WO2021172388A1 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
WO2021172388A1
WO2021172388A1 PCT/JP2021/006953 JP2021006953W WO2021172388A1 WO 2021172388 A1 WO2021172388 A1 WO 2021172388A1 JP 2021006953 W JP2021006953 W JP 2021006953W WO 2021172388 A1 WO2021172388 A1 WO 2021172388A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piezoelectric element
longitudinal direction
function module
valve device
Prior art date
Application number
PCT/JP2021/006953
Other languages
French (fr)
Japanese (ja)
Inventor
世傑 徐
矢野 健
昭雄 矢野
伊藤 隆文
Original Assignee
有限会社メカノトランスフォーマ
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社メカノトランスフォーマ, 株式会社サタケ filed Critical 有限会社メカノトランスフォーマ
Priority to CN202180016683.8A priority Critical patent/CN115151748A/en
Priority to KR1020227023248A priority patent/KR20220144795A/en
Publication of WO2021172388A1 publication Critical patent/WO2021172388A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • a piezoelectric element has existed as an element that generates a required displacement at a relatively low voltage.
  • a piezoelectric element is an element having a structure in which a substance having a piezoelectric effect and thin electrodes are alternately stacked, and has a function of converting a force into a voltage or converting a voltage into a force. Since the piezoelectric element can be slightly expanded and contracted by controlling the voltage, it is used in various fields such as an ink injection mechanism of an inkjet printer and a control mechanism such as an actuator. The piezoelectric element expands and contracts when a voltage is applied, but since the displacement generated is small, an actuator is used that expands the displacement of the expanding and contracting piezoelectric element to act on the object.
  • Patent Document 1 discloses an actuator capable of effectively expanding and outputting a displacement amount by displacing two piezoelectric elements.
  • valve portion driven by the piezoelectric element allows the fluid to pass through by being separated from the valve seat, or stops the fluid by being brought into close contact with the valve seat.
  • Patent Document 2 discloses a piezoelectric valve device having a valve seat attached to a valve body and a valve portion displaced by a piezoelectric element. The displacement of the piezoelectric element is expanded by the actuator to drive the valve portion to bring the valve portion into contact with the valve seat.
  • the conventional actuator uses two piezoelectric elements, it is necessary to control the drive of each piezoelectric element, and there is a problem that it is difficult to control the drive system for obtaining the desired displacement.
  • valve device body may be installed in various temperature environments, and the temperature of the displacement expansion function may change due to the temperature change of the valve device body. Since the displacement expansion function expands a small displacement of the piezoelectric element, when the temperature of the displacement expansion function changes, the positional relationship or contact pressure between the valve and the valve seat changes due to the thermal expansion or contraction of the displacement expansion function, resulting in a fluid. In some cases, the flow rate characteristics of the
  • an object of the present invention is to provide a valve device in which the drive system can be easily controlled and the change in flow rate characteristics is small even when the valve device body has a temperature change.
  • the valve device is a valve device including an actuator for driving the valve portion, a valve function module having a valve seat that is in contact with and separated from the valve portion, and a housing for accommodating the valve function module.
  • a second portion that is connected to a base portion that is a base and a mounting surface of the base portion and extends in the first longitudinal direction, and one end portion that is attached to the mounting surface alongside the piezoelectric element and intersects the first longitudinal direction.
  • the housing includes a supply port for supplying fluid, a discharge port for discharging the fluid supplied from the supply port by separating the valve part from the valve seat, and a valve function.
  • a holding portion for holding a valve function module by ensuring a gap between the module and the housing is provided.
  • the holding portion may secure a gap with the valve function module by holding the first surface of the valve function module.
  • the holding portion may hold the valve function module by fastening the valve function module to the holding portion by fastening parts.
  • the actuator may be further provided with a compression member which is connected to each of the base portion and the action portion and compresses the piezoelectric element in the first longitudinal direction.
  • valve device of the embodiment may further include a drive unit that supplies a voltage or a current to the piezoelectric element to expand and contract the piezoelectric element.
  • At least one end or the other end of the piezoelectric element may be connected via a connecting member having a higher coefficient of thermal expansion than the support member. ..
  • the connecting member may be integrally formed with the base portion.
  • the connecting member may be integrally formed with the working portion.
  • the valve device includes a plurality of actuators for individually driving a plurality of valve portions and a valve function module having a plurality of valve seats individually connected to and separated from the plurality of valve portions.
  • a valve device including a housing for accommodating a valve function module, each of a plurality of actuators having a base portion as a base and a piezoelectric element having one end connected to a mounting surface of the base portion and extending in the first longitudinal direction. One end of the piezoelectric element is attached to the mounting surface alongside the piezoelectric element, and the support member extending in the second longitudinal direction intersecting the first longitudinal direction is connected to the other end of each of the piezoelectric element and the support member.
  • the housing includes a supply port to which a fluid is supplied, and a working portion that drives the valve portion by being displaced in a displacement direction that is different from each of the first longitudinal direction and the second longitudinal direction as the valve expands and contracts.
  • a valve function is provided by securing a gap between the valve function module and the housing and a plurality of discharge ports for individually discharging the fluid supplied from the supply port by separating the plurality of valve portions from the valve seats that are individually contacted and separated from each other.
  • a holding unit for holding the module is provided.
  • the holding portion may secure a gap with the valve function module by holding the first surface of the valve function module.
  • the holding portion may hold the valve function module by fastening the valve function module to the holding portion by fastening parts.
  • each actuator may be further provided with a compression member which is connected to each of the base portion and the action portion and compresses the piezoelectric element in the first longitudinal direction.
  • valve device of the embodiment may further include a drive unit that individually supplies a voltage or a current to the piezoelectric elements included in each actuator to individually expand and contract the piezoelectric elements.
  • At least one end or the other end of the piezoelectric element may be connected via a connecting member having a higher coefficient of thermal expansion than the support member. ..
  • the connecting member may be integrally formed with the base portion.
  • the connecting member may be integrally formed with the working portion.
  • the valve device comprises a valve that includes an actuator that drives the valve portion, a valve function module having a valve seat that is in contact with and separated from the valve portion, and a housing that houses the valve function module.
  • the actuator has a base portion as a base, one end connected to a mounting surface of the base, a piezoelectric element extending in the first longitudinal direction, and one end mounted on the mounting surface along with the piezoelectric element.
  • a support member extending in the second longitudinal direction intersecting the first longitudinal direction is connected to the other end of each of the piezoelectric element and the support member, and is different from the first longitudinal direction and the second longitudinal direction as the piezoelectric element expands and contracts.
  • the housing is provided with an acting portion that drives the valve portion by being displaced in the displacement direction, which is a direction, and the housing receives the fluid supplied from the supply port by separating the supply port from which the fluid is supplied and the valve portion and the valve seat.
  • FIG. 1 is an example of a front view of the valve device according to the embodiment.
  • FIG. 2 is an example of a side view of the valve device according to the embodiment.
  • FIG. 3 is an example of a side view of the valve device according to the first modification.
  • FIG. 4 is an example of a front view of the actuator according to the first embodiment.
  • FIG. 5 is an example of a perspective view of the actuator according to the first embodiment.
  • FIG. 6 is an example of a front view of the compression member according to the first embodiment.
  • FIG. 7 is an example of a front view of the actuator according to the second embodiment.
  • FIG. 8 is an example of a front view of the compression member according to the second embodiment.
  • FIG. 9 is an example of a front view of the actuator according to the third embodiment.
  • FIG. 10 is an example of a front view of the compression member according to the third embodiment.
  • FIG. 11 is an example of a hexagonal view and a perspective view showing another modified example of the actuator.
  • FIG. 12 is an example of a hexagonal view and a perspective view in which the compression member is attached to another modified example of the actuator.
  • valve device according to the embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the description of the same reference numerals that are duplicated in each figure may be omitted.
  • FIG. 1 is a front view of the valve device according to the embodiment.
  • the valve device 100 includes an actuator 1, a valve function module 2, and a housing 3 according to the first embodiment.
  • the actuator 1 drives the valve portion 11.
  • the actuator 1 includes a base portion 12, a piezoelectric element 13, a support member 14, an action portion 15, and a connecting member 16.
  • the base portion 12 is a portion that becomes the base of the actuator 1, and the actuator 1 is attached to the valve function module 2 via the base portion 12.
  • the base portion 12 has a mounting hole 122, and for example, the actuator 1 is valved by mounting a screw through the mounting hole 122 in a tap hole provided in the valve function module 2 corresponding to the mounting hole 122. It can be attached to the function module 2.
  • the base 12 can be made of, for example, stainless steel.
  • one end of the piezoelectric element 13 is connected to the mounting surface of the base 12.
  • a mounting portion 121 formed in pairs with the base portion 12 is mounted on the mounting surface of the base portion 12, and the piezoelectric element 13 is mounted on the base portion 12 via the mounting portion 121.
  • the piezoelectric element 13 is formed in an elongated shape extending in the first longitudinal direction D1.
  • the piezoelectric element 13 can be formed in a rectangular parallelepiped, for example, as shown in FIG.
  • the piezoelectric element 13 contracts in the first longitudinal direction D1 when a voltage or current is supplied.
  • a piezoelectric material having a piezoelectric effect for example, PZT (lead zirconate titanate) can be used.
  • the piezoelectric element 13 may have a laminated structure in which thin electrodes and thin piezoelectric bodies are alternately stacked. With such a laminated structure, it is possible to realize a large displacement even at a low voltage.
  • the piezoelectric element 13 is formed in a rectangular parallelepiped is illustrated in FIG. 1, the shape is not limited to the rectangular parallelepiped.
  • the piezoelectric element 13 may be formed in a triangular columnar shape or a columnar shape, for example.
  • the piezoelectric element 13 is attached to the base 12 via the connecting member 16.
  • the connecting member 16 is used for the purpose of compensating for the influence of the thermal expansion of the piezoelectric element 13 on the actuator 1. The effect on thermal expansion will be described later.
  • the support member 14 is attached to the attachment surface of the base 12 along with the piezoelectric element 13.
  • the support member 14 is attached to the base portion 12 via the attachment portion 121.
  • the support member 14 is formed in a rectangular parallelepiped so as to extend in the direction of the second longitudinal direction D2 intersecting the first longitudinal direction D1, but the shape of the support member 14 is not limited to this.
  • the working portion 15 is connected to the other end of each of the piezoelectric element 13 and the support member 14.
  • a valve portion 11 is attached to the tip of the working portion 15.
  • the acting portion 15 is displaced in the displacement direction D4, which is a direction different from each of the first longitudinal direction D1 and the second longitudinal direction D2, to drive the valve portion 11.
  • the support member 14 is also deformed accordingly, so that the valve portion 11 attached to the tip of the working portion 15 can be moved in the downward direction shown in the displacement direction D4.
  • the support member 14 when the piezoelectric element 13 contracts, the support member 14 also deforms accordingly, so that the valve portion 11 attached to the tip of the working portion 15 can be moved in the upward direction shown in the displacement direction D4.
  • the valve portion 11 attached to the tip of the working portion 15 is moved in the displacement direction D4 with a predetermined stroke as the expansion and contraction of the piezoelectric element 13 moves as the acting portion 15 moves. That is, the expansion and contraction of the piezoelectric element 13 in the first longitudinal direction D1 is expanded to the stroke of the valve portion 11 in the displacement direction D4 by the length of the action portion 15 in the illustrated left-right direction.
  • the valve portion 11 is moved in the displacement direction D4 with a predetermined stroke to contact and separate from the valve seat 21 formed in the valve function module 2.
  • the valve portion 11 is formed of, for example, rubber.
  • the valve seat 21 has a contact surface with the valve portion 11 corresponding to the shape of the valve portion 11.
  • the shape of the valve seat 21 is formed, for example, by making a discharge hole in the flat surface portion of the valve function module 2. Further, the shape of the valve seat 21 may be formed by providing a chimney-shaped protrusion on the valve function module 2. By making the shape of the valve seat 21 a chimney-shaped protrusion, the contact area with the valve portion 11 can be reduced and the contact pressure can be improved.
  • valve seat 21 By making the shape of the valve seat 21 a chimney-shaped protrusion, it is possible to stabilize the flow rate of the fluid or increase the flow rate. By bringing the valve portion 11 and the valve seat 21 into contact with each other, a valve function of shutting off or passing a fluid is realized.
  • the valve device 100 in the present embodiment exemplifies an air valve when the fluid is air, but the fluid is not limited to air, and may be, for example, a liquid, a powder, a gel, or the like. Further, the fluid may contain impurities such as solids.
