WO2021171979A1 - Traffic flow control system, control device, control method, and computer program - Google Patents

Traffic flow control system, control device, control method, and computer program Download PDF

Info

Publication number
WO2021171979A1
WO2021171979A1 PCT/JP2021/004493 JP2021004493W WO2021171979A1 WO 2021171979 A1 WO2021171979 A1 WO 2021171979A1 JP 2021004493 W JP2021004493 W JP 2021004493W WO 2021171979 A1 WO2021171979 A1 WO 2021171979A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
information
vehicle
road
occurrence
Prior art date
Application number
PCT/JP2021/004493
Other languages
French (fr)
Japanese (ja)
Inventor
明紘 小川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021171979A1 publication Critical patent/WO2021171979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the car navigation system stores road map information and displays the current position of the vehicle acquired by GPS (Global Positioning System) or the like on the road map to provide driving support.
  • GPS Global Positioning System
  • the car navigation system presents a plurality of travel routes according to the input destination, waypoint, etc., and conditions related to time, mileage, fare, and the like. After the travel route is selected and the vehicle travel is started, the direction of travel (straight ahead, right turn or left turn) and the desired travel lane are guided according to the travel position.
  • VICS Vehicle Information and Communication System
  • traffic information information related to traffic conditions (traffic congestion, traffic obstacles, traffic regulations, etc.) wirelessly in real time.
  • traffic information information related to traffic conditions (traffic congestion, traffic obstacles, traffic regulations, etc.) wirelessly in real time.
  • Non-Patent Document 1 proposes a system that smoothes the traffic flow by sharing the route information of each vehicle to be passed by the in-vehicle device and distributing the traffic volume. Further, in Patent Document 1 below, route information is received from a vehicle traveling in front of the own vehicle, and the acquired route information is used to prevent the vehicles from concentrating on the same route or road. An in-vehicle device that recalculates information is disclosed.
  • the traffic flow control system includes a plurality of in-vehicle devices and a control device for controlling the traffic flow in the road network based on information transmitted from the plurality of in-vehicle devices, and the control device is a road network.
  • the first management unit that manages the traffic flow of the main road and the roads that correspond to each of the plurality of second areas constituting the first area and are included in the second area.
  • the first management department includes the second management department that manages the traffic flow of the road, and the first management department predicts the occurrence of congestion on the main road based on the traffic capacity of the main road.
  • the first recommended information for avoiding the congestion predicted by the first prediction unit is sent to the first congestion part where the occurrence of the congestion is predicted.
  • the second management unit reduces the occurrence of congestion on the road included in the second region to the traffic capacity of the road included in the second region.
  • the second recommended information for avoiding the congestion predicted by the second prediction unit is provided with the congestion.
  • Each of the plurality of in-vehicle devices receives, including a second transmitting unit that transmits to the in-vehicle device of the vehicle traveling on the road included in the second region toward the second congested portion where the occurrence of Information that recommends traveling on a route based on either the first recommended information or the second recommended information is presented.
  • the traffic flow control device is a traffic flow control device that controls the traffic flow in the road network based on information transmitted from a plurality of in-vehicle devices, and is included in the first region of the road network.
  • the first management unit that manages the traffic flow of the main road and the second management unit that manages the traffic flow of the roads included in the second area corresponding to each of the plurality of second areas constituting the first area.
  • the first management department including the two management departments, predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction unit predicts the occurrence of congestion.
  • the first recommended information for avoiding the congestion predicted by the first prediction unit is given to the vehicle traveling on the main road toward the first congestion part where the congestion is predicted to occur.
  • the second management unit predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmitting unit that transmits to the in-vehicle device.
  • the second recommended information for avoiding the congestion predicted by the second prediction section was given by the second prediction section.
  • (2) Includes a second transmission unit that transmits to an in-vehicle device of a vehicle traveling on a road included in the second region toward a congested portion.
  • the traffic flow control method is a traffic flow control method for controlling the traffic flow in the road network based on information transmitted from a plurality of in-vehicle devices, and is included in the first region of the road network.
  • the first management step for managing the traffic flow of the main road and the traffic flow of the roads included in the second region are managed corresponding to each of the plurality of second regions constituting the first region.
  • the first management step predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction step predicts the occurrence of congestion.
  • the first recommended information for avoiding the congestion predicted by the first prediction step is applied to the vehicle traveling on the main road toward the first congestion portion where the congestion is predicted to occur.
  • the second management step predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region.
  • the occurrence of the congestion was predicted by the second recommended information for avoiding the congestion predicted by the second prediction step. It includes a second transmission step of transmitting to the in-vehicle device of the vehicle traveling on the road included in the second region toward the second congested portion.
  • the computer program is a computer program that controls a traffic flow in a road network based on information transmitted from a plurality of in-vehicle devices, and is included in the first region of the road network in the computer.
  • the first management function for managing the traffic flow of the main road and the second management function for managing the traffic flow of the road included in the second area corresponding to each of the plurality of second areas constituting the first area.
  • Two management functions are realized, and the first management function predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction function predicts the occurrence of congestion.
  • the first recommended information for avoiding the congestion predicted by the first prediction function is sent to the vehicle traveling on the main road toward the first congestion portion where the congestion is predicted to occur.
  • the second management function predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region.
  • the occurrence of the congestion was predicted by the second recommended information for avoiding the congestion predicted by the second prediction function. It includes a second transmission function of transmitting to an in-vehicle device of a vehicle traveling on a road included in a second region toward a second congested portion.
  • FIG. 1 is a schematic diagram showing a configuration of a traffic flow control system according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a hardware configuration of the in-vehicle device shown in FIG.
  • FIG. 3 is a block diagram showing the hardware configuration of the first server shown in FIG.
  • FIG. 4 is a block diagram showing a configuration of a functional module of the first server shown in FIG.
  • FIG. 5 is a road map showing a target road whose traffic flow is controlled by a high-level agent.
  • FIG. 6 is a road map showing a target road whose traffic flow is controlled by a low-level agent.
  • FIG. 7 is a flowchart showing the operation of the high-level agent.
  • FIG. 8 is a flowchart showing the operation of the low level agent.
  • FIG. 9 is a plan view showing traffic conditions in and around the intersection.
  • Traffic conditions do not depend only on static factors such as road structure (number of lanes, speed limit, lane regulation, etc.), but also the types of traffic participants (vehicles, pedestrians, bicycles, etc.) and their properties (straight ahead, straight ahead, etc.) It changes from moment to moment depending on dynamic factors such as right turn, left turn, etc.).
  • both Non-Patent Document 1 and Patent Document 1 have a problem that congestion cannot be avoided corresponding to the traffic capacity that dynamically fluctuates depending on the traffic condition.
  • the traffic capacity is set for each road and is the maximum traffic volume of each road.
  • the traffic capacity is determined, for example, from the actually measured traffic volume (the number of vehicles passing per unit time at a certain point on the road (for example, vehicles / hour)). Since the maximum value of the measured traffic volume varies depending on the traffic conditions, the traffic capacity varies depending on the traffic conditions. For example, even on the same road, a state in which the vehicle can travel at a legal speed (for example, 100 km / h on an expressway) and a state in which the vehicle travels at a lower speed (for example, 60 km / h) (speed regulation due to congestion, strong wind, snow cover, etc.) The traffic capacity is different. Traffic capacity also varies depending on the time of day and the day of the week.
  • Non-Patent Document 1 it is not possible to monitor the traffic conditions other than the traffic volume of the probe vehicle in real time.
  • Patent Document 1 it is possible to avoid duplication of traveling routes between vehicles, but it is not possible to consider the behavior of other traffic participants (pedestrians, vehicle groups that cannot share information, etc.). Therefore, it is not possible to avoid congestion corresponding to the traffic capacity that dynamically fluctuates depending on the traffic conditions.
  • an object of the present disclosure is to provide a traffic flow control system, a control device, a control method, and a computer program capable of avoiding congestion corresponding to a traffic capacity that dynamically fluctuates depending on a traffic condition.
  • the traffic flow control system includes and controls a plurality of in-vehicle devices and a control device that controls a traffic flow in a road network based on information transmitted from the plurality of in-vehicle devices.
  • the device corresponds to each of the first management unit that manages the traffic flow of the main road and the plurality of second regions constituting the first region among the roads included in the first region of the road network, and the second Including the second management department that manages the traffic flow of the roads included in the area, the first management department has the first prediction unit that predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first 1 In response to the prediction of the occurrence of congestion by the prediction unit, the first recommended information for avoiding the congestion predicted by the first prediction unit is applied to the first congestion portion where the occurrence of the congestion is predicted.
  • the second management unit includes the first transmission unit that transmits to the in-vehicle device of the vehicle traveling on the main road, and the second management unit includes the occurrence of congestion on the road included in the second region in the second region.
  • the second prediction unit that predicts based on the traffic capacity of the road and the second recommendation for avoiding the congestion predicted by the second prediction unit in response to the prediction of the occurrence of congestion by the second prediction unit.
  • a plurality of in-vehicle devices including a second transmission unit that transmits information to an in-vehicle device of a vehicle traveling on a road included in the second region toward a second congested portion where the occurrence of the congestion is predicted.
  • Each of the above presents information recommending traveling on a route based on either the received first recommended information or the second recommended information.
  • classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
  • the first recommended information can include at least one of the information of the route bypassing the first congested part, the information of the recommended lane, and the information of the recommended traveling speed, and the second recommended information.
  • the information transmitted from the in-vehicle device includes information indicating the position and traveling route of the vehicle on which the in-vehicle device is mounted, and the first transmitting unit includes the first congested portion in the non-traveling portion of the traveling route. Even if the in-vehicle device is determined as the transmission destination of the first recommended information, and the second transmission unit determines the in-vehicle device including the second congested portion in the non-traveling portion of the traveling route as the transmission destination of the second recommended information. good. As a result, it is possible to suppress the transmission of useless information by the control device and the reception of information that cannot be used by the in-vehicle device, and it is possible to efficiently suppress the occurrence of congestion.
  • the first transmission unit may transmit the first recommended information to the in-vehicle device of the vehicle which is presumed to reach the inflow port toward the first congested part within a predetermined time, and the inflow port is on the main road. It may be an intersection. As a result, it is possible to suppress the transmission of useless information by the control device and the reception of information that cannot be used by the in-vehicle device, and it is possible to efficiently suppress the occurrence of congestion.
  • the first recommended information is information for recommending driving on a detour road that bypasses the first congested part
  • the first transmission unit is the traffic capacity of the road from the inflow port to the first congested part and the detour.
  • the number of in-vehicle devices to which the first recommended information is transmitted may be determined according to the ratio to the traffic capacity of the road. As a result, the traffic flow on a plurality of roads after the vehicles are dispersed can be made comparable.
  • the second prediction unit detects the movements of vehicles and pedestrians at the intersection included in the second area and the area around the intersection, and the detected vehicles and pedestrians and the transmission destination of the second recommended information. With respect to a vehicle equipped with a certain in-vehicle device, the priority of progress at an intersection is determined, and the second transmission unit transmits information according to the priority to the in-vehicle device to which the second recommended information is transmitted. You may. As a result, a safe and smooth traffic flow can be realized.
  • the second prediction unit is obtained by subtracting the outflow amount per unit time from the inflow amount per unit time with respect to the inflow / outflow amount of the number of vehicles in a predetermined area including a plurality of intersections included in the second area.
  • the occurrence of congestion is predicted based on whether the value is larger than the threshold value, and the threshold value may be changed according to the state of the traffic light included in the predetermined area. As a result, it is possible to appropriately predict the occurrence of congestion according to the ever-changing traffic conditions.
  • the control device can include a computer including the first management unit and a plurality of computers including each of the plurality of second management units. In this way, by distributing the functions for each layer to a plurality of computers, it becomes possible to efficiently control the traffic flow.
  • the traffic flow control device is a traffic flow control device that controls the traffic flow in the road network based on information transmitted from a plurality of in-vehicle devices, and is the first of the road network.
  • the traffic flow of the road included in the second area corresponds to each of the first management unit that manages the traffic flow of the main road and the plurality of second areas constituting the first area.
  • the first management unit predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first management unit predicts the occurrence of congestion by the first prediction unit.
  • the first recommended information for avoiding the congestion predicted by the first prediction unit is transmitted on the main road toward the first congestion part where the occurrence of the congestion is predicted.
  • the second management unit predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmission unit that transmits to the in-vehicle device of the vehicle.
  • the second prediction information for avoiding the congestion predicted by the second prediction unit is provided by the occurrence of the congestion. Includes a second transmitter that transmits to the in-vehicle device of the vehicle traveling on the road included in the second region towards the predicted second congested portion.
  • classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
  • the control method is a traffic flow control method for controlling a traffic flow in a road network based on information transmitted from a plurality of in-vehicle devices, and is used in a first region of the road network.
  • the first management step for managing the traffic flow of the main road and the traffic flow of the roads included in the second region are managed corresponding to each of the plurality of second regions constituting the first region.
  • the occurrence of congestion on the main road is predicted based on the traffic capacity of the main road, and the first prediction step predicts the occurrence of congestion.
  • the first recommended information for avoiding the congestion predicted by the first prediction step is being driven on the main road toward the first congestion portion where the occurrence of the congestion is predicted.
  • the second management step predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmission step of transmitting to the in-vehicle device of the vehicle.
  • the occurrence of the congestion is predicted by the second recommended information for avoiding the congestion predicted by the second prediction step. It includes a second transmission step of transmitting to the in-vehicle device of the vehicle traveling on the road included in the second region toward the second congested portion.
  • classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
  • the computer program according to the fourth aspect of the present disclosure is a computer program that controls the traffic flow in the road network based on the information transmitted from a plurality of in-vehicle devices, and the first region of the road network is applied to the computer.
  • the second management function to manage is realized, and the first management function predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction function causes the occurrence of congestion.
  • the first recommended information for avoiding the congestion predicted by the first prediction function is transmitted on the main road toward the first congestion part where the occurrence of the congestion is predicted.
  • the second management function predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmission function of transmitting to the in-vehicle device of the vehicle.
  • the second recommended information for avoiding the congestion predicted by the second prediction function is provided by the occurrence of the congestion. It includes a second transmission function of transmitting to the in-vehicle device of the vehicle traveling on the road included in the second region toward the predicted second congested portion.
  • classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
  • the traffic flow control system 100 includes an in-vehicle device 104 mounted on the vehicle 102 and a first server 110.
  • the first server 110 is a server computer.
  • one vehicle 102 is typically shown, but there are a plurality of vehicles 102. Some vehicles are not equipped with in-vehicle devices.
  • the in-vehicle device 104 and the first server 110 communicate with each other via the base station 106 and the network 108.
  • the first server 110 also communicates with the second server 112 via the network 108.
  • the in-vehicle device 104 transmits and receives information via a mobile communication line (LTE line, 5G line, etc.) provided by the base station 106.
  • a mobile communication line LTE line, 5G line, etc.
  • the in-vehicle device 104 has a function of a car navigation system.
  • the in-vehicle device 104 includes a sensor that acquires information (pedestrian 200, etc.) outside the vehicle 102.
  • the in-vehicle device 104 transmits information (hereinafter referred to as route information) of the designated vehicle 102 to travel (hereinafter referred to as travel route) and data detected by the sensor to the first server 110 (hereinafter also referred to as upload).
  • route information information of the designated vehicle 102 to travel
  • data detected by the sensor to the first server 110 (hereinafter also referred to as upload).
  • the timing of uploading each of them is arbitrary.
  • the route information may be any information that can specify a traveling route, and is, for example, information indicating a starting point, a destination, a waypoint, a traveling road, or the like.
  • the first server 110 uses the route information and the sensor data acquired from the in-vehicle device 104 to generate information for avoiding congestion in vehicle traffic (hereinafter referred to as recommended information) as described later, and the generated recommendation. Information is transmitted to the vehicle-mounted device 104.
  • the second server 112 is, for example, a server computer such as a traffic information providing server set in a traffic control center or the like, and has information on the state (lighting color, blinking state) of the signal 116 and traffic information (for example, traffic jam information, accident). Information related to traffic such as information) is provided to the first server 110 via the network 108.
  • the infrastructure sensor 114 is a device provided with sensors installed on the road and its surroundings, and is, for example, an image sensor (surveillance camera or the like), a radar (millimeter wave radar or the like), or a laser sensor (LiDAR (Light Detection and Ringing)). Etc.) etc.
  • the sensor data transmitted from the infrastructure sensor 114 is received by the first server 110 and the second server 112 via the base station 106 and the network 108.
  • the first server 110 may acquire sensor data that cannot be directly received from the second server 112.
  • the first server 110 uses the analysis result obtained by analyzing the information acquired from the infrastructure sensor 114 and the information acquired from the second server 112 to generate the above recommended information.
  • FIG. 2 shows an example of the hardware configuration of the in-vehicle device 104 mounted on the vehicle 102.
  • the in-vehicle device 104 includes an interface unit (hereinafter referred to as an I / F unit) 122, a memory 124, a communication unit 126, a display unit 128, an operation unit 130, and a control unit to which data is input from the sensor device 120.
  • the unit 132 and the bus 134 are included.
  • the in-vehicle device 104 also includes configurations necessary for functioning as an in-vehicle device, such as a timer and a power supply device.
  • the sensor device 120 is a sensor mounted on the vehicle 102. Various sensors are mounted on the vehicle. Among them, the sensor device 120 means a device that can acquire the traffic condition.
  • the sensor device 120 is, for example, an image sensor (CCD (Charge-Coupled Device) camera, CMOS (Complementary Metal-Oxide-Semiconductor) camera, etc.), a laser sensor (LiDAR, etc.), a millimeter-wave radar, or the like.
  • the sensor device 120 detects the target and outputs a predetermined detection signal (analog signal or digital data).
  • the detection signal from the sensor device 120 is input to the I / F unit 122.
  • the I / F unit 122 includes an A / D conversion unit, and when an analog signal is input, it samples at a predetermined frequency, generates digital data (sensor data), and outputs it to the bus 134.
  • the generated digital data is transmitted to the memory 124 via the bus 134 and stored. Data exchange between the parts constituting the in-vehicle device 104 is performed via the bus 134. If the output signal from the sensor device 120 is digital data, the I / F unit 122 stores the input digital data in the memory 124.
  • the memory 124 is, for example, a rewritable non-volatile semiconductor memory or a hard disk drive (hereinafter referred to as HDD).
  • the sensor data stored in the memory 124 includes information for specifying the time when the sensor data is acquired (for example, a time stamp, hereinafter referred to as a sensor data acquisition time) and information indicating the position of the vehicle 102 corresponding to the sensor data acquisition time. (Hereinafter referred to as vehicle position) is attached.
  • a time stamp hereinafter referred to as a sensor data acquisition time
  • vehicle position information indicating the position of the vehicle 102 corresponding to the sensor data acquisition time.
  • vehicle position is attached.
  • the sensor device 120 is an image sensor
  • the sensor data acquisition time is acquired from the timer
  • the vehicle position is acquired from GPS.
  • the communication unit 126 has a mobile communication function and communicates with the first server 110 via the base station 106 and the network 108.
  • the communication unit 126 includes an IC for modulating and multiplexing the communication method adopted in the base station 106, an antenna for radiating and receiving radio waves of a predetermined frequency, an RF (Radio Frequency) circuit, and the like.
  • the display unit 128 displays the current position of the vehicle 102 and the road map around it by using the road map stored in the memory 124.
  • the display unit 128 is, for example, a liquid crystal display.
  • the operation unit 130 receives an operation from the user and inputs an instruction or the like to the in-vehicle device 104.
  • the operation unit 130 is, for example, a touch panel superimposed on the display surface of the display unit 128. Operations on the keys displayed on the display unit 128 and operations such as selection of a position on the road map displayed on the display unit 128 are detected by the operation unit 130.
  • the display unit 128 and the operation unit 130 allow the user to specify a destination, a waypoint, and the like to search for a travel route.
  • the route information representing the traveling route designated via the display unit 128 and the operation unit 130 is stored in the memory 124 and used for route guidance to the driver (display on the display unit 128, voice guidance, etc.).
  • the control unit 132 includes a CPU (Central Processing Unit). By controlling each unit by the control unit 132, a mechanism as a car navigation system, an upload function to the first server 110, and the like are realized.
  • CPU Central Processing Unit
  • the control unit 132 controls the communication unit 126 to appropriately transmit the position information of the vehicle 102 to the first server 110.
  • Information (ID) that identifies the in-vehicle device 104 that is the transmission source is added to the information transmitted from the in-vehicle device 104 to the first server 110.
  • the first server 110 can specify the position of the vehicle 102 on which the in-vehicle device 104 is mounted, and calculates a time change (speed of the vehicle 102, etc.) of the position of the vehicle 102 in consideration of information such as the transmission time. can.
  • the control unit 132 appropriately transmits the sensor data stored in the memory 124 to the first server 110. Further, the control unit 132 appropriately transmits the route information stored in the memory 124 to the first server 110.
  • the first server 110 acquires the route information transmitted from the in-vehicle device 104 and uses it for controlling the traffic flow.
  • the first server 110 transmits recommended information for controlling the traffic flow to the in-vehicle device 104 that satisfies a predetermined condition.
  • the first server 110 includes a control unit 140, a memory 142, a communication unit 144, and a bus 146.
  • the second server 112 is also configured in the same manner.
  • the control unit 140 includes, for example, a CPU, controls each unit, and realizes various functions of the first server 110.
  • the communication unit 144 receives information uploaded from the in-vehicle device 104 and the infrastructure sensor 114 via the base station 106 and the network 108.
  • the memory 142 includes a rewritable non-volatile semiconductor memory and a large-capacity storage device such as an HDD. The data received by the communication unit 144 is transmitted to the memory 142 and stored. Road map information is also stored in the memory 142.
  • the communication unit receives the sensor data uploaded from the infrastructure sensor 114.
  • the data received by the communication unit is transmitted to the memory and stored as a database.
  • the control unit appropriately reads data from the memory, executes a predetermined analysis process (vehicle detection, etc.), generates information indicating a traffic condition (congestion, traffic jam, accident, etc.), and stores the result in the memory.
  • the control unit appropriately reads the traffic information from the memory and transmits it to the first server 110.
  • the function of the first server 110 is composed of a plurality of functional modules.
  • the first server 110 includes a high level agent (functional module) 150, a plurality of low level agents (functional modules) 152, an input I / F module 154 and an output I / F module 156.
  • the high level agent 150 is referred to as an HLA (High Level Agent) 150
  • the low level agent 152 is referred to as an LLA (Low Level Agent) 152.
  • the input I / F module 154 receives information from the in-vehicle device 104, the infrastructure sensor 114, and the second server 112.
  • the output I / F module 156 transmits information to the in-vehicle device 104.
  • Each module is realized by hardware, software, or a mixture thereof.
  • the HLA 150 includes a first prediction unit 160, a first recommended information generation unit 162, and a first transmission unit 164.
  • the LLA 152 includes a second prediction unit 166, a second recommended information generation unit 168, and a second transmission unit 170.
  • the first prediction unit 160 and the second prediction unit 166 observe the traffic conditions in the road network (a plurality of roads through which vehicles can pass) included in the area to be controlled, and based on the traffic capacity of each road. Predict the occurrence of congestion.
  • the first recommended information generation unit 162 and the second recommended information generation unit 168 each generate recommended information for bypassing the predicted congestion in the area to be controlled.
  • the first transmission unit 164 and the second transmission unit 170 transmit recommended information to the in-vehicle device of the vehicle traveling on the road in the area to be controlled, respectively, via the output I / F module 156.
  • the control target area of the HLA 150 and the control target area of the LLA 152 overlap.
  • the controlled target regions of the plurality of LLA 152s may also overlap each other at the boundary portion and the like. Therefore, if no coordination is made between the HLA 150 and the plurality of LLA 152s, different recommendations may be transmitted to the same in-vehicle device.
  • information is shared between the HLA150 and the plurality of LLA152s, coordinated in advance, and one recommended information is transmitted to one in-vehicle device within a predetermined period. Is preferable. If the pre-adjustment is not performed, one of the in-vehicle devices that have received the plurality of recommended information within the predetermined period (for example, the last recommended information received) may be selected.
  • the road network that is the control target of traffic flow is classified into multiple layers in advance. It is assumed that the road network is classified into two levels (high level and low level) according to the traffic capacity of each road.
  • the traffic capacity is the maximum traffic volume of each road, and is determined from, for example, the actually measured traffic volume (the number of vehicles passing per unit time at a certain point on the road (for example, vehicles / hour)).
  • the traffic volume is determined according to the permitted traveling direction of the vehicle (hereinafter referred to as the direction of the traffic flow), and for a non-one-way road, the traffic volume exists in each of the two opposing traveling directions (2). One traffic). Therefore, the traffic capacity is also set for each traveling direction for non-one-way roads (two traffic capacities).
  • a controlled area which is a traffic flow controlled by the first server 110
  • roads through which vehicles can pass are classified into highways and general roads.
  • Highways mean roads with relatively heavy traffic such as national highways, highways (including urban highways and intercity highways), and bypass roads.
  • a general road means a road other than a main road.
  • the HLA 150 controls the traffic flow on the main road included in the controlled area.
  • the controlled area is divided into a plurality of sub-areas.
  • LLA152 controls the traffic flow on the main roads and general roads included in each sub-region.
  • FIG. 5 shows a controlled area of the HLA 150.
  • thick solid lines represent highways and dotted lines represent general roads.
  • the white line inside the thick line represents, for example, a median strip.
  • One side of the white line may include not only one traveling lane but also a plurality of traveling lanes.
  • Nodes N1 to N4 and N10 to N13 represent intersections on highways. Among them, nodes N1 to N4 represent intersections between highways. The arrows around the node N1 indicate the direction of travel of the vehicle.
  • Nodes N10 to N13 represent intersections between highways and general roads at the boundary portion of the controlled area of HLA150.
  • Link A represents a highway between nodes N1 and N3.
  • links B, C, D, E and F are highways between nodes N1 and N2, between nodes N1 and N4, between nodes N2 and N3, between nodes N3 and N4, and between nodes N1 and N10, respectively.
  • the nodes (intersections) at both ends of each link (road) are the input and output sections of the vehicle to that link.
  • the input unit and the output unit are determined according to the direction of the traffic flow.
  • the control target area of the HLA 150 is divided into sub-regions L1 to L6. Similar to FIG. 5, the thick solid line represents the main road.
  • the general road represented by the dotted line in FIG. 5 is represented by the solid line in FIG.
  • One LLA152 is assigned to each of the sub-regions L1 to L6.
  • the LLA 152 controls the traffic flow for the main roads and general roads included in the corresponding sub-regions.
  • roads between intersections are called links, as with main roads. It should be noted that the present invention is not limited to the case where the road between adjacent intersections is treated as one link. Roads passing through a plurality of intersections may be treated as one link.
  • FIG. 7 A case where the HLA 150 and the plurality of LLA 152 shown in FIG. 4 are realized by a program executed by the control unit 140 will be described with reference to FIGS. 7 and 8.
  • the process shown in FIG. 7 is executed by the HLA 150. Specifically, it is realized by the control unit 140 (FIG. 3) of the first server 110 reading a predetermined program from the memory 142 and executing it.
  • the control unit 140 acquires traffic information in the area controlled by the HLA 150 and generates statistical information.
  • the traffic information includes the result of analyzing the sensor data transmitted from the infrastructure sensor 114 and the in-vehicle device 104, the signal information transmitted from the second server 112, and the like, which represent the traffic situation. It is stored in the memory 142 as statistical information (database).
  • the control unit 140 (HLA150) also stores the information provided by the LLA 152 in the memory 142, as will be described later.
  • the control unit 140 updates the statistical information with new traffic information as appropriate. For example, the control unit 140 measures (calculates) statistical information such as the number of vehicles and the link travel time (time required for the vehicle to pass through the link) for each link on the main road controlled by the HLA 150. After that, control shifts to step 302.
  • step 302 the control unit 140 determines (predicts) whether or not congestion will occur for each link within a predetermined time.
  • Congestion, congestion and smoothness are used as terms to describe the state of traffic flow. They are defined, for example, as shown in Table 1. Although the definition in Table 1 distinguishes between congestion and congestion, congestion may be used in the sense of including congestion.
  • the determination can be made using the statistical information generated in step 300 and stored in the memory 142. For example, if the number of vehicles at the time of congestion is determined as a threshold value from the traffic capacity set in advance for each link, the number of vehicles flowing in and out per unit time for that link, and the threshold value. From, it can be determined whether or not congestion occurs within a predetermined time. From the number of vehicles flowing in and out per unit time, the tendency of increase / decrease of vehicles per unit time at the link and the time change of the number of increase / decrease can be understood. Therefore, when there is an increasing tendency, the time when the threshold value is exceeded can be predicted. If it is determined that congestion will occur within a predetermined time, control shifts to step 304. Otherwise, control proceeds to step 314. In addition to the traffic capacity, the link travel time or the like may be used as the threshold value.
  • step 304 the control unit 140 identifies a road (link) predicted to be congested by step 302 and a road (connecting link) related thereto. For example, if congestion is predicted to occur at link A in FIG. 5, link B, link C, and link F are identified as related links. After that, control shifts to step 306.
  • step 306 the control unit 140 identifies a vehicle heading for the inflow port of the road (link) predicted to be congested by step 302. For example, when it is predicted that congestion will occur in the upward traffic flow of the link A (FIG. 5), the node N1 becomes the inflow port, and vehicles flow in from the link B, the link C, and the link F.
  • U-turns are prohibited at each node (if node N1 is not U-turn prohibited, a vehicle traveling downward on the link A may also be an inflow vehicle).
  • the control unit 140 is a vehicle that flows into the inflow port (node N1) of the route predicted to be congested within a predetermined time, and is predicted to be congested among the vehicles whose route information is stored in the memory 142.
  • the vehicle-mounted device (ID) of the vehicle in which the route (the route traveling upward on the link A) is included in the untraveled portion (road portion in which the vehicle has not yet traveled) of the route information is specified. After that, control shifts to step 308. As a result, it is possible to suppress the transmission of useless information by the first server 110 (HLA150) and the reception of information that cannot be used by the in-vehicle device 104, and it is possible to efficiently suppress the occurrence of congestion.
  • step 308 the control unit 140 calculates the number of vehicles to be distributed to the road (link) predicted to be congested by step 302 and the road (link) bypassing the road (link).
  • the total number of inflows n T is evenly distributed to links A, B and C. Further, the distribution may be performed in consideration of the current number of vehicles of links A, B and C. For example, as a result of distribution, the traffic volumes of links A, B, and C are distributed so as to be equal. It may be distributed according to the traffic capacity ratio of each link, that is, in inverse proportion to the traffic capacity ratio. As a result, the vehicles flowing into the link A, which is predicted to be congested, can be dispersed on a plurality of roads.
  • the vehicle flowing into the node N1 from the link F can be distributed to any of the links A, B and C, but the distribution destination of the vehicle flowing into the node N1 from the link B or C is limited. That is, the vehicle flowing into the node N1 from the link B cannot travel (make a U-turn) on the link B, so that the vehicle is distributed to the link A or C. Since the vehicle flowing into the node N1 from the link C cannot travel on the link C, it is distributed to the link A or B. In calculating the number of units to be distributed to links A, B, and C, it is preferable to distribute them in consideration of this point.
  • the vehicle (number n B ) flowing into the node N1 from the link B and the vehicle (number n C ) flowing into the node N1 from the link C are distributed to the links A, B, and C, and then the node from the link F.
  • the vehicles (number n F ) flowing into N1 may be distributed to links A, B, and C.
  • the control shifts to step 310.
  • step 310 the control unit 140 transmits the corresponding recommended information to the in-vehicle device having the ID specified in step 306 according to the number of vehicles to be distributed to each link determined in step 308. For example, when the total number of inflows is evenly distributed to the links A, B, and C, the control unit 140 determines the ID of the vehicle (including the link A in the route information) traveling the link F toward the node N1 (inflow port). For the in-vehicle device (specified by step 306), the recommended information for recommending the running of the link A, the recommended information for recommending the running of the link B, and the recommended information for recommending the running of the link C are repeated in the order in which the vehicle is closer to the node N1. Send.
  • the recommended information for driving on the link B may be information for recommending changing lanes and turning left.
  • the recommended information for driving on the link C may be information for recommending changing lanes and turning right. This makes it possible to provide information suitable for each in-vehicle device among the information for suppressing the occurrence of congestion. Further, as described above, it is possible to suppress the transmission of useless information by the first server 110 (HLA150) and the reception of information that cannot be used by the in-vehicle device 104, and it is possible to efficiently suppress the occurrence of congestion.
  • each recommended information can be transmitted according to the ratio of each number. Since the target for transmitting the recommended information includes the link A in the route information, it is not necessary to transmit the recommended information (recommended information for recommending the running of the link A) to the in-vehicle device of the vehicle assigned to the link A. .. When the transmission of the recommendation information is completed, the control shifts to step 312.
  • step 312 the control unit 140 provides information to the LLA 152. For example, the number of vehicles (sending recommended information) distributed to each of links A, B, and C is provided to LLA152. Information provision from the HLA 150 to the LLA 152 is performed, for example, via the memory 142. The information provided to LLA152 can be used to control traffic flow by LLA152. After that, control shifts to step 314.
  • step 314 the control unit 140 determines whether or not an instruction to end this program has been received.
  • the end instruction is given by an instruction by an operation unit (keyboard, mouse, etc.) of the first server 110, turning off the power of the first server 110, and the like. If it is determined that the instruction to end has been received, this program will be terminated. Otherwise, control returns to step 300 and repeats the above process.
  • the HLA 150 is for avoiding congestion for vehicles that may cause congestion so that congestion does not occur when it is predicted that congestion will occur on the main road under the current traffic flow.
  • Information (recommended information) can be sent and traffic flow can be controlled so that congestion does not occur.
  • the in-vehicle device 104 that received the recommended information from the first server 110 displays a message based on the recommended information on the display unit 128 (for example, "Road A is expected to be congested. If the road B is driven, the destination can be reached quickly.” If you show "I will arrive”), you can expect the driver who sees it to change the route to link B (road B).
  • the process shown in FIG. 8 is executed by LLA152. Specifically, it is realized by the control unit 140 (FIG. 3) of the first server 110 reading a predetermined program from the memory 142 and executing it.
  • the road to be controlled by LLA152 is a road included in any one of the sub-regions L1 to L6. Here, the road included in the sub-region L5 is controlled by the LLA 152.
  • step 400 the control unit 140 acquires traffic information in the area (sub-area L5) controlled by the LLA 152 and generates statistical information.
  • the control target is the road network included in the sub-region L5, and not only the main road but also the general road is also the control target.
  • the information of traffic participants included in the statistical information not only the information of vehicles but also the information of pedestrians is included.
  • the control unit 140 acquires sensor data from the infrastructure sensors 114 installed at intersections, general roads, and highways included in the sub-region L5. For example, the control unit 140 measures (calculates) statistical information such as the number of vehicles and the link travel time for intersections (nodes), highways, and general roads (links) included in the sub-region L5 controlled by the LLA 152. .. In addition, the control unit 140 detects a pedestrian from an image captured by the camera, calculates its position, moving direction, moving speed, and the like, and stores it as statistical information. The control unit 140 acquires sensor data, position information, and route information from the in-vehicle device of the vehicle located in the sub area L5, and stores the sensor data, the position information, and the route information in the memory 142 as a database.
  • the control unit 140 acquires sensor data, position information, and route information from the in-vehicle device of the vehicle located in the sub area L5, and stores the sensor data, the position information, and the route information in the memory 142 as a
  • the control unit 140 (LLA152) also stores the information provided by the process of step 312 by the HLA 150 in the memory 142 as statistical information. For example, when the HLA150 predicts the occurrence of congestion on a highway, information about it (predicted position, predicted time, etc.) is effectively used for controlling traffic flow in a sub-region including the predicted position (main road). obtain. The control unit 140 updates the statistical information with new traffic information as appropriate. After that, control shifts to step 402.
  • step 402 the control unit 140 determines (predicts) whether or not congestion will occur for each link within a predetermined time.
  • the control unit 140 extracts the information of the traffic condition before the occurrence of congestion (or congestion) from the statistical information of the past traffic condition (in the sub area L5) stored in the database as described above, and extracts the information of the traffic condition before the occurrence of congestion (or congestion).
  • Machine learning for example, deep learning
  • the control unit 140 inputs the sequentially updated traffic condition information into the determination program, and causes the determination unit 140 to determine whether or not congestion occurs within a predetermined time. If it is determined that congestion will occur within a predetermined time, control shifts to step 404. Otherwise, control proceeds to step 416.
  • step 404 the control unit 140 identifies a road (link) predicted to be congested by step 402 and a road (connecting link) related thereto. This is the same process as in step 304 above. However, the main roads and general roads included in the sub-region L5 are the control targets. After that, control shifts to step 406.
  • step 406 the control unit 140 identifies a vehicle heading for the inflow port of the road (link) predicted to be congested by step 402. This is the same process as in step 304 above. However, the main roads and general roads included in the sub-region L5 are the control targets.
  • the control unit 140 is a vehicle that flows into the inlet of a route predicted to be congested within a predetermined time, and among the vehicles whose route information is stored in the memory 142, the route predicted to be congested is the route information. Identify the vehicle-mounted device (ID) of the vehicle included in. After that, control shifts to step 408. As a result, it is possible to suppress the transmission of useless information by the first server 110 (LLA152) and the reception of information that cannot be used by the in-vehicle device 104, and it is possible to efficiently suppress the occurrence of congestion.
  • step 408 the control unit 140 calculates the number of vehicles to be distributed to the road (link) predicted to be congested by step 402 and the road (link) that bypasses it. This is the same process as in step 308 above. However, the main roads and general roads included in the sub-region L5 are the control targets.
  • step 410 the control unit 140 transmits the corresponding recommended information to the in-vehicle device having the ID specified in step 406 according to the number of vehicles to be distributed to each link determined in step 408. This is the same process as in step 310 above. However, the main roads and general roads included in the sub-region L5 are the control targets. After that, control shifts to step 412.
  • step 412 the control unit 140 identifies a vehicle that has already entered the link predicted to cause congestion (a vehicle traveling on the link), and transmits recommended information to the vehicle. After that, control shifts to step 414.
  • the recommended information is, for example, a message recommending that you turn right or left at the next intersection and follow the detour route.
  • FIG. 9 shows the traffic conditions of the intersection corresponding to the node N22 of FIG. 6 and its surroundings.
  • LLA152 manages the main road between nodes N20 and N24, the general road between nodes N21 and N22, and the general road between nodes N22 and N23 as links G, H and J, respectively.
  • it is a control target.
  • the pedestrian traffic light 202 and the vehicle traffic lights 206 and 210 that control the vertical traffic are blue.
  • the pedestrian traffic light 204 and the vehicle traffic lights 208 and 212 that control the traffic in the left-right direction are red.
  • the moving vehicle is marked with an arrow indicating the direction of travel.
  • Infrastructure sensors (not shown in FIG. 9) are arranged at intersections and roads, and the infrastructure sensors upload sensor data to the first server 110.
  • the vehicles 180, 192, 194 and the like are equipped with sensors, and the sensor data detected by the sensors is uploaded to the first server 110.
  • the first server 110 uses the sensor data received from the vehicles 180, 192, 194, etc., and the infrastructure sensor to detect the traffic condition at the intersection.
  • steps 404 to 410 are executed. That is, after the sorting process is executed for the vehicles that have not flowed into the link G, the recommended information according to the sorting is transmitted to the in-vehicle device of the vehicles to be sorted.
  • step 412 targets a vehicle that is already traveling on the link G.
  • the control unit 140 distributes vehicles at the node N22 in front of the road portion (hereinafter referred to as the congestion portion) 172 in which the occurrence of congestion is predicted. If the vehicle passes through the node N22 and goes straight upward, it reaches the congested portion 172. Therefore, the control unit 140 makes a left turn or a right turn on some of the vehicles that are going straight upward in front of the node N22. Send recommendations.
  • control unit 140 identifies the vehicles that reach the node N22 within a predetermined time, calculates the total number thereof, and specifies the in-vehicle device of the vehicle that distributes the vehicle to go straight, turn left, and turn right in the same manner as described above.
  • the control unit 140 transmits the corresponding recommended information to the identified vehicle. This makes it possible to provide information suitable for each in-vehicle device among the information for suppressing the occurrence of congestion.
  • recommended information for advancing a left turn at node N22 is transmitted to the in-vehicle device of vehicle 184, and recommended information for advancing a right turn at node N22 is transmitted to the in-vehicle device of vehicle 186.
  • the in-vehicle device of the vehicle 184 that received the recommended information presents the message, for example, "If you go straight, it is expected to be crowded. If you turn left at the next intersection and detour, you will arrive at your destination sooner.” do.
  • the in-vehicle device of the vehicle 186 presents a message, for example, "If you go straight, it is expected to be crowded.
  • the control unit 140 mediates within the intersection. That is, the control unit 140 transmits information for safe and smooth traveling to the in-vehicle device of the vehicle turning left or right at the intersection.
  • the vehicle 182 is a vehicle approaching an intersection after receiving a message from the vehicle-mounted device that has received the recommendation information for turning right, changing lanes to the right turn lane, as described above.
  • vehicles 188 and 190 are about to enter the intersection and pedestrian 220 is starting to cross the pedestrian crossing.
  • the traveling direction of the vehicle 182 turning right intersects the traveling direction of the vehicles 188 and 190 and the traveling direction of the pedestrian 220.
  • the control unit 140 can detect such a traffic condition from the sensor data, the position information of each vehicle, and the like.
  • the control unit 140 determines the priority of progress of the vehicle 182, the vehicle 188, the vehicle 190, and the pedestrian 220 in consideration of the traffic rules (pedestrian priority, straight-ahead vehicle priority, etc.), and provides information according to the priorities (hereinafter,). , Called arbitration information) is transmitted to the vehicle 182.
  • the arbitration information is, for example, data having a set of ⁇ priority (numerical value), target (text), property (text), number (numerical value) ⁇ .
  • the control unit 140 sets the priority so that the priority decreases in the order of the vehicle 188, the vehicle 190, the pedestrian 220, and the vehicle 182.
  • the control unit 140 generates, for example, ⁇ 2, vehicle, straight ahead, 2,1, pedestrian, crossing, 1 ⁇ as arbitration information to be transmitted to the vehicle 182 (priority is a relative value, and the value is large). The higher the priority).
  • the in-vehicle device that received the arbitration information presents, for example, the message "Please turn right after two oncoming vehicles going straight have passed. Be careful of pedestrians crossing.” If the oncoming vehicles 188 and 190 are located far from the intersection, the control unit 140 sets the priority so that the priority is lowered in the order of the pedestrian 220, the vehicle 182, the vehicle 188, and the vehicle 190. The control unit 140 generates, for example, ⁇ 1, pedestrian, crossing, 1 ⁇ as arbitration information to be transmitted to the vehicle 182. The in-vehicle device that receives this arbitration information presents, for example, the message "Be careful of pedestrians crossing.” Therefore, a safe and smooth traffic flow can be realized.
  • the control unit 140 provides information to the HLA 150. For example, if the main road is included in the distribution target, the number of vehicles (that is, the expected number of inflows) distributed to the main road (that is, the expected number of inflows) is provided to the HLA 150. In addition, if a traffic obstruction factor (accident vehicle, broken vehicle, etc.) has occurred, the LLA 152 also provides the HLA 150 with information on it. Information provision from the LLA 152 to the HLA 150 is performed, for example, via the memory 142. The information provided to the HLA 150 can be used to control the traffic flow by the HLA 150. After that, control shifts to step 416.
  • the number of vehicles that is, the expected number of inflows
  • the LLA 152 also provides the HLA 150 with information on it. Information provision from the LLA 152 to the HLA 150 is performed, for example, via the memory 142.
  • the information provided to the HLA 150 can be used to control the traffic flow by the HLA 150. After that, control shift
  • step 416 the control unit 140 determines whether or not an instruction to end this program has been received.
  • the end instruction is given by an instruction by an operation unit (keyboard, mouse, etc.) of the first server 110, turning off the power of the first server 110, and the like. If it is determined that the instruction to end has been received, this program will be terminated. Otherwise, control returns to step 400 and repeats the above process.
  • the LLA152 avoids congestion for vehicles that may cause congestion so that congestion does not occur when it is predicted that congestion will occur on the roads in the sub-region under the current traffic flow. You can send information (recommended information) to control the traffic flow so that congestion does not occur. If the in-vehicle device 104 that has received the recommended information from the first server 110 presents a message based on the recommended information on the display unit 128, the driver who sees the message travels on a detour route of the route predicted to cause congestion. You can expect to change course so that you can.
  • HLA150 and LLA152 exchange information with each other. For example, from HLA150, the number of vehicles distributed (transmitted recommended information) to each of links A, B, and C is provided to LLA152 (see step 312). However, even if the information on the number of distributed vehicles is exchanged, different recommended information may be transmitted from the HLA 150 and the LLA 152 to the same in-vehicle device as described above. To avoid this, the ID of the in-vehicle device that has transmitted the recommended information may be exchanged between the HLA 150 and the LLA 152.
  • the LLA 152 can transmit the recommended information to the in-vehicle device having an ID other than the ID provided by the HLA 150 in step 410.
  • the boundaries of the sub-regions L1 to L6 are defined so as not to include the same link (road), but the sub-regions L1 to L6 are part of each other (for example, adjacent boundary portions). May overlap.
  • the in-vehicle device that has transmitted the recommended information it is preferable to exchange traffic information (including the ID of the in-vehicle device that has transmitted the recommended information) by communicating between the LLA 152s that control adjacent sub-regions. As a result, it is possible to avoid transmitting different recommended information to the same in-vehicle device. If the IDs of the in-vehicle devices to which the recommended information is transmitted are not exchanged, the in-vehicle device that has received the plurality of recommended information within a predetermined period may select any one of the recommended information as described above.
  • the control target area of the LLA 152 is narrower than the control target area of the HLA 150, and the LLA 152 can transmit highly recommended recommended information based on real-time traffic conditions. Therefore, when different recommended information is transmitted from the HLA 150 and the LLA 152 to the same in-vehicle device, the in-vehicle device may be able to select the recommended information with a high degree of recommendation. For example, when the LLA152 receives the ID of the in-vehicle device to which the HLA150 has transmitted the recommended information from the HLA150 as described above, the LLA152 has a higher degree of recommendation than the recommended information from the HLA150 to the in-vehicle device having the same ID as the received ID.
  • the recommended information is transmitted by adding the predetermined information indicating that.
  • the in-vehicle device that has received the plurality of recommended information within the predetermined period can select the recommended information from the LLA 152, which has a high degree of recommendation, based on the presence or absence of the predetermined information.
  • control unit 140 may execute the same process as in step 302 described above.
  • main roads and general roads included in the sub-region L5 are the control targets.
  • control unit 140 determines a value obtained by subtracting the outflow amount from the inflow amount with respect to the inflow / outflow amount of the number of vehicles in a specific area (for example, an area including about 1 to 10 adjacent intersections) within a certain period of time.
  • the occurrence of congestion may be predicted by determining whether or not it is larger than the threshold value (inflow amount-outflow amount> threshold value). If it is larger than the threshold value, it can be determined that congestion will occur at the roads and intersections included in the specific area.
  • the threshold value may be changed according to the lighting state (lighting color, blinking state or not, etc.) of the traffic light included in the specific area. As a result, it is possible to appropriately predict the occurrence of congestion according to the ever-changing traffic conditions.
  • Traffic flow obstruction factors that can cause congestion are not limited to the inflow of vehicles to a specific road, but the situation where the waiting time for turning right at an intersection on a road with one lane on each side is long, and the loading and unloading of parked vehicles (passengers and luggage, etc.) Etc.), There are lane restrictions due to accident vehicles, broken vehicles, construction sites, and road construction. HLA150 and LLA152 can predict the occurrence of congestion more accurately by considering these traffic flow obstructing factors.
  • the present invention is not limited to this.
  • the recommended vehicle speed (speed smaller than the current speed of the vehicle) may be transmitted as recommended information. If the vehicle speed is reduced, the time required to reach the point where the occurrence of congestion is predicted becomes longer, so that the occurrence of congestion can be suppressed.
  • the route to avoid the congested part may be transmitted to the in-vehicle device as recommended information. If the vehicle turns right or left and deviates from the driving route while the driving route is registered, the in-vehicle device (car navigation system) automatically searches for a new driving route and the original road (including the congested part). You may be guided to follow the route back to the link). If a route for avoiding the congested portion is transmitted to the in-vehicle device, the in-vehicle device can determine a new traveling route using the received route. As a result, it is possible to avoid being guided to return to the original road (link including a congested part), and it is possible to control the traffic flow more reliably.
  • the first server 110 scores points in advance for each area such as an intersection, and calculates costs (distance cost and time cost) with respect to the registered traveling route and the route avoiding the congestion occurrence point. Then, recommended information including the result of comparing them may be transmitted to the in-vehicle device.
  • the in-vehicle device can present a message such as "If you drive on a route that avoids expected congestion, it will be a detour, but it can be shortened by about ** minutes compared to the current route.” The driver can select the route with confidence in consideration of the presented message.
  • the HLA 150 and the LLA 152 determine whether or not the vehicle to which the recommended information is transmitted is accompanied by a lane change when following the recommendation.
  • the HLA150 and LLA152 detect the situation of the vehicles around the vehicle, and when it is determined that the lane change is not unreasonable, the recommended information is transmitted. If it is determined that the lane change will be unreasonable, the recommended information will not be sent or will be sent at a different timing. As a result, the traffic flow can be safely controlled without causing new traffic flow obstruction.
  • the road network is classified into two layers according to the traffic capacity, but the case is not limited to this. It may be classified into three or more layers.
  • an intermediate layer may be provided between the high level and the low level, and a module for controlling the traffic flow may be added by targeting the roads included in the intermediate layer.
  • the processing load of each module can be reduced, and the occurrence of congestion or congestion can be predicted more quickly and more accurately.
  • the traffic flow may be controlled at the stage when the traffic congestion is predicted. That is, in the above description, "congestion” may be interpreted to include “traffic jam”. Further, the traffic flow may be controlled at the stage when the occurrence of congestion is actually detected. It is possible to control the traffic flow and suppress the occurrence of traffic congestion before it becomes congested.
  • a traffic flow control system may be configured by a plurality of in-vehicle devices without including the first server 110.
  • the in-vehicle device has described the case where a message is generated from the received recommended information and presented, but the present invention is not limited to this. If it is an in-vehicle device of a vehicle having an automatic driving function, the vehicle may be driven so as to avoid a congestion prediction point by instructing the automatic driving control device according to the received recommended information.
  • each module can be realized by hardware, software, or a mixture thereof.
  • an ASIC Application Specific Integrated Circuit
  • the like that executes a part or all of the processes executed by the HLA 150 and the LLA 152 (for example, the processes shown in FIGS. 7 and 8) can be used. good.
  • the present invention is not limited to this.
  • the configuration in which the HLA 150 and the plurality of LLA 152 are realized by a plurality of computers is arbitrary.
  • each of the HLA 150 and the plurality of LLA 152 may be realized by one computer.
  • the HLA 150 may be realized by one computer, and a plurality of LLA 152 may be realized by another one computer. Further, a part of the plurality of LLA 152 may be realized by one computer. In this way, by distributing the functions for each layer to a plurality of computers, it is possible to efficiently change the traffic flow.
  • a recording medium optical disk (DVD (Digital Versail Disc), etc.) on which a program for causing a computer to execute the processes executed by the HLA 150 and LLA 152 (for example, the processes shown in FIGS. 7 and 8) is recorded, and a removable semiconductor memory. (USB (Universal Serial Bus) memory, etc.), etc.) can be provided.
  • a computer program can be transmitted over a communication line, but the recording medium means a non-temporary recording medium. By having the computer read the program stored in the recording medium, the computer can execute the control of the traffic flow as described above.
  • Traffic flow control system 102 180, 182, 184, 186, 188, 190, 192, 194 Vehicle 104 In-vehicle device 106 Base station 108 Network 110 First server 112 Second server 114 Infrastructure sensor 116 Traffic light 120 Sensor device 122 I / F unit 124, 142 Memory 126, 144 Communication unit 128 Display unit 130 Operation unit 132, 140 Control unit 134, 146 Bus 150 HLA (High level agent) 152 LLA (Low Level Agent) 154 Input I / F module 156 Output I / F module 160 1st prediction unit 162 1st recommended information generation unit 164 1st transmission unit 166 2nd prediction unit 168 2nd recommended information generation unit 170 2nd transmission unit 172 Congested part ( Road part) 200, 220 Pedestrian 202, 204 Pedestrian traffic light 206, 208, 210, 212 Vehicle traffic light 300, 302, 304, 306, 308, 310, 312, 314, 400, 402, 404, 406, 408, 310

