WO2021172268A1 - Light fixture - Google Patents

Light fixture Download PDF

Info

Publication number
WO2021172268A1
WO2021172268A1 PCT/JP2021/006613 JP2021006613W WO2021172268A1 WO 2021172268 A1 WO2021172268 A1 WO 2021172268A1 JP 2021006613 W JP2021006613 W JP 2021006613W WO 2021172268 A1 WO2021172268 A1 WO 2021172268A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide body
prisms
light emitting
light guide
Prior art date
Application number
PCT/JP2021/006613
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 市川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021172268A1 publication Critical patent/WO2021172268A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This disclosure relates to lighting equipment.
  • Patent Document 1 discloses a surface light source device including a light source and a light guide plate on which light emitted from the light source is incident from an end surface and an exit surface is formed to emit light incident from the end surface. ..
  • a plurality of prisms having different apex angles are provided on the reflecting surface on the opposite side to the emitting surface so as to extend in a direction orthogonal to the end surface.
  • the light emitted from the light source is incident on the incident surface which is the end surface, and the light incident on the incident surface is formed on the light extraction surface as the reflecting surface.
  • the light is emitted from the exit surface.
  • simply forming a plurality of prisms increases the amount of light leaking from the reflecting surface. Therefore, it is required to suppress the leaked light on the light extraction surface.
  • an object of the present disclosure is to provide a lighting fixture capable of suppressing light leakage from a plurality of prisms of a light guide body.
  • the lighting fixture includes a light source, an incident surface on which light emitted from the light source is incident, and light extraction for emitting light incident from the incident surface from an emitting surface.
  • a columnar or plate-shaped light guide body having a surface and forming a plurality of prisms for emitting light from the emission surface is provided, and an optical axis of light emitted by the light source is provided on the light extraction surface.
  • the plurality of prisms having a first surface inclined with respect to a direction and a second surface facing the first surface are formed, and a plane orthogonal to the light extraction surface and parallel to the optical axis direction.
  • the first angle of the first surface with respect to the optical axis direction is set to ⁇ 1
  • the second angle of the second surface with respect to the optical axis direction is set to ⁇ 2
  • the plurality of said Assuming that the distance between two adjacent prisms among the prisms is L1 and the widths of the plurality of prisms along the optical axis direction are L2, the following equations (1) to (3) are established.
  • the lighting fixture according to the present disclosure can suppress light leakage from a plurality of prisms of the light guide body.
  • FIG. 1 is a perspective view illustrating the lighting fixture according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the lighting fixture according to the first embodiment and a partially enlarged cross-sectional view showing a prism of the light guide body.
  • FIG. 3 is a partially enlarged cross-sectional view showing the prism of the light guide body of the lighting fixture according to the first embodiment in more detail.
  • FIG. 4 is a diagram showing the relationship between the prism spacing (mm) and the light emission rate (%) of the light emitted from the prism when the second angle ⁇ 2 is changed with respect to the first angle ⁇ 1.
  • FIG. 1 is a perspective view illustrating the lighting fixture according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the lighting fixture according to the first embodiment and a partially enlarged cross-sectional view showing a prism of the light guide body.
  • FIG. 3 is a partially enlarged cross-sectional view showing the prism of the light guide body of the lighting fixture according to
  • FIG. 5 shows a light distribution curve of the light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is also 54 °.
  • FIG. 6A shows a light distribution curve of light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is 90 °.
  • FIG. 6B shows FIG. 6A emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is 90 °.
  • the light distribution curve of another light is shown.
  • FIG. 7 is a side view illustrating the lighting fixture according to the second embodiment.
  • FIG. 8 is a cross-sectional view illustrating the lighting fixture according to the line VIII-VIII of FIG.
  • FIG. 9 is a perspective view illustrating a lighting state of the lighting fixture according to the second embodiment.
  • FIG. 10 is a cross-sectional view illustrating an optical path of light emitted by the lighting fixture according to the third embodiment.
  • FIG. 11 is a perspective view illustrating another lighting fixture according to a modified example.
  • substantially parallel means not only that they are parallel, but also that they are substantially parallel, that is, they include an error of, for example, about several percent. Further, substantially parallel means parallel to the extent that the effects of the present disclosure can be achieved. The same applies to expressions using other "abbreviations".
  • the direction parallel to the optical axis direction of the light emitted by the light emitting module is defined as the X-axis direction, and the direction parallel to the longitudinal direction, which is the length direction of the prism (direction orthogonal to the optical axis direction).
  • Is the Y-axis direction, and the X-axis direction and the direction orthogonal to the Y-axis direction are defined as the Z-axis direction.
  • the light guide body side with respect to the housing is the X-axis plus direction
  • one side of the light guide body prism length direction is the Y-axis plus direction
  • the depth direction of the light guide prism is the Z-axis plus direction. The same applies to FIGS. 2 and later.
  • FIG. 1 is a perspective view illustrating the lighting fixture 1 according to the first embodiment.
  • the luminaire 1 is a luminaire using a columnar or plate-shaped light guide body 30, and is installed on a construction material such as a ceiling or a wall, for example.
  • the lighting fixture 1 of the present embodiment may be arranged on a table such as a desk.
  • the lighting fixture 1 can illuminate a space by irradiating the surroundings with light.
  • the lighting fixture 1 of the present embodiment mainly illuminates the surroundings by emitting light in a direction intersecting the length direction of the light guide body 30.
  • the lighting fixture 1 of the present embodiment is an edge light type light guide 30.
  • FIG. 2 is a cross-sectional view illustrating the lighting fixture 1 according to the first embodiment and a partially enlarged cross-sectional view showing the prism 34 of the light guide body 30.
  • the luminaire 1 includes a housing 10, a light emitting module 21, a light guide body 30, and a power supply circuit 40.
  • the housing 10 is a housing body that is long in the Y-axis direction, and houses the light guide body 30, the light emitting module 21, and the power supply circuit 40.
  • the housing 10 is in a posture in which the light emitted by the light emitting module 21 is incident on the light guide 30 with the light emitting module 21 and the light guide 30 housed therein, and the light is emitted from the emission surface 32 of the light guide 30.
  • the light emitting module 21 and the light guide body 30 are held in a posture of emitting light.
  • the housing 10 is made of a metal material such as aluminum. Therefore, the housing 10 has a light-shielding property.
  • the housing 10 may be made of a material such as resin.
  • the housing 10 has an opening in which the portion on the plus direction side of the X axis is opened.
  • the housing 10 forms a space for accommodating the end portion of the light guide body 30 on the negative direction side of the X axis through the opening, and supports the light guide body 30 in a posture substantially parallel to the XY plane.
  • the housing 10 is provided on the X-axis minus direction side of the light guide body 30, and supports the light guide body 30 in a state where the exit surface 32 and the facing surface 33 of the light guide body 30 are exposed. ..
  • the light emitting module 21 is housed in the housing 10 and supported by the housing 10.
  • the light emitting module 21 is supported in a posture of emitting light to the light guide body 30. That is, the light emitting module 21 is supported by the housing 10 in a posture in which the light emitting surface of the light emitting module 21 faces the light guide body 30 and the optical axis of the light emitting module 21 intersects the light guide body 30.
  • the light emitting module 21 is arranged in the housing 10 so that the optical axis substantially coincides with the central axis O of the incident surface 31 of the light guide body 30.
  • the optical axis is a straight line that substantially coincides with the emission direction of the main light emitted by the light emitting module 21.
  • the light emitting module 21 is an example of a light source.
  • the light emitting module 21 has, for example, an SMD (Surface Mount Device) type LED (Light Emitting Diode) element. That is, the light emitting module 21 has a light emitting element which is an LED chip and a phosphor which emits fluorescence by wavelength-converting the light emitted by each of the light emitting elements.
  • the light emitting element may be a COB (Chip On Board) type light emitting module.
  • the light emitting element may be an example of a light source.
  • Each of the light emitting elements is an LED chip arranged in a resin-molded cavity, and emits light that becomes the light emitted from the lighting fixture 1.
  • Each of the light emitting elements is enclosed in a cavity by a resin containing a phosphor. That is, the SMD type LED element is a package type LED element in which each of the light emitting elements is sealed with this resin.
  • the light emitting module 21 may be electrically connected to the power supply circuit 40 and supplied with power from the power supply circuit 40. Further, the lighting fixture 1 may include a power supply circuit 40. The light emitting module 21 may be turned on and off by being controlled by a control unit (not shown) provided in the power supply circuit 40. The light emitting module 21 may be controlled by a control unit provided in the power supply circuit 40 to perform dimming and toning. For example, the light emitting module 21 may employ a surface mount type LED element that emits white light by combining a blue LED chip and a yellow phosphor-containing resin.
  • the light emitting module 21 is mounted on a substrate on which a pair of electrode terminals (positive electrode terminal and negative electrode terminal) for receiving DC power for causing the light emitting module 21 to emit light from the outside are formed.
  • a plurality of light emitting modules 21 are provided, and the plurality of light emitting modules 21 are mounted on the substrate so as to be arranged at equal intervals in the Y-axis direction.
  • the light guide body 30 has a columnar or plate shape in which a plurality of prisms 34 for guiding the light emitted by the light emitting module 21 and emitting the light from the emission surface 32 are formed.
  • the light guide body 30 is a light transparent plate having translucency and substantially parallel to the XY plane.
  • the light guide body 30 is supported by the housing 10 by inserting the end portion on the minus direction side of the X axis into the opening of the housing 10 so as to cover the opening of the housing 10.
  • the central axis O of the light guide body 30 in the length direction substantially coincides with the optical axis of the light emitting module 21.
  • the light guide body 30 has an incident surface 31, an exit surface 32, and a facing surface 33.
  • the incident surface 31 is a surface on which the light emitted by the plurality of light emitting modules 21 is incident, and is a surface facing the plurality of light emitting modules 21.
  • the incident surface 31 is a surface connected to the edge of the exit surface 32 and the edge of the facing surface 33, and is a side surface of the light guide body 30 on the minus direction side of the X axis.
  • the incident surface 31 is a plane substantially parallel to the YY plane, and forms a substantially uniform plane.
  • the exit surface 32 is a surface that emits light incident from the incident surface 31, that is, light that guides the light guide body 30, and is a light emission surface for irradiating the irradiation surface with light. For example, the exit surface 32 emits the light reflected by the facing surface 33.
  • the exit surface 32 is a surface of the light guide body 30 on the Z-axis plus direction side.
  • the exit surface 32 is a plane along the length direction of the light guide body 30, which is substantially parallel to the XY plane.
  • the facing surface 33 is a light extraction surface for emitting light incident from the incident surface 31.
  • the facing surface 33 is a surface facing the exit surface 32, that is, a surface opposite to the exit surface 32, and reflects the light guided by the light guide body 30 toward the exit surface 32.
  • the facing surface 33 is a surface of the light guide body 30 on the negative direction side of the Z axis.
  • the facing surface 33 is a surface substantially parallel to the XY plane.
  • FIG. 3 is a partially enlarged cross-sectional view showing the prism 34 of the light guide body 30 of the lighting fixture 1 according to the first embodiment in more detail.
  • a plurality of prisms 34 are formed on the facing surface 33.
  • the facing surface 33 is formed in a saw shape by a plurality of prisms 34 when the cross section of the light guide body 30 cut in the ZX plane is viewed.
  • Each of the plurality of prisms 34 has a first surface 34a that is inclined with respect to the optical axis direction of the light emitted by the light emitting module 21, and a second surface 34b that faces the first surface 34a.
  • the first surface 34a is an inclined surface facing the light emitting module 21 side and intersects the optical axis direction.
  • the second surface 34b is a surface (or a surface opposite to the first surface 34a) of each of the plurality of prisms 34.
  • Each of the plurality of prisms 34 is a long groove along the Y-axis direction and is orthogonal to the optical axis direction.
  • the first angle of the first surface 34a with respect to the optical axis direction is set to ⁇ 1 with respect to the optical axis direction.
  • the second angle of the second surface 34b is ⁇ 2
  • the distance between two adjacent prisms 34 among the plurality of prisms 34 is L1
  • the directions of each of the plurality of prisms 34 are in the optical axis direction. Assuming that the width along the line (the width of two adjacent prisms 34) is L2, the following equations (1) to (3) are established.
  • the power supply circuit 40 is housed in the housing 10 and controls lighting to turn on and off the light emitting module 21.
  • the power supply circuit 40 is a lighting circuit in which a plurality of electronic components are mounted on a substrate.
  • the power supply circuit 40 generates driving power for causing the plurality of light emitting modules 21 to emit light.
  • the power supply circuit 40 has an AC / DC converter and the like.
  • the power supply circuit 40 converts the AC power supplied from the commercial power source into DC power, and supplies the converted DC power to the light emitting module 21. As a result, the light emitting module 21 emits light.
  • the power supply circuit 40 is arranged vertically above the light emitting module 21. That is, the power supply circuit 40 is housed in the housing 10 and is arranged on the X-axis minus direction side of the light guide body 30 and the light emitting module 21. The power supply circuit 40 is arranged, for example, in the vicinity of the construction material of the housing 10.
  • the power supply circuit 40 may be mounted on the surface opposite to the mounting surface of the board on which the plurality of light emitting modules 21 are mounted.
  • FIG. 4 is a diagram showing the relationship between the prism spacing (mm) and the light emission rate (%) of the light emitted from the prism when the second angle ⁇ 2 is changed with respect to the first angle ⁇ 1.
  • the horizontal axis represents the prism spacing (mm), which is the sum of the distance L1 between two adjacent prisms and the width L2 along the optical axis direction of the prisms, and the vertical axis represents the prism spacing (mm).
  • mm the prism spacing
  • the first angle ⁇ 1 is 54 °
  • the second angle ⁇ 2 is changed to 90 °, 85 °, 80 °, 75 °, 70 °, 65 °, and 54 °.
  • the first angle ⁇ 1 is 54 °
  • the light emission rate is the lowest when the second angle ⁇ 2 is 90 °
  • the second angle ⁇ 2 becomes smaller (or the second angle ⁇ 2 approaches the first angle ⁇ 1).
  • the rate has risen.
  • the second angle ⁇ 2 is set to be larger than the first angle ⁇ 1 and is set to 90 ° or less.
  • the first angle ⁇ 1 is 25 ° or more and 58 ° or less, but if the first angle ⁇ 1 is less than 25 °, the distance L1 becomes large and the light to be guided is reflected by the first surface of the prism. Further, reflection on the exit surface facilitates emission from the first surface. Further, if the first angle ⁇ 1 is larger than 58 °, the distance L1 becomes smaller, but the light that guides the light easily travels straight through the prism or is reflected by the second surface, so that the first surface is the exit surface. It becomes difficult to reflect toward.
  • the lowest light emission rate, the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is 90 °
  • the highest light emission rate the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is also 54.
  • the light distribution distributed by the light guide was measured at °.
  • FIG. 5 shows a light distribution curve of the light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is also 54 °.
  • there is leakage light equivalent to the amount of control light In both cases of a in FIG. 5 and b in FIG. 5, there is leakage light equivalent to the amount of control light. However, it was found that the smaller L2 is, the more the leaked light is suppressed.
  • FIG. 6A shows the arrangement of the light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is 90 °. Shows the light curve.
  • FIG. 6B shows FIG. 6A emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle ⁇ 1 is 54 ° and the second angle ⁇ 2 is 90 °.
  • the light distribution curve of another light is shown.
  • the width L2 is set to half or less of the distance L1 with the a of FIG. 6A and the b of FIG. 6A as the boundary. ..
  • the width L2 in the lateral direction is preferably 1/6 of the distance L1 between the two adjacent prisms 34.
  • the light emitted by the light emitting module 21 is incident on the incident surface 31 to guide the light guide body 30.
  • the light to be guided is incident on the first prism 34 of the plurality of prisms 34 on the facing surface 33, emitted from the first surface 34a, and further incident on the second surface 34b facing the first surface 34a.
  • the light guide body 30 is guided.
  • the light to be guided is incident on the second prism 34 adjacent to the first prism 34. Since the light incident on the second prism 34 travels along the optical axis direction of the light emitting module 21, it is incident on the first surface 34a, reflected, and guided to the exit surface 32.
  • the light guided to the exit surface 32 is emitted from the exit surface 32 as control light whose light distribution is controlled.
  • the lighting fixture 1 of the present embodiment is for emitting the light incident from the light emitting module 21, the incident surface 31 on which the light emitted by the light emitting module 21 is incident, and the light incident from the incident surface 31 from the emitting surface 32.
  • a columnar or plate-shaped light guide body 30 having a facing surface 33 and a plurality of prisms 34 for emitting light from the emitting surface 32 is provided.
  • a plurality of prisms 34 having a first surface 34a inclined with respect to the optical axis direction of the light emitted by the light emitting module 21 and a second surface 34b facing the first surface 34a are formed.
  • the first angle of the first surface 34a with respect to the optical axis direction is set to ⁇ 1 with respect to the optical axis direction.
  • the second angle of the second surface 34b is ⁇ 2
  • the distance between two adjacent prisms 34 among the plurality of prisms 34 is L1
  • the width of the plurality of prisms 34 along the optical axis direction is L2, the following Equations (4) to (6) hold.
  • the light emitted by the light emitting module 21 is incident on the prism 34, and even if it is emitted from the first surface 34a, it is guided to the second surface 34b. It becomes easy to get rid of.
  • the light guided and guided by the second surface 34b is reflected by the first surface 34a and is easily guided to the exit surface 32.
  • the width L2 is 1/6 of the distance L1 of two adjacent prisms 34.
  • the width L2 can be made smaller, the distance between two adjacent prisms 34 can be made smaller. Therefore, in the lighting fixture 1, the light leakage from the plurality of prisms 34 of the light guide body 30 can be further suppressed.
  • the first surface 34a is an inclined surface facing the light emitting module 21 side.
  • the second surface 34b is the surface of the prism 34 opposite to the first surface 34a.
  • the light that guides the light guide body 30 along the optical axis direction is emitted from the first surface 34a of the first prism 34 and easily incident on the second surface 34b. Therefore, it is easily reflected by the first surface 34a of the second prism 34 adjacent to the first prism 34 via the second surface 34b of the first prism 34. Therefore, in the lighting fixture 1, the light leakage from the plurality of prisms 34 of the light guide body 30 can be suppressed more reliably.
  • each of the plurality of prisms 34 is a long groove extending in a direction orthogonal to the optical axis direction.
  • the lighting fixture 1 can perform desired light distribution control and can also perform desired light distribution control. Leakage light from the plurality of prisms 34 of the light guide body 30 can be suppressed more reliably.
