WO2021172225A1 - Program, system, measurement device, and method - Google Patents

Program, system, measurement device, and method Download PDF

Info

Publication number
WO2021172225A1
WO2021172225A1 PCT/JP2021/006462 JP2021006462W WO2021172225A1 WO 2021172225 A1 WO2021172225 A1 WO 2021172225A1 JP 2021006462 W JP2021006462 W JP 2021006462W WO 2021172225 A1 WO2021172225 A1 WO 2021172225A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
heat
heat stroke
respiratory rate
biometric information
Prior art date
Application number
PCT/JP2021/006462
Other languages
French (fr)
Japanese (ja)
Inventor
茂木 孝之
松田 勲
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2021172225A1 publication Critical patent/WO2021172225A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop

Definitions

  • the present invention relates to programs, systems, measuring devices, and methods.
  • an object of the present invention is to obtain a program, a system, a measuring device, and a method capable of predicting the onset of heat stroke with high accuracy.
  • a program causes a computer to acquire biometric information including at least one of the user's pulse rate and respiratory rate. Based on the biometric information, the acquisition unit, the environmental information acquisition unit for acquiring the environmental information, the amount of increase in the respiratory rate when the biometric information is acquired from the normal pulse rate of the user, and the biometric information.
  • a heat index indicating the degree of heat stroke based on the increase amount calculation unit that calculates at least one of the increase amounts of the respiratory rate from the user's normal respiratory rate at the time of acquisition and the environmental information. Based on the heat index calculation unit that calculates It functions as a heat stroke predictor having a processing unit that determines to execute a heat stroke response process.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the heat stroke prediction system of the first embodiment.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the heat stroke prediction system of the first embodiment.
  • FIG. 3 is a flow chart showing an example of a processing procedure in the heat stroke prediction device according to the first embodiment.
  • FIG. 4 is a flow chart showing an example of a processing procedure in the heat stroke prediction device according to the second embodiment.
  • FIG. 1 is a schematic view showing an example of the configuration of the heat stroke prediction system 10 of the first embodiment.
  • the heat stroke prediction system 10 includes measuring devices 100a and 100b and a heat stroke prediction device 200.
  • the measuring device 100a includes an air pad 41, a temperature / humidity sensor 42, a hose 43, a piezoelectric sensor 44, and an amplifier 45.
  • the air pad 41 is arranged on a rug 40 such as a bed mattress and a futon mattress, and air is sealed inside the air pad 41.
  • the air pad 41 acts to receive vibrations associated with at least one of the user M's pulse and respiration by coming into contact with the back of the user M lying on the rug 40.
  • the air pad 41 extends from the heat stroke prevention device 200 to the user M side to be measured, and searches for a physical quantity from the living body such as vibration by the user M, that is, receives the physical quantity, for example, and receives heat stroke. This is an example of an exploration tool for transmitting to the preventive device 200.
  • the piezoelectric sensor 44 is connected to the air pad 41 through a hose 43 or the like.
  • air pad 41 receives the vibration
  • air is sent from the air pad 41 due to the pressure change corresponding to the vibration received by the air pad 41, and the air is sent to the piezoelectric sensor 44 through the hose 43.
  • the piezoelectric sensor 44 has a piezoelectric body, and when the piezoelectric body receives air, the piezoelectric body receives a pressure change and the piezoelectric body bends to detect it as a voltage change. In this way, the vibration associated with at least one of the pulse and respiration of the user M can be detected.
  • the amplifier 45 amplifies or attenuates the voltage converted by the piezoelectric sensor 44 as needed.
  • These air pads 41, hose 43, piezoelectric sensor 44, and amplifier 45 are configured as biosensors that measure biometric information including at least one of user M's pulse rate and respiratory rate information.
  • the temperature / humidity sensor 42 is installed in, for example, the rug 40 on which the air pad 41 is arranged. However, if the temperature and humidity of the ambient environment of the user M can be detected, the temperature / humidity sensor 42 may be arranged in the room where the floor covering 40 is placed or in the heat stroke measurement kit described later.
  • the temperature / humidity sensor 42 is an example of an environment sensor that measures environmental information regarding the temperature and humidity of the ambient environment of the user M.
  • the environment sensor may include a radiant heat sensor (not shown) in addition to the temperature / humidity sensor 42.
  • Environmental information includes temperature, humidity, and amount of heat radiation.
  • the measuring device 100b includes an air pad 51, a temperature / humidity sensor 52, a hose 53, a piezoelectric sensor 54, and an amplifier 55.
  • the air pad 51 is arranged, for example, in the seat of the chair 50, and air is sealed inside the air pad 51.
  • the air pad 51 acts to receive vibrations associated with at least one of the user's pulse and respiration by coming into contact with the thigh of the user sitting on the chair 50.
  • the air pad 51 extends from the heat stroke prevention device 200 to the user side to be measured, and searches for a physical quantity from the living body such as vibration by the user, that is, receives the physical quantity, for example, and receives the physical quantity to prevent the heat stroke. This is an example of an exploration tool for transmitting to 200.
  • the air pad 51 can be arranged on various types of seats such as a sitting chair, a sofa, and a bench, in addition to the chair 50, as long as it is for sitting.
  • the piezoelectric sensor 54 is connected to the air pad 51 through a hose 53 or the like.
  • air pad 51 receives the vibration
  • air is sent from the air pad 51 due to the pressure change corresponding to the vibration received by the air pad 51, and the air is sent to the piezoelectric sensor 54 through the hose 53.
  • the piezoelectric sensor 54 has a piezoelectric body, and when the piezoelectric body receives air, the piezoelectric body receives a pressure change and the piezoelectric body bends to detect it as a voltage change. In this way, vibrations associated with at least one of the user's pulse and respiration can be detected.
  • the amplifier 55 amplifies or attenuates the voltage converted by the piezoelectric sensor 54 as needed.
  • These air pads 51, hose 53, piezoelectric sensor 54, and amplifier 55 are configured as biosensors that measure biometric information including at least one of the user's pulse rate and respiratory rate.
  • the temperature / humidity sensor 52 is installed, for example, in a room or the like where a chair 50 on which an air pad 51 is arranged is placed. When the chair 50 is placed outdoors such as on a balcony or in a garden, the temperature / humidity sensor 52 is installed in the vicinity thereof. If the temperature and humidity of the user's ambient environment can be detected, the temperature / humidity sensor 52 may be arranged in a place other than these, for example, in a heat stroke measurement kit described later.
  • the temperature / humidity sensor 52 is configured as an environment sensor that measures environmental information regarding the temperature and humidity of the user's ambient environment.
  • the environment sensor may include a radiant heat sensor (not shown). Therefore, the environmental information may include temperature, humidity, and amount of heat radiation.
  • the heat stroke prediction device 200 is configured as a computer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, which will be described later.
  • the processing unit 210, the biological information acquisition unit 211x, the increase amount calculation unit 212x, the environmental information acquisition unit 211y, the heat index calculation unit 212y, and the like shown in FIG. Realize the function.
  • the CPU controls the above functions and the entire heat stroke prediction device 200 such as the storage unit 213, the display unit 230, and the ringing unit 231.
  • the biometric information acquisition unit 211x acquires biometric information such as the user's pulse rate and respiratory rate from the biosensors including the above-mentioned air pads 41, 51 and piezoelectric sensors 44, 54 and the like.
  • the increase amount calculation unit 212x calculates at least one of the user's pulse rate and respiratory rate based on the biological information.
  • the increase amount calculation unit 212x stores these calculated numerical values in the storage unit 213.
  • the increase amount calculation unit 212x calculates at least one of the increase amount of the pulse rate and the increase amount of the respiratory rate of the user.
  • the amount of increase in the pulse rate is a value indicating how much the current user's pulse rate included in the biometric information acquired from the biosensor is increased from the user's normal pulse rate.
  • the respiratory rate increase is a value indicating how much the current user's respiratory rate included in the biological information acquired from the biosensor is increased from the user's normal respiratory rate.
  • the user's normal pulse rate and respiratory rate are extracted from the user's pulse rate and respiratory rate calculated so far by the increase amount calculation unit 212x.
  • the pulse rate and respiratory rate during sleep which are likely to maintain a resting state, are calculated by the user's normal pulse rate and respiratory rate.
  • the user's normal pulse rate and respiratory rate may be used as the pulse rate and respiratory rate at the start of measurement at that time.
  • the environmental information acquisition unit 211y acquires environmental information in the user's surrounding environment from the above-mentioned temperature / humidity sensors 42, 52 and the like.
  • the heat index calculation unit 212y calculates the heat index based on the environmental information.
  • the heat index is an index indicating the degree of occurrence of heat stroke in the user's surrounding environment, and may be, for example, a wet-bulb globe temperature (WBGT: Wet Bulb Globe Temperature) or the like.
  • the black bulb temperature Tgt is measured by a thermometer placed inside a black copper plate bulb, and the wet bulb temperature Tnwb is measured by a thermometer wrapped with moistened gauze around the temperature sensitive part.
  • WBGT can be obtained by measuring the dry-bulb temperature Tndb using a normal thermometer and applying these numerical values to any of the following two equations.
  • WBGT expresses heat by three factors: humidity, temperature, and intensity of sunlight.
  • the WBGT can also be estimated from the temperature and humidity data measured by the temperature and humidity sensors 42 and 52 described above.
  • the heat index calculation unit 212y may calculate another heat index different from the WBGT as long as it indicates the degree of heat stroke.
  • the heat index calculation unit 212y stores the calculated heat index in the storage unit 213.
  • the processing unit 210 determines whether or not to perform a heat stroke response process based on the amount of increase in pulse rate, respiratory rate, etc., and the heat index. Specifically, the processing unit 210 determines whether or not the heat index is equal to or higher than the threshold value. In addition, the processing unit 210 determines whether or not at least one of the increase in pulse rate and respiratory rate exceeds the threshold value. Then, the processing unit 210 decides to execute the heat stroke response processing when both the value of the heat index and the value of the increase amount of at least one of them are equal to or more than the threshold value.
  • the processing unit 210 determines, for example, to display a warning on the display unit 230 as a response process for heat stroke, and instructs the display unit 230 to display the warning. Further, the processing unit 210 determines, for example, to issue an alarm to the ringing unit 231 as a response process for heat stroke, and instructs the ringing unit 231 to issue an alarm.
  • the display unit 230 displays a warning based on an instruction from the processing unit 210.
  • the warning includes, for example, various information such as that the user is in a state of being prone to heat stroke and the content that urges the user to take some measures.
  • the display unit 230 is the detection result by various sensors acquired by the biological information acquisition unit 211x and the environmental information acquisition unit 211y, the increase amount of the user's pulse rate and respiratory rate calculated by the increase amount calculation unit 212x, and the heat index calculation unit. It may be possible to display the heat index or the like calculated by 212y.
  • the ringing unit 231 issues an alarm based on an instruction from the processing unit 210.
  • the alarm issued by the ringing unit 231 may be a voice warning, an alarm sound, or the like.
  • the voice warning can include, for example, various information such as the user being in a state of being prone to heat stroke and the content urging the user to take some measures.
  • the ringing unit 231 may be able to issue various messages to the user as well as an alarm when the risk of developing heat stroke increases.
  • the storage unit 213 stores various data such as the pulse rate and the respiratory rate calculated by the increase amount calculation unit 212x so far, and the heat index calculated by the heat index calculation unit 212y so far. In this way, the storage unit 213 stores data continuously monitored from the user and the user's surrounding environment. In addition, the storage unit 213 stores a threshold value for an increase amount such as a pulse rate and a respiratory rate, a threshold value for a heat index, and the like.
  • the threshold value for the heat index can be determined, for example, based on various guidelines posted on the heat stroke prevention information site of the Ministry of the Environment.
  • various guidelines provided by the Ministry of the Environment for example, the "Guidelines for Daily Life” provide the following guidelines regarding the relationship between WBGT and heat stroke.
  • WBGT can be used as the heat index
  • the above threshold value of the heat index can be set to, for example, 28 ° C.
  • the threshold value for the amount of increase in pulse rate can be, for example, 30 times / minute.
  • the threshold value for the amount of increase in respiratory rate can be, for example, 15 times / minute.
  • the configuration of the heat stroke prediction system 10 shown above is merely an example, and the number of measuring devices 100a and 100b and the heat stroke prediction device 200 included in the heat stroke prediction system 10 is arbitrary.
  • the heat stroke prediction system may include one measuring device and one heat stroke prediction device.
  • the heat stroke prediction system may be provided with three or more measuring devices, or may be provided with a plurality of heat stroke prediction devices corresponding to each measuring device.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the heat stroke prediction system 10 of the first embodiment.
  • the heat stroke prediction system 10 includes a heat stroke measurement kit 20, air pads 41, 51, and temperature / humidity sensors 42, 52 as hardware configurations.
  • the heat stroke measurement kit 20 has a configuration in which a set of equipment such as a heat stroke prevention device 200 configured as a computer, piezoelectric sensors 44 and 54, and amplifiers 45 and 55 are integrated in one housing. This facilitates installation in the surrounding environment of the user to be measured, such as indoors.
  • a heat stroke prevention device 200 configured as a computer