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

A traffic flow control system comprising: a plurality of in-vehicle devices; and a control device that controls a traffic flow in a road network on the basis of information transmitted from the plurality of in-vehicle devices, wherein the control device includes a first management unit that manages a traffic flow of an arterial road among roads included in a first region of the road network, and a second management unit that handles each of a plurality of second regions constituting the first region and manages traffic flows of roads included in the second region, the first management unit includes a first prediction unit that predicts occurrence of congestion in the arterial road on the basis of the traffic capacity of the arterial road and a first transmission unit that, in response to the prediction of occurrence of congestion by the first prediction unit, transmits first recommendation information for avoiding the congestion predicted by the first prediction unit, to an in-vehicle device of a vehicle traveling on the arterial road toward a first congestion portion in which the occurrence of congestion has been predicted, the second management unit includes a second prediction unit that predicts occurrence of congestion on a road included in a second region, on the basis of the traffic capacity of the road included in the second region and a second transmission unit that, in response to the prediction of occurrence of congestion by the second prediction unit, transmits second recommendation information for avoiding the congestion predicted by the second prediction unit, to the in-vehicle device of the vehicle traveling on the road included in the second region toward a second congestion portion in which the occurrence of congestion has been predicted, and each of the plurality of in-vehicle devices presents information for recommending traveling on a route based on any of the received first recommendation information and second recommendation information.

Description

交通流制御システム、制御装置、制御方法及びコンピュータプログラムTraffic flow control system, control device, control method and computer program
 本開示は、交通流制御システム、制御装置、制御方法及びコンピュータプログラムに関する。本出願は、2020年2月26日出願の日本出願第2020-030569号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to traffic flow control systems, control devices, control methods and computer programs. This application claims priority based on Japanese Application No. 2020-03569 filed on February 26, 2020, and incorporates all the contents described in the Japanese application.
 近年、自動車及び自動二輪車等(以下、車両という)に搭載されるカーナビゲーションシステムが普及している。カーナビゲーションシステムは、道路地図情報を記憶し、GPS(Global Positioning System)等により取得した車両の現在位置を道路地図上に表示して運転支援を行う。カーナビゲーションシステムは、入力された目的地及び経由地等に応じて、時間、走行距離及び料金等に関する条件にしたがって、複数の走行ルートを提示する。走行ルートが選択され車両走行が開始された後には、走行位置に応じて、進行方向(直進、右折又は左折)及び望ましい走行レーン等の案内をする。 In recent years, car navigation systems installed in automobiles and motorcycles (hereinafter referred to as vehicles) have become widespread. The car navigation system stores road map information and displays the current position of the vehicle acquired by GPS (Global Positioning System) or the like on the road map to provide driving support. The car navigation system presents a plurality of travel routes according to the input destination, waypoint, etc., and conditions related to time, mileage, fare, and the like. After the travel route is selected and the vehicle travel is started, the direction of travel (straight ahead, right turn or left turn) and the desired travel lane are guided according to the travel position.
 交通状況(渋滞、交通障害及び交通規制等)に関する情報(以下、交通情報という)を無線により、リアルタイムに提供するサービスとしてVICS(登録商標)(Vehicle Information and Communication System(道路交通情報システム))が知られている。カーナビゲーションシステムが、VICSから受信した情報を適宜提示することにより、運転者は交通状況に応じて走行ルートを変更可能になる。 VICS (registered trademark) (Vehicle Information and Communication System) is a service that provides information (hereinafter referred to as traffic information) related to traffic conditions (traffic congestion, traffic obstacles, traffic regulations, etc.) wirelessly in real time. Are known. By appropriately presenting the information received from the VICS by the car navigation system, the driver can change the traveling route according to the traffic conditions.
 これにより、運転者は、例えば渋滞している道路を迂回したルートを走行可能になる。しかし、多くの運転者がVICSから配信される交通情報を考慮して走行ルートを変更すると、それまで混雑していなかった道路に多くの車両が流入して、新たな渋滞が発生する問題がある。 This enables the driver to drive on a route that bypasses a congested road, for example. However, if many drivers change the driving route in consideration of the traffic information delivered from VICS, there is a problem that many vehicles flow into the previously uncongested road and new congestion occurs. ..
 下記非特許文献1には、車両毎の通過予定の経路情報を車載装置で共有して交通量を分散することにより、交通流を円滑化するシステムが提案されている。また、下記特許文献1には、自車の前方を走行している車両から経路情報を受信し、取得した経路情報を用いて、同じ経路又は道路に車両が集中しないように、自車の経路情報を再計算する車載装置が開示されている。 Non-Patent Document 1 below proposes a system that smoothes the traffic flow by sharing the route information of each vehicle to be passed by the in-vehicle device and distributing the traffic volume. Further, in Patent Document 1 below, route information is received from a vehicle traveling in front of the own vehicle, and the acquired route information is used to prevent the vehicles from concentrating on the same route or road. An in-vehicle device that recalculates information is disclosed.
特開2011-209171号公報Japanese Unexamined Patent Publication No. 2011-209171
 本開示のある局面に係る交通流制御システムは、複数の車載装置と、複数の車載装置から送信される情報に基づき道路網における交通流を制御する制御装置とを含み、制御装置は、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理部と、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理部とを含み、第1管理部は、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測部と、第1予測部により混雑の発生が予測されたことを受けて、第1予測部により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信部とを含み、第2管理部は、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測部と、第2予測部により混雑の発生が予測されたことを受けて、第2予測部により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信部とを含み、複数の車載装置の各々は、受信した第1推奨情報及び第2推奨情報のいずれかに基づく経路の走行を勧める情報を提示する。 The traffic flow control system according to a certain aspect of the present disclosure includes a plurality of in-vehicle devices and a control device for controlling the traffic flow in the road network based on information transmitted from the plurality of in-vehicle devices, and the control device is a road network. Of the roads included in the first area of the above, the first management unit that manages the traffic flow of the main road and the roads that correspond to each of the plurality of second areas constituting the first area and are included in the second area. The first management department includes the second management department that manages the traffic flow of the road, and the first management department predicts the occurrence of congestion on the main road based on the traffic capacity of the main road. In response to the prediction of the occurrence of the congestion, the first recommended information for avoiding the congestion predicted by the first prediction unit is sent to the first congestion part where the occurrence of the congestion is predicted. The second management unit reduces the occurrence of congestion on the road included in the second region to the traffic capacity of the road included in the second region. In response to the fact that the second prediction unit predicts the occurrence of congestion by the second prediction unit and the second prediction unit predicts the occurrence of congestion, the second recommended information for avoiding the congestion predicted by the second prediction unit is provided with the congestion. Each of the plurality of in-vehicle devices receives, including a second transmitting unit that transmits to the in-vehicle device of the vehicle traveling on the road included in the second region toward the second congested portion where the occurrence of Information that recommends traveling on a route based on either the first recommended information or the second recommended information is presented.
 本開示の別の局面に係る交通流制御装置は、複数の車載装置から送信される情報に基づき道路網における交通流を制御する交通流制御装置であって、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理部と、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理部とを含み、第1管理部は、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測部と、第1予測部により混雑の発生が予測されたことを受けて、第1予測部により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信部とを含み、第2管理部は、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測部と、第2予測部により混雑の発生が予測されたことを受けて、第2予測部により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信部とを含む。 The traffic flow control device according to another aspect of the present disclosure is a traffic flow control device that controls the traffic flow in the road network based on information transmitted from a plurality of in-vehicle devices, and is included in the first region of the road network. Of the roads, the first management unit that manages the traffic flow of the main road and the second management unit that manages the traffic flow of the roads included in the second area corresponding to each of the plurality of second areas constituting the first area. The first management department, including the two management departments, predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction unit predicts the occurrence of congestion. In response to this, the first recommended information for avoiding the congestion predicted by the first prediction unit is given to the vehicle traveling on the main road toward the first congestion part where the congestion is predicted to occur. The second management unit predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmitting unit that transmits to the in-vehicle device. In response to the fact that the occurrence of congestion was predicted by the second prediction section and the second prediction section, the second recommended information for avoiding the congestion predicted by the second prediction section was given by the second prediction section. (2) Includes a second transmission unit that transmits to an in-vehicle device of a vehicle traveling on a road included in the second region toward a congested portion.
 本開示のさらに別の局面に係る交通流制御方法は、複数の車載装置から送信される情報に基づき道路網における交通流を制御する交通流制御方法であって、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理ステップと、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理ステップとを含み、第1管理ステップは、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測ステップと、第1予測ステップにより混雑の発生が予測されたことを受けて、第1予測ステップにより予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信ステップとを含み、第2管理ステップは、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測ステップと、第2予測ステップにより混雑の発生が予測されたことを受けて、第2予測ステップにより予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信ステップとを含む。 The traffic flow control method according to still another aspect of the present disclosure is a traffic flow control method for controlling the traffic flow in the road network based on information transmitted from a plurality of in-vehicle devices, and is included in the first region of the road network. Among the roads to be constructed, the first management step for managing the traffic flow of the main road and the traffic flow of the roads included in the second region are managed corresponding to each of the plurality of second regions constituting the first region. Including the second management step, the first management step predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction step predicts the occurrence of congestion. In response to this, the first recommended information for avoiding the congestion predicted by the first prediction step is applied to the vehicle traveling on the main road toward the first congestion portion where the congestion is predicted to occur. The second management step predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region. In response to the fact that the occurrence of congestion was predicted by the prediction step and the second prediction step, the occurrence of the congestion was predicted by the second recommended information for avoiding the congestion predicted by the second prediction step. It includes a second transmission step of transmitting to the in-vehicle device of the vehicle traveling on the road included in the second region toward the second congested portion.
 本開示のさらに別の局面に係るコンピュータプログラムは、複数の車載装置から送信される情報に基づき道路網における交通流を制御するコンピュータプログラムであって、コンピュータに、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理機能と、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理機能とを実現させ、第1管理機能は、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測機能と、第1予測機能により混雑の発生が予測されたことを受けて、第1予測機能により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信機能とを含み、第2管理機能は、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測機能と、第2予測機能により混雑の発生が予測されたことを受けて、第2予測機能により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信機能とを含む。 The computer program according to still another aspect of the present disclosure is a computer program that controls a traffic flow in a road network based on information transmitted from a plurality of in-vehicle devices, and is included in the first region of the road network in the computer. Among the roads, the first management function for managing the traffic flow of the main road and the second management function for managing the traffic flow of the road included in the second area corresponding to each of the plurality of second areas constituting the first area. Two management functions are realized, and the first management function predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction function predicts the occurrence of congestion. In response to this, the first recommended information for avoiding the congestion predicted by the first prediction function is sent to the vehicle traveling on the main road toward the first congestion portion where the congestion is predicted to occur. The second management function predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region. In response to the fact that the occurrence of congestion was predicted by the prediction function and the second prediction function, the occurrence of the congestion was predicted by the second recommended information for avoiding the congestion predicted by the second prediction function. It includes a second transmission function of transmitting to an in-vehicle device of a vehicle traveling on a road included in a second region toward a second congested portion.
図1は、本開示の実施形態に係る交通流制御システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a traffic flow control system according to an embodiment of the present disclosure. 図2は、図1に示した車載装置のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing a hardware configuration of the in-vehicle device shown in FIG. 図3は、図1に示した第1サーバのハードウェア構成を示すブロック図である。FIG. 3 is a block diagram showing the hardware configuration of the first server shown in FIG. 図4は、図1に示した第1サーバの機能モジュールの構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a functional module of the first server shown in FIG. 図5は、ハイレベルエージェントにより交通流を制御する対象の道路を示す道路地図である。FIG. 5 is a road map showing a target road whose traffic flow is controlled by a high-level agent. 図6は、ローレベルエージェントにより交通流を制御する対象の道路を示す道路地図である。FIG. 6 is a road map showing a target road whose traffic flow is controlled by a low-level agent. 図7は、ハイレベルエージェントの動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the high-level agent. 図8は、ローレベルエージェントの動作を示すフローチャートである。FIG. 8 is a flowchart showing the operation of the low level agent. 図9は、交差点及びその周辺における交通状況を示す平面図である。FIG. 9 is a plan view showing traffic conditions in and around the intersection.
 [発明が解決しようとする課題]
 交通状況は、道路構造(車線数、制限速度、車線規制等)等の静的要因だけに依存するのではなく、交通参加者の種類(車両、歩行者、自転車等)及びその性質(直進、右折、左折等)等の動的要因にも依存して、時々刻々変化する。しかし、非特許文献1及び特許文献1のいずれによっても、交通状況により動的に変動する交通容量に対応した混雑回避ができない問題がある。交通容量は、各道路に対して設定され、各道路の最大の交通量である。交通容量は、例えば、実測された交通量(道路上のある地点の単位時間当たりに通行する車両の台数(例えば台/時))から決定される。交通状況によって実測される交通量の最大値は変動するので、交通容量は交通状況によって変動する。例えば、同じ道路であっても、法定速度(例えば、高速道路における時速100km)で走行できる状態と、より低速(例えば、時速60km)で走行する状態(混雑、強風及び積雪等による速度規制等)とでは、交通容量は異なる。交通容量は、1日の時間帯及び曜日によっても異なる。
[Problems to be solved by the invention]
Traffic conditions do not depend only on static factors such as road structure (number of lanes, speed limit, lane regulation, etc.), but also the types of traffic participants (vehicles, pedestrians, bicycles, etc.) and their properties (straight ahead, straight ahead, etc.) It changes from moment to moment depending on dynamic factors such as right turn, left turn, etc.). However, both Non-Patent Document 1 and Patent Document 1 have a problem that congestion cannot be avoided corresponding to the traffic capacity that dynamically fluctuates depending on the traffic condition. The traffic capacity is set for each road and is the maximum traffic volume of each road. The traffic capacity is determined, for example, from the actually measured traffic volume (the number of vehicles passing per unit time at a certain point on the road (for example, vehicles / hour)). Since the maximum value of the measured traffic volume varies depending on the traffic conditions, the traffic capacity varies depending on the traffic conditions. For example, even on the same road, a state in which the vehicle can travel at a legal speed (for example, 100 km / h on an expressway) and a state in which the vehicle travels at a lower speed (for example, 60 km / h) (speed regulation due to congestion, strong wind, snow cover, etc.) The traffic capacity is different. Traffic capacity also varies depending on the time of day and the day of the week.
 非特許文献1においては、プローブ車両の交通量以外の交通状況をリアルタイムに監視できていない。特許文献1においては、車両間の走行経路の重複を回避できるが、他の交通参加者(歩行者及び情報共有できない車両群等)の挙動を考慮できない。したがって、交通状況により動的に変動する交通容量に対応した混雑回避ができない。 In Non-Patent Document 1, it is not possible to monitor the traffic conditions other than the traffic volume of the probe vehicle in real time. In Patent Document 1, it is possible to avoid duplication of traveling routes between vehicles, but it is not possible to consider the behavior of other traffic participants (pedestrians, vehicle groups that cannot share information, etc.). Therefore, it is not possible to avoid congestion corresponding to the traffic capacity that dynamically fluctuates depending on the traffic conditions.
 したがって、本開示は、交通状況により動的に変動する交通容量に対応した混雑回避が可能な交通流制御システム、制御装置、制御方法及びコンピュータプログラムを提供することを目的とする。 Therefore, an object of the present disclosure is to provide a traffic flow control system, a control device, a control method, and a computer program capable of avoiding congestion corresponding to a traffic capacity that dynamically fluctuates depending on a traffic condition.
 [本開示の実施形態の説明]
 本開示の実施形態の内容を列記して説明する。以下に記載する実施形態の少なくとも一部を任意に組合せてもよい。
[Explanation of Embodiments of the present disclosure]
The contents of the embodiments of the present disclosure will be listed and described. At least a part of the embodiments described below may be arbitrarily combined.
 (1)本開示の第1の局面に係る交通流制御システムは、複数の車載装置と、複数の車載装置から送信される情報に基づき道路網における交通流を制御する制御装置とを含み、制御装置は、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理部と、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理部とを含み、第1管理部は、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測部と、第1予測部により混雑の発生が予測されたことを受けて、第1予測部により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信部とを含み、第2管理部は、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測部と、第2予測部により混雑の発生が予測されたことを受けて、第2予測部により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信部とを含み、複数の車載装置の各々は、受信した第1推奨情報及び第2推奨情報のいずれかに基づく経路の走行を勧める情報を提示する。 (1) The traffic flow control system according to the first aspect of the present disclosure includes and controls a plurality of in-vehicle devices and a control device that controls a traffic flow in a road network based on information transmitted from the plurality of in-vehicle devices. The device corresponds to each of the first management unit that manages the traffic flow of the main road and the plurality of second regions constituting the first region among the roads included in the first region of the road network, and the second Including the second management department that manages the traffic flow of the roads included in the area, the first management department has the first prediction unit that predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first 1 In response to the prediction of the occurrence of congestion by the prediction unit, the first recommended information for avoiding the congestion predicted by the first prediction unit is applied to the first congestion portion where the occurrence of the congestion is predicted. The second management unit includes the first transmission unit that transmits to the in-vehicle device of the vehicle traveling on the main road, and the second management unit includes the occurrence of congestion on the road included in the second region in the second region. The second prediction unit that predicts based on the traffic capacity of the road and the second recommendation for avoiding the congestion predicted by the second prediction unit in response to the prediction of the occurrence of congestion by the second prediction unit. A plurality of in-vehicle devices including a second transmission unit that transmits information to an in-vehicle device of a vehicle traveling on a road included in the second region toward a second congested portion where the occurrence of the congestion is predicted. Each of the above presents information recommending traveling on a route based on either the received first recommended information or the second recommended information.
 これにより、交通状況により動的に変動する交通容量に対応した混雑回避が可能になる。特に、交通容量に応じて道路を複数に分類して、各分類に属する道路を管理対象として混雑を予測することにより、効率的に混雑の発生を抑制するように交通流を変化させることができる。 This makes it possible to avoid congestion in response to traffic capacity that dynamically fluctuates depending on traffic conditions. In particular, by classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets, it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
 (2)第1推奨情報は、第1混雑部分を迂回する経路の情報、推奨する車線の情報、及び、推奨する走行速度の情報のうちの少なくとも1つを含むことができ、第2推奨情報は、第2混雑部分を迂回する経路の情報、推奨する車線の情報、及び、推奨する走行速度の情報のうちの少なくとも1つを含むことができる。これにより、混雑の発生を抑制するために、車載装置毎に適した推奨情報を提供できる。 (2) The first recommended information can include at least one of the information of the route bypassing the first congested part, the information of the recommended lane, and the information of the recommended traveling speed, and the second recommended information. Can include at least one of route information that bypasses the second congested portion, recommended lane information, and recommended traveling speed information. Thereby, in order to suppress the occurrence of congestion, it is possible to provide recommended information suitable for each in-vehicle device.
 (3)車載装置から送信される情報は、車載装置が搭載されている車両の位置及び走行経路を表す情報を含み、第1送信部は、走行経路の未走行部分に第1混雑部分を含む車載装置を、第1推奨情報の送信先として決定し、第2送信部は、走行経路の未走行部分に第2混雑部分を含む車載装置を、第2推奨情報の送信先として決定してもよい。これにより、制御装置による無駄な情報の送信、及び、車載装置により利用できない情報の受信を抑制でき、効率的に混雑の発生を抑制できる。 (3) The information transmitted from the in-vehicle device includes information indicating the position and traveling route of the vehicle on which the in-vehicle device is mounted, and the first transmitting unit includes the first congested portion in the non-traveling portion of the traveling route. Even if the in-vehicle device is determined as the transmission destination of the first recommended information, and the second transmission unit determines the in-vehicle device including the second congested portion in the non-traveling portion of the traveling route as the transmission destination of the second recommended information. good. As a result, it is possible to suppress the transmission of useless information by the control device and the reception of information that cannot be used by the in-vehicle device, and it is possible to efficiently suppress the occurrence of congestion.
 (4)第1送信部は、第1混雑部分に向かう流入口に、所定時間以内に到達すると推測される車両の車載装置に第1推奨情報を送信してもよく、流入口は幹線道路における交差点であってもよい。これにより、制御装置による無駄な情報の送信、及び、車載装置により利用できない情報の受信を抑制でき、効率的に混雑の発生を抑制できる。 (4) The first transmission unit may transmit the first recommended information to the in-vehicle device of the vehicle which is presumed to reach the inflow port toward the first congested part within a predetermined time, and the inflow port is on the main road. It may be an intersection. As a result, it is possible to suppress the transmission of useless information by the control device and the reception of information that cannot be used by the in-vehicle device, and it is possible to efficiently suppress the occurrence of congestion.
 (5)第1推奨情報は、第1混雑部分を迂回する迂回道路の走行を勧めるための情報であり、第1送信部は、流入口から第1混雑部分に至る道路の交通容量と、迂回道路の交通容量との比率に応じて、第1推奨情報の送信先である車載装置の台数を決定してもよい。これにより、車両を分散させた後の複数の道路の交通流を同程度にできる。 (5) The first recommended information is information for recommending driving on a detour road that bypasses the first congested part, and the first transmission unit is the traffic capacity of the road from the inflow port to the first congested part and the detour. The number of in-vehicle devices to which the first recommended information is transmitted may be determined according to the ratio to the traffic capacity of the road. As a result, the traffic flow on a plurality of roads after the vehicles are dispersed can be made comparable.
 (6)第2予測部は、第2領域に含まれる交差点及び当該交差点の周囲領域における車両及び歩行者の動きを検出し、検出された車両及び歩行者と、第2推奨情報の送信先である車載装置が搭載されている車両とに関して、交差点における進行の優先度を決定し、第2送信部は、第2推奨情報の送信先である車載装置に、優先度に応じた情報を送信してもよい。これにより、安全かつスムーズな交通流を実現できる。 (6) The second prediction unit detects the movements of vehicles and pedestrians at the intersection included in the second area and the area around the intersection, and the detected vehicles and pedestrians and the transmission destination of the second recommended information. With respect to a vehicle equipped with a certain in-vehicle device, the priority of progress at an intersection is determined, and the second transmission unit transmits information according to the priority to the in-vehicle device to which the second recommended information is transmitted. You may. As a result, a safe and smooth traffic flow can be realized.
 (7)第2予測部は、第2領域に含まれる複数の交差点を含む所定エリアにおける車両台数の流入出量に関し、単位時間当たりの流入量から単位時間当たりの流出量を減算して得られる値がしきい値よりも大きいか否かに基づいて混雑の発生を予測し、しきい値は、所定エリアに含まれる信号機の状態に応じて変更されてもよい。これにより、時々刻々と変化する交通状況に応じて、適切に混雑の発生を予測できる。 (7) The second prediction unit is obtained by subtracting the outflow amount per unit time from the inflow amount per unit time with respect to the inflow / outflow amount of the number of vehicles in a predetermined area including a plurality of intersections included in the second area. The occurrence of congestion is predicted based on whether the value is larger than the threshold value, and the threshold value may be changed according to the state of the traffic light included in the predetermined area. As a result, it is possible to appropriately predict the occurrence of congestion according to the ever-changing traffic conditions.
 (8)制御装置は、第1管理部を含むコンピュータと、複数の第2管理部の各々を含む複数のコンピュータとを含むことができる。このように、複数のコンピュータに階層毎の機能を分散させることにより、効率的に交通流を制御可能になる。 (8) The control device can include a computer including the first management unit and a plurality of computers including each of the plurality of second management units. In this way, by distributing the functions for each layer to a plurality of computers, it becomes possible to efficiently control the traffic flow.
 (9)本開示の第2の局面に係る交通流制御装置は、複数の車載装置から送信される情報に基づき道路網における交通流を制御する交通流制御装置であって、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理部と、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理部とを含み、第1管理部は、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測部と、第1予測部により混雑の発生が予測されたことを受けて、第1予測部により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信部とを含み、第2管理部は、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測部と、第2予測部により混雑の発生が予測されたことを受けて、第2予測部により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信部とを含む。これにより、交通状況により動的に変動する交通容量に対応した混雑回避が可能になる。特に、交通容量に応じて道路を複数に分類して、各分類に属する道路を管理対象として混雑を予測することにより、効率的に混雑の発生を抑制するように交通流を変化させることができる。 (9) The traffic flow control device according to the second aspect of the present disclosure is a traffic flow control device that controls the traffic flow in the road network based on information transmitted from a plurality of in-vehicle devices, and is the first of the road network. Among the roads included in the area, the traffic flow of the road included in the second area corresponds to each of the first management unit that manages the traffic flow of the main road and the plurality of second areas constituting the first area. The first management unit predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first management unit predicts the occurrence of congestion by the first prediction unit. In response to the prediction, the first recommended information for avoiding the congestion predicted by the first prediction unit is transmitted on the main road toward the first congestion part where the occurrence of the congestion is predicted. The second management unit predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmission unit that transmits to the in-vehicle device of the vehicle. In response to the fact that the second prediction unit predicts the occurrence of congestion and the second prediction unit predicts the occurrence of congestion, the second prediction information for avoiding the congestion predicted by the second prediction unit is provided by the occurrence of the congestion. Includes a second transmitter that transmits to the in-vehicle device of the vehicle traveling on the road included in the second region towards the predicted second congested portion. This makes it possible to avoid congestion in response to traffic capacity that dynamically fluctuates depending on traffic conditions. In particular, by classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets, it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
 (10)本開示の第3の局面に係る制御方法は、複数の車載装置から送信される情報に基づき道路網における交通流を制御する交通流制御方法であって、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理ステップと、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理ステップとを含み、第1管理ステップは、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測ステップと、第1予測ステップにより混雑の発生が予測されたことを受けて、第1予測ステップにより予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信ステップとを含み、第2管理ステップは、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測ステップと、第2予測ステップにより混雑の発生が予測されたことを受けて、第2予測ステップにより予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信ステップとを含む。これにより、交通状況により動的に変動する交通容量に対応した混雑回避が可能になる。特に、交通容量に応じて道路を複数に分類して、各分類に属する道路を管理対象として混雑を予測することにより、効率的に混雑の発生を抑制するように交通流を変化させることができる。 (10) The control method according to the third aspect of the present disclosure is a traffic flow control method for controlling a traffic flow in a road network based on information transmitted from a plurality of in-vehicle devices, and is used in a first region of the road network. Among the included roads, the first management step for managing the traffic flow of the main road and the traffic flow of the roads included in the second region are managed corresponding to each of the plurality of second regions constituting the first region. In the first management step, the occurrence of congestion on the main road is predicted based on the traffic capacity of the main road, and the first prediction step predicts the occurrence of congestion. In response to this, the first recommended information for avoiding the congestion predicted by the first prediction step is being driven on the main road toward the first congestion portion where the occurrence of the congestion is predicted. The second management step predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmission step of transmitting to the in-vehicle device of the vehicle. In response to the fact that the occurrence of congestion is predicted by the two prediction steps and the second prediction step, the occurrence of the congestion is predicted by the second recommended information for avoiding the congestion predicted by the second prediction step. It includes a second transmission step of transmitting to the in-vehicle device of the vehicle traveling on the road included in the second region toward the second congested portion. This makes it possible to avoid congestion in response to traffic capacity that dynamically fluctuates depending on traffic conditions. In particular, by classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets, it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
 (11)本開示の第4の局面に係るコンピュータプログラムは、複数の車載装置から送信される情報に基づき道路網における交通流を制御するコンピュータプログラムであって、コンピュータに、道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理機能と、第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理機能とを実現させ、第1管理機能は、幹線道路における混雑の発生を、幹線道路の交通容量に基づいて予測する第1予測機能と、第1予測機能により混雑の発生が予測されたことを受けて、第1予測機能により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、幹線道路を走行している車両の車載装置に送信する第1送信機能とを含み、第2管理機能は、第2領域に含まれる道路における混雑の発生を、第2領域に含まれる道路の交通容量に基づいて予測する第2予測機能と、第2予測機能により混雑の発生が予測されたことを受けて、第2予測機能により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信機能とを含む。これにより、交通状況により動的に変動する交通容量に対応した混雑回避が可能になる。特に、交通容量に応じて道路を複数に分類して、各分類に属する道路を管理対象として混雑を予測することにより、効率的に混雑の発生を抑制するように交通流を変化させることができる。 (11) The computer program according to the fourth aspect of the present disclosure is a computer program that controls the traffic flow in the road network based on the information transmitted from a plurality of in-vehicle devices, and the first region of the road network is applied to the computer. Among the roads included in the above, the first management function for managing the traffic flow of the main road and the traffic flow of the road included in the second region corresponding to each of the plurality of second regions constituting the first region. The second management function to manage is realized, and the first management function predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and the first prediction function causes the occurrence of congestion. In response to the prediction, the first recommended information for avoiding the congestion predicted by the first prediction function is transmitted on the main road toward the first congestion part where the occurrence of the congestion is predicted. The second management function predicts the occurrence of congestion on the road included in the second region based on the traffic capacity of the road included in the second region, including the first transmission function of transmitting to the in-vehicle device of the vehicle. In response to the fact that the occurrence of congestion is predicted by the second prediction function and the second prediction function, the second recommended information for avoiding the congestion predicted by the second prediction function is provided by the occurrence of the congestion. It includes a second transmission function of transmitting to the in-vehicle device of the vehicle traveling on the road included in the second region toward the predicted second congested portion. This makes it possible to avoid congestion in response to traffic capacity that dynamically fluctuates depending on traffic conditions. In particular, by classifying roads into a plurality of roads according to the traffic capacity and predicting congestion by targeting the roads belonging to each classification as management targets, it is possible to change the traffic flow so as to efficiently suppress the occurrence of congestion. ..
 [発明の効果]
 本開示によれば、交通状況により動的に変動する交通容量に対応した混雑回避が可能になる。
[The invention's effect]
According to the present disclosure, it is possible to avoid congestion corresponding to the traffic capacity that dynamically fluctuates depending on the traffic conditions.
 [本開示の実施形態の詳細]
 以下の実施形態では、同一の部品には同一の参照番号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。
[Details of Embodiments of the present disclosure]
In the following embodiments, the same parts are given the same reference numbers. Their names and functions are also the same. Therefore, detailed explanations about them will not be repeated.
 [全体構成]
 図1を参照して本開示の実施形態に係る交通流制御システム100は、車両102に搭載された車載装置104と、第1サーバ110とを含む。第1サーバ110はサーバコンピュータである。図1においては、代表的に1台の車両102を示しているが、複数存在する。車載装置を搭載していない車両も存在する。車載装置104及び第1サーバ110は、基地局106及びネットワーク108を介して相互に通信する。第1サーバ110は、ネットワーク108を介して第2サーバ112とも通信する。
[overall structure]
The traffic flow control system 100 according to the embodiment of the present disclosure with reference to FIG. 1 includes an in-vehicle device 104 mounted on the vehicle 102 and a first server 110. The first server 110 is a server computer. In FIG. 1, one vehicle 102 is typically shown, but there are a plurality of vehicles 102. Some vehicles are not equipped with in-vehicle devices. The in-vehicle device 104 and the first server 110 communicate with each other via the base station 106 and the network 108. The first server 110 also communicates with the second server 112 via the network 108.
 車載装置104は、基地局106が提供している移動通信回線(LTE回線及び5G回線等)により情報を送信及び受信する。複数の車両が存在する場合、車両に搭載された車載装置間で基地局106を介さずに直接無線通信することもできる。車載装置104は、カーナビゲーションシステムの機能を有している。車載装置104は、車両102外部の情報(歩行者200等)を取得するセンサを備えている。車載装置104は、指定された車両102の走行予定の経路(以下、走行経路という)の情報(以下、経路情報という)と、センサによる検出データとを第1サーバ110に送信(以下、アップロードともいう)する。それらの各々をアップロードするタイミングは任意である。経路情報は走行経路を特定できる情報であればよく、例えば、出発地、目的地、経由地、走行する道路等を表す情報である。 The in-vehicle device 104 transmits and receives information via a mobile communication line (LTE line, 5G line, etc.) provided by the base station 106. When a plurality of vehicles exist, it is also possible to directly wirelessly communicate between the in-vehicle devices mounted on the vehicles without going through the base station 106. The in-vehicle device 104 has a function of a car navigation system. The in-vehicle device 104 includes a sensor that acquires information (pedestrian 200, etc.) outside the vehicle 102. The in-vehicle device 104 transmits information (hereinafter referred to as route information) of the designated vehicle 102 to travel (hereinafter referred to as travel route) and data detected by the sensor to the first server 110 (hereinafter also referred to as upload). Say). The timing of uploading each of them is arbitrary. The route information may be any information that can specify a traveling route, and is, for example, information indicating a starting point, a destination, a waypoint, a traveling road, or the like.
 第1サーバ110は、車載装置104から取得した経路情報及びセンサデータを用いて、後述するように、車両交通における混雑を回避するための情報(以下、推奨情報という)を生成し、生成した推奨情報を車載装置104に送信する。 The first server 110 uses the route information and the sensor data acquired from the in-vehicle device 104 to generate information for avoiding congestion in vehicle traffic (hereinafter referred to as recommended information) as described later, and the generated recommendation. Information is transmitted to the vehicle-mounted device 104.
 第2サーバ112は、例えば、交通管制センター等に設定された交通情報提供サーバ等のサーバコンピュータであり、信号機116の状態(点灯色、点滅状態)に関する情報及び交通情報(例えば、渋滞情報、事故情報等の交通に関する情報)を、ネットワーク108を介して第1サーバ110に提供する。 The second server 112 is, for example, a server computer such as a traffic information providing server set in a traffic control center or the like, and has information on the state (lighting color, blinking state) of the signal 116 and traffic information (for example, traffic jam information, accident). Information related to traffic such as information) is provided to the first server 110 via the network 108.
 インフラセンサ114は、道路及びその周囲に設置されたセンサを備えた装置であり、例えば、イメージセンサ(監視カメラ等)、レーダ(ミリ波レーダ等)、又はレーザセンサ(LiDAR(Light Detection and Ranging)等)等である。インフラセンサ114から送信されるセンサデータは、基地局106及びネットワーク108を介して第1サーバ110及び第2サーバ112により受信される。第1サーバ110は、直接受信できないセンサデータを第2サーバ112から取得してもよい。第1サーバ110は、インフラセンサ114から取得した情報を解析した解析結果と、第2サーバ112から取得した情報とを、上記の推奨情報の生成に利用する。 The infrastructure sensor 114 is a device provided with sensors installed on the road and its surroundings, and is, for example, an image sensor (surveillance camera or the like), a radar (millimeter wave radar or the like), or a laser sensor (LiDAR (Light Detection and Ringing)). Etc.) etc. The sensor data transmitted from the infrastructure sensor 114 is received by the first server 110 and the second server 112 via the base station 106 and the network 108. The first server 110 may acquire sensor data that cannot be directly received from the second server 112. The first server 110 uses the analysis result obtained by analyzing the information acquired from the infrastructure sensor 114 and the information acquired from the second server 112 to generate the above recommended information.
 [車載装置のハードウェア構成]
 図2は、車両102に搭載されている車載装置104のハードウェア構成の一例を示す。図2を参照して、車載装置104は、センサ機器120からデータが入力されるインターフェイス部(以下、I/F部という)122、メモリ124、通信部126、表示部128、操作部130、制御部132、及び、バス134を含む。車載装置104は、図2に示した構成要素以外に、タイマ、電源装置等、車載装置として機能するために必要な構成をも含んでいる。
[Hardware configuration of in-vehicle device]
FIG. 2 shows an example of the hardware configuration of the in-vehicle device 104 mounted on the vehicle 102. With reference to FIG. 2, the in-vehicle device 104 includes an interface unit (hereinafter referred to as an I / F unit) 122, a memory 124, a communication unit 126, a display unit 128, an operation unit 130, and a control unit to which data is input from the sensor device 120. The unit 132 and the bus 134 are included. In addition to the components shown in FIG. 2, the in-vehicle device 104 also includes configurations necessary for functioning as an in-vehicle device, such as a timer and a power supply device.
 センサ機器120は、車両102に搭載されているセンサである。車両には、種々のセンサが搭載されている。それらのうちセンサ機器120は、交通状況を取得できるものを意味する。センサ機器120は、例えば、イメージセンサ(CCD(Charge-Coupled Device)カメラ、CMOS(Complementary Metal-Oxide-Semiconductor)カメラ等)、レーザセンサ(LiDAR等)、ミリ波レーダ等である。センサ機器120は、対象を検知して所定の検出信号(アナログ信号又はデジタルデータ)を出力する。 The sensor device 120 is a sensor mounted on the vehicle 102. Various sensors are mounted on the vehicle. Among them, the sensor device 120 means a device that can acquire the traffic condition. The sensor device 120 is, for example, an image sensor (CCD (Charge-Coupled Device) camera, CMOS (Complementary Metal-Oxide-Semiconductor) camera, etc.), a laser sensor (LiDAR, etc.), a millimeter-wave radar, or the like. The sensor device 120 detects the target and outputs a predetermined detection signal (analog signal or digital data).
 センサ機器120による検出信号はI/F部122に入力される。I/F部122はA/D変換部を含み、アナログ信号が入力されると所定周波数でサンプリングし、デジタルデータ(センサデータ)を生成してバス134に出力する。生成されたデジタルデータは、バス134を介してメモリ124に伝送されて記憶される。車載装置104を構成する各部間のデータ交換は、バス134を介して行われる。センサ機器120からの出力信号がデジタルデータであれば、I/F部122は、入力されるデジタルデータをメモリ124に記憶する。メモリ124は、例えば書換可能な不揮発性の半導体メモリ、又はハードディスクドライブ(以下、HDDという)である。 The detection signal from the sensor device 120 is input to the I / F unit 122. The I / F unit 122 includes an A / D conversion unit, and when an analog signal is input, it samples at a predetermined frequency, generates digital data (sensor data), and outputs it to the bus 134. The generated digital data is transmitted to the memory 124 via the bus 134 and stored. Data exchange between the parts constituting the in-vehicle device 104 is performed via the bus 134. If the output signal from the sensor device 120 is digital data, the I / F unit 122 stores the input digital data in the memory 124. The memory 124 is, for example, a rewritable non-volatile semiconductor memory or a hard disk drive (hereinafter referred to as HDD).
 メモリ124に記憶されるセンサデータには、センサデータを取得した時刻を特定する情報(例えばタイムスタンプ。以下、センサデータ取得時刻という)と、センサデータ取得時刻に対応する車両102の位置を表す情報(以下、車両位置という)とが付される。例えば、センサ機器120がイメージセンサであれば、フレーム単位のセンサデータに、センサデータ取得時刻及び車両位置が付される。センサデータ取得時刻はタイマから取得され、車両位置はGPSから取得される。 The sensor data stored in the memory 124 includes information for specifying the time when the sensor data is acquired (for example, a time stamp, hereinafter referred to as a sensor data acquisition time) and information indicating the position of the vehicle 102 corresponding to the sensor data acquisition time. (Hereinafter referred to as vehicle position) is attached. For example, if the sensor device 120 is an image sensor, the sensor data acquisition time and the vehicle position are added to the sensor data for each frame. The sensor data acquisition time is acquired from the timer, and the vehicle position is acquired from GPS.
 通信部126は移動通信機能を有し、基地局106及びネットワーク108を介して第1サーバ110と通信を行う。通信部126は、基地局106で採用されている通信方式の変調及び多重化を行うためのIC、所定周波数の電波を放射及び受信するためのアンテナ、並びにRF(Radio Frequency)回路等を含む。 The communication unit 126 has a mobile communication function and communicates with the first server 110 via the base station 106 and the network 108. The communication unit 126 includes an IC for modulating and multiplexing the communication method adopted in the base station 106, an antenna for radiating and receiving radio waves of a predetermined frequency, an RF (Radio Frequency) circuit, and the like.
 表示部128は、カーナビゲーションシステムと同様に、メモリ124に記憶されている道路地図を用いて、車両102の現在位置及びその周囲の道路地図を表示する。表示部128は例えば液晶ディスプレイである。操作部130は、ユーザの操作を受けて、車載装置104に対する指示等を入力する。操作部130は、例えば表示部128の表示面に重畳されたタッチパネルである。表示部128に表示されたキーに対する操作、及び、表示部128に表示された道路地図上の位置の選択等の操作は操作部130により検出される。表示部128及び操作部130により、ユーザは目的地及び経由地等を指定して、走行経路を探索できる。表示部128及び操作部130を介して指定された走行経路を表す経路情報は、メモリ124に記憶され、運転者へのルート案内(表示部128への表示、音声案内等)に利用される。 Similar to the car navigation system, the display unit 128 displays the current position of the vehicle 102 and the road map around it by using the road map stored in the memory 124. The display unit 128 is, for example, a liquid crystal display. The operation unit 130 receives an operation from the user and inputs an instruction or the like to the in-vehicle device 104. The operation unit 130 is, for example, a touch panel superimposed on the display surface of the display unit 128. Operations on the keys displayed on the display unit 128 and operations such as selection of a position on the road map displayed on the display unit 128 are detected by the operation unit 130. The display unit 128 and the operation unit 130 allow the user to specify a destination, a waypoint, and the like to search for a travel route. The route information representing the traveling route designated via the display unit 128 and the operation unit 130 is stored in the memory 124 and used for route guidance to the driver (display on the display unit 128, voice guidance, etc.).
 制御部132は、CPU(Central Processing Unit)を含んで構成されている。制御部132が各部を制御することにより、カーナビゲーションシステムとしての機構及び第1サーバ110へのアップロード機能等が実現される。 The control unit 132 includes a CPU (Central Processing Unit). By controlling each unit by the control unit 132, a mechanism as a car navigation system, an upload function to the first server 110, and the like are realized.
 制御部132は、通信部126を制御して、車両102の位置情報を適宜第1サーバ110に送信する。車載装置104から第1サーバ110に送信される情報には、送信元である車載装置104を特定する情報(ID)が付加される。これにより、第1サーバ110は、車載装置104が搭載されている車両102の位置を特定でき、送信時刻等の情報を考慮して車両102の位置の時間変化(車両102の速度等)を算出できる。 The control unit 132 controls the communication unit 126 to appropriately transmit the position information of the vehicle 102 to the first server 110. Information (ID) that identifies the in-vehicle device 104 that is the transmission source is added to the information transmitted from the in-vehicle device 104 to the first server 110. As a result, the first server 110 can specify the position of the vehicle 102 on which the in-vehicle device 104 is mounted, and calculates a time change (speed of the vehicle 102, etc.) of the position of the vehicle 102 in consideration of information such as the transmission time. can.
 制御部132は、メモリ124に記憶されているセンサデータを適宜第1サーバ110に送信する。また、制御部132は、メモリ124に記憶されている経路情報を、適宜第1サーバ110に送信する。第1サーバ110は、車載装置104から送信される経路情報を取得し、交通流の制御に利用する。第1サーバ110は、交通流を制御するための推奨情報を、所定の条件を満たす車載装置104に送信する。 The control unit 132 appropriately transmits the sensor data stored in the memory 124 to the first server 110. Further, the control unit 132 appropriately transmits the route information stored in the memory 124 to the first server 110. The first server 110 acquires the route information transmitted from the in-vehicle device 104 and uses it for controlling the traffic flow. The first server 110 transmits recommended information for controlling the traffic flow to the in-vehicle device 104 that satisfies a predetermined condition.
 [サーバのハードウェア構成]
 図3を参照して、第1サーバ110は、制御部140、メモリ142、通信部144、及びバス146を含む。第2サーバ112も同様に構成されている。
[Server hardware configuration]
With reference to FIG. 3, the first server 110 includes a control unit 140, a memory 142, a communication unit 144, and a bus 146. The second server 112 is also configured in the same manner.
 各部の間のデータ伝送は、バス146を介して行われる。制御部140は、例えばCPUを含み、各部を制御し、第1サーバ110の種々の機能を実現する。通信部144は、車載装置104及びインフラセンサ114から、基地局106及びネットワーク108を介してアップロードされる情報を受信する。メモリ142は、書換可能な不揮発性の半導体メモリ及びHDD等の大容量記憶装置を含む。通信部144により受信されたデータは、メモリ142に伝送され、記憶される。メモリ142には、道路地図情報も記憶されている。 Data transmission between each part is performed via bus 146. The control unit 140 includes, for example, a CPU, controls each unit, and realizes various functions of the first server 110. The communication unit 144 receives information uploaded from the in-vehicle device 104 and the infrastructure sensor 114 via the base station 106 and the network 108. The memory 142 includes a rewritable non-volatile semiconductor memory and a large-capacity storage device such as an HDD. The data received by the communication unit 144 is transmitted to the memory 142 and stored. Road map information is also stored in the memory 142.
 第2サーバ112においては、通信部は、インフラセンサ114からアップロードされるセンサデータを受信する。通信部により受信されたデータは、メモリに伝送され、データベースとして記憶される。制御部は、適宜メモリからデータを読出し、所定の解析処理(車両の検出等)を実行し、交通状況(混雑、渋滞、事故等)を表す情報を生成し、その結果をメモリに記憶する。制御部は、適宜メモリから交通情報を読出し、第1サーバ110に送信する。 In the second server 112, the communication unit receives the sensor data uploaded from the infrastructure sensor 114. The data received by the communication unit is transmitted to the memory and stored as a database. The control unit appropriately reads data from the memory, executes a predetermined analysis process (vehicle detection, etc.), generates information indicating a traffic condition (congestion, traffic jam, accident, etc.), and stores the result in the memory. The control unit appropriately reads the traffic information from the memory and transmits it to the first server 110.
 [サーバの機能]
 第1サーバ110の機能は、複数の機能モジュールにより構成される。図4を参照して、第1サーバ110は、ハイレベルエージェント(機能モジュール)150、複数のローレベルエージェント(機能モジュール)152、入力I/Fモジュール154及び出力I/Fモジュール156を含む。以下、ハイレベルエージェント150をHLA(High Level Agent)150といい、ローレベルエージェント152をLLA(Low Level Agent)152という。入力I/Fモジュール154は、車載装置104、インフラセンサ114及び第2サーバ112から情報を受信する。出力I/Fモジュール156は、車載装置104に対して情報を送信する。各モジュールは、ハードウェア、ソフトウェア、又はそれらの混合により実現される。
[Server function]
The function of the first server 110 is composed of a plurality of functional modules. With reference to FIG. 4, the first server 110 includes a high level agent (functional module) 150, a plurality of low level agents (functional modules) 152, an input I / F module 154 and an output I / F module 156. Hereinafter, the high level agent 150 is referred to as an HLA (High Level Agent) 150, and the low level agent 152 is referred to as an LLA (Low Level Agent) 152. The input I / F module 154 receives information from the in-vehicle device 104, the infrastructure sensor 114, and the second server 112. The output I / F module 156 transmits information to the in-vehicle device 104. Each module is realized by hardware, software, or a mixture thereof.
 HLA150は、第1予測部160、第1推奨情報生成部162及び第1送信部164を含む。LLA152は、第2予測部166、第2推奨情報生成部168及び第2送信部170を含む。第1予測部160及び第2予測部166は、各々が制御対象とする領域に含まれる道路網(車両が通行可能な複数の道路)における交通状況を観測し、各道路の交通容量に基づいて混雑の発生を予測する。第1推奨情報生成部162及び第2推奨情報生成部168は、各々が制御対象とする領域において予測された混雑を迂回するための推奨情報を生成する。第1送信部164及び第2送信部170は、各々が制御対象とする領域の道路を走行している車両の車載装置に、出力I/Fモジュール156を介して推奨情報を送信する。後述するように、HLA150の制御対象領域と、LLA152の制御対象領域とは重なる。また、複数のLLA152の制御対象領域も、境界部分等において相互に重なり得る。したがって、HLA150及び複数のLLA152の相互間において、調整が行われなければ、同じ車載装置に異なる推奨情報が送信され得る。これを回避するには、HLA150及び複数のLLA152の相互間において情報を共有し連携して、事前に調整し、所定期間内において、1つの車載装置に対して1つの推奨情報が送信されるようにすることが好ましい。なお、事前調整を行わない場合には、所定期間内に複数の推奨情報を受信した車載装置は、いずれか1つ(例えば、最後に受信した推奨情報)を選択すればよい。 The HLA 150 includes a first prediction unit 160, a first recommended information generation unit 162, and a first transmission unit 164. The LLA 152 includes a second prediction unit 166, a second recommended information generation unit 168, and a second transmission unit 170. The first prediction unit 160 and the second prediction unit 166 observe the traffic conditions in the road network (a plurality of roads through which vehicles can pass) included in the area to be controlled, and based on the traffic capacity of each road. Predict the occurrence of congestion. The first recommended information generation unit 162 and the second recommended information generation unit 168 each generate recommended information for bypassing the predicted congestion in the area to be controlled. The first transmission unit 164 and the second transmission unit 170 transmit recommended information to the in-vehicle device of the vehicle traveling on the road in the area to be controlled, respectively, via the output I / F module 156. As will be described later, the control target area of the HLA 150 and the control target area of the LLA 152 overlap. Further, the controlled target regions of the plurality of LLA 152s may also overlap each other at the boundary portion and the like. Therefore, if no coordination is made between the HLA 150 and the plurality of LLA 152s, different recommendations may be transmitted to the same in-vehicle device. To avoid this, information is shared between the HLA150 and the plurality of LLA152s, coordinated in advance, and one recommended information is transmitted to one in-vehicle device within a predetermined period. Is preferable. If the pre-adjustment is not performed, one of the in-vehicle devices that have received the plurality of recommended information within the predetermined period (for example, the last recommended information received) may be selected.
 交通流の制御対象である道路網は、予め複数の階層に分類されている。各道路の交通容量に応じて、道路網は2階層(ハイレベル及びローレベル)に分類されているとする。交通容量は、各道路の最大の交通量であり、例えば、実測された交通量(道路上のある地点の単位時間当たりに通行する車両の台数(例えば台/時))から決定される。 The road network that is the control target of traffic flow is classified into multiple layers in advance. It is assumed that the road network is classified into two levels (high level and low level) according to the traffic capacity of each road. The traffic capacity is the maximum traffic volume of each road, and is determined from, for example, the actually measured traffic volume (the number of vehicles passing per unit time at a certain point on the road (for example, vehicles / hour)).
 なお、交通量は、車両の許可された走行方向(以下、交通流の方向という)に応じて定まり、一方通行でない道路に関しては、対向する2つの走行方向の各々に関して交通量が存在する(2つの交通量)。したがって、交通容量も、一方通行でない道路に関しては、各走行方向に関して設定される(2つの交通容量)。 The traffic volume is determined according to the permitted traveling direction of the vehicle (hereinafter referred to as the direction of the traffic flow), and for a non-one-way road, the traffic volume exists in each of the two opposing traveling directions (2). One traffic). Therefore, the traffic capacity is also set for each traveling direction for non-one-way roads (two traffic capacities).
 例えば、第1サーバ110による交通流の制御対象である道路地図上の所定領域(以下、制御対象領域という)において、車両が通行可能な道路を幹線道路と一般道路とに分類する。幹線道路は、国道、高速道路(都市内高速道路及び都市間高速道路を含む)、バイパス道路等の交通量が比較的多い道路を意味する。一般道路は、幹線道路以外の道路を意味する。HLA150は、制御対象領域に含まれる幹線道路における交通流を制御する。制御対象領域は、複数のサブ領域に分割される。LLA152は、各々のサブ領域に含まれる幹線道路及び一般道路における交通流を制御する。 For example, in a predetermined area on a road map (hereinafter referred to as a controlled area) which is a traffic flow controlled by the first server 110, roads through which vehicles can pass are classified into highways and general roads. Highways mean roads with relatively heavy traffic such as national highways, highways (including urban highways and intercity highways), and bypass roads. A general road means a road other than a main road. The HLA 150 controls the traffic flow on the main road included in the controlled area. The controlled area is divided into a plurality of sub-areas. LLA152 controls the traffic flow on the main roads and general roads included in each sub-region.
 一例を図5及び図6に示す。図5は、HLA150の制御対象領域を示す。図5を参照して、太い実線は幹線道路を表し、点線は一般道路を表す。太線内部の白線は、例えば、中央分離帯を表す。白線の片側は、1本の走行車線に限らず、複数の走行車線を含み得る。ノードN1~N4及びN10~N13は幹線道路上の交差点を表す。それらのうち、ノードN1~N4は幹線道路同士の交差点を表す。ノードN1の周囲における矢印は、車両の進行方向を表す。ノードN10~N13は、HLA150の制御対象領域の境界部分における幹線道路と一般道路との交差点を表す。 An example is shown in FIGS. 5 and 6. FIG. 5 shows a controlled area of the HLA 150. With reference to FIG. 5, thick solid lines represent highways and dotted lines represent general roads. The white line inside the thick line represents, for example, a median strip. One side of the white line may include not only one traveling lane but also a plurality of traveling lanes. Nodes N1 to N4 and N10 to N13 represent intersections on highways. Among them, nodes N1 to N4 represent intersections between highways. The arrows around the node N1 indicate the direction of travel of the vehicle. Nodes N10 to N13 represent intersections between highways and general roads at the boundary portion of the controlled area of HLA150.
 ノード間の道路をリンクという。リンクAは、ノードN1及びN3の間の幹線道路を表す。同様に、リンクB、C、D、E及びFはそれぞれ、ノードN1及びN2間、ノードN1及びN4間、ノードN2及びN3間、ノードN3及びN4間、並びに、ノードN1及びN10間の幹線道路を表す。各リンク(道路)の両端のノード(交差点)は、そのリンクへの車両の入力部及び出力部である。入力部及び出力部は、交通流の方向に応じて決まる。 The road between nodes is called a link. Link A represents a highway between nodes N1 and N3. Similarly, links B, C, D, E and F are highways between nodes N1 and N2, between nodes N1 and N4, between nodes N2 and N3, between nodes N3 and N4, and between nodes N1 and N10, respectively. Represents. The nodes (intersections) at both ends of each link (road) are the input and output sections of the vehicle to that link. The input unit and the output unit are determined according to the direction of the traffic flow.
 図6を参照して、HLA150の制御対象領域は、サブ領域L1~L6に区分されている。図5と同様に、太い実線は幹線道路を表す。図5において点線で表されていた一般道路は、図6においては実線で表されている。サブ領域L1~L6の各々に対して、LLA152が1つ割当てられる。LLA152は、対応するサブ領域に含まれる幹線道路及び一般道路を対象として、交通流を制御する。一般道路に関しても、幹線道路と同様に交差点間の道路をリンクという。なお、隣接する交差点間の道路を1つのリンクとして扱う場合に限定されない。複数の交差点を通る道路を1つのリンクとして扱ってもよい。 With reference to FIG. 6, the control target area of the HLA 150 is divided into sub-regions L1 to L6. Similar to FIG. 5, the thick solid line represents the main road. The general road represented by the dotted line in FIG. 5 is represented by the solid line in FIG. One LLA152 is assigned to each of the sub-regions L1 to L6. The LLA 152 controls the traffic flow for the main roads and general roads included in the corresponding sub-regions. As for general roads, roads between intersections are called links, as with main roads. It should be noted that the present invention is not limited to the case where the road between adjacent intersections is treated as one link. Roads passing through a plurality of intersections may be treated as one link.
 [動作]
 図7及び図8を参照して、図4に示されたHLA150及び複数のLLA152を、制御部140により実行されるプログラムにより実現する場合を説明する。図7に示した処理はHLA150により実行される。具体的には、第1サーバ110の制御部140(図3)が、所定のプログラムをメモリ142から読出して実行することにより実現される。
[motion]
A case where the HLA 150 and the plurality of LLA 152 shown in FIG. 4 are realized by a program executed by the control unit 140 will be described with reference to FIGS. 7 and 8. The process shown in FIG. 7 is executed by the HLA 150. Specifically, it is realized by the control unit 140 (FIG. 3) of the first server 110 reading a predetermined program from the memory 142 and executing it.
 ステップ300において、制御部140は、HLA150の制御対象である領域における交通情報を取得し、統計情報を生成する。上記したように、交通情報は、インフラセンサ114及び車載装置104から送信されるセンサデータが解析された結果、及び、第2サーバ112から送信される信号情報等を含み、それらは交通状況を表す統計情報(データベース)としてメモリ142に記憶される。なお、制御部140(HLA150)は、後述するように、LLA152から提供される情報もメモリ142に記憶する。制御部140は、統計情報を適宜新たな交通情報で更新する。例えば、制御部140は、HLA150の制御対象である幹線道路の各リンクに関して、車両台数、リンク旅行時間(車両がリンクを通過するのに要する時間)等の統計情報を測定(算出)する。その後、制御はステップ302に移行する。 In step 300, the control unit 140 acquires traffic information in the area controlled by the HLA 150 and generates statistical information. As described above, the traffic information includes the result of analyzing the sensor data transmitted from the infrastructure sensor 114 and the in-vehicle device 104, the signal information transmitted from the second server 112, and the like, which represent the traffic situation. It is stored in the memory 142 as statistical information (database). The control unit 140 (HLA150) also stores the information provided by the LLA 152 in the memory 142, as will be described later. The control unit 140 updates the statistical information with new traffic information as appropriate. For example, the control unit 140 measures (calculates) statistical information such as the number of vehicles and the link travel time (time required for the vehicle to pass through the link) for each link on the main road controlled by the HLA 150. After that, control shifts to step 302.
 ステップ302において、制御部140は、各リンクに関して所定時間以内に混雑が発生するか否かを判定(予測)する。交通流の状態を表す用語として、混雑、渋滞及び順調が使用される。それらは、例えば表1に示すように定義される。表1の定義では、渋滞と混雑とは区別されるが、混雑は、渋滞を包含する意味で使用されてもよい。 In step 302, the control unit 140 determines (predicts) whether or not congestion will occur for each link within a predetermined time. Congestion, congestion and smoothness are used as terms to describe the state of traffic flow. They are defined, for example, as shown in Table 1. Although the definition in Table 1 distinguishes between congestion and congestion, congestion may be used in the sense of including congestion.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 判定は、ステップ300により生成されメモリ142に記憶されている統計情報を用いて行うことができる。例えば、予め各リンクに関して設定された交通容量から、混雑時の車両台数をしきい値として決定しておけば、そのリンクに関する単位時間当たりに流入する車両台数及び流出する車両台数と、しきい値とから、所定時間内に混雑が発生するか否かを判定できる。単位時間当たりに流入する車両台数及び流出する車両台数から、そのリンクにおける単位時間当たりの車両の増減傾向及び増減数の時間変化が分かる。したがって、増加傾向にある場合、しきい値を超える時間を予測できる。所定時間内に混雑が発生すると判定された場合、制御はステップ304に移行する。そうでなければ、制御はステップ314に移行する。なお、しきい値には、交通容量以外にリンク旅行時間等を用いてもよい。 The determination can be made using the statistical information generated in step 300 and stored in the memory 142. For example, if the number of vehicles at the time of congestion is determined as a threshold value from the traffic capacity set in advance for each link, the number of vehicles flowing in and out per unit time for that link, and the threshold value. From, it can be determined whether or not congestion occurs within a predetermined time. From the number of vehicles flowing in and out per unit time, the tendency of increase / decrease of vehicles per unit time at the link and the time change of the number of increase / decrease can be understood. Therefore, when there is an increasing tendency, the time when the threshold value is exceeded can be predicted. If it is determined that congestion will occur within a predetermined time, control shifts to step 304. Otherwise, control proceeds to step 314. In addition to the traffic capacity, the link travel time or the like may be used as the threshold value.
 ステップ304において、制御部140は、ステップ302により混雑が発生すると予測された道路(リンク)、及び、それに関連する道路(接続するリンク)を特定する。例えば、図5のリンクAにおいて混雑が発生すると予測された場合、リンクB、リンクC、及び、リンクFが関連するリンクとして特定される。その後、制御はステップ306に移行する。 In step 304, the control unit 140 identifies a road (link) predicted to be congested by step 302 and a road (connecting link) related thereto. For example, if congestion is predicted to occur at link A in FIG. 5, link B, link C, and link F are identified as related links. After that, control shifts to step 306.
 ステップ306において、制御部140は、ステップ302により混雑が発生すると予測された道路(リンク)の流入口に向かう車両を特定する。例えば、リンクA(図5)の上向きの交通流において混雑が発生すると予測された場合、ノードN1が流入口になり、リンクB、リンクC、及びリンクFから車両が流入する。ここでは、各ノードにおいてUターン禁止とする(ノードN1がUターン禁止でなければ、リンクAを下向きに走行する車両も流入する車両になり得る。)。制御部140は、混雑すると予測された経路の流入口(ノードN1)に所定時間以内に流入する車両であり、かつ、メモリ142に経路情報が記憶されている車両のうち、混雑すると予測された経路(リンクAを上向きに走行する経路)が経路情報の未走行部分(まだ車両が走行していない道路部分)に含まれている車両の車載装置(ID)を特定する。その後、制御はステップ308に移行する。これにより、第1サーバ110(HLA150)による無駄な情報の送信、及び、車載装置104により利用できない情報の受信を抑制でき、効率的に混雑の発生を抑制できる。 In step 306, the control unit 140 identifies a vehicle heading for the inflow port of the road (link) predicted to be congested by step 302. For example, when it is predicted that congestion will occur in the upward traffic flow of the link A (FIG. 5), the node N1 becomes the inflow port, and vehicles flow in from the link B, the link C, and the link F. Here, U-turns are prohibited at each node (if node N1 is not U-turn prohibited, a vehicle traveling downward on the link A may also be an inflow vehicle). The control unit 140 is a vehicle that flows into the inflow port (node N1) of the route predicted to be congested within a predetermined time, and is predicted to be congested among the vehicles whose route information is stored in the memory 142. The vehicle-mounted device (ID) of the vehicle in which the route (the route traveling upward on the link A) is included in the untraveled portion (road portion in which the vehicle has not yet traveled) of the route information is specified. After that, control shifts to step 308. As a result, it is possible to suppress the transmission of useless information by the first server 110 (HLA150) and the reception of information that cannot be used by the in-vehicle device 104, and it is possible to efficiently suppress the occurrence of congestion.
 ステップ308において、制御部140は、ステップ302により混雑が発生すると予測された道路(リンク)及びそれを迂回する道路(リンク)に振り分ける車両数を算出する。制御部140は、ステップ306で特定された車両のうち、リンクF、B及びCの各々に関して、ノードN1に流入する車両(経路情報にリンクAを含む)の台数を算出し(それぞれn、n、nとする)、それらの合計値を流入総数n(=n+n+n)とする。 In step 308, the control unit 140 calculates the number of vehicles to be distributed to the road (link) predicted to be congested by step 302 and the road (link) bypassing the road (link). The control unit 140 calculates the number of vehicles (including the link A in the route information) flowing into the node N1 for each of the links F, B, and C among the vehicles specified in step 306 (n F , respectively). Let n B and n C ), and let the total value thereof be the total number of inflows n T (= n F + n B + n C ).
 例えば、流入総数nをリンクA、B及びCに均等に振り分ける。また、リンクA、B及びCの現在の車両台数を考慮して、振り分けてもよい。例えば、振り分けた結果、リンクA、B及びCの交通量が均等になるように振り分ける。各リンクの交通容量の比率に応じて、即ち、交通容量の比率に反比例するように振り分けてもよい。これにより、混雑が予測されたリンクAに流入する車両を複数の道路に分散できる。 For example, the total number of inflows n T is evenly distributed to links A, B and C. Further, the distribution may be performed in consideration of the current number of vehicles of links A, B and C. For example, as a result of distribution, the traffic volumes of links A, B, and C are distributed so as to be equal. It may be distributed according to the traffic capacity ratio of each link, that is, in inverse proportion to the traffic capacity ratio. As a result, the vehicles flowing into the link A, which is predicted to be congested, can be dispersed on a plurality of roads.
 なお、リンクFからノードN1に流入する車両は、リンクA、B及びCのいずれにも振り分けることができるが、リンクB又はCからノードN1に流入する車両の振り分け先は制限される。即ち、リンクBからノードN1に流入する車両は、リンクBを走行させる(Uターンさせる)ことができないので、リンクA又はCに振り分ける。リンクCからノードN1に流入する車両は、リンクCを走行させることができないので、リンクA又はBに振り分ける。リンクA、B及びCに振り分ける台数の算出においては、この点を考慮して、振り分けることが好ましい。例えば、まず、リンクBからノードN1に流入する車両(台数n)及びリンクCからノードN1に流入する車両(台数n)を、リンクA、B及びCに振り分けた後、リンクFからノードN1に流入する車両(台数n)を、リンクA、B及びCに振り分ければよい。振り分ける車両台数の算出が完了すれば、制御はステップ310に移行する。 The vehicle flowing into the node N1 from the link F can be distributed to any of the links A, B and C, but the distribution destination of the vehicle flowing into the node N1 from the link B or C is limited. That is, the vehicle flowing into the node N1 from the link B cannot travel (make a U-turn) on the link B, so that the vehicle is distributed to the link A or C. Since the vehicle flowing into the node N1 from the link C cannot travel on the link C, it is distributed to the link A or B. In calculating the number of units to be distributed to links A, B, and C, it is preferable to distribute them in consideration of this point. For example, first, the vehicle (number n B ) flowing into the node N1 from the link B and the vehicle (number n C ) flowing into the node N1 from the link C are distributed to the links A, B, and C, and then the node from the link F. The vehicles (number n F ) flowing into N1 may be distributed to links A, B, and C. When the calculation of the number of vehicles to be distributed is completed, the control shifts to step 310.
 ステップ310において、制御部140は、ステップ308により決定した各リンクに振り分ける車両台数に応じて、ステップ306により特定したIDの車載装置に、該当する推奨情報を送信する。例えば、流入総数をリンクA、B及びCに均等に振り分ける場合、制御部140は、リンクFをノードN1(流入口)に向かって走行している車両(経路情報にリンクAを含む)のID(ステップ306により特定)の車載装置に対して、ノードN1に車両が近い順に、リンクAの走行を勧める推奨情報、リンクBの走行を勧める推奨情報、リンクCの走行を勧める推奨情報を、繰返し送信する。リンクBの走行を勧める推奨情報は、車線を変更して左折することを勧める情報であってもよい。リンクCの走行を勧める推奨情報は、車線を変更して右折することを勧める情報であってもよい。これにより、混雑の発生を抑制するための情報のうち、車載装置毎に適した情報を提供できる。また、上記したように、第1サーバ110(HLA150)による無駄な情報の送信、及び、車載装置104により利用できない情報の受信を抑制でき、効率的に混雑の発生を抑制できる。 In step 310, the control unit 140 transmits the corresponding recommended information to the in-vehicle device having the ID specified in step 306 according to the number of vehicles to be distributed to each link determined in step 308. For example, when the total number of inflows is evenly distributed to the links A, B, and C, the control unit 140 determines the ID of the vehicle (including the link A in the route information) traveling the link F toward the node N1 (inflow port). For the in-vehicle device (specified by step 306), the recommended information for recommending the running of the link A, the recommended information for recommending the running of the link B, and the recommended information for recommending the running of the link C are repeated in the order in which the vehicle is closer to the node N1. Send. The recommended information for driving on the link B may be information for recommending changing lanes and turning left. The recommended information for driving on the link C may be information for recommending changing lanes and turning right. This makes it possible to provide information suitable for each in-vehicle device among the information for suppressing the occurrence of congestion. Further, as described above, it is possible to suppress the transmission of useless information by the first server 110 (HLA150) and the reception of information that cannot be used by the in-vehicle device 104, and it is possible to efficiently suppress the occurrence of congestion.
 リンクA、B及びCに振り分ける台数が異なる場合にも、各台数の割合に応じて、各推奨情報を送信できる。なお、推奨情報の送信対象は経路情報にリンクAを含むので、リンクAに振り分けられる車両の車載装置に対しては、推奨情報(リンクAの走行を勧める推奨情報)を送信しなくてもよい。推奨情報の送信が完了すれば、制御はステップ312に移行する。 Even if the number of units distributed to links A, B and C is different, each recommended information can be transmitted according to the ratio of each number. Since the target for transmitting the recommended information includes the link A in the route information, it is not necessary to transmit the recommended information (recommended information for recommending the running of the link A) to the in-vehicle device of the vehicle assigned to the link A. .. When the transmission of the recommendation information is completed, the control shifts to step 312.
 ステップ312において、制御部140は、LLA152に情報を提供する。例えば、リンクA、B及びCの各々に振り分けた(推奨情報を送信した)車両台数をLLA152に提供する。HLA150からLLA152への情報提供は、例えば、メモリ142を介して行われる。LLA152に提供した情報は、LLA152による交通流の制御に使用され得る。その後、制御はステップ314に移行する。 In step 312, the control unit 140 provides information to the LLA 152. For example, the number of vehicles (sending recommended information) distributed to each of links A, B, and C is provided to LLA152. Information provision from the HLA 150 to the LLA 152 is performed, for example, via the memory 142. The information provided to LLA152 can be used to control traffic flow by LLA152. After that, control shifts to step 314.
 ステップ314において、制御部140は、本プログラムを終了する指示を受けたか否かを判定する。終了の指示は、第1サーバ110の操作部(キーボード及びマウス等)による指示、第1サーバ110の電源のOFF等により成される。終了する指示を受けたと判定された場合、本プログラムを終了する。そうでなければ、制御はステップ300に戻り、上記の処理を繰返す。 In step 314, the control unit 140 determines whether or not an instruction to end this program has been received. The end instruction is given by an instruction by an operation unit (keyboard, mouse, etc.) of the first server 110, turning off the power of the first server 110, and the like. If it is determined that the instruction to end has been received, this program will be terminated. Otherwise, control returns to step 300 and repeats the above process.
 以上により、幹線道路を走行している車両の車載装置に対して、幹線道路における交通流を分散させるための大まかな経路を推奨できる。即ち、HLA150は、現状の交通流のままでは、幹線道路において混雑が発生すると予測された場合、混雑が発生しないように、混雑発生の原因になり得る車両に対して、混雑を回避するための情報(推奨情報)を送信し、混雑が発生しないように交通流を制御できる。第1サーバ110から推奨情報を受信した車載装置104が表示部128に、推奨情報に基づくメッセージ(例えば、「道路Aが混雑することが予想されます。道路Bを走行すれば、目的地に早く着きます。」)を提示すれば、それを見た運転者がリンクB(道路B)に経路を変更することが期待できる。 From the above, it is possible to recommend a rough route for distributing the traffic flow on the main road to the in-vehicle device of the vehicle traveling on the main road. That is, the HLA 150 is for avoiding congestion for vehicles that may cause congestion so that congestion does not occur when it is predicted that congestion will occur on the main road under the current traffic flow. Information (recommended information) can be sent and traffic flow can be controlled so that congestion does not occur. The in-vehicle device 104 that received the recommended information from the first server 110 displays a message based on the recommended information on the display unit 128 (for example, "Road A is expected to be congested. If the road B is driven, the destination can be reached quickly." If you show "I will arrive"), you can expect the driver who sees it to change the route to link B (road B).
 図8に示した処理はLLA152により実行される。具体的には、第1サーバ110の制御部140(図3)が、所定のプログラムをメモリ142から読出して実行することにより実現される。LLA152の制御対象の道路は、サブ領域L1~L6のいずれか1つに含まれる道路である。ここでは、サブ領域L5に含まれる道路を、LLA152の制御対象とする。 The process shown in FIG. 8 is executed by LLA152. Specifically, it is realized by the control unit 140 (FIG. 3) of the first server 110 reading a predetermined program from the memory 142 and executing it. The road to be controlled by LLA152 is a road included in any one of the sub-regions L1 to L6. Here, the road included in the sub-region L5 is controlled by the LLA 152.
 ステップ400において、制御部140は、LLA152の制御対象である領域(サブ領域L5)における交通情報を取得し、統計情報を生成する。これは、上記のステップ300と同様の処理である。但し、制御対象はサブ領域L5に含まれる道路網であり、幹線道路に限らず一般道路も制御対象になる。また、統計情報に含まれる交通参加者の情報として、車両に限らず歩行者の情報も含まれる。 In step 400, the control unit 140 acquires traffic information in the area (sub-area L5) controlled by the LLA 152 and generates statistical information. This is the same process as in step 300 above. However, the control target is the road network included in the sub-region L5, and not only the main road but also the general road is also the control target. Further, as the information of traffic participants included in the statistical information, not only the information of vehicles but also the information of pedestrians is included.
 即ち、制御部140は、サブ領域L5内に含まれる交差点、一般道路及び幹線道路に設置されたインフラセンサ114からセンサデータを取得する。例えば、制御部140は、LLA152の制御対象であるサブ領域L5に含まれる交差点(ノード)、幹線道路及び一般道路(リンク)に関して、車両台数、リンク旅行時間等の統計情報を測定(算出)する。また、制御部140は、カメラの撮像画像等から歩行者を検出し、その位置、移動方向及び移動速度等を算出し、統計情報として記憶する。制御部140は、サブ領域L5に位置する車両の車載装置からセンサデータ、位置情報及び経路情報を取得し、データベースとしてメモリ142に記憶する。 That is, the control unit 140 acquires sensor data from the infrastructure sensors 114 installed at intersections, general roads, and highways included in the sub-region L5. For example, the control unit 140 measures (calculates) statistical information such as the number of vehicles and the link travel time for intersections (nodes), highways, and general roads (links) included in the sub-region L5 controlled by the LLA 152. .. In addition, the control unit 140 detects a pedestrian from an image captured by the camera, calculates its position, moving direction, moving speed, and the like, and stores it as statistical information. The control unit 140 acquires sensor data, position information, and route information from the in-vehicle device of the vehicle located in the sub area L5, and stores the sensor data, the position information, and the route information in the memory 142 as a database.
 制御部140(LLA152)は、HLA150によるステップ312の処理により提供される情報も統計情報としてメモリ142に記憶する。例えば、HLA150により、幹線道路において混雑の発生が予測された場合、それに関する情報(予測位置、予測時刻等)は、予測位置(幹線道路)を含むサブ領域における交通流の制御に有効に利用され得る。制御部140は、統計情報を適宜新たな交通情報で更新する。その後、制御はステップ402に移行する。 The control unit 140 (LLA152) also stores the information provided by the process of step 312 by the HLA 150 in the memory 142 as statistical information. For example, when the HLA150 predicts the occurrence of congestion on a highway, information about it (predicted position, predicted time, etc.) is effectively used for controlling traffic flow in a sub-region including the predicted position (main road). obtain. The control unit 140 updates the statistical information with new traffic information as appropriate. After that, control shifts to step 402.
 ステップ402において、制御部140は、各リンクに関して所定時間以内に混雑が発生するか否かを判定(予測)する。制御部140は、上記したようにデータベース化された過去の交通状況(サブ領域L5内)の統計情報の中から、混雑(又は渋滞)が発生する前の交通状況の情報を抽出し、それを用いて予め機械学習(例えば、深層学習)を行い、判定プログラムを生成しておく。制御部140は、順次更新される交通状況の情報を判定プログラムに入力し、所定時間以内に混雑が発生するか否かを判定させる。所定時間内に混雑が発生すると判定された場合、制御はステップ404に移行する。そうでなければ、制御はステップ416に移行する。 In step 402, the control unit 140 determines (predicts) whether or not congestion will occur for each link within a predetermined time. The control unit 140 extracts the information of the traffic condition before the occurrence of congestion (or congestion) from the statistical information of the past traffic condition (in the sub area L5) stored in the database as described above, and extracts the information of the traffic condition before the occurrence of congestion (or congestion). Machine learning (for example, deep learning) is performed in advance using this to generate a determination program. The control unit 140 inputs the sequentially updated traffic condition information into the determination program, and causes the determination unit 140 to determine whether or not congestion occurs within a predetermined time. If it is determined that congestion will occur within a predetermined time, control shifts to step 404. Otherwise, control proceeds to step 416.
 ステップ404において、制御部140は、ステップ402により混雑が発生すると予測された道路(リンク)、及び、それに関連する道路(接続するリンク)を特定する。これは、上記のステップ304と同様の処理である。但し、サブ領域L5に含まれる幹線道路及び一般道路が制御対象である。その後、制御はステップ406に移行する。 In step 404, the control unit 140 identifies a road (link) predicted to be congested by step 402 and a road (connecting link) related thereto. This is the same process as in step 304 above. However, the main roads and general roads included in the sub-region L5 are the control targets. After that, control shifts to step 406.
 ステップ406において、制御部140は、ステップ402により混雑が発生すると予測された道路(リンク)の流入口に向かう車両を特定する。これは、上記のステップ304と同様の処理である。但し、サブ領域L5に含まれる幹線道路及び一般道路が制御対象である。制御部140は、混雑すると予測された経路の流入口に所定時間以内に流入する車両であり、かつ、メモリ142に経路情報が記憶されている車両のうち、混雑すると予測された経路が経路情報に含まれている車両の車載装置(ID)を特定する。その後、制御はステップ408に移行する。これにより、第1サーバ110(LLA152)による無駄な情報の送信、及び、車載装置104により利用できない情報の受信を抑制でき、効率的に混雑の発生を抑制できる。 In step 406, the control unit 140 identifies a vehicle heading for the inflow port of the road (link) predicted to be congested by step 402. This is the same process as in step 304 above. However, the main roads and general roads included in the sub-region L5 are the control targets. The control unit 140 is a vehicle that flows into the inlet of a route predicted to be congested within a predetermined time, and among the vehicles whose route information is stored in the memory 142, the route predicted to be congested is the route information. Identify the vehicle-mounted device (ID) of the vehicle included in. After that, control shifts to step 408. As a result, it is possible to suppress the transmission of useless information by the first server 110 (LLA152) and the reception of information that cannot be used by the in-vehicle device 104, and it is possible to efficiently suppress the occurrence of congestion.
 ステップ408において、制御部140は、ステップ402により混雑が発生すると予測された道路(リンク)及びそれを迂回する道路(リンク)に振り分ける車両数を算出する。これは、上記のステップ308と同様の処理である。但し、サブ領域L5に含まれる幹線道路及び一般道路が制御対象である。 In step 408, the control unit 140 calculates the number of vehicles to be distributed to the road (link) predicted to be congested by step 402 and the road (link) that bypasses it. This is the same process as in step 308 above. However, the main roads and general roads included in the sub-region L5 are the control targets.
 ステップ410において、制御部140は、ステップ408により決定した各リンクに振り分ける車両台数に応じて、ステップ406により特定したIDの車載装置に、該当する推奨情報を送信する。これは、上記のステップ310と同様の処理である。但し、サブ領域L5に含まれる幹線道路及び一般道路が制御対象である。その後、制御はステップ412に移行する。 In step 410, the control unit 140 transmits the corresponding recommended information to the in-vehicle device having the ID specified in step 406 according to the number of vehicles to be distributed to each link determined in step 408. This is the same process as in step 310 above. However, the main roads and general roads included in the sub-region L5 are the control targets. After that, control shifts to step 412.
 ステップ412において、制御部140は、混雑が発生すると予測されたリンクに進入済の車両(そのリンクを走行中の車両)を特定し、その車両に対して、推奨情報を送信する。その後、制御はステップ414に移行する。推奨情報は、例えば、次の交差点で右折又は左折して迂回経路を走行することを勧めるメッセージである。 In step 412, the control unit 140 identifies a vehicle that has already entered the link predicted to cause congestion (a vehicle traveling on the link), and transmits recommended information to the vehicle. After that, control shifts to step 414. The recommended information is, for example, a message recommending that you turn right or left at the next intersection and follow the detour route.
 図9を参照して、ステップ412の処理に関して具体的に説明する。図9は、図6のノードN22に対応する交差点及びその周囲の交通状況を示している。図6及び図9を参照して、LLA152は、ノードN20及びN24間の幹線道路、ノードN21及びN22間の一般道路、ノードN22及びN23間の一般道路を、それぞれリンクG、H及びJとして管理し、制御対象としている。図9において、上下方向の交通を制御する歩行者用信号機202、並びに、車両用信号機206及び210は青色であるとする。左右方向の交通を制御する歩行者用信号機204、並びに、車両用信号機208及び212は赤色であるとする。走行している車両には、進行方向を表す矢印を付している。矢印が付されていない車両は停止している。交差点及び道路にはインフラセンサ(図9において図示せず)が配置されており、インフラセンサは、センサデータを第1サーバ110にアップロードする。車両180、192及び194等はセンサを備えており、センサにより検出したセンサデータを第1サーバ110にアップロードする。第1サーバ110は、車両180、192及び194等、並びに、インフラセンサから受信したセンサデータを、交差点における交通状況の検出に利用する。 The process of step 412 will be specifically described with reference to FIG. FIG. 9 shows the traffic conditions of the intersection corresponding to the node N22 of FIG. 6 and its surroundings. With reference to FIGS. 6 and 9, LLA152 manages the main road between nodes N20 and N24, the general road between nodes N21 and N22, and the general road between nodes N22 and N23 as links G, H and J, respectively. However, it is a control target. In FIG. 9, it is assumed that the pedestrian traffic light 202 and the vehicle traffic lights 206 and 210 that control the vertical traffic are blue. It is assumed that the pedestrian traffic light 204 and the vehicle traffic lights 208 and 212 that control the traffic in the left-right direction are red. The moving vehicle is marked with an arrow indicating the direction of travel. Vehicles not marked with an arrow are stopped. Infrastructure sensors (not shown in FIG. 9) are arranged at intersections and roads, and the infrastructure sensors upload sensor data to the first server 110. The vehicles 180, 192, 194 and the like are equipped with sensors, and the sensor data detected by the sensors is uploaded to the first server 110. The first server 110 uses the sensor data received from the vehicles 180, 192, 194, etc., and the infrastructure sensor to detect the traffic condition at the intersection.
 ステップ402の判定処理により、リンクG上のノードN20に近い地点(図6において矩形の1点鎖線で示す道路部分172)において混雑が発生すると予測されたとする。これにより、ステップ404~410の処理が実行される。即ち、リンクGに流入していない車両を対象として振り分け処理が実行された後、振り分けられる車両の車載装置に、振り分けに応じた推奨情報が送信される。 It is assumed that congestion is predicted to occur at a point on the link G near the node N20 (the road portion 172 indicated by the rectangular alternate long and short dash line in FIG. 6) by the determination process in step 402. As a result, the processes of steps 404 to 410 are executed. That is, after the sorting process is executed for the vehicles that have not flowed into the link G, the recommended information according to the sorting is transmitted to the in-vehicle device of the vehicles to be sorted.
 これに対して、ステップ412は、既にリンクGを走行している車両を対象とする。制御部140は、混雑の発生が予測された道路部分(以下、混雑部分という)172の手前のノードN22において、車両の振り分けを行う。ノードN22を通過して上方に直進すると混雑部分172に至るので、制御部140は、ノードN22よりも手前で上方に直進している車両のうち、一部の車両を、左折又は右折するように推奨情報を送信する。即ち、制御部140は、所定時間内にノードN22に至る車両を特定し、その総数を算出し、上記と同様に、直進、左折及び右折に振り分ける車両の車載装置を特定する。制御部140は、特定された車両に、対応する推奨情報を送信する。これにより、混雑の発生を抑制するための情報のうち、車載装置毎に適した情報を提供できる。 On the other hand, step 412 targets a vehicle that is already traveling on the link G. The control unit 140 distributes vehicles at the node N22 in front of the road portion (hereinafter referred to as the congestion portion) 172 in which the occurrence of congestion is predicted. If the vehicle passes through the node N22 and goes straight upward, it reaches the congested portion 172. Therefore, the control unit 140 makes a left turn or a right turn on some of the vehicles that are going straight upward in front of the node N22. Send recommendations. That is, the control unit 140 identifies the vehicles that reach the node N22 within a predetermined time, calculates the total number thereof, and specifies the in-vehicle device of the vehicle that distributes the vehicle to go straight, turn left, and turn right in the same manner as described above. The control unit 140 transmits the corresponding recommended information to the identified vehicle. This makes it possible to provide information suitable for each in-vehicle device among the information for suppressing the occurrence of congestion.
 例えば、図9において、車両184の車載装置には、ノードN22で左折することを進める推奨情報を送信し、車両186の車載装置には、ノードN22で右折することを進める推奨情報を送信する。これにより、推奨情報を受信した車両184の車載装置は、例えば、「直進すると混雑が予想されます。次の交差点を左折して迂回すれば、目的地に早く到着します。」というメッセージを提示する。推奨情報を受信した車両186の車載装置は、例えば、「直進すると混雑が予想されます。次の交差点を右折して迂回すれば、目的地に早く到着します。」というメッセージを提示する。運転者がメッセージにしたがって車両の進行方向を変更すると、直進する車両の一部を、左右方向に分散させることができ、混雑の発生を回避できる。 For example, in FIG. 9, recommended information for advancing a left turn at node N22 is transmitted to the in-vehicle device of vehicle 184, and recommended information for advancing a right turn at node N22 is transmitted to the in-vehicle device of vehicle 186. As a result, the in-vehicle device of the vehicle 184 that received the recommended information presents the message, for example, "If you go straight, it is expected to be crowded. If you turn left at the next intersection and detour, you will arrive at your destination sooner." do. Upon receiving the recommendation information, the in-vehicle device of the vehicle 186 presents a message, for example, "If you go straight, it is expected to be crowded. If you turn right at the next intersection and detour, you will arrive at your destination sooner." When the driver changes the traveling direction of the vehicle according to the message, a part of the vehicle traveling straight can be dispersed in the left-right direction, and the occurrence of congestion can be avoided.
 また、ステップ412において、制御部140は、交差点内での調停を行う。即ち、制御部140は、交差点で左折又は右折する車両の車載装置に、安全かつ円滑に走行するための情報を送信する。図9を参照して、車両182は、上記したように、右折の推奨情報を受信した車載装置がメッセージを提示し、右折車線に車線変更し、交差点に差しかかった車両であるとする。車両182の進行方向の反対車線においては、車両188及び190が交差点に進入しようとし、歩行者220が横断歩道の横断を開始している。右折する車両182の進行方向は、車両188及び190の進行方向、並びに、歩行者220の進行方向と交差する。このような交通状況であることを、制御部140は、センサデータ及び各車両の位置情報等から検知できる。制御部140は、交通ルール(歩行者優先、直進車両優先等)を考慮して、車両182、車両188、車両190及び歩行者220に関して、進行の優先度を決定し、それに応じた情報(以下、調停情報という)を車両182に送信する。調停情報は、例えば、{優先度(数値),対象(テキスト),性質(テキスト),数(数値)}を1組とするデータである。例えば、制御部140は、車両188、車両190、歩行者220及び車両182の順で優先度が低下するように、優先度を設定する。制御部140は、車両182に送信する調停情報として、例えば、{2,車両,直進,2,1,歩行者,横断,1}を生成する(優先度は相対値であり、その値が大きいほど優先度は高い)。 Further, in step 412, the control unit 140 mediates within the intersection. That is, the control unit 140 transmits information for safe and smooth traveling to the in-vehicle device of the vehicle turning left or right at the intersection. With reference to FIG. 9, it is assumed that the vehicle 182 is a vehicle approaching an intersection after receiving a message from the vehicle-mounted device that has received the recommendation information for turning right, changing lanes to the right turn lane, as described above. In the opposite lane of vehicle 182 in the direction of travel, vehicles 188 and 190 are about to enter the intersection and pedestrian 220 is starting to cross the pedestrian crossing. The traveling direction of the vehicle 182 turning right intersects the traveling direction of the vehicles 188 and 190 and the traveling direction of the pedestrian 220. The control unit 140 can detect such a traffic condition from the sensor data, the position information of each vehicle, and the like. The control unit 140 determines the priority of progress of the vehicle 182, the vehicle 188, the vehicle 190, and the pedestrian 220 in consideration of the traffic rules (pedestrian priority, straight-ahead vehicle priority, etc.), and provides information according to the priorities (hereinafter,). , Called arbitration information) is transmitted to the vehicle 182. The arbitration information is, for example, data having a set of {priority (numerical value), target (text), property (text), number (numerical value)}. For example, the control unit 140 sets the priority so that the priority decreases in the order of the vehicle 188, the vehicle 190, the pedestrian 220, and the vehicle 182. The control unit 140 generates, for example, {2, vehicle, straight ahead, 2,1, pedestrian, crossing, 1} as arbitration information to be transmitted to the vehicle 182 (priority is a relative value, and the value is large). The higher the priority).
 調停情報を受信した車載装置は、例えば、「直進する対向車2台が通過してから右折してください。横断中の歩行者に注意してください。」というメッセージを提示する。対向する車両188及び190が、交差点から遠い位置にあれば、制御部140は、歩行者220、車両182、車両188及び車両190の順で優先度が低下するように、優先度を設定する。制御部140は、車両182に送信する調停情報として、例えば、{1,歩行者,横断,1}を生成する。この調停情報を受信した車載装置は、例えば、「横断中の歩行者に注意してください。」というメッセージを提示する。したがって、安全かつスムーズな交通流を実現できる。 The in-vehicle device that received the arbitration information presents, for example, the message "Please turn right after two oncoming vehicles going straight have passed. Be careful of pedestrians crossing." If the oncoming vehicles 188 and 190 are located far from the intersection, the control unit 140 sets the priority so that the priority is lowered in the order of the pedestrian 220, the vehicle 182, the vehicle 188, and the vehicle 190. The control unit 140 generates, for example, {1, pedestrian, crossing, 1} as arbitration information to be transmitted to the vehicle 182. The in-vehicle device that receives this arbitration information presents, for example, the message "Be careful of pedestrians crossing." Therefore, a safe and smooth traffic flow can be realized.
 ステップ414において、制御部140は、HLA150に情報を提供する。例えば、振り分け対象に幹線道路が含まれていれば、幹線道路に振り分けた(推奨情報を送信した)車両台数(即ち、流入する予想台数)等をHLA150に提供する。また、交通阻害要因(事故車両、故障車両等)が発生していれば、LLA152はそれに関する情報もHLA150に提供する。LLA152からHLA150への情報提供は、例えば、メモリ142を介して行われる。HLA150に提供した情報は、HLA150による交通流の制御に使用され得る。その後、制御はステップ416に移行する。 In step 414, the control unit 140 provides information to the HLA 150. For example, if the main road is included in the distribution target, the number of vehicles (that is, the expected number of inflows) distributed to the main road (that is, the expected number of inflows) is provided to the HLA 150. In addition, if a traffic obstruction factor (accident vehicle, broken vehicle, etc.) has occurred, the LLA 152 also provides the HLA 150 with information on it. Information provision from the LLA 152 to the HLA 150 is performed, for example, via the memory 142. The information provided to the HLA 150 can be used to control the traffic flow by the HLA 150. After that, control shifts to step 416.
 ステップ416において、制御部140は、本プログラムを終了する指示を受けたか否かを判定する。終了の指示は、第1サーバ110の操作部(キーボード及びマウス等)による指示、第1サーバ110の電源のOFF等により成される。終了する指示を受けたと判定された場合、本プログラムを終了する。そうでなければ、制御はステップ400に戻り、上記の処理を繰返す。 In step 416, the control unit 140 determines whether or not an instruction to end this program has been received. The end instruction is given by an instruction by an operation unit (keyboard, mouse, etc.) of the first server 110, turning off the power of the first server 110, and the like. If it is determined that the instruction to end has been received, this program will be terminated. Otherwise, control returns to step 400 and repeats the above process.
 以上により、サブ領域における交差点、幹線道路及び一般道路を対象として、リアルタイムの交通情報を用いて、交通流を分散させる経路を推奨できる。即ち、LLA152は、現状の交通流のままでは、サブ領域内の道路において混雑が発生すると予測された場合、混雑が発生しないように、混雑発生の原因になり得る車両に対して、混雑を回避するための情報(推奨情報)を送信し、混雑が発生しないように交通流を制御できる。第1サーバ110から推奨情報を受信した車載装置104が表示部128に、推奨情報に基づくメッセージを提示すれば、それを見た運転者が、混雑が発生すると予測された経路の迂回経路を走行するように、進路を変更することが期待できる。 Based on the above, it is possible to recommend routes that disperse traffic flows using real-time traffic information for intersections, highways, and general roads in sub-regions. That is, the LLA152 avoids congestion for vehicles that may cause congestion so that congestion does not occur when it is predicted that congestion will occur on the roads in the sub-region under the current traffic flow. You can send information (recommended information) to control the traffic flow so that congestion does not occur. If the in-vehicle device 104 that has received the recommended information from the first server 110 presents a message based on the recommended information on the display unit 128, the driver who sees the message travels on a detour route of the route predicted to cause congestion. You can expect to change course so that you can.
 このように、交通容量に応じて道路を複数に分類(ハイレベル及びローレベル)して、各分類に属する道路を管理対象として混雑を予測することにより、効率的に混雑の発生を抑制するように交通流を変化させることができる。 In this way, by classifying roads into multiple categories (high level and low level) according to traffic capacity and predicting congestion by targeting roads belonging to each category as management targets, it is possible to efficiently suppress the occurrence of congestion. The traffic flow can be changed.
 上記したように、HLA150及びLLA152は相互に情報を交換する。例えば、HLA150から、リンクA、B及びCの各々に振り分けた(推奨情報を送信した)車両台数をLLA152に提供する(ステップ312参照)。しかし、振り分けた車両台数の情報を交換しても、上記したように、同じ車載装置に、HLA150及びLLA152から異なる推奨情報が送信され得る。これを回避するには、HLA150及びLLA152の間で、推奨情報を送信した車載装置のIDを交換すればよい。例えば、HLA150が推奨情報を送信した車載装置のIDを、HLA150からLLA152に提供すれば、LLA152は、ステップ410において、HLA150から提供されたID以外のIDを持つ車載装置に推奨情報を送信できる。これにより、同じ車載装置に、異なる推奨情報が送信されることを回避できる。図6においては、サブ領域L1~L6は、同じリンク(道路)を含まないように各々の境界が画定されているが、サブ領域L1~L6は相互に一部(例えば、隣接する境界部分)が重なっていてもよい。したがって、隣接するサブ領域を制御対象とするLLA152間での通信により、交通情報(推奨情報を送信した車載装置のIDを含む)を交換することが好ましい。これにより、同じ車載装置に、異なる推奨情報が送信されることを回避できる。なお、推奨情報が送信された車載装置のIDが交換されない場合、上記したように、所定期間内に複数の推奨情報を受信した車載装置が、いずれか1つの推奨情報を選択すればよい。 As mentioned above, HLA150 and LLA152 exchange information with each other. For example, from HLA150, the number of vehicles distributed (transmitted recommended information) to each of links A, B, and C is provided to LLA152 (see step 312). However, even if the information on the number of distributed vehicles is exchanged, different recommended information may be transmitted from the HLA 150 and the LLA 152 to the same in-vehicle device as described above. To avoid this, the ID of the in-vehicle device that has transmitted the recommended information may be exchanged between the HLA 150 and the LLA 152. For example, if the ID of the in-vehicle device to which the HLA 150 has transmitted the recommended information is provided from the HLA 150 to the LLA 152, the LLA 152 can transmit the recommended information to the in-vehicle device having an ID other than the ID provided by the HLA 150 in step 410. As a result, it is possible to avoid transmitting different recommended information to the same in-vehicle device. In FIG. 6, the boundaries of the sub-regions L1 to L6 are defined so as not to include the same link (road), but the sub-regions L1 to L6 are part of each other (for example, adjacent boundary portions). May overlap. Therefore, it is preferable to exchange traffic information (including the ID of the in-vehicle device that has transmitted the recommended information) by communicating between the LLA 152s that control adjacent sub-regions. As a result, it is possible to avoid transmitting different recommended information to the same in-vehicle device. If the IDs of the in-vehicle devices to which the recommended information is transmitted are not exchanged, the in-vehicle device that has received the plurality of recommended information within a predetermined period may select any one of the recommended information as described above.
 LLA152の制御対象領域はHLA150の制御対象領域よりも狭く、LLA152はリアルタイムの交通状況に基づく、より推奨度が高い推奨情報を送信可能である。したがって、同じ車載装置に、HLA150及びLLA152から異なる推奨情報が送信された場合に、車載装置が、推奨度が高い推奨情報を選択できるようにしてもよい。例えば、LLA152は、上記したようにHLA150が推奨情報を送信した車載装置のIDをHLA150から受信した場合、受信したIDと同じIDを持つ車載装置に、HLA150からの推奨情報よりも推奨度が高いことを表す所定情報を付加して、推奨情報を送信する。これにより、所定期間内に複数の推奨情報を受信した車載装置は、所定情報の有無に基づき、推奨度が高いLLA152からの推奨情報を選択できる。 The control target area of the LLA 152 is narrower than the control target area of the HLA 150, and the LLA 152 can transmit highly recommended recommended information based on real-time traffic conditions. Therefore, when different recommended information is transmitted from the HLA 150 and the LLA 152 to the same in-vehicle device, the in-vehicle device may be able to select the recommended information with a high degree of recommendation. For example, when the LLA152 receives the ID of the in-vehicle device to which the HLA150 has transmitted the recommended information from the HLA150 as described above, the LLA152 has a higher degree of recommendation than the recommended information from the HLA150 to the in-vehicle device having the same ID as the received ID. The recommended information is transmitted by adding the predetermined information indicating that. As a result, the in-vehicle device that has received the plurality of recommended information within the predetermined period can select the recommended information from the LLA 152, which has a high degree of recommendation, based on the presence or absence of the predetermined information.
 上記では、混雑の発生を予測する処理を、機械学習した判定プログラムにより実行する場合を説明したが、これに限定されない。例えば、制御部140は、上記のステップ302と同様の処理を実行してもよい。但し、サブ領域L5に含まれる幹線道路及び一般道路が制御対象である。 In the above, the case where the process of predicting the occurrence of congestion is executed by the machine-learned judgment program has been described, but the present invention is not limited to this. For example, the control unit 140 may execute the same process as in step 302 described above. However, the main roads and general roads included in the sub-region L5 are the control targets.
 また、制御部140は、一定時間内の特定エリア(例えば、1~10程度の隣接する交差点を含む領域)における車両台数の流入出量に関して、流入量から流出量を減算した値が所定のしきい値よりも大きいか否か(流入量-流出量>しきい値)を判定することにより、混雑の発生を予測してもよい。しきい値よりも大きければ、その特定エリアに含まれる道路、交差点で混雑が発生すると判定できる。しきい値は、特定エリアに含まれる信号機の点灯状態(点灯色、点滅状態か否か等)に応じて、変更されてもよい。これにより、時々刻々と変化する交通状況に応じて、適切に混雑の発生を予測できる。 Further, the control unit 140 determines a value obtained by subtracting the outflow amount from the inflow amount with respect to the inflow / outflow amount of the number of vehicles in a specific area (for example, an area including about 1 to 10 adjacent intersections) within a certain period of time. The occurrence of congestion may be predicted by determining whether or not it is larger than the threshold value (inflow amount-outflow amount> threshold value). If it is larger than the threshold value, it can be determined that congestion will occur at the roads and intersections included in the specific area. The threshold value may be changed according to the lighting state (lighting color, blinking state or not, etc.) of the traffic light included in the specific area. As a result, it is possible to appropriately predict the occurrence of congestion according to the ever-changing traffic conditions.
 混雑の原因となり得る交通流阻害要因としては、特定の道路への車両の流入に限らず、片側1車線の道路における交差点での右折待ち時間が長い状況、駐停車車両(乗員及び荷物等の積み下ろし等)、事故車両、故障車両、工事現場、道路工事による車線規制がある。HLA150及びLLA152は、これらの交通流阻害要因を考慮することにより、混雑の発生をより精度よく予測できる。 Traffic flow obstruction factors that can cause congestion are not limited to the inflow of vehicles to a specific road, but the situation where the waiting time for turning right at an intersection on a road with one lane on each side is long, and the loading and unloading of parked vehicles (passengers and luggage, etc.) Etc.), There are lane restrictions due to accident vehicles, broken vehicles, construction sites, and road construction. HLA150 and LLA152 can predict the occurrence of congestion more accurately by considering these traffic flow obstructing factors.
 上記では、車載装置に、推奨情報として走行車線の変更を指示する情報を使用する場合を説明したが、これに限定されない。例えば、推奨する車両速度(車両の現在速度よりも小さい速度)を、推奨情報として送信してもよい。車両速度を低減すれば、混雑の発生が予測される地点に到達するまでの時間が長くなるので、混雑の発生を抑制できる。 In the above, the case where the information for instructing the change of the driving lane is used as the recommended information for the in-vehicle device has been described, but the present invention is not limited to this. For example, the recommended vehicle speed (speed smaller than the current speed of the vehicle) may be transmitted as recommended information. If the vehicle speed is reduced, the time required to reach the point where the occurrence of congestion is predicted becomes longer, so that the occurrence of congestion can be suppressed.
 また、混雑部分を回避する経路を推奨情報として、車載装置に送信してもよい。走行経路が登録されたまま、車両が右折又は左折して走行経路から外れると、車載装置(カーナビゲーションシステム)によっては、自動的に新たな走行経路を探索し、元の道路(混雑部分を含むリンク)に戻る経路を進行するように案内することがある。混雑部分を回避する経路を車載装置に送信すれば、車載装置は、受信した経路を用いて、新たな走行経路を決定できる。これにより、元の道路(混雑部分を含むリンク)に戻るように案内がなされることを回避でき、より確実に交通流を制御できる。 Also, the route to avoid the congested part may be transmitted to the in-vehicle device as recommended information. If the vehicle turns right or left and deviates from the driving route while the driving route is registered, the in-vehicle device (car navigation system) automatically searches for a new driving route and the original road (including the congested part). You may be guided to follow the route back to the link). If a route for avoiding the congested portion is transmitted to the in-vehicle device, the in-vehicle device can determine a new traveling route using the received route. As a result, it is possible to avoid being guided to return to the original road (link including a congested part), and it is possible to control the traffic flow more reliably.
 また、第1サーバ110は、交差点等のエリア毎に予め点数付けをしておき、登録されている走行経路と、混雑発生地点を回避する経路とに関して、コスト(距離コスト及び時間コスト)を算出し、それらを比較した結果を含む推奨情報を、車載装置に送信してもよい。これにより、車載装置は、例えば、「予想される混雑を回避する経路を走行すれば、遠回りになりますが、現在の経路よりも約**分間短縮できます。」というメッセージを提示できる。運転者は、提示されたメッセージを考慮して、安心して経路を選択できる。 In addition, the first server 110 scores points in advance for each area such as an intersection, and calculates costs (distance cost and time cost) with respect to the registered traveling route and the route avoiding the congestion occurrence point. Then, recommended information including the result of comparing them may be transmitted to the in-vehicle device. As a result, the in-vehicle device can present a message such as "If you drive on a route that avoids expected congestion, it will be a detour, but it can be shortened by about ** minutes compared to the current route." The driver can select the route with confidence in consideration of the presented message.
 また、右折又は左折するには車線変更する必要が生じる場合があり、無理な割り込みになれば、接触事故等の新たな交通流阻害が発生し得る。したがって、HLA150及びLLA152は、推奨情報の送信先の車両に関して、推奨にしたがう場合に車線変更を伴うか否かを判定することが好ましい。車線変更を伴うと判定された場合、HLA150及びLLA152は、その車両の周囲の車両の状況を検出し、無理な車線変更にならないと判定された場合に、推奨情報を送信する。無理な車線変更になると判定された場合に、推奨情報を送信しない、又は、別のタイミングで送信する。これにより、新たな交通流阻害を生じさせることなく、安全に交通流を制御できる。 In addition, it may be necessary to change lanes to turn right or left, and if an unreasonable interruption occurs, new traffic flow obstruction such as a contact accident may occur. Therefore, it is preferable that the HLA 150 and the LLA 152 determine whether or not the vehicle to which the recommended information is transmitted is accompanied by a lane change when following the recommendation. When it is determined that the lane change is involved, the HLA150 and LLA152 detect the situation of the vehicles around the vehicle, and when it is determined that the lane change is not unreasonable, the recommended information is transmitted. If it is determined that the lane change will be unreasonable, the recommended information will not be sent or will be sent at a different timing. As a result, the traffic flow can be safely controlled without causing new traffic flow obstruction.
 上記では、道路網を交通容量に応じて2階層に分類する場合を説明したがこれに限定されない。3階層以上に分類してもよい。例えば、ハイレベルとローレベルとの間に中間層を設け、それに含まれる道路を制御対象として、交通流を制御するモジュールを追加してもよい。これにより、各モジュールの処理負荷を低減でき、より速やかに、より精度よく、混雑又は渋滞の発生を予測できる。 In the above, the case where the road network is classified into two layers according to the traffic capacity has been described, but the case is not limited to this. It may be classified into three or more layers. For example, an intermediate layer may be provided between the high level and the low level, and a module for controlling the traffic flow may be added by targeting the roads included in the intermediate layer. As a result, the processing load of each module can be reduced, and the occurrence of congestion or congestion can be predicted more quickly and more accurately.
 上記では、渋滞になる前の混雑が予測された段階で、交通流を制御する場合を説明したが、これに限定されない。例えば、渋滞が予測された段階で交通流を制御してもよい。即ち、上記の説明において、「混雑」は「渋滞」を含むと解釈してもよい。また、実際に混雑の発生が検出された段階で、交通流を制御してもよい。混雑が渋滞になる前に、交通流を制御でき、渋滞の発生を抑制できる。 In the above, the case of controlling the traffic flow at the stage where congestion is predicted before the congestion occurs has been explained, but the present invention is not limited to this. For example, the traffic flow may be controlled at the stage when the traffic congestion is predicted. That is, in the above description, "congestion" may be interpreted to include "traffic jam". Further, the traffic flow may be controlled at the stage when the occurrence of congestion is actually detected. It is possible to control the traffic flow and suppress the occurrence of traffic congestion before it becomes congested.
 上記では、交通流制御システム100が第1サーバ110及び車載装置104を含み、第1サーバ110から車載装置104に支援情報を送信する場合を説明したが、これに限定されない。第1サーバ110を含まず、複数の車載装置により交通流制御システムを構成してもよい。 In the above, the case where the traffic flow control system 100 includes the first server 110 and the in-vehicle device 104 and transmits the support information from the first server 110 to the in-vehicle device 104 has been described, but the present invention is not limited to this. A traffic flow control system may be configured by a plurality of in-vehicle devices without including the first server 110.
 上記では、車載装置は、受信した推奨情報からメッセージを生成して提示する場合を説明したが、これに限定されない。自動運転機能を有する車両の車載装置であれば、受信した推奨情報にしたがって自動運転制御装置に指示をして、混雑予測地点を回避するように車両を走行させてもよい。 In the above, the in-vehicle device has described the case where a message is generated from the received recommended information and presented, but the present invention is not limited to this. If it is an in-vehicle device of a vehicle having an automatic driving function, the vehicle may be driven so as to avoid a congestion prediction point by instructing the automatic driving control device according to the received recommended information.
 上記したように、各モジュールは、ハードウェア、ソフトウェア、又はそれらの混合により実現され得る。ハードウェアを用いて実現するには、HLA150及びLLA152が実行する処理(例えば、図7及び図8に示した処理)の一部又は全てを実行するASIC(Application Specific Integrated Circuit)等を使用すればよい。 As mentioned above, each module can be realized by hardware, software, or a mixture thereof. To realize using hardware, an ASIC (Application Specific Integrated Circuit) or the like that executes a part or all of the processes executed by the HLA 150 and the LLA 152 (for example, the processes shown in FIGS. 7 and 8) can be used. good.
 上記では、第1サーバ110が、HLA150及び複数のLLA152を含む場合を説明したが、これに限定されない。HLA150及び複数のLLA152を、複数のコンピュータにより実現する場合の構成は任意である。例えば、HLA150及び複数のLLA152の各々を1台のコンピュータにより実現してもよい。HLA150を1台のコンピュータにより実現し、複数のLLA152を、別の1台のコンピュータにより実現してもよい。また、複数のLLA152の一部を、1台のコンピュータにより実現してもよい。このように、複数のコンピュータに階層毎の機能を分散させることにより、効率的に交通流を変更可能になる。 In the above, the case where the first server 110 includes the HLA 150 and a plurality of LLA 152 has been described, but the present invention is not limited to this. The configuration in which the HLA 150 and the plurality of LLA 152 are realized by a plurality of computers is arbitrary. For example, each of the HLA 150 and the plurality of LLA 152 may be realized by one computer. The HLA 150 may be realized by one computer, and a plurality of LLA 152 may be realized by another one computer. Further, a part of the plurality of LLA 152 may be realized by one computer. In this way, by distributing the functions for each layer to a plurality of computers, it is possible to efficiently change the traffic flow.
 また、HLA150及びLLA152が実行する処理(例えば、図7及び図8に示した処理)をコンピュータに実行させるプログラムを記録した記録媒体(光ディスク(DVD(Digital Versatile Disc)等)、着脱可能な半導体メモリ(USB(Universal Serial Bus)メモリ等)等)を提供できる。コンピュータプログラムは通信回線により伝送され得るが、記録媒体は非一時的な記録媒体を意味する。記録媒体に記憶されたプログラムをコンピュータに読込ませることにより、コンピュータは、上記したように交通流の制御を実行できる。 In addition, a recording medium (optical disk (DVD (Digital Versail Disc), etc.)) on which a program for causing a computer to execute the processes executed by the HLA 150 and LLA 152 (for example, the processes shown in FIGS. 7 and 8) is recorded, and a removable semiconductor memory. (USB (Universal Serial Bus) memory, etc.), etc.) can be provided. A computer program can be transmitted over a communication line, but the recording medium means a non-temporary recording medium. By having the computer read the program stored in the recording medium, the computer can execute the control of the traffic flow as described above.
 以上、実施の形態を説明することにより本開示を説明したが、上記した実施の形態は例示であって、本開示は上記した実施の形態のみに制限されるわけではない。本開示の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。 Although the present disclosure has been described above by explaining the embodiments, the above-described embodiments are examples, and the present disclosure is not limited to the above-described embodiments. The scope of the present disclosure is indicated by each claim of the claims, taking into consideration the description of the detailed description of the invention, and includes all changes within the meaning and scope equivalent to the wording described therein. ..
100  交通流制御システム
102、180、182、184、186、188、190、192、194  車両
104  車載装置
106  基地局
108  ネットワーク
110  第1サーバ
112  第2サーバ
114  インフラセンサ
116  信号機
120  センサ機器
122  I/F部
124、142  メモリ
126、144  通信部
128  表示部
130  操作部
132、140  制御部
134、146  バス
150  HLA(ハイレベルエージェント)
152  LLA(ローレベルエージェント)
154  入力I/Fモジュール
156  出力I/Fモジュール
160  第1予測部
162  第1推奨情報生成部
164  第1送信部
166  第2予測部
168  第2推奨情報生成部
170  第2送信部
172  混雑部分(道路部分)
200、220  歩行者
202、204  歩行者用信号機
206、208、210、212  車両用信号機
300、302、304、306、308、310、312、314、400、402、404、406、408、410、412、414、416  ステップ
N1、N2、N3、N4、N10、N11、N12、N13、N20、N21、N22、N23、N24  ノード
A、B、C、D、E、F、G、H、J  リンク
L1、L2、L3、L4、L5、L6  サブ領域
100 Traffic flow control system 102, 180, 182, 184, 186, 188, 190, 192, 194 Vehicle 104 In-vehicle device 106 Base station 108 Network 110 First server 112 Second server 114 Infrastructure sensor 116 Traffic light 120 Sensor device 122 I / F unit 124, 142 Memory 126, 144 Communication unit 128 Display unit 130 Operation unit 132, 140 Control unit 134, 146 Bus 150 HLA (High level agent)
152 LLA (Low Level Agent)
154 Input I / F module 156 Output I / F module 160 1st prediction unit 162 1st recommended information generation unit 164 1st transmission unit 166 2nd prediction unit 168 2nd recommended information generation unit 170 2nd transmission unit 172 Congested part ( Road part)
200, 220 Pedestrian 202, 204 Pedestrian traffic light 206, 208, 210, 212 Vehicle traffic light 300, 302, 304, 306, 308, 310, 312, 314, 400, 402, 404, 406, 408, 410, 412, 414, 416 Steps N1, N2, N3, N4, N10, N11, N12, N13, N20, N21, N22, N23, N24 Nodes A, B, C, D, E, F, G, H, J links L1, L2, L3, L4, L5, L6 subregion

Claims (11)

  1.  複数の車載装置と、
     前記複数の車載装置から送信される情報に基づき道路網における交通流を制御する制御装置とを含み、
     前記制御装置は、
      前記道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理部と、
      前記第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理部とを含み、
     前記第1管理部は、
      前記幹線道路における混雑の発生を、前記幹線道路の交通容量に基づいて予測する第1予測部と、
      前記第1予測部により混雑の発生が予測されたことを受けて、前記第1予測部により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、前記幹線道路を走行している車両の車載装置に送信する第1送信部とを含み、
     前記第2管理部は、
      前記第2領域に含まれる道路における混雑の発生を、前記第2領域に含まれる道路の交通容量に基づいて予測する第2予測部と、
      前記第2予測部により混雑の発生が予測されたことを受けて、前記第2予測部により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、前記第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信部とを含み、
     前記複数の車載装置の各々は、受信した前記第1推奨情報及び前記第2推奨情報のいずれかに基づく経路の走行を勧める情報を提示する、交通流制御システム。
    With multiple in-vehicle devices
    Including a control device that controls a traffic flow in a road network based on information transmitted from the plurality of in-vehicle devices.
    The control device is
    Among the roads included in the first area of the road network, the first management unit that manages the traffic flow of the main road and
    A second management unit that corresponds to each of the plurality of second regions constituting the first region and manages the traffic flow of the road included in the second region is included.
    The first management unit
    A first prediction unit that predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and
    In response to the prediction of the occurrence of congestion by the first prediction unit, the first recommended information for avoiding the congestion predicted by the first prediction unit is the first recommended information for which the occurrence of congestion is predicted. Including a first transmission unit that transmits to an in-vehicle device of a vehicle traveling on the main road toward a congested portion.
    The second management unit
    A second prediction unit that predicts the occurrence of congestion on the roads included in the second region based on the traffic capacity of the roads included in the second region.
    In response to the prediction of the occurrence of congestion by the second prediction unit, the second recommended information for avoiding the congestion predicted by the second prediction unit is the second recommended information for which the occurrence of the congestion is predicted. Including a second transmission unit that transmits to an in-vehicle device of a vehicle traveling on a road included in the second region toward a congested portion.
    A traffic flow control system in which each of the plurality of vehicle-mounted devices presents information that recommends traveling on a route based on either the received first recommended information or the second recommended information.
  2.  前記第1推奨情報は、前記第1混雑部分を迂回する経路の情報、推奨する車線の情報、及び、推奨する走行速度の情報のうちの少なくとも1つを含み、
     前記第2推奨情報は、前記第2混雑部分を迂回する経路の情報、推奨する車線の情報、及び、推奨する走行速度の情報のうちの少なくとも1つを含む、請求項1に記載の交通流制御システム。
    The first recommended information includes at least one of information on a route bypassing the first congested portion, information on recommended lanes, and information on recommended traveling speed.
    The traffic flow according to claim 1, wherein the second recommended information includes at least one of information on a route bypassing the second congested portion, information on recommended lanes, and information on recommended traveling speed. Control system.
  3.  前記車載装置から送信される情報は、前記車載装置が搭載されている車両の位置及び走行経路を表す情報を含み、
     前記第1送信部は、前記走行経路の未走行部分に前記第1混雑部分を含む車載装置を、前記第1推奨情報の送信先として決定し、
     前記第2送信部は、前記走行経路の未走行部分に前記第2混雑部分を含む車載装置を、前記第2推奨情報の送信先として決定する、請求項1又は請求項2に記載の交通流制御システム。
    The information transmitted from the in-vehicle device includes information indicating the position and traveling route of the vehicle on which the in-vehicle device is mounted.
    The first transmission unit determines an in-vehicle device including the first congested portion in a non-traveling portion of the traveling route as a transmission destination of the first recommended information.
    The traffic flow according to claim 1 or 2, wherein the second transmission unit determines an in-vehicle device including the second congested portion in a non-traveling portion of the traveling route as a transmission destination of the second recommended information. Control system.
  4.  前記第1送信部は、前記第1混雑部分に向かう流入口に、所定時間以内に到達すると推測される車両の車載装置に前記第1推奨情報を送信し、
     前記流入口は前記幹線道路における交差点である、請求項1から請求項3のいずれか1項に記載の交通流制御システム。
    The first transmission unit transmits the first recommended information to the in-vehicle device of the vehicle, which is presumed to reach the inflow port toward the first congested portion within a predetermined time.
    The traffic flow control system according to any one of claims 1 to 3, wherein the inflow port is an intersection on the main road.
  5.  前記第1推奨情報は、前記第1混雑部分を迂回する迂回道路の走行を勧めるための情報であり、
     前記第1送信部は、前記流入口から前記第1混雑部分に至る道路の交通容量と、前記迂回道路の交通容量との比率に応じて、前記第1推奨情報の送信先である車載装置の台数を決定する、請求項4に記載の交通流制御システム。
    The first recommended information is information for recommending traveling on a detour road that bypasses the first congested portion.
    The first transmission unit is an in-vehicle device to which the first recommended information is transmitted according to the ratio of the traffic capacity of the road from the inflow port to the first congested portion and the traffic capacity of the detour road. The traffic flow control system according to claim 4, wherein the number of vehicles is determined.
  6.  前記第2予測部は、
      前記第2領域に含まれる交差点及び当該交差点の周囲領域における車両及び歩行者の動きを検出し、
      検出された前記車両及び前記歩行者と、前記第2推奨情報の送信先である前記車載装置が搭載されている車両とに関して、前記交差点における進行の優先度を決定し、
     前記第2送信部は、前記第2推奨情報の送信先である前記車載装置に、前記優先度に応じた情報を送信する、請求項1から請求項5のいずれか1項に記載の交通流制御システム。
    The second prediction unit
    The movements of vehicles and pedestrians in the intersection included in the second area and the area around the intersection are detected.
    With respect to the detected vehicle and the pedestrian and the vehicle equipped with the in-vehicle device to which the second recommended information is transmitted, the priority of progress at the intersection is determined.
    The traffic flow according to any one of claims 1 to 5, wherein the second transmission unit transmits information according to the priority to the in-vehicle device to which the second recommended information is transmitted. Control system.
  7.  前記第2予測部は、前記第2領域に含まれる複数の交差点を含む所定エリアにおける車両台数の流入出量に関し、単位時間当たりの流入量から単位時間当たりの流出量を減算して得られる値がしきい値よりも大きいか否かに基づいて混雑の発生を予測し、
     前記しきい値は、前記所定エリアに含まれる信号機の状態に応じて変更される、請求項1から請求項6のいずれか1項に記載の交通流制御システム。
    The second prediction unit is a value obtained by subtracting the outflow amount per unit time from the inflow amount per unit time with respect to the inflow / outflow amount of the number of vehicles in a predetermined area including a plurality of intersections included in the second area. Predicts congestion based on whether is greater than the threshold
    The traffic flow control system according to any one of claims 1 to 6, wherein the threshold value is changed according to a state of a traffic light included in the predetermined area.
  8.  前記制御装置は、前記第1管理部を含むコンピュータと、複数の前記第2管理部を含む複数のコンピュータとを含む、請求項1から請求項7のいずれか1項に記載の交通流制御システム。 The traffic flow control system according to any one of claims 1 to 7, wherein the control device includes a computer including the first management unit and a plurality of computers including the second management unit. ..
  9.  複数の車載装置から送信される情報に基づき道路網における交通流を制御する交通流制御装置であって、
     前記道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理部と、
     前記第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理部とを含み、
     前記第1管理部は、
      前記幹線道路において混雑の発生を、前記幹線道路の交通容量に基づいて予測する第1予測部と、
      前記第1予測部により混雑の発生が予測されたことを受けて、前記第1予測部により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、前記幹線道路を走行している車両の車載装置に送信する第1送信部とを含み、
     前記第2管理部は、
      前記第2領域に含まれる道路における混雑の発生を、前記第2領域に含まれる道路の交通容量に基づいて予測する第2予測部と、
      前記第2予測部により混雑の発生が予測されたことを受けて、前記第2予測部により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、前記第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信部とを含む、交通流制御装置。
    A traffic flow control device that controls traffic flow in a road network based on information transmitted from a plurality of in-vehicle devices.
    Among the roads included in the first area of the road network, the first management unit that manages the traffic flow of the main road and
    A second management unit that corresponds to each of the plurality of second regions constituting the first region and manages the traffic flow of the road included in the second region is included.
    The first management unit
    A first prediction unit that predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and
    In response to the prediction of the occurrence of congestion by the first prediction unit, the first recommended information for avoiding the congestion predicted by the first prediction unit is the first recommended information for which the occurrence of congestion is predicted. Including a first transmission unit that transmits to an in-vehicle device of a vehicle traveling on the main road toward a congested portion.
    The second management unit
    A second prediction unit that predicts the occurrence of congestion on the roads included in the second region based on the traffic capacity of the roads included in the second region.
    In response to the fact that the occurrence of congestion is predicted by the second prediction unit, the second recommended information for avoiding the congestion predicted by the second prediction unit is the second recommended information for which the occurrence of the congestion is predicted. A traffic flow control device including a second transmission unit that transmits to an in-vehicle device of a vehicle traveling on a road included in the second region toward a congested portion.
  10.  複数の車載装置から送信される情報に基づき道路網における交通流を制御する交通流制御方法であって、
     前記道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理ステップと、
     前記第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理ステップとを含み、
     前記第1管理ステップは、
      前記幹線道路において混雑の発生を、前記幹線道路の交通容量に基づいて予測する第1予測ステップと、
      前記第1予測ステップにより混雑の発生が予測されたことを受けて、前記第1予測ステップにより予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、前記幹線道路を走行している車両の車載装置に送信する第1送信ステップとを含み、
     前記第2管理ステップは、
      前記第2領域に含まれる道路における混雑の発生を、前記第2領域に含まれる道路の交通容量に基づいて予測する第2予測ステップと、
      前記第2予測ステップにより混雑の発生が予測されたことを受けて、前記第2予測ステップにより予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、前記第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信ステップとを含む、交通流制御方法。
    It is a traffic flow control method that controls the traffic flow in the road network based on the information transmitted from a plurality of in-vehicle devices.
    Among the roads included in the first area of the road network, the first management step for managing the traffic flow of the main road and
    A second management step corresponding to each of the plurality of second regions constituting the first region and managing the traffic flow of the road included in the second region is included.
    The first management step is
    The first prediction step of predicting the occurrence of congestion on the main road based on the traffic capacity of the main road, and
    In response to the fact that the occurrence of congestion is predicted by the first prediction step, the first recommended information for avoiding the congestion predicted by the first prediction step is the first that the occurrence of the congestion is predicted. Including a first transmission step of transmitting to the in-vehicle device of the vehicle traveling on the main road toward the congested portion.
    The second management step is
    A second prediction step of predicting the occurrence of congestion on a road included in the second region based on the traffic capacity of the road included in the second region.
    In response to the fact that the occurrence of congestion is predicted by the second prediction step, the second recommended information for avoiding the congestion predicted by the second prediction step is the second recommended information for which the occurrence of the congestion is predicted. A traffic flow control method including a second transmission step of transmitting to an in-vehicle device of a vehicle traveling on a road included in the second region toward a congested portion.
  11.  複数の車載装置から送信される情報に基づき道路網における交通流を制御するコンピュータプログラムであって、
     コンピュータに、
      前記道路網の第1領域に含まれる道路のうち、幹線道路の交通流を管理する第1管理機能と、
      前記第1領域を構成する複数の第2領域の各々に対応し、当該第2領域に含まれる道路の交通流を管理する第2管理機能とを実現させ、
     前記第1管理機能は、
      前記幹線道路において混雑の発生を、前記幹線道路の交通容量に基づいて予測する第1予測機能と、
      前記第1予測機能により混雑の発生が予測されたことを受けて、前記第1予測機能により予測された当該混雑を回避するための第1推奨情報を、当該混雑の発生が予測された第1混雑部分に向かって、前記幹線道路を走行している車両の車載装置に送信する第1送信機能とを含み、
     前記第2管理機能は、
      前記第2領域に含まれる道路における混雑の発生を、前記第2領域に含まれる道路の交通容量に基づいて予測する第2予測機能と、
      前記第2予測機能により混雑の発生が予測されたことを受けて、前記第2予測機能により予測された当該混雑を回避するための第2推奨情報を、当該混雑の発生が予測された第2混雑部分に向かって、前記第2領域に含まれる道路を走行している車両の車載装置に送信する第2送信機能とを含む、コンピュータプログラム。
    A computer program that controls traffic flow in a road network based on information transmitted from multiple in-vehicle devices.
    On the computer
    Among the roads included in the first area of the road network, the first management function for managing the traffic flow of the main road and
    It corresponds to each of the plurality of second regions constituting the first region, and realizes a second management function for managing the traffic flow of the road included in the second region.
    The first management function is
    The first prediction function that predicts the occurrence of congestion on the main road based on the traffic capacity of the main road, and
    In response to the fact that the occurrence of congestion is predicted by the first prediction function, the first recommended information for avoiding the congestion predicted by the first prediction function is the first that the occurrence of the congestion is predicted. Includes a first transmission function that transmits to the in-vehicle device of the vehicle traveling on the main road toward the congested portion.
    The second management function is
    A second prediction function that predicts the occurrence of congestion on the roads included in the second area based on the traffic capacity of the roads included in the second area.
    In response to the fact that the occurrence of congestion is predicted by the second prediction function, the second recommended information for avoiding the congestion predicted by the second prediction function is the second recommended information for which the occurrence of the congestion is predicted. A computer program including a second transmission function of transmitting to an in-vehicle device of a vehicle traveling on a road included in the second region toward a congested portion.
PCT/JP2021/004493 2020-02-26 2021-02-08 Traffic flow control system, control device, control method, and computer program WO2021171979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030569 2020-02-26
JP2020030569 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021171979A1 true WO2021171979A1 (en) 2021-09-02

Family

ID=77490452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004493 WO2021171979A1 (en) 2020-02-26 2021-02-08 Traffic flow control system, control device, control method, and computer program

Country Status (1)

Country Link
WO (1) WO2021171979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079628A (en) * 2021-11-29 2023-06-08 株式会社情報技術 Traffic condition acquisition system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196788A (en) * 2001-12-28 2003-07-11 Mitsubishi Electric Corp Signal controller
JP2004251945A (en) * 2003-02-18 2004-09-09 Kyocera Communication Systems Co Ltd Map information distribution system and map information distribution method
JP2007034382A (en) * 2005-07-22 2007-02-08 Toyota Motor Corp Vehicle control system
JP2008097251A (en) * 2006-10-11 2008-04-24 Toyota Central R&D Labs Inc Congestion prediction apparatus, and driving support apparatus and support system
JP2017219415A (en) * 2016-06-07 2017-12-14 日産自動車株式会社 Route guidance method and route guidance system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196788A (en) * 2001-12-28 2003-07-11 Mitsubishi Electric Corp Signal controller
JP2004251945A (en) * 2003-02-18 2004-09-09 Kyocera Communication Systems Co Ltd Map information distribution system and map information distribution method
JP2007034382A (en) * 2005-07-22 2007-02-08 Toyota Motor Corp Vehicle control system
JP2008097251A (en) * 2006-10-11 2008-04-24 Toyota Central R&D Labs Inc Congestion prediction apparatus, and driving support apparatus and support system
JP2017219415A (en) * 2016-06-07 2017-12-14 日産自動車株式会社 Route guidance method and route guidance system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079628A (en) * 2021-11-29 2023-06-08 株式会社情報技術 Traffic condition acquisition system

Similar Documents

Publication Publication Date Title
US9805598B2 (en) Management of mobile objects
US20200143677A1 (en) Condition-based lane suggestions for travel advising
US20200365015A1 (en) Connected and adaptive vehicle traffic management system with digital prioritization
CN110383360B (en) Adaptive vehicle traffic management system with digitally prioritized connectivity
US10043384B2 (en) Management of mobile objects and service platform for mobile objects
US10829116B2 (en) Affecting functions of a vehicle based on function-related information about its environment
US10540895B2 (en) Management of mobile objects
JP7088000B2 (en) Traffic information processing equipment
JP7207670B2 (en) Highway system for connected autonomous vehicles and methods using it
US20210311491A1 (en) Intelligent roadside toolbox
US10594806B2 (en) Management of mobile objects and resources
US20220270476A1 (en) Collaborative automated driving system
EP3479182A1 (en) Affecting functions of a vehicle based on function-related information about its environment
WO2022193995A1 (en) Map updating method, and map-based driving decision-making method and apparatus
JP2011038794A (en) Route search device, route search method, computer program, and map database
GB2594126A (en) System and method for updating map data
CN114852079A (en) Behavior decision information generation method and device, electronic equipment and storage medium
US20220324478A1 (en) Electronic control device, control method, and automatic driving system
CN114964286A (en) Trajectory planning information generation method and device, electronic equipment and storage medium
US20170178268A1 (en) Management of mobile objects and resources
WO2021171979A1 (en) Traffic flow control system, control device, control method, and computer program
CN113240918B (en) Method for reserving a lane for a vehicle, storage medium and electronic device
EP4258189A1 (en) Autonomous vehicle fleet scheduling to maximize efficiency
WO2022259862A1 (en) In-vehicle device, control device, system, method of controlling in-vehicle device, and computer program
Alhussain Density-scaling traffic management for autonomous vehicle environment—predictive learning-based technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21761515

Country of ref document: EP

Kind code of ref document: A1