  • the valve portion 11 can create a closed state of the valve by coming into contact with the valve seat 21 and block the passage of air between the air pressure chamber 5 and the discharge port 24. By contacting the valve portion 11 with the valve seat 21 with a predetermined contact pressure, the air blocking force can be enhanced. On the other hand, the valve portion 11 can create an open state of the valve by separating from the valve seat 21 and allow air to pass between the air pressure chamber 5 and the discharge port 24.
  • a valve has a valve characteristic (flow rate characteristic) represented by a change in the flow rate with respect to the opening degree of the valve.
  • the flow rate characteristic is determined by the moving stroke of the valve portion 11 in the displacement direction D4, that is, the distance between the valve portion 11 and the valve seat 21. Therefore, the flow rate characteristic of the valve device 100 is determined by the movement of the working unit 15 in the displacement direction D4.
  • the housing 3 houses the valve function module 2 to which the actuator 1 is attached.
  • the housing 3 functions as a protective frame that protects the housed actuator 1 from dust and the like outside the valve device 100.
  • the housing 3 includes a holding portion 33.
  • the holding portion 33 is a portion that holds the valve function module 2 and secures a gap 4 between the valve function module 2 and the housing 3.
  • the holding portion 33 is in contact with the first surface 22 of the valve function module 2 and is fastened to the valve function module 2 by a fastening component 331 (for example, a screw) to hold the valve function module.
  • the gap 4 can increase the thermal resistance between the housing 3 and the valve function module 2 (reduce heat conduction), and make it difficult for the temperature change of the housing 3 to be transmitted to the valve function module.
  • the holding portion 33 and the first surface 22 are used to reduce the thermal conductivity. It is preferable that the contact area is small. Therefore, the first surface 22 may have a shape that reduces the contact area (for example, an uneven shape). Further, a member (heat insulating material) having a small thermal conductivity may be sandwiched between the holding portion 33 and the first surface 22.
  • the actuator 1 expands the expansion and contraction of the piezoelectric element 13 to move the valve portion 11, thermal expansion or contraction due to a temperature change of each part of the actuator affects the amount of movement of the valve portion 11, and the flow rate characteristic of the valve is affected. Change.
  • the contact area between the housing 3 and the valve function module 2 becomes smaller, the heat conduction between the housing 3 and the valve function module 2 becomes smaller, and the housing 3 becomes smaller. Even if there is a temperature change in the valve function module 2, the temperature change of the valve function module 2 to which the actuator 1 is attached becomes small, and thus the change in the flow rate characteristic can be made small.
  • the first surface 22 of the valve function module 2 has a discharge port 24 for discharging the air discharged when the valve portion 11 and the valve seat 21 are separated from each other.
  • the housing 3 has a discharge port 32 for discharging the air discharged from the discharge port 24 against the discharge port 24 in the holding portion 33.
  • the housing 3 has a supply port 31 for supplying air.
  • the compressed air supplied from the supply port 31 is introduced into the air pressure chamber 5 through the gap 4.
  • the compressed air introduced into the air pressure chamber 5 is discharged from the discharge port 32 when the valve portion 11 and the valve seat 21 are separated from each other.
  • the compressed air supplied from the supply port 31 may be introduced into the air pressure chamber 5 by forming a flow path so as to cool the actuator 1, the piezoelectric element 13, or the support member 14, for example.
  • the compression member 60 is connected to each of the base portion 12 and the working portion 15, and compresses the piezoelectric element 13 in the first longitudinal direction D1.
  • the compression member 60 can prevent damage to the piezoelectric element 13 by making it difficult for the weight in the tensile direction to be applied to the piezoelectric element 13 which is easily damaged by the load in the tensile direction (D1). Details of the shape of the compression member 60 will be described later.
  • the drive unit 70 supplies a voltage or current to the piezoelectric element 13 to expand and contract the piezoelectric element 13.
  • the drive unit 70 can control the shutoff or discharge of compressed air by driving the piezoelectric element 13 based on an input signal from a control device (not shown).
  • the valve device 100 may be normally closed in which the discharge of compressed air is cut off in a state where no voltage is applied to the piezoelectric element 13, while no voltage is applied to the piezoelectric element 13. In the state, it may be normally open in which compressed air is discharged. That is, the valve device 100 can perform both normal closing and normal opening depending on the combination of the position of the valve portion 11 with respect to the valve seat 21 when the piezoelectric element 13 is not energized and the expansion / contraction direction of the piezoelectric element 13 when the piezoelectric element 13 is energized. It will be possible.
  • the position of the valve portion 11 with respect to the valve seat 21 when not energized can be set when the screw is fastened, for example, by increasing the size of the mounting hole 122. Further, the expansion / contraction direction of the piezoelectric element 13 when energized can be set by changing the polarity of the voltage or the like supplied from the drive unit 70.
  • FIG. 2 is a side view of the valve device 100 according to the embodiment.
  • the valve device 100 has a housing 3 and a lid 35 attached to the housing 3.
  • a resin material such as aluminum die-cast or PPS can be applied to the housing 3 and the lid 35.
  • the lid 35 is attached to the housing 3 to seal the inside of the housing 3 and maintain the pressure of the introduced compressed air.
  • a rubber packing may be sandwiched between the housing 3 and the lid 35.
  • the valve function module 2 is held by two upper and lower fastening parts 331 in the holding portion 33 of the housing 3 on the first surface 22. Therefore, a gap 4 is created between the valve function module 2 and the housing 3. Therefore, the contact area between the housing 3 and the valve function module is reduced, the heat conduction between the housing 3 and the valve function module is reduced, and the actuator 1 is attached even when the temperature of the housing 3 changes.
  • the temperature change of the valve function module is small, and the change in flow rate characteristics is small.
  • FIG. 3 is a side view of the valve device according to the first modification.
  • the valve device 100a according to the first modification is different from the valve device 100 described with reference to FIG. 2 in that the valve function module 2a is in contact with the housing 3 on the second surface 23.
  • the valve function module 2a improves the mechanical strength such as reducing the vibration of the actuator 1 with respect to vibration or the like. Can be done.
  • the position of the second surface 23 in FIG. 3 is provided at the left end of the valve function module 2a in the drawing, the position and number of the second surface 23 are arbitrary.
  • the position of the second surface 23 may be provided at the right end in the drawing so as to be in contact with the bottom of the housing 3.
  • one or more second surfaces 23 may be provided so as to be in contact with the housing 3 or the lid 35. Since the other parts in FIG. 3 overlap with the description in FIG. 2, the description will be omitted.
  • FIG. 4 is a front view of the actuator 1 according to the first embodiment.
  • the acting portion 15 is displaced in the displacement direction D4 as the piezoelectric element 13 expands and contracts to drive the valve portion 11. Therefore, when the piezoelectric element 13 is thermally expanded or contracted due to a temperature change, it affects the position of the valve portion 11 or the contact pressure with the valve seat 21, and affects the flow rate characteristics.
  • compensation for expansion and contraction of the piezoelectric element 13 with respect to a temperature change using the connecting member 16 will be described.
  • the piezoelectric element 13 is attached to the base 12 via the connecting member 16.
  • the connecting member 16 is made of a material having a higher coefficient of thermal expansion than the supporting member 14.
  • the coefficient of thermal expansion of the piezoelectric element 13 is ⁇ 1 and the length of the first longitudinal direction D1 is L1
  • the coefficient of thermal expansion of the connecting member 16 is ⁇ 2 and the length of the first longitudinal direction D1 is L2
  • the coefficient of thermal expansion ⁇ 1 of the piezoelectric element 13 is, for example, -4.32PPM / ° C, which is a negative value
  • the connecting member 16 may be arranged at the other end of the piezoelectric element 13 instead of one end of the piezoelectric element 13. That is, the connecting member 16 may connect the other end portion of the piezoelectric element 13 and the acting portion 15. Further, the connecting member 16 may be arranged at one end and the other end of the piezoelectric element 13. That is, one end of the connecting member 16 connects the one end portion of the piezoelectric element 13 and the base portion 12, and the other end of the connecting member 16 connects the other end portion of the piezoelectric element 13 and the acting portion 15. It may be.
  • FIG. 5 is a perspective view of the actuator 1 according to the first embodiment.
  • the actuator 1 has two compression members 60.
  • the two compression members 60 are arranged at positions sandwiching the piezoelectric element 13 and the support member 14, respectively. By using the two compression members 60, it is possible to apply a compressive force evenly to the piezoelectric element 13, and it is possible to prevent damage to the piezoelectric element 13.
  • the compression member 60 can prevent damage to the piezoelectric element 13 by making it difficult for the weight in the tensile direction to be applied to the piezoelectric element 13 which is easily damaged by the load in the tensile direction (D1).
  • FIG. 6 is a front view of the compression member 60 according to the first embodiment.
  • the compression member 60 extends in a third longitudinal direction D3 that intersects each of the first longitudinal direction D1 and the second longitudinal direction D2 in a plan view.
  • the compression member 60 is formed with an expansion / contraction portion 61 and a fixing portion 62 that can be expanded / contracted in the third longitudinal direction D3.
  • the telescopic portion 61 extends in the third longitudinal direction D3 in a plan view and is formed in a bellows shape that repeatedly curves.
  • the structure is curved at three points in the third longitudinal direction, but the structure is not limited to this example, and the shape can be arbitrarily changed.
  • the expansion / contraction portion 61 is formed in the intermediate portion of the compression member 60 in the third longitudinal direction D3.
  • the fixing portions 62 are formed at both ends of the compression member 60 in the third longitudinal direction D3.
  • the fixing portion 62 is formed to have a large width dimension which is a dimension in a direction orthogonal to the third longitudinal direction D3, and is connected to each of the base portion 12 and the acting portion 15 as shown in FIG.
  • FIG. 7 is a front view of the actuator according to the second embodiment.
  • FIG. 8 is a front view of the compression member according to the second embodiment.
  • the position where the compression member 60B is attached to the actuator 1a according to the second embodiment is different from that of the actuator 1 according to the first embodiment. That is, one of the two compression members 60B extends in the first longitudinal direction D1 along the piezoelectric element 13, and the other compression member 60B extends in the second longitudinal direction D2 along the support member 14. ..
  • the compression member 60B extending in the first longitudinal direction D1 is formed with a stretchable portion 61B that can be expanded and contracted in the first longitudinal direction D1 as shown in FIG.
  • the compression member 60B when the compression member 60B is attached to the slit for fixing the action portion 15 and the base portion 12, the compression member 60B is pulled in the first longitudinal direction D1 and attached in a slightly stretched state and elastically deformed. As a result, after the compression member 60B is mounted in the slit, it is restored and deformed in the third longitudinal direction D3 to apply the compressive force from the compression member 60B to the piezoelectric element 13 via the action portion 15 and the base portion 12. Can be done.
  • FIG. 9 is a front view of the actuator according to the third embodiment.
  • FIG. 10 is a front view of the compression member according to the third embodiment.
  • the shape of the compression member 60C is different from that of the compression member 60 of the actuator 1 according to the first embodiment. That is, the compression member 60C of the actuator 1b according to the third embodiment does not have a portion corresponding to the expansion / contraction portion 61 of the actuator 1, and the whole extends straight in the third longitudinal direction D3.
  • the dimension L5 of the third longitudinal direction D3 between the two fixing portions 62 shown in FIG. 10 is the dimension L2 of the third longitudinal direction D3 between the fixing slits formed in the acting portion 15 and the base portion 12 shown in FIG. Is shorter than.
  • the compression member 60C when the compression member 60C is attached to the slits for fixing the action portion 15 and the base portion 12, the compression member 60C is pulled in the first longitudinal direction D1 and attached in a slightly stretched state and elastically deformed. As a result, after the compression member 60C is mounted, the compression force from the compression member 60C can be applied to the action unit 15 and the base portion 12 by restoring and deforming in the third longitudinal direction D3.
  • At least one end of the first longitudinal direction D1 of the piezoelectric element 13 and one end of the second longitudinal direction D2 of the support member 14 A hinge member that promotes deformation in the displacement direction D4 may be provided. Such a hinge member may be provided at at least one of the other end of the first longitudinal direction D1 of the piezoelectric element 13 and the other end of the second longitudinal direction D2 of the support member 14.
  • FIG. 11 is an example of a hexagonal view and a perspective view showing another modified example of the actuator.
  • the actuator 1 is required to convert the expansion / contraction deformation energy of the PZT into the energy of the displacement direction D4 of the working portion 15 with as little waste as possible.