  • piezoelectric sensors 44 and 54 and amplifiers 45 and 55 are integrated in one housing. This facilitates installation in the surrounding environment of the user to be measured, such as indoors.
  • the heat stroke measurement kit 20 includes a CPU 10, a ROM 14, and a RAM 15.
  • the CPU 10 realizes the above-mentioned various functions by executing the heat stroke prediction program stored in, for example, the ROM 14 or the like with the RAM 15 as the work area.
  • the program running on the CPU 10 realizes the above-mentioned increase amount calculation unit 212x, heat index calculation unit 212y, and processing unit 210.
  • the heat stroke measurement kit 20 is connected to the sensor interface (I / F: Interface) 11, the amplifiers 45 and 55 connected to the sensor I / F 11, and the amplifiers 45 and 55, respectively, and air is sent from the air pads 41 and 51.
  • the piezoelectric sensors 44 and 54 are provided.
  • the sensor I / F 11 functions as the above-mentioned biometric information acquisition unit 211x and environmental information acquisition unit 211y under the control of the CPU 10. Further, the sensor I / F 11 includes, for example, an analog / digital (A / D: Analog to Digital) converter 11a, and converts analog voltages from the piezoelectric sensors 44, 54 and amplifiers 45, 55 into digital signals.
  • a / D Analog to Digital
  • the heat stroke measurement kit 20 includes a display 31 and an alarm 32.
  • the display 31 functions as the display unit 230 described above under the control of the CPU 10.
  • the alarm 32 functions as the above-mentioned ringing unit 231 under the control of the CPU 10.
  • the heat stroke measurement kit 20 includes an auxiliary storage device 13.
  • the auxiliary storage device 13 functions as the above-mentioned storage unit 213 under the control of the CPU 10.
  • the CPU 10, ROM 14, RAM 15, sensor I / F 11, and auxiliary storage device 13 are connected to, for example, an internal bus, and are configured to be able to exchange various information and signals with each other.
  • the display 31, the alarm 32, the auxiliary storage device 13, and the like may be externally attached as external devices of the heat stroke measurement kit 20.
  • the temperature and humidity of the user's ambient environment can be detected, such as when the heat stroke measurement kit 20 is close to the installation position of the air pads 41, 51, etc., the temperature / humidity sensors 42, 52, etc. May be built into the heat stroke measurement kit 20.
  • the heat stroke measurement kit 20 may include a set of piezoelectric sensors and an amplifier, and may be connected to a set of air pads and a temperature / humidity sensor. That is, the above-mentioned measuring device and the heat stroke prediction device may have a one-to-one correspondence.
  • FIG. 3 is a flow chart showing an example of a processing procedure in the heat stroke prediction device 200 according to the first embodiment.
  • the environmental information acquisition unit 211y of the heat stroke prediction device 200 acquires environmental information such as temperature / humidity data from the temperature / humidity sensors 42, 52 and the like (step S101).
  • the heat index calculation unit 212y calculates a heat index such as WBGT based on the environmental information (step S102).
  • the processing unit 210 determines whether or not the heat index is equal to or higher than the threshold value (step S103). If the heat index is less than the threshold value (step S103: No), the process returns to step S101. If the heat index is equal to or higher than the threshold value (step S103: Yes), the processing unit 210 proceeds to the next step S104.
  • the biometric information acquisition unit 211x acquires biometric information such as the user's pulse rate and respiratory rate from the biosensors including the piezoelectric sensors 44 and 54 (step S104).
  • the increase amount calculation unit 212x calculates at least one of the increase amount of the pulse rate and the increase amount of the respiratory rate based on the biological information (step S105).
  • the processing unit 210 determines whether or not the increase in pulse rate and the increase in respiratory rate are equal to or greater than the respective threshold values (step S106). If any of the increases is less than the threshold value (step S106: No), the process returns to step S101.
  • step S106 If at least one of the increase in pulse rate and the increase in respiratory rate is equal to or greater than the threshold value (step S106: Yes), the processing unit 210 displays a warning regarding heat stroke on the display unit 230 (step S107). In addition, the processing unit 210 causes the ringing unit 231 to issue a warning regarding heat stroke (step S108).
  • the user may take measures to lower the temperature and humidity in the surrounding environment such as indoors by operating the air conditioner or the like or opening the window.
  • the processing unit 210 determines whether or not the amount of increase in the heat index, pulse rate, respiratory rate, etc. is less than the threshold value (step S109). If these numerical values are not less than the threshold value (step S109: No), the processing unit 210 repeats the processing of steps S107 to S108. If the above value is less than the threshold value (step S109: Yes), the processing unit 210 ends the processing.
  • the heat stroke response process is executed based on at least one of the increase in pulse rate and respiratory rate, and the fact that the heat index is equal to or higher than the threshold value. Will be done.
  • the heat stroke prediction system 10 of the first embodiment it is used in contact with the body of a user who takes a predetermined posture, and air is sealed so that at least one movement accompanying the user's pulse and respiration is transmitted. It has air pads 41, 51 and piezoelectric sensors 44, 54 for detecting pressure changes generated in the air pads 41, 51.
  • the user's pulse rate and respiratory rate can be measured with high accuracy.
  • the air pad 41 is arranged on the rug 40 and is used in contact with the back of the user lying on the rug 40.
  • the room temperature may not be properly controlled in ordinary households, and heat stroke may occur even during sleep.
  • the air pad 51 is arranged on the seat portion of the chair 50 and is used in contact with the thigh portion of the user sitting on the chair 50.
  • the heat stroke prediction system of the first modification is different from the above-described first embodiment in that it executes a preliminary response process for heat stroke.
  • the processing unit determines whether or not to execute the preliminary response process for heat stroke in the process corresponding to step S103 in FIG. 3 described above. Specifically, the processing unit of the modified example 1 determines to execute the preliminary response processing in addition to the processing in step S104 and subsequent steps when at least the heat index becomes equal to or higher than the threshold value.
  • the processing unit of the modified example 1 determines, for example, to display a preliminary warning on the display unit as a preliminary response process for heat stroke, and transmits an instruction to display the preliminary warning on the display unit. Further, the processing unit of the modified example 1 determines, for example, to issue a preliminary alarm to the ringing unit as a preliminary response process for heat stroke, and transmits an instruction to issue a preliminary alarm to the ringing unit. do.
  • preliminary warnings and preliminary warnings may include various information such as, for example, that the user is in a state where he / she is likely to develop heat stroke and that the user is urged to take some measures. Further, the preliminary warning and the preliminary warning may have a weaker degree of alerting than the warning and the warning performed in the process corresponding to steps S108 and S109 in FIG. 3 described above.
  • the user is alerted to the preliminary response process and the response process a plurality of times, so that appropriate measures are taken to suppress the onset of heat stroke. Is easier to plan.
  • the heat stroke prediction device has a communication unit that is wirelessly or wiredly connected to air conditioning equipment such as an air conditioner.
  • air conditioning equipment such as an air conditioner.
  • the communication unit transmits an instruction from the processing unit of the second modification to the air conditioning equipment
  • the air conditioning equipment operates according to the instruction of the processing unit under the control of the processing unit.
  • the processing unit decides to execute the heat stroke response processing in the processing corresponding to step S106 of FIG. 3 described above, for example, the processing unit decides to operate the air conditioning equipment and air via the communication unit. Send instructions to operate the air conditioning equipment.
  • the processes corresponding to steps S107 and S108 in FIG. 3 may be executed in parallel.
  • a predetermined response can be taken without leaving the effective response to the heat stroke to the user, so that the onset of heat stroke is further suppressed. be able to.
  • the heat stroke prediction system of the second embodiment is different from the above-described first embodiment in that it also determines an abnormality other than the heat stroke.
  • FIG. 4 is a flow chart showing an example of the processing procedure in the heat stroke prediction device according to the second embodiment.
  • the biometric information acquisition unit of the heat stroke prediction system of the second embodiment acquires biometric information such as the user's pulse rate and respiratory rate from the biosensor including the piezoelectric sensor (step S201).
  • the increase amount calculation unit calculates at least one of the increase amount of the pulse rate and the increase amount of the respiratory rate based on the biological information (step S202).
  • the processing unit of the second embodiment determines whether or not the amount of increase in the pulse rate and the amount of increase in the respiratory rate are equal to or higher than the respective threshold values (step S203). If any of the increases is less than the threshold value (step S203: No), the process returns to step S201.
  • the environmental information acquisition unit acquires environmental information such as temperature / humidity data from a temperature / humidity sensor or the like (step S203: Yes).
  • the heat index calculation unit calculates a heat index such as WBGT based on the environmental information (step S205).
  • the processing unit determines whether or not the heat index is equal to or higher than the threshold value (step S206). If the heat index is equal to or greater than the threshold value (step S206: Yes), the processing unit displays a warning regarding heat stroke on the display unit (step S207). In addition, the processing unit issues a warning regarding heat stroke to the ringing unit (step S208).
  • the processing unit determines whether the heat index and the amount of increase in pulse rate, respiratory rate, etc. are below the threshold value in order to confirm whether appropriate measures have been taken by the user who received the warning (step). S209). If these numerical values are not less than the threshold value (step S209: No), the processing unit repeats the processing of steps S207 to S208. If the above value is less than the threshold value (step S209: Yes), the processing unit ends the processing.
  • step S203 when it is determined in step S203 described above that at least one of the increase in pulse rate and respiratory rate is equal to or greater than the threshold value, but the heat index is less than the threshold value (step S206: No), there is a possibility that the user has an abnormality other than heat stroke.
  • a warning that another abnormality such as heart failure has occurred is displayed on the processing unit and the display unit (step S210).
  • the processing unit issues a warning regarding other abnormalities such as heart failure to the ringing unit (step S211).
  • the heat stroke prediction system of the second embodiment for example, it is determined that an abnormality other than the heat stroke may have occurred with substantially the same hardware configuration as that of the first embodiment, and the corresponding process is executed. can do.
  • the pulse rate and the respiratory rate of the user are detected by the biological sensor having the air pads 41, 51 and the piezoelectric sensors 44, 54 and the like.
  • the configuration of the biosensor is not limited to this.
  • the biosensor may have a configuration including an imaging device such as a camera.
  • the respiratory rate can be detected from the change in the chest circumference of the user by image diagnosis using an imaging device.
  • the biosensor may have a configuration including an oxygen inhaler.
  • the respiratory rate of the user can be detected from the oxygen inhalation timing and the like.
  • the biosensor may have a configuration including electrodes that can be worn on the user's body. In this case, the heart rate of the user can be detected by obtaining an electrocardiogram from the electrodes worn by the user.
  • the heartbeat interval (RRI: R-R Interval) may be detected, and the modulation of the user's body may be determined from the fluctuation of the heartbeat interval or the like.
  • the heartbeat interval is detected by extracting the interval of a waveform called an R wave from the obtained electrocardiogram.
  • the user's normal pulse rate and respiratory rate are extracted from the user's pulse rate and respiratory rate acquired so far. , Not limited to this.
  • the statistical values of the resting heart rate and respiratory rate may be used.
  • the resting heart rate is 65 beats / minute for adult males and 70 beats / minute for adult females.
  • the resting respiratory rate is 15 times / minute for both men and women.
  • the heat stroke prediction program executed by the heat stroke prediction system of the above-described first and second embodiments and each modification is provided by being incorporated in the ROM or the like in advance, but the configuration is not limited to this.
  • the heat stroke prediction programs of the above-described first and second embodiments and each modification are files in an installable format or an executable format, and are a CD-ROM (Compact Disc Read Only Memory), a flexible disk (FD), or a CD-R. It may be configured to be provided as a computer program product by recording on a computer-readable recording medium such as (Compact Disc-Recordable) or DVD (Digital Versatile Disc).
  • a computer-readable recording medium such as (Compact Disc-Recordable) or DVD (Digital Versatile Disc).
  • the heat stroke prediction programs of the above-described first and second embodiments and each modification may be stored on a computer connected to a network such as the Internet and provided by downloading via the network. .. Further, the heat stroke prediction programs of the above-described first and second embodiments and each modification may be provided or distributed via a network such as the Internet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A program causes a computer to function as a heatstroke prediction device having: a biological information acquisition unit that acquires biological information including information that is the pulse and/or respiratory rate of a user; an environment information acquisition unit that acquires environment information; an increase amount calculation unit that calculates, on the basis of the biological information, the increase amount in the pulse when the biological information was acquired compared with the normal pulse of the user, and/or the increase amount of the respiration rate when the biological information was acquired compared with the normal respiration rate of the user; a heat index calculation unit that calculates a heat index indicating the degree of occurrence of heatstroke on the basis of the environment information; and a processing unit that determines that a countermeasure process for heatstroke is to be executed, on the basis that the increase rate in the pulse and/or respiration rate is greater than or equal to a threshold value and the heat index is greater than or equal to a threshold value.