  • FIG. 7 is a side view illustrating the lighting fixture 1a according to the second embodiment.
  • This embodiment differs from the lighting fixture of the first embodiment in that a square columnar light guide 100 is used instead of the plate-shaped light guide.
  • a square columnar light guide 100 is used instead of the plate-shaped light guide.
  • other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.
  • the luminaire 1a includes a reflector 150 and a wavelength control member 160 of FIG. 8 in addition to the light emitting module 121 and the light guide body 100.
  • FIG. 8 is a cross-sectional view illustrating the luminaire 1a according to the line VIII-VIII of FIG. 8a is a cross-sectional view illustrating the lighting fixture 1a before changing the distance to the light emitting module 121
  • FIG. 8b is a cross-sectional view illustrating the lighting fixture 1a after changing the distance to the light emitting module 121. be.
  • the reflector 150 is arranged at the end of the light guide body 100 and has a tubular shape capable of guiding the light emitted by the light emitting module 121 to the incident surface 131.
  • the reflector 150 has a bottomed tubular shape, and accommodates the wavelength control member 160 and the light emitting module 121 in the internal space K.
  • the end edge on the Z-axis plus direction side on one end side opens, and the end edge on the Z-axis minus direction side on the other end side closes.
  • the inner surface of the reflector 150 is a reflecting surface that reflects the light emitted by the light emitting module 121. That is, the light emitted by the light emitting module 121 is mirror-finished in order to be efficiently incident on the light guide body 100.
  • the reflector 150 may be, for example, a metal such as aluminum, a white resin, or the like.
  • the reflector 150 supports the light emitting module 121 arranged at the bottom, which is the edge on the negative direction side of the Z axis, so as to face the light guide body 100. Further, the reflector 150 supports the light guide body 100 in a posture in which the incident surface 131 of the light guide body 100 and the light emitting module 121 face each other. The light guide body 100 is inserted into the opening 153 on the Z-axis plus direction side at one end side of the reflector 150, and the reflector 150 supports the light guide body 100 in an upright posture.
  • the reflector 150 is formed with a step portion 152 on the inner surface that supports the light guide body 100 inserted into the opening 153.
  • the step portion 152 is an annular groove portion that supports the light guide body 100 in an upright posture by contacting the end surface of the light guide body 100 on the incident surface 131 side. That is, the step portion 152 has a role of aligning the incident surface 131 of the light guide body 100 with respect to the optical axis of the light emitting module 121 and holding the posture of the light guide body 100. Further, by arranging the ring-shaped spacer 45 on the step portion 152, the distance between the light emitting surface of the light emitting module 121 and the incident surface 131 of the light guide body 100 can be changed.
  • the light guide body 100 may be fixed to the reflector 150 by a screw or the like attached around the reflector 150, and the means for maintaining the posture of the light guide body 100 with respect to the reflector 150 is described in the present embodiment. Not limited. Also in this case, the distance between the light emitting surface of the light emitting module 121 and the incident surface 131 of the light guide body 100 can be changed by tightening the screws.
  • the reflector 150 has a square tubular shape in the present embodiment, but may have a polygonal tubular shape, a cylindrical shape, a semi-cylindrical shape, or the like.
  • the shape of the reflector 150 may be appropriately set according to the shape of the light guide body 100, that is, the cross-sectional shape of the light guide body 100 in the length direction.
  • the light emitting module 121 is housed in the reflector 150 and is arranged at the bottom of the reflector 150.
  • the light emitting module 121 is held at the bottom of the reflector 150 in a posture of emitting light to the light guide body 100. That is, the light emitting module 121 is held by the reflector 150 in a posture in which the light emitting surface of the light emitting module 121 faces the light guide body 100 and the optical axis of the light emitting module 121 intersects the light guide body 100.
  • the light emitting module 121 is arranged inside the reflector 150 so that the optical axis substantially coincides with the central axis O of the reflector 150.
  • the optical axis is a straight line that substantially coincides with the emission direction of the main light emitted by the light emitting module 121.
  • a part of the first color light emitted by the light emitting module 121 is incident on the incident surface 131 without passing through the wavelength control member 160. Further, another part of the light of the first color emitted by the light emitting module 121 is incident on the incident surface 131 by controlling the wavelength of the light of the first color to the light of the second color via the wavelength control member 160.
  • the wavelength control member 160 may be a wavelength conversion member that converts the light of the first color into the light of the second color by converting the light emitted by the light emitting module 121 into wavelength.
  • the wavelength control member 160 includes a phosphor that emits wavelength-converted light upon irradiation with light, and the phosphor is dispersed and held in a binder that is a transparent material made of ceramic such as glass or silicone resin.
  • the wavelength control member 160 is, for example, a YAG (Ytrium Aluminum Garnet) -based phosphor, a Cousin-based phosphor, an escalated-based phosphor, a BAM (Ba, Mg, Al) -based phosphor, or the like, and is an emission surface 132 of the light guide body 100. It can be appropriately selected according to the color of the light emitted from.
  • the wavelength control member 160 may be an optical thin film (color filter) using a dielectric multilayer film.
  • the wavelength control member 160 absorbs a part of the light emitted by the light emitting module 121 and reflects the other light.
  • the wavelength control member 160 can be appropriately selected according to the color of the light emitted from the exit surface 132 of the light guide body 100 in order to reflect the light having a predetermined wavelength among the light emitted by the light emitting module 121.
  • the wavelength control member 160 is arranged along the inner surface of the reflector 150. Specifically, the wavelength control member 160 is laminated on the inner surface of the reflector 150 and covers the inner surface of the reflector 150.
  • the wavelength control member 160 is arranged in a square cylinder in the reflector 150, and forms a space K between the light emitting module 121 and the incident surface 131 through which the light emitted by the light emitting module 121 passes.
  • the wavelength control member 160 when the wavelength control member 160 reflects a part of the light emitted by the light emitting module 121, the wavelength control member 160 emits light of a predetermined color according to the property of the wavelength control member 160.
  • the light guide body 100 has a columnar or plate shape in which a plurality of prisms 134 for guiding the light emitted by the light emitting module 121 and emitting the light from the emission surface 132 are formed.
  • the light guide body 100 is a light-transmitting member having a light-transmitting property and having a long square columnar shape in the Z-axis direction.
  • the light guide body 100 may be polygonal, columnar, semi-cylindrical, or the like.
  • the light guide body 100 is supported by the reflector 150 by inserting the end portion on the negative side of the Z axis into the opening 153 of the reflector 150 so as to cover the opening 153 of the reflector 150.
  • the central axis O of the light guide body 100 in the length direction substantially coincides with the optical axis of the light emitting module 121.
  • the light guide body 100 has an incident surface 131, an exit surface 132, and a facing surface 133.
  • the incident surface 131 is a surface on which the light emitted by the light emitting module 121 is incident, and is a surface facing the light emitting surface of the light emitting module 121. That is, the incident surface 131 is an end surface of the light guide body 100 on the negative direction side of the Z axis. The normal at the center of the incident surface 131 substantially coincides with the optical axis of the light emitting module 121.
  • Light of the first color and light of the second color are incident on the incident surface 131.
  • the light of the first color is the light emitted by the light emitting module 121, and is the light incident on the incident surface 131 without passing through the reflector 150.
  • the light incident on the incident surface 131 without passing through the reflector 150 is the light emitted by the light emitting module 121 without being reflected by the wavelength control member 160 of the reflector 150 and directly incident on the incident surface 131.
  • the light of the second color is the light emitted by the light emitting module 121, which is different from the light of the first color incident on the incident surface 131 via the reflector 150.
  • the second color is a color different from the first color. That is, the wavelength of the light of the second color is different from the wavelength of the light of the first color.
  • the light incident on the incident surface 131 via the reflector 150 is wavelength-controlled from the first color to the second color by reflecting the light emitted by the light emitting module 121 by the wavelength control member 160 of the reflector 150. Later, it is the light indirectly incident on the incident surface 131.
  • the exit surface 132 is a surface that emits light incident from the incident surface 131, and is a surface opposite to the facing surface 133.
  • a plurality of prisms 134 for emitting light are formed on the facing surface 133.
  • the plurality of prisms 134 are formed on the facing surface 133 along the length direction of the light guide body 100, and are opposite surfaces (opposing surfaces) to the facing surface 133 in the length direction (Z-axis direction) and line symmetry. ) Is not formed. More specifically, the plurality of prisms 134 are not formed on a surface (exit surface 132 in the present embodiment) that is parallel to the facing surface 133 and is plane-symmetrical with the plane including the central axis O.
  • Each of the plurality of prisms 134 is a cone-shaped, frustum-shaped, or elongated groove-shaped convex or concave portion.
  • Each of the plurality of prisms 134 of the present embodiment is a long groove formed along the length direction of the light guide body 100, but may be, for example, a conical recess.
  • a plurality of prisms 134 may also be formed on the side surface of the light guide body 100 along the Z-axis direction (the surface between the exit surface 132 and the facing surface 133).
  • FIG. 9 is a perspective view illustrating a lighting state of the lighting fixture 1a according to the second embodiment.
  • FIG. 9a is a perspective view illustrating a lighting state of the lighting fixture 1a before changing the distance to the light emitting module 121
  • FIG. 9b is a lighting state of the lighting fixture 1a after changing the distance to the light emitting module 121. It is a perspective view which illustrates.
  • the exit surface 132 emits the light of the first color from the first region R1 and the light of the second color from the second region R2 different from the first region R1.
  • the sizes of the first region R1 and the second region R2 change according to the distance between the light emitting surface of the light emitting module 121 and the incident surface 131. For example, when the incident surface 131 is brought closer to the light emitting module 121, the first region R1 gradually moves in the Z-axis plus direction, and the second region R2 also moves in the Z-axis plus direction. Further, as the incident surface 131 is moved away from the light emitting module 121, the first region R1 gradually moves in the Z-axis minus direction, and the second region R2 also moves in the Z-axis minus direction.
  • a wavelength conversion member having a red phosphor is used as the wavelength control member 160.
  • the wavelength control member 160 converts the white light emitted by the light emitting module 121 into red light.
  • a lighting fixture 1a as shown in FIG. 9, when the light emitting module 121 emits white light, a part of the white light is incident on the incident surface 131 of the light guide body 100 without passing through the wavelength control member 160. Then, the light guide body 100 is guided. Since the angle of the light emitted by the light emitting module 121 with respect to the optical axis is small, the white light reaches the end side of the light guide body 100 on the Z-axis plus direction side. As a result, white light is emitted from the first region R1 of the exit surface 132 of the light guide body 100.
  • the white light is wavelength-converted to red light by incident on the wavelength control member 160, and the red light is reflected. Then, the wavelength-converted red light is incident on the incident surface 131 of the light guide body 100 to guide the light guide body 100. Since the red light has a larger angle with respect to the optical axis of the light emitted by the light emitting module 121 than the white light, the Z-axis minus of the light guide body 100 is reached by the time it reaches the end of the light guide body 100 on the Z-axis plus direction side. Light is emitted from the end side on the directional side. As a result, red light is emitted from the second region R2 of the exit surface 132 of the light guide body 100.
  • the light guide body 100 is columnar.
  • the plurality of prisms 134 are formed on the facing surface 133 along the length direction of the light guide body 100, and are formed on the surface opposite to the facing surface 133 in the length direction (Z-axis direction) and line symmetry. No.
  • the light reflected by the plurality of prisms 134 can be reliably emitted from the emission surface 32.
  • the present embodiment is different from the lighting fixture of the first embodiment in that the light emitting module 121 includes the first light emitting module 121a, the second light emitting module 121b, and the third light emitting module 121c. Further, it is different from the lighting fixture of the first embodiment in that a plurality of prisms 134 are formed on both sides of the light guide body 101. Unless otherwise specified, other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.
  • FIG. 10 is a cross-sectional view illustrating an optical path of light emitted by the lighting fixture 1b according to the third embodiment.
  • the reflector 150 accommodates one or more first light emitting modules 121a, one or more second light emitting modules 121b, and one or more third light emitting modules 121c.
  • the light emitting module 121 includes one or more first light emitting modules 121a that emit light of the first color, one or more second light emitting modules 121b that emit light of the second color, and one or more first light emitting modules that emit light of the third color. 3 Includes a light emitting module 121c.
  • one or more first light emitting modules 121a are arranged on or near the central axis O of the reflector 150, and one or more second light emitting modules 121b are around one or more first light emitting modules 121a.
  • the one or more third light emitting modules 121c are arranged so as to surround the outer periphery of the one or more second light emitting modules 121b. That is, one or more second light emitting modules 121b and one or more third light emitting modules 121c are arranged concentrically around a set of one or more first light emitting modules 121a.
  • the first light emitting module 121a has a first lens 121c1 that covers the cavity.
  • the first lens 121c1 controls the light distribution so that the light emitted by the first light emitting module 121a is incident on the incident surface 131 of the light guide body 101 without passing through the reflector 150. That is, the optical axis of the light emitted by the first light emitting module 121a intersects the incident surface 131.
  • the second light emitting module 121b has a second lens 121c2 that covers the cavity.
  • the second lens 121c2 controls the light distribution so that the light emitted by the second light emitting module 121b is incident on the incident surface 131 of the light guide body 101 via the reflector 150.
  • the optical axis of the light emitted by the second light emitting module 121b intersects the inner surface of the reflector 150.
  • the third light emitting module 121c has a third lens 121c3 that covers the cavity.
  • the third lens 121c3 controls the light distribution so that the light emitted by the third light emitting module 121c is incident on the incident surface 131 of the light guide body 101 via the reflector 150.
  • the optical axis of the light emitted by the third light emitting module 121c intersects the inner surface of the reflector 150.
  • the intersection of the optical axis of the third color light emitted by the third light emitting module 121c and the inner surface of the reflector 150 is the intersection of the optical axis of the second color light emitted by the second light emitting module 121b and the inner surface of the reflector 150. It is located closer to the light emitting module 121 than the intersection.
  • the light guide body 101 has an incident surface 131, one surface 141, and the other surface 142.
  • the incident surface 131 is an end surface between the one surface 141 and the other surface 142 on the negative direction side of the Z axis, and is a surface facing the light emitting surface of the light emitting module 121.
  • One surface 141 is a surface that emits light incident from the incident surface 131, and is a surface opposite to the other surface 142.
  • the surface 141 is a surface extending along the Z-axis direction.
  • one surface 141 is a flat surface, but it may be an arcuate curved surface depending on the shape of the light guide body 101.
  • the other surface 142 is a surface that emits light incident from the incident surface 131, and is a surface opposite to the one surface 142.
  • the other surface 142 is a surface extending along the Z-axis direction.
  • the other surface 142 is a flat surface, but it may be an arcuate curved surface depending on the shape of the light guide body 101.
  • One surface 141 has a light extraction surface 141a on which a plurality of prisms 134 are formed, and one or more emission surfaces 141b adjacent to the light extraction surface 141a. Further, on the other surface 142, the light extraction surface 142a formed on the surface of the one surface 141 opposite to the emission surface 141b and the emission surface 142b formed on the surface of the one surface 141 opposite to the light extraction surface 141a. And have. That is, when viewed in the cross section of the light guide body 101 of FIG. 10, the light extraction surface 141a and the light extraction surface 142b are arranged line-symmetrically with respect to the central axis O, and the emission surface 141b and the light extraction surface 142a are centered. It is arranged line-symmetrically on the axis O.
  • a plurality of light extraction surfaces 141a and exit surfaces 141b may be formed on one surface 141. Further, a plurality of light extraction surfaces 142a and emission surfaces 142b may be formed on the other surface 142 as well.
  • the reflector may not be provided with a wavelength conversion member.
  • the light guide body of the lighting equipment according to the third embodiment may be applied to other embodiments 1 and 2, and the light guide body of the first and second embodiments is the light guide body of the third embodiment. It may be applied to a light guide body.
  • FIG. 11 is a perspective view illustrating the lighting fixture 1c according to another modified example.
  • the light of the first color may be light having a color temperature different from that of the light of the second color.
  • the light of the first color may be light having a lower color temperature than the light of the second color, or may be light having a higher color temperature.
  • the concentration or type of the phosphor in the cavity may be different.
  • the concentration or type of the phosphor in the cavity between the light emitting element and the reflector may be different from the concentration or type of the phosphor in the cavity between the light guide and the light emitting element.
  • the plurality of prisms may be formed on the exit surface.
  • the plurality of prisms formed on the exit surface may emit light from the facing surface, and the facing surface may also be the exit surface, and the exit surface on which the plurality of prisms are formed may also be the light extraction surface. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This light fixture (1) is provided with: a light-emitting module (21); and a columnar or planar light guiding body (30) which has an entrance surface (31) for letting light enter and a counter surface (33) for emitting, from an emission surface (32), entered light, and which has formed therein a plurality of prisms (34) for emitting light from the emission surface (32). The counter surface (33) has formed therein the plurality of prisms (34) each having a first surface (34a) that is slanted with respect to the direction of optical axis of the light emitted from the light-emitting module (21) and a second surface (34b) that faces the first surface (34a). When a cross-sectional surface that is orthogonal to the counter surface (33) and made by cutting the light guiding body (30) with a plane parallel to the optical axis direction is viewed, a first angle of the first surface (34a) with respect to the optical axis direction is defined as (θ1), a second angle of the second surface (34b) is defined as (θ2), the distance between two adjacent prisms (34) among the plurality of the prisms (34) is defined as (L1), and the width of the plurality of prisms (34) along the optical axis direction is defined as (L2).

Description

照明器具lighting equipment
 本開示は、照明器具に関する。 This disclosure relates to lighting equipment.
 特許文献1には、光源と、光源から出射された光を端面から入射するとともに、端面から入射された光を出射する出射面が形成される導光板とを備える面光源装置が開示されている。出射面と反対側の反射面には、端面と直交する方向に延びるように、異なる頂角のプリズムが複数設けられる。 Patent Document 1 discloses a surface light source device including a light source and a light guide plate on which light emitted from the light source is incident from an end surface and an exit surface is formed to emit light incident from the end surface. .. A plurality of prisms having different apex angles are provided on the reflecting surface on the opposite side to the emitting surface so as to extend in a direction orthogonal to the end surface.
特開2005-85671号公報Japanese Unexamined Patent Publication No. 2005-85671
 上記の従来技術の面光源装置とした照明器具では、光源の発する光が端面である入射面に入射し、入射面に入射した光を、反射面としての光取出し面に形成される複数のプリズムで反射させて、出射面から光を出射させている。この場合、単に複数のプリズムを形成するだけでは、反射面での漏れ光が多くなる。このため、光取出し面での漏れ光を抑制することが要求される。 In the lighting fixture as the surface light source device of the above-mentioned prior art, the light emitted from the light source is incident on the incident surface which is the end surface, and the light incident on the incident surface is formed on the light extraction surface as the reflecting surface. The light is emitted from the exit surface. In this case, simply forming a plurality of prisms increases the amount of light leaking from the reflecting surface. Therefore, it is required to suppress the leaked light on the light extraction surface.
 そこで、本開示は、導光体の複数のプリズムからの漏れ光を抑制することができる照明器具を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a lighting fixture capable of suppressing light leakage from a plurality of prisms of a light guide body.
 上記目的を達成するため、本開示の一態様に係る照明器具は、光源と、前記光源の発する光が入射する入射面と、前記入射面から入射した光を出射面から出射させるための光取出し面とを有し、前記出射面から光を出射させるための複数のプリズムが形成される柱状又は板状の導光体とを備え、前記光取出し面には、前記光源が発する光の光軸方向に対して傾斜する第1面と、前記第1面と対向する第2面とを有する前記複数のプリズムが形成され、前記光取出し面と直交し、かつ、前記光軸方向と平行な平面で導光体を切断した断面を見た場合、前記光軸方向に対する前記第1面の第1角度をθ1とし、前記光軸方向に対する前記第2面の第2角度をθ2とし、前記複数のプリズムのうちの隣り合う2つのプリズムの距離をL1とし、前記複数のプリズムの前記光軸方向に沿った幅をL2とすると、以下の式(1)~(3)が成立する。 In order to achieve the above object, the lighting fixture according to one aspect of the present disclosure includes a light source, an incident surface on which light emitted from the light source is incident, and light extraction for emitting light incident from the incident surface from an emitting surface. A columnar or plate-shaped light guide body having a surface and forming a plurality of prisms for emitting light from the emission surface is provided, and an optical axis of light emitted by the light source is provided on the light extraction surface. The plurality of prisms having a first surface inclined with respect to a direction and a second surface facing the first surface are formed, and a plane orthogonal to the light extraction surface and parallel to the optical axis direction. When the cross section obtained by cutting the light guide body is viewed, the first angle of the first surface with respect to the optical axis direction is set to θ1, the second angle of the second surface with respect to the optical axis direction is set to θ2, and the plurality of said. Assuming that the distance between two adjacent prisms among the prisms is L1 and the widths of the plurality of prisms along the optical axis direction are L2, the following equations (1) to (3) are established.
   0<L2≦0.5×L1   式(1)
   25°≦θ1≦58°   式(2)
   0<θ1+10°<θ2≦90°   式(3)
0 <L2 ≤ 0.5 × L1 equation (1)
25 ° ≤ θ1 ≤ 58 ° Equation (2)
0 <θ1 + 10 ° <θ2 ≦ 90 ° Equation (3)
 本開示に係る照明器具は、導光体の複数のプリズムからの漏れ光を抑制することができる。 The lighting fixture according to the present disclosure can suppress light leakage from a plurality of prisms of the light guide body.
図1は、実施の形態1に係る照明器具を例示する斜視図である。FIG. 1 is a perspective view illustrating the lighting fixture according to the first embodiment. 図2は、実施の形態1に係る照明器具を例示する断面図と、導光体のプリズムを示す部分拡大断面図である。FIG. 2 is a cross-sectional view illustrating the lighting fixture according to the first embodiment and a partially enlarged cross-sectional view showing a prism of the light guide body. 図3は、実施の形態1に係る照明器具の導光体のプリズムをより詳細に示す部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view showing the prism of the light guide body of the lighting fixture according to the first embodiment in more detail. 図4は、第1角度θ1に対して第2角度θ2を変化させた場合の、プリズム間隔(mm)と、プリズムから出射する光の出光率(%)との関係を示す図である。FIG. 4 is a diagram showing the relationship between the prism spacing (mm) and the light emission rate (%) of the light emitted from the prism when the second angle θ2 is changed with respect to the first angle θ1. 図5は、第1角度θ1が54°であり第2角度θ2も54°である場合に、距離L1に対して幅L2を変化させたときの、導光体から出射した光の配光曲線を示す。FIG. 5 shows a light distribution curve of the light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle θ1 is 54 ° and the second angle θ2 is also 54 °. Is shown. 図6Aは、第1角度θ1が54°であり第2角度θ2が90°である場合に、距離L1に対して幅L2を変化させたときの、導光体から出射する光の配光曲線を示す。FIG. 6A shows a light distribution curve of light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle θ1 is 54 ° and the second angle θ2 is 90 °. Is shown. 図6Bは、第1角度θ1が54°であり第2角度θ2が90°である場合に、距離L1に対して幅L2を変化させたときの、導光体から出射された図6Aとは別の光の配光曲線を示す。FIG. 6B shows FIG. 6A emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle θ1 is 54 ° and the second angle θ2 is 90 °. The light distribution curve of another light is shown. 図7は、実施の形態2に係る照明器具を例示する側面図である。FIG. 7 is a side view illustrating the lighting fixture according to the second embodiment. 図8は、図7のVIII-VIII線に係る照明器具を例示する断面図である。FIG. 8 is a cross-sectional view illustrating the lighting fixture according to the line VIII-VIII of FIG. 図9は、実施の形態2に係る照明器具の点灯状態を例示する斜視図である。FIG. 9 is a perspective view illustrating a lighting state of the lighting fixture according to the second embodiment. 図10は、実施の形態3に係る照明器具が出射する光の光路を例示する断面図である。FIG. 10 is a cross-sectional view illustrating an optical path of light emitted by the lighting fixture according to the third embodiment. 図11は、その他変形例に係る照明器具を例示する斜視図である。FIG. 11 is a perspective view illustrating another lighting fixture according to a modified example.
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Each of the embodiments described below is a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement positions of the components, connection forms, etc. shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the components in the following embodiments, the components not described in the independent claims are described as arbitrary components.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Note that each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 また、以下の実施の形態において、略平行等の表現を用いている。例えば、略平行は、平行であることを意味するだけでなく、実質的に平行である、すなわち、例えば数%程度の誤差を含むことも意味する。また、略平行は、本開示による効果を奏し得る範囲において平行という意味である。他の「略」を用いた表現についても同様である。 Further, in the following embodiments, expressions such as substantially parallel are used. For example, substantially parallel means not only that they are parallel, but also that they are substantially parallel, that is, they include an error of, for example, about several percent. Further, substantially parallel means parallel to the extent that the effects of the present disclosure can be achieved. The same applies to expressions using other "abbreviations".
 以下の説明において、図1では、発光モジュールが出射する光の光軸方向と平行な方向をX軸方向とし、プリズムの長さ方向である長手方向と平行な方向(光軸方向と直行する方向)をY軸方向とし、X軸方向及びY軸方向と直交する方向をZ軸方向と規定する。筐体に対する導光体側をX軸プラス方向とし、導光体のプリズムの長さ方向の一方側をY軸プラス方向とし、導光体のプリズムの深さ方向をZ軸プラス方向とする。図2以降においても、同様に適用する。 In the following description, in FIG. 1, the direction parallel to the optical axis direction of the light emitted by the light emitting module is defined as the X-axis direction, and the direction parallel to the longitudinal direction, which is the length direction of the prism (direction orthogonal to the optical axis direction). ) Is the Y-axis direction, and the X-axis direction and the direction orthogonal to the Y-axis direction are defined as the Z-axis direction. The light guide body side with respect to the housing is the X-axis plus direction, one side of the light guide body prism length direction is the Y-axis plus direction, and the depth direction of the light guide prism is the Z-axis plus direction. The same applies to FIGS. 2 and later.
 以下、本開示の実施の形態に係る照明器具について説明する。 Hereinafter, the lighting fixture according to the embodiment of the present disclosure will be described.
 (実施の形態1)
 <構成:照明器具1>
 図1は、実施の形態1に係る照明器具1を例示する斜視図である。
(Embodiment 1)
<Structure: Lighting equipment 1>
FIG. 1 is a perspective view illustrating the lighting fixture 1 according to the first embodiment.
 図1に示すように、照明器具1は、柱状又は板状の導光体30を用いた照明器具であり、例えば、天井、壁等の造営材に設置される。なお、本実施の形態の照明器具1は、机等の卓上に配置されてもよい。照明器具1は、周囲に光を照射することで、空間を照明することができる。本実施の形態の照明器具1は、主に、導光体30の長さ方向に対して交差する方向に光を出射することで、周囲を照明する。本実施の形態の照明器具1は、エッジライト方式の導光体30である。 As shown in FIG. 1, the luminaire 1 is a luminaire using a columnar or plate-shaped light guide body 30, and is installed on a construction material such as a ceiling or a wall, for example. The lighting fixture 1 of the present embodiment may be arranged on a table such as a desk. The lighting fixture 1 can illuminate a space by irradiating the surroundings with light. The lighting fixture 1 of the present embodiment mainly illuminates the surroundings by emitting light in a direction intersecting the length direction of the light guide body 30. The lighting fixture 1 of the present embodiment is an edge light type light guide 30.
 図2は、実施の形態1に係る照明器具1を例示する断面図と、導光体30のプリズム34を示す部分拡大断面図である。 FIG. 2 is a cross-sectional view illustrating the lighting fixture 1 according to the first embodiment and a partially enlarged cross-sectional view showing the prism 34 of the light guide body 30.
 図2に示すように、照明器具1は、筐体10と、発光モジュール21と、導光体30と、電源回路40とを備える。 As shown in FIG. 2, the luminaire 1 includes a housing 10, a light emitting module 21, a light guide body 30, and a power supply circuit 40.
 [筐体10]
 筐体10は、Y軸方向に長尺な収容体であり、導光体30、発光モジュール21及び電源回路40を収容する。筐体10は、発光モジュール21及び導光体30を収容した状態で、発光モジュール21が発する光を導光体30に入射させる姿勢であり、かつ、導光体30の出射面32から光を出射させる姿勢で、発光モジュール21及び導光体30を保持する。
[Case 10]
The housing 10 is a housing body that is long in the Y-axis direction, and houses the light guide body 30, the light emitting module 21, and the power supply circuit 40. The housing 10 is in a posture in which the light emitted by the light emitting module 21 is incident on the light guide 30 with the light emitting module 21 and the light guide 30 housed therein, and the light is emitted from the emission surface 32 of the light guide 30. The light emitting module 21 and the light guide body 30 are held in a posture of emitting light.
 筐体10は、アルミ等の金属製の材料で構成されている。このため、筐体10は、遮光性を有する。なお、筐体10は、樹脂等の材料で構成されていてもよい。 The housing 10 is made of a metal material such as aluminum. Therefore, the housing 10 has a light-shielding property. The housing 10 may be made of a material such as resin.
 筐体10は、X軸プラス方向側の部分が開かれた開口を有する。筐体10は、開口を介して導光体30のX軸マイナス方向側の端部を収容するための空間を形成し、導光体30をX-Y平面と略平行な姿勢で支持する。具体的には、筐体10は、導光体30のX軸マイナス方向側に設けられ、導光体30の出射面32及び対向面33を露出させた状態で、導光体30を支持する。 The housing 10 has an opening in which the portion on the plus direction side of the X axis is opened. The housing 10 forms a space for accommodating the end portion of the light guide body 30 on the negative direction side of the X axis through the opening, and supports the light guide body 30 in a posture substantially parallel to the XY plane. Specifically, the housing 10 is provided on the X-axis minus direction side of the light guide body 30, and supports the light guide body 30 in a state where the exit surface 32 and the facing surface 33 of the light guide body 30 are exposed. ..
 [発光モジュール21]
 発光モジュール21は、筐体10に収容され、筐体10に支持される。発光モジュール21は、導光体30に対して光を出射する姿勢で支持される。つまり、発光モジュール21は、発光モジュール21の発光面が導光体30と対向し、発光モジュール21の光軸が導光体30と交差する姿勢で、筐体10に支持される。本実施の形態では、発光モジュール21は、光軸が導光体30の入射面31の中心軸Oと略一致するように、筐体10に配置される。ここで、光軸とは、発光モジュール21が発する主たる光の出射方向と略一致する直線である。発光モジュール21は、光源の一例である。
[Light emitting module 21]
The light emitting module 21 is housed in the housing 10 and supported by the housing 10. The light emitting module 21 is supported in a posture of emitting light to the light guide body 30. That is, the light emitting module 21 is supported by the housing 10 in a posture in which the light emitting surface of the light emitting module 21 faces the light guide body 30 and the optical axis of the light emitting module 21 intersects the light guide body 30. In the present embodiment, the light emitting module 21 is arranged in the housing 10 so that the optical axis substantially coincides with the central axis O of the incident surface 31 of the light guide body 30. Here, the optical axis is a straight line that substantially coincides with the emission direction of the main light emitted by the light emitting module 21. The light emitting module 21 is an example of a light source.
 発光モジュール21は、例えば、SMD(Surface Mount Device)型のLED(Light Emitting Diode)素子を有する。つまり、発光モジュール21は、LEDチップである発光素子と、発光素子のそれぞれが発する光を波長変換することで蛍光を発する蛍光体とを有する。なお、発光素子として、COB(Chip On Board)型の発光モジュールであってもよい。発光素子が光源の一例であってもよい。 The light emitting module 21 has, for example, an SMD (Surface Mount Device) type LED (Light Emitting Diode) element. That is, the light emitting module 21 has a light emitting element which is an LED chip and a phosphor which emits fluorescence by wavelength-converting the light emitted by each of the light emitting elements. The light emitting element may be a COB (Chip On Board) type light emitting module. The light emitting element may be an example of a light source.