  • the PZT and the support member 14 must be deformed so as to bend up and down. Energy is required to flex and deform, but there is a lot of waste in this energy to flex and deform.
  • the energy associated with the flexural deformation can be reduced, and the vertical kinetic energy of the acting portion can be increased by that amount, causing bending deformation. It will be easier.
  • the width of the hinge portion 30 is about 30% or less of the thickness of the support member 14, and the length is about 5% or more of the length of the support member 14.
  • the vertical kinetic amplitude of the acting portion 15 is improved by about 10% or more and the vertical kinetic energy of the acting portion 15 that can be taken out is improved by about 5% or more as compared with the configuration without the hinge portion 30. ..
  • the support member 14 is integrally molded with the base portion 12, and the thickness t thereof is set to, for example, 1.6 mm to provide a more compact actuator 1.
  • integrally molding the support member 14 with the base portion 12 by adopting a construction method such as pressing, not only the number of parts can be reduced, but also the production cost can be suppressed.
  • the fastening rigidity between the support member 14 and the base 12 becomes the strength of the material itself.
  • the generated force of the piezoelectric element 13 is more transmitted to the acting unit 15, and as a result, the resonance frequency is increased, and there is an advantage that the kinetic energy that can be extracted from the acting unit 15 is also increased.
  • FIG. 12 is an example of a hexagonal view and a perspective view in which the compression member is attached to another modified example of the actuator.
  • the piezoelectric element and the support member are attached to the base portion, and the action portion is attached to these. Therefore, the piezoelectric element is displaced in the first longitudinal direction, so that the working portion can be displaced in the displacement direction.
  • the drive system can be easily controlled as compared with the case where two piezoelectric elements are used.
  • the actuators 1 to 1b are provided with a compression member, a preload in the compression direction can be applied to the piezoelectric element. As a result, it is possible to make it difficult for the piezoelectric element, which is easily damaged by the load in the tensile direction, to be loaded in the tensile direction.
  • a plurality of actuators according to an embodiment of the present invention may be arranged in series or in parallel and used in combination. At that time, it is possible to connect a plurality of actuators in series, that is, to connect the base of the actuator and the acting part of another actuator, whereby the displacement can be further increased. In particular, such usage is effective in places where space is tightly restricted. Further, variations in the connection method such as connecting the two actuators so that the connection angle is 90 ° can be considered.
  • the piezoelectric element is used as the expansion / contraction element, but the element is not particularly limited as long as it is an expansion / contraction element, and other elements having a expansion / contraction function such as a magnetostrictive element or a shape memory alloy can be used. It can also be used.
  • Valve part 12 Base 121 Mounting part 122 Mounting hole 13 Piezoelectric element 14 Support member 15 Acting part 16 Connecting member 2 Valve function module 21 Valve seat 22 1st surface 23 2nd surface 24 Discharge port 3 Housing 31 Supply port 32 Discharge Outlet 321 1st discharge port 322 2nd discharge port 33 Holding part 331 Fastening part 34 Lid mounting part 35 Lid 4 Void 5 Air pressure chamber 60 Compressing member 61 Telescopic part 62 Fixed part 70 Driving part 100 Valve device

Abstract

Provided is a valve device with which a drive system can be controlled in a simple manner and the change in a flow rate characteristic is small even when there has been a temperature change in a valve device body. The valve device comprises an actuator, a valve function module, and a housing. The actuator is provided with: a base section serving as a foundation; a piezoelectric element of which one end is connected to an attachment surface of the base section and which extends in a first longitudinal direction; a support member of which one end is attached to the attachment surface alongside the piezoelectric element and which extends in a second longitudinal direction intersecting the first longitudinal direction; and an actuating section that is connected to the other ends of both the piezoelectric element and the support member and that is displaced in a displacement direction, which is different from both the first longitudinal direction and the second longitudinal direction, in association with expansion and contraction of the piezoelectric element, to drive a valve section. The housing is provided with a supply port to which a fluid is supplied, a discharge port that discharges the fluid supplied from the supply port due to separation of the valve section and a valve seat, and a holding section that ensures a gap between the valve function module and the housing to hold the valve function module.

Description

バルブ装置Valve device
[関連出願]
 本出願は、2020年2月27日に出願された「バルブ装置」と題する日本国特許出願特願2020-031577号の優先権を主張し、その開示はその全体が参照により本明細書に取り込まれる。
 本発明は、バルブ装置に関する。
[Related application]
This application claims the priority of Japanese Patent Application No. 2020-031577 entitled "Valve Device" filed on February 27, 2020, the disclosure of which is incorporated herein by reference in its entirety. Is done.
The present invention relates to a valve device.
 従来から、比較的低い電圧で所要の変位を発生させる素子として、圧電素子(ピエゾ素子)が存在する。圧電素子は、圧電効果を備えた物質と薄い電極とを交互に積み重ねた構造を持ち、力を電圧に変換する、または、電圧を力に変換する機能を持った素子である。圧電素子は、電圧の制御によって微妙に伸縮変化させることが可能であるため、インクジェットプリンタのインク射出機構やアクチュエータなどの制御機構等、種々の分野に用いられている。圧電素子は、電圧が印加されると伸縮するが、発生する変位が小さいため、当該伸縮する圧電素子の変位を拡大して対象物に作用させるアクチュエータが用いられる。 Conventionally, a piezoelectric element (piezo element) has existed as an element that generates a required displacement at a relatively low voltage. A piezoelectric element is an element having a structure in which a substance having a piezoelectric effect and thin electrodes are alternately stacked, and has a function of converting a force into a voltage or converting a voltage into a force. Since the piezoelectric element can be slightly expanded and contracted by controlling the voltage, it is used in various fields such as an ink injection mechanism of an inkjet printer and a control mechanism such as an actuator. The piezoelectric element expands and contracts when a voltage is applied, but since the displacement generated is small, an actuator is used that expands the displacement of the expanding and contracting piezoelectric element to act on the object.
 例えば、特許文献1には、2つの圧電素子を変位させることにより、変位量を効果的に拡大して出力することができるアクチュエータが開示されている。 For example, Patent Document 1 discloses an actuator capable of effectively expanding and outputting a displacement amount by displacing two piezoelectric elements.
 また、流体の通過と停止を制御するバルブ装置において圧電素子の変位を利用して弁部を駆動して弁座との接離を制御する技術がある。圧電素子によって駆動された弁部は、弁座と離間されることによって流体を通過させ、または弁座と密接されることによって流体を停止させる。 In addition, there is a technology for controlling the contact and separation with the valve seat by driving the valve portion by utilizing the displacement of the piezoelectric element in the valve device that controls the passage and stop of the fluid. The valve portion driven by the piezoelectric element allows the fluid to pass through by being separated from the valve seat, or stops the fluid by being brought into close contact with the valve seat.
 例えば、特許文献2には、バルブ本体に取り付けられた弁座と圧電素子によって変位される弁部を有する圧電式バルブ装置が開示されている。圧電素子の変位はアクチュエータによって拡大されて弁部を駆動して弁部と弁座とを接離する。 For example, Patent Document 2 discloses a piezoelectric valve device having a valve seat attached to a valve body and a valve portion displaced by a piezoelectric element. The displacement of the piezoelectric element is expanded by the actuator to drive the valve portion to bring the valve portion into contact with the valve seat.
国際公開2019/009035号International Publication No. 2019/090535 特開2017-192192号公報Japanese Unexamined Patent Publication No. 2017-192192
 しかしながら、従来のアクチュエータでは、圧電素子を2つ用いるため、それぞれの圧電素子の駆動を制御する必要があり、所望する変位を得るための駆動系の制御が難しいという問題があった。 However, since the conventional actuator uses two piezoelectric elements, it is necessary to control the drive of each piezoelectric element, and there is a problem that it is difficult to control the drive system for obtaining the desired displacement.
 また、バルブ装置本体は様々な温度環境において設置される可能性があり、バルブ装置本体の温度変化によって変位拡大機能の温度が変化する場合がある。変位拡大機能は圧電素子の小さな変位を拡大するため、変位拡大機能の温度が変化すると変位拡大機能の熱膨張または熱収縮によって弁部と弁座との位置関係または接触圧力が変化して、流体の流量特性が大きく変化してしまう場合があった。 In addition, the valve device body may be installed in various temperature environments, and the temperature of the displacement expansion function may change due to the temperature change of the valve device body. Since the displacement expansion function expands a small displacement of the piezoelectric element, when the temperature of the displacement expansion function changes, the positional relationship or contact pressure between the valve and the valve seat changes due to the thermal expansion or contraction of the displacement expansion function, resulting in a fluid. In some cases, the flow rate characteristics of the
 そこで、本発明は、簡単に駆動系を制御することができるとともに、バルブ装置本体に温度変化があった場合であっても流量特性の変化が小さいバルブ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a valve device in which the drive system can be easily controlled and the change in flow rate characteristics is small even when the valve device body has a temperature change.
 上記の課題を解決するため、例えば特許請求の範囲に記載の構成を採用する。本実施例は少なくとも以下を開示する。
 (1)バルブ装置は、弁部を駆動するアクチュエータと、弁部と接離する弁座を有するバルブ機能モジュールと、バルブ機能モジュールを収納するハウジングと、を備えるバルブ装置であって、アクチュエータは、基盤となる基部と、基部の取付け面に一端部が接続され、第1長手方向に延びる圧電素子と、取付け面に圧電素子と並んで一端部が取付けられ、第1長手方向と交差する第2長手方向に延びる支持部材と、圧電素子および支持部材それぞれにおける他端部と接続され、圧電素子の伸縮に伴って、第1長手方向および第2長手方向それぞれと異なる方向である変位方向に変位して弁部を駆動する作用部と、を備え、ハウジングは、流体が供給される供給口と、弁部と弁座との離間によって供給口から供給された流体を排出する排出口と、バルブ機能モジュールとハウジングとの空隙を確保してバルブ機能モジュールを保持する保持部と、を備える。
In order to solve the above problems, for example, the configuration described in the claims is adopted. This example discloses at least the following:
(1) The valve device is a valve device including an actuator for driving the valve portion, a valve function module having a valve seat that is in contact with and separated from the valve portion, and a housing for accommodating the valve function module. A second portion that is connected to a base portion that is a base and a mounting surface of the base portion and extends in the first longitudinal direction, and one end portion that is attached to the mounting surface alongside the piezoelectric element and intersects the first longitudinal direction. It is connected to the support member extending in the longitudinal direction and the other end of each of the piezoelectric element and the support member, and is displaced in the displacement direction, which is a direction different from each of the first longitudinal direction and the second longitudinal direction as the piezoelectric element expands and contracts. The housing includes a supply port for supplying fluid, a discharge port for discharging the fluid supplied from the supply port by separating the valve part from the valve seat, and a valve function. A holding portion for holding a valve function module by ensuring a gap between the module and the housing is provided.
 (2)また、実施形態のバルブ装置において、保持部は、バルブ機能モジュールの第1面を保持することによりバルブ機能モジュールとの空隙を確保するものであってもよい。 (2) Further, in the valve device of the embodiment, the holding portion may secure a gap with the valve function module by holding the first surface of the valve function module.
 (3)また、実施形態のバルブ装置において、保持部は、締結部品によってバルブ機能モジュールを保持部に締結することによりバルブ機能モジュールを保持するものであってもよい。 (3) Further, in the valve device of the embodiment, the holding portion may hold the valve function module by fastening the valve function module to the holding portion by fastening parts.
 (4)また、実施形態のバルブ装置において、アクチュエータは、基部および作用部それぞれに連結され、圧電素子を第1長手方向に圧縮する圧縮部材をさらに備えるものであってもよい。 (4) Further, in the valve device of the embodiment, the actuator may be further provided with a compression member which is connected to each of the base portion and the action portion and compresses the piezoelectric element in the first longitudinal direction.
 (5)また、実施形態のバルブ装置において、圧電素子に電圧又は電流を供給して、圧電素子を伸縮駆動させる駆動部をさらに備えるものであってもよい。 (5) Further, the valve device of the embodiment may further include a drive unit that supplies a voltage or a current to the piezoelectric element to expand and contract the piezoelectric element.
 (6)また、実施形態のバルブ装置において、圧電素子の一端部または他端部の少なくとも一方は、支持部材よりも熱膨張率の高い連結部材を介して接続されているものであってもよい。 (6) Further, in the valve device of the embodiment, at least one end or the other end of the piezoelectric element may be connected via a connecting member having a higher coefficient of thermal expansion than the support member. ..