Description

プログラム、システム、測定装置、及び方法Programs, systems, measuring devices, and methods
 本発明は、プログラム、システム、測定装置、及び方法に関する。 The present invention relates to programs, systems, measuring devices, and methods.
 昨今、日本の夏季は高温多湿となってきており、熱中症で体調不良となる事例が増加している。熱中症の発症リスクを予測するため、脈拍数が一般的な上限値を超えたか否かを判定するとともに、湿球黒球温度(WBGT)による暑さ指数を利用する技術がある。 Recently, the summer in Japan has become hot and humid, and the number of cases of poor physical condition due to heat stroke is increasing. In order to predict the risk of developing heat stroke, there is a technique of determining whether or not the pulse rate exceeds a general upper limit value and using a heat index based on the wet-bulb globe temperature (WBGT).
特許第6237023号公報Japanese Patent No. 6237023 特許第6382433号公報Japanese Patent No. 6382433
 しかしながら、人の周囲環境の状況を元に、暑さ指数を利用し熱中症の発症リスクを予測しても、実際に熱中症を発症するか否かには個人差があり、脈拍数の一般的な上限値、及びWBGT等による暑さ指数に基づくだけでは、精度の高い熱中症発症予測は困難である。 However, even if the heat index is used to predict the risk of developing heat stroke based on the surrounding environment of a person, there are individual differences in whether or not heat stroke actually develops, and the pulse rate is general. It is difficult to predict the onset of heat stroke with high accuracy only based on the upper limit value and the heat index by WBGT or the like.
 そこで、本発明は、上記事情に鑑みてなされたものであって、高い精度で熱中症の発症予測を行うことができるプログラム、システム、測定装置、及び方法を得ることを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a program, a system, a measuring device, and a method capable of predicting the onset of heat stroke with high accuracy.
 上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかるプログラムは、コンピュータを、ユーザの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を取得する生体情報取得部と、環境情報を取得する環境情報取得部と、前記生体情報に基づき、前記生体情報を取得した時の前記脈拍数の前記ユーザの平常時の脈拍数からの増加量、及び前記生体情報を取得した時の前記呼吸数の前記ユーザの平常時の呼吸数からの増加量の少なくともいずれかを算出する増加量算出部と、前記環境情報に基づき、熱中症の発生度合いを示す暑さ指数を算出する暑さ指数算出部と、前記脈拍数および前記呼吸数の前記増加量の少なくともいずれかが閾値以上となったこと、並びに前記暑さ指数が閾値以上となったこと、に基づいて、熱中症への対応処理を実行することを決定する処理部と、を有する熱中症予測装置として機能させる。 In order to solve the above-mentioned problems and achieve the object, a program according to one aspect of the present invention causes a computer to acquire biometric information including at least one of the user's pulse rate and respiratory rate. Based on the biometric information, the acquisition unit, the environmental information acquisition unit for acquiring the environmental information, the amount of increase in the respiratory rate when the biometric information is acquired from the normal pulse rate of the user, and the biometric information. A heat index indicating the degree of heat stroke based on the increase amount calculation unit that calculates at least one of the increase amounts of the respiratory rate from the user's normal respiratory rate at the time of acquisition and the environmental information. Based on the heat index calculation unit that calculates It functions as a heat stroke predictor having a processing unit that determines to execute a heat stroke response process.
 本発明によれば、高い精度で熱中症の発症予測を行うことができるという効果を奏する。 According to the present invention, there is an effect that the onset of heat stroke can be predicted with high accuracy.
図1は、実施形態1の熱中症予測システムの構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of the heat stroke prediction system of the first embodiment. 図2は、実施形態1の熱中症予測システムのハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of the heat stroke prediction system of the first embodiment. 図3は、実施形態1にかかる熱中症予測装置における処理の手順の一例を示すフロー図である。FIG. 3 is a flow chart showing an example of a processing procedure in the heat stroke prediction device according to the first embodiment. 図4は、実施形態2にかかる熱中症予測装置における処理の手順の一例を示すフロー図である。FIG. 4 is a flow chart showing an example of a processing procedure in the heat stroke prediction device according to the second embodiment.
 以下に、本発明の実施形態1,2について、図面を参照して説明する。なお、実施形態2では、実施形態1で説明した事項と同様の事項については説明を適宜省略する。また、これらの実施形態により本発明が限定されるものではない。 Hereinafter, embodiments 1 and 2 of the present invention will be described with reference to the drawings. In the second embodiment, the same matters as those described in the first embodiment will be omitted as appropriate. Moreover, the present invention is not limited by these embodiments.
[実施形態1]
 以下、図面を参照して、実施形態1について詳細に説明する。
[Embodiment 1]
Hereinafter, the first embodiment will be described in detail with reference to the drawings.
(熱中症予測システムの構成例)
 図1は、実施形態1の熱中症予測システム10の構成の一例を示す模式図である。図1に示すように、熱中症予測システム10は、測定装置100a,100b、及び熱中症予測装置200を備える。
(Structure example of heat stroke prediction system)
FIG. 1 is a schematic view showing an example of the configuration of the heat stroke prediction system 10 of the first embodiment. As shown in FIG. 1, the heat stroke prediction system 10 includes measuring devices 100a and 100b and a heat stroke prediction device 200.
 測定装置100aは、エアパッド41、温湿度センサ42、ホース43、圧電センサ44、及びアンプ45を備える。 The measuring device 100a includes an air pad 41, a temperature / humidity sensor 42, a hose 43, a piezoelectric sensor 44, and an amplifier 45.
 エアパッド41は、ベッドのマットレス及び布団の敷布団等の敷物40に配設され、エアパッド41の内部にはエアが封入されている。これにより、エアパッド41は、敷物40に横たわるユーザMの背中と接触することで、ユーザMの脈拍および呼吸の少なくともいずれかに伴う振動を受け取る働きをする。このように、エアパッド41は、熱中症予防装置200から測定対象であるユーザM側へと延伸し、ユーザMによる振動等の生体からの物理量を探査し、つまり、例えば物理量を受け取って、熱中症予防装置200へ伝えるための探査具の一例である。 The air pad 41 is arranged on a rug 40 such as a bed mattress and a futon mattress, and air is sealed inside the air pad 41. As a result, the air pad 41 acts to receive vibrations associated with at least one of the user M's pulse and respiration by coming into contact with the back of the user M lying on the rug 40. In this way, the air pad 41 extends from the heat stroke prevention device 200 to the user M side to be measured, and searches for a physical quantity from the living body such as vibration by the user M, that is, receives the physical quantity, for example, and receives heat stroke. This is an example of an exploration tool for transmitting to the preventive device 200.
 圧電センサ44は、エアパッド41にホース43等を通じて接続される。エアパッド41が振動を受け取ったとき、エアパッド41が受け取った振動に応じた圧力変化に起因して、エアパッド41からエアが送出され、ホース43を通じて、圧電センサ44にエアが送られる。圧電センサ44は圧電体を有しており、圧電体がエアを受け取ることで圧力変化を受けて圧電体が撓み、電圧変化として検出する。こうして、ユーザMの脈拍および呼吸の少なくともいずれか一方に伴う振動を検出することができる。 The piezoelectric sensor 44 is connected to the air pad 41 through a hose 43 or the like. When the air pad 41 receives the vibration, air is sent from the air pad 41 due to the pressure change corresponding to the vibration received by the air pad 41, and the air is sent to the piezoelectric sensor 44 through the hose 43. The piezoelectric sensor 44 has a piezoelectric body, and when the piezoelectric body receives air, the piezoelectric body receives a pressure change and the piezoelectric body bends to detect it as a voltage change. In this way, the vibration associated with at least one of the pulse and respiration of the user M can be detected.
 アンプ45は、圧電センサ44により変換された電圧を、必要に応じて増幅または減衰させる。 The amplifier 45 amplifies or attenuates the voltage converted by the piezoelectric sensor 44 as needed.
 これらのエアパッド41、ホース43、圧電センサ44、及びアンプ45は、ユーザMの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を測定する生体センサとして構成される。 These air pads 41, hose 43, piezoelectric sensor 44, and amplifier 45 are configured as biosensors that measure biometric information including at least one of user M's pulse rate and respiratory rate information.
 温湿度センサ42は、例えばエアパッド41が配設された敷物40内に設置される。ただし、ユーザMの周囲環境の温度および湿度を検出できれば、敷物40が置かれた室内または後述する熱中症計測キット内に、温湿度センサ42が配置されてもよい。 The temperature / humidity sensor 42 is installed in, for example, the rug 40 on which the air pad 41 is arranged. However, if the temperature and humidity of the ambient environment of the user M can be detected, the temperature / humidity sensor 42 may be arranged in the room where the floor covering 40 is placed or in the heat stroke measurement kit described later.
 温湿度センサ42は、ユーザMの周囲環境の温度および湿度に関する環境情報を測定する環境センサの一例である。環境センサが、温湿度センサ42に加えて、図示しない輻射熱センサを含んでいてもよい。環境情報には、温度、湿度、及び熱輻射量が含まれる。 The temperature / humidity sensor 42 is an example of an environment sensor that measures environmental information regarding the temperature and humidity of the ambient environment of the user M. The environment sensor may include a radiant heat sensor (not shown) in addition to the temperature / humidity sensor 42. Environmental information includes temperature, humidity, and amount of heat radiation.
 測定装置100bは、エアパッド51、温湿度センサ52、ホース53、圧電センサ54、及びアンプ55を備える。 The measuring device 100b includes an air pad 51, a temperature / humidity sensor 52, a hose 53, a piezoelectric sensor 54, and an amplifier 55.
 エアパッド51は、例えば椅子50の座部に配設され、エアパッド51の内部にはエアが封入されている。これにより、エアパッド51は、椅子50に座ったユーザの大腿部と接触することで、ユーザの脈拍および呼吸の少なくともいずれかに伴う振動を受け取る働きをする。このように、エアパッド51は、熱中症予防装置200から測定対象であるユーザ側へと延伸し、ユーザによる振動等の生体からの物理量を探査し、つまり、例えば物理量を受け取って、熱中症予防装置200へ伝えるための探査具の一例である。 The air pad 51 is arranged, for example, in the seat of the chair 50, and air is sealed inside the air pad 51. As a result, the air pad 51 acts to receive vibrations associated with at least one of the user's pulse and respiration by coming into contact with the thigh of the user sitting on the chair 50. In this way, the air pad 51 extends from the heat stroke prevention device 200 to the user side to be measured, and searches for a physical quantity from the living body such as vibration by the user, that is, receives the physical quantity, for example, and receives the physical quantity to prevent the heat stroke. This is an example of an exploration tool for transmitting to 200.
 なお、エアパッド51は、腰を掛けるためのものであれば、椅子50の他、座椅子、ソファ、及びベンチ等の様々な形態の座席に配設されることができる。 The air pad 51 can be arranged on various types of seats such as a sitting chair, a sofa, and a bench, in addition to the chair 50, as long as it is for sitting.
 圧電センサ54は、エアパッド51にホース53等を通じて接続される。エアパッド51が振動を受け取ったとき、エアパッド51が受け取った振動に応じた圧力変化に起因して、エアパッド51からエアが送出され、ホース53を通じて、圧電センサ54にエアが送られる。圧電センサ54は圧電体を有しており、圧電体がエアを受け取ることで圧力変化を受けて圧電体が撓み、電圧変化として検出する。こうして、ユーザの脈拍および呼吸の少なくともいずれか一方に伴う振動を検出することができる。 The piezoelectric sensor 54 is connected to the air pad 51 through a hose 53 or the like. When the air pad 51 receives the vibration, air is sent from the air pad 51 due to the pressure change corresponding to the vibration received by the air pad 51, and the air is sent to the piezoelectric sensor 54 through the hose 53. The piezoelectric sensor 54 has a piezoelectric body, and when the piezoelectric body receives air, the piezoelectric body receives a pressure change and the piezoelectric body bends to detect it as a voltage change. In this way, vibrations associated with at least one of the user's pulse and respiration can be detected.
 アンプ55は、圧電センサ54により変換された電圧を、必要に応じて増幅または減衰させる。 The amplifier 55 amplifies or attenuates the voltage converted by the piezoelectric sensor 54 as needed.
 これらのエアパッド51、ホース53、圧電センサ54、及びアンプ55は、ユーザの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を測定する生体センサとして構成される。 These air pads 51, hose 53, piezoelectric sensor 54, and amplifier 55 are configured as biosensors that measure biometric information including at least one of the user's pulse rate and respiratory rate.
 温湿度センサ52は、例えばエアパッド51が配設された椅子50が置かれた室内等に設置される。椅子50がベランダ及び庭等の屋外に置かれている場合には、温湿度センサ52は、その近傍に設置される。ユーザの周囲環境の温度および湿度を検出できれば、これら以外の場所、例えば後述する熱中症計測キット内に、温湿度センサ52が配置されてもよい。 The temperature / humidity sensor 52 is installed, for example, in a room or the like where a chair 50 on which an air pad 51 is arranged is placed. When the chair 50 is placed outdoors such as on a balcony or in a garden, the temperature / humidity sensor 52 is installed in the vicinity thereof. If the temperature and humidity of the user's ambient environment can be detected, the temperature / humidity sensor 52 may be arranged in a place other than these, for example, in a heat stroke measurement kit described later.
 温湿度センサ52は、ユーザの周囲環境の温度および湿度に関する環境情報を測定する環境センサとして構成される。環境センサが、図示しない輻射熱センサを含んでいてもよい。したがって、環境情報には、温度、湿度、及び熱輻射量が含まれていてよい。 The temperature / humidity sensor 52 is configured as an environment sensor that measures environmental information regarding the temperature and humidity of the user's ambient environment. The environment sensor may include a radiant heat sensor (not shown). Therefore, the environmental information may include temperature, humidity, and amount of heat radiation.
 熱中症予測装置200は、後述するCPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等を備えたコンピュータとして構成される。CPUが、後述する熱中症予測プログラムを実行することで、図1に示す処理部210、生体情報取得部211x、増加量算出部212x、環境情報取得部211y、及び暑さ指数算出部212y等の機能を実現する。また、CPUにより、上記の機能、並びに記憶部213、表示部230、及び鳴動部231等の熱中症予測装置200の全体が制御される。 The heat stroke prediction device 200 is configured as a computer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, which will be described later. When the CPU executes a heat stroke prediction program described later, the processing unit 210, the biological information acquisition unit 211x, the increase amount calculation unit 212x, the environmental information acquisition unit 211y, the heat index calculation unit 212y, and the like shown in FIG. Realize the function. In addition, the CPU controls the above functions and the entire heat stroke prediction device 200 such as the storage unit 213, the display unit 230, and the ringing unit 231.