 発光素子のそれぞれは、樹脂成型されたキャビティの中に配置されたLEDチップであり、照明器具1の出射光となる光を出射する。発光素子のそれぞれは、キャビティ内に蛍光体を含有する樹脂によって封入される。つまり、SMD型のLED素子とは、発光素子のそれぞれがこの樹脂によって封入されたパッケージ型のLED素子である。 Each of the light emitting elements is an LED chip arranged in a resin-molded cavity, and emits light that becomes the light emitted from the lighting fixture 1. Each of the light emitting elements is enclosed in a cavity by a resin containing a phosphor. That is, the SMD type LED element is a package type LED element in which each of the light emitting elements is sealed with this resin.
 なお、発光モジュール21は、電源回路40に電気的に接続され、電源回路40からの電力が供給されてもよい。また、照明器具1は、電源回路40を備えていてもよい。発光モジュール21は、電源回路40に設けられている図示しない制御部により制御されて点灯及び消灯が行われてもよい。発光モジュール21は、電源回路40に設けられている制御部により制御されて、調光調色が行われてもよい。例えば、発光モジュール21は、青色LEDチップと黄色蛍光体含有樹脂との組み合わせにより白色光を放出する表面実装型LED素子を採用してもよい。 The light emitting module 21 may be electrically connected to the power supply circuit 40 and supplied with power from the power supply circuit 40. Further, the lighting fixture 1 may include a power supply circuit 40. The light emitting module 21 may be turned on and off by being controlled by a control unit (not shown) provided in the power supply circuit 40. The light emitting module 21 may be controlled by a control unit provided in the power supply circuit 40 to perform dimming and toning. For example, the light emitting module 21 may employ a surface mount type LED element that emits white light by combining a blue LED chip and a yellow phosphor-containing resin.
 また、発光モジュール21は、発光モジュール21を発光させるための直流電力を外部から受電するための一対の電極端子(正電極端子及び負電極端子)が形成された基板に実装される。本実施の形態では、発光モジュール21が複数設けられ、複数の発光モジュール21がY軸方向に等間隔に並ぶように、基板に実装される。 Further, the light emitting module 21 is mounted on a substrate on which a pair of electrode terminals (positive electrode terminal and negative electrode terminal) for receiving DC power for causing the light emitting module 21 to emit light from the outside are formed. In the present embodiment, a plurality of light emitting modules 21 are provided, and the plurality of light emitting modules 21 are mounted on the substrate so as to be arranged at equal intervals in the Y-axis direction.
 [導光体30]
 導光体30は、発光モジュール21の発する光を導光させて、出射面32から光を出射させるための複数のプリズム34が形成される柱状又は板状である。本実施の形態では、導光体30は、透光性を有し、X-Y平面と略平行な透光性の導光板である。導光体30は、筐体10の開口を覆うように、X軸マイナス方向側の端部を筐体10の開口に挿入することで、筐体10に支持される。筐体10に支持された際に、導光体30の長さ方向の中心軸Oは、発光モジュール21の光軸と略一致する。
[Light guide body 30]
The light guide body 30 has a columnar or plate shape in which a plurality of prisms 34 for guiding the light emitted by the light emitting module 21 and emitting the light from the emission surface 32 are formed. In the present embodiment, the light guide body 30 is a light transparent plate having translucency and substantially parallel to the XY plane. The light guide body 30 is supported by the housing 10 by inserting the end portion on the minus direction side of the X axis into the opening of the housing 10 so as to cover the opening of the housing 10. When supported by the housing 10, the central axis O of the light guide body 30 in the length direction substantially coincides with the optical axis of the light emitting module 21.
 導光体30は、入射面31と、出射面32と、対向面33とを有する。 The light guide body 30 has an incident surface 31, an exit surface 32, and a facing surface 33.
 入射面31は、複数の発光モジュール21の発する光が入射する面であり、複数の発光モジュール21と対向する面である。入射面31は、出射面32の端縁と対向面33の端縁とに接続される面であり、導光体30のX軸マイナス方向側の側面である。入射面31は、Y-Z平面に対して略平行な平面であり、略均一な平面をなしている。 The incident surface 31 is a surface on which the light emitted by the plurality of light emitting modules 21 is incident, and is a surface facing the plurality of light emitting modules 21. The incident surface 31 is a surface connected to the edge of the exit surface 32 and the edge of the facing surface 33, and is a side surface of the light guide body 30 on the minus direction side of the X axis. The incident surface 31 is a plane substantially parallel to the YY plane, and forms a substantially uniform plane.
 出射面32は、入射面31から入射した光、つまり導光体30を導光した光を出射させる面であり、照射面に光を照射させるための光出射面である。例えば、出射面32は、対向面33で反射した光を出射させる。出射面32は、導光体30のZ軸プラス方向側の面である。出射面32は、X-Y平面に対して略平行な、導光体30の長さ方向に沿った平面である。 The exit surface 32 is a surface that emits light incident from the incident surface 31, that is, light that guides the light guide body 30, and is a light emission surface for irradiating the irradiation surface with light. For example, the exit surface 32 emits the light reflected by the facing surface 33. The exit surface 32 is a surface of the light guide body 30 on the Z-axis plus direction side. The exit surface 32 is a plane along the length direction of the light guide body 30, which is substantially parallel to the XY plane.
 対向面33は、入射面31から入射した光を出射させるための光取出し面である。対向面33は、出射面32に対して対向する面、つまり出射面32と反対側の面であり、導光体30を導光した光を出射面32に向けて反射する。対向面33は、導光体30のZ軸マイナス方向側の面である。対向面33は、X-Y平面に対して略平行な面である。 The facing surface 33 is a light extraction surface for emitting light incident from the incident surface 31. The facing surface 33 is a surface facing the exit surface 32, that is, a surface opposite to the exit surface 32, and reflects the light guided by the light guide body 30 toward the exit surface 32. The facing surface 33 is a surface of the light guide body 30 on the negative direction side of the Z axis. The facing surface 33 is a surface substantially parallel to the XY plane.
 図3は、実施の形態1に係る照明器具1の導光体30のプリズム34をより詳細に示す部分拡大断面図である。 FIG. 3 is a partially enlarged cross-sectional view showing the prism 34 of the light guide body 30 of the lighting fixture 1 according to the first embodiment in more detail.
 図2及び図3に示すように、対向面33には、複数のプリズム34が形成される。対向面33は、Z-X平面で導光体30を切断した断面を見た場合に、複数のプリズム34によって鋸状に形成される。 As shown in FIGS. 2 and 3, a plurality of prisms 34 are formed on the facing surface 33. The facing surface 33 is formed in a saw shape by a plurality of prisms 34 when the cross section of the light guide body 30 cut in the ZX plane is viewed.
 複数のプリズム34のそれぞれは、発光モジュール21が発する光の光軸方向に対して傾斜する第1面34aと、第1面34aと対向する第2面34bとを有する。第1面34aは、発光モジュール21側に面する傾斜面であり、光軸方向と交差する。また、第2面34bは、複数のプリズム34のそれぞれにおいて第1面34aと反対側の面(又は対向する面)である。 Each of the plurality of prisms 34 has a first surface 34a that is inclined with respect to the optical axis direction of the light emitted by the light emitting module 21, and a second surface 34b that faces the first surface 34a. The first surface 34a is an inclined surface facing the light emitting module 21 side and intersects the optical axis direction. The second surface 34b is a surface (or a surface opposite to the first surface 34a) of each of the plurality of prisms 34.
 複数のプリズム34のそれぞれは、Y軸方向に沿って長尺な長溝であり、光軸方向と直交する。対向面33と直交し、かつ、光軸方向と平行な平面で導光体30を切断した断面を見た場合、光軸方向に対する第1面34aの第1角度をθ1とし、光軸方向に対する第2面34bの第2角度をθ2とし、複数のプリズム34のうちの隣り合う2つのプリズム34の距離(プリズム34の開口の幅)をL1とし、複数のプリズム34のそれぞれの光軸方向に沿った幅(隣り合う2つのプリズム34の幅)をL2とすると、以下の式(1)~(3)が成立する。 Each of the plurality of prisms 34 is a long groove along the Y-axis direction and is orthogonal to the optical axis direction. When the cross section of the light guide body 30 cut in a plane orthogonal to the facing surface 33 and parallel to the optical axis direction is viewed, the first angle of the first surface 34a with respect to the optical axis direction is set to θ1 with respect to the optical axis direction. The second angle of the second surface 34b is θ2, the distance between two adjacent prisms 34 among the plurality of prisms 34 (the width of the opening of the prisms 34) is L1, and the directions of each of the plurality of prisms 34 are in the optical axis direction. Assuming that the width along the line (the width of two adjacent prisms 34) is L2, the following equations (1) to (3) are established.
   0<L2≦0.5×L1   式(1)
   25°≦θ1≦58°   式(2)
   0<θ1+10°<θ2≦90°   式(3)
0 <L2 ≤ 0.5 × L1 equation (1)
25 ° ≤ θ1 ≤ 58 ° Equation (2)
0 <θ1 + 10 ° <θ2 ≦ 90 ° Equation (3)
 <電源回路40>
 図2に示すように、電源回路40は、筐体10に収容され、発光モジュール21を点灯及び消灯させる点灯制御を行う。電源回路40は、基板に複数の電子部品が実装された点灯回路である。電源回路40は、複数の発光モジュール21を発光させるための駆動電力を生成する。例えば、電源回路40は、AC/DCコンバータ等を有する。電源回路40は、商用電源から供給される交流電力を直流電力に電力変換し、電力変換した直流電力を発光モジュール21に供給する。これにより、発光モジュール21が発光する。
<Power supply circuit 40>
As shown in FIG. 2, the power supply circuit 40 is housed in the housing 10 and controls lighting to turn on and off the light emitting module 21. The power supply circuit 40 is a lighting circuit in which a plurality of electronic components are mounted on a substrate. The power supply circuit 40 generates driving power for causing the plurality of light emitting modules 21 to emit light. For example, the power supply circuit 40 has an AC / DC converter and the like. The power supply circuit 40 converts the AC power supplied from the commercial power source into DC power, and supplies the converted DC power to the light emitting module 21. As a result, the light emitting module 21 emits light.
 また、電源回路40は、発光モジュール21の鉛直上方に配置される。つまり、電源回路40は、筐体10に収容され、導光体30及び発光モジュール21よりもX軸マイナス方向側に配置される。電源回路40は、例えば筐体10の造営材近傍に配設されている。 Further, the power supply circuit 40 is arranged vertically above the light emitting module 21. That is, the power supply circuit 40 is housed in the housing 10 and is arranged on the X-axis minus direction side of the light guide body 30 and the light emitting module 21. The power supply circuit 40 is arranged, for example, in the vicinity of the construction material of the housing 10.
 なお、電源回路40は、複数の発光モジュール21を実装する基板の実装面と反対側の面に実装されていてもよい。 The power supply circuit 40 may be mounted on the surface opposite to the mounting surface of the board on which the plurality of light emitting modules 21 are mounted.
 <実験結果>
 図4は、第1角度θ1に対して第2角度θ2を変化させた場合の、プリズム間隔(mm)と、プリズムから出射する光の出光率(%)との関係を示す図である。
<Experimental results>
FIG. 4 is a diagram showing the relationship between the prism spacing (mm) and the light emission rate (%) of the light emitted from the prism when the second angle θ2 is changed with respect to the first angle θ1.
 図3及び図4に示すように、横軸は、隣り合う2つのプリズムの距離L1と、プリズムの光軸方向に沿った幅L2との和であるプリズム間隔(mm)を示し、縦軸は、プリズムから出射する光の出光率(%)を示す。図4では、第1角度θ1を54°とした場合に、第2角度θ2を90°、85°、80°、75°、70°、65°、54°と変化させた。この場合、第1角度θ1を54°第2角度θ2が90°のときに最も出光率が低く、第2角度θ2が小さくなる(又は第2角度θ2が第1角度θ1に近づく)にしたがって出光率が上昇した。 As shown in FIGS. 3 and 4, the horizontal axis represents the prism spacing (mm), which is the sum of the distance L1 between two adjacent prisms and the width L2 along the optical axis direction of the prisms, and the vertical axis represents the prism spacing (mm). , Indicates the light emission rate (%) of the light emitted from the prism. In FIG. 4, when the first angle θ1 is 54 °, the second angle θ2 is changed to 90 °, 85 °, 80 °, 75 °, 70 °, 65 °, and 54 °. In this case, the first angle θ1 is 54 °, the light emission rate is the lowest when the second angle θ2 is 90 °, and the second angle θ2 becomes smaller (or the second angle θ2 approaches the first angle θ1). The rate has risen.
 このため、第2角度θ2が第1角度θ1よりも大きい値とし、90°以下とした。 Therefore, the second angle θ2 is set to be larger than the first angle θ1 and is set to 90 ° or less.
 なお、第1角度θ1を25°以上58°以下としているが、第1角度θ1が25°未満であれば、距離L1が大きくなり、導光する光は、プリズムの第1面で反射してさらに出射面で反射することで第1面から出射し易くなる。また、第1角度θ1が58°より大きければ、距離L1は小さくなるが、導光する光は、プリズムをそのまま直進したり第2面で反射したりし易くなるため、第1面が出射面に向けて反射し難くなる。 The first angle θ1 is 25 ° or more and 58 ° or less, but if the first angle θ1 is less than 25 °, the distance L1 becomes large and the light to be guided is reflected by the first surface of the prism. Further, reflection on the exit surface facilitates emission from the first surface. Further, if the first angle θ1 is larger than 58 °, the distance L1 becomes smaller, but the light that guides the light easily travels straight through the prism or is reflected by the second surface, so that the first surface is the exit surface. It becomes difficult to reflect toward.
 また、最も出光率が低い、第1角度θ1が54°であり第2角度θ2が90°であるときと、最も出光率が高い、第1角度θ1が54°であり第2角度θ2も54°であるときとの、導光体が出射する配光分布を測定した。 Further, the lowest light emission rate, the first angle θ1 is 54 ° and the second angle θ2 is 90 °, and the highest light emission rate, the first angle θ1 is 54 ° and the second angle θ2 is also 54. The light distribution distributed by the light guide was measured at °.
 図5は、第1角度θ1が54°であり第2角度θ2も54°である場合に、距離L1に対して幅L2を変化させたときの、導光体から出射した光の配光曲線を示す。図5のaは、L1=300(μm)であり、L2=700(μm)の場合の配光曲線であり、図5のbは、L1=300(μm)であり、L2=50(μm)の場合の配光曲線である。図5のa及び図5のbのいずれの場合でも、制御光の光量と同等程度の漏れ光がある。ただ、L2が小さいほど、漏れ光が抑えられることが判った。 FIG. 5 shows a light distribution curve of the light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle θ1 is 54 ° and the second angle θ2 is also 54 °. Is shown. A in FIG. 5 is a light distribution curve when L1 = 300 (μm) and L2 = 700 (μm), and b in FIG. 5 is L1 = 300 (μm) and L2 = 50 (μm). ) Is the light distribution curve. In both cases of a in FIG. 5 and b in FIG. 5, there is leakage light equivalent to the amount of control light. However, it was found that the smaller L2 is, the more the leaked light is suppressed.
 そこで、図6Aは、第1角度θ1が54°であり第2角度θ2が90°である場合に、距離L1に対して幅L2を変化させたときの、導光体から出射する光の配光曲線を示す。図6Bは、第1角度θ1が54°であり第2角度θ2が90°である場合に、距離L1に対して幅L2を変化させたときの、導光体から出射された図6Aとは別の光の配光曲線を示す。 Therefore, FIG. 6A shows the arrangement of the light emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle θ1 is 54 ° and the second angle θ2 is 90 °. Shows the light curve. FIG. 6B shows FIG. 6A emitted from the light guide when the width L2 is changed with respect to the distance L1 when the first angle θ1 is 54 ° and the second angle θ2 is 90 °. The light distribution curve of another light is shown.
 図6Aのaは、L1=300(μm)であり、L2=50(μm)の場合の配光曲線であり、図6Aのbは、L1=300(μm)であり、L2=200(μm)の場合の配光曲線であり、図6Aのcは、L1=300(μm)であり、L2=300(μm)の場合の配光曲線であり、図6Bのdは、L1=300(μm)であり、L2=700(μm)の場合の配光曲線であり、図6Bのeは、L1=300(μm)であり、L2=1700(μm)の場合の配光曲線である。図6A、Bのa~eでも、幅L2が小さくなるほど、漏れ光が抑えられることが判った。また、図6Aのaでは漏れ光が現れず図6Aのbでは漏れ光が現れるため、図6Aのaと図6Aのbとを境界として、幅L2を距離L1の2分の1以下とした。 A in FIG. 6A is a light distribution curve when L1 = 300 (μm) and L2 = 50 (μm), and b in FIG. 6A is L1 = 300 (μm) and L2 = 200 (μm). ), C in FIG. 6A is the light distribution curve in the case of L1 = 300 (μm) and L2 = 300 (μm), and d in FIG. 6B is L1 = 300 (μm). It is a light distribution curve when L2 = 700 (μm), and e in FIG. 6B is a light distribution curve when L1 = 300 (μm) and L2 = 1700 (μm). Also in FIGS. 6A and 6A, it was found that the smaller the width L2, the more the leaked light was suppressed. Further, since the leaked light does not appear in the a of FIG. 6A and the leaked light appears in the b of FIG. 6A, the width L2 is set to half or less of the distance L1 with the a of FIG. 6A and the b of FIG. 6A as the boundary. ..
 このため、短手方向の幅L2は、隣り合う2つのプリズム34の距離L1の1/6となることが好ましい。 Therefore, the width L2 in the lateral direction is preferably 1/6 of the distance L1 between the two adjacent prisms 34.
 <動作>
 本実施の形態では、図2及び図3に示すように、発光モジュール21が発する光が入射面31に入射して導光体30を導光する。導光する光は、対向面33の複数のプリズム34のうちの第1のプリズム34に入射して第1面34aから出射し、第1面34aと対向する第2面34bからさらに入射して導光体30を導光する。導光する光は、第1のプリズム34に隣接する第2のプリズム34に入射する。第2のプリズム34に入射する光は、発光モジュール21の光軸方向に沿って進行するため、第1面34aに入射して反射し、出射面32に導かれる。出射面32に導かれた光は、配光制御された制御光として、出射面32から出射する。
<Operation>
In the present embodiment, as shown in FIGS. 2 and 3, the light emitted by the light emitting module 21 is incident on the incident surface 31 to guide the light guide body 30. The light to be guided is incident on the first prism 34 of the plurality of prisms 34 on the facing surface 33, emitted from the first surface 34a, and further incident on the second surface 34b facing the first surface 34a. The light guide body 30 is guided. The light to be guided is incident on the second prism 34 adjacent to the first prism 34. Since the light incident on the second prism 34 travels along the optical axis direction of the light emitting module 21, it is incident on the first surface 34a, reflected, and guided to the exit surface 32. The light guided to the exit surface 32 is emitted from the exit surface 32 as control light whose light distribution is controlled.
 <作用効果>
 次に、本実施の形態における照明器具1の作用効果について説明する。
<Effect>
Next, the action and effect of the lighting fixture 1 in the present embodiment will be described.
 上述したように、本実施の形態の照明器具1は、発光モジュール21と、発光モジュール21の発する光が入射する入射面31と、入射面31から入射した光を出射面32から出射させるための対向面33とを有し、出射面32から光を出射させるための複数のプリズム34が形成される柱状又は板状の導光体30とを備える。対向面33には、発光モジュール21が発する光の光軸方向に対して傾斜する第1面34aと、第1面34aと対向する第2面34bとを有する複数のプリズム34が形成される。対向面33と直交し、かつ、光軸方向と平行な平面で導光体30を切断した断面を見た場合、光軸方向に対する第1面34aの第1角度をθ1とし、光軸方向に対する第2面34bの第2角度をθ2とし、複数のプリズム34のうちの隣り合う2つのプリズム34の距離をL1とし、複数のプリズム34の光軸方向に沿った幅をL2とすると、以下の式(4)~(6)が成立する。 As described above, the lighting fixture 1 of the present embodiment is for emitting the light incident from the light emitting module 21, the incident surface 31 on which the light emitted by the light emitting module 21 is incident, and the light incident from the incident surface 31 from the emitting surface 32. A columnar or plate-shaped light guide body 30 having a facing surface 33 and a plurality of prisms 34 for emitting light from the emitting surface 32 is provided. On the facing surface 33, a plurality of prisms 34 having a first surface 34a inclined with respect to the optical axis direction of the light emitted by the light emitting module 21 and a second surface 34b facing the first surface 34a are formed. When the cross section of the light guide body 30 cut in a plane orthogonal to the facing surface 33 and parallel to the optical axis direction is viewed, the first angle of the first surface 34a with respect to the optical axis direction is set to θ1 with respect to the optical axis direction. Assuming that the second angle of the second surface 34b is θ2, the distance between two adjacent prisms 34 among the plurality of prisms 34 is L1, and the width of the plurality of prisms 34 along the optical axis direction is L2, the following Equations (4) to (6) hold.
   0<L2≦0.5×L1   式(4)
   25°≦θ1≦58°   式(5)
   0<θ1+10°<θ2≦90°   式(6)
0 <L2 ≤ 0.5 × L1 equation (4)
25 ° ≤ θ1 ≤ 58 ° Equation (5)
0 <θ1 + 10 ° <θ2 ≦ 90 ° Equation (6)
 これによれば、式(4)~(6)の条件を満たす場合に、発光モジュール21の発した光がプリズム34に入射することで第1面34aから出射しても第2面34bに導かれ易くなる。第2面34bに導かれて導光する光は、第1面34aで反射して出射面32に導かれ易くなる。 According to this, when the conditions of the equations (4) to (6) are satisfied, the light emitted by the light emitting module 21 is incident on the prism 34, and even if it is emitted from the first surface 34a, it is guided to the second surface 34b. It becomes easy to get rid of. The light guided and guided by the second surface 34b is reflected by the first surface 34a and is easily guided to the exit surface 32.
 したがって、この照明器具1では、導光体30の複数のプリズム34からの漏れ光を抑制することができる。 Therefore, in this luminaire 1, the light leakage from the plurality of prisms 34 of the light guide body 30 can be suppressed.
 また、本実施の形態の照明器具1において、幅L2は、隣り合う2つのプリズム34の距離L1の1/6である。 Further, in the lighting fixture 1 of the present embodiment, the width L2 is 1/6 of the distance L1 of two adjacent prisms 34.
 これによれば、幅L2をより小さくすることができるため、隣り合う2つのプリズム34の間隔を小さくすることができる。このため、この照明器具1では、導光体30の複数のプリズム34からの漏れ光をより抑制することができる。 According to this, since the width L2 can be made smaller, the distance between two adjacent prisms 34 can be made smaller. Therefore, in the lighting fixture 1, the light leakage from the plurality of prisms 34 of the light guide body 30 can be further suppressed.
 また、本実施の形態の照明器具1において、第1面34aは、発光モジュール21側に面する傾斜面である。そして、第2面34bは、プリズム34において第1面34aと反対側の面である。 Further, in the lighting fixture 1 of the present embodiment, the first surface 34a is an inclined surface facing the light emitting module 21 side. The second surface 34b is the surface of the prism 34 opposite to the first surface 34a.
 これによれば、光軸方向に沿って導光体30を導光する光が第1のプリズム34の第1面34aから出射されて第2面34bに入射され易くなる。このため、第1のプリズム34の第2面34bを介して、さらに第1のプリズム34に隣接する第2のプリズム34の第1面34aで反射され易くなる。このため、この照明器具1では、導光体30の複数のプリズム34からの漏れ光をより確実に抑制することができる。 According to this, the light that guides the light guide body 30 along the optical axis direction is emitted from the first surface 34a of the first prism 34 and easily incident on the second surface 34b. Therefore, it is easily reflected by the first surface 34a of the second prism 34 adjacent to the first prism 34 via the second surface 34b of the first prism 34. Therefore, in the lighting fixture 1, the light leakage from the plurality of prisms 34 of the light guide body 30 can be suppressed more reliably.
 また、本実施の形態の照明器具1において、複数のプリズム34のそれぞれは、光軸方向と直交する方向に延びる長溝である。 Further, in the luminaire 1 of the present embodiment, each of the plurality of prisms 34 is a long groove extending in a direction orthogonal to the optical axis direction.
 これによれば、導光体30の入射面31に入射した光を効率的に出射面32に導かせることができるため、この照明器具1では、所望の配光制御をすることができるとともに、導光体30の複数のプリズム34からの漏れ光をより確実に抑制することができる。 According to this, since the light incident on the incident surface 31 of the light guide body 30 can be efficiently guided to the exit surface 32, the lighting fixture 1 can perform desired light distribution control and can also perform desired light distribution control. Leakage light from the plurality of prisms 34 of the light guide body 30 can be suppressed more reliably.
 (実施の形態2)
 <構成:照明器具1a>
 図7は、実施の形態2に係る照明器具1aを例示する側面図である。
(Embodiment 2)
<Structure: Lighting fixture 1a>
FIG. 7 is a side view illustrating the lighting fixture 1a according to the second embodiment.
 本実施の形態では、板状の導光体の代わりに四角柱状の導光体100を用いる点で、実施の形態1の照明器具と相違する。本実施の形態おける他の構成は、特に明記しない場合は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 This embodiment differs from the lighting fixture of the first embodiment in that a square columnar light guide 100 is used instead of the plate-shaped light guide. Unless otherwise specified, other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.
 図7に示すように、照明器具1aは、発光モジュール121及び導光体100の他に、反射体150と、図8の波長制御部材160とを備える。 As shown in FIG. 7, the luminaire 1a includes a reflector 150 and a wavelength control member 160 of FIG. 8 in addition to the light emitting module 121 and the light guide body 100.
 [反射体150]
 図8は、図7のVIII-VIII線に係る照明器具1aを例示する断面図である。図8のaは発光モジュール121に対する距離を可変する前の照明器具1aを例示する断面図であり、図8のbは発光モジュール121に対する距離を可変した後の照明器具1aを例示する断面図である。
[Reflector 150]
FIG. 8 is a cross-sectional view illustrating the luminaire 1a according to the line VIII-VIII of FIG. 8a is a cross-sectional view illustrating the lighting fixture 1a before changing the distance to the light emitting module 121, and FIG. 8b is a cross-sectional view illustrating the lighting fixture 1a after changing the distance to the light emitting module 121. be.
 図7及び図8に示すように、反射体150は、導光体100の端部に配置され、発光モジュール121が発する光を入射面131に導かせることが可能な筒状である。具体的には、反射体150は、有底筒状であり、内部の空間Kに波長制御部材160及び発光モジュール121を収容する。反射体150は、一端側のZ軸プラス方向側の端縁が開口し、他端側のZ軸マイナス方向側の端縁が閉口する。 As shown in FIGS. 7 and 8, the reflector 150 is arranged at the end of the light guide body 100 and has a tubular shape capable of guiding the light emitted by the light emitting module 121 to the incident surface 131. Specifically, the reflector 150 has a bottomed tubular shape, and accommodates the wavelength control member 160 and the light emitting module 121 in the internal space K. In the reflector 150, the end edge on the Z-axis plus direction side on one end side opens, and the end edge on the Z-axis minus direction side on the other end side closes.
 また、反射体150の内面は、発光モジュール121の発する光を反射する反射面である。つまり、発光モジュール121が発した光を効率的に導光体100に入射させるために、鏡面加工される。反射体150は、例えば、アルミニウム等の金属であってもよく、白色樹脂等であってもよい。 Further, the inner surface of the reflector 150 is a reflecting surface that reflects the light emitted by the light emitting module 121. That is, the light emitted by the light emitting module 121 is mirror-finished in order to be efficiently incident on the light guide body 100. The reflector 150 may be, for example, a metal such as aluminum, a white resin, or the like.
 反射体150は、Z軸マイナス方向側の端縁である底部に配置される発光モジュール121を、導光体100と対向するように支持する。また、反射体150は、導光体100の入射面131と発光モジュール121とを対向する姿勢で導光体100を支持する。反射体150の一端側におけるZ軸プラス方向側の開口153には導光体100が挿入され、反射体150は導光体100を直立させる姿勢で支持する。 The reflector 150 supports the light emitting module 121 arranged at the bottom, which is the edge on the negative direction side of the Z axis, so as to face the light guide body 100. Further, the reflector 150 supports the light guide body 100 in a posture in which the incident surface 131 of the light guide body 100 and the light emitting module 121 face each other. The light guide body 100 is inserted into the opening 153 on the Z-axis plus direction side at one end side of the reflector 150, and the reflector 150 supports the light guide body 100 in an upright posture.
 本実施の形態では、反射体150には、開口153に挿入される導光体100を支持する段部152が内面に形成される。段部152は、導光体100の入射面131側の端面と当接することで、導光体100を直立させる姿勢で支持する環状溝部である。つまり、段部152は、発光モジュール121の光軸に対する導光体100の入射面131の位置合わせと、導光体100の姿勢を保持する役割を有する。また、段部152にリング状のスペーサ45を配置することで、発光モジュール121の発光面と導光体100の入射面131との距離を可変させることができる。 In the present embodiment, the reflector 150 is formed with a step portion 152 on the inner surface that supports the light guide body 100 inserted into the opening 153. The step portion 152 is an annular groove portion that supports the light guide body 100 in an upright posture by contacting the end surface of the light guide body 100 on the incident surface 131 side. That is, the step portion 152 has a role of aligning the incident surface 131 of the light guide body 100 with respect to the optical axis of the light emitting module 121 and holding the posture of the light guide body 100. Further, by arranging the ring-shaped spacer 45 on the step portion 152, the distance between the light emitting surface of the light emitting module 121 and the incident surface 131 of the light guide body 100 can be changed.
 なお、反射体150の周囲に取り付けられるネジ等によって、導光体100が反射体150に固定されてもよく、反射体150に対する導光体100の姿勢を維持する手段は、本実施の形態に限定されない。この場合も、ネジ締めによって、発光モジュール121の発光面と導光体100の入射面131との距離を可変することができる。 The light guide body 100 may be fixed to the reflector 150 by a screw or the like attached around the reflector 150, and the means for maintaining the posture of the light guide body 100 with respect to the reflector 150 is described in the present embodiment. Not limited. Also in this case, the distance between the light emitting surface of the light emitting module 121 and the incident surface 131 of the light guide body 100 can be changed by tightening the screws.
 また、反射体150は、本実施の形態では、四角筒状であるが、多角筒状、円筒状、半円筒状等でもよい。反射体150の形状は、導光体100の形状、つまり導光体100の長さ方向の断面形状に応じて適宜設定されてもよい。 Further, the reflector 150 has a square tubular shape in the present embodiment, but may have a polygonal tubular shape, a cylindrical shape, a semi-cylindrical shape, or the like. The shape of the reflector 150 may be appropriately set according to the shape of the light guide body 100, that is, the cross-sectional shape of the light guide body 100 in the length direction.
 [発光モジュール121]
 発光モジュール121は、反射体150に収容され、反射体150の底部に配置される。発光モジュール121は、反射体150の底部で、導光体100に対して光を出射する姿勢で保持される。つまり、発光モジュール121は、発光モジュール121の発光面が導光体100と対向し、発光モジュール121の光軸が導光体100と交差する姿勢で、反射体150に保持される。本実施の形態では、発光モジュール121は、光軸が反射体150の中心軸Oと略一致するように、反射体150の内部に配置される。ここで、光軸とは、発光モジュール121が発する主たる光の出射方向と略一致する直線である。
[Light emitting module 121]
The light emitting module 121 is housed in the reflector 150 and is arranged at the bottom of the reflector 150. The light emitting module 121 is held at the bottom of the reflector 150 in a posture of emitting light to the light guide body 100. That is, the light emitting module 121 is held by the reflector 150 in a posture in which the light emitting surface of the light emitting module 121 faces the light guide body 100 and the optical axis of the light emitting module 121 intersects the light guide body 100. In the present embodiment, the light emitting module 121 is arranged inside the reflector 150 so that the optical axis substantially coincides with the central axis O of the reflector 150. Here, the optical axis is a straight line that substantially coincides with the emission direction of the main light emitted by the light emitting module 121.
 発光モジュール121が発する第1色の光の一部は、波長制御部材160を介さずに、入射面131に入射される。また、発光モジュール121が発する第1色の光の別の一部は、波長制御部材160を介して第1色の光を第2色の光に波長制御して入射面131に入射される。 A part of the first color light emitted by the light emitting module 121 is incident on the incident surface 131 without passing through the wavelength control member 160. Further, another part of the light of the first color emitted by the light emitting module 121 is incident on the incident surface 131 by controlling the wavelength of the light of the first color to the light of the second color via the wavelength control member 160.
 [波長制御部材160]
 波長制御部材160は、発光モジュール121が発した光を波長変換することで、第1色の光を第2色の光に変換する波長変換部材であってもよい。波長制御部材160は、光の照射によって波長変換光を発する蛍光体を含み、当該蛍光体をガラス等のセラミック、シリコーン樹脂等からなる透明材料であるバインダに、分散されて保持される。波長制御部材160は、例えばYAG(Yttrium Aluminum Garnet)系蛍光体、カズン系蛍光体、エスカズン系蛍光体又はBAM(Ba、Mg、Al)系蛍光体等であり、導光体100の出射面132から出射させる光の色に応じて適宜選択できる。
[Wavelength control member 160]
The wavelength control member 160 may be a wavelength conversion member that converts the light of the first color into the light of the second color by converting the light emitted by the light emitting module 121 into wavelength. The wavelength control member 160 includes a phosphor that emits wavelength-converted light upon irradiation with light, and the phosphor is dispersed and held in a binder that is a transparent material made of ceramic such as glass or silicone resin. The wavelength control member 160 is, for example, a YAG (Ytrium Aluminum Garnet) -based phosphor, a Cousin-based phosphor, an escalated-based phosphor, a BAM (Ba, Mg, Al) -based phosphor, or the like, and is an emission surface 132 of the light guide body 100. It can be appropriately selected according to the color of the light emitted from.
 また、波長制御部材160は、誘電体多層膜を用いた光学薄膜(色フィルタ)であってもよい。波長制御部材160は、発光モジュール121が発した光の一部を吸収し、その他の光を反射する。波長制御部材160は、発光モジュール121が発する光のうちの所定の波長の光を反射させるために、導光体100の出射面132から出射させる光の色に応じて適宜選択できる。 Further, the wavelength control member 160 may be an optical thin film (color filter) using a dielectric multilayer film. The wavelength control member 160 absorbs a part of the light emitted by the light emitting module 121 and reflects the other light. The wavelength control member 160 can be appropriately selected according to the color of the light emitted from the exit surface 132 of the light guide body 100 in order to reflect the light having a predetermined wavelength among the light emitted by the light emitting module 121.
 波長制御部材160は、反射体150の内面に沿って配置される。具体的には、波長制御部材160は、反射体150の内面に積層され、反射体150の内面を覆う。波長制御部材160は、反射体150内で四角筒状に配置され、発光モジュール121と入射面131との間に発光モジュール121の発した光が通過する空間Kを形成する。これにより、波長制御部材160は、発光モジュール121の発した光の一部を反射させる際に、波長制御部材160の性質に応じて所定の色の光を出射する。 The wavelength control member 160 is arranged along the inner surface of the reflector 150. Specifically, the wavelength control member 160 is laminated on the inner surface of the reflector 150 and covers the inner surface of the reflector 150. The wavelength control member 160 is arranged in a square cylinder in the reflector 150, and forms a space K between the light emitting module 121 and the incident surface 131 through which the light emitted by the light emitting module 121 passes. As a result, when the wavelength control member 160 reflects a part of the light emitted by the light emitting module 121, the wavelength control member 160 emits light of a predetermined color according to the property of the wavelength control member 160.
 [導光体100]
 導光体100は、発光モジュール121の発する光を導光させて、出射面132から光を出射させるための複数のプリズム134が形成される柱状又は板状である。本実施の形態では、導光体100は、透光性を有し、Z軸方向に長尺な四角柱状の透光部材である。なお、導光体100は、多角柱状、円柱状、半円柱状等でもよい。
[Light guide body 100]
The light guide body 100 has a columnar or plate shape in which a plurality of prisms 134 for guiding the light emitted by the light emitting module 121 and emitting the light from the emission surface 132 are formed. In the present embodiment, the light guide body 100 is a light-transmitting member having a light-transmitting property and having a long square columnar shape in the Z-axis direction. The light guide body 100 may be polygonal, columnar, semi-cylindrical, or the like.
 導光体100は、反射体150の開口153を覆うように、Z軸マイナス方向側の端部を反射体150の開口153に挿入することで、反射体150に支持される。反射体150に支持された際に、導光体100の長さ方向の中心軸Oは、発光モジュール121の光軸と略一致する。 The light guide body 100 is supported by the reflector 150 by inserting the end portion on the negative side of the Z axis into the opening 153 of the reflector 150 so as to cover the opening 153 of the reflector 150. When supported by the reflector 150, the central axis O of the light guide body 100 in the length direction substantially coincides with the optical axis of the light emitting module 121.
 導光体100は、入射面131と、出射面132と、対向面133とを有する。 The light guide body 100 has an incident surface 131, an exit surface 132, and a facing surface 133.
 入射面131は、発光モジュール121の発する光が入射する面であり、発光モジュール121の発光面と対向する面である。つまり入射面131は、導光体100のZ軸マイナス方向側の端面である。入射面131の中心の法線は、発光モジュール121の光軸と略一致する。 The incident surface 131 is a surface on which the light emitted by the light emitting module 121 is incident, and is a surface facing the light emitting surface of the light emitting module 121. That is, the incident surface 131 is an end surface of the light guide body 100 on the negative direction side of the Z axis. The normal at the center of the incident surface 131 substantially coincides with the optical axis of the light emitting module 121.
 入射面131には、第1色の光と、第2色の光とが入射する。 Light of the first color and light of the second color are incident on the incident surface 131.
 第1色の光は、発光モジュール121が発した光であり、反射体150を介さずに入射面131に入射した光である。反射体150を介さずに入射面131に入射した光とは、発光モジュール121が発した光が反射体150の波長制御部材160で反射されずに、直接的に入射面131に入射した光である。第2色の光は、発光モジュール121が発した光であり、反射体150を介して入射面131に入射した第1色の光と異なる光である。第2色は、第1色と異なる色である。つまり、第2色の光の波長は、第1色の光の波長と異なる。反射体150を介して入射面131に入射した光とは、発光モジュール121の発した光が反射体150の波長制御部材160で反射することで、第1色から第2色に波長制御された後に、間接的に入射面131に入射した光である。 The light of the first color is the light emitted by the light emitting module 121, and is the light incident on the incident surface 131 without passing through the reflector 150. The light incident on the incident surface 131 without passing through the reflector 150 is the light emitted by the light emitting module 121 without being reflected by the wavelength control member 160 of the reflector 150 and directly incident on the incident surface 131. be. The light of the second color is the light emitted by the light emitting module 121, which is different from the light of the first color incident on the incident surface 131 via the reflector 150. The second color is a color different from the first color. That is, the wavelength of the light of the second color is different from the wavelength of the light of the first color. The light incident on the incident surface 131 via the reflector 150 is wavelength-controlled from the first color to the second color by reflecting the light emitted by the light emitting module 121 by the wavelength control member 160 of the reflector 150. Later, it is the light indirectly incident on the incident surface 131.
 出射面132は、入射面131から入射した光を出射させる面であり、対向面133と反対側の面である。 The exit surface 132 is a surface that emits light incident from the incident surface 131, and is a surface opposite to the facing surface 133.
 対向面133には、光を出射させるための複数のプリズム134が形成される。 A plurality of prisms 134 for emitting light are formed on the facing surface 133.
 複数のプリズム134は、導光体100の長さ方向に沿った対向面133に形成され、対向面133に対して長さ方向(Z軸方向)と線対称の反対側の面(対向する面)に形成されていない。より具体的には、複数のプリズム134は、対向面133と平行かつ中心軸Oを含む平面と面対称となる面(本実施の形態では出射面132)には形成されていない。 The plurality of prisms 134 are formed on the facing surface 133 along the length direction of the light guide body 100, and are opposite surfaces (opposing surfaces) to the facing surface 133 in the length direction (Z-axis direction) and line symmetry. ) Is not formed. More specifically, the plurality of prisms 134 are not formed on a surface (exit surface 132 in the present embodiment) that is parallel to the facing surface 133 and is plane-symmetrical with the plane including the central axis O.
 対向面133に形成されるプリズム134に入射した光は、当該プリズム134を介して反対側の出射面132に導かれて、出射面132から出射する。複数のプリズム134のそれぞれは、錐状、錐台状、又は、長溝状の凸部又は凹部である。本実施の形態の複数のプリズム134のそれぞれは、導光体100の長さ方向に沿って形成される長溝であるが、例えば円錐状の凹部であってもよい。 The light incident on the prism 134 formed on the facing surface 133 is guided to the exit surface 132 on the opposite side via the prism 134 and is emitted from the exit surface 132. Each of the plurality of prisms 134 is a cone-shaped, frustum-shaped, or elongated groove-shaped convex or concave portion. Each of the plurality of prisms 134 of the present embodiment is a long groove formed along the length direction of the light guide body 100, but may be, for example, a conical recess.
 なお、導光体100のZ軸方向に沿った側面(出射面132及び対向面133の間の面)にも、複数のプリズム134が形成されていてもよい。 A plurality of prisms 134 may also be formed on the side surface of the light guide body 100 along the Z-axis direction (the surface between the exit surface 132 and the facing surface 133).
 図9は、実施の形態2に係る照明器具1aの点灯状態を例示する斜視図である。図9のaは発光モジュール121に対する距離を可変する前の照明器具1aの点灯状態を例示する斜視図であり、図9のbは発光モジュール121に対する距離を可変した後の照明器具1aの点灯状態を例示する斜視図である。 FIG. 9 is a perspective view illustrating a lighting state of the lighting fixture 1a according to the second embodiment. FIG. 9a is a perspective view illustrating a lighting state of the lighting fixture 1a before changing the distance to the light emitting module 121, and FIG. 9b is a lighting state of the lighting fixture 1a after changing the distance to the light emitting module 121. It is a perspective view which illustrates.
 図9に示すように、出射面132は、第1色の光を第1領域R1から出射し、第2色の光を第1領域R1と異なる第2領域R2から出射する。第1領域R1及び第2領域R2の大きさは、発光モジュール121の発光面と入射面131との距離に応じて変化する。例えば、入射面131を発光モジュール121に近付ければ、次第に、第1領域R1がZ軸プラス方向に移動し、かつ、第2領域R2もZ軸プラス方向に移動する。また、入射面131を発光モジュール121から遠ざければ、次第に、第1領域R1がZ軸マイナス方向に移動し、かつ、第2領域R2もZ軸マイナス方向に移動する。 As shown in FIG. 9, the exit surface 132 emits the light of the first color from the first region R1 and the light of the second color from the second region R2 different from the first region R1. The sizes of the first region R1 and the second region R2 change according to the distance between the light emitting surface of the light emitting module 121 and the incident surface 131. For example, when the incident surface 131 is brought closer to the light emitting module 121, the first region R1 gradually moves in the Z-axis plus direction, and the second region R2 also moves in the Z-axis plus direction. Further, as the incident surface 131 is moved away from the light emitting module 121, the first region R1 gradually moves in the Z-axis minus direction, and the second region R2 also moves in the Z-axis minus direction.
 <動作>
 本実施の形態では、図8及び図9に示すように、波長制御部材160として赤色蛍光体を有する波長変換部材を用いる。波長制御部材160は、発光モジュール121が発する白色光を赤色光に変換する。このような照明器具1aでは、図9に示すように、発光モジュール121が白色光を発すると、一部の白色光は、波長制御部材160を介さずに導光体100の入射面131に入射して導光体100を導光する。白色光は、発光モジュール121が発する光の光軸に対する角度が小さいため、導光体100のZ軸プラス方向側の端部側まで届く。これにより、導光体100の出射面132の第1領域R1からは、白色光が出射する。
<Operation>
In the present embodiment, as shown in FIGS. 8 and 9, a wavelength conversion member having a red phosphor is used as the wavelength control member 160. The wavelength control member 160 converts the white light emitted by the light emitting module 121 into red light. In such a lighting fixture 1a, as shown in FIG. 9, when the light emitting module 121 emits white light, a part of the white light is incident on the incident surface 131 of the light guide body 100 without passing through the wavelength control member 160. Then, the light guide body 100 is guided. Since the angle of the light emitted by the light emitting module 121 with respect to the optical axis is small, the white light reaches the end side of the light guide body 100 on the Z-axis plus direction side. As a result, white light is emitted from the first region R1 of the exit surface 132 of the light guide body 100.
 また、別の一部の白色光は、波長制御部材160に入射することで、赤色光に波長変換され、赤色光が反射する。そして、波長変換された赤色光は、導光体100の入射面131に入射して導光体100を導光する。赤色光は、白色光に比べて発光モジュール121が発する光の光軸に対する角度が大きいため、導光体100のZ軸プラス方向側の端部に届くまでに、導光体100のZ軸マイナス方向側の端部側から光が出射されてしまう。これにより、導光体100の出射面132の第2領域R2からは、赤色光が出射する。 Further, another part of the white light is wavelength-converted to red light by incident on the wavelength control member 160, and the red light is reflected. Then, the wavelength-converted red light is incident on the incident surface 131 of the light guide body 100 to guide the light guide body 100. Since the red light has a larger angle with respect to the optical axis of the light emitted by the light emitting module 121 than the white light, the Z-axis minus of the light guide body 100 is reached by the time it reaches the end of the light guide body 100 on the Z-axis plus direction side. Light is emitted from the end side on the directional side. As a result, red light is emitted from the second region R2 of the exit surface 132 of the light guide body 100.
 <作用効果>
 次に、本実施の形態における照明器具1aの作用効果について説明する。
<Effect>
Next, the action and effect of the lighting fixture 1a in the present embodiment will be described.
 上述したように、本実施の形態の照明器具1aにおいて、導光体100は、柱状である。複数のプリズム134は、導光体100の長さ方向に沿った対向面133に形成され、対向面133に対して長さ方向(Z軸方向)と線対称の反対側の面に形成されていない。 As described above, in the lighting fixture 1a of the present embodiment, the light guide body 100 is columnar. The plurality of prisms 134 are formed on the facing surface 133 along the length direction of the light guide body 100, and are formed on the surface opposite to the facing surface 133 in the length direction (Z-axis direction) and line symmetry. No.
 これによれば、複数のプリズム134で反射した光が、反対側に配置される複数のプリズム134に反射されてしまうことを抑制することができる。このため、照明器具1aでは、複数のプリズム134で反射した光が出射面32から確実に出射させることができる。 According to this, it is possible to prevent the light reflected by the plurality of prisms 134 from being reflected by the plurality of prisms 134 arranged on the opposite side. Therefore, in the luminaire 1a, the light reflected by the plurality of prisms 134 can be reliably emitted from the emission surface 32.
 本実施の形態においても、上述の実施の形態1と同様の作用効果を奏する。 Also in this embodiment, the same effects as those in the above-described first embodiment are obtained.
 (実施の形態3)
 本実施の形態の照明器具1bについて説明する。
(Embodiment 3)
The lighting fixture 1b of the present embodiment will be described.
 本実施の形態では、発光モジュール121として第1発光モジュール121a、第2発光モジュール121b及び第3発光モジュール121cを含む点で、実施の形態1の照明器具と相違する。また、導光体101の両面に複数のプリズム134が形成されている点で、実施の形態1の照明器具とも相違する。本実施の形態おける他の構成は、特に明記しない場合は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 The present embodiment is different from the lighting fixture of the first embodiment in that the light emitting module 121 includes the first light emitting module 121a, the second light emitting module 121b, and the third light emitting module 121c. Further, it is different from the lighting fixture of the first embodiment in that a plurality of prisms 134 are formed on both sides of the light guide body 101. Unless otherwise specified, other configurations in the present embodiment are the same as those in the first embodiment, and the same configurations are designated by the same reference numerals and detailed description of the configurations will be omitted.
 図10は、実施の形態3に係る照明器具1bが出射する光の光路を例示する断面図である。 FIG. 10 is a cross-sectional view illustrating an optical path of light emitted by the lighting fixture 1b according to the third embodiment.
 本実施の形態では、図10に示すように、反射体150は、1以上の第1発光モジュール121a、1以上の第2発光モジュール121b及び1以上の第3発光モジュール121cを収容する。 In the present embodiment, as shown in FIG. 10, the reflector 150 accommodates one or more first light emitting modules 121a, one or more second light emitting modules 121b, and one or more third light emitting modules 121c.
 [発光モジュール121]
 発光モジュール121は、第1色の光を発する1以上の第1発光モジュール121aと、第2色の光を発する1以上の第2発光モジュール121bと、第3色の光を発する1以上の第3発光モジュール121cとを含む。
[Light emitting module 121]
The light emitting module 121 includes one or more first light emitting modules 121a that emit light of the first color, one or more second light emitting modules 121b that emit light of the second color, and one or more first light emitting modules that emit light of the third color. 3 Includes a light emitting module 121c.
 具体的には、1以上の第1発光モジュール121aは、反射体150の中心軸O上又はその近傍に配置され、1以上の第2発光モジュール121bは、1以上の第1発光モジュール121aの周囲を囲むように配置され、1以上の第3発光モジュール121cは、1以上の第2発光モジュール121bのさらに外側の周囲を囲むように配置される。つまり、1以上の第2発光モジュール121b及び1以上の第3発光モジュール121cは、1以上の第1発光モジュール121aの集合を中心とした同心円状に配置される。 Specifically, one or more first light emitting modules 121a are arranged on or near the central axis O of the reflector 150, and one or more second light emitting modules 121b are around one or more first light emitting modules 121a. The one or more third light emitting modules 121c are arranged so as to surround the outer periphery of the one or more second light emitting modules 121b. That is, one or more second light emitting modules 121b and one or more third light emitting modules 121c are arranged concentrically around a set of one or more first light emitting modules 121a.
 第1発光モジュール121aは、キャビティを覆う第1レンズ121c1を有する。第1レンズ121c1は、反射体150を介さずに導光体101の入射面131に第1発光モジュール121aが発した光を入射させるように配光制御する。つまり、第1発光モジュール121aが発する光の光軸は、入射面131と交差する。 The first light emitting module 121a has a first lens 121c1 that covers the cavity. The first lens 121c1 controls the light distribution so that the light emitted by the first light emitting module 121a is incident on the incident surface 131 of the light guide body 101 without passing through the reflector 150. That is, the optical axis of the light emitted by the first light emitting module 121a intersects the incident surface 131.
 第2発光モジュール121bは、キャビティを覆う第2レンズ121c2を有する。第2レンズ121c2は、反射体150を介して導光体101の入射面131に第2発光モジュール121bが発した光を入射させるように配光制御する。第2発光モジュール121bが発する光の光軸は、反射体150の内面と交差する。 The second light emitting module 121b has a second lens 121c2 that covers the cavity. The second lens 121c2 controls the light distribution so that the light emitted by the second light emitting module 121b is incident on the incident surface 131 of the light guide body 101 via the reflector 150. The optical axis of the light emitted by the second light emitting module 121b intersects the inner surface of the reflector 150.
 第3発光モジュール121cは、キャビティを覆う第3レンズ121c3を有する。第3レンズ121c3は、反射体150を介して導光体101の入射面131に第3発光モジュール121cが発した光を入射させるように配光制御する。第3発光モジュール121cが発する光の光軸は、反射体150の内面と交差する。第3発光モジュール121cが発する第3色の光の光軸と反射体150の内面と交差する交点は、第2発光モジュール121bが発する第2色の光の光軸と反射体150の内面との交点よりも発光モジュール121側に位置する。 The third light emitting module 121c has a third lens 121c3 that covers the cavity. The third lens 121c3 controls the light distribution so that the light emitted by the third light emitting module 121c is incident on the incident surface 131 of the light guide body 101 via the reflector 150. The optical axis of the light emitted by the third light emitting module 121c intersects the inner surface of the reflector 150. The intersection of the optical axis of the third color light emitted by the third light emitting module 121c and the inner surface of the reflector 150 is the intersection of the optical axis of the second color light emitted by the second light emitting module 121b and the inner surface of the reflector 150. It is located closer to the light emitting module 121 than the intersection.
 [導光体101]
 導光体101は、入射面131と、一方面141と、他方面142とを有する。
[Light guide body 101]
The light guide body 101 has an incident surface 131, one surface 141, and the other surface 142.
 入射面131は、一方面141と他方面142との間のZ軸マイナス方向側の端面であり、発光モジュール121の発光面と対向する面である。 The incident surface 131 is an end surface between the one surface 141 and the other surface 142 on the negative direction side of the Z axis, and is a surface facing the light emitting surface of the light emitting module 121.
 一方面141は、入射面131から入射した光を出射させる面であり、他方面142と反対側の面である。一方面141は、Z軸方向に沿って延びる面である。本実施の形態では、導光体101は四角柱状であるため、一方面141は平面であるが、導光体101の形状に応じて、円弧状の曲面であってもよい。 One surface 141 is a surface that emits light incident from the incident surface 131, and is a surface opposite to the other surface 142. On the other hand, the surface 141 is a surface extending along the Z-axis direction. In the present embodiment, since the light guide body 101 has a square columnar shape, one surface 141 is a flat surface, but it may be an arcuate curved surface depending on the shape of the light guide body 101.
 他方面142は、入射面131から入射した光を出射させる面であり、一方面142と反対側の面である。他方面142は、Z軸方向に沿って延びる面である。本実施の形態では、導光体101は四角柱状であるため、他方面142は平面であるが、導光体101の形状に応じて、円弧状の曲面であってもよい。 The other surface 142 is a surface that emits light incident from the incident surface 131, and is a surface opposite to the one surface 142. The other surface 142 is a surface extending along the Z-axis direction. In the present embodiment, since the light guide body 101 has a square columnar shape, the other surface 142 is a flat surface, but it may be an arcuate curved surface depending on the shape of the light guide body 101.
 一方面141には、複数のプリズム134が形成される光取出し面141aと、光取出し面141aに隣接する1以上の出射面141bとを有する。また、他方面142には、一方面141の出射面141bと反対側の面に形成される光取出し面142aと、一方面141の光取出し面141aと反対側の面に形成される出射面142bとを有する。つまり、図10の導光体101の断面で見た場合に、光取出し面141aと出射面142bとは、中心軸Oで線対称に配置され、出射面141bと光取出し面142aとは、中心軸Oで線対称に配置される。 One surface 141 has a light extraction surface 141a on which a plurality of prisms 134 are formed, and one or more emission surfaces 141b adjacent to the light extraction surface 141a. Further, on the other surface 142, the light extraction surface 142a formed on the surface of the one surface 141 opposite to the emission surface 141b and the emission surface 142b formed on the surface of the one surface 141 opposite to the light extraction surface 141a. And have. That is, when viewed in the cross section of the light guide body 101 of FIG. 10, the light extraction surface 141a and the light extraction surface 142b are arranged line-symmetrically with respect to the central axis O, and the emission surface 141b and the light extraction surface 142a are centered. It is arranged line-symmetrically on the axis O.
 なお、一方面141には、光取出し面141a及び出射面141bが複数形成されていてもよい。また、他方面142にも、光取出し面142a及び出射面142bが複数形成されていてもよい。 A plurality of light extraction surfaces 141a and exit surfaces 141b may be formed on one surface 141. Further, a plurality of light extraction surfaces 142a and emission surfaces 142b may be formed on the other surface 142 as well.
 本実施の形態における作用効果は、上述の実施の形態1等と同様の作用効果を奏する。 The action and effect in the present embodiment have the same action and effect as those in the above-described first embodiment and the like.
 (その他変形例)
 以上、本開示に係る照明器具について、実施の形態1~3に基づいて説明したが、本開示は、上記の各実施の形態1~3に限定されるものではない。
(Other variants)
The lighting fixtures according to the present disclosure have been described above based on the first to third embodiments, but the present disclosure is not limited to the first to third embodiments described above.
 例えば、上記の実施の形態3に係る照明器具において、反射体に波長変換部材が設けられていなくてもよい。 For example, in the lighting fixture according to the third embodiment, the reflector may not be provided with a wavelength conversion member.
 また、上記の実施の形態3に係る照明器具の導光体は、他の実施の形態1、2に適用されてもよく、実施の形態1、2の導光体は、実施の形態3の導光体に適用されてもよい。 Further, the light guide body of the lighting equipment according to the third embodiment may be applied to other embodiments 1 and 2, and the light guide body of the first and second embodiments is the light guide body of the third embodiment. It may be applied to a light guide body.
 また、上記の実施の形態3に係る照明器具1cにおいて、図11に示すように、導光体102のZ軸方向に沿った全ての側面160(つまり、導光体の中心軸Oの周方向の外周面であり4つの側面)にも、複数のプリズム134が形成されていてもよい。また、導光体102の側面160では、発光モジュール121(反射体150)から遠ざかるにつれて、複数のプリズム134を形成する光取出し面161の面積(又はZ軸方向の幅)が大きくなり、かつ、出射面162の面積(又はZ軸方向の幅)が小さくなる。図11は、その他変形例に係る照明器具1cを例示する斜視図である。 Further, in the lighting fixture 1c according to the third embodiment, as shown in FIG. 11, all the side surfaces 160 along the Z-axis direction of the light guide body 102 (that is, the circumferential direction of the central axis O of the light guide body O). A plurality of prisms 134 may be formed on the outer peripheral surface of the above (four side surfaces). Further, on the side surface 160 of the light guide body 102, the area (or width in the Z-axis direction) of the light extraction surface 161 forming the plurality of prisms 134 increases as the distance from the light emitting module 121 (reflector 150) increases. The area (or width in the Z-axis direction) of the exit surface 162 becomes smaller. FIG. 11 is a perspective view illustrating the lighting fixture 1c according to another modified example.
 また、上記の実施の形態2、3に係る照明器具において、第1色の光は、第2色の光と色温度が異なる光であってもよい。この場合、第1色の光は、第2色の光よりも低色温度の光であってもよく、高色温度の光であってもよい。この場合、光源が1つであれば、キャビティ内の蛍光体の濃度又は種類を異ならせてもよい。例えば、発光素子と反射体との間におけるキャビティ内の蛍光体の濃度又は種類を、導光体と発光素子との間におけるキャビティ内の蛍光体の濃度又は種類とを異ならせてもよい。 Further, in the lighting fixtures according to the above-described second and third embodiments, the light of the first color may be light having a color temperature different from that of the light of the second color. In this case, the light of the first color may be light having a lower color temperature than the light of the second color, or may be light having a higher color temperature. In this case, if there is only one light source, the concentration or type of the phosphor in the cavity may be different. For example, the concentration or type of the phosphor in the cavity between the light emitting element and the reflector may be different from the concentration or type of the phosphor in the cavity between the light guide and the light emitting element.
 また、上記の実施の形態1に係る照明器具において、複数のプリズムは、出射面に形成されていてもよい。この場合、出射面に形成される複数のプリズムは、対向面から光を出射させ、対向面が出射面ともなり得え、複数のプリズムが形成された出射面が光取出し面ともなり得てもよい。 Further, in the lighting fixture according to the first embodiment, the plurality of prisms may be formed on the exit surface. In this case, the plurality of prisms formed on the exit surface may emit light from the facing surface, and the facing surface may also be the exit surface, and the exit surface on which the plurality of prisms are formed may also be the light extraction surface. good.
 なお、上記の各実施の形態1~3に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態1~3における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。 It should be noted that the components and functions of the above-described embodiments 1 to 3 can be obtained by subjecting various modifications to those skilled in the art, and the components and functions of the embodiments 1 to 3 without departing from the spirit of the present disclosure. The present disclosure also includes a form realized by any combination.
1、1a、1b、1c 照明器具
21、121a、121b、121c 発光モジュール(光源)
30、100、101、102 導光体
31、131 入射面
32、132 出射面
33、133 対向面(光取出し面)
34、134 プリズム
34a 第1面
34b 第2面
132、162 出射面
161 光取出し面
1,1a, 1b, 1c Lighting equipment 21, 121a, 121b, 121c Light emitting module (light source)
30, 100, 101, 102 Light guides 31, 131 Incident surface 32, 132 Exit surface 33, 133 Opposing surface (light extraction surface)
34, 134 Prism 34a First surface 34b Second surface 132, 162 Exit surface 161 Light extraction surface

Claims (5)

  1.  光源と、
     前記光源の発する光が入射する入射面と、前記入射面から入射した光を出射面から出射させるための光取出し面とを有し、前記出射面から光を出射させるための複数のプリズムが形成される柱状又は板状の導光体とを備え、
     前記光取出し面には、前記光源が発する光の光軸方向に対して傾斜する第1面と、前記第1面と対向する第2面とを有する前記複数のプリズムが形成され、
     前記光取出し面と直交し、かつ、前記光軸方向と平行な平面で導光体を切断した断面を見た場合、前記光軸方向に対する前記第1面の第1角度をθ1とし、前記光軸方向に対する前記第2面の第2角度をθ2とし、前記複数のプリズムのうちの隣り合う2つのプリズムの距離をL1とし、前記複数のプリズムの前記光軸方向に沿った幅をL2とすると、以下の式(1)~(3)が成立する
       0<L2≦0.5×L1   式(1)
       25°≦θ1≦58°   式(2)
       0<θ1+10°<θ2≦90°   式(3)
     照明器具。
    Light source and
    It has an incident surface on which the light emitted by the light source is incident and a light extraction surface for emitting the light incident from the incident surface from the emitting surface, and a plurality of prisms for emitting the light from the emitting surface are formed. It is provided with a columnar or plate-shaped light guide body to be formed.
    On the light extraction surface, the plurality of prisms having a first surface inclined with respect to the optical axis direction of the light emitted by the light source and a second surface facing the first surface are formed.
    When the cross section of the light guide body is cut in a plane orthogonal to the light extraction surface and parallel to the optical axis direction, the first angle of the first surface with respect to the optical axis direction is set to θ1, and the light Let θ2 be the second angle of the second surface with respect to the axial direction, L1 be the distance between two adjacent prisms among the plurality of prisms, and L2 be the width of the plurality of prisms along the optical axis direction. , The following equations (1) to (3) hold 0 <L2 ≤ 0.5 × L1 equation (1)
    25 ° ≤ θ1 ≤ 58 ° Equation (2)
    0 <θ1 + 10 ° <θ2 ≦ 90 ° Equation (3)
    lighting equipment.
  2.  前記幅L2は、前記隣り合う2つのプリズムの距離L1の1/6である
     請求項1に記載の照明器具。
    The luminaire according to claim 1, wherein the width L2 is 1/6 of a distance L1 between two adjacent prisms.
  3.  前記第1面は、前記光源側に面する傾斜面であり、
     前記第2面は、プリズムにおいて前記第1面と反対側の面である
     請求項1又は2に記載の照明器具。
    The first surface is an inclined surface facing the light source side.
    The luminaire according to claim 1 or 2, wherein the second surface is a surface of the prism opposite to the first surface.
  4.  前記複数のプリズムのそれぞれは、前記光軸方向と直交する方向に延びる長溝である
     請求項1~3のいずれか1項に記載の照明器具。
    The luminaire according to any one of claims 1 to 3, wherein each of the plurality of prisms is a long groove extending in a direction orthogonal to the optical axis direction.
  5.  前記導光体は、柱状であり、
     前記複数のプリズムは、前記導光体の長さ方向に沿った前記光取出し面に形成され、前記光取出し面に対して前記長さ方向と線対称の反対側の面に形成されていない
     請求項1~4のいずれか1項に記載の照明器具。
    The light guide body is columnar and has a columnar shape.
    The plurality of prisms are formed on the light extraction surface along the length direction of the light guide body, and are not formed on the surface opposite to the light extraction surface in line symmetry with the length direction. The lighting equipment according to any one of items 1 to 4.
PCT/JP2021/006613 2020-02-26 2021-02-22 Light fixture WO2021172268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030889 2020-02-26
JP2020030889A JP2021136128A (en) 2020-02-26 2020-02-26 Lighting fixture

Publications (1)

Publication Number Publication Date
WO2021172268A1 true WO2021172268A1 (en) 2021-09-02

Family

ID=77491020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006613 WO2021172268A1 (en) 2020-02-26 2021-02-22 Light fixture

Country Status (2)

Country Link
JP (1) JP2021136128A (en)
WO (1) WO2021172268A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200993A (en) * 2012-03-23 2013-10-03 Konica Minolta Inc Light guide plate, lighting device, and light stand
JP2015225819A (en) * 2014-05-29 2015-12-14 株式会社小糸製作所 Vehicular lighting fixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200993A (en) * 2012-03-23 2013-10-03 Konica Minolta Inc Light guide plate, lighting device, and light stand
JP2015225819A (en) * 2014-05-29 2015-12-14 株式会社小糸製作所 Vehicular lighting fixture

Also Published As

Publication number Publication date
JP2021136128A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
KR101298406B1 (en) Light Emitting Device
CN102130109B (en) Light emitting device and light unit using the same
US20120300430A1 (en) Light-emitting module and lighting apparatus
KR20150027480A (en) A light emitting device package
US7663154B2 (en) Backlight module and light emitting diode package structure therefor
KR20110128006A (en) Light emitting device
KR20060106700A (en) Spread illuminating apparatus of side light type
WO2021172268A1 (en) Light fixture
JP2012074317A (en) Lighting system, lamp, and showcase
KR102160775B1 (en) A light emitting device package
KR20220098713A (en) Lighting apparatus
WO2021172267A1 (en) Lighting fixture
JP6635251B2 (en) Lighting equipment
JP7426578B2 (en) Light guide plate lighting device
US9435931B2 (en) LED lighting apparatus
JP6909974B2 (en) Indirect lighting equipment
JP6931798B2 (en) lighting equipment
JP5799218B2 (en) LED unit and lighting apparatus using the same
JP2022038514A (en) Luminaire
JP2016213055A (en) Luminaire
JP2017054616A (en) Luminaire
JP5210454B2 (en) LED unit and lighting apparatus using the same
KR102385942B1 (en) Lighting apparatus
KR102388286B1 (en) Lighting apparatus
KR20240036684A (en) Light emitting diode package and backlight unit including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759732

Country of ref document: EP

Kind code of ref document: A1