 (7)また、実施形態のバルブ装置において、連結部材は、基部と一体に形成されているものであってもよい。 (7) Further, in the valve device of the embodiment, the connecting member may be integrally formed with the base portion.
 (8)また、実施形態のバルブ装置において、連結部材は、作用部と一体に形成されているものであってもよい。 (8) Further, in the valve device of the embodiment, the connecting member may be integrally formed with the working portion.
 (9)上記の課題を解決するため、バルブ装置は、複数の弁部をそれぞれ個別に駆動する複数のアクチュエータと、複数の弁部とそれぞれ個別に接離する弁座を複数有するバルブ機能モジュールと、バルブ機能モジュールを収納するハウジングと、を備えるバルブ装置であって、複数のアクチュエータのそれぞれは、基盤となる基部と、基部の取付け面に一端部が接続され、第1長手方向に延びる圧電素子と、取付け面に圧電素子と並んで一端部が取付けられ、第1長手方向と交差する第2長手方向に延びる支持部材と、圧電素子および支持部材それぞれにおける他端部と接続され、圧電素子の伸縮に伴って、第1長手方向および第2長手方向それぞれと異なる方向である変位方向に変位して弁部を駆動する作用部と、を備え、ハウジングは、流体が供給される供給口と、複数の弁部とそれぞれ個別に接離する弁座との離間によって供給口から供給された流体をそれぞれ個別に排出する複数の排出口と、バルブ機能モジュールとハウジングとの空隙を確保してバルブ機能モジュールを保持する保持部と、を備える。 (9) In order to solve the above problems, the valve device includes a plurality of actuators for individually driving a plurality of valve portions and a valve function module having a plurality of valve seats individually connected to and separated from the plurality of valve portions. , A valve device including a housing for accommodating a valve function module, each of a plurality of actuators having a base portion as a base and a piezoelectric element having one end connected to a mounting surface of the base portion and extending in the first longitudinal direction. One end of the piezoelectric element is attached to the mounting surface alongside the piezoelectric element, and the support member extending in the second longitudinal direction intersecting the first longitudinal direction is connected to the other end of each of the piezoelectric element and the support member. The housing includes a supply port to which a fluid is supplied, and a working portion that drives the valve portion by being displaced in a displacement direction that is different from each of the first longitudinal direction and the second longitudinal direction as the valve expands and contracts. A valve function is provided by securing a gap between the valve function module and the housing and a plurality of discharge ports for individually discharging the fluid supplied from the supply port by separating the plurality of valve portions from the valve seats that are individually contacted and separated from each other. A holding unit for holding the module is provided.
 (10)また、実施形態のバルブ装置において、保持部は、バルブ機能モジュールの第1面を保持することによりバルブ機能モジュールとの空隙を確保するものであってもよい。 (10) Further, in the valve device of the embodiment, the holding portion may secure a gap with the valve function module by holding the first surface of the valve function module.
 (11)また、実施形態のバルブ装置において、保持部は、締結部品によってバルブ機能モジュールを保持部に締結することによりバルブ機能モジュールを保持するものであってもよい。 (11) Further, in the valve device of the embodiment, the holding portion may hold the valve function module by fastening the valve function module to the holding portion by fastening parts.
 (12)また、実施形態のバルブ装置において、それぞれのアクチュエータは、基部および作用部それぞれに連結され、圧電素子を第1長手方向に圧縮する圧縮部材をさらに備えるものであってもよい。 (12) Further, in the valve device of the embodiment, each actuator may be further provided with a compression member which is connected to each of the base portion and the action portion and compresses the piezoelectric element in the first longitudinal direction.
 (13)また、実施形態のバルブ装置において、それぞれのアクチュエータが備える圧電素子に個別に電圧又は電流を供給して、圧電素子を個別に伸縮駆動させる駆動部をさらに備えるものであってもよい。 (13) Further, the valve device of the embodiment may further include a drive unit that individually supplies a voltage or a current to the piezoelectric elements included in each actuator to individually expand and contract the piezoelectric elements.
 (14)また、実施形態のバルブ装置において、圧電素子の一端部または他端部の少なくとも一方は、支持部材よりも熱膨張率の高い連結部材を介して接続されているものであってもよい。 (14) Further, in the valve device of the embodiment, at least one end or the other end of the piezoelectric element may be connected via a connecting member having a higher coefficient of thermal expansion than the support member. ..
 (15)また、実施形態のバルブ装置において、連結部材は、基部と一体に形成されているものであってもよい。 (15) Further, in the valve device of the embodiment, the connecting member may be integrally formed with the base portion.
 (16)また、実施形態のバルブ装置において、連結部材は、作用部と一体に形成されているものであってもよい。 (16) Further, in the valve device of the embodiment, the connecting member may be integrally formed with the working portion.
 本発明の一つの実施形態によれば、バルブ装置は、弁部を駆動するアクチュエータと、弁部と接離する弁座を有するバルブ機能モジュールと、バルブ機能モジュールを収納するハウジングと、を備えるバルブ装置であって、アクチュエータは、基盤となる基部と、基部の取付け面に一端部が接続され、第1長手方向に延びる圧電素子と、取付け面に圧電素子と並んで一端部が取付けられ、第1長手方向と交差する第2長手方向に延びる支持部材と、圧電素子および支持部材それぞれにおける他端部と接続され、圧電素子の伸縮に伴って、第1長手方向および第2長手方向それぞれと異なる方向である変位方向に変位して弁部を駆動する作用部と、を備え、ハウジングは、流体が供給される供給口と、弁部と弁座との離間によって供給口から供給された流体を排出する排出口と、バルブ機能モジュールとハウジングとの空隙を確保してバルブ機能モジュールを保持する保持部と、を備えることにより、簡単に駆動系を制御することができるとともに、バルブ装置本体に温度変化があった場合であっても流量特性の変化が小さいバルブ装置を提供することができる。 According to one embodiment of the present invention, the valve device comprises a valve that includes an actuator that drives the valve portion, a valve function module having a valve seat that is in contact with and separated from the valve portion, and a housing that houses the valve function module. In the device, the actuator has a base portion as a base, one end connected to a mounting surface of the base, a piezoelectric element extending in the first longitudinal direction, and one end mounted on the mounting surface along with the piezoelectric element. A support member extending in the second longitudinal direction intersecting the first longitudinal direction is connected to the other end of each of the piezoelectric element and the support member, and is different from the first longitudinal direction and the second longitudinal direction as the piezoelectric element expands and contracts. The housing is provided with an acting portion that drives the valve portion by being displaced in the displacement direction, which is a direction, and the housing receives the fluid supplied from the supply port by separating the supply port from which the fluid is supplied and the valve portion and the valve seat. By providing a discharge port for discharging and a holding portion for holding the valve function module by securing a gap between the valve function module and the housing, the drive system can be easily controlled and the temperature of the valve device main body can be controlled. It is possible to provide a valve device in which the change in flow rate characteristics is small even when there is a change.
図1は、実施形態に係るバルブ装置の正面図の例である。FIG. 1 is an example of a front view of the valve device according to the embodiment. 図2は、実施形態に係るバルブ装置の側面図の例である。FIG. 2 is an example of a side view of the valve device according to the embodiment. 図3は、第1変形例に係るバルブ装置の側面図の例である。FIG. 3 is an example of a side view of the valve device according to the first modification. 図4は、第1実施例に係るアクチュエータの正面図の例である。FIG. 4 is an example of a front view of the actuator according to the first embodiment. 図5は、第1実施例に係るアクチュエータの斜視図の例である。FIG. 5 is an example of a perspective view of the actuator according to the first embodiment. 図6は、第1実施例に係る圧縮部材の正面図の例である。FIG. 6 is an example of a front view of the compression member according to the first embodiment. 図7は、第2実施例に係るアクチュエータの正面図の例である。FIG. 7 is an example of a front view of the actuator according to the second embodiment. 図8は、第2実施例に係る圧縮部材の正面図の例である。FIG. 8 is an example of a front view of the compression member according to the second embodiment. 図9は、第3実施例に係るアクチュエータの正面図の例である。FIG. 9 is an example of a front view of the actuator according to the third embodiment. 図10は、第3実施例に係る圧縮部材の正面図の例である。FIG. 10 is an example of a front view of the compression member according to the third embodiment. 図11は、アクチュエータの別の変形例を示す六面図及び斜視図の例である。FIG. 11 is an example of a hexagonal view and a perspective view showing another modified example of the actuator. 図12は、アクチュエータの別の変形例に圧縮部材を取り付けた六面図及び斜視図の例である。FIG. 12 is an example of a hexagonal view and a perspective view in which the compression member is attached to another modified example of the actuator.
 以下、図面を参照して本発明の一実施形態におけるバルブ装置について詳細に説明する。なお、各図において重複する同一符号の説明は省略する場合がある。 Hereinafter, the valve device according to the embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the description of the same reference numerals that are duplicated in each figure may be omitted.
 先ず、図1および図2を用いて、バルブ装置について説明する。図1は、実施形態に係るバルブ装置の正面図である。 First, the valve device will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view of the valve device according to the embodiment.
 図1において、バルブ装置100は、第1実施例に係るアクチュエータ1、バルブ機能モジュール2およびハウジング3を備える。 In FIG. 1, the valve device 100 includes an actuator 1, a valve function module 2, and a housing 3 according to the first embodiment.
 第1実施例に係るアクチュエータ1は、弁部11を駆動する。アクチュエータ1は、基部12、圧電素子13、支持部材14、作用部15および連結部材16を備える。 The actuator 1 according to the first embodiment drives the valve portion 11. The actuator 1 includes a base portion 12, a piezoelectric element 13, a support member 14, an action portion 15, and a connecting member 16.
 基部12は、アクチュエータ1の基盤となる部分であり、アクチュエータ1は、基部12を介してバルブ機能モジュール2に取付けられる。基部12は、取付穴122を有し、例えば取付穴122に対応してバルブ機能モジュール2に設けられたタップ穴に対して、ねじを、取付穴122を貫通させて取り付けることによりアクチュエータ1をバルブ機能モジュール2に取付けることができる。基部12は、例えば、ステンレス鋼等で形成することができる。 The base portion 12 is a portion that becomes the base of the actuator 1, and the actuator 1 is attached to the valve function module 2 via the base portion 12. The base portion 12 has a mounting hole 122, and for example, the actuator 1 is valved by mounting a screw through the mounting hole 122 in a tap hole provided in the valve function module 2 corresponding to the mounting hole 122. It can be attached to the function module 2. The base 12 can be made of, for example, stainless steel.
 圧電素子13は、基部12の取付け面に圧電素子13の一端部が接続されている。基部12の取付け面には、基部12と一対形成されている取付部121が取り付けられており、圧電素子13は、取付部121を介して基部12に取り付けられている。圧電素子13は、第1長手方向D1に延びる細長い形状に形成されている。圧電素子13は、例えば、図1に示すように長方体に形成することができる。 In the piezoelectric element 13, one end of the piezoelectric element 13 is connected to the mounting surface of the base 12. A mounting portion 121 formed in pairs with the base portion 12 is mounted on the mounting surface of the base portion 12, and the piezoelectric element 13 is mounted on the base portion 12 via the mounting portion 121. The piezoelectric element 13 is formed in an elongated shape extending in the first longitudinal direction D1. The piezoelectric element 13 can be formed in a rectangular parallelepiped, for example, as shown in FIG.
 圧電素子13は、電圧又は電流を供給されることにより第1長手方向D1に収縮する。圧電素子13を構成する主要な材料としては、圧電効果を有する物質である圧電体、例えばPZT(チタン酸ジルコン酸鉛)を用いることができる。圧電素子13は、薄い電極と、薄い圧電体を交互に積み重ねた積層構造であってもよい。このような積層構造とすることで、低い電圧でも大きな変位を実現することが可能になる。なお、図1において圧電素子13は、長方体に形成される場合を例示したが、形状は長方体に限定されるものではない。圧電素子13は、例えば、三角柱状または円柱状に形成されてもよい。 The piezoelectric element 13 contracts in the first longitudinal direction D1 when a voltage or current is supplied. As the main material constituting the piezoelectric element 13, a piezoelectric material having a piezoelectric effect, for example, PZT (lead zirconate titanate) can be used. The piezoelectric element 13 may have a laminated structure in which thin electrodes and thin piezoelectric bodies are alternately stacked. With such a laminated structure, it is possible to realize a large displacement even at a low voltage. Although the case where the piezoelectric element 13 is formed in a rectangular parallelepiped is illustrated in FIG. 1, the shape is not limited to the rectangular parallelepiped. The piezoelectric element 13 may be formed in a triangular columnar shape or a columnar shape, for example.
 本実施形態において、圧電素子13は、連結部材16を介して基部12に取り付けられている。連結部材16は、圧電素子13の熱膨張によるアクチュエータ1に対する影響を補償する目的で用いられる。熱膨張に関する影響については後述する。 In the present embodiment, the piezoelectric element 13 is attached to the base 12 via the connecting member 16. The connecting member 16 is used for the purpose of compensating for the influence of the thermal expansion of the piezoelectric element 13 on the actuator 1. The effect on thermal expansion will be described later.
 支持部材14は、基部12の取付け面に圧電素子13と並んで支持部材14の一端部が取付けられる。支持部材14は、取付部121を介して基部12に取り付けられている。支持部材14は、第1長手方向D1と交差する第2長手方向D2の方向に延びるように長方体に形成されているが、支持部材14の形状は、これに限定されるものではない。 One end of the support member 14 is attached to the attachment surface of the base 12 along with the piezoelectric element 13. The support member 14 is attached to the base portion 12 via the attachment portion 121. The support member 14 is formed in a rectangular parallelepiped so as to extend in the direction of the second longitudinal direction D2 intersecting the first longitudinal direction D1, but the shape of the support member 14 is not limited to this.
 作用部15は、圧電素子13および支持部材14のそれぞれにおける他端部と接続される。作用部15の先端には弁部11が取り付けられている。作用部15は、圧電素子13の伸縮に伴って、第1長手方向D1および第2長手方向D2のそれぞれとは異なる方向である変位方向D4に変位して弁部11を駆動する。例えば、圧電素子13が伸びると、支持部材14もそれに合わせて変形するため、作用部15の先端に取り付けられた弁部11を、変位方向D4の図示下方向に移動させることができる。一方、圧電素子13が縮むと、支持部材14もそれに合わせて変形するため、作用部15の先端に取り付けられた弁部11を、変位方向D4の図示上方向に移動させることができる。作用部15の先端に取り付けられた弁部11は、圧電素子13の伸縮が作用部15の移動に伴い、変位方向D4に所定のストロークで移動される。すなわち、圧電素子13の第1長手方向D1の伸縮は作用部15の図示左右方向の長さによって変位方向D4の弁部11のストロークに拡大される。 The working portion 15 is connected to the other end of each of the piezoelectric element 13 and the support member 14. A valve portion 11 is attached to the tip of the working portion 15. As the piezoelectric element 13 expands and contracts, the acting portion 15 is displaced in the displacement direction D4, which is a direction different from each of the first longitudinal direction D1 and the second longitudinal direction D2, to drive the valve portion 11. For example, when the piezoelectric element 13 is extended, the support member 14 is also deformed accordingly, so that the valve portion 11 attached to the tip of the working portion 15 can be moved in the downward direction shown in the displacement direction D4. On the other hand, when the piezoelectric element 13 contracts, the support member 14 also deforms accordingly, so that the valve portion 11 attached to the tip of the working portion 15 can be moved in the upward direction shown in the displacement direction D4. The valve portion 11 attached to the tip of the working portion 15 is moved in the displacement direction D4 with a predetermined stroke as the expansion and contraction of the piezoelectric element 13 moves as the acting portion 15 moves. That is, the expansion and contraction of the piezoelectric element 13 in the first longitudinal direction D1 is expanded to the stroke of the valve portion 11 in the displacement direction D4 by the length of the action portion 15 in the illustrated left-right direction.
 弁部11は、変位方向D4に所定のストロークで移動されることによりバルブ機能モジュール2に形成された弁座21と接離する。弁部11は、例えばゴムによって形成される。弁座21は弁部11の形状に対応した弁部11との接触面を有している。弁座21の形状は、例えば、バルブ機能モジュール2の平面部に排出用の穴を開けることにより形成される。また、弁座21の形状は、バルブ機能モジュール2に煙突状の突起を設けることにより形成されてもよい。なお、弁座21の形状を煙突状の突起とすることにより、弁部11との接触面積が小さくなり、接圧を向上させることができる。また、弁座21の形状を煙突状の突起とすることにより、流体の流量を安定化させ、または流量を大きくことが可能となる。弁部11と弁座21が接離することにより、流体を遮断しまたは通過させるバルブ機能が実現される。本実施形態におけるバルブ装置100は、流体が空気である場合のエアバルブを例示するが、流体は空気に限定されるものではなく、例えば、液体、粉体、ゲル状体等であってもよい。また、流体には固体等の不純物が含まれていてもよい。 The valve portion 11 is moved in the displacement direction D4 with a predetermined stroke to contact and separate from the valve seat 21 formed in the valve function module 2. The valve portion 11 is formed of, for example, rubber. The valve seat 21 has a contact surface with the valve portion 11 corresponding to the shape of the valve portion 11. The shape of the valve seat 21 is formed, for example, by making a discharge hole in the flat surface portion of the valve function module 2. Further, the shape of the valve seat 21 may be formed by providing a chimney-shaped protrusion on the valve function module 2. By making the shape of the valve seat 21 a chimney-shaped protrusion, the contact area with the valve portion 11 can be reduced and the contact pressure can be improved. Further, by making the shape of the valve seat 21 a chimney-shaped protrusion, it is possible to stabilize the flow rate of the fluid or increase the flow rate. By bringing the valve portion 11 and the valve seat 21 into contact with each other, a valve function of shutting off or passing a fluid is realized. The valve device 100 in the present embodiment exemplifies an air valve when the fluid is air, but the fluid is not limited to air, and may be, for example, a liquid, a powder, a gel, or the like. Further, the fluid may contain impurities such as solids.
 弁部11は、弁座21と接することによりバルブの閉状態を作りだし、空気圧力室5と排出口24の間の空気の通過を遮断することができる。弁部11は、所定の接圧で弁座21と接することにより、空気の遮断力を高めることができる。一方、弁部11は、弁座21と離れることによりバルブの開状態を作り出し、空気圧力室5と排出口24の間の空気の通過を可能とすることができる。一般的にバルブは、バルブの開度に対する流量の変化にて表されるバルブ特性(流量特性)を有している。本実施形態では、変位方向D4の弁部11の移動ストローク、すなわち弁部11と弁座21との距離によって流量特性が決定される。従って、バルブ装置100の流量特性は、作用部15の変位方向D4における移動によって決定される。 The valve portion 11 can create a closed state of the valve by coming into contact with the valve seat 21 and block the passage of air between the air pressure chamber 5 and the discharge port 24. By contacting the valve portion 11 with the valve seat 21 with a predetermined contact pressure, the air blocking force can be enhanced. On the other hand, the valve portion 11 can create an open state of the valve by separating from the valve seat 21 and allow air to pass between the air pressure chamber 5 and the discharge port 24. Generally, a valve has a valve characteristic (flow rate characteristic) represented by a change in the flow rate with respect to the opening degree of the valve. In the present embodiment, the flow rate characteristic is determined by the moving stroke of the valve portion 11 in the displacement direction D4, that is, the distance between the valve portion 11 and the valve seat 21. Therefore, the flow rate characteristic of the valve device 100 is determined by the movement of the working unit 15 in the displacement direction D4.
 ハウジング3は、アクチュエータ1が取り付けられたバルブ機能モジュール2を収納する。ハウジング3は、収納しているアクチュエータ1をバルブ装置100の外部の粉塵等から保護する保護枠として機能する。ハウジング3は、保持部33を備える。保持部33は、バルブ機能モジュール2を保持して、バルブ機能モジュール2とハウジング3との空隙4を確保する部分である。保持部33は、バルブ機能モジュール2の第1面22と接し、締結部品331(例えば、ネジ)によってバルブ機能モジュール2と締結されることによりバルブ機能モジュールを保持する。空隙4は、ハウジング3とバルブ機能モジュール2との間の熱抵抗を増やし(熱伝導を小さくし)、ハウジング3の温度変化がバルブ機能モジュールに伝わりにくくすることができる。保持部33と第1面22の接触による熱抵抗率は空隙4の熱抵抗率に比べて小さい(熱伝導率が大きい)ため、熱伝導を小さくするには保持部33と第1面22との接触面積は小さい方が好ましい。従って、第1面22には接触面積を小さくする形状(例えば、凹凸形状など)を用いてもよい。また、保持部33と第1面22との間に、熱伝導率が小さい部材(断熱材)を挟み込むようにしてもよい。 The housing 3 houses the valve function module 2 to which the actuator 1 is attached. The housing 3 functions as a protective frame that protects the housed actuator 1 from dust and the like outside the valve device 100. The housing 3 includes a holding portion 33. The holding portion 33 is a portion that holds the valve function module 2 and secures a gap 4 between the valve function module 2 and the housing 3. The holding portion 33 is in contact with the first surface 22 of the valve function module 2 and is fastened to the valve function module 2 by a fastening component 331 (for example, a screw) to hold the valve function module. The gap 4 can increase the thermal resistance between the housing 3 and the valve function module 2 (reduce heat conduction), and make it difficult for the temperature change of the housing 3 to be transmitted to the valve function module. Since the thermal resistance due to the contact between the holding portion 33 and the first surface 22 is smaller than the thermal resistance of the void 4 (the thermal conductivity is large), the holding portion 33 and the first surface 22 are used to reduce the thermal conductivity. It is preferable that the contact area is small. Therefore, the first surface 22 may have a shape that reduces the contact area (for example, an uneven shape). Further, a member (heat insulating material) having a small thermal conductivity may be sandwiched between the holding portion 33 and the first surface 22.
 アクチュエータ1は、圧電素子13の伸縮を拡大して弁部11を移動させるため、アクチュエータ各部の温度変化による熱膨張または熱収縮は、弁部11の移動量に影響を与え、バルブの流量特性が変化する。ハウジング3とバルブ機能モジュール2の間に空隙4を作ることにより、ハウジング3とバルブ機能モジュール2との接触面積が小さくなり、ハウジング3とバルブ機能モジュール2の間の熱伝導が小さくなり、ハウジング3に温度変化があった場合であってもアクチュエータ1が取り付けられているバルブ機能モジュール2の温度変化が小さくなり、もって流量特性の変化を小さくすることができる。 Since the actuator 1 expands the expansion and contraction of the piezoelectric element 13 to move the valve portion 11, thermal expansion or contraction due to a temperature change of each part of the actuator affects the amount of movement of the valve portion 11, and the flow rate characteristic of the valve is affected. Change. By creating a gap 4 between the housing 3 and the valve function module 2, the contact area between the housing 3 and the valve function module 2 becomes smaller, the heat conduction between the housing 3 and the valve function module 2 becomes smaller, and the housing 3 becomes smaller. Even if there is a temperature change in the valve function module 2, the temperature change of the valve function module 2 to which the actuator 1 is attached becomes small, and thus the change in the flow rate characteristic can be made small.
 バルブ機能モジュール2の第1面22には、弁部11と弁座21が離れることにより排出される空気を排出する排出口24を有する。ハウジング3は、保持部33において排出口24に対抗して、排出口24から排出された空気を排出する排出口32を有する。 The first surface 22 of the valve function module 2 has a discharge port 24 for discharging the air discharged when the valve portion 11 and the valve seat 21 are separated from each other. The housing 3 has a discharge port 32 for discharging the air discharged from the discharge port 24 against the discharge port 24 in the holding portion 33.
 ハウジング3は、空気を供給するための供給口31を有する。供給口31から供給された圧力空気は、空隙4を介して空気圧力室5に導入される。空気圧力室5に導入された圧力空気は、弁部11と弁座21が離れることにより排出口32から排出される。なお、供給口31から供給された圧力空気は、例えば、アクチュエータ1、圧電素子13または支持部材14を冷却するように流路を形成して空気圧力室5に導入されてもよい。 The housing 3 has a supply port 31 for supplying air. The compressed air supplied from the supply port 31 is introduced into the air pressure chamber 5 through the gap 4. The compressed air introduced into the air pressure chamber 5 is discharged from the discharge port 32 when the valve portion 11 and the valve seat 21 are separated from each other. The compressed air supplied from the supply port 31 may be introduced into the air pressure chamber 5 by forming a flow path so as to cool the actuator 1, the piezoelectric element 13, or the support member 14, for example.
 圧縮部材60は、基部12および作用部15それぞれに連結され、圧電素子13を第1長手方向D1に圧縮する。圧縮部材60は、引張方向(D1)の加重に対して損傷しやすい圧電素子13に、引張方向の加重がかかりにくくすることで圧電素子13の損傷を防止することができる。圧縮部材60の形状の詳細は後述する。 The compression member 60 is connected to each of the base portion 12 and the working portion 15, and compresses the piezoelectric element 13 in the first longitudinal direction D1. The compression member 60 can prevent damage to the piezoelectric element 13 by making it difficult for the weight in the tensile direction to be applied to the piezoelectric element 13 which is easily damaged by the load in the tensile direction (D1). Details of the shape of the compression member 60 will be described later.
 駆動部70は、圧電素子13に電圧又は電流を供給して、圧電素子13を伸縮駆動させる。駆動部70は図示しない制御装置からの入力信号に基づき圧電素子13を駆動することにより、圧力空気の遮断または排出を制御することができる。 The drive unit 70 supplies a voltage or current to the piezoelectric element 13 to expand and contract the piezoelectric element 13. The drive unit 70 can control the shutoff or discharge of compressed air by driving the piezoelectric element 13 based on an input signal from a control device (not shown).
 なお、バルブ装置100は、圧電素子13に電圧が印加等されていない状態で、圧力空気の排出が遮断されるノーマルクローズであってもよく、一方、圧電素子13に電圧が印加等されていない状態で、圧力空気の排出がされるノーマルオープンであってもよい。すなわち、圧電素子13に対する非通電時における弁座21に対する弁部11の位置と、通電時における圧電素子13の伸縮方向の組合せによって、バルブ装置100はノーマルクローズとノーマルオープンの両方を実施することが可能となる。非通電時における弁座21に対する弁部11の位置は、例えば取付穴122の大きさを大きめにしておくことにより、ネジの締結時において設定することができる。また、通電時における圧電素子13の伸縮方向は、駆動部70から供給される電圧等の極性を変更することにより設定することができる。 The valve device 100 may be normally closed in which the discharge of compressed air is cut off in a state where no voltage is applied to the piezoelectric element 13, while no voltage is applied to the piezoelectric element 13. In the state, it may be normally open in which compressed air is discharged. That is, the valve device 100 can perform both normal closing and normal opening depending on the combination of the position of the valve portion 11 with respect to the valve seat 21 when the piezoelectric element 13 is not energized and the expansion / contraction direction of the piezoelectric element 13 when the piezoelectric element 13 is energized. It will be possible. The position of the valve portion 11 with respect to the valve seat 21 when not energized can be set when the screw is fastened, for example, by increasing the size of the mounting hole 122. Further, the expansion / contraction direction of the piezoelectric element 13 when energized can be set by changing the polarity of the voltage or the like supplied from the drive unit 70.
 図2は、実施形態に係るバルブ装置100の側面図である。図2において、バルブ装置100は、ハウジング3と、ハウジング3に取り付けられた蓋35を有する。 FIG. 2 is a side view of the valve device 100 according to the embodiment. In FIG. 2, the valve device 100 has a housing 3 and a lid 35 attached to the housing 3.
 ハウジング3と蓋35は、アルミダイキャストあるいはPPS等の樹脂材料を適用することができる。蓋35は、ハウジング3に取り付けられることにより、ハウジング3の内部を密閉して、導入された圧力空気の圧力を維持する。ハウジング3と蓋35の間には、例えばゴムパッキンが挟まれてもよい。 A resin material such as aluminum die-cast or PPS can be applied to the housing 3 and the lid 35. The lid 35 is attached to the housing 3 to seal the inside of the housing 3 and maintain the pressure of the introduced compressed air. For example, a rubber packing may be sandwiched between the housing 3 and the lid 35.
 バルブ機能モジュール2は、第1面22においてハウジング3の保持部33において、上下の2本の締結部品331によって保持される。このため、バルブ機能モジュール2とハウジング3の間には空隙4が生じる。このため、ハウジング3とバルブ機能モジュールとの接触面積が小さくなり、ハウジング3とバルブ機能モジュール間の熱伝導が小さくなり、ハウジング3に温度変化があった場合であってもアクチュエータ1が取り付けられているバルブ機能モジュールの温度変化が小さくなり、流量特性の変化が小さくなる。 The valve function module 2 is held by two upper and lower fastening parts 331 in the holding portion 33 of the housing 3 on the first surface 22. Therefore, a gap 4 is created between the valve function module 2 and the housing 3. Therefore, the contact area between the housing 3 and the valve function module is reduced, the heat conduction between the housing 3 and the valve function module is reduced, and the actuator 1 is attached even when the temperature of the housing 3 changes. The temperature change of the valve function module is small, and the change in flow rate characteristics is small.
 次に、図3を用いて、バルブ装置100の第1変形例を説明する。図3は、第1変形例に係るバルブ装置の側面図である。 Next, a first modification of the valve device 100 will be described with reference to FIG. FIG. 3 is a side view of the valve device according to the first modification.
 第1変形例に係るバルブ装置100aは、図2で説明したバルブ装置100に対して、バルブ機能モジュール2aが第2面23においてハウジング3に接している点において異なる。バルブ機能モジュール2aは、第1面22および第2面23の2面においてハウジング3の底部と接することにより、例えば、振動等に対するアクチュエータ1の振動を低減させる等の機械的な強度を向上させることができる。なお、図3における第2面23の位置はバルブ機能モジュール2aの図示左端に設ける場合を例示したが、第2面23の位置および数は任意である。例えば、第2面23の位置を図示右端に設けてハウジング3の底部と接するようにしてもよい。また、1または複数の第2面23をハウジング3または蓋35と接するように設けてもよい。図3における他の部分は図2の説明と重複するため、説明を省略する。 The valve device 100a according to the first modification is different from the valve device 100 described with reference to FIG. 2 in that the valve function module 2a is in contact with the housing 3 on the second surface 23. By contacting the bottom of the housing 3 on the two surfaces of the first surface 22 and the second surface 23, the valve function module 2a improves the mechanical strength such as reducing the vibration of the actuator 1 with respect to vibration or the like. Can be done. Although the position of the second surface 23 in FIG. 3 is provided at the left end of the valve function module 2a in the drawing, the position and number of the second surface 23 are arbitrary. For example, the position of the second surface 23 may be provided at the right end in the drawing so as to be in contact with the bottom of the housing 3. Further, one or more second surfaces 23 may be provided so as to be in contact with the housing 3 or the lid 35. Since the other parts in FIG. 3 overlap with the description in FIG. 2, the description will be omitted.
 次に、図4および図5を用いて、図1で説明した第1実施例に係るアクチュエータ1の詳細を説明する。図4は、第1実施例に係るアクチュエータ1の正面図である。 Next, the details of the actuator 1 according to the first embodiment described with reference to FIG. 1 will be described with reference to FIGS. 4 and 5. FIG. 4 is a front view of the actuator 1 according to the first embodiment.
 図4において、作用部15は、図1で説明したように、圧電素子13の伸縮に伴って変位方向D4に変位して弁部11を駆動する。したがって、圧電素子13が温度変化によって熱膨張または熱収縮した場合、弁部11の位置または弁座21との接触圧に影響を与え、流量特性に影響を与える。ここで、連結部材16を用いた温度変化に対する圧電素子13の伸縮に対する補償について説明する。 In FIG. 4, as described with reference to FIG. 1, the acting portion 15 is displaced in the displacement direction D4 as the piezoelectric element 13 expands and contracts to drive the valve portion 11. Therefore, when the piezoelectric element 13 is thermally expanded or contracted due to a temperature change, it affects the position of the valve portion 11 or the contact pressure with the valve seat 21, and affects the flow rate characteristics. Here, compensation for expansion and contraction of the piezoelectric element 13 with respect to a temperature change using the connecting member 16 will be described.
 圧電素子13は、連結部材16を介して基部12に取り付けられている。ここで、連結部材16は、支持部材14より熱膨張率の高い材料によって作られている。例えば、圧電素子13の熱膨張率をα1、第1長手方向D1の長さをL1とした場合、温度上昇1℃における長さの変化dL1は、dL1=α1×L1である。同様に、連結部材16の熱膨張率をα2、第1長手方向D1の長さをL2とした場合、温度上昇1℃における長さの変化dL2は、dL2=α2×L2、支持部材14の熱膨張率をα3、第2長手方向D2の長さをL3とした場合、温度上昇1℃における長さの変化dL3は、dL3=α3×L3である。 The piezoelectric element 13 is attached to the base 12 via the connecting member 16. Here, the connecting member 16 is made of a material having a higher coefficient of thermal expansion than the supporting member 14. For example, when the coefficient of thermal expansion of the piezoelectric element 13 is α1 and the length of the first longitudinal direction D1 is L1, the change in length dL1 at a temperature rise of 1 ° C. is dL1 = α1 × L1. Similarly, when the coefficient of thermal expansion of the connecting member 16 is α2 and the length of the first longitudinal direction D1 is L2, the change in length dL2 at a temperature rise of 1 ° C. is dL2 = α2 × L2, and the heat of the support member 14 When the expansion coefficient is α3 and the length of the second longitudinal direction D2 is L3, the change in length dL3 at a temperature rise of 1 ° C. is dL3 = α3 × L3.
 圧電素子13の熱膨張率α1は、例えば、-4.32PPM/℃と負の値となるため、圧電素子13と合わせた変化dL1+dL2は、dL1+dL2=α2×L2-α1×L1(α1は正の値)となる。ここでdL1+dL2=dL3となるように各パラメータを設計することにより、変位方向D4における変位を補償することができる。例えば、dL1+dL2=dL3とすると、α2×L2-α1×L1=α3×L3。ここで、L1+L2=L3とすると、α2/α3=1+(L1/L2)×(1+α1/α3)>1となり、α2>α3となる。すなわち、連結部材16の熱膨張率α2を、支持部材14の熱膨張率α3より高い材料とすることにより、アクチュエータ1の熱膨張に対する流量特性の補償をすることが可能となる。 Since the coefficient of thermal expansion α1 of the piezoelectric element 13 is, for example, -4.32PPM / ° C, which is a negative value, the change dL1 + dL2 combined with the piezoelectric element 13 is dL1 + dL2 = α2 × L2-α1 × L1 (α1 is positive). Value). Here, by designing each parameter so that dL1 + dL2 = dL3, the displacement in the displacement direction D4 can be compensated. For example, if dL1 + dL2 = dL3, then α2 × L2-α1 × L1 = α3 × L3. Here, if L1 + L2 = L3, then α2 / α3 = 1 + (L1 / L2) × (1 + α1 / α3)> 1, and α2> α3. That is, by using a material having a coefficient of thermal expansion α2 of the connecting member 16 higher than the coefficient of thermal expansion α3 of the support member 14, it is possible to compensate for the flow rate characteristic with respect to the thermal expansion of the actuator 1.
 なお、連結部材16は、圧電素子13の一端部に代えて、圧電素子13の他端部に配置されてもよい。すなわち、連結部材16は、圧電素子13における他端部と、作用部15と、を接続するようにしてもよい。さらに、連結部材16は、圧電素子13の一端部および他端部に配置されててもよい。すなわち、連結部材16の一方は、圧電素子13における一端部と、基部12と、を接続するとともに、連結部材16の他方は、圧電素子13における他端部と、作用部15とを接続するようにしてもよい。 The connecting member 16 may be arranged at the other end of the piezoelectric element 13 instead of one end of the piezoelectric element 13. That is, the connecting member 16 may connect the other end portion of the piezoelectric element 13 and the acting portion 15. Further, the connecting member 16 may be arranged at one end and the other end of the piezoelectric element 13. That is, one end of the connecting member 16 connects the one end portion of the piezoelectric element 13 and the base portion 12, and the other end of the connecting member 16 connects the other end portion of the piezoelectric element 13 and the acting portion 15. It may be.
 図5は、第1実施例に係るアクチュエータ1の斜視図である。図5において、アクチュエータ1は、2つの圧縮部材60を有する。2つの圧縮部材60は、圧電素子13および支持部材14を挟む位置にそれぞれ配置されている。2つの圧縮部材60を用いることにより、圧電素子13に対して圧縮力を均等に掛けることが可能となり、圧電素子13の損傷を防止することが可能となる。 FIG. 5 is a perspective view of the actuator 1 according to the first embodiment. In FIG. 5, the actuator 1 has two compression members 60. The two compression members 60 are arranged at positions sandwiching the piezoelectric element 13 and the support member 14, respectively. By using the two compression members 60, it is possible to apply a compressive force evenly to the piezoelectric element 13, and it is possible to prevent damage to the piezoelectric element 13.