 生体情報取得部211xは、上述のエアパッド41、51及び圧電センサ44,54等を含む生体センサから、ユーザの脈拍数および呼吸数等の生体情報を取得する。 The biometric information acquisition unit 211x acquires biometric information such as the user's pulse rate and respiratory rate from the biosensors including the above-mentioned air pads 41, 51 and piezoelectric sensors 44, 54 and the like.
 増加量算出部212xは、生体情報に基づいて、ユーザの脈拍数および呼吸数の少なくともいずれかを算出する。増加量算出部212xは、算出したこれらの数値を記憶部213に格納する。また、増加量算出部212xは、ユーザの脈拍数の増加量および呼吸数の増加量の少なくともいずれかを算出する。 The increase amount calculation unit 212x calculates at least one of the user's pulse rate and respiratory rate based on the biological information. The increase amount calculation unit 212x stores these calculated numerical values in the storage unit 213. In addition, the increase amount calculation unit 212x calculates at least one of the increase amount of the pulse rate and the increase amount of the respiratory rate of the user.
 脈拍数の増加量は、生体センサから取得した生体情報に含まれる現在のユーザの脈拍数が、ユーザの平常時の脈拍数からどれだけ増加しているかを示す値である。呼吸数の増加量は、生体センサから取得した生体情報に含まれる現在のユーザの呼吸数が、ユーザの平常時の呼吸数からどれだけ増加しているかを示す値である。 The amount of increase in the pulse rate is a value indicating how much the current user's pulse rate included in the biometric information acquired from the biosensor is increased from the user's normal pulse rate. The respiratory rate increase is a value indicating how much the current user's respiratory rate included in the biological information acquired from the biosensor is increased from the user's normal respiratory rate.
 ユーザの平常時の脈拍数および呼吸数は、増加量算出部212xがこれまでに算出したユーザの脈拍数および呼吸数から抽出される。一例として、増加量算出部212xがこれまでに算出したユーザの脈拍数および呼吸数のうち、安静状態が保たれやすい睡眠時の脈拍数および呼吸数を、ユーザの平常時の脈拍数および呼吸数とすることが考えられる。または、ユーザの平常時の脈拍数および呼吸数を、その時々の測定開始時点での脈拍数および呼吸数としてもよい。 The user's normal pulse rate and respiratory rate are extracted from the user's pulse rate and respiratory rate calculated so far by the increase amount calculation unit 212x. As an example, among the user's pulse rate and respiratory rate calculated so far by the increase amount calculation unit 212x, the pulse rate and respiratory rate during sleep, which are likely to maintain a resting state, are calculated by the user's normal pulse rate and respiratory rate. Is conceivable. Alternatively, the user's normal pulse rate and respiratory rate may be used as the pulse rate and respiratory rate at the start of measurement at that time.
 環境情報取得部211yは、上述の温湿度センサ42,52等から、ユーザの周囲環境における環境情報を取得する。 The environmental information acquisition unit 211y acquires environmental information in the user's surrounding environment from the above-mentioned temperature / humidity sensors 42, 52 and the like.
 暑さ指数算出部212yは、環境情報に基づいて暑さ指数を算出する。暑さ指数は、ユーザの周囲環境における熱中症の発生度合いを示す指数であり、例えば湿球黒球温度(WBGT:Wet Bulb Globe Temperature)等であってよい。 The heat index calculation unit 212y calculates the heat index based on the environmental information. The heat index is an index indicating the degree of occurrence of heat stroke in the user's surrounding environment, and may be, for example, a wet-bulb globe temperature (WBGT: Wet Bulb Globe Temperature) or the like.
 環境省の熱中症予防情報サイトによれば、黒色の銅板の球内に配置した温度計により黒球温度Tgtを計測し、湿らせたガーゼを感温部に巻いた温度計により湿球温度Tnwbを計測し、通常の温度計を用いて乾球温度Tndbを計測し、以下の2つの式のいずれかにこれらの数値を当てはめることで、WBGTを求めることができる。 According to the heat stroke prevention information site of the Ministry of the Environment, the black bulb temperature Tgt is measured by a thermometer placed inside a black copper plate bulb, and the wet bulb temperature Tnwb is measured by a thermometer wrapped with moistened gauze around the temperature sensitive part. WBGT can be obtained by measuring the dry-bulb temperature Tndb using a normal thermometer and applying these numerical values to any of the following two equations.
   屋外:WBGT(℃)=0.7・Tnwb+0.2・Tgt+0.1・Tndb
   屋内:WBGT(℃)=0.7・Tnwb+0.3・Tgt
Outdoor: WBGT (° C) = 0.7 ・ Tnwb + 0.2 ・ Tgt + 0.1 ・ Tndb
Indoor: WBGT (° C) = 0.7 ・ Tnwb + 0.3 ・ Tgt
 すなわち、WBGTは、湿度、気温、及び日差しの強さの3要素で暑さを表している。 That is, WBGT expresses heat by three factors: humidity, temperature, and intensity of sunlight.
 ただし、WBGTは、上述の温湿度センサ42,52により計測される温湿度データによっても概算することができる。屋外におけるWBGTを求める場合には、温湿度データに加え、熱輻射センサより計測される熱輻射量も用いることが望ましい。 However, the WBGT can also be estimated from the temperature and humidity data measured by the temperature and humidity sensors 42 and 52 described above. When obtaining the WBGT outdoors, it is desirable to use the amount of heat radiation measured by the heat radiation sensor in addition to the temperature and humidity data.
 なお、熱中症の発生度合いを示すものであれば、暑さ指数算出部212yは、WBGTとは異なる他の暑さ指数を算出してもよい。暑さ指数算出部212yは、算出した暑さ指数を記憶部213に格納する。 The heat index calculation unit 212y may calculate another heat index different from the WBGT as long as it indicates the degree of heat stroke. The heat index calculation unit 212y stores the calculated heat index in the storage unit 213.
 処理部210は、脈拍数および呼吸数等の増加量、並びに暑さ指数に基づいて、熱中症への対応処理を実行するか否かを決定する。具体的には、処理部210は、暑さ指数が閾値以上となったか否かを判定する。また、処理部210は、脈拍数および呼吸数の増加量の少なくともいずれかが閾値以上となったか否かを判定する。そして、処理部210は、暑さ指数および少なくとも一方の増加量の値がいずれも閾値以上となった場合には、熱中症への対応処理を実行することを決定する。 The processing unit 210 determines whether or not to perform a heat stroke response process based on the amount of increase in pulse rate, respiratory rate, etc., and the heat index. Specifically, the processing unit 210 determines whether or not the heat index is equal to or higher than the threshold value. In addition, the processing unit 210 determines whether or not at least one of the increase in pulse rate and respiratory rate exceeds the threshold value. Then, the processing unit 210 decides to execute the heat stroke response processing when both the value of the heat index and the value of the increase amount of at least one of them are equal to or more than the threshold value.
 処理部210は、熱中症への対応処理として、例えば表示部230に警告を表示することを決定し、表示部230に警告を表示するよう指示をする。また、処理部210は、熱中症への対応処理として、例えば鳴動部231に警報を発報させることを決定し、鳴動部231に警報を発報するよう指示をする。 The processing unit 210 determines, for example, to display a warning on the display unit 230 as a response process for heat stroke, and instructs the display unit 230 to display the warning. Further, the processing unit 210 determines, for example, to issue an alarm to the ringing unit 231 as a response process for heat stroke, and instructs the ringing unit 231 to issue an alarm.
 表示部230は、処理部210からの指示に基づいて警告を表示する。警告には、例えば、ユーザが熱中症を発症しやすい状態にあること、ユーザに何らかの対策を講じるよう促す内容等の各種情報が含まれる。 The display unit 230 displays a warning based on an instruction from the processing unit 210. The warning includes, for example, various information such as that the user is in a state of being prone to heat stroke and the content that urges the user to take some measures.
 表示部230は、生体情報取得部211x及び環境情報取得部211yが取得した各種センサによる検出結果、増加量算出部212xが算出したユーザの脈拍数および呼吸数の増加量、並びに暑さ指数算出部212yが算出した暑さ指数等を表示可能であってもよい。 The display unit 230 is the detection result by various sensors acquired by the biological information acquisition unit 211x and the environmental information acquisition unit 211y, the increase amount of the user's pulse rate and respiratory rate calculated by the increase amount calculation unit 212x, and the heat index calculation unit. It may be possible to display the heat index or the like calculated by 212y.
 鳴動部231は、処理部210からの指示に基づいて警報を発報する。鳴動部231が発報する警報は、音声による警告または警報音等であってよい。音声による警告には、例えば、ユーザが熱中症を発症しやすい状態にあること、ユーザに何らかの対策を講じるよう促す内容等の各種情報を含めることができる。 The ringing unit 231 issues an alarm based on an instruction from the processing unit 210. The alarm issued by the ringing unit 231 may be a voice warning, an alarm sound, or the like. The voice warning can include, for example, various information such as the user being in a state of being prone to heat stroke and the content urging the user to take some measures.
 鳴動部231は、熱中症の発症リスクが高まった際の警報だけでなく、ユーザに対する各種メッセージを発することが可能であってもよい。 The ringing unit 231 may be able to issue various messages to the user as well as an alarm when the risk of developing heat stroke increases.
 記憶部213は、これまでに増加量算出部212xにより算出された脈拍数および呼吸数、及び、これまでに暑さ指数算出部212yにより算出された暑さ指数等の各種データを記憶する。このように、記憶部213には、ユーザ及びユーザの周囲環境から継続的にモニタリングされたデータが蓄積されている。また、記憶部213は、脈拍数および呼吸数等の増加量についての閾値、及び暑さ指数についての閾値等を記憶する。 The storage unit 213 stores various data such as the pulse rate and the respiratory rate calculated by the increase amount calculation unit 212x so far, and the heat index calculated by the heat index calculation unit 212y so far. In this way, the storage unit 213 stores data continuously monitored from the user and the user's surrounding environment. In addition, the storage unit 213 stores a threshold value for an increase amount such as a pulse rate and a respiratory rate, a threshold value for a heat index, and the like.
 暑さ指数についての閾値は、例えば環境省の熱中症予防情報サイトに掲載されている各種指針に基づき決定することができる。環境省による各種指針のうち、例えば「日常生活による指針」によれば、WBGTと熱中症との関係について以下のような指針が示されている。 The threshold value for the heat index can be determined, for example, based on various guidelines posted on the heat stroke prevention information site of the Ministry of the Environment. Among the various guidelines provided by the Ministry of the Environment, for example, the "Guidelines for Daily Life" provide the following guidelines regarding the relationship between WBGT and heat stroke.
・WBGT25℃未満(注意)
 注意すべき生活活動の目安:強い生活活動でおこる危険性
 注意事項:一般に危険性は少ないが激しい運動や重労働時には発生する危険性がある。
・ WBGT less than 25 ℃ (Caution)
Estimated daily activities to be aware of: Dangers caused by strong living activities Precautions: Generally, there is little risk, but there is a risk of occurring during strenuous exercise or hard work.
・WBGT25℃以上28℃未満(警戒)
 注意すべき生活活動の目安:中等度以上の生活活動でおこる危険性
 注意事項:運動や激しい作業をする際は定期的に充分に休息を取り入れる。
・ WBGT 25 ℃ or more and less than 28 ℃ (warning)
Estimated daily activities to be aware of: Dangers that occur in moderate or higher daily activities Precautions: Take sufficient rest regularly when exercising or doing strenuous work.
・WBGT28℃以上31℃未満(厳重警戒)
 注意すべき生活活動の目安:すべての生活活動でおこる危険性
 注意事項:外出時は炎天下を避け、室内では室温の上昇に注意する。
・ WBGT 28 ℃ or more and less than 31 ℃ (strict caution)
Estimated daily activities to be aware of: Dangers that occur in all daily activities Precautions: Avoid the hot sun when going out, and be careful of the rise in room temperature indoors.
・WBGT31℃以上(危険)
 注意すべき生活活動の目安:すべての生活活動でおこる危険性
 注意事項:高齢者においては安静状態でも発生する危険性が大きい。外出はなるべく避け、涼しい室内に移動する。
WBGT 31 ℃ or higher (dangerous)
Estimated daily activities to be aware of: Dangers that occur in all daily activities Precautions: In elderly people, there is a high risk that they will occur even in a resting state. Avoid going out as much as possible and move to a cool room.
 このような指針に基づき、暑さ指数として例えばWBGTを用い、暑さ指数の上記閾値を例えば28℃などとすることができる。 Based on such a guideline, for example, WBGT can be used as the heat index, and the above threshold value of the heat index can be set to, for example, 28 ° C.
 脈拍数の増加量についての閾値は、例えば30回/分などとすることができる。呼吸数の増加量についての閾値は、例えば15回/分などとすることができる。 The threshold value for the amount of increase in pulse rate can be, for example, 30 times / minute. The threshold value for the amount of increase in respiratory rate can be, for example, 15 times / minute.
 なお、上記に示した熱中症予測システム10の構成はあくまでも一例であって、熱中症予測システム10に含まれる測定装置100a,100b及び熱中症予測装置200の個数は任意である。例えば、熱中症予測システムが、測定装置と熱中症予測装置とを1つずつ備えていてもよい。また例えば、熱中症予測システムが、測定装置を3つ以上備えていてもよく、また、各々の測定装置に対応する熱中症予測装置を複数備えていてもよい。 The configuration of the heat stroke prediction system 10 shown above is merely an example, and the number of measuring devices 100a and 100b and the heat stroke prediction device 200 included in the heat stroke prediction system 10 is arbitrary. For example, the heat stroke prediction system may include one measuring device and one heat stroke prediction device. Further, for example, the heat stroke prediction system may be provided with three or more measuring devices, or may be provided with a plurality of heat stroke prediction devices corresponding to each measuring device.
(熱中症予測システムのハードウェア構成例)
 次に、図2を用いて、実施形態1の熱中症予測システム10のハードウェア構成例について説明する。図2は、実施形態1の熱中症予測システム10のハードウェア構成の一例を示すブロック図である。
(Hardware configuration example of heat stroke prediction system)
Next, a hardware configuration example of the heat stroke prediction system 10 of the first embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing an example of the hardware configuration of the heat stroke prediction system 10 of the first embodiment.
 図2に示すように、熱中症予測システム10は、ハードウェア構成として、熱中症計測キット20、エアパッド41,51、及び温湿度センサ42,52を備える。 As shown in FIG. 2, the heat stroke prediction system 10 includes a heat stroke measurement kit 20, air pads 41, 51, and temperature / humidity sensors 42, 52 as hardware configurations.
 熱中症計測キット20は、コンピュータとして構成される熱中症予防装置200、圧電センサ44,54、及びアンプ45,55等の機材一式が、1つの筐体内に集約された構成となっている。これにより、室内等の測定対象となるユーザの周辺環境への設置が容易となる。 The heat stroke measurement kit 20 has a configuration in which a set of equipment such as a heat stroke prevention device 200 configured as a computer, piezoelectric sensors 44 and 54, and amplifiers 45 and 55 are integrated in one housing. This facilitates installation in the surrounding environment of the user to be measured, such as indoors.
 熱中症計測キット20は、CPU10、ROM14、及びRAM15を備える。これにより、CPU10が、RAM15を作業領域として、例えばROM14等に格納された熱中症予測プログラムを実行することで、上述の各種機能を実現する。 The heat stroke measurement kit 20 includes a CPU 10, a ROM 14, and a RAM 15. As a result, the CPU 10 realizes the above-mentioned various functions by executing the heat stroke prediction program stored in, for example, the ROM 14 or the like with the RAM 15 as the work area.
 具体的には、CPU10で動作するプログラムによって、上述の増加量算出部212x、暑さ指数算出部212y、及び処理部210が実現される。 Specifically, the program running on the CPU 10 realizes the above-mentioned increase amount calculation unit 212x, heat index calculation unit 212y, and processing unit 210.
 熱中症計測キット20は、センサインタフェース(I/F:Interface)11、センサI/F11に接続されるアンプ45,55、アンプ45,55にそれぞれ接続され、エアパッド41,51からエアが送出される圧電センサ44,54を備える。 The heat stroke measurement kit 20 is connected to the sensor interface (I / F: Interface) 11, the amplifiers 45 and 55 connected to the sensor I / F 11, and the amplifiers 45 and 55, respectively, and air is sent from the air pads 41 and 51. The piezoelectric sensors 44 and 54 are provided.
 センサI/F11は、CPU10の制御下で、上述の生体情報取得部211x及び環境情報取得部211yとして機能する。また、センサI/F11は、例えばアナログ/デジタル(A/D:Analog to Digital)コンバータ11aを備え、圧電センサ44,54及びアンプ45,55からのアナログ電圧をデジタル信号に変換する。 The sensor I / F 11 functions as the above-mentioned biometric information acquisition unit 211x and environmental information acquisition unit 211y under the control of the CPU 10. Further, the sensor I / F 11 includes, for example, an analog / digital (A / D: Analog to Digital) converter 11a, and converts analog voltages from the piezoelectric sensors 44, 54 and amplifiers 45, 55 into digital signals.
 熱中症計測キット20はディスプレイ31及びアラーム32を備える。 The heat stroke measurement kit 20 includes a display 31 and an alarm 32.
 ディスプレイ31は、CPU10の制御下で、上述の表示部230として機能する。アラーム32は、CPU10の制御下で、上述の鳴動部231として機能する。 The display 31 functions as the display unit 230 described above under the control of the CPU 10. The alarm 32 functions as the above-mentioned ringing unit 231 under the control of the CPU 10.
 熱中症計測キット20は補助記憶装置13を備える。補助記憶装置13は、CPU10の制御下で、上述の記憶部213として機能する。 The heat stroke measurement kit 20 includes an auxiliary storage device 13. The auxiliary storage device 13 functions as the above-mentioned storage unit 213 under the control of the CPU 10.
 CPU10、ROM14、RAM15、センサI/F11、及び補助記憶装置13は、例えば内部バスに接続されており、互いに各種情報および信号の授受が可能に構成されている。 The CPU 10, ROM 14, RAM 15, sensor I / F 11, and auxiliary storage device 13 are connected to, for example, an internal bus, and are configured to be able to exchange various information and signals with each other.
 なお、ディスプレイ31、アラーム32、及び補助記憶装置13等は、熱中症計測キット20の外部機器として外付けされていてもよい。 The display 31, the alarm 32, the auxiliary storage device 13, and the like may be externally attached as external devices of the heat stroke measurement kit 20.
 一方で、熱中症計測キット20が、エアパッド41,51等の設置位置に近接される場合などのように、ユーザの周囲環境の温度および湿度を検出可能であれば、温湿度センサ42,52等は、熱中症計測キット20に内蔵されていてもよい。 On the other hand, if the temperature and humidity of the user's ambient environment can be detected, such as when the heat stroke measurement kit 20 is close to the installation position of the air pads 41, 51, etc., the temperature / humidity sensors 42, 52, etc. May be built into the heat stroke measurement kit 20.
 また、上述のように、熱中症計測キット20が1組の圧電センサ及びアンプを備え、1組のエアパッド及び温湿度センサに接続されていてもよい。つまり、上述の測定装置と熱中症予測装置とが1対1に対応していてもよい。 Further, as described above, the heat stroke measurement kit 20 may include a set of piezoelectric sensors and an amplifier, and may be connected to a set of air pads and a temperature / humidity sensor. That is, the above-mentioned measuring device and the heat stroke prediction device may have a one-to-one correspondence.
(熱中症予測装置の処理例)
 次に、図3を用いて、実施形態1の熱中症予測装置200における処理例について説明する。図3は、実施形態1にかかる熱中症予測装置200における処理の手順の一例を示すフロー図である。
(Processing example of heat stroke prediction device)
Next, a processing example in the heat stroke prediction device 200 of the first embodiment will be described with reference to FIG. FIG. 3 is a flow chart showing an example of a processing procedure in the heat stroke prediction device 200 according to the first embodiment.
 図3に示すように、熱中症予測装置200の環境情報取得部211yは、温湿度センサ42,52等から温湿度データ等の環境情報を取得する(ステップS101)。暑さ指数算出部212yは、環境情報に基づいてWBGT等の暑さ指数を算出する(ステップS102)。 As shown in FIG. 3, the environmental information acquisition unit 211y of the heat stroke prediction device 200 acquires environmental information such as temperature / humidity data from the temperature / humidity sensors 42, 52 and the like (step S101). The heat index calculation unit 212y calculates a heat index such as WBGT based on the environmental information (step S102).
 処理部210は、暑さ指数が閾値以上であるか否かを判定する(ステップS103)。暑さ指数が閾値未満であれば(ステップS103:No)、ステップS101の処理に戻る。暑さ指数が閾値以上であれば(ステップS103:Yes)、処理部210は、次のステップS104に処理を進める。 The processing unit 210 determines whether or not the heat index is equal to or higher than the threshold value (step S103). If the heat index is less than the threshold value (step S103: No), the process returns to step S101. If the heat index is equal to or higher than the threshold value (step S103: Yes), the processing unit 210 proceeds to the next step S104.
 生体情報取得部211xは、圧電センサ44,54を含む生体センサから、ユーザの脈拍数および呼吸数等の生体情報を取得する(ステップS104)。増加量算出部212xは、生体情報に基づいて、脈拍数の増加量および呼吸数の増加量の少なくともいずれかを算出する(ステップS105)。 The biometric information acquisition unit 211x acquires biometric information such as the user's pulse rate and respiratory rate from the biosensors including the piezoelectric sensors 44 and 54 (step S104). The increase amount calculation unit 212x calculates at least one of the increase amount of the pulse rate and the increase amount of the respiratory rate based on the biological information (step S105).
 処理部210は、脈拍数の増加量および呼吸数の増加量がそれぞれの閾値以上となっているか否かを判定する(ステップS106)。いずれの増加量も閾値未満であれば(ステップS106:No)、ステップS101の処理に戻る。 The processing unit 210 determines whether or not the increase in pulse rate and the increase in respiratory rate are equal to or greater than the respective threshold values (step S106). If any of the increases is less than the threshold value (step S106: No), the process returns to step S101.
 脈拍数の増加量および呼吸数の増加量の少なくともいずれかが閾値以上であれば(ステップS106:Yes)、処理部210は、表示部230に熱中症に関する警告を表示する(ステップS107)。また、処理部210は、鳴動部231に熱中症に関する警告を発報させる(ステップS108)。 If at least one of the increase in pulse rate and the increase in respiratory rate is equal to or greater than the threshold value (step S106: Yes), the processing unit 210 displays a warning regarding heat stroke on the display unit 230 (step S107). In addition, the processing unit 210 causes the ringing unit 231 to issue a warning regarding heat stroke (step S108).
 これらのような警告によって、ユーザは、エアコンディショナ等を稼働させたり、窓を開けたりして、室内等の周囲環境における温湿度を下げる措置を取ることが考えられる。 Due to these warnings, the user may take measures to lower the temperature and humidity in the surrounding environment such as indoors by operating the air conditioner or the like or opening the window.
 処理部210は、暑さ指数ならびに脈拍数および呼吸数等の増加量が閾値未満となったか否かを判定する(ステップS109)。これらの数値が閾値未満となっていなければ(ステップS109:No)、処理部210は、ステップS107~S108の処理を繰り返す。上記数値が閾値未満となっていれば(ステップS109:Yes)、処理部210は処理を終了する。 The processing unit 210 determines whether or not the amount of increase in the heat index, pulse rate, respiratory rate, etc. is less than the threshold value (step S109). If these numerical values are not less than the threshold value (step S109: No), the processing unit 210 repeats the processing of steps S107 to S108. If the above value is less than the threshold value (step S109: Yes), the processing unit 210 ends the processing.
 以上により、実施形態1の熱中症予測装置200における処理が終了する。 With the above, the process in the heat stroke prediction device 200 of the first embodiment is completed.
(概括)
 実施形態1の熱中症予測システム10によれば、脈拍数および呼吸数の増加量の少なくともいずれか、並びに暑さ指数が閾値以上となったこと、に基づいて、熱中症への対応処理が実行される。
(Summary)
According to the heat stroke prediction system 10 of the first embodiment, the heat stroke response process is executed based on at least one of the increase in pulse rate and respiratory rate, and the fact that the heat index is equal to or higher than the threshold value. Will be done.
 これにより、熱中症の発症予測に、周囲環境と生体情報との両方の影響を反映させることができ、高い精度で熱中症の発症予測を行うことができる。したがって、ユーザ個々人の体力および体調による個人差に応じた対応が可能となる。 This makes it possible to reflect the effects of both the surrounding environment and biological information on the onset prediction of heat stroke, and it is possible to predict the onset of heat stroke with high accuracy. Therefore, it is possible to respond according to individual differences due to the physical strength and physical condition of each individual user.
 実施形態1の熱中症予測システム10によれば、所定の姿勢を取るユーザの身体と接触させて用いられ、ユーザの脈拍および呼吸に伴う少なくともいずれかの動きが伝達されるようエアが封入されたエアパッド41,51と、エアパッド41,51に生じた圧力変化を検出する圧電センサ44,54と、を有する。 According to the heat stroke prediction system 10 of the first embodiment, it is used in contact with the body of a user who takes a predetermined posture, and air is sealed so that at least one movement accompanying the user's pulse and respiration is transmitted. It has air pads 41, 51 and piezoelectric sensors 44, 54 for detecting pressure changes generated in the air pads 41, 51.
 このように、エアパッド41,51と圧電センサ44,54とを組み合わせることにより、ユーザの脈拍数および呼吸数を高精度に測定することができる。 In this way, by combining the air pads 41, 51 and the piezoelectric sensors 44, 54, the user's pulse rate and respiratory rate can be measured with high accuracy.
 実施形態1の熱中症予測システム10によれば、エアパッド41は敷物40に配設され、敷物40に横たわったユーザの背中と接触させて用いられる。 According to the heat stroke prediction system 10 of the first embodiment, the air pad 41 is arranged on the rug 40 and is used in contact with the back of the user lying on the rug 40.
 横たわった状態では、ヒトの脈拍および呼吸に伴う動きは背中を通じて検出されやすい。このように、エアパッド41をユーザの背中と接触させて用いることで、ユーザの脈拍および呼吸の検出感度を高め、測定精度を向上させることができる。 In the lying state, human pulse and respiratory movements are easily detected through the back. By using the air pad 41 in contact with the user's back in this way, it is possible to increase the detection sensitivity of the user's pulse and respiration and improve the measurement accuracy.
 また、一般家庭では室温が適切に管理されない場合があり、睡眠中にも熱中症を発症する可能性がある。上記構成により、睡眠時の熱中症の発症予測も行うことができ、例えば無自覚のまま睡眠中に熱中症が重症化してしまうことを抑制することができる。 In addition, the room temperature may not be properly controlled in ordinary households, and heat stroke may occur even during sleep. With the above configuration, it is possible to predict the onset of heat stroke during sleep, and for example, it is possible to prevent heat stroke from becoming more severe during sleep without being aware of it.
 実施形態1の熱中症予測システム10によれば、エアパッド51は椅子50の座部に配設され、椅子50に座ったユーザの大腿部と接触させて用いられる。 According to the heat stroke prediction system 10 of the first embodiment, the air pad 51 is arranged on the seat portion of the chair 50 and is used in contact with the thigh portion of the user sitting on the chair 50.
 座った状態では、ヒトの脈拍および呼吸に伴う動きは大腿部を通じて検出されやすい。このように、エアパッド51をユーザの大腿部と接触させて用いることで、ユーザの脈拍および呼吸の検出感度を高め、測定精度を向上させることができる。 In the sitting position, human pulse and respiratory movements are easily detected through the thighs. By using the air pad 51 in contact with the thigh of the user in this way, it is possible to increase the detection sensitivity of the user's pulse and respiration and improve the measurement accuracy.
(変形例1)
 次に、実施形態1の変形例1の熱中症予測システムについて説明する。変形例1の熱中症予測システムは、熱中症への予備対応処理を実行する点が、上述の実施形態1とは異なる。
(Modification example 1)
Next, the heat stroke prediction system of the first modification of the first embodiment will be described. The heat stroke prediction system of the first modification is different from the above-described first embodiment in that it executes a preliminary response process for heat stroke.
 変形例1の熱中症予測システムでは、処理部は、上述の図3のステップS103に相当する処理において、熱中症への予備対応処理を実行するか否かを決定する。具体的には、変形例1の処理部は、少なくとも暑さ指数が閾値以上となった場合には、ステップS104以降の処理に加えて、予備対応処理を実行することを決定する。 In the heat stroke prediction system of the first modification, the processing unit determines whether or not to execute the preliminary response process for heat stroke in the process corresponding to step S103 in FIG. 3 described above. Specifically, the processing unit of the modified example 1 determines to execute the preliminary response processing in addition to the processing in step S104 and subsequent steps when at least the heat index becomes equal to or higher than the threshold value.
 変形例1の処理部は、熱中症への予備対応処理として、例えば表示部に予備的な警告を表示することを決定し、表示部に予備的警告を表示するよう指示を送信する。また、変形例1の処理部は、熱中症への予備対応処理として、例えば鳴動部に予備的な警報を発報させることを決定し、鳴動部に予備的警報を発報するよう指示を送信する。 The processing unit of the modified example 1 determines, for example, to display a preliminary warning on the display unit as a preliminary response process for heat stroke, and transmits an instruction to display the preliminary warning on the display unit. Further, the processing unit of the modified example 1 determines, for example, to issue a preliminary alarm to the ringing unit as a preliminary response process for heat stroke, and transmits an instruction to issue a preliminary alarm to the ringing unit. do.
 これらの予備的警告および予備的警報には、例えば、ユーザが熱中症を発症しやすい状態にあること、ユーザに何らかの対策を講じるよう促す内容等の各種情報が含まれていてよい。また、予備的警告および予備的警報は、上述の図3のステップS108,S109に相当する処理において実施される警告および警報よりも、注意喚起の度合いの弱いものであってよい。 These preliminary warnings and preliminary warnings may include various information such as, for example, that the user is in a state where he / she is likely to develop heat stroke and that the user is urged to take some measures. Further, the preliminary warning and the preliminary warning may have a weaker degree of alerting than the warning and the warning performed in the process corresponding to steps S108 and S109 in FIG. 3 described above.
 実施形態1の変形例1の熱中症予測システムによれば、予備対応処理および対応処理の複数回に亘ってユーザへの注意喚起がなされるので、熱中症の発症を抑制するような適切な対応がより図られやすい。 According to the heat stroke prediction system of the first modification of the first embodiment, the user is alerted to the preliminary response process and the response process a plurality of times, so that appropriate measures are taken to suppress the onset of heat stroke. Is easier to plan.
(変形例2)
 次に、実施形態1の変形例2の熱中症予測システムについて説明する。変形例2の熱中症予測システムは、上述の実施形態1とは異なる熱中症への対応処理を実行する。
(Modification 2)
Next, the heat stroke prediction system of the second modification of the first embodiment will be described. The heat stroke prediction system of the second modification executes a heat stroke response process different from that of the first embodiment described above.
 変形例2の熱中症予測システムでは、熱中症予測装置はエアコンディショナ等の空気調和設備に無線または有線で接続される通信部を有する。通信部が、変形例2の処理部からの指示を空気調和設備に送信することで、空気調和設備は処理部の制御の下、処理部の指示にしたがって動作する。処理部は、上述の図3のステップS106に相当する処理において、熱中症への対応処理を実行することを決定する際、例えば空気調和設備を稼働させることを決定し、通信部を介して空気調和設備を稼働させる指示を送信する。このとき、上述の図3のステップS107,S108に相当する処理が、並行して実行されてもよい。 In the heat stroke prediction system of the second modification, the heat stroke prediction device has a communication unit that is wirelessly or wiredly connected to air conditioning equipment such as an air conditioner. When the communication unit transmits an instruction from the processing unit of the second modification to the air conditioning equipment, the air conditioning equipment operates according to the instruction of the processing unit under the control of the processing unit. When the processing unit decides to execute the heat stroke response processing in the processing corresponding to step S106 of FIG. 3 described above, for example, the processing unit decides to operate the air conditioning equipment and air via the communication unit. Send instructions to operate the air conditioning equipment. At this time, the processes corresponding to steps S107 and S108 in FIG. 3 may be executed in parallel.
 実施形態1の変形例2の熱中症予測システムによれば、熱中症への実効的な対応をユーザに委ねることなく、所定の対応を取ることができるので、熱中症の発症をよりいっそう抑制することができる。 According to the heat stroke prediction system of the second modification of the first embodiment, a predetermined response can be taken without leaving the effective response to the heat stroke to the user, so that the onset of heat stroke is further suppressed. be able to.
[実施形態2]
 以下、図面を参照して、実施形態2について詳細に説明する。実施形態2の熱中症予測システムは、熱中症以外の異常に対しても判定を行う点が、上述の実施形態1とは異なる。
[Embodiment 2]
Hereinafter, the second embodiment will be described in detail with reference to the drawings. The heat stroke prediction system of the second embodiment is different from the above-described first embodiment in that it also determines an abnormality other than the heat stroke.
 図4は、実施形態2にかかる熱中症予測装置における処理の手順の一例を示すフロー図である。 FIG. 4 is a flow chart showing an example of the processing procedure in the heat stroke prediction device according to the second embodiment.
 図4に示すように、実施形態2の熱中症予測システムの生体情報取得部は、圧電センサを含む生体センサから、ユーザの脈拍数および呼吸数等の生体情報を取得する(ステップS201)。増加量算出部は、生体情報に基づいて、脈拍数の増加量および呼吸数の増加量の少なくともいずれかを算出する(ステップS202)。 As shown in FIG. 4, the biometric information acquisition unit of the heat stroke prediction system of the second embodiment acquires biometric information such as the user's pulse rate and respiratory rate from the biosensor including the piezoelectric sensor (step S201). The increase amount calculation unit calculates at least one of the increase amount of the pulse rate and the increase amount of the respiratory rate based on the biological information (step S202).
 実施形態2の処理部は、脈拍数の増加量および呼吸数の増加量がそれぞれの閾値以上となっているか否かを判定する(ステップS203)。いずれの増加量も閾値未満であれば(ステップS203:No)、ステップS201の処理に戻る。 The processing unit of the second embodiment determines whether or not the amount of increase in the pulse rate and the amount of increase in the respiratory rate are equal to or higher than the respective threshold values (step S203). If any of the increases is less than the threshold value (step S203: No), the process returns to step S201.
 脈拍数の増加量および呼吸数の増加量の少なくともいずれかが閾値以上であれば(ステップS203:Yes)、環境情報取得部は、温湿度センサ等から温湿度データ等の環境情報を取得する(ステップS204)。暑さ指数算出部は、環境情報に基づいてWBGT等の暑さ指数を算出する(ステップS205)。 If at least one of the increase in pulse rate and the increase in respiratory rate is equal to or greater than the threshold value (step S203: Yes), the environmental information acquisition unit acquires environmental information such as temperature / humidity data from a temperature / humidity sensor or the like (step S203: Yes). Step S204). The heat index calculation unit calculates a heat index such as WBGT based on the environmental information (step S205).
 処理部は、暑さ指数が閾値以上であるか否かを判定する(ステップS206)。暑さ指数が閾値以上であれば(ステップS206:Yes)、処理部は、表示部に熱中症に関する警告を表示する(ステップS207)。また、処理部は、鳴動部に熱中症に関する警告を発報させる(ステップS208)。 The processing unit determines whether or not the heat index is equal to or higher than the threshold value (step S206). If the heat index is equal to or greater than the threshold value (step S206: Yes), the processing unit displays a warning regarding heat stroke on the display unit (step S207). In addition, the processing unit issues a warning regarding heat stroke to the ringing unit (step S208).
 処理部は、警告を受けたユーザにより適切な措置が取られたか否かを確認するため、暑さ指数ならびに脈拍数および呼吸数等の増加量が閾値未満となったか否かを判定する(ステップS209)。これらの数値が閾値未満となっていなければ(ステップS209:No)、処理部は、ステップS207~S208の処理を繰り返す。上記数値が閾値未満となっていれば(ステップS209:Yes)、処理部は処理を終了する。 The processing unit determines whether the heat index and the amount of increase in pulse rate, respiratory rate, etc. are below the threshold value in order to confirm whether appropriate measures have been taken by the user who received the warning (step). S209). If these numerical values are not less than the threshold value (step S209: No), the processing unit repeats the processing of steps S207 to S208. If the above value is less than the threshold value (step S209: Yes), the processing unit ends the processing.
 一方、上述のステップS203で脈拍数および呼吸数の増加量の少なくともいずれかが閾値以上となっていると判定されたにも関わらず、暑さ指数が閾値未満である場合には(ステップS206:No)、ユーザに、熱中症以外の異常が発生している可能性がある。 On the other hand, when it is determined in step S203 described above that at least one of the increase in pulse rate and respiratory rate is equal to or greater than the threshold value, but the heat index is less than the threshold value (step S206: No), there is a possibility that the user has an abnormality other than heat stroke.
 そこで、処理部、表示部に心不全等の他の異常が発生した旨の警告を表示する(ステップS210)。また、処理部は、鳴動部に心不全等の他の異常に関する警告を発報させる(ステップS211)。 Therefore, a warning that another abnormality such as heart failure has occurred is displayed on the processing unit and the display unit (step S210). In addition, the processing unit issues a warning regarding other abnormalities such as heart failure to the ringing unit (step S211).
 以上により、実施形態2の熱中症予測装置における処理が終了する。 With the above, the process in the heat stroke prediction device of the second embodiment is completed.
 実施形態2の熱中症予測システムによれば、例えば上述の実施形態1と実質的に同じハードウェア構成にて、熱中症以外の異常が発生している可能性についても判定し、対応処理を実行することができる。 According to the heat stroke prediction system of the second embodiment, for example, it is determined that an abnormality other than the heat stroke may have occurred with substantially the same hardware configuration as that of the first embodiment, and the corresponding process is executed. can do.
[その他の実施形態]
 上述の実施形態1,2及び各変形例の熱中症予測システムでは、エアパッド41,51及び圧電センサ44,54等を有する生体センサにより、ユーザの脈拍数および呼吸数等を検出することとしたが、生体センサの構成はこれに限られない。
[Other Embodiments]
In the heat stroke prediction system of the above-described first and second embodiments and each of the modified examples, the pulse rate and the respiratory rate of the user are detected by the biological sensor having the air pads 41, 51 and the piezoelectric sensors 44, 54 and the like. , The configuration of the biosensor is not limited to this.
 例えば、生体センサは、カメラ等の撮像装置を含む構成を有していてもよい。この場合、撮像装置を用いた画像診断により、ユーザの胸囲の変化から呼吸数を検出することができる。また例えば、生体センサは、酸素吸入器を含む構成を有していてもよい。この場合、酸素吸入タイミング等から、ユーザの呼吸数を検出することができる。また例えば、生体センサは、ユーザの身体に装着可能な電極を含む構成を有していてもよい。この場合、ユーザに装着した電極から心電図が得られることにより、ユーザの心拍数を検出することができる。またこのとき、心拍間隔(RRI:R-R Interval)を検出し、心拍間隔の揺らぎ等からユーザの身体の変調を判定してもよい。心拍間隔は、得られた心電図から、R波と呼ばれる波形の間隔を抽出することにより検出される。 For example, the biosensor may have a configuration including an imaging device such as a camera. In this case, the respiratory rate can be detected from the change in the chest circumference of the user by image diagnosis using an imaging device. Further, for example, the biosensor may have a configuration including an oxygen inhaler. In this case, the respiratory rate of the user can be detected from the oxygen inhalation timing and the like. Further, for example, the biosensor may have a configuration including electrodes that can be worn on the user's body. In this case, the heart rate of the user can be detected by obtaining an electrocardiogram from the electrodes worn by the user. At this time, the heartbeat interval (RRI: R-R Interval) may be detected, and the modulation of the user's body may be determined from the fluctuation of the heartbeat interval or the like. The heartbeat interval is detected by extracting the interval of a waveform called an R wave from the obtained electrocardiogram.
 上述の実施形態1,2及び各変形例の熱中症予測システムでは、ユーザの平常時の脈拍数および呼吸数を、これまでに取得されたユーザの脈拍数および呼吸数から抽出することとしたが、これに限られない。 In the heat stroke prediction system of the above-described first and second embodiments and each modification, the user's normal pulse rate and respiratory rate are extracted from the user's pulse rate and respiratory rate acquired so far. , Not limited to this.
 ユーザの平常時の脈拍数および呼吸数として、例えば、安静時の心拍数および呼吸数の統計値等を用いてもよい。一般的に、安静時心拍数は、成人男性で65回/分であり、成人女性で70回/分である。安静時呼吸数は、男女ともに15回/分である。 As the user's normal pulse rate and respiratory rate, for example, the statistical values of the resting heart rate and respiratory rate may be used. In general, the resting heart rate is 65 beats / minute for adult males and 70 beats / minute for adult females. The resting respiratory rate is 15 times / minute for both men and women.
 上述の実施形態1,2及び各変形例の熱中症予測システムで実行される熱中症予測プログラムは、ROM等に予め組み込まれて提供されることとしたが、このような構成に限られない。 The heat stroke prediction program executed by the heat stroke prediction system of the above-described first and second embodiments and each modification is provided by being incorporated in the ROM or the like in advance, but the configuration is not limited to this.
 上述の実施形態1,2及び各変形例の熱中症予測プログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM(Compact Disc Read Only Memory)、フレキシブルディスク(FD)、CD-R(Compact Disc-Recordable)、DVD(Digital Versatile Disc)等のコンピュータで読み取り可能な記録媒体に記録してコンピュータ・プログラム・プロダクトとして提供されるように構成されていてもよい。 The heat stroke prediction programs of the above-described first and second embodiments and each modification are files in an installable format or an executable format, and are a CD-ROM (Compact Disc Read Only Memory), a flexible disk (FD), or a CD-R. It may be configured to be provided as a computer program product by recording on a computer-readable recording medium such as (Compact Disc-Recordable) or DVD (Digital Versatile Disc).
 また、上述の実施形態1,2及び各変形例の熱中症予測プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、上述の実施形態1,2及び各変形例の熱中症予測プログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。 Further, the heat stroke prediction programs of the above-described first and second embodiments and each modification may be stored on a computer connected to a network such as the Internet and provided by downloading via the network. .. Further, the heat stroke prediction programs of the above-described first and second embodiments and each modification may be provided or distributed via a network such as the Internet.
 以上、本発明の実施形態について説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 10…熱中症予測システム、40…敷物、41,51…エアパッド、42,52…温湿度センサ、43,53…ホース、44,54…圧電センサ、45,55…アンプ、50…椅子、100a,100b…測定装置、200…熱中症予測装置、210…処理部、211x…生体情報取得部、211y…環境情報取得部、212x…増加量算出部、212y…暑さ指数算出部、213…記憶部、230…表示部、231…鳴動部。 10 ... Heat stroke prediction system, 40 ... Rug, 41, 51 ... Air pad, 42, 52 ... Temperature and humidity sensor, 43, 53 ... Hose, 44, 54 ... Piezoelectric sensor, 45, 55 ... Amplifier, 50 ... Chair, 100a, 100b ... Measuring device, 200 ... Heat stroke prediction device, 210 ... Processing unit, 211x ... Biological information acquisition unit, 211y ... Environmental information acquisition unit, 212x ... Increase amount calculation unit, 212y ... Heat index calculation unit, 213 ... Storage unit , 230 ... Display unit, 231 ... Ringing unit.

Claims (16)

  1.  コンピュータを、
     ユーザの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を取得する生体情報取得部と、
     環境情報を取得する環境情報取得部と、
     前記生体情報に基づき、前記生体情報を取得した時の前記脈拍数の前記ユーザの平常時の脈拍数からの増加量、及び前記生体情報を取得した時の前記呼吸数の前記ユーザの平常時の呼吸数からの増加量の少なくともいずれかを算出する増加量算出部と、
     前記環境情報に基づき、熱中症の発生度合いを示す暑さ指数を算出する暑さ指数算出部と、
     前記脈拍数および前記呼吸数の前記増加量の少なくともいずれかが閾値以上となったこと、並びに前記暑さ指数が閾値以上となったこと、に基づいて、熱中症への対応処理を実行することを決定する処理部と、を有する熱中症予測装置として機能させる、
    プログラム。
    Computer,
    A biometric information acquisition unit that acquires biometric information including at least one of the user's pulse rate and respiratory rate, and
    The Environmental Information Acquisition Department, which acquires environmental information,
    Based on the biometric information, the amount of increase in the pulse rate from the user's normal pulse rate when the biometric information is acquired, and the respiratory rate when the biometric information is acquired in the user's normal time. An increase amount calculation unit that calculates at least one of the increase amounts from the respiratory rate,
    Based on the above environmental information, a heat index calculation unit that calculates a heat index indicating the degree of heat stroke, and a heat index calculation unit.
    Performing a heat stroke response process based on the fact that at least one of the pulse rate and the increase in the respiratory rate is equal to or higher than the threshold value and the heat index is equal to or higher than the threshold value. To function as a heat stroke predictor, which has a processing unit that determines
    program.
  2.  前記処理部は、
     前記熱中症への対応処理として、前記コンピュータの制御下にある表示部に警告を表示することを決定する、
    請求項1に記載のプログラム。
    The processing unit
    As a response process to the heat stroke, it is determined to display a warning on a display unit under the control of the computer.
    The program according to claim 1.
  3.  前記処理部は、
     前記熱中症への対応処理として、前記コンピュータの制御下にある鳴動部に警報を発報させることを決定する、
    請求項1または請求項2に記載のプログラム。
    The processing unit
    As a response process to the heat stroke, it is determined to issue an alarm to the ringing unit under the control of the computer.
    The program according to claim 1 or 2.
  4.  前記処理部は、
     前記熱中症への対応処理として、前記コンピュータの制御下にある空気調和設備を稼働させることを決定する、
    請求項1乃至請求項3のいずれか1項に記載のプログラム。
    The processing unit
    As a response process to the heat stroke, it is decided to operate the air conditioning equipment under the control of the computer.
    The program according to any one of claims 1 to 3.
  5.  前記処理部は、
     少なくとも前記暑さ指数が前記閾値以上となった場合に、前記熱中症への予備対応処理として、
     前記コンピュータの制御下にある表示部に警告を表示することの決定、
     前記コンピュータの制御下にある鳴動部に警報を発報させることの決定、及び、
     前記コンピュータの制御下にある空気調和設備を稼働させることの決定、のうち少なくともいずれかの決定を行う、
    請求項1乃至請求項4のいずれか1項に記載のプログラム。
    The processing unit
    As a preliminary treatment for the heat stroke, at least when the heat index becomes equal to or higher than the threshold value.
    Decision to display a warning on the display under the control of the computer,
    The decision to issue an alarm to the ringing unit under the control of the computer, and
    Make at least one of the decisions to operate the air conditioning equipment under the control of the computer.
    The program according to any one of claims 1 to 4.
  6.  前記処理部は、
     前記脈拍数および前記呼吸数の前記増加量の少なくともいずれかが前記閾値以上となっているにも関わらず、前記暑さ指数が前記閾値未満である場合には、前記熱中症以外の異常が発生したと判定する、
    請求項1乃至請求項5のいずれか1項に記載のプログラム。
    The processing unit
    If at least one of the pulse rate and the increase in the respiratory rate is equal to or higher than the threshold value and the heat index is less than the threshold value, an abnormality other than the heat stroke occurs. Judge that you did,
    The program according to any one of claims 1 to 5.
  7.  前記環境情報は温度および湿度に関する情報を含む、
    請求項1乃至請求項6のいずれか1項に記載のプログラム。
    The environmental information includes information on temperature and humidity.
    The program according to any one of claims 1 to 6.
  8.  前記暑さ指数算出部は、
     前記暑さ指数として、湿度、気温、及び日差しの強さの3要素で暑さを表す湿球黒球温度を算出する、
    請求項1乃至請求項7のいずれか1項に記載のプログラム。
    The heat index calculation unit
    As the heat index, the wet-bulb globe temperature, which represents heat by three elements of humidity, air temperature, and the intensity of sunlight, is calculated.
    The program according to any one of claims 1 to 7.
  9.  所定の姿勢を取るユーザの身体と接触させて用いられ、前記ユーザの脈拍および呼吸の少なくともいずれかに伴う振動を受け取る探査具、及び、
     前記探査具が受け取った前記ユーザの動きを検出するセンサを有し、前記ユーザの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を測定する生体センサと、
     温度および湿度に関する環境情報を測定する環境センサと、
     前記生体センサ及び前記環境センサからの情報に基づいて、前記ユーザについて熱中症の発症予測を行う熱中症予測装置と、を備え、
     前記熱中症予測装置は、
     前記生体情報を前記生体センサから取得する生体情報取得部と、
     前記環境情報を前記環境センサから取得する環境情報取得部と、
     前記生体情報に基づき、前記生体情報を取得した時の前記脈拍数の前記ユーザの平常時の脈拍数からの増加量、及び前記生体情報を取得した時の前記呼吸数の前記ユーザの平常時の呼吸数からの増加量の少なくともいずれかを算出する増加量算出部と、
     前記環境情報に基づき、熱中症の発生度合いを示す暑さ指数を算出する暑さ指数算出部と、
     前記脈拍数および前記呼吸数の前記増加量の少なくともいずれかが閾値以上となったこと、並びに前記暑さ指数が閾値以上となったこと、に基づいて、熱中症への対応処理を実行することを決定する処理部と、を有する、
    システム。
    A probe that is used in contact with the user's body in a given posture and receives vibrations associated with at least one of the user's pulse and respiration, and
    A biosensor that has a sensor that detects the movement of the user received by the probe and measures biometric information including at least one of the user's pulse rate and respiratory rate.
    An environment sensor that measures environmental information about temperature and humidity,
    A heat stroke prediction device for predicting the onset of heat stroke for the user based on the information from the biosensor and the environment sensor is provided.
    The heat stroke prediction device is
    A biometric information acquisition unit that acquires the biometric information from the biosensor,
    An environmental information acquisition unit that acquires the environmental information from the environment sensor, and
    Based on the biometric information, the amount of increase in the pulse rate from the user's normal pulse rate when the biometric information is acquired, and the respiratory rate when the biometric information is acquired in the user's normal time. An increase amount calculation unit that calculates at least one of the increase amounts from the respiratory rate,
    Based on the above environmental information, a heat index calculation unit that calculates a heat index indicating the degree of heat stroke, and a heat index calculation unit.
    Performing a heat stroke response process based on the fact that at least one of the pulse rate and the increase in the respiratory rate is equal to or higher than the threshold value and the heat index is equal to or higher than the threshold value. Has a processing unit, which determines
    system.
  10.  前記探査具はエアが封入されたエアパッドであり、
     前記センサは、前記エアパッドに生じた圧力変化を検出する圧電センサである、
    請求項9に記載のシステム。
    The exploration tool is an air pad filled with air.
    The sensor is a piezoelectric sensor that detects a pressure change generated in the air pad.
    The system according to claim 9.
  11.  前記探査具は敷物に配設され、前記敷物に横たわった前記ユーザの背中と接触させて用いられる、
    請求項10に記載のシステム。
    The exploration tool is placed on the rug and is used in contact with the back of the user lying on the rug.
    The system according to claim 10.
  12.  前記探査具は座席の座部に配設され、前記座席に座った前記ユーザの大腿部と接触させて用いられる、
    請求項10に記載のシステム。
    The probe is disposed on the seat of the seat and is used in contact with the thigh of the user sitting on the seat.
    The system according to claim 10.
  13.  前記環境センサは温湿度センサを含む、
    請求項9乃至請求項12のいずれか1項に記載のシステム。
    The environment sensor includes a temperature / humidity sensor.
    The system according to any one of claims 9 to 12.
  14.  前記環境センサは輻射熱センサを含む、
    請求項13に記載のシステム。
    The environment sensor includes a radiant heat sensor.
    The system according to claim 13.
  15.  ユーザの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を測定する生体センサと、
     温度および湿度に関する環境情報を測定する環境センサと、を備え、
     前記生体センサは、
     所定の姿勢を取るユーザの身体と接触させて用いられ、前記ユーザの脈拍および呼吸の少なくともいずれかに伴う振動を受け取ることが可能なようにエアが封入されたエアパッドと、
     前記エアパッドに生じた圧力変化を検出する圧電センサと、を有する、
    測定装置。
    A biosensor that measures biometric information, including at least one of the user's pulse rate and respiratory rate,
    Equipped with an environment sensor that measures environmental information about temperature and humidity,
    The biosensor
    An air pad that is used in contact with the body of a user in a predetermined position and is filled with air so that it can receive vibrations associated with at least one of the user's pulse and breathing.
    It has a piezoelectric sensor that detects a pressure change generated in the air pad.
    measuring device.
  16.  ユーザの脈拍数および呼吸数の少なくともいずれかの情報を含む生体情報を取得し、
     温度および湿度に関する環境情報を取得し、
     前記生体情報に基づき、前記生体情報を取得した時の前記脈拍数の前記ユーザの平常時の脈拍数からの増加量、及び前記生体情報を取得した時の前記呼吸数の前記ユーザの平常時の呼吸数からの増加量の少なくともいずれかを算出し、
     前記環境情報に基づき、熱中症の発生度合いを示す暑さ指数を算出し、
     前記脈拍数および前記呼吸数の前記増加量の少なくともいずれかが閾値以上となったこと、並びに前記暑さ指数が閾値以上となったこと、に基づいて、熱中症への対応処理を実行する、
    方法。
    Acquire biometric information, including at least one of the user's pulse rate and respiratory rate,
    Get environmental information about temperature and humidity,
    Based on the biometric information, the amount of increase in the pulse rate from the user's normal pulse rate when the biometric information is acquired, and the respiratory rate when the biometric information is acquired in the user's normal time. Calculate at least one of the increases from your respiratory rate and
    Based on the above environmental information, a heat index indicating the degree of heat stroke was calculated.
    Based on the fact that at least one of the pulse rate and the increase in the respiratory rate is equal to or higher than the threshold value and the heat index is equal to or higher than the threshold value, the heat stroke response process is executed.
    Method.
PCT/JP2021/006462 2020-02-27 2021-02-19 Program, system, measurement device, and method WO2021172225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020032294 2020-02-27
JP2020-032294 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172225A1 true WO2021172225A1 (en) 2021-09-02

Family

ID=77491057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006462 WO2021172225A1 (en) 2020-02-27 2021-02-19 Program, system, measurement device, and method

Country Status (1)

Country Link
WO (1) WO2021172225A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015420A (en) * 2007-07-02 2009-01-22 Quality Kk Monitoring system
JP2015054224A (en) * 2013-09-13 2015-03-23 富士通株式会社 Heat attack determination device, portable terminal device, heat attack determination method, and heat attack determination program
WO2015137433A1 (en) * 2014-03-12 2015-09-17 株式会社リキッド・デザイン・システムズ Air pad for detecting biometric information, device for detecting biometric information, and system for delivering biometric information
WO2016203622A1 (en) * 2015-06-18 2016-12-22 富士通株式会社 Onset risk determination device, onset risk determination method, and onset risk determination program
JP2017027123A (en) * 2015-07-16 2017-02-02 新日鐵住金株式会社 Heat stroke onset prevention diagnostic device and heat stroke onset prevention method
WO2017109919A1 (en) * 2015-12-24 2017-06-29 富士通株式会社 Electronic device, wbgt determination method, and wbgt determination program
JP2017153850A (en) * 2016-03-04 2017-09-07 栄夫 澤田 Living body monitoring system and living body monitoring method
JP2017168098A (en) * 2016-03-11 2017-09-21 インフィック株式会社 Watching system and life support proposing system
JP2018130531A (en) * 2017-02-17 2018-08-23 倉敷紡績株式会社 Heat stroke risk management system
JP2018134246A (en) * 2017-02-22 2018-08-30 ダイキン工業株式会社 Biological information acquisition unit, stationary unit, and biological information acquisition device
JP2019180626A (en) * 2018-04-05 2019-10-24 ダイキン工業株式会社 Apnea determination device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015420A (en) * 2007-07-02 2009-01-22 Quality Kk Monitoring system
JP2015054224A (en) * 2013-09-13 2015-03-23 富士通株式会社 Heat attack determination device, portable terminal device, heat attack determination method, and heat attack determination program
WO2015137433A1 (en) * 2014-03-12 2015-09-17 株式会社リキッド・デザイン・システムズ Air pad for detecting biometric information, device for detecting biometric information, and system for delivering biometric information
WO2016203622A1 (en) * 2015-06-18 2016-12-22 富士通株式会社 Onset risk determination device, onset risk determination method, and onset risk determination program
JP2017027123A (en) * 2015-07-16 2017-02-02 新日鐵住金株式会社 Heat stroke onset prevention diagnostic device and heat stroke onset prevention method
WO2017109919A1 (en) * 2015-12-24 2017-06-29 富士通株式会社 Electronic device, wbgt determination method, and wbgt determination program
JP2017153850A (en) * 2016-03-04 2017-09-07 栄夫 澤田 Living body monitoring system and living body monitoring method
JP2017168098A (en) * 2016-03-11 2017-09-21 インフィック株式会社 Watching system and life support proposing system
JP2018130531A (en) * 2017-02-17 2018-08-23 倉敷紡績株式会社 Heat stroke risk management system
JP2018134246A (en) * 2017-02-22 2018-08-30 ダイキン工業株式会社 Biological information acquisition unit, stationary unit, and biological information acquisition device
JP2019180626A (en) * 2018-04-05 2019-10-24 ダイキン工業株式会社 Apnea determination device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI RYOTA ET AL.: "Examination of heat stroke detection system in a vehicle using Kinet", PROCEEDINGS OF THE 2017 GENERAL , CONFERENCE OF IEICE, 7 March 2017 (2017-03-07), pages S21 - S22 *

Similar Documents

Publication Publication Date Title
JP5872559B2 (en) Method and apparatus for monitoring a subject's respiratory activity
JP5451402B2 (en) Cardiac ballistic sensor system with sensor configuration and method for detecting ballistic movement of body movement
RU2720668C2 (en) Apparatus and method for determining and/or monitoring an individual's respiratory effort
US20100210921A1 (en) Scale-type nonconstrained health condition evaluating apparatus and method
JP4921233B2 (en) Bed detection method
US9597038B2 (en) Apparatus for monitoring a subject during exercise
JP2017537684A (en) Apparatus and method for assessing the severity of chronic obstructive pulmonary disease (COPD) in a subject
KR20170035851A (en) Smart bed system and control method thereof
US20170351825A1 (en) Method and apparatus for quantifying and monitoring the frailty of a subject
US20210137462A1 (en) Abnormality notification system, abnormality notification method, and program
US20180192873A1 (en) Monitoring physiologogy
CN103458782A (en) Breathlessness and edema symptom assessment
JP2014171660A (en) Atrial fibrillation analyzation equipment, atrial fibrillation analysis system, atrial fibrillation analysis method and program
JP2012237670A (en) Thermometer and manometer provided with the same
WO2018211962A1 (en) Information processing apparatus, information processing method, and program
JP2005505373A (en) System and method for measuring the degree of physical activity of an object
JP2004130012A (en) Method for measuring biosignal strength, and determination method and monitoring device for sleeping conditions
KR20160084980A (en) A real-time sleep monitoring system using a smartphone
WO2021172225A1 (en) Program, system, measurement device, and method
JPWO2019245055A1 (en) Biometric information detection mat, biometric information detector and biometric information communication system
JPH07328079A (en) Sleeping device
JP2005278765A (en) Monitoring device for posture, breathing, heart rate and action, and physical abnormality judging method
JP7435459B2 (en) Condition monitoring device and condition monitoring method
Farhad et al. Measurement of vital signs with non-invasive and wireless sensing technologies and health monitoring
Kimura et al. Development of an unobtrusive vital signs detection system using conductive fiber sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP