     請求項4に記載の眼科撮影装置。
    The ophthalmologic imaging apparatus according to claim 4, wherein the modulation is a direct modulation, an electro-optical modulation, an acoustic-optical modulation, or an optical chopper that modulates the measurement light.
PCT/JP2021/007299 2020-02-27 2021-02-26 Ophthalmologic imaging apparatus WO2021172505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022503742A JPWO2021172505A1 (en) 2020-02-27 2021-02-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031298 2020-02-27
JP2020031298 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172505A1 true WO2021172505A1 (en) 2021-09-02

Family

ID=77491285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007299 WO2021172505A1 (en) 2020-02-27 2021-02-26 Ophthalmologic imaging apparatus

Country Status (2)

Country Link
JP (1) JPWO2021172505A1 (en)
WO (1) WO2021172505A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244134A (en) * 1991-01-28 1992-09-01 Sony Corp Ophthalmologic apparatus
JP2012143284A (en) * 2011-01-07 2012-08-02 Topcon Corp Scanning laser optometry device
JP2016133550A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Laser scanner device, laser scanning method and program
WO2019172206A1 (en) * 2018-03-05 2019-09-12 株式会社ニデック Ocular fundus image processing device and ocular fundus image processing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244134A (en) * 1991-01-28 1992-09-01 Sony Corp Ophthalmologic apparatus
JP2012143284A (en) * 2011-01-07 2012-08-02 Topcon Corp Scanning laser optometry device
JP2016133550A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Laser scanner device, laser scanning method and program
WO2019172206A1 (en) * 2018-03-05 2019-09-12 株式会社ニデック Ocular fundus image processing device and ocular fundus image processing program

Also Published As

Publication number Publication date
JPWO2021172505A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US8382285B2 (en) Device and method for determining the orientation of an eye
JP5956884B2 (en) Laser therapy device
JP5606813B2 (en) Ophthalmic equipment
JP5101354B2 (en) Scanning fundus imaging device
KR20150048789A (en) Visual aid projector
JP2002505132A (en) System for treating the fundus
US11147450B2 (en) Ophthalmic imaging apparatuses and method for the same
JP2001512994A (en) Ophthalmoscope that laser scans a wide field of view
CN103705208A (en) Ophthalmoscope and method for using same
JP2019536500A (en) Eyeball imaging device
US20150092161A1 (en) Ophthalmologic image processing apparatus
EP3257433B1 (en) Ophthalmic imaging device and generation method of ophthalmic synthetic image
WO2019138916A1 (en) Fundus imaging device
WO2021172505A1 (en) Ophthalmologic imaging apparatus
JP6866132B2 (en) Ophthalmic devices, control methods and programs for ophthalmic devices
JP2022022242A (en) Fundus photographing device
US20240115345A1 (en) Illumination system for surgical microscope with tunable coaxial and oblique beams
WO2019088070A1 (en) Scan type eyeground imaging device
JP2021062162A (en) Scanning type ocular fundus imaging apparatus
JP7268357B2 (en) Scanning ophthalmic imaging device and ophthalmic imaging program
WO2020179522A1 (en) Scanning ophthalmic imaging device, and ophthalmic imaging program
JP6045200B2 (en) Optical imaging device
JP6937536B1 (en) Fundus photography device
WO2021182321A1 (en) Ophthalmic device, and control method and program therefor
JP7089823B1 (en) Image projection device, visual test device, and fundus photography device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761444

Country of ref document: EP

Kind code of ref document: A1