 圧縮部材60は、引張方向(D1)の加重に対して損傷しやすい圧電素子13に、引張方向の加重がかかりにくくすることで圧電素子13の損傷を防止することができる。 The compression member 60 can prevent damage to the piezoelectric element 13 by making it difficult for the weight in the tensile direction to be applied to the piezoelectric element 13 which is easily damaged by the load in the tensile direction (D1).
 次に、図6を用いて、第1実施例に係る圧縮部材60の詳細を説明する。図6は、第1実施例に係る圧縮部材60の正面図である。 Next, the details of the compression member 60 according to the first embodiment will be described with reference to FIG. FIG. 6 is a front view of the compression member 60 according to the first embodiment.
 図6において、圧縮部材60は、平面視において、第1長手方向D1および第2長手方向D2それぞれと交差する第3長手方向D3に延びている。圧縮部材60には、第3長手方向D3に伸縮可能な伸縮部61および固定部62が形成されている。 In FIG. 6, the compression member 60 extends in a third longitudinal direction D3 that intersects each of the first longitudinal direction D1 and the second longitudinal direction D2 in a plan view. The compression member 60 is formed with an expansion / contraction portion 61 and a fixing portion 62 that can be expanded / contracted in the third longitudinal direction D3.
 伸縮部61は、平面視で第3長手方向D3に延びるとともに、繰り返し湾曲する蛇腹状に形成されている。図示の例では、第3長手方向に3箇所湾曲している構造となっているが、この例に限られず、形状は任意に変更することができる。伸縮部61は、圧縮部材60における第3長手方向D3の中間部に形成されている。固定部62は、圧縮部材60の第3長手方向D3における両端部に形成されている。固定部62は、第3長手方向D3と直交する方向の寸法である幅寸法が大きく形成され、図5に示すように、基部12および作用部15それぞれに連結される。 The telescopic portion 61 extends in the third longitudinal direction D3 in a plan view and is formed in a bellows shape that repeatedly curves. In the illustrated example, the structure is curved at three points in the third longitudinal direction, but the structure is not limited to this example, and the shape can be arbitrarily changed. The expansion / contraction portion 61 is formed in the intermediate portion of the compression member 60 in the third longitudinal direction D3. The fixing portions 62 are formed at both ends of the compression member 60 in the third longitudinal direction D3. The fixing portion 62 is formed to have a large width dimension which is a dimension in a direction orthogonal to the third longitudinal direction D3, and is connected to each of the base portion 12 and the acting portion 15 as shown in FIG.
 次に、図7および図8を用いて、第2実施例に係るアクチュエータを説明する。図7は、第2実施例に係るアクチュエータの正面図である。図8は、第2実施例に係る圧縮部材の正面図である。 Next, the actuator according to the second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a front view of the actuator according to the second embodiment. FIG. 8 is a front view of the compression member according to the second embodiment.
 第2実施例に係るアクチュエータ1aは、圧縮部材60Bが取り付けられる位置が、第1実施例に係るアクチュエータ1と異なっている。すわなち、2つの圧縮部材60Bの一方は、圧電素子13に沿って第1長手方向D1に延びており、他方の圧縮部材60Bは支持部材14に沿って第2長手方向D2に延びている。そして、第1長手方向D1に延びる圧縮部材60Bには、図8に示す、第1長手方向D1に伸縮可能な伸縮部61Bが形成されている。 The position where the compression member 60B is attached to the actuator 1a according to the second embodiment is different from that of the actuator 1 according to the first embodiment. That is, one of the two compression members 60B extends in the first longitudinal direction D1 along the piezoelectric element 13, and the other compression member 60B extends in the second longitudinal direction D2 along the support member 14. .. The compression member 60B extending in the first longitudinal direction D1 is formed with a stretchable portion 61B that can be expanded and contracted in the first longitudinal direction D1 as shown in FIG.
 圧縮部材60Bの第1長手方向D1における両端部には、第1長手方向D1と直交する方向の寸法である幅寸法が大きく形成された固定部62Bが形成されている。図8に示す2つの固定部62B同士の第3長手方向D3の寸法L3は、図7に示す作用部15および基部12それぞれに形成された固定用のスリットの間隔よりも短くなっている。 At both ends of the compression member 60B in the first longitudinal direction D1, fixed portions 62B having a large width dimension, which is a dimension in the direction orthogonal to the first longitudinal direction D1, are formed. The dimension L3 of the third longitudinal direction D3 between the two fixing portions 62B shown in FIG. 8 is shorter than the distance between the fixing slits formed in the acting portion 15 and the base portion 12 shown in FIG. 7.
 このため、圧縮部材60Bを作用部15および基部12の固定用のスリットに装着する際には、圧縮部材60Bを第1長手方向D1に引張り、少し伸ばした状態に弾性変形した状態で取付ける。これにより、圧縮部材60Bがスリットに装着された後に、第3長手方向D3に復元変形することで、圧縮部材60Bからの圧縮力を、作用部15および基部12を介して圧電素子13に与えることができる。 Therefore, when the compression member 60B is attached to the slit for fixing the action portion 15 and the base portion 12, the compression member 60B is pulled in the first longitudinal direction D1 and attached in a slightly stretched state and elastically deformed. As a result, after the compression member 60B is mounted in the slit, it is restored and deformed in the third longitudinal direction D3 to apply the compressive force from the compression member 60B to the piezoelectric element 13 via the action portion 15 and the base portion 12. Can be done.
 次に、図9および図10を用いて、第3実施例に係るアクチュエータを説明する。図9は、第3実施例に係るアクチュエータの正面図である。図10は、第3実施例に係る圧縮部材の正面図である。 Next, the actuator according to the third embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a front view of the actuator according to the third embodiment. FIG. 10 is a front view of the compression member according to the third embodiment.
 第3実施例に係るアクチュエータ1bにおいては、圧縮部材60Cの形状が、第1実施例に係るアクチュエータ1の圧縮部材60と異なっている。すなわち、第3実施例に係るアクチュエータ1bの圧縮部材60Cには、アクチュエータ1における伸縮部61に相当する部位が形成されておらず、全体が第3長手方向D3に真っすぐ延びている。図10に示す2つの固定部62同士の第3長手方向D3の寸法L5は、図9に示す作用部15および基部12それぞれに形成された固定用のスリット同士の第3長手方向D3の寸法L2よりも短くなっている。 In the actuator 1b according to the third embodiment, the shape of the compression member 60C is different from that of the compression member 60 of the actuator 1 according to the first embodiment. That is, the compression member 60C of the actuator 1b according to the third embodiment does not have a portion corresponding to the expansion / contraction portion 61 of the actuator 1, and the whole extends straight in the third longitudinal direction D3. The dimension L5 of the third longitudinal direction D3 between the two fixing portions 62 shown in FIG. 10 is the dimension L2 of the third longitudinal direction D3 between the fixing slits formed in the acting portion 15 and the base portion 12 shown in FIG. Is shorter than.
 このため、圧縮部材60Cを作用部15および基部12の固定用のスリットに装着する際には、圧縮部材60Cを第1長手方向D1に引張り、少し伸ばした状態に弾性変形した状態で取付ける。これにより、圧縮部材60Cが装着された後に、第3長手方向D3に復元変形することで、圧縮部材60Cからの圧縮力を作用部15および基部12に与えることができる。 Therefore, when the compression member 60C is attached to the slits for fixing the action portion 15 and the base portion 12, the compression member 60C is pulled in the first longitudinal direction D1 and attached in a slightly stretched state and elastically deformed. As a result, after the compression member 60C is mounted, the compression force from the compression member 60C can be applied to the action unit 15 and the base portion 12 by restoring and deforming in the third longitudinal direction D3.
 また、その他の実施例として、圧電素子13における第1長手方向D1の一端部、および支持部材14における第2長手方向D2の一端部の少なくとも一方に、圧電素子13および支持部材14に対して、変位方向D4の変形を促すヒンジ部材が設けられてもよい。このようなヒンジ部材は、圧電素子13における第1長手方向D1の他端部、および支持部材14における第2長手方向D2の他端部の少なくとも一方に設けてもよい。 Further, as another embodiment, with respect to the piezoelectric element 13 and the support member 14, at least one end of the first longitudinal direction D1 of the piezoelectric element 13 and one end of the second longitudinal direction D2 of the support member 14 A hinge member that promotes deformation in the displacement direction D4 may be provided. Such a hinge member may be provided at at least one of the other end of the first longitudinal direction D1 of the piezoelectric element 13 and the other end of the second longitudinal direction D2 of the support member 14.
 図11は、アクチュエータの別の変形例を示す六面図及び斜視図の例である。
 アクチュエータ1では、PZTの伸縮変形エネルギーをできるだけ無駄無く作用部15の変位方向D4のエネルギーに変換することが求められる。しかしながら、PZTの伸縮変形を作用部15の変位方向D4(上下運動)に変換するためにはPZTおよび支持部材14は上下にたわむ様な変形が必須である。
 たわみ変形させるためにはエネルギーが必要であるが、このたわみ変形させるためのエネルギーには無駄が多い。支持部材14の中央部に細い部分(ヒンジ部30)を作ることにより、たわみ変形に伴うエネルギーを削減することができ、その分だけ作用部の上下運動エネルギーを高めることができ、曲げ変形を起こし易くなる。
FIG. 11 is an example of a hexagonal view and a perspective view showing another modified example of the actuator.
The actuator 1 is required to convert the expansion / contraction deformation energy of the PZT into the energy of the displacement direction D4 of the working portion 15 with as little waste as possible. However, in order to convert the expansion and contraction deformation of the PZT into the displacement direction D4 (vertical movement) of the action unit 15, the PZT and the support member 14 must be deformed so as to bend up and down.
Energy is required to flex and deform, but there is a lot of waste in this energy to flex and deform. By forming a thin portion (hinge portion 30) in the central portion of the support member 14, the energy associated with the flexural deformation can be reduced, and the vertical kinetic energy of the acting portion can be increased by that amount, causing bending deformation. It will be easier.
 一方、ヒンジ部30の幅を狭くし過ぎると、支持部材14の剛性が低下し、作用部15の上下運動の発生力が低下する。これに従い、出力に取り出せる作用部15の上下運動エネルギーも低下する。従って、ヒンジ幅および長さについては適切な範囲が存在する。一例としてヒンジ部30の幅は支持部材14の太さの約30%以下、長さは支持部材14の長さの5%程度以上の長さにすることが望ましい。この構成にすることにより、ヒンジ部30が無い構成と比べて、作用部15の上下運動振幅として約10%以上、取り出せる作用部15の上下運動エネルギーとして約5%以上の向上する効果が期待できる。 On the other hand, if the width of the hinge portion 30 is too narrow, the rigidity of the support member 14 decreases, and the force of generating the vertical movement of the acting portion 15 decreases. Accordingly, the vertical kinetic energy of the acting unit 15 that can be taken out to the output also decreases. Therefore, there is an appropriate range for hinge width and length. As an example, it is desirable that the width of the hinge portion 30 is about 30% or less of the thickness of the support member 14, and the length is about 5% or more of the length of the support member 14. With this configuration, it can be expected that the vertical kinetic amplitude of the acting portion 15 is improved by about 10% or more and the vertical kinetic energy of the acting portion 15 that can be taken out is improved by about 5% or more as compared with the configuration without the hinge portion 30. ..
 図11の構成では、支持部材14を基部12と一体成型し、その厚みtを例えば1.6mmにすることで、よりコンパクトなアクチュエータ1を提供する。支持部材14を基部12と一体成型することにより、プレス等の工法を採用することで、部品点数を減らすことができるだけでなく、生産コストを抑えられるメリットもある。さらに一体成型であるために、支持部材14と基部12との締結剛性は材料の強度そのものになる。それによって、圧電素子13の発生力はより作用部15に伝わり、その結果、共振周波数が高まり、作用部15から取り出せる運動エネルギーも増える利点がある。
 図12は、アクチュエータの別の変形例に圧縮部材を取り付けた六面図及び斜視図の例である。
In the configuration of FIG. 11, the support member 14 is integrally molded with the base portion 12, and the thickness t thereof is set to, for example, 1.6 mm to provide a more compact actuator 1. By integrally molding the support member 14 with the base portion 12, by adopting a construction method such as pressing, not only the number of parts can be reduced, but also the production cost can be suppressed. Further, since it is integrally molded, the fastening rigidity between the support member 14 and the base 12 becomes the strength of the material itself. As a result, the generated force of the piezoelectric element 13 is more transmitted to the acting unit 15, and as a result, the resonance frequency is increased, and there is an advantage that the kinetic energy that can be extracted from the acting unit 15 is also increased.
FIG. 12 is an example of a hexagonal view and a perspective view in which the compression member is attached to another modified example of the actuator.
 以上説明したように、本実施形態に係るアクチュエータ1~1bによれば、基部に圧電素子と支持部材とが取付けられ、これらに作用部が取付けられている。このため、圧電素子が第1長手方向に変位することで、作用部を変位方向に変位させることができる。これにより、一つの圧電素子だけを用いてアクチュエータを構成することで、圧電素子を2つ用いる場合と比較して、簡単に駆動系を制御することができる。 As described above, according to the actuators 1 to 1b according to the present embodiment, the piezoelectric element and the support member are attached to the base portion, and the action portion is attached to these. Therefore, the piezoelectric element is displaced in the first longitudinal direction, so that the working portion can be displaced in the displacement direction. As a result, by configuring the actuator using only one piezoelectric element, the drive system can be easily controlled as compared with the case where two piezoelectric elements are used.
 また、アクチュエータ1~1bが圧縮部材を備えているので、圧電素子に対して、圧縮方向の予圧を与えることができる。これにより、引張方向の加重に対して損傷しやすい圧電素子に、引張方向の加重がかかりにくくすることができる。 Further, since the actuators 1 to 1b are provided with a compression member, a preload in the compression direction can be applied to the piezoelectric element. As a result, it is possible to make it difficult for the piezoelectric element, which is easily damaged by the load in the tensile direction, to be loaded in the tensile direction.
 以上、本発明の実施形態について説明したが、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、本発明の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 Although the embodiments of the present invention have been described above, it should be considered that the above embodiments are examples in all respects and are not restrictive. The above embodiments may be omitted, replaced or modified in various embodiments without departing from the scope and gist of the present invention.
 例えば、本発明の一実施形態に係るアクチュエータは、直列又は並列に複数配置して、複合的に使用しても良い。その際に、複数のアクチュエータを直列に接続するような使い方、つまり、アクチュエータの基部と別のアクチュエータの作用部とを接続することも可能であり、それによって、変位をより大きくすることもできる。特に、スペースの制約が厳しい箇所では、このような使い方は、有効である。また、2台のアクチュエータを、その接続角度が90゜になるように結合する等の接続方法のバリエーションも考えられる。 For example, a plurality of actuators according to an embodiment of the present invention may be arranged in series or in parallel and used in combination. At that time, it is possible to connect a plurality of actuators in series, that is, to connect the base of the actuator and the acting part of another actuator, whereby the displacement can be further increased. In particular, such usage is effective in places where space is tightly restricted. Further, variations in the connection method such as connecting the two actuators so that the connection angle is 90 ° can be considered.
 さらに、また、上記実施の形態では伸縮素子として圧電素子を用いた場合について説明したが、伸縮する素子であれば特に限定されず、磁歪素子あるいは形状記憶合金等の伸縮機能を有する他の素子を用いることも可能である。 Further, in the above embodiment, the case where the piezoelectric element is used as the expansion / contraction element has been described, but the element is not particularly limited as long as it is an expansion / contraction element, and other elements having a expansion / contraction function such as a magnetostrictive element or a shape memory alloy can be used. It can also be used.
 1   アクチュエータ
 11  弁部
 12  基部
 121 取付部
 122 取付穴
 13  圧電素子
 14  支持部材
 15  作用部
 16  連結部材
 2   バルブ機能モジュール
 21  弁座
 22  第1面
 23  第2面
 24  排出口
 3   ハウジング
 31  供給口
 32  排出口
 321 第1排出口
 322 第2排出口
 33  保持部
 331 締結部品
 34  蓋取付部
 35  蓋
 4   空隙
 5   空気圧力室
 60  圧縮部材
 61  伸縮部
 62  固定部
 70  駆動部
 100 バルブ装置
1 Actuator 11 Valve part 12 Base 121 Mounting part 122 Mounting hole 13 Piezoelectric element 14 Support member 15 Acting part 16 Connecting member 2 Valve function module 21 Valve seat 22 1st surface 23 2nd surface 24 Discharge port 3 Housing 31 Supply port 32 Discharge Outlet 321 1st discharge port 322 2nd discharge port 33 Holding part 331 Fastening part 34 Lid mounting part 35 Lid 4 Void 5 Air pressure chamber 60 Compressing member 61 Telescopic part 62 Fixed part 70 Driving part 100 Valve device

Claims (9)

  1.  弁部を駆動するアクチュエータと、
     前記弁部と接離する弁座を有するバルブ機能モジュールと、
     前記バルブ機能モジュールを収納するハウジングと、を備えるバルブ装置であって、
     前記アクチュエータは、
     基盤となる基部と、
     前記基部の取付け面に一端部が接続され、第1長手方向に延びる圧電素子と、
     前記取付け面に前記圧電素子と並んで一端部が取付けられ、前記第1長手方向と交差する第2長手方向に延びる支持部材と、
     前記圧電素子および前記支持部材それぞれにおける他端部と接続され、前記圧電素子の伸縮に伴って、前記第1長手方向および前記第2長手方向それぞれと異なる方向である変位方向に変位して前記弁部を駆動する作用部と、を備え、
     前記ハウジングは、
     流体が供給される供給口と、
     前記弁部と前記弁座との離間によって前記供給口から供給された流体を排出する排出口と、
     前記バルブ機能モジュールと前記ハウジングとの空隙を確保して前記バルブ機能モジュールを保持する保持部と、を備えるバルブ装置。
    The actuator that drives the valve and
    A valve function module having a valve seat that is in contact with and detached from the valve portion,
    A valve device including a housing for accommodating the valve function module.
    The actuator
    The base and the base
    A piezoelectric element having one end connected to the mounting surface of the base and extending in the first longitudinal direction,
    A support member having one end attached to the mounting surface along with the piezoelectric element and extending in the second longitudinal direction intersecting the first longitudinal direction.
    The valve is connected to the other end of each of the piezoelectric element and the support member, and is displaced in a displacement direction different from the first longitudinal direction and the second longitudinal direction as the piezoelectric element expands and contracts. With a working part that drives the part,
    The housing is
    The supply port to which the fluid is supplied and
    A discharge port for discharging the fluid supplied from the supply port by separating the valve portion and the valve seat, and a discharge port.
    A valve device including a holding portion that secures a gap between the valve function module and the housing and holds the valve function module.
  2.  前記保持部は、前記バルブ機能モジュールの第1面を保持することにより前記バルブ機能モジュールとの空隙を確保する、請求項1に記載のバルブ装置。 The valve device according to claim 1, wherein the holding portion secures a gap with the valve function module by holding the first surface of the valve function module.
  3.  前記保持部は、締結部品によって前記バルブ機能モジュールを前記保持部に締結することにより前記バルブ機能モジュールを保持する、請求項1または2に記載のバルブ装置。 The valve device according to claim 1 or 2, wherein the holding portion holds the valve function module by fastening the valve function module to the holding portion with a fastening component.
  4.  前記アクチュエータは、前記基部および前記作用部それぞれに連結され、前記圧電素子を前記第1長手方向に圧縮する圧縮部材をさらに備える、請求項1から3のいずれか一項に記載のバルブ装置。 The valve device according to any one of claims 1 to 3, wherein the actuator is connected to each of the base portion and the acting portion, and further includes a compression member that compresses the piezoelectric element in the first longitudinal direction.
  5.  前記圧電素子に電圧又は電流を供給して、前記圧電素子を伸縮駆動させる駆動部をさらに備える、請求項1から4のいずれか一項に記載のバルブ装置。 The valve device according to any one of claims 1 to 4, further comprising a drive unit that supplies a voltage or a current to the piezoelectric element to expand and contract the piezoelectric element.
  6.  前記圧電素子の一端部または他端部の少なくとも一方は、前記支持部材よりも熱膨張率の高い連結部材を介して接続されている、請求項1から5のいずれか一項に記載のバルブ装置。 The valve device according to any one of claims 1 to 5, wherein at least one end or the other end of the piezoelectric element is connected via a connecting member having a coefficient of thermal expansion higher than that of the support member. ..
  7.  前記連結部材は、前記基部と一体に形成されている、請求項6に記載のバルブ装置。 The valve device according to claim 6, wherein the connecting member is integrally formed with the base portion.
  8.  前記連結部材は、前記作用部と一体に形成されている、請求項6に記載のバルブ装置。 The valve device according to claim 6, wherein the connecting member is integrally formed with the working portion.
  9.  前記作用部の先端が平面であることを特徴とする請求項1から8のいずれか一項に記載のバルブ装置。 The valve device according to any one of claims 1 to 8, wherein the tip of the working portion is flat.
PCT/JP2021/006953 2020-02-27 2021-02-24 Valve device WO2021172388A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180016683.8A CN115151748A (en) 2020-02-27 2021-02-24 Valve device
KR1020227023248A KR20220144795A (en) 2020-02-27 2021-02-24 valve device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020031577A JP6893710B1 (en) 2020-02-27 2020-02-27 Valve device
JP2020-031577 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172388A1 true WO2021172388A1 (en) 2021-09-02

Family

ID=76464622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006953 WO2021172388A1 (en) 2020-02-27 2021-02-24 Valve device

Country Status (5)

Country Link
JP (2) JP6893710B1 (en)
KR (1) KR20220144795A (en)
CN (1) CN115151748A (en)
TW (1) TW202200922A (en)
WO (1) WO2021172388A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424560B2 (en) 2020-09-15 2024-01-30 有限会社メカノトランスフォーマ piezoelectric valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150221853A1 (en) * 2014-02-06 2015-08-06 Marco Systemanalyse Und Entwicklung Gmbh Piezoelectric adjustment apparatus
WO2019009035A1 (en) * 2017-07-07 2019-01-10 有限会社メカノトランスフォーマ Displacement magnifying mechanism, polishing device, actuator, dispenser, and air valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810328B2 (en) 2016-04-12 2021-01-06 有限会社メカノトランスフォーマ Piezoelectric actuators and piezo valves

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150221853A1 (en) * 2014-02-06 2015-08-06 Marco Systemanalyse Und Entwicklung Gmbh Piezoelectric adjustment apparatus
WO2019009035A1 (en) * 2017-07-07 2019-01-10 有限会社メカノトランスフォーマ Displacement magnifying mechanism, polishing device, actuator, dispenser, and air valve

Also Published As

Publication number Publication date
JP2021134916A (en) 2021-09-13
KR20220144795A (en) 2022-10-27
TW202200922A (en) 2022-01-01
JP2021134855A (en) 2021-09-13
CN115151748A (en) 2022-10-04
JP7461045B2 (en) 2024-04-03
JP6893710B1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
US7026746B2 (en) Valve control device
CN1279302C (en) Piezo fluid control valve
US7872397B2 (en) Electrical to mechanical energy converter
US7126259B2 (en) Integral thermal compensation for an electro-mechanical actuator
RU2675080C1 (en) Construction of external circuit of piezoelectric bimorph disk and method of optimizing its operational performance
WO2021172388A1 (en) Valve device
US20050073219A1 (en) Flat resonating electromechanical drive unit
US9106160B2 (en) Monolithic energy harvesting system, apparatus, and method
US6490881B1 (en) Generating displacement and theroacoustic refrigerator
JP6810328B2 (en) Piezoelectric actuators and piezo valves
WO2021141095A1 (en) Displacement amplifying mechanism, actuator, polishing device, electronic component processing device, dispenser, and air valve
KR101601871B1 (en) Displacement member, driving member, actuator, and driving apparatus
US6454303B2 (en) Method and apparatus for vibration control
KR20150093129A (en) Piezoelectric adjustment apparatus
CN107925367B (en) Actuator for actuating an adjusting element
US10862406B2 (en) Hybrid electroactive actuator device
US9496478B2 (en) Method of damping actuator with translation mechanism and actuator
WO2022224757A1 (en) Piezoelectric valve
Qi-rong et al. Analysis of beams with piezoelectric actuators
JPH0356342B2 (en)
JPH10205406A (en) Fuel injection valve
WO2007129401A1 (en) Fine-motion actuator
WO2019064780A1 (en) Liquid agent application apparatus
CN117469124A (en) Diaphragm pump and liquid discharge apparatus including the same
KR20080023538A (en) Micro piezoelectric linear motor capble of reducing high-frequency noise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP