WO2021171531A1 - Medical device system - Google Patents

Medical device system Download PDF

Info

Publication number
WO2021171531A1
WO2021171531A1 PCT/JP2020/008230 JP2020008230W WO2021171531A1 WO 2021171531 A1 WO2021171531 A1 WO 2021171531A1 JP 2020008230 W JP2020008230 W JP 2020008230W WO 2021171531 A1 WO2021171531 A1 WO 2021171531A1
Authority
WO
WIPO (PCT)
Prior art keywords
defibrillation
date
unit
power supply
time
Prior art date
Application number
PCT/JP2020/008230
Other languages
French (fr)
Japanese (ja)
Inventor
小島 康弘
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to JP2022502754A priority Critical patent/JPWO2021171531A1/ja
Priority to PCT/JP2020/008230 priority patent/WO2021171531A1/en
Publication of WO2021171531A1 publication Critical patent/WO2021171531A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators

Definitions

  • the present invention relates to a medical device system including a medical device having electrodes and a power supply device for supplying electric power to the medical device.
  • a medical device system including a medical device having electrodes is the following defibrillation catheter system (see, for example, Patent Document 1).
  • a defibrillation catheter system has been developed as one of medical devices for removing atrial fibrillation (performing electrical defibrillation) generated during cardiac catheterization.
  • This defibrillation catheter system comprises a defibrillation catheter that is inserted into the heart cavity to perform defibrillation and a power supply that supplies power to the defibrillation catheter during defibrillation. There is.
  • the heart that has undergone atrial fibrillation is directly subjected to electrical stimulation (for example, electrical energy consisting of DC voltage) in the heart chamber, and as a result, the effect is obtained.
  • electrical stimulation for example, electrical energy consisting of DC voltage
  • medical device systems such as the defibrillation catheter system described above are generally required to improve convenience when used, for example. It is desirable to provide a medical device system that can improve convenience.
  • the medical device system includes a medical device having electrodes and a power supply device that supplies electric power to the medical device.
  • This power supply device has a power supply unit that supplies power, a first clock unit that outputs date and time information that can be changed at any time according to an operation by the operator, and an operation by the operator. It has a second clock unit that outputs a second date and time information, for which setting changes are restricted accordingly.
  • the first clock unit that outputs the first date and time information and the second clock unit that outputs the second date and time information are the power supplies, respectively. It is provided in the device.
  • the first date and time information is information whose settings can be changed at any time according to the operation by the operator, while the second date and time information is restricted from changing the settings according to the operation by the operator. Therefore, various processes can be easily realized in this medical device system by using such two types of date and time information (the first and second date and time information).
  • the setting of the second date and time information can be changed according to the operation by the operator only when the power supply device is started for the first time. It may be.
  • the restriction of the above setting change after the first startup is maintained.
  • the tolerance for changing the above settings will be ensured at a minimum.
  • the second date and time information becomes easy to use, and various processes in this medical device system can be realized more easily, so that the convenience can be further improved.
  • the second date and time information it may be impossible to change the setting according to the operation by the operator. In this case, since the above setting change for the second date and time information is completely restricted, the process using the restriction of the above setting change for the second date and time information is realized. It will be easier. As a result, the convenience is further improved.
  • the first date and time information is set in another device (for example, an electrocardiograph) different from the power supply device. It may be possible to set so as to match the third date and time information.
  • the process using the first date and time information in the power supply device can be executed while synchronizing with the process using the third date and time information in the other device. Will be. As a result, the convenience is further improved.
  • the power supply device uses the second date and time information to obtain the elapsed time (first elapsed time) of the power supply device from the initial setting of the second date and time information and the use of the medical device. It may further have a derivation unit that derives at least one of the elapsed time from the start (second elapsed time).
  • the first elapsed time is used to grasp, for example, the maintenance time of the power supply unit itself and its internal parts, and notify the operator (user) of (warning, etc.). It becomes possible to do.
  • the second elapsed time for example, it is possible to grasp the expiration date of the medical device and limit the use of the medical device. As a result, the convenience is further improved.
  • the power supply device is based on a reading unit that reads out unique identification information held in the medical device and the identification information read by the reading unit. Further, it may have a determination unit for determining the effectiveness of the use of the medical device. In this case, the determination result of whether or not the use of the medical device is effective can be easily obtained by using the unique identification information in the medical device. As a result, the use of non-genuine medical devices (for example, deteriorated products and counterfeit products) can be effectively eliminated, and convenience can be further improved.
  • non-genuine medical devices for example, deteriorated products and counterfeit products
  • Examples of the medical device include a defibrillation catheter that is inserted into the heart chamber of a patient to perform electrical defibrillation.
  • the first clock unit that outputs the first date and time information and the second clock unit that outputs the second date and time information are respectively. Since it is provided in the power supply device, various processes can be easily realized in this medical device system. Therefore, it is possible to improve the convenience in the medical device system.
  • FIG. 1 It is a block diagram which shows typically the whole structure example of the defibrillation catheter system as the medical device system which concerns on one Embodiment of this invention. It is a schematic diagram which shows the schematic structure example of the defibrillation catheter shown in FIG. It is a schematic diagram which shows the cross-sectional composition example of the shaft along the line II-II shown in FIG. It is a figure for demonstrating two kinds of clock part and date and time information shown in FIG. It is a block diagram which shows an example of various data held in the storage part in the defibrillation catheter shown in FIG. It is a block diagram which shows an example of various data held in the storage part in the power supply apparatus shown in FIG.
  • FIG. 7 It is a flow chart which shows the whole processing example of the defibrillation processing which concerns on embodiment. It is a flow chart which shows the detailed processing example in the determination processing of the effectiveness of use shown in FIG. It is a block diagram which shows typically the example of the operation state at the time of the electrocardiographic potential measurement shown in FIG. It is a block diagram which shows typically the example of the operation state at the time of resistance measurement shown in FIG. It is a block diagram which shows typically the example of the operation state at the time of defibrillation execution shown in FIG. 7. It is a flow chart which shows the detailed processing example of the determination processing of the effectiveness of use which concerns on modification 1. FIG.
  • FIG. 1 is a schematic block diagram showing an overall configuration example of a medical device system (defibrillation catheter system 3) according to an embodiment of the present invention.
  • This defibrillation catheter system 3 is a system used, for example, when removing atrial fibrillation (performing electrical defibrillation) that has occurred in a patient (patient 9 in this example) during cardiac catheterization.
  • the defibrillation catheter system 3 includes a defibrillation catheter 1 and a power supply device 2. Further, when defibrillation or the like using the defibrillation catheter system 3 is performed, for example, as shown in FIG. 1, the electrocardiograph 4, the electrocardiogram display device 5 (waveform display device), and the biometric measurement mechanism 6 are used. Is also used as appropriate.
  • the defibrillation catheter system 3 corresponds to a specific example of the "medical device system” in the present invention.
  • the defibrillation catheter 1 corresponds to a specific example of the "medical device having an electrode” in the present invention.
  • the defibrillation catheter 1 is an electrode catheter that is inserted into the body (intracardiac space) of the patient 9 through a blood vessel to perform electrical defibrillation.
  • FIG. 2 schematically shows a schematic configuration example of the defibrillation catheter 1.
  • the defibrillation catheter 1 has a shaft 11 (catheter shaft) as a catheter body, a handle 12 attached to the base end of the shaft 11, and a storage unit 13 that holds (stores) various data described later. Have.
  • the shaft 11 has a flexible and insulating tubular structure (tubular member, tube member), and has a shape extending along its own axial direction (Z-axis direction). Further, the shaft 11 has a so-called multi-lumen structure in which a plurality of lumens (pores, through holes) are formed therein so as to extend along its own axial direction. Although details will be described later, various thin wires (conductors, operating wires, etc.) are inserted into each lumen in a state of being electrically insulated from each other.
  • the outer diameter of the shaft 11 is, for example, about 1.2 mm to 3.3 mm.
  • a plurality of electrodes are provided in the tip region P1 of such a shaft 11.
  • one tip electrode 110 and a plurality of ring-shaped electrodes 111, 112, 113 are predetermined in this order from the tip side to the base end side of the shaft 11, respectively, along the axial direction of the shaft 11. Are arranged at intervals of.
  • the ring-shaped electrodes 111, 112, and 113 are fixedly arranged on the outer peripheral surface of the shaft 11, respectively, while the tip electrode 110 is fixedly arranged at the tip of the shaft 11. Further, as shown in FIG.
  • the electrode group 111G is composed of a plurality of ring-shaped electrodes 111 arranged at intervals from each other.
  • a plurality of ring-shaped electrodes 112 arranged at intervals from each other constitute an electrode group 112G
  • a plurality of ring-shaped electrodes 113 arranged at intervals from each other constitute an electrode group 113G. ..
  • the "electrode group” referred to here is a plurality of electrodes that form the same pole (have the same polarity) or have the same purpose and are mounted at narrow intervals (for example, 5 mm or less). It means an aggregate of, and the same applies hereinafter.
  • the separation distance between the electrode group 111G (ring-shaped electrode 111 on the proximal end side) and the electrode group 112G (ring-shaped electrode 112 on the distal end side) is preferably, for example, about 40 to 100 mm, which is a preferable example. If shown, it is 66 mm.
  • the ring-shaped electrodes 111, 112, and 113 are electrically connected to the handle 12 via a plurality of conductors (lead wires) inserted into the lumen of the shaft 11, although details will be described later.
  • the lead wire is not connected to the tip electrode 110.
  • a conducting wire may be connected to the tip electrode 110 as well.
  • Such tip electrodes 110 and ring-shaped electrodes 111, 112, 113 are electrically conductive, for example, aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), etc., respectively. It is composed of a metal material having good properties or various resin materials. In order to improve the contrast with respect to X-rays when the defibrillation catheter 1 is used, these tip electrodes 110 and ring-shaped electrodes 111, 112, 113 are each made of platinum or an alloy thereof. Is preferable.
  • the above-mentioned electrode group 111G is composed of a plurality of ring-shaped electrodes 111 that form the same pole (-pole or + pole).
  • the number of ring-shaped electrodes 111 constituting the electrode group 111G varies depending on the width of the electrodes and the arrangement interval, but is, for example, 4 to 13, preferably 8 to 10.
  • the width (length in the axial direction) of the ring-shaped electrode 111 is preferably, for example, about 2 to 5 mm, and a suitable example is 4 mm.
  • the mounting interval of the ring-shaped electrodes 111 is preferably, for example, about 1 to 5 mm, and a preferable example is 2 mm.
  • the electrode group 111G is located in, for example, a coronary vein.
  • the electrode group 112G is composed of a plurality of ring-shaped electrodes 112 that form poles (+ poles or-poles) opposite to those of the electrode group 111G described above.
  • the number of ring-shaped electrodes 112 constituting the electrode group 112G varies depending on the width of the electrodes and the arrangement interval, but is, for example, 4 to 13, preferably 8 to 10.
  • the width (length in the axial direction) of the ring-shaped electrode 112 is preferably, for example, about 2 to 5 mm, and a suitable example is 4 mm.
  • the mounting interval of the ring-shaped electrodes 112 is preferably, for example, about 1 to 5 mm, and a preferable example is 2 mm.
  • the electrode group 113G is composed of four ring-shaped electrodes 113.
  • the width (length in the axial direction) of the ring-shaped electrode 113 is preferably, for example, about 0.5 to 2.0 mm, and a suitable example is 1.2 mm.
  • the mounting interval of the ring-shaped electrodes 113 is preferably, for example, about 1.0 to 10.0 mm, and a preferable example is 5 mm.
  • the electrode group 113G is located in the superior vena cava where an abnormal potential is likely to occur, for example.
  • FIG. 3 schematically shows a cross-sectional configuration example (XY cross-sectional configuration example) of the shaft 11 along the line II-II in FIG.
  • the shaft 11 has a multi-lumen structure having an outer portion 70 (shell portion), a wire 71, an inner portion 72 (core portion), and a resin layer 73.
  • the shaft 11 is formed with four lumens L1 to L4 separated from each other.
  • the outer portion 70 is a tubular member located on the outermost circumference of the shaft 11.
  • the outer portion 70 is made of, for example, a high-hardness nylon elastomer.
  • nylon elastomer constituting the outer portion 70 for example, those having different hardness along the axial direction (Z-axis direction) are used.
  • the shaft 11 is configured to gradually increase in hardness from the tip end side to the base end side.
  • the strands 71 are arranged between the outer portion 70 and the inner portion 72 to form a braided blade. Further, the braided blade is formed only in a part of the shaft 11 along the axial direction, for example.
  • a wire 71 is made of, for example, stainless steel, and is a stainless steel wire.
  • the inner portion 72 is a core member located on the inner peripheral side of the outer portion 70 and the wire 71.
  • the inner portion 72 is made of, for example, a low-hardness nylon elastomer.
  • the four lumens L1 to L4 described above are formed in the inner portion 72, respectively.
  • the resin layer 73 is a layer that partitions the four lumens L1 to L4, and is made of, for example, a fluororesin.
  • a fluororesin examples include highly insulating materials such as perfluoroalkyl vinyl ether copolymer (PFA) and polytetrafluoroethylene (PTFE).
  • the lumen L1 (first lumen) is arranged on the positive side of the X-axis in the shaft 11 as shown in FIG. 3 in this example.
  • a conductor group 81G composed of a plurality of conductors 81 is inserted through the lumen L1.
  • Each of these conductors 81 is individually electrically connected to the plurality of ring-shaped electrodes 111 in the electrode group 111G described above.
  • the conducting wire 81 electrically connected to the ring-shaped electrode 111 in this way constitutes a signal line of the electrocardiographic signal Sc0a described later (see FIG. 2).
  • the lumen L2 (second lumen) is arranged on the negative side of the X-axis in the shaft 11 as shown in FIG. 3 in this example.
  • a conductor group 82G composed of a plurality of conductors 82 is inserted through the lumen L2.
  • Each of these conductors 82 is individually electrically connected to the plurality of ring-shaped electrodes 112 in the electrode group 112G described above.
  • the conducting wire 82 electrically connected to the ring-shaped electrode 112 in this way also constitutes the signal line of the electrocardiographic signal Sc0a described later (see FIG. 2).
  • the lumen L3 (third lumen) is arranged on the negative side of the Y axis in the shaft 11 as shown in FIG. 3 in this example.
  • a conductor group 83G composed of a plurality of conductors 83 is inserted through the lumen L3.
  • Each of these conductors 83 is individually electrically connected to the plurality of ring-shaped electrodes 113 in the electrode group 113G described above.
  • the conducting wire 83 electrically connected to the ring-shaped electrode 113 in this way constitutes a signal line of the electrocardiographic signal Sc0b described later (see FIG. 2).
  • the lumen L4 (fourth lumen) is arranged on the positive side of the Y axis in the shaft 11 as shown in FIG. 3 in this example.
  • one operating wire 80 is inserted through the lumen L4. That is, the operation wire 80 is arranged in an eccentric state with respect to the central axis of the shaft 11.
  • the operation wire 80 is a member for performing a deflection movement operation (swinging operation), which is an operation for deflecting (curving) the vicinity of the tip of the shaft 11, although details will be described later.
  • the tip portion of such an operating wire 80 is fixed to the tip electrode 110 by, for example, soldering.
  • a large-diameter portion (retaining portion) for preventing the retaining wire may be formed at the tip of the operating wire 80.
  • the base end portion of the operation wire 80 is connected to the inside of the handle 12 (rotary plate 122) described later.
  • the above-mentioned conductors 81, 82, and 83 are each composed of a resin-coated wire in which the outer peripheral surface of the metal conductor is covered with a resin such as polyimide.
  • the operating wire 80 is made of, for example, stainless steel or a Ni (nickel) -Ti (titanium) -based superelastic alloy.
  • the operating wire 80 does not necessarily have to be made of metal, and may be made of, for example, a high-strength non-conductive wire.
  • the handle 12 is attached to the base end of the shaft 11 and has a handle body 121 (grip portion) and a rotating plate 122.
  • the handle body 121 is a portion that the operator (doctor) grasps (grasps) when using the defibrillation catheter 1. Inside the handle body 121, various thin wires (conductor wires 81, 82, 83, operating wires 80, etc.) described above are extended from the inside of the shaft 11 in a state of being electrically insulated from each other.
  • the rotating plate 122 is a member for performing a deflection movement operation, which is an operation for deflecting the vicinity of the tip of the shaft 11, although details will be described later. Specifically, for example, the operation of rotating the rotating plate 122 along the rotation direction d1 indicated by the broken line arrow in FIG. 2 is possible. By such a rotation operation, the operation wire 80 described above is pulled toward the proximal end side, so that an operation (deflection movement operation) in which the vicinity of the tip of the shaft 11 is deflected is possible.
  • the storage unit 13 is arranged in the handle 12 (handle main body 121) and is a portion (memory) for holding various data described later. A detailed example of each data stored in the storage unit 13 will be described later (FIG. 5).
  • the power supply device 2 is a device that supplies electric power to the defibrillation catheter 1 during defibrillation. Specifically, as shown in FIGS. 1 to 3, the power supply device 2 applies the DC voltage Vdc applied at the time of defibrillation to the electrode groups 111G and 112G (11G, 112G) on the shaft 11 of the defibrillation catheter 1.
  • the ring-shaped electrodes 111 and 112) are supplied via the conductor groups 81G and 82G (conductors 81 and 82).
  • the power supply device 2 has an input unit 21, a power supply unit 22, a switching unit 23, an arithmetic processing unit 24 (control unit), a display unit 25, and an audio output unit 26.
  • the power supply device 2 also has two (two types) input terminals Tin1 and Tin2 and two (two types) output terminals Tout1 and Tout2. Further, in this power supply device 2, the details will be described later, but the “electrocardiographic potential measurement mode” in which the electrocardiographic potential is measured (see FIG. 9) and the “resistance measurement mode” in which the resistance value R measurement processing described later is performed (FIG. 9). 10) ”and“ defibrillation mode (see FIG. 11) ”where defibrillation is performed can be switched. That is, in the power supply device 2, it is possible to switch between these plurality of types (for example, three types) of modes.
  • the input unit 21 is a portion for inputting various set values and an input signal Sin (operation input signal) for instructing a predetermined operation, and is configured by using, for example, a predetermined dial, switch, touch panel, or the like. There is.
  • These set values and instructions (input signal Sin) are input in response to an operation by an operator (for example, an engineer or the like) of the power supply device 2.
  • an operator for example, an engineer or the like
  • some of the set values and the like may not be input according to the operation by the operator, but may be set in the power supply device 2 in advance at the time of shipment of the product or the like.
  • Mode changeover switch applied energy setting switch that sets the electrical energy (DC voltage Vdc) applied during defibrillation, charging switch for charging the power supply unit 22, defibrillation is executed by applying electrical energy.
  • Examples thereof include an energy application switch (discharge switch) for performing the operation.
  • the input signal Sin input by the input unit 21 is supplied to the arithmetic processing unit 24 as shown in FIG.
  • the power supply unit 22 is a portion that outputs the above-mentioned DC voltage Vdc toward the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) in the defibrillation catheter 1.
  • the power supply operation in such a power supply unit 22 is controlled by the arithmetic processing unit 24 based on, for example, the input signal Sin from the input unit 21.
  • the power supply unit 22 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like), a capacitor (capacitive element) for charging electric energy, or the like.
  • the switching unit 23 is a part that performs an operation (switching operation) of switching the supply paths of the DC voltage Vdc, the resistance value R and the electrocardiographic signal Sc0a described later.
  • the switching operation in such a switching unit 23 is controlled by the arithmetic processing unit 24 based on, for example, the input signal Sin from the input unit 21. The details of the switching operation in the switching unit 23 will be described later.
  • the arithmetic processing unit 24 is a portion that controls the entire power supply device 2 and performs predetermined arithmetic processing, and includes, for example, a microcomputer and the like. Specifically, the arithmetic processing unit 24 controls the operations of the power supply unit 22, the switching unit 23, the display unit 25, and the audio output unit 26, respectively, based on the input signal Sin from the input unit 21. .. The details of such an operation example in the arithmetic processing unit 24 will be described later.
  • the arithmetic processing unit 24 has an output circuit 241, a storage unit 242, a clock unit 243a, 243b, a derivation unit 244, a reading unit 245, a determination unit 246, and an execution permission unit 247. ing.
  • the output circuit 241 transfers the DC voltage Vdc output from the power supply unit 22 to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 via the switching unit 23 and the output terminal Tout1 described later. It is a circuit for output. Specifically, although the details will be described later, in this output circuit 241, the electrode groups 111G and 112G have different polarities from each other (when one electrode group has a negative electrode, the other electrode group has a positive electrode). In addition, the DC voltage Vdc is output.
  • the storage unit 242 is a part (memory) that holds various data described later. A detailed example of each data stored in the storage unit 242 will be described later (FIG. 6).
  • the clock unit 243a outputs the date and time information Idt1
  • the clock unit 243b outputs the date and time information Idt2 (see FIG. 1).
  • Each of these clock units 243a and 243b includes, for example, an IC (Integrated Circuit) having an RTC (Real-Time Clock) function.
  • the "date and time information” referred to here means information including "date information” and "time information", and the same applies hereinafter.
  • FIG. 4 is a diagram for explaining such two types of clock units 243a and 243b and date and time information Idt1 and Idt2. Specifically, in FIG. 4, according to the type of the clock unit in the power supply device 2, the type of date and time information in the power supply device 2, and the operation of the input unit 21 by the operator (user) of the power supply device 2. A table shows whether or not the date and time information settings can be changed and examples of using the date and time information.
  • the date and time information Idt1 in the clock unit 243a can be changed at any time (arbitrarily) according to the operation by the operator. Further, the date and time information Idt1 in the clock unit 243a is, for example, date and time information set in another device different from the power supply device 2 (for example, date and time information Idt3 set in the electrocardiograph 4 described later: It can be set so as to match (see FIG. 1).
  • the date and time information Idt2 in the clock unit 243b is restricted from being changed in setting according to the operation by the operator of the power supply device 2. That is, the date and time information Idt2 is basically set by default at the time of factory shipment (manufacturing), for example. Specifically, regarding the date and time information Idt2, the setting can be changed according to the operation by the operator, for example, only when the power supply device 2 is started for the first time (see FIG. 4). Alternatively, for this date and time information Idt2, for example, it is completely impossible to change the setting according to the operation by the operator (see FIG. 4).
  • the elapsed time ⁇ t1 from the start of use of the defibrillation catheter 1 and the power supply device 2 from the initial setting of the date and time information Idt2 The elapsed time ⁇ t2 and the elapsed time ⁇ t2 are derived respectively (see FIG. 4).
  • Such a clock unit 243a corresponds to a specific example of the "first clock unit” in the present invention
  • the clock unit 243b corresponds to a specific example of the "second clock unit” in the present invention.
  • the date and time information Idt1 corresponds to a specific example of the "first date and time information” in the present invention
  • the date and time information Idt2 corresponds to a specific example of the "second date and time information” in the present invention
  • Idt3 corresponds to a specific example of the "third date and time information" in the present invention.
  • the out-licensing unit 244 uses the date and time information Idt2 to obtain the elapsed time ⁇ t1 from the start of use of the defibrillation catheter 1 and the elapsed time of the power supply device 2 from the initial setting of the date and time information Idt2. ⁇ t2 and each are derived. The details of such elapsed times ⁇ t1 and ⁇ t2 will be described later.
  • the reading unit 245 reads out information on various data held in the defibrillation catheter 1 (storage unit 13 described above: see FIG. 2). Details of the various data read in this way will be described later (see FIG. 5), and examples thereof include the following.
  • identification information 131 as identification information unique to the defibrillation catheter 1 (information individually assigned to each defibrillation catheter 1) can be mentioned.
  • identification information 131 is, for example, a serial number composed of a list of at least one type of information given by a specific law, among numbers, alphabets, and alphanumeric characters.
  • the identification information 131 may be, for example, information in which such a serial number is encrypted (encrypted identification information).
  • examples of the above-mentioned various data include usage status information 132 indicating the usage status of the defibrillation catheter 1.
  • use date / time information 133 indicating the date and time of use of the defibrillation catheter 1 can be mentioned.
  • information indicating the number of times the defibrillation catheter 1 has been used (information on the number of times used N) can be mentioned.
  • the determination unit 246 determines the effectiveness of using the defibrillation catheter 1 based on the identification information 131 read by the reading unit 245. That is, the determination unit 246 is adapted to perform a determination process as to whether the use of the defibrillation catheter 1 is effective or ineffective. In other words, when it is determined that the use is effective, it means that the defibrillation catheter 1 is determined to be a genuine product, and when it is determined that the use is invalid, it is excluded. It means that the defibrillation catheter 1 is determined to be a non-genuine product (for example, a deteriorated product or a counterfeit product).
  • the determination unit 246 determines the effectiveness of using the defibrillation catheter 1 depending on, for example, whether or not the serial number in the identification information 131 is assigned according to the specific law described above. It is designed to judge. That is, for example, when such a serial number is assigned according to the above-mentioned specific law, the identification information 131 is legitimate information, and it is determined that the use of the defibrillation catheter 1 is effective. .. On the other hand, for example, when such a serial number is not assigned according to the above-mentioned specific law, it is determined that the identification information 131 is non-genuine information and the use of the defibrillation catheter 1 is invalid. NS. By performing such a determination process, it is possible to easily eliminate the use of the non-regular defibrillation catheter 1. A detailed processing example of the determination processing by the determination unit 246 will be described later (FIG. 8).
  • the execution permission unit 247 is operated by the operator in the input unit 21 (for example, power supply for defibrillation by the power supply unit 22) only when the determination unit 246 determines that the use of the defibrillation catheter 1 is effective.
  • the reception of the operation) for executing the operation) is enabled. That is, if the reception of such an operation remains disabled (if it is not enabled), even if the operator performs an operation on the input unit 21, the power supply for defibrillation is not executed. , Electrical defibrillation by the defibrillation catheter 1 is also prevented.
  • the display unit 25 is a part (monitor) that displays various information based on various signals supplied from the arithmetic processing unit 24 and outputs the information to the outside.
  • the display unit 25 has a function of displaying the electrocardiographic waveform based on, for example, the electrocardiographic signal Sc1 described later.
  • the information to be displayed is not limited to such information on the electrocardiographic potential, and other information may be added and displayed.
  • information such as the determination result by the determination unit 246 described above may also be displayed on the display unit 25.
  • a display unit 25 By displaying such various information on the display unit 25, the operator of the power supply device 2 (for example, an engineer or the like) removes the power supply device 2 while monitoring, for example, the above-mentioned electrocardiographic waveform and the determination result by the determination unit 246. It is possible to perform defibrillation treatment (input operation to the input unit 21 and the like).
  • a display unit 25 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, etc.).
  • the voice output unit 26 is a part that outputs various voices to the outside based on the voice signal Ss supplied from the arithmetic processing unit 24.
  • an audio signal Ss generated according to the determination result by the determination unit 246 described above can be mentioned. It should be noted that such an audio output unit 26 is configured by using, for example, a speaker or the like.
  • each of the display unit 25 and the audio output unit 26 corresponds to a specific example of the "output unit" in the present invention.
  • the input terminal Tin1 is a terminal for inputting the electrocardiographic signal Sc1 output from the electrocardiograph 4 described later.
  • this electrocardiographic signal Sc1 is a biological signal obtained by measurement by a biological measurement mechanism 6 (a plurality of electrode pads 61 described later) and supplied to the electrocardiograph 4.
  • the electrocardiographic signal Sc1 obtained by such a biometric measurement mechanism 6 may be directly input to the input terminal Tin without passing through the electrocardiograph 4, and the same applies hereinafter.
  • the electrocardiographic signal Sc1 (for example, an analog signal) input to the input terminal Tin1 in this way is supplied to the arithmetic processing unit 24.
  • the input terminal Tin2 is a terminal for inputting the electrocardiographic signals Sc0a, Sc0b and the resistance value R measured in the defibrillation catheter 1.
  • the electrocardiographic signal Sc0a is a electrocardiographic signal measured in the above-mentioned electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) and transmitted via the above-mentioned conductors 81 and 82 (FIGS. 2 and 2). 3).
  • the electrocardiographic signal Sc0b is an electrocardiographic signal measured in the above-mentioned electrode group 113G (ring-shaped electrode 113) and transmitted via the above-mentioned conductor 83 (see FIGS. 2 and 3).
  • the resistance value R is a resistance value between the electrode groups 111G and 112G.
  • the electrocardiographic signal Sc0a is passed through the switching unit 23 and the output terminal Tout2, which will be described later, in this order, as shown in FIG. It is designed to be supplied to the electric meter 4.
  • the electrocardiographic signal Sc0b is supplied to the electrocardiograph 4 only via the output terminal Tout2, which will be described later, without going through the switching unit 23.
  • the resistance value R is supplied to the arithmetic processing unit 24 via the switching unit 23.
  • the output terminal Tout1 uses the DC voltage Vdc output from the output circuit 241 described above and supplied via the switching unit 23 to the electrode groups 111G and 112G of the defibrillation catheter 1. It is a terminal for outputting to the ring-shaped electrodes 111,112).
  • the output terminal Tout2 passes through the electrocardiographic signal Sc0b supplied from the defibrillation catheter 1 via the above-mentioned input terminal Tin2, the input terminal Tin2, and the switching unit 23 in this order.
  • This is a terminal for outputting the electrocardiographic signal Sc0a supplied from the defibrillation catheter 1 to the electrocardiograph 4.
  • the electrocardiograph 4 is a device having a function of recording information such as an electrocardiographic signal (in the example of FIG. 1, electrocardiographic signals Sc0a, Sc0b, Sc1). Specifically, in the example of FIG. 1, the electrocardiograph 4 has the electrocardiographic signals Sc0a and Sc0b output from the above-mentioned output terminal Tout2 of the power supply device 2 and the biometric measurement mechanism 6 (a plurality of electrodes described later) described later. The electrocardiographic signal Sc1 output from the pad 61) is input and recorded.
  • an electrocardiographic signal in the example of FIG. 1, electrocardiographic signals Sc0a, Sc0b, Sc1
  • the electrocardiograph 4 has the electrocardiographic signals Sc0a and Sc0b output from the above-mentioned output terminal Tout2 of the power supply device 2 and the biometric measurement mechanism 6 (a plurality of electrodes described later) described later.
  • the electrocardiographic signal Sc1 output from the pad 61) is input and recorded.
  • the electrocardiograph 4 also has a function of outputting the input and recorded electrocardiographic signal to the outside. Specifically, although details will be described later, in the example of FIG. 1, the electrocardiograph 4 outputs the above-mentioned electrocardiographic signal Sc1 to the input terminal Tin1 of the power supply device 2. Further, in the example of FIG. 1, the electrocardiograph 4 outputs the above-mentioned electrocardiographic signals Sc1, Sc0a, Sc0b to the electrocardiogram display device 5 described later, respectively.
  • the date and time information Idt3 described above is set in the electrocardiograph 4 (for example, a clock unit (not shown)) as shown in FIG. 1, for example.
  • the electrocardiogram display device 5 is a device that displays an electrocardiographic waveform (electrocardiogram) or the like based on the electrocardiographic signals Sc1, Sc0a, Sc0b output from the electrocardiograph 4 described above.
  • the electrocardiograph 4 and the electrocardiogram display device 5 may be collectively referred to as a polygraph, a biological information monitor, a cardiac catheterization test device, or an EP recording system.
  • the electrocardiographic waveform and the like displayed on the electrocardiogram display device 5 in this way are monitored at any time by, for example, an operator (doctor) of the defibrillation catheter 1.
  • the biological measurement mechanism 6 is used in a state of being attached (attached) to the body surface of the patient 9 at the time of defibrillation treatment or the like, and the above-mentioned biological signal (electrocardiographic signal Sc1 or the like) is transmitted from the patient 9. It is a device for measuring.
  • the biological measurement mechanism 6 is configured by using a plurality of (for example, 4 or 6) electrode pads 61.
  • the above-mentioned electrocardiographic signal Sc1 is measured from a combination of six of the plurality of electrode pads 61 by using a general measurement method. ..
  • the electrocardiographic signal Sc1 obtained from the electrode pad 61 in this way is supplied to the electrocardiograph 4.
  • the electrocardiographic waveform of the electrocardiographic signal Sc1 obtained by the above-mentioned general measurement method corresponds to what is called a "12-lead electrocardiogram". ..
  • FIG. 5 is a block diagram showing an example of various data held in the storage unit 13 in the defibrillation catheter 1 shown in FIG.
  • FIG. 6 is a block diagram showing an example of various data held in the storage unit 242 in the power supply device 2 shown in FIG.
  • the examples of various data held in these storage units 13 and 242 are not limited to the data shown in FIGS. 5 and 6, and in addition to (or instead of) other data are held. You may do so.
  • the use date / time information 133 includes, for example, the first use start date / time dts of the defibrillation catheter 1 (at the time of the first connection) and the second and subsequent use date / time information of the defibrillation catheter 1 (at the time of the first connection).
  • the start date and time of use (dtn at the time of each connection) is included.
  • the defibrillation information IDE is information that is also used for analysis when a problem occurs, and includes, for example, the following information.
  • the date and time during defibrillation (date and time information Idt1 described above), the number of times defibrillation, the voltage value during defibrillation, the defibrillation time, and the impedance value during defibrillation (resistance value R described above).
  • the Joule set value at the time of defibrillation are included as the defibrillation information Idef.
  • the defibrillation is performed from the power supply device 2 (power supply unit 22) with respect to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1.
  • a DC voltage Vdc is supplied as electrical energy for this purpose.
  • the output circuit 241 in the power supply device 2 has different polarities for these electrode groups 111G and 112G (when one electrode group has a negative electrode, the other electrode group has a positive electrode).
  • the DC voltage Vdc is output from.
  • the DC voltage Vdc in which the electrode groups 111G and 112G have different polarities is directly directed from the tip region P1 of the defibrillation catheter 1 inserted into the body of the patient 9 to the heart of the patient 9.
  • defibrillation processing is performed electrically.
  • defibrillation catheter 1 for example, an AED (Automated External Defibrillator), which is a device that supplies electrical energy from outside the patient's body, is used.
  • AED Automatic External Defibrillator
  • Electrocardiographic potential measurement processing On the other hand, when measuring the electrocardiographic potential of the patient 9, the biometric measurement mechanism 6 (electrode pad 61) attached to the body surface of the patient 9 or the electrode of the defibrillation catheter 1 inserted into the body of the patient 9 The electrocardiographic potential is measured using (ring-shaped electrodes 111, 112, 113) and the like (see FIG. 1). Alternatively, another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1 may be used to measure the electrocardiographic potential of the patient 9.
  • the electrocardiographic signal Sc1 is supplied into the power supply device 2 via the above-mentioned electrocardiograph 4 and the input terminal Tin1 of the power supply device 2 (FIG. FIG. 1). Further, among the obtained electrocardiographic potential information, the electrocardiographic potential signals Sc1, Sc0a, Sc0b are supplied to the electrocardiogram display device 5 (see FIG. 1). Then, the electrocardiographic waveform based on these electrocardiographic signals is displayed on the display unit 25 in the power supply device 2 and the electrocardiogram display device 5, so that the operator (engineer or the like) of the power supply device 2 or the defibrillation catheter can be displayed. It will be appropriately monitored by the operator (doctor) of 1.
  • FIG. 7 is a flow chart showing an example of the entire defibrillation process in the defibrillation catheter system 3 of the present embodiment.
  • FIG. 8 is a flow chart showing an example of detailed processing in step S11 (processing for determining the effectiveness of use of the defibrillation catheter 1 described later) shown in FIG. 7.
  • FIGS. 9 to 11 schematically show examples of various operation states described later in a block diagram during the defibrillation process.
  • step S10 when the power supply of the power supply device 2 is turned on (ON), first, the clock units 243a, 243b (date and time information Idt1, Idt2) in the power supply device 2 are used. Confirmation (self-check) of the normality of the function (RTC function) is performed (step S10). When it is confirmed that such a function is abnormal, the function is stopped and a series of processes shown in FIG. 7 is terminated.
  • the determination unit 246 in the power supply device 2 performs the above-mentioned determination process of the effectiveness of the use of the defibrillation catheter 1 (step S11).
  • a detailed processing example of such use effectiveness determination processing will be described later (FIG. 8).
  • step S12 the positions of the electrodes (ring-shaped electrodes 111, 112, 113) of the defibrillation catheter 1 in the body of the patient 9 are confirmed by using an X-ray image or the like.
  • step S13 the measurement process of the electrocardiographic potential of the patient 9 is performed, for example, as shown in FIG. 9 (step S13). That is, in this example, by setting the defibrillation catheter system 3 to the "electrocardiographic potential measurement mode", the electrocardiographic potential measurement process is performed as follows. Further, subsequently, the gain setting at the time of the predetermined gain adjustment is performed in response to the operation of the input unit 21 by the operator (engineer or the like) of the power supply device 2 (step S14).
  • the electrocardiographic signal Sc1 measured by the biometric measurement mechanism 6 is input to the power supply device 2 by the following route. That is, the electrocardiographic signal Sc1 thus obtained is input to the input terminal Tin1 of the power supply device 2 via the electrocardiograph 4. Then, with respect to the electrocardiographic signal Sc1 input to the power supply device 2, the above-mentioned gain adjustment is performed in the arithmetic processing unit 24, and the electrocardiographic waveform based on the electrocardiographic signal Sc1 after such gain adjustment is displayed on the display unit. It is displayed at 25. Further, the electrocardiographic waveform based on the electrocardiographic signal Sc1 input to the electrocardiograph 4 is displayed on the electrocardiogram display device 5.
  • the electrocardiographic signal Sc0a measured by the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is the input terminal Tin2 of the power supply device 2. , It is supplied to the electrocardiograph 4 via the switching unit 23 and the output terminal Tout2 in this order.
  • the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 sets the input terminal Tin2 and the output terminal Tout2 of the power supply device 2 in this order. It is supplied to the electrocardiograph 4 via (without passing through the switching unit 23).
  • the electrocardiographic signals Sc0a and Sc0b supplied to the electrocardiograph 4 in this way are output to the electrocardiogram display device 5, respectively, and the electrocardiographic waveforms based on these electrocardiographic signals Sc0a and Sc0b are generated by the electrocardiogram display device 5. It is displayed in.
  • the input signal Sin is supplied to the arithmetic processing unit 24 by the operation to the input unit 21 (for example, the input operation to the mode changeover switch) by the operator (engineer or the like) of the power supply device 2, thereby defibrillating.
  • the "defibrillation mode" for executing the motion is set (step S15).
  • the measurement process of the resistance value R between the electrode groups 111G and 112G in the defibrillation catheter 1 is performed (step S16). That is, when the defibrillation catheter system 3 is set to the "resistance measurement mode", the resistance value R is measured as follows.
  • the resistance value R measured by the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is the input terminal of the power supply device 2. It is supplied to the arithmetic processing unit 24 via the Tin 2 and the switching unit 23 in this order. Then, the information of the resistance value R thus obtained is displayed on the display unit 25.
  • the electrocardiographic signal Sc1 measured by the biometric measurement mechanism 6 continues to pass through the electrocardiograph 4, and the input terminal Tin1 of the power supply device 2 continues. And is input to the electrocardiogram display device 5. Then, the electrocardiographic waveform based on the gain-adjusted electrocardiographic signal Sc1 described above is continuously displayed on the display unit 25, and the electrocardiographic waveform based on the electrocardiographic signal Sc1 is continuously displayed on the electrocardiogram display device 5. Is displayed.
  • the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to be the input terminal Tin2 of the power supply device 2 and It is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23). Then, the electrocardiographic signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiographic waveform based on the electrocardiographic signal Sc0b is displayed on the electrocardiogram display device 5.
  • the arithmetic processing unit 24 in the power supply device 2 determines whether or not the resistance value R thus obtained is within a predetermined range defined by the predetermined threshold values Rth1 and Rth2 (Rth2> R). > Whether or not Rth1 is satisfied) is determined (step S17).
  • the electrode groups 111G and 112G of the defibrillation catheter 1 it means that the patient 9 is not reliably abutted on a predetermined site in the body (for example, the duct wall of the coronary vein or the inner wall of the right atrium).
  • the process returns to step S12 described above, and the positions of the electrodes (ring-shaped electrodes 111, 112, 113) are confirmed again using an X-ray image or the like.
  • subsequent defibrillation is performed only when the electrode groups 111G and 112G of the defibrillation catheter 1 are reliably in contact with a predetermined site in the body of the patient 9. Therefore, it is possible to perform effective defibrillation treatment.
  • step S17 when it is determined that the resistance value R is within a predetermined range (Satisfying Rth2> R> Rth1) (step S17: Y), as described above, the electrode group 111G of the defibrillation catheter 1 It means that the 112G is reliably in contact with a predetermined site in the body of the patient 9. Therefore, in this case, the input signal Sin is then supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the applied energy setting switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2. By doing so, the applied energy at the time of defibrillation is set (step S18). Specifically, the applied energy is set in 1J increments, for example, in the range of 1J (joule) to 30J.
  • the applied energy is set in 1J increments, for example, in the range of 1J (joule) to 30J.
  • the input signal Sin is supplied to the arithmetic processing unit 24 by the operation to the input unit 21 (for example, the input operation to the charging switch) by the operator (engineer or the like) of the power supply device 2, so that the power supply unit 22
  • the capacitor inside is charged with energy (electric charge) for defibrillation (step S19).
  • step S20 the execution of defibrillation is started (step S20). Specifically, the input signal Sin is supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the energy application switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2.
  • the "defibrillation mode” described below is executed. Even in such a “defibrillation mode", for example, a process for confirming the connection of the defibrillation catheter 1 (step S300 in FIG. 8), which will be described later, may be performed periodically. ..
  • a DC voltage Vdc as electrical energy is applied between the electrode groups 111G and 112G in the defibrillation catheter 1, so that the patient 9 Defibrillation is performed in the body.
  • the DC voltage Vdc output from the power supply unit 22 in the power supply device 2 connects the output circuit 241 in the arithmetic processing unit 24, the switching unit 23, and the output terminal Tout1 in this order. Via, it is applied between the electrode groups 111G and 112G in the defibrillation catheter 1. At this time, as described above, in the power supply device 2 so that these electrode groups 111G and 112G have different polarities (when one electrode group has a negative electrode, the other electrode group has a positive pole). The DC voltage Vdc is output from the output circuit 241.
  • the electrocardiographic signal Sc1 measured by the biometric measurement mechanism 6 continues to pass through the electrocardiograph 4, and the input terminal Tin1 of the power supply device 2 continues. And is input to the electrocardiogram display device 5. Then, the electrocardiographic waveform based on the gain-adjusted electrocardiographic signal Sc1 described above is continuously displayed on the display unit 25, and the electrocardiographic waveform based on the electrocardiographic signal Sc1 is continuously displayed on the electrocardiogram display device 5. Is displayed.
  • the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to be the input terminal Tin2 of the power supply device 2 and It is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23). Then, the electrocardiographic signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiographic waveform based on the electrocardiographic signal Sc0b is displayed on the electrocardiogram display device 5.
  • the arithmetic processing unit 24 controls the operation of the power supply unit 22 so that the DC voltage Vdc is applied in synchronization with the electrocardiographic signal Sc1 supplied by the above-mentioned path. In this way, effective defibrillation treatment can be performed by applying the DC voltage Vdc in synchronization with the electrocardiographic waveform (R wave which is the maximum peak) input to the arithmetic processing unit 24. It will be possible.
  • the arithmetic processing unit 24 stops the output of the DC voltage Vdc from the power supply unit 22, so that the execution of defibrillation in the patient 9 is stopped (step S21). ..
  • the application record (recording of the electrocardiographic waveform, etc.) at the time of defibrillation is temporarily (for example, 5 seconds) displayed on the display unit 25 of the power supply device 2 (step S22).
  • the application record recording of the electrocardiographic waveform, etc.
  • the application record is temporarily (for example, 5 seconds) displayed on the display unit 25 of the power supply device 2 (step S22).
  • the application record recording of the electrocardiographic waveform, etc.
  • step S13 the above-mentioned "electrocardiographic potential measurement mode" (see step S13, FIG. 9) is set again.
  • the electrocardiographic waveform based on the gain-adjusted electrocardiographic signal Sc1 is displayed again on the display unit 25, and the electrocardiographic waveform based on the electrocardiographic signals Sc1, Sc0a, Sc0b is displayed on the electrocardiogram display device 5. It will be displayed again. That is, the electrocardiographic waveform after the defibrillation described above is executed is displayed (step S23).
  • step S24 the electrocardiographic waveform after such defibrillation is observed, and it is determined whether or not it is normal (step S24). If it is determined that the condition is not normal (atrial fibrillation has not subsided) (step S24: N), the process returns to step S15 described above and proceeds to defibrillation again. On the other hand, when it is determined to be normal (step S24: Y), the series of defibrillation processes shown in FIG. 7 ends.
  • step S300 the confirmation process of the connection (connection state) of the defibrillation catheter 1 to the power supply device 2 is performed (step S300). That is, it is determined whether or not the defibrillation catheter 1 is connected to the power supply device 2 (whether it is in a connected state or in a non-connected state).
  • step S302 the process proceeds to step S302, which will be described later.
  • step S300 when it is determined that the defibrillation catheter 1 is in a non-connected state (step S300: N), "Disconnected" is displayed on the display unit 25 (step S301), and the process returns to step S300. It should be noted that such a process of confirming the connection of the defibrillation catheter 1 may be performed periodically thereafter.
  • the reading unit 245 in the power supply device 2 holds various data (for example, the above-mentioned identification information 131, usage status information 132, etc.) in the storage unit 13 in the defibrillation catheter 1.
  • the usage date / time information 133 and the number of times of use N are read out.
  • the determination unit 246 in the power supply device 2 determines whether or not the read identification information 131 is legitimate information (step S303).
  • step S303: N when it is determined that the identification information 131 is non-regular information, or when it is determined that the above-mentioned reading error of various data has occurred (step S303: N), the process proceeds to step S305 described later. Will proceed.
  • step S303: Y when it is determined that the identification information 131 is legitimate information (step S303: Y), the determination unit 246 then determines the content of the read usage status information 132 (step S304). ).
  • the determination unit 246 determines that the use of the defibrillation catheter 1 is "invalid". Is determined, and "Invalid device connected" is displayed on the display unit 25 (step S305). Then, in this case, the execution permission unit 247 maintains the invalidation of the reception of the operation for executing the defibrillation described above (step S306). Therefore, even if the operator performs an operation on the input unit 21, the power supply for defibrillation is not continuously executed, and the electrical defibrillation by the defibrillation catheter 1 is not executed either.
  • step S300 the process returns to step S300 described above, and the confirmation process of the connection of the defibrillation catheter 1 is performed again.
  • step S306 if it is determined that the defibrillation catheter 1 is in the connected state (step S300: Y), the process does not proceed to step S302 described above. Then, the process returns to step S300. That is, in this case, the data in the storage unit 13 is not read (step S302), and the invalidation of the reception of the operation for executing the defibrillation described above is maintained.
  • step S302 the data in the storage unit 13 is not read (step S302), and the invalidation of the reception of the operation for executing the defibrillation described above is maintained.
  • step S304 determines whether the content of the usage status information 132 indicates "use prohibited". If it is determined in step S304 that the content of the usage status information 132 indicates "use prohibited", the process proceeds to step S313 described later.
  • step S304 If it is determined in step S304 that the content of the usage status information 132 indicates "unused” or "in use”, the determination unit 246 then determines the content of the usage status information 132. However, it is determined whether or not it indicates "unused” (step S307).
  • step S308 when it is determined that the content of the usage status information 132 indicates "unused" (step S307: Y), the following processes are then performed (step S308). ). That is, first, the date and time information Idt2 at that time is written to the storage unit 13 in the defibrillation catheter 1 (writing to the above-mentioned use date and time information 133) as the above-mentioned (first) use start date and time dts. Further, the update process is performed so that the content of the usage status information 132 in the storage unit 13 is changed from the current "unused" to "used".
  • the determination unit 246 determines that the use of the defibrillation catheter 1 is "effective", and the display unit 25 displays "Valid device connected” (step S309).
  • the execution permission unit 247 activates the reception of the operation for executing the defibrillation described above (step S310).
  • the series of processes (process for determining the effectiveness of use) shown in FIG. 8 is completed, and the process proceeds to step S12 in FIG. 7 described above.
  • the connection confirmation process of the defibrillation catheter 1 described above may also be performed at a time point after step S309 described above.
  • step S307: N when it is determined that the content of the usage status information 132 described above indicates "in use” (step S307: N), then the out-licensing unit 244 in the power supply device 2 is described as follows. Then, the above-mentioned elapsed time ⁇ t1 (elapsed time from the start of use of the defibrillation catheter 1) is derived (step S311). That is, the derivation unit 244 derives such an elapsed time ⁇ t1 by using the date and time information Idt2 at that time and the read date and time information 133 (use start date and time dts).
  • the process may proceed to step S305 described above. That is, the use of the defibrillation catheter 1 may be determined to be "invalid” and may be displayed as "Invalid device connected" on the display unit 25.
  • the determination unit 246 determines whether or not the elapsed time ⁇ t1 thus derived is within the above-mentioned threshold time ⁇ tth1 (whether or not ⁇ t1 ⁇ ⁇ tth1 is satisfied) (step S312). ..
  • An example of this threshold time ⁇ th1 is 24 hours (1 day), but the present invention is not limited to this example, and any value can be set.
  • step S312 Y
  • the process proceeds to step S309 described above. That is, even in this case, it is determined that the use of the defibrillation catheter 1 is "effective", and "Valid device connected" is displayed on the display unit 25. Then, after the acceptance of the operation for executing the defibrillation is enabled (step S310), the process proceeds to step S12 of FIG. 7 described above.
  • step S312: N when it is determined that the elapsed time ⁇ t1 exceeds the threshold time ⁇ th1 (satisfies ⁇ t1> ⁇ th1) (step S312: N), the following processing is then performed. That is, in the storage unit 13 in the defibrillation catheter 1, the update process is performed so that the content of the usage status information 132 is changed from the current "in use” to "prohibition of use” (step S313). Then, the determination unit 246 determines that the use of the defibrillation catheter 1 is "invalid" when the period expires, and displays "Expiry device connected" on the display unit 25 (step S314). After that, the process proceeds to step S306 described above.
  • the power supply device 2 is provided with a clock unit 243a for outputting the date and time information Idt1 and a clock unit 243b for outputting the date and time information Idt2, respectively.
  • the date and time information Idt1 is information whose settings can be changed at any time according to the operation by the operator, while the date and time information Idt2 is restricted from changing the settings according to the operation by the operator. Therefore, by utilizing these two types of date and time information Idt1 and Idt2, in this catheter system (defibrillation catheter system 3), for example, various processes as described above can be easily realized. Therefore, in the present embodiment, it is possible to improve the convenience of the defibrillation catheter system 3.
  • the setting of the date and time information Idt2 when the setting of the date and time information Idt2 can be changed according to the operation by the operator only when the power supply device 2 is started for the first time, it is as follows. Become. That is, since the setting change for the date and time information Idt2 is permitted only at the first startup of the power supply device 2, the tolerance of the setting change is maintained while maintaining the restriction of the setting change after the first startup. Will be secured at a minimum. Therefore, such date and time information Idt2 becomes easy to use, and various processes in the defibrillation catheter system 3 can be realized more easily. As a result, it is possible to further improve convenience.
  • the date and time information Idt1 in the clock unit 243a is the date and time information set in another device different from the power supply device 2 (for example, the date and time information set in the electrocardiograph 4).
  • the result is as follows. That is, for example, the process using the date and time information Idt1 in the power supply device 2 can be executed while synchronizing with the process using the date and time information (for example, the date and time information Idt3) in another device. As a result, it is possible to further improve convenience.
  • the lead-out unit 244 for deriving the elapsed time ⁇ t1 and ⁇ t2 described above is provided in the power supply device 2, so that the result is as follows. That is, by using the elapsed time ⁇ t2 (the elapsed time of the power supply device 2 from the initial setting of the date and time information Idt2), for example, the maintenance time of the power supply device 2 itself and its internal parts (for example, a battery) can be grasped.
  • the display unit 25, the voice output unit 26, and the like can be used to give a notification (warning, etc.) to the operator (user).
  • the elapsed time ⁇ t2 exceeds the above-mentioned notification threshold value ⁇ ts2 ( ⁇ t2> ⁇ th2)
  • a notification operation warning operation or the like
  • the elapsed time ⁇ t1 the elapsed time from the start of use of the defibrillation catheter 1
  • the expiration date of the defibrillation catheter 1 can be grasped, and the defibrillation catheter 1 can be used. It is possible to limit it. As a result, it is possible to further improve convenience.
  • the unique identification information 131 held in the defibrillation catheter 1 is read out on the power supply device 2 side, and the defibrillation catheter is based on the unique identification information 131. Since the effectiveness regarding the use of 1 is judged, it becomes as follows. That is, by utilizing the unique identification information 131 in the defibrillation catheter 1, it becomes possible to easily obtain a determination result as to whether or not the use of the defibrillation catheter 1 is effective.
  • defibrillation catheters generally apply electrical energy directly to the fibrillated heart, so non-regular defibrillation catheters (eg, degraded products, counterfeit products, etc.) ) May not provide effective defibrillation treatment.
  • non-regular defibrillation catheters eg, degraded products, counterfeit products, etc.
  • a very high DC voltage corresponding to the above-mentioned DC voltage Vdc
  • Vdc DC voltage
  • the present embodiment as described above, it becomes possible to easily obtain a determination result as to whether or not the use of the defibrillation catheter 1 is effective, and thus such an irregularity.
  • the use of the defibrillation catheter 1 can be effectively eliminated. Therefore, in this embodiment, it is possible to improve the convenience of the defibrillation catheter system 3 in this respect as well.
  • the determination unit 246 determines that the above-mentioned identification information 131 is non-regular information, it determines that the use of the defibrillation catheter 1 is invalid, and the identification information.
  • the effectiveness regarding the use of the defibrillation catheter 1 is determined in consideration of the above-mentioned elapsed time ⁇ t1, and the elapsed time ⁇ t1 is within the threshold time ⁇ tth1. In some cases, the use of the defibrillation catheter 1 was determined to be effective, so that the result is as follows.
  • the effectiveness of using the defibrillation catheter 1 is determined in consideration of the elapsed time ⁇ t1 (the elapsed time from the start of use of the defibrillation catheter 1). Therefore, the effectiveness of use can be judged more effectively. As a result, it is possible to further improve convenience.
  • the defibrillation catheter 1 when the above-mentioned identification information 131 is determined to be legitimate information and the above-mentioned elapsed time ⁇ t1 exceeds the threshold time ⁇ th1, the defibrillation catheter 1 is used. Is determined to be invalid, so it becomes as follows. That is, even if the identification information 131 is legitimate information, if the elapsed time ⁇ t1 exceeds the threshold time ⁇ th1, it is determined that the use of the defibrillation catheter 1 is invalid, and therefore the expiration date is exceeded. It becomes possible to effectively eliminate the use of the defibrillation catheter 1 which is a deteriorated product. As a result, the convenience can be further improved.
  • the usage status information 132 of the defibrillation catheter 1 held in the defibrillation catheter 1 is read out, and the above-mentioned identification information 131 is legitimate information. If it is determined that there is, and the read usage status information 132 indicates that it is not in use, it is determined that the use of the defibrillation catheter 1 is effective, and the read usage status information is read.
  • the effectiveness regarding the use of the defibrillation catheter 1 is determined in consideration of the elapsed time ⁇ t1 described above, so that the result is as follows.
  • the defibrillation catheter 1 is used in consideration of the elapsed time ⁇ t1 (the elapsed time from the start of use of the defibrillation catheter 1). Since the effectiveness regarding the use is determined, the effectiveness regarding the use can be determined more effectively. As a result, it is possible to further improve convenience.
  • the power supply device 2 is provided with an execution permission unit 247 that enables the reception of the operation by the operator (the operation for executing the power supply by the power supply unit 22) at the input unit 21. Since I made it so, it becomes as follows. That is, the operator (user) can easily grasp the determination result by the determination unit 246.
  • the encrypted information when used as the identification information 131 described above, the result is as follows. That is, since the above-mentioned identification information 131 is encrypted information, the confidentiality (confidentiality) of the identification information 131 is increased, and for example, misuse of the identification information 131 by another person can be easily prevented. become. As a result, it is possible to further improve convenience.
  • FIG. 12 is a flow chart showing a detailed processing example of the processing for determining the effectiveness of the use of the defibrillation catheter 1 according to the modified example 1.
  • the processing of the portion changed from FIG. 8 described in the embodiment steps S401, S402, S408 described later
  • the processing of the portion related to the processing of the modified portion are extracted. Since the processing of other parts is the same as the processing shown in FIG. 8, the illustration is omitted.
  • step S408 the process of step S408 described below is performed instead of step S308 in the determination process of the embodiment shown in FIG. That is, in the same manner as in step S308, the date and time information Idt2 at that time is written to the storage unit 13 as the (first) use start date and time dts, and the content of the usage status information 132 in the storage unit 13 is changed.
  • the update process is performed so that the current "unused” is changed to "in use”.
  • the renewal process is performed so that the value of the number of times N of the defibrillation catheter 1 used in the storage unit 13 becomes "+1" (increases by one).
  • step S312 when it is determined in step S312 described above that the elapsed time ⁇ t1 described above exceeds the threshold time ⁇ th1 (step S312: N), then the following process is performed. Is done. That is, in this modification, unlike the embodiment (FIG. 8), the content of the usage status information 132 is not immediately changed from "in use” to "prohibited to use”. Specifically, in this case, the determination unit 246 then determines whether or not the number of uses N read in step S302 is within the above-mentioned threshold number Nth (whether or not N ⁇ Nth is satisfied). The determination is made (step S401).
  • An example of the threshold number Nth is 5 times, but the present invention is not limited to this example, and any value can be set.
  • step S401: Y when it is determined that the number of uses N is within the threshold number Nth (satisfying N ⁇ Nth) (step S401: Y), the following processes are then performed (step S402). .. That is, first, the renewal process is performed so that the value of the number of times of use N in the storage unit 13 of the defibrillation catheter 1 becomes "+1". Further, the date and time information Idt2 at that time overwrites the storage unit 13 (overwrites the above-mentioned use date and time information 133) as the above-mentioned (first) use start date and time dts.
  • step S311 By overwriting the use start date and time dts in this way, when the defibrillation catheter 1 is connected next time, the above-mentioned progress is made by using the use start date and time dts after the overwriting in step S311.
  • the time ⁇ t1 elapsed time from the start of use of the defibrillation catheter 1 will be derived.
  • step S312: Y if the elapsed time ⁇ t1 is within the threshold time ⁇ tth1 (step S312: Y), it is determined that the use of the defibrillation catheter 1 is “effective” (step S309). become.
  • step S402 the process proceeds to the above-mentioned step S309. That is, it is determined that the use of the defibrillation catheter 1 is "effective", and "Valid device connected" is displayed on the display unit 25. Then, after the acceptance of the operation for executing defibrillation is enabled (step S310), the series of processes shown in FIG. 12 (determination process of effectiveness of use) is completed, and the step of FIG. 7 described above is completed. It will proceed to S12.
  • step S401: N if it is determined that the number of uses N exceeds the threshold number Nth (satisfies N> Nth) (step S401: N), the process proceeds to step S313 described above. That is, in the storage unit 13 in the defibrillation catheter 1, the update process is performed so that the content of the usage status information 132 is changed from the current "in use” to "prohibition of use”. After that, the process proceeds to step S314 described above. That is, the use of the defibrillation catheter 1 is determined to be "invalid" by the expiration of the period, and "Expiry device connected" is displayed on the display unit 25.
  • the execution permission unit 247 maintains the invalidation of the reception of the operation for executing the defibrillation (step S306 described above), and then returns to the step S300 described above to confirm the connection of the defibrillation catheter 1. The process will be performed again.
  • the information on the number of times N of the defibrillation catheter 1 used in the defibrillation catheter 1 is read out, and the identification information 131 is regular information. If it is determined that there is, and the above-mentioned elapsed time ⁇ t1 exceeds the threshold time ⁇ tth1, the defibrillation catheter 1 is taken into consideration in consideration of the information of the number of times N of the defibrillation catheter 1 that has been read out. Since the validity of the use of is judged, it becomes as follows.
  • the defibrillation catheter 1 is used. Taking into account the information on the number of times N, the effectiveness of the defibrillation catheter 1 for use will be determined. Therefore, the effectiveness regarding the use of the defibrillation catheter 1 can be more effectively determined by adding the information of both the elapsed time ⁇ t1 and the number of times of use N. As a result, in this modified example, it is possible to further improve the convenience.
  • the convenience can be further improved.
  • step S311 in FIG. 12 the above-mentioned elapsed time ⁇ t1 (defibrillation catheter 1) is used instead of the above-mentioned (first) use start date and time dts. Elapsed time from the start of use) is derived. That is, in this modification 2, instead of the above-mentioned use start date and time dts, the "latest" in the storage unit 13 of the above-mentioned second and subsequent use start date and time dts (at the time of each connection) (see FIG. 5).
  • the above-mentioned use start date and time dtn is set as follows at the time when the value of the number of times N (see FIG. 5) of the defibrillation catheter 1 used is increased by 1 (becomes "+1"). It is designed to be written in the storage unit 13. That is, the date and time information Idt2 at such a time point is written to the storage unit 13 (writing to the above-mentioned use date and time information 133) as the use start date and time dtn. This point is the same in the modified example 3 described below.
  • the above-mentioned elapsed time ⁇ t1 is derived by using the following information instead of the (first) use start date and time dts. That is, in this modification 3, instead of the use start date and time dts, the “number of times the defibrillation catheter 1 is used N (FIG.
  • the information of "dt4" which is the start date and time of use corresponding to the number of times of use N is used. Using this, the elapsed time ⁇ t1 is derived.
  • step S312 Y
  • step S309 the use of the defibrillation catheter 1 is determined to be "effective" (step S309), and the acceptance of the operation for performing the defibrillation is activated (step S310).
  • each member described in the above-described embodiment and the like are not limited, and other materials may be used.
  • the configuration of the defibrillation catheter 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided.
  • a leaf spring that can be deformed in the bending direction may be provided as a swinging member inside the shaft 11.
  • the configuration of the electrodes on the shaft 11 is not limited to those mentioned in the above-described embodiment.
  • each member in the defibrillation catheter 1 is not limited to that described in the above embodiment, but may be other shapes, arrangements, materials, numbers, etc. There may be.
  • the values, ranges, magnitude relationships, etc. of the various parameters described in the above-described embodiment are not limited to those described in the above-described embodiments, but are other values, ranges, magnitude relationships, etc. May be good.
  • a defibrillation catheter of a type in which the shape of the shaft 11 in the vicinity of the tip region P1 changes in one direction in response to an operation with the handle 12 has been described as an example. Is not limited. That is, the present invention can be applied to, for example, a type of defibrillation catheter in which the shape of the shaft 11 near the tip region P1 changes in both directions in response to an operation with the handle 12. A plurality of operating wires will be used. The present invention can also be applied to a type of defibrillation catheter in which the shape of the shaft 11 near the tip region P1 is fixed. In this case, an operation wire, a rotating plate 122, etc. Is no longer needed. That is, the handle is composed of only the handle body 121.
  • the biological measurement mechanism 6 is configured by using a plurality of electrode pads (electrode pads 61)
  • the present invention is not limited to this example. That is, for example, another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1 may be used as the biometric measurement mechanism.
  • the block configuration of the power supply device 2 has been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like, and other blocks are provided. Further may be provided. Further, the switching operation of the supply path by the switching unit 23 in the power supply device 2 is not limited to the switching operation described in the above-described embodiment and the like, and may be a switching operation using another method. Further, the defibrillation catheter system 3 as a whole may further include other devices in addition to the devices described in the above-described embodiments and the like. Specifically, for example, in some cases, the electrocardiograph 4 and the biometric measurement mechanism 6 (electrode pad 61) may be included in the defibrillation catheter system.
  • the method for restricting the setting change of the date and time information Idt2 according to the operation by the operator is not limited to the method described in the above-described embodiment or the like, and other methods are used to restrict such setting change. You may try to do it. Further, the usage method of the date and time information Idt1 and Idt2 is not limited to the example of the usage method described in the above-described embodiment and the like (see FIG. 4), and other usage methods may be applied.
  • the method of the determination process regarding the effectiveness of the use of the defibrillation catheter 1 in the determination unit 246 has been specifically described and described, but the method is not limited to this example and is not limited to other methods. May be used to perform a determination process relating to the effectiveness of the use of the defibrillation catheter 1.
  • the types of various data read by the reading unit 245 and the types of various data held in the storage units 13 and 242 are not limited to those described in the above-described embodiment and the like, and other types are also used. It may be the data of.
  • the power is supplied from the power supply unit 22 as described in the above embodiment or the like. It is not limited to the processing (for defibrillation execution). That is, for example, both the process for executing such defibrillation and the process for predetermined potential measurement (electrocardiographic measurement, etc.) may be permitted to be executed by the execution permission unit 247.
  • an electrode catheter (defibrillation catheter 1) that is inserted into the heart chamber of the patient 9 to perform electrical defibrillation.
  • other types of “medical devices having electrodes” for example, ablation devices such as electrode catheters and electrode needles used for ablation of affected areas
  • ablation devices such as electrode catheters and electrode needles used for ablation of affected areas
  • the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program).
  • the software is composed of a group of programs for executing each function by a computer.
  • Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is a medical device system that can improve convenience. A medical device system (a defibrillation catheter system 3) that comprises: a medical device (a defibrillation catheter 1) that has an electrode; and a power supply device 2 that supplies power to the medical device. The power supply device 2 has a power supply unit 22 that supplies the power, a first clock unit (clock unit 243a) that outputs first date and time information (date and time information Idt1) to which setting changes can be made at any time in response to operations by an operator, and a second clock unit (clock unit 243b) that outputs second date and time information (date and time information Idt2) for which setting changes in response to operations by the operator are restricted.

Description

医療デバイスシステムMedical device system
 本発明は、電極を有する医療デバイスと、この医療デバイスに対して電力供給を行う電源装置とを備えた、医療デバイスシステムに関する。 The present invention relates to a medical device system including a medical device having electrodes and a power supply device for supplying electric power to the medical device.
 電極を有する医療デバイスを備えた医療デバイスシステムの一例として、以下のような除細動カテーテルシステムが挙げられる(例えば、特許文献1参照)。具体的には、例えば心臓カテーテル術中に生じた心房細動を除去する(電気的な除細動を行う)ための医療機器の1つとして、除細動カテーテルシステムが開発されている。この除細動カテーテルシステムは、心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルに対して除細動の際の電力供給を行う電源装置とを備えている。このような除細動カテーテルシステムを用いることで、心房細動を起こした心臓に対し、心腔内で直接的に電気的刺激(例えば直流電圧からなる電気的エネルギー)が付与される結果、効果的な除細動治療が実現されるようになっている。 An example of a medical device system including a medical device having electrodes is the following defibrillation catheter system (see, for example, Patent Document 1). Specifically, for example, a defibrillation catheter system has been developed as one of medical devices for removing atrial fibrillation (performing electrical defibrillation) generated during cardiac catheterization. This defibrillation catheter system comprises a defibrillation catheter that is inserted into the heart cavity to perform defibrillation and a power supply that supplies power to the defibrillation catheter during defibrillation. There is. By using such a defibrillation catheter system, the heart that has undergone atrial fibrillation is directly subjected to electrical stimulation (for example, electrical energy consisting of DC voltage) in the heart chamber, and as a result, the effect is obtained. Defibrillation treatment has come to be realized.
特開2017-213444号公報Japanese Unexamined Patent Publication No. 2017-213444
 ところで、上記した除細動カテーテルシステム等の医療デバイスシステムでは一般に、例えば、使用する際の利便性を向上することが求められている。利便性を向上させることが可能な医療デバイスシステムを提供することが望ましい。 By the way, medical device systems such as the defibrillation catheter system described above are generally required to improve convenience when used, for example. It is desirable to provide a medical device system that can improve convenience.
 本発明の一実施の形態に係る医療デバイスシステムは、電極を有する医療デバイスと、この医療デバイスに対して電力供給を行う電源装置とを備えたものである。この電源装置は、上記電力供給を行う電源部と、操作者による操作に応じて随時に設定変更が可能な、第1の日時情報を出力する第1の時計部と、上記操作者による操作に応じた設定変更が制限されている、第2の日時情報を出力する第2の時計部と、を有している。 The medical device system according to the embodiment of the present invention includes a medical device having electrodes and a power supply device that supplies electric power to the medical device. This power supply device has a power supply unit that supplies power, a first clock unit that outputs date and time information that can be changed at any time according to an operation by the operator, and an operation by the operator. It has a second clock unit that outputs a second date and time information, for which setting changes are restricted accordingly.
 本発明の一実施の形態に係る医療デバイスシステムでは、上記第1の日時情報を出力する第1の時計部と、上記第2の日時情報を出力する第2の時計部とがそれぞれ、上記電源装置に設けられている。上記第1の日時情報は、操作者による操作に応じて随時に設定変更が可能な情報である一方、上記第2の日時情報は、操作者による操作に応じた設定変更が制限されていることから、このような2種類の日時情報(上記第1および第2の日時情報)を利用して、この医療デバイスシステムにおいて、多様な処理が容易に実現可能となる。 In the medical device system according to the embodiment of the present invention, the first clock unit that outputs the first date and time information and the second clock unit that outputs the second date and time information are the power supplies, respectively. It is provided in the device. The first date and time information is information whose settings can be changed at any time according to the operation by the operator, while the second date and time information is restricted from changing the settings according to the operation by the operator. Therefore, various processes can be easily realized in this medical device system by using such two types of date and time information (the first and second date and time information).
 本発明の一実施の形態に係る医療デバイスシステムでは、上記第2の日時情報については、上記操作者による操作に応じた設定変更が、上記電源装置の初回起動時に限って可能となっているようにしてもよい。このようにした場合、上記第2の日時情報についての上記設定変更が、上記電源装置の初回起動時に限っては許容されていることから、そのような初回起動後における上記設定変更の制限は維持しつつ、上記設定変更の許容性も最低限は確保されることになる。その結果、上記第2の日時情報が利用し易くなり、この医療デバイスシステムにおける多様な処理が、更に容易に実現可能となることから、利便性の更なる向上が図られる。また、上記第2の日時情報については、上記操作者による操作に応じた設定変更が、一切不可能となっているようにしてもよい。このようにした場合、上記第2の日時情報についての上記設定変更が、完全に制限されることから、そのような第2の日時情報についての上記設定変更の制限を利用した処理が、実現し易くなる。その結果、利便性の更なる向上が図られる。 In the medical device system according to the embodiment of the present invention, it seems that the setting of the second date and time information can be changed according to the operation by the operator only when the power supply device is started for the first time. It may be. In this case, since the above setting change for the second date and time information is allowed only at the first startup of the power supply device, the restriction of the above setting change after the first startup is maintained. At the same time, the tolerance for changing the above settings will be ensured at a minimum. As a result, the second date and time information becomes easy to use, and various processes in this medical device system can be realized more easily, so that the convenience can be further improved. Further, regarding the second date and time information, it may be impossible to change the setting according to the operation by the operator. In this case, since the above setting change for the second date and time information is completely restricted, the process using the restriction of the above setting change for the second date and time information is realized. It will be easier. As a result, the convenience is further improved.
 本発明の一実施の形態に係る医療デバイスシステムでは、上記第1の時計部において、上記第1の日時情報が、上記電源装置とは異なる他の機器(例えば心電計など)内で設定されている第3の日時情報と一致するように設定可能となっていてもよい。このようにした場合、例えば、上記電源装置内での上記第1の日時情報を利用した処理を、上記他の機器内での上記第3の日時情報を利用した処理と同期させつつ、実行できるようになる。その結果、利便性の更なる向上が図られる。 In the medical device system according to the embodiment of the present invention, in the first clock unit, the first date and time information is set in another device (for example, an electrocardiograph) different from the power supply device. It may be possible to set so as to match the third date and time information. In this case, for example, the process using the first date and time information in the power supply device can be executed while synchronizing with the process using the third date and time information in the other device. Will be. As a result, the convenience is further improved.
 また、上記電源装置が、上記第2の日時情報を利用して、上記第2の日時情報の初期設定時からの上記電源装置の経過時間(第1の経過時間)と、上記医療デバイスの使用開始時からの経過時間(第2の経過時間)と、のうちの少なくとも一方を導出する、導出部を更に有しているようにしてもよい。このようにした場合、上記第1の経過時間を利用して、例えば、上記電源装置自体やその内部部品等のメンテナンス時期などを把握したり、操作者(ユーザ)に報知(警告など)をしたりすることが可能となる。また、上記第2の経過時間を利用して、例えば、上記医療デバイスの使用期限を把握して、その医療デバイスの使用を制限したりすることが可能となる。これらの結果、利便性の更なる向上が図られる。 Further, the power supply device uses the second date and time information to obtain the elapsed time (first elapsed time) of the power supply device from the initial setting of the second date and time information and the use of the medical device. It may further have a derivation unit that derives at least one of the elapsed time from the start (second elapsed time). In this case, the first elapsed time is used to grasp, for example, the maintenance time of the power supply unit itself and its internal parts, and notify the operator (user) of (warning, etc.). It becomes possible to do. Further, by using the second elapsed time, for example, it is possible to grasp the expiration date of the medical device and limit the use of the medical device. As a result, the convenience is further improved.
 本発明の一実施の形態に係る医療デバイスシステムでは、上記電源装置が、上記医療デバイス内に保持されている固有の識別情報を読み出す読出部と、この読出部によって読み出された識別情報に基づいて、上記医療デバイスの使用に関する有効性を判定する判定部と、を更に有しているようにしてもよい。このようにした場合、上記医療デバイス内における固有の識別情報を利用して、その医療デバイスの使用が有効なのか否かの判定結果が、容易に得られるようになる。その結果、非正規な医療デバイス(例えば、劣化品や模倣品など)の使用を、効果的に排除できるようになり、利便性の更なる向上が図られる。 In the medical device system according to the embodiment of the present invention, the power supply device is based on a reading unit that reads out unique identification information held in the medical device and the identification information read by the reading unit. Further, it may have a determination unit for determining the effectiveness of the use of the medical device. In this case, the determination result of whether or not the use of the medical device is effective can be easily obtained by using the unique identification information in the medical device. As a result, the use of non-genuine medical devices (for example, deteriorated products and counterfeit products) can be effectively eliminated, and convenience can be further improved.
 なお、上記医療デバイスとしては、例えば、患者の心腔内に挿入されて電気的な除細動を行う、除細動カテーテルなどが挙げられる。 Examples of the medical device include a defibrillation catheter that is inserted into the heart chamber of a patient to perform electrical defibrillation.
 本発明の一実施の形態に係る医療デバイスシステムによれば、上記第1の日時情報を出力する第1の時計部と、上記第2の日時情報を出力する第2の時計部とをそれぞれ、上記電源装置に設けるようにしたので、この医療デバイスシステムにおいて、多様な処理が容易に実現できるようになる。よって、医療デバイスシステムにおける利便性を向上させることが可能となる。 According to the medical device system according to the embodiment of the present invention, the first clock unit that outputs the first date and time information and the second clock unit that outputs the second date and time information are respectively. Since it is provided in the power supply device, various processes can be easily realized in this medical device system. Therefore, it is possible to improve the convenience in the medical device system.
本発明の一実施の形態に係る医療デバイスシステムとしての除細動カテーテルシステムの全体構成例を模式的に表すブロック図である。It is a block diagram which shows typically the whole structure example of the defibrillation catheter system as the medical device system which concerns on one Embodiment of this invention. 図1に示した除細動カテーテルの概略構成例を表す模式図である。It is a schematic diagram which shows the schematic structure example of the defibrillation catheter shown in FIG. 図2に示したII-II線に沿ったシャフトの断面構成例を表す模式図である。It is a schematic diagram which shows the cross-sectional composition example of the shaft along the line II-II shown in FIG. 図1に示した2種類の時計部および日時情報について説明するための図である。It is a figure for demonstrating two kinds of clock part and date and time information shown in FIG. 図1に示した除細動カテーテル内の記憶部に保持されている各種データの一例を表すブロック図である。It is a block diagram which shows an example of various data held in the storage part in the defibrillation catheter shown in FIG. 図1に示した電源装置内の記憶部に保持されている各種データの一例を表すブロック図である。It is a block diagram which shows an example of various data held in the storage part in the power supply apparatus shown in FIG. 実施の形態に係る除細動処理の全体処理例を表す流れ図である。It is a flow chart which shows the whole processing example of the defibrillation processing which concerns on embodiment. 図7中に示した使用の有効性の判定処理における詳細処理例を表す流れ図である。It is a flow chart which shows the detailed processing example in the determination processing of the effectiveness of use shown in FIG. 図7に示した心電位測定の際の動作状態例を模式的に表すブロック図である。It is a block diagram which shows typically the example of the operation state at the time of the electrocardiographic potential measurement shown in FIG. 図7に示した抵抗測定の際の動作状態例を模式的に表すブロック図である。It is a block diagram which shows typically the example of the operation state at the time of resistance measurement shown in FIG. 図7に示した除細動実行の際の動作状態例を模式的に表すブロック図である。It is a block diagram which shows typically the example of the operation state at the time of defibrillation execution shown in FIG. 7. 変形例1に係る使用の有効性の判定処理の詳細処理例を表す流れ図である。It is a flow chart which shows the detailed processing example of the determination processing of the effectiveness of use which concerns on modification 1. FIG.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(医療デバイスの使用回数の情報を考慮しない判定処理の場合の例)
2.変形例1~3(医療デバイスの使用回数の情報も考慮した判定処理の場合の例)
3.その他の変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The explanation will be given in the following order.
1. 1. Embodiment (Example in the case of determination processing that does not consider the information on the number of times the medical device has been used)
2. Modifications 1 to 3 (Example in the case of judgment processing considering the information on the number of times the medical device has been used)
3. 3. Other variants
<1.実施の形態>
[全体構成]
 図1は、本発明の一実施の形態に係る医療デバイスシステム(除細動カテーテルシステム3)の全体構成例を、模式的にブロック図で表したものである。この除細動カテーテルシステム3は、例えば心臓カテーテル術中において患者(この例では患者9)に生じた心房細動を除去する(電気的な除細動を行う)際などに用いられるシステムである。
<1. Embodiment>
[overall structure]
FIG. 1 is a schematic block diagram showing an overall configuration example of a medical device system (defibrillation catheter system 3) according to an embodiment of the present invention. This defibrillation catheter system 3 is a system used, for example, when removing atrial fibrillation (performing electrical defibrillation) that has occurred in a patient (patient 9 in this example) during cardiac catheterization.
 除細動カテーテルシステム3は、図1に示したように、除細動カテーテル1および電源装置2を備えている。また、この除細動カテーテルシステム3を用いた除細動等の際には、例えば図1に示したように、心電計4、心電図表示装置5(波形表示装置)および生体測定機構6についても、適宜、用いられるようになっている。 As shown in FIG. 1, the defibrillation catheter system 3 includes a defibrillation catheter 1 and a power supply device 2. Further, when defibrillation or the like using the defibrillation catheter system 3 is performed, for example, as shown in FIG. 1, the electrocardiograph 4, the electrocardiogram display device 5 (waveform display device), and the biometric measurement mechanism 6 are used. Is also used as appropriate.
 ここで、除細動カテーテルシステム3は、本発明における「医療デバイスシステム」の一具体例に対応している。また、除細動カテーテル1は、本発明における「電極を有する医療デバイス」の一具体例に対応している。 Here, the defibrillation catheter system 3 corresponds to a specific example of the "medical device system" in the present invention. Further, the defibrillation catheter 1 corresponds to a specific example of the "medical device having an electrode" in the present invention.
(A.除細動カテーテル1)
 除細動カテーテル1は、血管を通して患者9の体内(心腔内)に挿入されて、電気的な除細動を行うための電極カテーテルである。図2は、この除細動カテーテル1の概略構成例を、模式的に表したものである。除細動カテーテル1は、カテーテル本体としてのシャフト11(カテーテルシャフト)と、このシャフト11の基端に装着されたハンドル12と、後述する各種データが保持(記憶)されている記憶部13とを有している。
(A. Defibrillation catheter 1)
The defibrillation catheter 1 is an electrode catheter that is inserted into the body (intracardiac space) of the patient 9 through a blood vessel to perform electrical defibrillation. FIG. 2 schematically shows a schematic configuration example of the defibrillation catheter 1. The defibrillation catheter 1 has a shaft 11 (catheter shaft) as a catheter body, a handle 12 attached to the base end of the shaft 11, and a storage unit 13 that holds (stores) various data described later. Have.
(シャフト11)
 シャフト11は、可撓性を有する絶縁性の管状構造(管状部材,チューブ部材)からなり、自身の軸方向(Z軸方向)に沿って延伸する形状となっている。また、シャフト11は、自身の軸方向に沿って延在するように内部に複数のルーメン(細孔,貫通孔)が形成された、いわゆるマルチルーメン構造を有している。各ルーメンには、詳細は後述するが、各種の細線(導線や操作用ワイヤ等)がそれぞれ、互いに電気的に絶縁された状態で挿通されている。なお、このシャフト11の外径は、例えば1.2mm~3.3mm程度である。
(Shaft 11)
The shaft 11 has a flexible and insulating tubular structure (tubular member, tube member), and has a shape extending along its own axial direction (Z-axis direction). Further, the shaft 11 has a so-called multi-lumen structure in which a plurality of lumens (pores, through holes) are formed therein so as to extend along its own axial direction. Although details will be described later, various thin wires (conductors, operating wires, etc.) are inserted into each lumen in a state of being electrically insulated from each other. The outer diameter of the shaft 11 is, for example, about 1.2 mm to 3.3 mm.
 このようなシャフト11の先端領域P1には、例えば図2に示したように、複数の電極(先端電極110およびリング状電極111,112,113)が設けられている。具体的には、シャフト11の軸方向に沿って、1つの先端電極110および複数のリング状電極111,112,113がそれぞれ、シャフト11の先端側から基端側へ向けて、この順で所定の間隔をおいて配置されている。リング状電極111,112,113はそれぞれ、シャフト11の外周面上に固定配置される一方、先端電極110は、シャフト11の最先端に固定配置されている。また、図2に示したように、互いに間隔をおいて配置された複数のリング状電極111によって、電極群111Gが構成されている。同様に、互いに間隔をおいて配置された複数のリング状電極112によって、電極群112Gが構成され、互いに間隔をおいて配置された複数のリング状電極113によって、電極群113Gが構成されている。 As shown in FIG. 2, for example, a plurality of electrodes (tip electrode 110 and ring-shaped electrodes 111, 112, 113) are provided in the tip region P1 of such a shaft 11. Specifically, one tip electrode 110 and a plurality of ring-shaped electrodes 111, 112, 113 are predetermined in this order from the tip side to the base end side of the shaft 11, respectively, along the axial direction of the shaft 11. Are arranged at intervals of. The ring-shaped electrodes 111, 112, and 113 are fixedly arranged on the outer peripheral surface of the shaft 11, respectively, while the tip electrode 110 is fixedly arranged at the tip of the shaft 11. Further, as shown in FIG. 2, the electrode group 111G is composed of a plurality of ring-shaped electrodes 111 arranged at intervals from each other. Similarly, a plurality of ring-shaped electrodes 112 arranged at intervals from each other constitute an electrode group 112G, and a plurality of ring-shaped electrodes 113 arranged at intervals from each other constitute an electrode group 113G. ..
 なお、ここで言う「電極群」とは、同一の極を構成し(同一の極性を有し)、または、同一の目的を持って、狭い間隔(例えば5mm以下)で装着された複数の電極の集合体を意味しており、以下同様である。また、電極群111G(基端側のリング状電極111)と、電極群112G(先端側のリング状電極112)との離間距離は、例えば40~100mm程度であることが好ましく、好適な一例を示せば、66mmである。 The "electrode group" referred to here is a plurality of electrodes that form the same pole (have the same polarity) or have the same purpose and are mounted at narrow intervals (for example, 5 mm or less). It means an aggregate of, and the same applies hereinafter. Further, the separation distance between the electrode group 111G (ring-shaped electrode 111 on the proximal end side) and the electrode group 112G (ring-shaped electrode 112 on the distal end side) is preferably, for example, about 40 to 100 mm, which is a preferable example. If shown, it is 66 mm.
 リング状電極111,112,113はそれぞれ、詳細は後述するが、シャフト11のルーメン内に挿通された複数の導線(リード線)を介して、ハンドル12と電気的に接続されている。一方、この例では先端電極110には、導線が接続されていないようになっている。ただし、この先端電極110にも導線が接続されているようにしてもよい。 The ring-shaped electrodes 111, 112, and 113 are electrically connected to the handle 12 via a plurality of conductors (lead wires) inserted into the lumen of the shaft 11, although details will be described later. On the other hand, in this example, the lead wire is not connected to the tip electrode 110. However, a conducting wire may be connected to the tip electrode 110 as well.
 このような先端電極110およびリング状電極111,112,113はそれぞれ、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、金(Au)、白金(Pt)等の、電気伝導性の良好な金属材料、あるいは、各種の樹脂材料により構成されている。なお、除細動カテーテル1の使用時におけるX線に対する造影性を良好にするためには、これらの先端電極110およびリング状電極111,112,113がそれぞれ、白金またはその合金により構成されていることが好ましい。 Such tip electrodes 110 and ring-shaped electrodes 111, 112, 113 are electrically conductive, for example, aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), etc., respectively. It is composed of a metal material having good properties or various resin materials. In order to improve the contrast with respect to X-rays when the defibrillation catheter 1 is used, these tip electrodes 110 and ring-shaped electrodes 111, 112, 113 are each made of platinum or an alloy thereof. Is preferable.
 ここで、上記した電極群111Gは、同一の極(-極または+極)を構成することになる、複数のリング状電極111からなる。この電極群111Gを構成するリング状電極111の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個であり、好ましくは8~10個である。また、リング状電極111の幅(軸方向の長さ)は、例えば2~5mm程度であることが好ましく、好適な一例を示せば、4mmである。リング状電極111の装着間隔(隣り合う電極の離間距離)は、例えば1~5mm程度であることが好ましく、好適な一例を示せば、2mmである。なお、除細動カテーテル1の使用時(心腔内に配置されるとき)において、この電極群111Gは、例えば冠状静脈内に位置するようになっている。 Here, the above-mentioned electrode group 111G is composed of a plurality of ring-shaped electrodes 111 that form the same pole (-pole or + pole). The number of ring-shaped electrodes 111 constituting the electrode group 111G varies depending on the width of the electrodes and the arrangement interval, but is, for example, 4 to 13, preferably 8 to 10. The width (length in the axial direction) of the ring-shaped electrode 111 is preferably, for example, about 2 to 5 mm, and a suitable example is 4 mm. The mounting interval of the ring-shaped electrodes 111 (separation distance between adjacent electrodes) is preferably, for example, about 1 to 5 mm, and a preferable example is 2 mm. When the defibrillation catheter 1 is used (when it is placed in the heart chamber), the electrode group 111G is located in, for example, a coronary vein.
 電極群112Gは、上記した電極群111Gとは逆の極(+極または-極)を構成することになる、複数のリング状電極112からなる。この電極群112Gを構成するリング状電極112の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個であり、好ましくは8~10個である。また、リング状電極112の幅(軸方向の長さ)は、例えば2~5mm程度であることが好ましく、好適な一例を示せば、4mmである。リング状電極112の装着間隔(隣り合う電極の離間距離)は、例えば1~5mm程度であることが好ましく、好適な一例を示せば、2mmである。なお、除細動カテーテル1の使用時(心腔内に配置されるとき)において、この電極群112Gは、例えば右心房に位置するようになっている。 The electrode group 112G is composed of a plurality of ring-shaped electrodes 112 that form poles (+ poles or-poles) opposite to those of the electrode group 111G described above. The number of ring-shaped electrodes 112 constituting the electrode group 112G varies depending on the width of the electrodes and the arrangement interval, but is, for example, 4 to 13, preferably 8 to 10. The width (length in the axial direction) of the ring-shaped electrode 112 is preferably, for example, about 2 to 5 mm, and a suitable example is 4 mm. The mounting interval of the ring-shaped electrodes 112 (separation distance between adjacent electrodes) is preferably, for example, about 1 to 5 mm, and a preferable example is 2 mm. When the defibrillation catheter 1 is used (when it is placed in the heart chamber), the electrode group 112G is located in the right atrium, for example.
 電極群113Gは、この例では、4個のリング状電極113から構成されている。このリング状電極113の幅(軸方向の長さ)は、例えば0.5~2.0mm程度であることが好ましく、好適な一例を示せば、1.2mmである。リング状電極113の装着間隔(隣り合う電極の離間距離)は、例えば1.0~10.0mm程度であることが好ましく、好適な一例を示せば、5mmである。なお、除細動カテーテル1の使用時(心腔内に配置されるとき)において、この電極群113Gは、例えば、異常電位が発生しやすい上大静脈に位置するようになっている。 In this example, the electrode group 113G is composed of four ring-shaped electrodes 113. The width (length in the axial direction) of the ring-shaped electrode 113 is preferably, for example, about 0.5 to 2.0 mm, and a suitable example is 1.2 mm. The mounting interval of the ring-shaped electrodes 113 (separation distance between adjacent electrodes) is preferably, for example, about 1.0 to 10.0 mm, and a preferable example is 5 mm. When the defibrillation catheter 1 is used (when it is placed in the heart chamber), the electrode group 113G is located in the superior vena cava where an abnormal potential is likely to occur, for example.
 図3は、図2中のII-II線に沿ったシャフト11の断面構成例(X-Y断面構成例)を、模式的に表したものである。この例では図3に示したように、シャフト11は、アウター部70(シェル部)、素線71、インナー部72(コア部)および樹脂層73を有するマルチルーメン構造となっている。具体的には、このシャフト11には、互いに分離した4つのルーメンL1~L4が形成されている。 FIG. 3 schematically shows a cross-sectional configuration example (XY cross-sectional configuration example) of the shaft 11 along the line II-II in FIG. In this example, as shown in FIG. 3, the shaft 11 has a multi-lumen structure having an outer portion 70 (shell portion), a wire 71, an inner portion 72 (core portion), and a resin layer 73. Specifically, the shaft 11 is formed with four lumens L1 to L4 separated from each other.
 アウター部70は、図3に示したように、シャフト11の最外周に位置するチューブ状の部材である。このアウター部70は、例えば、高硬度のナイロンエラストマーにより構成されている。このアウター部70を構成するナイロンエラストマーとしては、例えば、軸方向(Z軸方向)に沿って異なる硬度のものが用いられている。これによりシャフト11は、その先端側から基端側に向けて、段階的に硬度が高くなるように構成されている。 As shown in FIG. 3, the outer portion 70 is a tubular member located on the outermost circumference of the shaft 11. The outer portion 70 is made of, for example, a high-hardness nylon elastomer. As the nylon elastomer constituting the outer portion 70, for example, those having different hardness along the axial direction (Z-axis direction) are used. As a result, the shaft 11 is configured to gradually increase in hardness from the tip end side to the base end side.
 素線71は、図3に示したように、アウター部70とインナー部72との層間に配置されており、編組ブレードを形成するようになっている。また、この編組ブレードは、例えば、シャフト11における軸方向に沿った一部の領域にのみ形成されている。このような素線71は、例えばステンレスにより構成されており、ステンレス素線となっている。 As shown in FIG. 3, the strands 71 are arranged between the outer portion 70 and the inner portion 72 to form a braided blade. Further, the braided blade is formed only in a part of the shaft 11 along the axial direction, for example. Such a wire 71 is made of, for example, stainless steel, and is a stainless steel wire.
 インナー部72は、図3に示したように、アウター部70および素線71の内周側に位置する、コア部材である。このインナー部72は、例えば、低硬度のナイロンエラストマーにより構成されている。なお、このインナー部72内に、上記した4つのルーメンL1~L4がそれぞれ形成されるようになっている。 As shown in FIG. 3, the inner portion 72 is a core member located on the inner peripheral side of the outer portion 70 and the wire 71. The inner portion 72 is made of, for example, a low-hardness nylon elastomer. The four lumens L1 to L4 described above are formed in the inner portion 72, respectively.
 樹脂層73は、図3に示したように、4つのルーメンL1~L4を区画する層であり、例えばフッ素樹脂により構成されている。このフッ素樹脂としては、例えば、パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の、絶縁性の高い材料が挙げられる。 As shown in FIG. 3, the resin layer 73 is a layer that partitions the four lumens L1 to L4, and is made of, for example, a fluororesin. Examples of this fluororesin include highly insulating materials such as perfluoroalkyl vinyl ether copolymer (PFA) and polytetrafluoroethylene (PTFE).
 ルーメンL1(第1ルーメン)は、この例では図3に示したように、シャフト11内におけるX軸の正方向側に配置されている。このルーメンL1には、複数の導線81からなる導線群81Gが挿通されている。これらの導線81はそれぞれ、前述した電極群111Gにおける複数のリング状電極111に対して、個別に電気的接続されている。なお、このようにしてリング状電極111に電気的接続された導線81は、後述する心電位信号Sc0aの信号線を構成している(図2参照)。 The lumen L1 (first lumen) is arranged on the positive side of the X-axis in the shaft 11 as shown in FIG. 3 in this example. A conductor group 81G composed of a plurality of conductors 81 is inserted through the lumen L1. Each of these conductors 81 is individually electrically connected to the plurality of ring-shaped electrodes 111 in the electrode group 111G described above. The conducting wire 81 electrically connected to the ring-shaped electrode 111 in this way constitutes a signal line of the electrocardiographic signal Sc0a described later (see FIG. 2).
 ルーメンL2(第2ルーメン)は、この例では図3に示したように、シャフト11内におけるX軸の負方向側に配置されている。このルーメンL2には、複数の導線82からなる導線群82Gが挿通されている。これらの導線82はそれぞれ、前述した電極群112Gにおける複数のリング状電極112に対して、個別に電気的接続されている。なお、このようにしてリング状電極112に電気的接続された導線82もまた、後述する心電位信号Sc0aの信号線を構成している(図2参照)。 The lumen L2 (second lumen) is arranged on the negative side of the X-axis in the shaft 11 as shown in FIG. 3 in this example. A conductor group 82G composed of a plurality of conductors 82 is inserted through the lumen L2. Each of these conductors 82 is individually electrically connected to the plurality of ring-shaped electrodes 112 in the electrode group 112G described above. The conducting wire 82 electrically connected to the ring-shaped electrode 112 in this way also constitutes the signal line of the electrocardiographic signal Sc0a described later (see FIG. 2).
 ルーメンL3(第3ルーメン)は、この例では図3に示したように、シャフト11内におけるY軸の負方向側に配置されている。このルーメンL3には、複数の導線83からなる導線群83Gが挿通されている。これらの導線83はそれぞれ、前述した電極群113Gにおける複数のリング状電極113に対して、個別に電気的接続されている。なお、このようにしてリング状電極113に電気的接続された導線83は、後述する心電位信号Sc0bの信号線を構成している(図2参照)。 The lumen L3 (third lumen) is arranged on the negative side of the Y axis in the shaft 11 as shown in FIG. 3 in this example. A conductor group 83G composed of a plurality of conductors 83 is inserted through the lumen L3. Each of these conductors 83 is individually electrically connected to the plurality of ring-shaped electrodes 113 in the electrode group 113G described above. The conducting wire 83 electrically connected to the ring-shaped electrode 113 in this way constitutes a signal line of the electrocardiographic signal Sc0b described later (see FIG. 2).
 ルーメンL4(第4ルーメン)は、この例では図3に示したように、シャフト11内におけるY軸の正方向側に配置されている。このルーメンL4には、この例では1本の操作用ワイヤ80が挿通されている。つまり、操作用ワイヤ80は、シャフト11の中心軸に対して偏心した状態で配置されている。この操作用ワイヤ80は、詳細は後述するが、シャフト11の先端付近を偏向させる(湾曲させる)際の操作である、偏向移動操作(首振り操作)を行うための部材である。このような操作用ワイヤ80の先端部分は、例えばハンダによって、先端電極110に固定されている。なお、操作用ワイヤ80の先端に、抜け止め用の大径部(抜け止め部)が形成されていてもよい。一方、操作用ワイヤ80の基端部分は、後述するハンドル12内(回転板122)に接続されるようになっている。 The lumen L4 (fourth lumen) is arranged on the positive side of the Y axis in the shaft 11 as shown in FIG. 3 in this example. In this example, one operating wire 80 is inserted through the lumen L4. That is, the operation wire 80 is arranged in an eccentric state with respect to the central axis of the shaft 11. The operation wire 80 is a member for performing a deflection movement operation (swinging operation), which is an operation for deflecting (curving) the vicinity of the tip of the shaft 11, although details will be described later. The tip portion of such an operating wire 80 is fixed to the tip electrode 110 by, for example, soldering. A large-diameter portion (retaining portion) for preventing the retaining wire may be formed at the tip of the operating wire 80. On the other hand, the base end portion of the operation wire 80 is connected to the inside of the handle 12 (rotary plate 122) described later.
 なお、上記した導線81,82,83はそれぞれ、例えば、ポリイミドなどの樹脂によって金属導線の外周面が被覆された、樹脂被覆線により構成されている。また、操作用ワイヤ80は、例えば、ステンレスやNi(ニッケル)-Ti(チタン)系超弾性合金により構成されている。ただし、この操作用ワイヤ80は、必ずしも金属により構成されている必要はなく、例えば、高強度の非導電性ワイヤなどにより構成されていてもよい。 The above-mentioned conductors 81, 82, and 83 are each composed of a resin-coated wire in which the outer peripheral surface of the metal conductor is covered with a resin such as polyimide. The operating wire 80 is made of, for example, stainless steel or a Ni (nickel) -Ti (titanium) -based superelastic alloy. However, the operating wire 80 does not necessarily have to be made of metal, and may be made of, for example, a high-strength non-conductive wire.
(ハンドル12)
 図2に示したように、ハンドル12は、シャフト11の基端に装着されており、ハンドル本体121(把持部)および回転板122を有している。
(Handle 12)
As shown in FIG. 2, the handle 12 is attached to the base end of the shaft 11 and has a handle body 121 (grip portion) and a rotating plate 122.
 ハンドル本体121は、除細動カテーテル1の使用時に操作者(医師)が掴む(握る)部分である。このハンドル本体121の内部には、シャフト11の内部から前述した各種の細線(導線81,82,83および操作用ワイヤ80等)がそれぞれ、互いに電気的に絶縁された状態で延伸している。 The handle body 121 is a portion that the operator (doctor) grasps (grasps) when using the defibrillation catheter 1. Inside the handle body 121, various thin wires ( conductor wires 81, 82, 83, operating wires 80, etc.) described above are extended from the inside of the shaft 11 in a state of being electrically insulated from each other.
 回転板122は、詳細は後述するが、シャフト11の先端付近を偏向させる際の操作である、偏向移動操作を行うための部材である。具体的には、例えば図2中の破線の矢印で示した回転方向d1に沿って、回転板122を回転させる操作が可能となっている。このような回転操作によって、前述した操作用ワイヤ80が基端側に引っ張られることで、シャフト11の先端付近を偏向させる操作(偏向移動操作)が可能となっている。 The rotating plate 122 is a member for performing a deflection movement operation, which is an operation for deflecting the vicinity of the tip of the shaft 11, although details will be described later. Specifically, for example, the operation of rotating the rotating plate 122 along the rotation direction d1 indicated by the broken line arrow in FIG. 2 is possible. By such a rotation operation, the operation wire 80 described above is pulled toward the proximal end side, so that an operation (deflection movement operation) in which the vicinity of the tip of the shaft 11 is deflected is possible.
(記憶部13)
 記憶部13は、例えば図2に示したように、ハンドル12(ハンドル本体121)内に配置されており、後述する各種データを保持する部分(メモリ)である。なお、この記憶部13に保持されている各データの詳細例については、後述する(図5)。
(Memory unit 13)
As shown in FIG. 2, for example, the storage unit 13 is arranged in the handle 12 (handle main body 121) and is a portion (memory) for holding various data described later. A detailed example of each data stored in the storage unit 13 will be described later (FIG. 5).
(B.電源装置2)
 電源装置2は、除細動カテーテル1に対して、除細動の際の電力供給を行う装置である。具体的には図1~図3に示したように、この電源装置2は、除細動の際に印加される直流電圧Vdcを、除細動カテーテル1のシャフト11における電極群111G,112G(リング状電極111,112)に対し、導線群81G,82G(導線81,82)を介して供給するようになっている。
(B. Power supply device 2)
The power supply device 2 is a device that supplies electric power to the defibrillation catheter 1 during defibrillation. Specifically, as shown in FIGS. 1 to 3, the power supply device 2 applies the DC voltage Vdc applied at the time of defibrillation to the electrode groups 111G and 112G (11G, 112G) on the shaft 11 of the defibrillation catheter 1. The ring-shaped electrodes 111 and 112) are supplied via the conductor groups 81G and 82G (conductors 81 and 82).
 電源装置2は、図1に示したように、入力部21、電源部22、切替部23、演算処理部24(制御部)、表示部25および音声出力部26を有している。この電源装置2はまた、図1に示したように、2つ(2種類)の入力端子Tin1,Tin2と、2つ(2種類)の出力端子Tout1,Tout2とを有している。また、この電源装置2では、詳細は後述するが、心電位測定が行われる「心電位測定モード(図9参照)」と、後述する抵抗値Rの測定処理が行われる「抵抗測定モード(図10参照)」と、除細動が行われる「除細動モード(図11参照)」とが、切り替え可能となっている。すなわち、電源装置2では、これら複数種類(例えば3種類)のモード間での切り替えが可能となっている。 As shown in FIG. 1, the power supply device 2 has an input unit 21, a power supply unit 22, a switching unit 23, an arithmetic processing unit 24 (control unit), a display unit 25, and an audio output unit 26. As shown in FIG. 1, the power supply device 2 also has two (two types) input terminals Tin1 and Tin2 and two (two types) output terminals Tout1 and Tout2. Further, in this power supply device 2, the details will be described later, but the “electrocardiographic potential measurement mode” in which the electrocardiographic potential is measured (see FIG. 9) and the “resistance measurement mode” in which the resistance value R measurement processing described later is performed (FIG. 9). 10) ”and“ defibrillation mode (see FIG. 11) ”where defibrillation is performed can be switched. That is, in the power supply device 2, it is possible to switch between these plurality of types (for example, three types) of modes.
 入力部21は、各種の設定値や、所定の動作を指示するための入力信号Sin(操作入力信号)が入力される部分であり、例えば所定のダイヤルやスイッチ、タッチパネル等を用いて構成されている。これらの設定値や指示(入力信号Sin)は、電源装置2の操作者(例えば技師等)による操作に応じて入力されるようになっている。ただし、一部の設定値等については、操作者による操作に応じて入力されるのではなく、製品の出荷時等に予め電源装置2内で設定されているようにしてもよい。また、上記したスイッチとしては、詳細は後述するが、例えば、上記した複数種類のモード(「心電位測定モード」,「抵抗測定モード」,「除細動モード」)間での切り替えを行うためのモード切替スイッチ、除細動の際に印加する電気エネルギー(直流電圧Vdc)を設定する印加エネルギー設定スイッチ、電源部22を充電するための充電スイッチ、電気エネルギーを印加して除細動を実行するためのエネルギー印加スイッチ(放電スイッチ)等が挙げられる。なお、この入力部21において入力された入力信号Sinは、図1に示したように、演算処理部24へ供給されるようになっている。 The input unit 21 is a portion for inputting various set values and an input signal Sin (operation input signal) for instructing a predetermined operation, and is configured by using, for example, a predetermined dial, switch, touch panel, or the like. There is. These set values and instructions (input signal Sin) are input in response to an operation by an operator (for example, an engineer or the like) of the power supply device 2. However, some of the set values and the like may not be input according to the operation by the operator, but may be set in the power supply device 2 in advance at the time of shipment of the product or the like. Further, the above-mentioned switch will be described in detail later, but for example, in order to switch between the above-mentioned plurality of types of modes (“electrocardiographic measurement mode”, “resistance measurement mode”, “defibrillation mode”). Mode changeover switch, applied energy setting switch that sets the electrical energy (DC voltage Vdc) applied during defibrillation, charging switch for charging the power supply unit 22, defibrillation is executed by applying electrical energy. Examples thereof include an energy application switch (discharge switch) for performing the operation. The input signal Sin input by the input unit 21 is supplied to the arithmetic processing unit 24 as shown in FIG.
 電源部22は、上記した直流電圧Vdcを、除細動カテーテル1における電極群111G,112G(リング状電極111,112)へ向けて出力する部分である。このような電源部22における電力供給動作は、例えば、入力部21からの入力信号Sinに基づいて、演算処理部24によって制御されるようになっている。また、この電源部22は、所定の電源回路(例えばスイッチングレギュレータ等)、および、電気エネルギーを充電するためのコンデンサ(容量素子)等を用いて構成されている。 The power supply unit 22 is a portion that outputs the above-mentioned DC voltage Vdc toward the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) in the defibrillation catheter 1. The power supply operation in such a power supply unit 22 is controlled by the arithmetic processing unit 24 based on, for example, the input signal Sin from the input unit 21. Further, the power supply unit 22 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like), a capacitor (capacitive element) for charging electric energy, or the like.
 切替部23は、図1に示したように、直流電圧Vdcや、後述する抵抗値Rおよび心電位信号Sc0aの供給経路を切り替える動作(切替動作)を行う部分である。このような切替部23における切替動作は、例えば、入力部21からの入力信号Sinに基づいて、演算処理部24によって制御されるようになっている。なお、この切替部23における切替動作の詳細については、後述する。 As shown in FIG. 1, the switching unit 23 is a part that performs an operation (switching operation) of switching the supply paths of the DC voltage Vdc, the resistance value R and the electrocardiographic signal Sc0a described later. The switching operation in such a switching unit 23 is controlled by the arithmetic processing unit 24 based on, for example, the input signal Sin from the input unit 21. The details of the switching operation in the switching unit 23 will be described later.
(演算処理部24)
 演算処理部24は、電源装置2全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を含んで構成されている。具体的には、演算処理部24は、入力部21からの入力信号Sinに基づいて、電源部22、切替部23、表示部25および音声出力部26の動作をそれぞれ制御するようになっている。なお、このような演算処理部24での動作例の詳細については、後述する。
(Calculation processing unit 24)
The arithmetic processing unit 24 is a portion that controls the entire power supply device 2 and performs predetermined arithmetic processing, and includes, for example, a microcomputer and the like. Specifically, the arithmetic processing unit 24 controls the operations of the power supply unit 22, the switching unit 23, the display unit 25, and the audio output unit 26, respectively, based on the input signal Sin from the input unit 21. .. The details of such an operation example in the arithmetic processing unit 24 will be described later.
 また、この演算処理部24は、図1に示した例では、出力回路241、記憶部242、時計部243a,243b、導出部244、読出部245、判定部246および実行許可部247を有している。 Further, in the example shown in FIG. 1, the arithmetic processing unit 24 has an output circuit 241, a storage unit 242, a clock unit 243a, 243b, a derivation unit 244, a reading unit 245, a determination unit 246, and an execution permission unit 247. ing.
 出力回路241は、電源部22から出力された直流電圧Vdcを、切替部23および後述する出力端子Tout1を介して、除細動カテーテル1の電極群111G,112G(リング状電極111,112)へ出力するための回路である。具体的には、詳細は後述するが、この出力回路241は、電極群111G,112Gが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように、直流電圧Vdcを出力するようになっている。 The output circuit 241 transfers the DC voltage Vdc output from the power supply unit 22 to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 via the switching unit 23 and the output terminal Tout1 described later. It is a circuit for output. Specifically, although the details will be described later, in this output circuit 241, the electrode groups 111G and 112G have different polarities from each other (when one electrode group has a negative electrode, the other electrode group has a positive electrode). In addition, the DC voltage Vdc is output.
 記憶部242は、後述する各種データを保持する部分(メモリ)である。なお、この記憶部242に保持されている各データの詳細例については、後述する(図6)。 The storage unit 242 is a part (memory) that holds various data described later. A detailed example of each data stored in the storage unit 242 will be described later (FIG. 6).
 時計部243aは、日時情報Idt1を出力するようになっており、時計部243bは、日時情報Idt2を出力するようになっている(図1参照)。これらの時計部243a,243bはそれぞれ、例えば、RTC(Real-Time Clock:リアルタイムクロック)機能を有するIC(Integrated Circuit)を含んで構成されている。なお、ここで言う「日時情報」とは、「日付情報」と「時刻情報」とを含む情報のことを意味しており、以下同様である。 The clock unit 243a outputs the date and time information Idt1, and the clock unit 243b outputs the date and time information Idt2 (see FIG. 1). Each of these clock units 243a and 243b includes, for example, an IC (Integrated Circuit) having an RTC (Real-Time Clock) function. The "date and time information" referred to here means information including "date information" and "time information", and the same applies hereinafter.
 図4は、このような2種類の時計部243a,243bおよび日時情報Idt1,Idt2について説明するための図である。具体的には、この図4では、電源装置2内の時計部の種類と、電源装置2内の日時情報の種類と、電源装置2の操作者(ユーザ)による入力部21への操作に応じた日時情報の設定変更の可否と、日時情報の利用例とについて、表でまとめて示している。 FIG. 4 is a diagram for explaining such two types of clock units 243a and 243b and date and time information Idt1 and Idt2. Specifically, in FIG. 4, according to the type of the clock unit in the power supply device 2, the type of date and time information in the power supply device 2, and the operation of the input unit 21 by the operator (user) of the power supply device 2. A table shows whether or not the date and time information settings can be changed and examples of using the date and time information.
 時計部243a内の日時情報Idt1は、図4に示したように、操作者による操作に応じて、随時(任意)に設定変更が可能となっている。また、この時計部243aにおける日時情報Idt1は、例えば、電源装置2とは異なる他の機器内で設定されている日時情報(たとえば、後述する心電計4内で設定されている日時情報Idt3:図1参照)と一致するように、設定可能となっている。 As shown in FIG. 4, the date and time information Idt1 in the clock unit 243a can be changed at any time (arbitrarily) according to the operation by the operator. Further, the date and time information Idt1 in the clock unit 243a is, for example, date and time information set in another device different from the power supply device 2 (for example, date and time information Idt3 set in the electrocardiograph 4 described later: It can be set so as to match (see FIG. 1).
 一方、時計部243b内の日時情報Idt2は、図4に示したように、電源装置2の操作者による操作に応じた設定変更が、制限されるようになっている。つまり、この日時情報Idt2は、基本的には、例えば工場出荷時(製造時)などに、初期設定されるようになっている。具体的には、この日時情報Idt2については、操作者による操作に応じた設定変更が、例えば、電源装置2の初回起動時に限って、可能となっている(図4参照)。あるいは、この日時情報Idt2については、操作者による操作に応じた設定変更が、例えば、一切不可能となっている(図4参照)。 On the other hand, as shown in FIG. 4, the date and time information Idt2 in the clock unit 243b is restricted from being changed in setting according to the operation by the operator of the power supply device 2. That is, the date and time information Idt2 is basically set by default at the time of factory shipment (manufacturing), for example. Specifically, regarding the date and time information Idt2, the setting can be changed according to the operation by the operator, for example, only when the power supply device 2 is started for the first time (see FIG. 4). Alternatively, for this date and time information Idt2, for example, it is completely impossible to change the setting according to the operation by the operator (see FIG. 4).
 また、このような日時情報Idt2を利用することで、後述する導出部244において、除細動カテーテル1の使用開始時からの経過時間Δt1と、日時情報Idt2の初期設定時からの電源装置2の経過時間Δt2とがそれぞれ、導出されるようになっている(図4参照)。 Further, by using such date and time information Idt2, in the out-licensing unit 244 described later, the elapsed time Δt1 from the start of use of the defibrillation catheter 1 and the power supply device 2 from the initial setting of the date and time information Idt2 The elapsed time Δt2 and the elapsed time Δt2 are derived respectively (see FIG. 4).
 なお、このような時計部243aは、本発明における「第1の時計部」の一具体例に対応し、時計部243bは、本発明における「第2の時計部」の一具体例に対応している。また、日時情報Idt1は、本発明における「第1の日時情報」の一具体例に対応し、日時情報Idt2は、本発明における「第2の日時情報」の一具体例に対応し、日時情報Idt3は、本発明における「第3の日時情報」の一具体例に対応している。 Such a clock unit 243a corresponds to a specific example of the "first clock unit" in the present invention, and the clock unit 243b corresponds to a specific example of the "second clock unit" in the present invention. ing. Further, the date and time information Idt1 corresponds to a specific example of the "first date and time information" in the present invention, and the date and time information Idt2 corresponds to a specific example of the "second date and time information" in the present invention. Idt3 corresponds to a specific example of the "third date and time information" in the present invention.
 導出部244は、上記したように、日時情報Idt2を利用することで、除細動カテーテル1の使用開始時からの経過時間Δt1と、日時情報Idt2の初期設定時からの電源装置2の経過時間Δt2とをそれぞれ、導出するものである。なお、このような経過時間Δt1,Δt2の詳細については、後述する。 As described above, the out-licensing unit 244 uses the date and time information Idt2 to obtain the elapsed time Δt1 from the start of use of the defibrillation catheter 1 and the elapsed time of the power supply device 2 from the initial setting of the date and time information Idt2. Δt2 and each are derived. The details of such elapsed times Δt1 and Δt2 will be described later.
 読出部245は、除細動カテーテル1内(前述した記憶部13:図2参照)に保持されている各種データの情報を、読み出すものである。このようにして読み出される各種データとしては、詳細は後述するが(図5参照)、例えば、以下のようなものが挙げられる。 The reading unit 245 reads out information on various data held in the defibrillation catheter 1 (storage unit 13 described above: see FIG. 2). Details of the various data read in this way will be described later (see FIG. 5), and examples thereof include the following.
 すなわち、まず、除細動カテーテル1に固有の識別情報(除細動カテーテル1ごとに個別に割り当てられた情報)としての、識別情報131が挙げられる。ここで、このような識別情報131とは、例えば、特定の法則によって付与された、数字、アルファベットおよび英数字のうちの少なくとも1種類の情報の羅列からなる、シリアル番号である。なお、識別情報131が、例えば、このようなシリアル番号が暗号化された情報(暗号化された識別情報)であってもよい。また、上記した各種データとしては、除細動カテーテル1の使用状況を示す、使用状況情報132が挙げられる。更に、除細動カテーテル1の使用日時を示す、使用日時情報133が挙げられる。加えて、除細動カテーテル1の使用回数を示す情報(使用回数Nの情報)が挙げられる。 That is, first, identification information 131 as identification information unique to the defibrillation catheter 1 (information individually assigned to each defibrillation catheter 1) can be mentioned. Here, such identification information 131 is, for example, a serial number composed of a list of at least one type of information given by a specific law, among numbers, alphabets, and alphanumeric characters. The identification information 131 may be, for example, information in which such a serial number is encrypted (encrypted identification information). In addition, examples of the above-mentioned various data include usage status information 132 indicating the usage status of the defibrillation catheter 1. Further, use date / time information 133 indicating the date and time of use of the defibrillation catheter 1 can be mentioned. In addition, information indicating the number of times the defibrillation catheter 1 has been used (information on the number of times used N) can be mentioned.
 判定部246は、読出部245によって読み出された識別情報131に基づいて、除細動カテーテル1の使用に関する有効性を判定するものである。つまり、判定部246は、その除細動カテーテル1の使用が有効であるのか、あるいは、無効であるのかについての、判定処理を行うようになっている。換言すると、使用が有効であると判定された場合とは、その除細動カテーテル1が正規品であると判定されたことになり、使用が無効であると判定された場合とは、その除細動カテーテル1が非正規品(例えば、劣化品や模倣品など)であると判定されたことになる。具体的には、判定部246は、例えば、識別情報131における上記したシリアル番号が、上記した特定の法則に従って付与されているのか否かに応じて、除細動カテーテル1の使用に関する有効性を判定するようになっている。つまり、例えば、そのようなシリアル番号が、上記した特定の法則に従って付与されている場合には、識別情報131が正規な情報であり、除細動カテーテル1の使用が有効であると判定される。一方、例えば、そのようなシリアル番号が、上記した特定の法則に従って付与されていない場合には、識別情報131が非正規な情報であり、除細動カテーテル1の使用が無効であると判定される。このような判定処理が行われることで、非正規な除細動カテーテル1の使用を、容易に排除することが可能となっている。なお、このような判定部246による判定処理の詳細処理例については、後述する(図8)。 The determination unit 246 determines the effectiveness of using the defibrillation catheter 1 based on the identification information 131 read by the reading unit 245. That is, the determination unit 246 is adapted to perform a determination process as to whether the use of the defibrillation catheter 1 is effective or ineffective. In other words, when it is determined that the use is effective, it means that the defibrillation catheter 1 is determined to be a genuine product, and when it is determined that the use is invalid, it is excluded. It means that the defibrillation catheter 1 is determined to be a non-genuine product (for example, a deteriorated product or a counterfeit product). Specifically, the determination unit 246 determines the effectiveness of using the defibrillation catheter 1 depending on, for example, whether or not the serial number in the identification information 131 is assigned according to the specific law described above. It is designed to judge. That is, for example, when such a serial number is assigned according to the above-mentioned specific law, the identification information 131 is legitimate information, and it is determined that the use of the defibrillation catheter 1 is effective. .. On the other hand, for example, when such a serial number is not assigned according to the above-mentioned specific law, it is determined that the identification information 131 is non-genuine information and the use of the defibrillation catheter 1 is invalid. NS. By performing such a determination process, it is possible to easily eliminate the use of the non-regular defibrillation catheter 1. A detailed processing example of the determination processing by the determination unit 246 will be described later (FIG. 8).
 実行許可部247は、判定部246によって除細動カテーテル1の使用が有効であると判定された場合にのみ、入力部21における操作者による操作(例えば、電源部22による除細動用の電力供給を実行させるための操作)の受付を、有効化するものである。つまり、このような操作の受付が無効化されたままの場合(有効化されていない場合)、操作者によって入力部21に対する操作が行われたとしても、除細動用の電力供給が実行されず、除細動カテーテル1による電気的な除細動も実行されないようになっている。言い換えると、このような操作の受付が有効化された場合にのみ、操作者によって入力部21に対する操作が行われた際に、除細動用の電力供給が実行され、除細動カテーテル1による電気的な除細動が実行されるようになっている。なお、このような実行許可部247における詳細な処理例については、後述する(図8)。 The execution permission unit 247 is operated by the operator in the input unit 21 (for example, power supply for defibrillation by the power supply unit 22) only when the determination unit 246 determines that the use of the defibrillation catheter 1 is effective. The reception of the operation) for executing the operation) is enabled. That is, if the reception of such an operation remains disabled (if it is not enabled), even if the operator performs an operation on the input unit 21, the power supply for defibrillation is not executed. , Electrical defibrillation by the defibrillation catheter 1 is also prevented. In other words, only when the reception of such an operation is enabled, when the operator performs an operation on the input unit 21, power supply for defibrillation is executed, and electricity by the defibrillation catheter 1 is performed. Defibrillation is being performed. A detailed processing example in such an execution permission unit 247 will be described later (FIG. 8).
 表示部25は、演算処理部24から供給された各種信号に基づいて各種情報を表示し、外部へと出力する部分(モニター)である。具体的には、表示部25は、例えば後述する心電位信号Sc1に基づいて、心電位波形を表示する機能を有している。ただし、表示対象の情報としては、このような心電位に関する情報には限られず、他の情報も加えて表示するようにしてもよい。具体的には、例えば、上記した判定部246による判定結果などの情報も、この表示部25に表示されるようにしてもよい。このような各種情報が表示部25に表示されることで、電源装置2の操作者(例えば技師等)は、例えば上記した心電位波形や、判定部246による判定結果等を監視しながら、除細動治療(入力部21への入力操作等)を行うことが可能となっている。なお、このような表示部25は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 25 is a part (monitor) that displays various information based on various signals supplied from the arithmetic processing unit 24 and outputs the information to the outside. Specifically, the display unit 25 has a function of displaying the electrocardiographic waveform based on, for example, the electrocardiographic signal Sc1 described later. However, the information to be displayed is not limited to such information on the electrocardiographic potential, and other information may be added and displayed. Specifically, for example, information such as the determination result by the determination unit 246 described above may also be displayed on the display unit 25. By displaying such various information on the display unit 25, the operator of the power supply device 2 (for example, an engineer or the like) removes the power supply device 2 while monitoring, for example, the above-mentioned electrocardiographic waveform and the determination result by the determination unit 246. It is possible to perform defibrillation treatment (input operation to the input unit 21 and the like). In addition, such a display unit 25 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, etc.).
 音声出力部26は、図1に示したように、演算処理部24から供給された音声信号Ssに基づいて、各種の音声を外部へと出力する部分である。このような音声信号Ssの一例としては、詳細は後述するが、上記した判定部246による判定結果に応じて生成される音声信号Ssが、挙げられる。なお、このような音声出力部26は、例えばスピーカ等を用いて構成されている。 As shown in FIG. 1, the voice output unit 26 is a part that outputs various voices to the outside based on the voice signal Ss supplied from the arithmetic processing unit 24. As an example of such an audio signal Ss, although details will be described later, an audio signal Ss generated according to the determination result by the determination unit 246 described above can be mentioned. It should be noted that such an audio output unit 26 is configured by using, for example, a speaker or the like.
 ここで、これらの表示部25および音声出力部26はそれぞれ、本発明における「出力部」の一具体例に対応している。 Here, each of the display unit 25 and the audio output unit 26 corresponds to a specific example of the "output unit" in the present invention.
(入力端子Tin1,Tin2)
 入力端子Tin1は、図1に示したように、後述する心電計4から出力される心電位信号Sc1を入力するための端子である。なお、詳細は後述するが、この心電位信号Sc1は、後述する生体測定機構6(後述する複数の電極パッド61)における測定により得られて心電計4へと供給された生体信号である。なお、そのような生体測定機構6により得られた心電位信号Sc1が、心電計4を経由せずに、入力端子Tinに直接入力されるようにしてもよく、以下同様である。このようにして入力端子Tin1へ入力された心電位信号Sc1(例えばアナログ信号)は、演算処理部24へと供給されるようになっている。
(Input terminals Tin1, Tin2)
As shown in FIG. 1, the input terminal Tin1 is a terminal for inputting the electrocardiographic signal Sc1 output from the electrocardiograph 4 described later. Although details will be described later, this electrocardiographic signal Sc1 is a biological signal obtained by measurement by a biological measurement mechanism 6 (a plurality of electrode pads 61 described later) and supplied to the electrocardiograph 4. The electrocardiographic signal Sc1 obtained by such a biometric measurement mechanism 6 may be directly input to the input terminal Tin without passing through the electrocardiograph 4, and the same applies hereinafter. The electrocardiographic signal Sc1 (for example, an analog signal) input to the input terminal Tin1 in this way is supplied to the arithmetic processing unit 24.
 入力端子Tin2は、図1に示したように、除細動カテーテル1において測定された心電位信号Sc0a,Sc0bおよび抵抗値Rを入力するための端子である。ここで、心電位信号Sc0aは、前述した電極群111G,112G(リング状電極111,112)において測定され、前述した導線81,82を介して伝送された心電位信号である(図2,図3参照)。一方、心電位信号Sc0bは、前述した電極群113G(リング状電極113)において測定され、前述した導線83を介して伝送された心電位信号である(図2,図3参照)。また、抵抗値Rは、電極群111G,112G間の抵抗値である。このようにして入力端子Tin2へ入力された各信号のうち、心電位信号Sc0aについては、図1に示したように、切替部23および後述する出力端子Tout2をこの順に経由して、後述する心電計4へと供給されるようになっている。一方、心電位信号Sc0bについては、図1に示したように、切替部23を介さずに後述する出力端子Tout2のみを介して、心電計4へと供給されるようになっている。また、抵抗値Rについては、図1に示したように、切替部23を介して演算処理部24へと供給されるようになっている。 As shown in FIG. 1, the input terminal Tin2 is a terminal for inputting the electrocardiographic signals Sc0a, Sc0b and the resistance value R measured in the defibrillation catheter 1. Here, the electrocardiographic signal Sc0a is a electrocardiographic signal measured in the above-mentioned electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) and transmitted via the above-mentioned conductors 81 and 82 (FIGS. 2 and 2). 3). On the other hand, the electrocardiographic signal Sc0b is an electrocardiographic signal measured in the above-mentioned electrode group 113G (ring-shaped electrode 113) and transmitted via the above-mentioned conductor 83 (see FIGS. 2 and 3). The resistance value R is a resistance value between the electrode groups 111G and 112G. Of the signals input to the input terminal Tin2 in this way, the electrocardiographic signal Sc0a is passed through the switching unit 23 and the output terminal Tout2, which will be described later, in this order, as shown in FIG. It is designed to be supplied to the electric meter 4. On the other hand, as shown in FIG. 1, the electrocardiographic signal Sc0b is supplied to the electrocardiograph 4 only via the output terminal Tout2, which will be described later, without going through the switching unit 23. Further, as shown in FIG. 1, the resistance value R is supplied to the arithmetic processing unit 24 via the switching unit 23.
(出力端子Tout1,Tout2)
 出力端子Tout1は、図1に示したように、前述した出力回路241から出力されて切替部23を経由して供給されてきた直流電圧Vdcを、除細動カテーテル1の電極群111G,112G(リング状電極111,112)へと出力するための端子である。
(Output terminals Tout1, Tout2)
As shown in FIG. 1, the output terminal Tout1 uses the DC voltage Vdc output from the output circuit 241 described above and supplied via the switching unit 23 to the electrode groups 111G and 112G of the defibrillation catheter 1. It is a terminal for outputting to the ring-shaped electrodes 111,112).
 出力端子Tout2は、図1に示したように、前述した入力端子Tin2を介して除細動カテーテル1から供給されてきた心電位信号Sc0bと、入力端子Tin2および切替部23をこの順に経由して除細動カテーテル1から供給されてきた心電位信号Sc0aとを、心電計4へと出力するための端子である。 As shown in FIG. 1, the output terminal Tout2 passes through the electrocardiographic signal Sc0b supplied from the defibrillation catheter 1 via the above-mentioned input terminal Tin2, the input terminal Tin2, and the switching unit 23 in this order. This is a terminal for outputting the electrocardiographic signal Sc0a supplied from the defibrillation catheter 1 to the electrocardiograph 4.
(C.心電計4)
 心電計4は、心電位信号(図1の例では、心電位信号Sc0a,Sc0b,Sc1)等の情報を記録する機能を有する機器である。具体的には、図1の例では、心電計4は、電源装置2の前述した出力端子Tout2から出力された心電位信号Sc0a,Sc0bと、後述する生体測定機構6(後述する複数の電極パッド61)から出力された心電位信号Sc1とを、入力して記録するようになっている。
(C. Electrocardiograph 4)
The electrocardiograph 4 is a device having a function of recording information such as an electrocardiographic signal (in the example of FIG. 1, electrocardiographic signals Sc0a, Sc0b, Sc1). Specifically, in the example of FIG. 1, the electrocardiograph 4 has the electrocardiographic signals Sc0a and Sc0b output from the above-mentioned output terminal Tout2 of the power supply device 2 and the biometric measurement mechanism 6 (a plurality of electrodes described later) described later. The electrocardiographic signal Sc1 output from the pad 61) is input and recorded.
 また、図1の例では、心電計4は、入力して記録した心電位信号を外部へ出力する機能も有している。具体的には、詳細は後述するが、図1の例では心電計4は、上記した心電位信号Sc1を、電源装置2の入力端子Tin1へと出力するようになっている。また、図1の例では心電計4は、上記した心電位信号Sc1,Sc0a,Sc0bをそれぞれ、後述する心電図表示装置5へと出力するようになっている。 Further, in the example of FIG. 1, the electrocardiograph 4 also has a function of outputting the input and recorded electrocardiographic signal to the outside. Specifically, although details will be described later, in the example of FIG. 1, the electrocardiograph 4 outputs the above-mentioned electrocardiographic signal Sc1 to the input terminal Tin1 of the power supply device 2. Further, in the example of FIG. 1, the electrocardiograph 4 outputs the above-mentioned electrocardiographic signals Sc1, Sc0a, Sc0b to the electrocardiogram display device 5 described later, respectively.
 なお、この心電計4内(例えば、図示しない時計部)には、例えば図1に示したように、前述した日時情報Idt3が設定されるようになっている。 The date and time information Idt3 described above is set in the electrocardiograph 4 (for example, a clock unit (not shown)) as shown in FIG. 1, for example.
(D.心電図表示装置5)
 心電図表示装置5は、上記した心電計4から出力される心電位信号Sc1,Sc0a,Sc0bに基づいて、心電位波形(心電図)等を表示する装置である。なお、これらの心電計4および心電図表示装置5を総称して、ポリグラフ、生体情報モニタ、心臓カテーテル用検査装置、またはEPレコーディングシステムと呼ばれることもある。このようにして心電図表示装置5に表示される心電位波形等は、例えば除細動カテーテル1の操作者(医師)によって、随時監視されるようになっている。
(D. ECG display device 5)
The electrocardiogram display device 5 is a device that displays an electrocardiographic waveform (electrocardiogram) or the like based on the electrocardiographic signals Sc1, Sc0a, Sc0b output from the electrocardiograph 4 described above. The electrocardiograph 4 and the electrocardiogram display device 5 may be collectively referred to as a polygraph, a biological information monitor, a cardiac catheterization test device, or an EP recording system. The electrocardiographic waveform and the like displayed on the electrocardiogram display device 5 in this way are monitored at any time by, for example, an operator (doctor) of the defibrillation catheter 1.
(E.生体測定機構6)
 生体測定機構6は、除細動治療等の際に、患者9の体表面に装着(貼付)された状態で用いられるものであり、前述した生体信号(心電位信号Sc1など)を患者9から測定するための機器である。図1に示した例では、この生体測定機構6は、複数(例えば、4個または6個)の電極パッド61を用いて構成されている。
(E. Biological measurement mechanism 6)
The biological measurement mechanism 6 is used in a state of being attached (attached) to the body surface of the patient 9 at the time of defibrillation treatment or the like, and the above-mentioned biological signal (electrocardiographic signal Sc1 or the like) is transmitted from the patient 9. It is a device for measuring. In the example shown in FIG. 1, the biological measurement mechanism 6 is configured by using a plurality of (for example, 4 or 6) electrode pads 61.
 ここで、複数の電極パッド61のうちの6つの組み合わせからは、一般的な測定手法を用いることで、図1に示したように、前述した心電位信号Sc1が測定されるようになっている。このようにして電極パッド61から得られた心電位信号Sc1は、心電計4へと供給されるようになっている。なお、上記した一般的な測定手法(6つの電極パッド間での組み合わせを用いた測定手法)により得られる心電位信号Sc1の心電波形は、「12誘導心電図」と呼ばれるものに対応している。 Here, as shown in FIG. 1, the above-mentioned electrocardiographic signal Sc1 is measured from a combination of six of the plurality of electrode pads 61 by using a general measurement method. .. The electrocardiographic signal Sc1 obtained from the electrode pad 61 in this way is supplied to the electrocardiograph 4. The electrocardiographic waveform of the electrocardiographic signal Sc1 obtained by the above-mentioned general measurement method (measurement method using a combination of six electrode pads) corresponds to what is called a "12-lead electrocardiogram". ..
[記憶部13,242に保持されている各種データの構成例]
 続いて、図1~図4に加えて図5,図6を参照して、前述した記憶部13,242に保持されている各種データの構成例について、詳細に説明する。
[Structure example of various data stored in storage units 13 and 242]
Subsequently, with reference to FIGS. 5 and 6 in addition to FIGS. 1 to 4, a configuration example of various data held in the storage units 13 and 242 described above will be described in detail.
 図5は、図1に示した除細動カテーテル1内の記憶部13に保持されている各種データの一例を、ブロック図で表したものである。図6は、図1に示した電源装置2内の記憶部242に保持されている各種データの一例を、ブロック図で表したものである。なお、これらの記憶部13,242に保持されている各種データの例としては、図5,図6に示したデータには限られず、これに加えて(あるいは代えて)他のデータが保持されているようにしてもよい。 FIG. 5 is a block diagram showing an example of various data held in the storage unit 13 in the defibrillation catheter 1 shown in FIG. FIG. 6 is a block diagram showing an example of various data held in the storage unit 242 in the power supply device 2 shown in FIG. The examples of various data held in these storage units 13 and 242 are not limited to the data shown in FIGS. 5 and 6, and in addition to (or instead of) other data are held. You may do so.
(記憶部13)
 まず、図5に示した例では、除細動カテーテル1内の記憶部13に、例えば以下のような各種データが、保持されている。すなわち、例えば、前述した識別情報131と、前述した使用状況情報132と、前述した使用日時情報133と、前述した除細動カテーテル1の使用回数Nの情報と、所定の除細動情報Idefとが、それぞれ保持されている。
(Memory unit 13)
First, in the example shown in FIG. 5, various data such as the following are held in the storage unit 13 in the defibrillation catheter 1. That is, for example, the above-mentioned identification information 131, the above-mentioned usage status information 132, the above-mentioned use date / time information 133, the above-mentioned information on the number of times N of the defibrillation catheter 1 has been used, and the predetermined defibrillation information IDEF. However, each is retained.
 なお、この図5に示したように、使用日時情報133としては、例えば、除細動カテーテル1の初回(初回接続時)の使用開始日時dtsと、除細動カテーテル1の2回目以降の(各回の接続時の)使用開始日時dtnとが、それぞれ含まれている。また、除細動情報Idefは、例えば、不具合発生時の解析用としても利用される情報であり、例えば以下のような各情報を含んでいる。すなわち、例えば、除細動時の日時(前述した日時情報Idt1)、除細動回数、除細動時の電圧値、除細動時間、除細動時のインピーダンス値(前述した抵抗値R)、および、除細動時のジュール設定値などが、除細動情報Idefとして含まれるようになっている。 As shown in FIG. 5, the use date / time information 133 includes, for example, the first use start date / time dts of the defibrillation catheter 1 (at the time of the first connection) and the second and subsequent use date / time information of the defibrillation catheter 1 (at the time of the first connection). The start date and time of use (dtn at the time of each connection) is included. Further, the defibrillation information IDE is information that is also used for analysis when a problem occurs, and includes, for example, the following information. That is, for example, the date and time during defibrillation (date and time information Idt1 described above), the number of times defibrillation, the voltage value during defibrillation, the defibrillation time, and the impedance value during defibrillation (resistance value R described above). , And the Joule set value at the time of defibrillation are included as the defibrillation information Idef.
(記憶部242)
 一方、図6に示した例では、電源装置2内の記憶部242に、例えば以下のような各種データが、保持されている。すなわち、例えば、前述した識別情報131と、後述する各種の閾値(閾値時間Δtth1、報知閾値Δtth2および閾値回数Nth)と、上記した除細動情報Idefとが、それぞれ保持されている。
(Memory unit 242)
On the other hand, in the example shown in FIG. 6, various data such as the following are stored in the storage unit 242 in the power supply device 2. That is, for example, the above-mentioned identification information 131, various threshold values (threshold time Δtth1, notification threshold value Δth2, and threshold number Nth) described later, and the above-mentioned defibrillation information IDEF are held, respectively.
[動作および作用・効果]
(A.基本動作)
 この除細動カテーテルシステム3では、例えば心臓カテーテル術中における除細動治療(除細動処理)の際などに、除細動カテーテル1におけるシャフト11の先端側が、血管を通して患者9の体内に挿入される(図1参照)。このとき、除細動カテーテル1の操作者(医師)によるハンドル12での操作に応じて、患者9の体内に挿入されたシャフト11の先端領域P1付近の形状が偏向する。具体的には、操作者の指によって、例えば図2中の矢印で示した回転方向d1に沿って回転板122が回転操作されると、シャフト11内で操作用ワイヤ80が、基端側へ引っ張られる。その結果、シャフト11の先端領域P1付近が、例えば図2中の矢印で示した方向d2に沿って湾曲する。
[Operation and action / effect]
(A. Basic operation)
In this defibrillation catheter system 3, the tip end side of the shaft 11 of the defibrillation catheter 1 is inserted into the body of the patient 9 through a blood vessel, for example, during defibrillation treatment (defibrillation processing) during cardiac catheterization. (See Fig. 1). At this time, the shape of the shaft 11 inserted into the body of the patient 9 near the tip region P1 is deflected in response to the operation of the handle 12 by the operator (doctor) of the defibrillation catheter 1. Specifically, when the rotating plate 122 is rotated by the operator's finger along, for example, the rotation direction d1 indicated by the arrow in FIG. 2, the operating wire 80 is moved to the proximal end side in the shaft 11. Be pulled. As a result, the vicinity of the tip region P1 of the shaft 11 is curved along, for example, the direction d2 indicated by the arrow in FIG.
(A-1.除細動処理)
 ここで、上記した除細動処理を行う際には、電源装置2(電源部22)から除細動カテーテル1の電極群111G,112G(リング状電極111,112)に対し、除細動のための電気エネルギーとしての直流電圧Vdcが供給される。具体的には、これらの電極群111G,112Gが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように、電源装置2内の出力回路241から直流電圧Vdcが出力される。このようにして、電極群111G,112Gが互いに異なる極性となる直流電圧Vdcが、患者9の体内に挿入された除細動カテーテル1の先端領域P1からこの患者9の心臓に対し、直接的な電気エネルギーとして付与されることで、電気的な除細動処理がなされる。
(A-1. Defibrillation processing)
Here, when the defibrillation process described above is performed, the defibrillation is performed from the power supply device 2 (power supply unit 22) with respect to the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1. A DC voltage Vdc is supplied as electrical energy for this purpose. Specifically, the output circuit 241 in the power supply device 2 has different polarities for these electrode groups 111G and 112G (when one electrode group has a negative electrode, the other electrode group has a positive electrode). The DC voltage Vdc is output from. In this way, the DC voltage Vdc in which the electrode groups 111G and 112G have different polarities is directly directed from the tip region P1 of the defibrillation catheter 1 inserted into the body of the patient 9 to the heart of the patient 9. By being applied as electrical energy, defibrillation processing is performed electrically.
 このような除細動カテーテルシステム3(除細動カテーテル1)を用いた除細動処理では、例えば、電気エネルギーを患者の体外から供給する機器である、AED(Automated External Defibrillator:自動体外式除細動器)等と比べ、例えば以下の利点がある。すなわち、まず、心腔内に配置された除細動カテーテル1の電極群111G,112Gによって、細動を起こした心臓に対して直接的に電気エネルギーが付与されることで、除細動治療に必要かつ十分な電気的刺激(電気ショック)が、心臓のみに確実に供給できるようになる。その結果、例えば上記したAED等を用いた場合と比べ、より効果的(効率的)な除細動処理を行うことが可能となる。また、心臓に対して直接的に電気エネルギーを付与することから、例えば上記したAED等を用いた場合とは異なり、患者9の体表面に火傷を生じさせることがなくなるため、除細動処理の際の患者への侵襲性を低減することも可能となる。 In the defibrillation process using such a defibrillation catheter system 3 (defibrillation catheter 1), for example, an AED (Automated External Defibrillator), which is a device that supplies electrical energy from outside the patient's body, is used. Compared with defibrillators), for example, there are the following advantages. That is, first, electrical energy is directly applied to the fibrillated heart by the electrode groups 111G and 112G of the defibrillation catheter 1 arranged in the heart cavity, so that the defibrillation treatment can be performed. Necessary and sufficient electrical stimulation (electric shock) can be reliably supplied only to the heart. As a result, it becomes possible to perform more effective (efficient) defibrillation processing as compared with the case where, for example, the above-mentioned AED or the like is used. In addition, since electrical energy is directly applied to the heart, unlike the case where the above-mentioned AED or the like is used, for example, the body surface of the patient 9 is not burned. It is also possible to reduce the invasiveness to the patient.
(A-2.心電位の測定処理)
 一方、患者9の心電位を測定する際には、患者9の体表面に装着された生体測定機構6(電極パッド61)、または、患者9の体内に挿入された除細動カテーテル1の電極(リング状電極111,112,113)等を用いて、心電位が測定される(図1参照)。あるいは、除細動カテーテル1とは異なる別の電極カテーテル(患者9の心腔内に挿入されたもの)を用いて、患者9の心電位が測定されるようにしてもよい。このようにして得られた心電位の情報のうち、心電位信号Sc1については、前述した心電計4および電源装置2の入力端子Tin1等を介してこの電源装置2内へ供給される(図1参照)。また、得られた心電位の情報のうち、心電位信号Sc1,Sc0a,Sc0bについては、心電図表示装置5へと供給される(図1参照)。そして、これらの心電位信号に基づく心電位波形が、電源装置2内の表示部25や、心電図表示装置5に表示されることで、電源装置2の操作者(技師等)や除細動カテーテル1の操作者(医師)によって、適宜監視されることになる。
(A-2. Electrocardiographic potential measurement processing)
On the other hand, when measuring the electrocardiographic potential of the patient 9, the biometric measurement mechanism 6 (electrode pad 61) attached to the body surface of the patient 9 or the electrode of the defibrillation catheter 1 inserted into the body of the patient 9 The electrocardiographic potential is measured using (ring-shaped electrodes 111, 112, 113) and the like (see FIG. 1). Alternatively, another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1 may be used to measure the electrocardiographic potential of the patient 9. Of the electrocardiographic information obtained in this way, the electrocardiographic signal Sc1 is supplied into the power supply device 2 via the above-mentioned electrocardiograph 4 and the input terminal Tin1 of the power supply device 2 (FIG. FIG. 1). Further, among the obtained electrocardiographic potential information, the electrocardiographic potential signals Sc1, Sc0a, Sc0b are supplied to the electrocardiogram display device 5 (see FIG. 1). Then, the electrocardiographic waveform based on these electrocardiographic signals is displayed on the display unit 25 in the power supply device 2 and the electrocardiogram display device 5, so that the operator (engineer or the like) of the power supply device 2 or the defibrillation catheter can be displayed. It will be appropriately monitored by the operator (doctor) of 1.
(B.除細動処理の詳細について)
 次に、図7~図11を参照して、上記した除細動処理(除細動治療)の詳細について、説明する。
(B. Details of defibrillation processing)
Next, the details of the defibrillation treatment (defibrillation treatment) described above will be described with reference to FIGS. 7 to 11.
(B-1.全体処理)
 図7は、本実施の形態の除細動カテーテルシステム3における除細動処理の全体処理例を、流れ図で表したものである。図8は、図7中に示したステップS11(後述する、除細動カテーテル1の使用の有効性の判定処理)における詳細処理例を、流れ図で表したものである。また、図9~図11はそれぞれ、この除細動処理の際における、後述する各種の動作状態例を、模式的にブロック図で表したものである。
(B-1. Overall processing)
FIG. 7 is a flow chart showing an example of the entire defibrillation process in the defibrillation catheter system 3 of the present embodiment. FIG. 8 is a flow chart showing an example of detailed processing in step S11 (processing for determining the effectiveness of use of the defibrillation catheter 1 described later) shown in FIG. 7. Further, FIGS. 9 to 11 schematically show examples of various operation states described later in a block diagram during the defibrillation process.
 図7に示した本実施の形態の除細動処理では、電源装置2の電源がオン(ON)状態になると、まず、この電源装置2内における時計部243a,243b(日時情報Idt1,Idt2)の機能(RTC機能)の正常性についての確認(自己チェック)が行われる(ステップS10)。なお、そのような機能が異常であることが確認された場合には、その機能が停止され、図7に示した一連の処理が終了となる。 In the defibrillation process of the present embodiment shown in FIG. 7, when the power supply of the power supply device 2 is turned on (ON), first, the clock units 243a, 243b (date and time information Idt1, Idt2) in the power supply device 2 are used. Confirmation (self-check) of the normality of the function (RTC function) is performed (step S10). When it is confirmed that such a function is abnormal, the function is stopped and a series of processes shown in FIG. 7 is terminated.
 次に、電源装置2内の判定部246において、前述した、除細動カテーテル1の使用の有効性の判定処理を行う(ステップS11)。なお、このような使用の有効性の判定処理の詳細処理例については、後述する(図8)。 Next, the determination unit 246 in the power supply device 2 performs the above-mentioned determination process of the effectiveness of the use of the defibrillation catheter 1 (step S11). A detailed processing example of such use effectiveness determination processing will be described later (FIG. 8).
 続いて、X線画像等を用いることで、患者9の体内における、除細動カテーテル1の各電極(リング状電極111,112,113)の位置が確認される(ステップS12)。 Subsequently, the positions of the electrodes (ring-shaped electrodes 111, 112, 113) of the defibrillation catheter 1 in the body of the patient 9 are confirmed by using an X-ray image or the like (step S12).
 次に、例えば図9に示したようにして、患者9の心電位の測定処理が行われる(ステップS13)。すなわち、この例では、除細動カテーテルシステム3が「心電位測定モード」に設定されることで、以下のようにして心電位の測定処理がなされる。また、続いて、所定のゲイン調整の際のゲイン設定が、電源装置2の操作者(技師等)による入力部21への操作に応じて行われる(ステップS14)。 Next, the measurement process of the electrocardiographic potential of the patient 9 is performed, for example, as shown in FIG. 9 (step S13). That is, in this example, by setting the defibrillation catheter system 3 to the "electrocardiographic potential measurement mode", the electrocardiographic potential measurement process is performed as follows. Further, subsequently, the gain setting at the time of the predetermined gain adjustment is performed in response to the operation of the input unit 21 by the operator (engineer or the like) of the power supply device 2 (step S14).
 この図9に示した「心電位測定モード」では、まず、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1が、以下の経路にて、電源装置2へ入力される。すなわち、このようにして得られた心電位信号Sc1が、心電計4を経由して、電源装置2の入力端子Tin1へと入力される。そして、電源装置2へ入力された心電位信号Sc1については、上記したゲイン調整が演算処理部24内で行われ、そのようなゲイン調整後の心電位信号Sc1に基づく心電位波形が、表示部25にて表示される。また、心電計4に入力された心電位信号Sc1に基づく心電位波形が、心電図表示装置5にて表示される。 In the "electrocardiographic measurement mode" shown in FIG. 9, first, the electrocardiographic signal Sc1 measured by the biometric measurement mechanism 6 (electrode pad 61) is input to the power supply device 2 by the following route. That is, the electrocardiographic signal Sc1 thus obtained is input to the input terminal Tin1 of the power supply device 2 via the electrocardiograph 4. Then, with respect to the electrocardiographic signal Sc1 input to the power supply device 2, the above-mentioned gain adjustment is performed in the arithmetic processing unit 24, and the electrocardiographic waveform based on the electrocardiographic signal Sc1 after such gain adjustment is displayed on the display unit. It is displayed at 25. Further, the electrocardiographic waveform based on the electrocardiographic signal Sc1 input to the electrocardiograph 4 is displayed on the electrocardiogram display device 5.
 また、この際に図9に示したように、除細動カテーテル1の電極群111G,112G(リング状電極111,112)にて測定された心電位信号Sc0aは、電源装置2の入力端子Tin2、切替部23および出力端子Tout2をこの順に経由して、心電計4へと供給される。一方、図9に示したように、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bは、電源装置2の入力端子Tin2および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。このようにして心電計4へ供給された心電位信号Sc0a,Sc0bはそれぞれ、心電図表示装置5へと出力され、これらの心電位信号Sc0a,Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 9, the electrocardiographic signal Sc0a measured by the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is the input terminal Tin2 of the power supply device 2. , It is supplied to the electrocardiograph 4 via the switching unit 23 and the output terminal Tout2 in this order. On the other hand, as shown in FIG. 9, the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 sets the input terminal Tin2 and the output terminal Tout2 of the power supply device 2 in this order. It is supplied to the electrocardiograph 4 via (without passing through the switching unit 23). The electrocardiographic signals Sc0a and Sc0b supplied to the electrocardiograph 4 in this way are output to the electrocardiogram display device 5, respectively, and the electrocardiographic waveforms based on these electrocardiographic signals Sc0a and Sc0b are generated by the electrocardiogram display device 5. It is displayed in.
 続いて、電源装置2の操作者(技師等)による入力部21への操作(例えばモード切替スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、除細動を実行するための「除細動モード」の設定がなされる(ステップS15)。 Subsequently, the input signal Sin is supplied to the arithmetic processing unit 24 by the operation to the input unit 21 (for example, the input operation to the mode changeover switch) by the operator (engineer or the like) of the power supply device 2, thereby defibrillating. The "defibrillation mode" for executing the motion is set (step S15).
 すると、例えば図10に示したようにして、除細動カテーテル1における電極群111G,112G間の抵抗値Rの測定処理が行われる(ステップS16)。すなわち、この除細動カテーテルシステム3が「抵抗測定モード」に設定されることで、以下のようにして抵抗値Rの測定処理がなされる。 Then, for example, as shown in FIG. 10, the measurement process of the resistance value R between the electrode groups 111G and 112G in the defibrillation catheter 1 is performed (step S16). That is, when the defibrillation catheter system 3 is set to the "resistance measurement mode", the resistance value R is measured as follows.
 具体的には、まず、図10に示したように、除細動カテーテル1の電極群111G,112G(リング状電極111,112)にて測定された抵抗値Rは、電源装置2の入力端子Tin2および切替部23をこの順に経由して、演算処理部24へと供給される。そして、このようにして得られた抵抗値Rの情報は、表示部25にて表示される。 Specifically, first, as shown in FIG. 10, the resistance value R measured by the electrode groups 111G and 112G (ring-shaped electrodes 111 and 112) of the defibrillation catheter 1 is the input terminal of the power supply device 2. It is supplied to the arithmetic processing unit 24 via the Tin 2 and the switching unit 23 in this order. Then, the information of the resistance value R thus obtained is displayed on the display unit 25.
 また、この際に図10に示したように、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1が、引き続き心電計4を経由して、電源装置2の入力端子Tin1および心電図表示装置5へと入力される。そして、前述したゲイン調整後の心電位信号Sc1に基づく心電位波形が、引き続き、表示部25にて表示されるとともに、心電位信号Sc1に基づく心電位波形が、引き続き、心電図表示装置5にて表示される。 At this time, as shown in FIG. 10, the electrocardiographic signal Sc1 measured by the biometric measurement mechanism 6 (electrode pad 61) continues to pass through the electrocardiograph 4, and the input terminal Tin1 of the power supply device 2 continues. And is input to the electrocardiogram display device 5. Then, the electrocardiographic waveform based on the gain-adjusted electrocardiographic signal Sc1 described above is continuously displayed on the display unit 25, and the electrocardiographic waveform based on the electrocardiographic signal Sc1 is continuously displayed on the electrocardiogram display device 5. Is displayed.
 なお、この際に図10に示したように、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bもまた、引き続き、電源装置2の入力端子Tin2および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。そして、この心電位信号Sc0bは、心電計4から心電図表示装置5へと出力され、心電位信号Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 10, the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to be the input terminal Tin2 of the power supply device 2 and It is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23). Then, the electrocardiographic signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiographic waveform based on the electrocardiographic signal Sc0b is displayed on the electrocardiogram display device 5.
 次いで、電源装置2内の演算処理部24は、このようにして得られた抵抗値Rが、所定の閾値Rth1,Rth2により規定される所定の範囲内に収まっているのか否か(Rth2>R>Rth1を満たすのか否か)について、判定を行う(ステップS17)。ここで、抵抗値Rが所定の範囲内に収まっていない(R≧Rth2またはRth1≧Rに該当する)と判定された場合(ステップS17:N)、除細動カテーテル1の電極群111G,112Gが、患者9の体内の所定の部位(例えば、冠状静脈の管壁や、右心房の内壁など)に、確実に当接されていないことを意味する。したがって、この場合には、前述したステップS12へと戻り、再び、X線画像等を用いて各電極(リング状電極111,112,113)の位置が確認されることになる。このようにして、除細動カテーテル1の電極群111G,112Gが、患者9の体内の所定の部位に確実に当接されている場合にのみ、これ以降の除細動が実行されるようになっているため、効果的な除細動治療を行うことが可能である。 Next, the arithmetic processing unit 24 in the power supply device 2 determines whether or not the resistance value R thus obtained is within a predetermined range defined by the predetermined threshold values Rth1 and Rth2 (Rth2> R). > Whether or not Rth1 is satisfied) is determined (step S17). Here, when it is determined that the resistance value R does not fall within the predetermined range (corresponding to R ≧ Rth2 or Rth1 ≧ R) (step S17: N), the electrode groups 111G and 112G of the defibrillation catheter 1 However, it means that the patient 9 is not reliably abutted on a predetermined site in the body (for example, the duct wall of the coronary vein or the inner wall of the right atrium). Therefore, in this case, the process returns to step S12 described above, and the positions of the electrodes (ring-shaped electrodes 111, 112, 113) are confirmed again using an X-ray image or the like. In this way, subsequent defibrillation is performed only when the electrode groups 111G and 112G of the defibrillation catheter 1 are reliably in contact with a predetermined site in the body of the patient 9. Therefore, it is possible to perform effective defibrillation treatment.
 一方、抵抗値Rが所定の範囲内に収まっている(Rth2>R>Rth1を満たす)と判定された場合(ステップS17:Y)、上記したように、除細動カテーテル1の電極群111G,112Gが、患者9の体内の所定の部位に確実に当接されていることを意味している。したがって、この場合には次に、電源装置2の操作者(技師等)による入力部21への操作(例えば印加エネルギー設定スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、除細動の際の印加エネルギーの設定がなされる(ステップS18)。具体的には、印加エネルギーとして、例えば1J(ジュール)から30Jまでの範囲内で、1J刻みで設定される。 On the other hand, when it is determined that the resistance value R is within a predetermined range (Satisfying Rth2> R> Rth1) (step S17: Y), as described above, the electrode group 111G of the defibrillation catheter 1 It means that the 112G is reliably in contact with a predetermined site in the body of the patient 9. Therefore, in this case, the input signal Sin is then supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the applied energy setting switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2. By doing so, the applied energy at the time of defibrillation is set (step S18). Specifically, the applied energy is set in 1J increments, for example, in the range of 1J (joule) to 30J.
 続いて、電源装置2の操作者(技師等)による入力部21への操作(例えば充電スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、電源部22内のコンデンサに、除細動のためのエネルギー(電荷)が充電される(ステップS19)。 Subsequently, the input signal Sin is supplied to the arithmetic processing unit 24 by the operation to the input unit 21 (for example, the input operation to the charging switch) by the operator (engineer or the like) of the power supply device 2, so that the power supply unit 22 The capacitor inside is charged with energy (electric charge) for defibrillation (step S19).
 そして、このようなエネルギー充電の完了後、除細動の実行が開始される(ステップS20)。具体的には、電源装置2の操作者(技師等)による入力部21への操作(例えばエネルギー印加スイッチへの入力操作)によって、入力信号Sinが演算処理部24へと供給されることで、以下説明する「除細動モード」が実行される。なお、このような「除細動モード」の際にも、例えば、後述する、除細動カテーテル1の接続の確認処理(図8のステップS300)が、定期的に行われるようにしてもよい。ちなみに、「除細動モード」の途中で、除細動カテーテル1が電源装置2に対して非接続状態になったことが確認された場合、例えば、電源装置2内でエネルギーの放電処理がなされ、上記した「心電位測定モード」に移行することになる。 Then, after the completion of such energy charging, the execution of defibrillation is started (step S20). Specifically, the input signal Sin is supplied to the arithmetic processing unit 24 by an operation (for example, an input operation to the energy application switch) to the input unit 21 by an operator (engineer or the like) of the power supply device 2. The "defibrillation mode" described below is executed. Even in such a "defibrillation mode", for example, a process for confirming the connection of the defibrillation catheter 1 (step S300 in FIG. 8), which will be described later, may be performed periodically. .. By the way, when it is confirmed that the defibrillation catheter 1 is not connected to the power supply device 2 in the middle of the "defibrillation mode", for example, energy discharge processing is performed in the power supply device 2. , The mode shifts to the above-mentioned "electrocardiographic measurement mode".
 この「除細動モード」では、例えば図11に示したようにして、除細動カテーテル1における電極群111G,112G間に、電気エネルギーとしての直流電圧Vdcが印加されることで、患者9の体内での除細動が行われる。 In this "defibrillation mode", for example, as shown in FIG. 11, a DC voltage Vdc as electrical energy is applied between the electrode groups 111G and 112G in the defibrillation catheter 1, so that the patient 9 Defibrillation is performed in the body.
 具体的には、図11に示したように、電源装置2内の電源部22から出力された直流電圧Vdcが、演算処理部24内の出力回路241、切替部23および出力端子Tout1をこの順に経由して、除細動カテーテル1における電極群111G,112G間に印加される。このとき、前述したように、これらの電極群111G,112Gが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように、電源装置2内の出力回路241から直流電圧Vdcが出力される。 Specifically, as shown in FIG. 11, the DC voltage Vdc output from the power supply unit 22 in the power supply device 2 connects the output circuit 241 in the arithmetic processing unit 24, the switching unit 23, and the output terminal Tout1 in this order. Via, it is applied between the electrode groups 111G and 112G in the defibrillation catheter 1. At this time, as described above, in the power supply device 2 so that these electrode groups 111G and 112G have different polarities (when one electrode group has a negative electrode, the other electrode group has a positive pole). The DC voltage Vdc is output from the output circuit 241.
 また、この際に図11に示したように、生体測定機構6(電極パッド61)にて測定された心電位信号Sc1が、引き続き心電計4を経由して、電源装置2の入力端子Tin1および心電図表示装置5へと入力される。そして、前述したゲイン調整後の心電位信号Sc1に基づく心電位波形が、引き続き、表示部25にて表示されるとともに、心電位信号Sc1に基づく心電位波形が、引き続き、心電図表示装置5にて表示される。 At this time, as shown in FIG. 11, the electrocardiographic signal Sc1 measured by the biometric measurement mechanism 6 (electrode pad 61) continues to pass through the electrocardiograph 4, and the input terminal Tin1 of the power supply device 2 continues. And is input to the electrocardiogram display device 5. Then, the electrocardiographic waveform based on the gain-adjusted electrocardiographic signal Sc1 described above is continuously displayed on the display unit 25, and the electrocardiographic waveform based on the electrocardiographic signal Sc1 is continuously displayed on the electrocardiogram display device 5. Is displayed.
 なお、この際に図11に示したように、除細動カテーテル1の電極群113G(リング状電極113)にて測定された心電位信号Sc0bもまた、引き続き、電源装置2の入力端子Tin2および出力端子Tout2をこの順に経由して(切替部23を経由せずに)、心電計4へと供給される。そして、この心電位信号Sc0bは、心電計4から心電図表示装置5へと出力され、心電位信号Sc0bに基づく心電位波形が、この心電図表示装置5にて表示される。 At this time, as shown in FIG. 11, the electrocardiographic signal Sc0b measured by the electrode group 113G (ring-shaped electrode 113) of the defibrillation catheter 1 also continues to be the input terminal Tin2 of the power supply device 2 and It is supplied to the electrocardiograph 4 via the output terminal Tout2 in this order (without passing through the switching unit 23). Then, the electrocardiographic signal Sc0b is output from the electrocardiograph 4 to the electrocardiogram display device 5, and the electrocardiographic waveform based on the electrocardiographic signal Sc0b is displayed on the electrocardiogram display device 5.
 また、この際に演算処理部24は、上記した経路にて供給された心電位信号Sc1に同期して直流電圧Vdcが印加されるように、電源部22に対して動作制御を行う。このようにして、演算処理部24に入力された心電位波形(最大ピークであるR波)に同期をとって直流電圧Vdcが印加されることで、効果的な除細動治療を行うことが可能となる。 At this time, the arithmetic processing unit 24 controls the operation of the power supply unit 22 so that the DC voltage Vdc is applied in synchronization with the electrocardiographic signal Sc1 supplied by the above-mentioned path. In this way, effective defibrillation treatment can be performed by applying the DC voltage Vdc in synchronization with the electrocardiographic waveform (R wave which is the maximum peak) input to the arithmetic processing unit 24. It will be possible.
 次に、所定時間の経過後に、演算処理部24が、電源部22からの直流電圧Vdcの出力を停止させることで、患者9の体内での除細動の実行が停止される(ステップS21)。 Next, after the elapse of a predetermined time, the arithmetic processing unit 24 stops the output of the DC voltage Vdc from the power supply unit 22, so that the execution of defibrillation in the patient 9 is stopped (step S21). ..
 続いて、除細動時の印加記録(心電位波形の記録等)が、電源装置2の表示部25にて、一時的(例えば5秒間)に表示される(ステップS22)。具体的には、例えば、前述した除細動情報Idefのうちの少なくとも一部の情報が、表示部25に表示されることになる。 Subsequently, the application record (recording of the electrocardiographic waveform, etc.) at the time of defibrillation is temporarily (for example, 5 seconds) displayed on the display unit 25 of the power supply device 2 (step S22). Specifically, for example, at least a part of the above-mentioned defibrillation information IDEF will be displayed on the display unit 25.
 次いで、前述した「心電位測定モード」(ステップS13,図9参照)に再び設定される。これにより、前述したゲイン調整後の心電位信号Sc1に基づく心電位波形が、表示部25に再び表示されるとともに、心電位信号Sc1,Sc0a,Sc0bに基づく心電位波形が、心電図表示装置5に再び表示される。つまり、上記した除細動が実行された後の心電位波形が表示される(ステップS23)。 Next, the above-mentioned "electrocardiographic potential measurement mode" (see step S13, FIG. 9) is set again. As a result, the electrocardiographic waveform based on the gain-adjusted electrocardiographic signal Sc1 is displayed again on the display unit 25, and the electrocardiographic waveform based on the electrocardiographic signals Sc1, Sc0a, Sc0b is displayed on the electrocardiogram display device 5. It will be displayed again. That is, the electrocardiographic waveform after the defibrillation described above is executed is displayed (step S23).
 そして、このような除細動後の心電位波形が観察され、正常であるのか否かが判定される(ステップS24)。正常ではない(心房細動が治まっていない)と判定された場合(ステップS24:N)には、前述したステップS15へと戻り、再度の除細動へと進むことになる。一方、正常であると判定された場合(ステップS24:Y)には、図7に示した一連の除細動処理が終了となる。 Then, the electrocardiographic waveform after such defibrillation is observed, and it is determined whether or not it is normal (step S24). If it is determined that the condition is not normal (atrial fibrillation has not subsided) (step S24: N), the process returns to step S15 described above and proceeds to defibrillation again. On the other hand, when it is determined to be normal (step S24: Y), the series of defibrillation processes shown in FIG. 7 ends.
(B-2.使用の有効性の判定処理の詳細について)
 続いて、図8を参照して、前述した、除細動カテーテル1の使用の有効性の判定処理(図7中のステップS11)の詳細処理例について、説明する。なお、このような判定処理が行われる前段階では、前述した、入力部21における操作者による操作の受付(例えば、電源部22による除細動用の電力供給を実行させるための操作)が、無効化されているものとする。
(B-2. Details of the process for determining the effectiveness of use)
Subsequently, with reference to FIG. 8, a detailed processing example of the above-mentioned detailed processing example of the determination processing of the effectiveness of the use of the defibrillation catheter 1 (step S11 in FIG. 7) will be described. In the stage before such determination processing is performed, the above-mentioned reception of the operation by the operator in the input unit 21 (for example, the operation for executing the power supply for definement by the power supply unit 22) is invalid. It is assumed that it has been converted.
 この図8に示した本実施の形態の判定処理では、まず、除細動カテーテル1の電源装置2に対する接続(接続状態)の確認処理が、行われる(ステップS300)。すなわち、除細動カテーテル1が電源装置2に接続されているのか否か(接続状態であるのか、あるいは、非接続状態であるのか)が、判定される。ここで、除細動カテーテル1が接続状態であると判定された場合(ステップS300:Y)、後述するステップS302へと進むことになる。一方、除細動カテーテル1が非接続状態であると判定された場合(ステップS300:N)、表示部25において「Disconnected」と表示され(ステップS301)、ステップS300へと戻ることになる。なお、このような除細動カテーテル1の接続の確認処理が、その後も、定期的に行われるようにしてもよい。 In the determination process of the present embodiment shown in FIG. 8, first, the confirmation process of the connection (connection state) of the defibrillation catheter 1 to the power supply device 2 is performed (step S300). That is, it is determined whether or not the defibrillation catheter 1 is connected to the power supply device 2 (whether it is in a connected state or in a non-connected state). Here, when it is determined that the defibrillation catheter 1 is in the connected state (step S300: Y), the process proceeds to step S302, which will be described later. On the other hand, when it is determined that the defibrillation catheter 1 is in a non-connected state (step S300: N), "Disconnected" is displayed on the display unit 25 (step S301), and the process returns to step S300. It should be noted that such a process of confirming the connection of the defibrillation catheter 1 may be performed periodically thereafter.
 次に、上記したステップS302では、電源装置2内の読出部245が、除細動カテーテル1内の記憶部13に保持されている各種データ(例えば、前述した識別情報131、使用状況情報132、使用日時情報133および使用回数Nの、各情報など)を、読み出す。そして、電源装置2内の判定部246は、読み出された識別情報131が正規な情報であるのか否か等について、判定を行う(ステップS303)。 Next, in step S302 described above, the reading unit 245 in the power supply device 2 holds various data (for example, the above-mentioned identification information 131, usage status information 132, etc.) in the storage unit 13 in the defibrillation catheter 1. The usage date / time information 133 and the number of times of use N (each information, etc.) are read out. Then, the determination unit 246 in the power supply device 2 determines whether or not the read identification information 131 is legitimate information (step S303).
 ここで、識別情報131が非正規な情報であると判定された場合、または、上記した各種データの読出エラーが生じたと判定された場合には(ステップS303:N)、後述するステップS305へと進むことになる。一方、識別情報131が正規な情報であると判定された場合には(ステップS303:Y)、次に判定部246は、読み出された使用状況情報132の内容について、判定を行う(ステップS304)。 Here, when it is determined that the identification information 131 is non-regular information, or when it is determined that the above-mentioned reading error of various data has occurred (step S303: N), the process proceeds to step S305 described later. Will proceed. On the other hand, when it is determined that the identification information 131 is legitimate information (step S303: Y), the determination unit 246 then determines the content of the read usage status information 132 (step S304). ).
 ここで、使用状況情報132の内容が、予め設定された仕様とは異なる内容(仕様外)であると判定された場合には、判定部246が、その除細動カテーテル1の使用が「無効」であると判定すると共に、表示部25において「Invalid device connected」と表示される(ステップS305)。そして、この場合には実行許可部247は、前述した除細動の実行用の操作の受付の無効化を、維持するようにする(ステップS306)。したがって、操作者によって入力部21に対する操作が行われたとしても、引き続き、除細動用の電力供給が実行されず、除細動カテーテル1による電気的な除細動も実行されないことになる。 Here, when it is determined that the content of the usage status information 132 is different from the preset specification (outside the specification), the determination unit 246 determines that the use of the defibrillation catheter 1 is "invalid". Is determined, and "Invalid device connected" is displayed on the display unit 25 (step S305). Then, in this case, the execution permission unit 247 maintains the invalidation of the reception of the operation for executing the defibrillation described above (step S306). Therefore, even if the operator performs an operation on the input unit 21, the power supply for defibrillation is not continuously executed, and the electrical defibrillation by the defibrillation catheter 1 is not executed either.
 なお、その後は、前述したステップS300へと戻り、除細動カテーテル1の接続の確認処理が、再度行われることになる。ただし、このようにしてステップS306からステップS300へと戻った場合において、除細動カテーテル1が接続状態であると判定された場合(ステップS300:Y)には、前述したステップS302へと進まずに、ステップS300へと戻ることになる。つまり、この場合には、記憶部13内のデータの読み出し(ステップS302)が行われずに、上記した除細動の実行用の操作の受付の無効化が、維持されることになる。なお、この点は、後述する変形例(変形例1の図12等)においても同様である。 After that, the process returns to step S300 described above, and the confirmation process of the connection of the defibrillation catheter 1 is performed again. However, in the case of returning from step S306 to step S300 in this way, if it is determined that the defibrillation catheter 1 is in the connected state (step S300: Y), the process does not proceed to step S302 described above. Then, the process returns to step S300. That is, in this case, the data in the storage unit 13 is not read (step S302), and the invalidation of the reception of the operation for executing the defibrillation described above is maintained. This point is the same in the modified example (FIG. 12 of the modified example 1) described later.
 一方、ステップS304において、使用状況情報132の内容が「使用禁止」を示していると判定された場合には、後述するステップS313へと進むことになる。 On the other hand, if it is determined in step S304 that the content of the usage status information 132 indicates "use prohibited", the process proceeds to step S313 described later.
 また、ステップS304において、使用状況情報132の内容が、「未使用中」または「使用中」を示していると判定された場合には、次に判定部246は、その使用状況情報132の内容が、「未使用中」を示しているのか否かについて、判定を行う(ステップS307)。 If it is determined in step S304 that the content of the usage status information 132 indicates "unused" or "in use", the determination unit 246 then determines the content of the usage status information 132. However, it is determined whether or not it indicates "unused" (step S307).
 ここで、その使用状況情報132の内容が、「未使用中」を示していると判定された場合には(ステップS307:Y)、次に、以下のような各処理が行われる(ステップS308)。すなわち、まず、その時点における日時情報Idt2が、前述した(初回の)使用開始日時dtsとして、除細動カテーテル1内の記憶部13に対する書込み(前述した使用日時情報133に対する書込み)が行われる。また、この記憶部13内における使用状況情報132の内容が、現在の「未使用中」から「使用中」に変更されるよう、更新処理が行われる。その後は、判定部246が、その除細動カテーテル1の使用が「有効」であると判定すると共に、表示部25において「Valid device connected」と表示される(ステップS309)。次いで、この場合には実行許可部247は、前述した除細動の実行用の操作の受付を、有効化する(ステップS310)。これにより、操作者によって入力部21に対する操作が行われると、除細動用の電力供給が実行され、除細動カテーテル1による電気的な除細動が実行されることになる。そして、この場合、図8に示した一連の処理(使用の有効性の判定処理)が終了となり、前述した図7のステップS12へと進むことになる。なお、前述した除細動カテーテル1の接続の確認処理が、上記したステップS309の後の時点においても、行われるようにしてもよい。 Here, when it is determined that the content of the usage status information 132 indicates "unused" (step S307: Y), the following processes are then performed (step S308). ). That is, first, the date and time information Idt2 at that time is written to the storage unit 13 in the defibrillation catheter 1 (writing to the above-mentioned use date and time information 133) as the above-mentioned (first) use start date and time dts. Further, the update process is performed so that the content of the usage status information 132 in the storage unit 13 is changed from the current "unused" to "used". After that, the determination unit 246 determines that the use of the defibrillation catheter 1 is "effective", and the display unit 25 displays "Valid device connected" (step S309). Next, in this case, the execution permission unit 247 activates the reception of the operation for executing the defibrillation described above (step S310). As a result, when the operator performs an operation on the input unit 21, power supply for defibrillation is executed, and electrical defibrillation by the defibrillation catheter 1 is executed. Then, in this case, the series of processes (process for determining the effectiveness of use) shown in FIG. 8 is completed, and the process proceeds to step S12 in FIG. 7 described above. The connection confirmation process of the defibrillation catheter 1 described above may also be performed at a time point after step S309 described above.
 一方、上記した使用状況情報132の内容が、「使用中」を示していると判定された場合には(ステップS307:N)、次に、電源装置2内の導出部244は、以下のようにして、前述した経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)を導出する(ステップS311)。すなわち、導出部244は、その時点における日時情報Idt2と、読み出された使用日時情報133(使用開始日時dts)とを利用して、そのような経過時間Δt1を導出する。具体的には、導出部244は、その時点における日時情報Idt2から、使用開始日時dtsを差し引くことで、経過時間Δt1を導出する(Δt1=Idt2-dts)。 On the other hand, when it is determined that the content of the usage status information 132 described above indicates "in use" (step S307: N), then the out-licensing unit 244 in the power supply device 2 is described as follows. Then, the above-mentioned elapsed time Δt1 (elapsed time from the start of use of the defibrillation catheter 1) is derived (step S311). That is, the derivation unit 244 derives such an elapsed time Δt1 by using the date and time information Idt2 at that time and the read date and time information 133 (use start date and time dts). Specifically, the out-licensing unit 244 derives the elapsed time Δt1 by subtracting the use start date and time dts from the date and time information Idt2 at that time (Δt1 = Idt2-dts).
 なお、この場合において、例えば、読み出された使用開始日時dtsが、異常な情報となっている場合(例えば、読み出された使用開始日時dtsが、その時点での日時情報Idt2よりも未来の日時となっている場合など)には、前述したステップS305へと進むようにしてもよい。すなわち、除細動カテーテル1の使用が「無効」であると判定されると共に、表示部25において「Invalid device connected」と表示されるようにしてもよい。 In this case, for example, when the read use start date and time dts is abnormal information (for example, the read use start date and time dts is in the future than the date and time information Idt2 at that time. If it is the date and time, etc.), the process may proceed to step S305 described above. That is, the use of the defibrillation catheter 1 may be determined to be "invalid" and may be displayed as "Invalid device connected" on the display unit 25.
 続いて、判定部246は、このようにして導出された経過時間Δt1が、前述した閾値時間Δtth1以内であるのか否か(Δt1≦Δtth1を満たすのか否か)について、判定を行う(ステップS312)。なお、この閾値時間Δtth1の一例としては、24時間(1日)が挙げられるが、この例には限られず、任意の値に設定可能である。 Subsequently, the determination unit 246 determines whether or not the elapsed time Δt1 thus derived is within the above-mentioned threshold time Δtth1 (whether or not Δt1 ≦ Δtth1 is satisfied) (step S312). .. An example of this threshold time Δth1 is 24 hours (1 day), but the present invention is not limited to this example, and any value can be set.
 ここで、経過時間Δt1が閾値時間Δtth1以内である(Δt1≦Δtth1を満たす)と判定された場合には(ステップS312:Y)、前述したステップS309へと進むことになる。すなわち、この場合においても、除細動カテーテル1の使用が「有効」であると判定されると共に、表示部25において「Valid device connected」と表示される。そして、除細動の実行用の操作の受付が有効化された(ステップS310)後、前述した図7のステップS12へと進むことになる。 Here, if it is determined that the elapsed time Δt1 is within the threshold time Δth1 (satisfying Δt1 ≦ Δth1) (step S312: Y), the process proceeds to step S309 described above. That is, even in this case, it is determined that the use of the defibrillation catheter 1 is "effective", and "Valid device connected" is displayed on the display unit 25. Then, after the acceptance of the operation for executing the defibrillation is enabled (step S310), the process proceeds to step S12 of FIG. 7 described above.
 一方、経過時間Δt1が閾値時間Δtth1超過である(Δt1>Δtth1を満たす)と判定された場合には(ステップS312:N)、次に、以下のような処理が行われる。すなわち、除細動カテーテル1内の記憶部13において、使用状況情報132の内容が、現在の「使用中」から「使用禁止」に変更されるよう、更新処理が行われる(ステップS313)。そして、判定部246は、期間満了によって除細動カテーテル1の使用が「無効」であると判定すると共に、表示部25において「Expiry device connected」と表示される(ステップS314)。なお、その後は、前述したステップS306へと進むことになる。すなわち、実行許可部247によって、除細動の実行用の操作の受付の無効化が維持された後、前述したステップS300へと戻り、除細動カテーテル1の接続の確認処理が、再度行われることになる。 On the other hand, when it is determined that the elapsed time Δt1 exceeds the threshold time Δth1 (satisfies Δt1> Δth1) (step S312: N), the following processing is then performed. That is, in the storage unit 13 in the defibrillation catheter 1, the update process is performed so that the content of the usage status information 132 is changed from the current "in use" to "prohibition of use" (step S313). Then, the determination unit 246 determines that the use of the defibrillation catheter 1 is "invalid" when the period expires, and displays "Expiry device connected" on the display unit 25 (step S314). After that, the process proceeds to step S306 described above. That is, after the execution permission unit 247 maintains the invalidation of the reception of the operation for executing the defibrillation, the process returns to step S300 described above, and the confirmation process of the connection of the defibrillation catheter 1 is performed again. It will be.
(B-3.作用・効果)
 このようにして、本実施の形態の除細動カテーテルシステム3では、例えば、以下のような作用および効果が得られる。
(B-3. Action / effect)
In this way, in the defibrillation catheter system 3 of the present embodiment, for example, the following actions and effects can be obtained.
(時計部243a,243bについて)
 まず、本実施の形態では、日時情報Idt1を出力する時計部243aと、日時情報Idt2を出力する時計部243bとがそれぞれ、電源装置2に設けられている。そして、日時情報Idt1は、操作者による操作に応じて随時に設定変更が可能な情報である一方、日時情報Idt2は、操作者による操作に応じた設定変更が制限されている。したがって、このような2種類の日時情報Idt1,Idt2を利用して、このカテーテルシステム(除細動カテーテルシステム3)において、例えば前述したような、多様な処理が容易に実現可能となる。よって、本実施の形態では、除細動カテーテルシステム3における利便性を、向上させることが可能となる。
(About clocks 243a and 243b)
First, in the present embodiment, the power supply device 2 is provided with a clock unit 243a for outputting the date and time information Idt1 and a clock unit 243b for outputting the date and time information Idt2, respectively. The date and time information Idt1 is information whose settings can be changed at any time according to the operation by the operator, while the date and time information Idt2 is restricted from changing the settings according to the operation by the operator. Therefore, by utilizing these two types of date and time information Idt1 and Idt2, in this catheter system (defibrillation catheter system 3), for example, various processes as described above can be easily realized. Therefore, in the present embodiment, it is possible to improve the convenience of the defibrillation catheter system 3.
 また、本実施の形態では、日時情報Idt2についての、操作者による操作に応じた設定変更が、電源装置2の初回起動時に限って可能となっているようにした場合には、以下のようになる。すなわち、この日時情報Idt2についての設定変更が、電源装置2の初回起動時に限っては許容されていることから、そのような初回起動後における設定変更の制限は維持しつつ、設定変更の許容性も最低限は確保されることになる。したがって、このような日時情報Idt2が利用し易くなり、除細動カテーテルシステム3における多様な処理が、更に容易に実現可能となる。その結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, when the setting of the date and time information Idt2 can be changed according to the operation by the operator only when the power supply device 2 is started for the first time, it is as follows. Become. That is, since the setting change for the date and time information Idt2 is permitted only at the first startup of the power supply device 2, the tolerance of the setting change is maintained while maintaining the restriction of the setting change after the first startup. Will be secured at a minimum. Therefore, such date and time information Idt2 becomes easy to use, and various processes in the defibrillation catheter system 3 can be realized more easily. As a result, it is possible to further improve convenience.
 更に、本実施の形態では、日時情報Idt2についての、操作者による操作に応じた設定変更が、一切不可能となっているようにした場合には、以下のようになる。すなわち、この日時情報Idt2についての設定変更が、完全に制限されることから、そのような日時情報Idt2についての設定変更の制限を利用した処理が、実現し易くなる。その結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, when the setting change of the date and time information Idt2 according to the operation by the operator is made impossible at all, it becomes as follows. That is, since the setting change of the date and time information Idt2 is completely restricted, it becomes easy to realize the process using the restriction of the setting change of the date and time information Idt2. As a result, it is possible to further improve convenience.
 加えて、本実施の形態では、時計部243aにおける日時情報Idt1が、電源装置2とは異なる他の機器内で設定されている日時情報(例えば、心電計4内で設定されている日時情報Idt3)と一致するように設定可能とした場合には、以下のようになる。すなわち、例えば、電源装置2内での日時情報Idt1を利用した処理を、他の機器内での日時情報(例えば日時情報Idt3)を利用した処理と同期させつつ、実行できるようになる。その結果、利便性の更なる向上を図ることが可能となる。 In addition, in the present embodiment, the date and time information Idt1 in the clock unit 243a is the date and time information set in another device different from the power supply device 2 (for example, the date and time information set in the electrocardiograph 4). When it is possible to set so as to match Idt3), the result is as follows. That is, for example, the process using the date and time information Idt1 in the power supply device 2 can be executed while synchronizing with the process using the date and time information (for example, the date and time information Idt3) in another device. As a result, it is possible to further improve convenience.
 また、本実施の形態では、前述した経過時間Δt1,Δt2をそれぞれ導出する導出部244が、電源装置2に設けられているようにしたので、以下のようになる。すなわち、経過時間Δt2(日時情報Idt2の初期設定時からの電源装置2の経過時間)を利用して、例えば、電源装置2自体やその内部部品(例えばバッテリー)等のメンテナンス時期などを把握したり、例えば表示部25や音声出力部26等を用いて、操作者(ユーザ)に報知(警告など)をしたりすることが可能となる。具体的には、この経過時間Δt2が、前述した報知閾値Δtth2超過となった場合に(Δt2>Δtth2)、そのような報知動作(警告動作など)を行うようにすればよい。また、経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)を利用して、例えば、この除細動カテーテル1の使用期限を把握して、その除細動カテーテル1の使用を制限したりすることが可能となる。これらの結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, the lead-out unit 244 for deriving the elapsed time Δt1 and Δt2 described above is provided in the power supply device 2, so that the result is as follows. That is, by using the elapsed time Δt2 (the elapsed time of the power supply device 2 from the initial setting of the date and time information Idt2), for example, the maintenance time of the power supply device 2 itself and its internal parts (for example, a battery) can be grasped. For example, the display unit 25, the voice output unit 26, and the like can be used to give a notification (warning, etc.) to the operator (user). Specifically, when the elapsed time Δt2 exceeds the above-mentioned notification threshold value Δts2 (Δt2> Δth2), such a notification operation (warning operation or the like) may be performed. Further, by using the elapsed time Δt1 (the elapsed time from the start of use of the defibrillation catheter 1), for example, the expiration date of the defibrillation catheter 1 can be grasped, and the defibrillation catheter 1 can be used. It is possible to limit it. As a result, it is possible to further improve convenience.
(使用の有効性の判定処理について)
 また、本実施の形態では、除細動カテーテル1内に保持されている固有の識別情報131が、電源装置2側で読み出され、その固有の識別情報131に基づいて、その除細動カテーテル1の使用に関する有効性が判定されるようにしたので、以下のようになる。すなわち、この除細動カテーテル1内における固有の識別情報131を利用して、その除細動カテーテル1の使用が有効なのか否かの判定結果が、容易に得られるようになる。具体的には、まず、除細動カテーテルでは一般に、細動を起こした心臓に対して直接的に電気エネルギーを付与することから、非正規な除細動カテーテル(例えば、劣化品や模倣品など)が使用されると、効果的な除細動治療が実現されないおそれがある。具体的には、除細動カテーテルを利用した電気的な除細動処理の際には、一般に、非常に高い直流電圧(前述した直流電圧Vdcに相当)が印加されることから、例えば、上記した劣化品や模倣品などの非正規な除細動カテーテルが使用された場合、有効な除細動処理の実現が困難となってしまうおそれがある。これに対して本実施の形態では、上記したようにして、除細動カテーテル1の使用が有効なのか否かの判定結果が、容易に得られるようになることから、そのような非正規な除細動カテーテル1の使用を、効果的に排除できるようになる。よって、本実施の形態ではこの点においても、除細動カテーテルシステム3における利便性を、向上させることが可能となる。
(Regarding the process of determining the effectiveness of use)
Further, in the present embodiment, the unique identification information 131 held in the defibrillation catheter 1 is read out on the power supply device 2 side, and the defibrillation catheter is based on the unique identification information 131. Since the effectiveness regarding the use of 1 is judged, it becomes as follows. That is, by utilizing the unique identification information 131 in the defibrillation catheter 1, it becomes possible to easily obtain a determination result as to whether or not the use of the defibrillation catheter 1 is effective. Specifically, first, defibrillation catheters generally apply electrical energy directly to the fibrillated heart, so non-regular defibrillation catheters (eg, degraded products, counterfeit products, etc.) ) May not provide effective defibrillation treatment. Specifically, in the case of electrical defibrillation processing using a defibrillation catheter, a very high DC voltage (corresponding to the above-mentioned DC voltage Vdc) is generally applied. Therefore, for example, the above When a non-regular defibrillation catheter such as a deteriorated product or a counterfeit product is used, it may be difficult to realize an effective defibrillation treatment. On the other hand, in the present embodiment, as described above, it becomes possible to easily obtain a determination result as to whether or not the use of the defibrillation catheter 1 is effective, and thus such an irregularity. The use of the defibrillation catheter 1 can be effectively eliminated. Therefore, in this embodiment, it is possible to improve the convenience of the defibrillation catheter system 3 in this respect as well.
 更に、本実施の形態では、判定部246において、上記した識別情報131が非正規な情報であると判定された場合には、除細動カテーテル1の使用が無効であると判定し、識別情報131が正規な情報であると判定された場合には、上記した経過時間Δt1も考慮して、除細動カテーテル1の使用に関する有効性を判定すると共に、この経過時間Δt1が閾値時間Δtth1以内である場合には、除細動カテーテル1の使用が有効であると判定するようにしたので、以下のようになる。すなわち、識別情報131が正規な情報である場合でも、経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)も考慮して、その除細動カテーテル1の使用に関する有効性が判定されることから、使用に関する有効性が、より効果的に判定されるようになる。その結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, when the determination unit 246 determines that the above-mentioned identification information 131 is non-regular information, it determines that the use of the defibrillation catheter 1 is invalid, and the identification information. When 131 is determined to be legitimate information, the effectiveness regarding the use of the defibrillation catheter 1 is determined in consideration of the above-mentioned elapsed time Δt1, and the elapsed time Δt1 is within the threshold time Δtth1. In some cases, the use of the defibrillation catheter 1 was determined to be effective, so that the result is as follows. That is, even when the identification information 131 is legitimate information, the effectiveness of using the defibrillation catheter 1 is determined in consideration of the elapsed time Δt1 (the elapsed time from the start of use of the defibrillation catheter 1). Therefore, the effectiveness of use can be judged more effectively. As a result, it is possible to further improve convenience.
 加えて、本実施の形態では、上記した識別情報131が正規な情報であると判定された場合において、上記した経過時間Δt1が閾値時間Δtth1超過である場合には、除細動カテーテル1の使用が無効であると判定するようにしたので、以下のようになる。すなわち、識別情報131が正規な情報である場合でも、経過時間Δt1が閾値時間Δtth1超過である場合には、除細動カテーテル1の使用が無効であると判定されることから、使用期限を超えた劣化品となる除細動カテーテル1の使用を、効果的に排除できるようになる。その結果、利便性をより一層向上させることが可能となる。 In addition, in the present embodiment, when the above-mentioned identification information 131 is determined to be legitimate information and the above-mentioned elapsed time Δt1 exceeds the threshold time Δth1, the defibrillation catheter 1 is used. Is determined to be invalid, so it becomes as follows. That is, even if the identification information 131 is legitimate information, if the elapsed time Δt1 exceeds the threshold time Δth1, it is determined that the use of the defibrillation catheter 1 is invalid, and therefore the expiration date is exceeded. It becomes possible to effectively eliminate the use of the defibrillation catheter 1 which is a deteriorated product. As a result, the convenience can be further improved.
 また、本実施の形態では、除細動カテーテル1内に保持されている除細動カテーテル1の使用状況情報132が、読み出されるようになっていると共に、上記した識別情報131が正規な情報であると判定された場合において、読み出された使用状況情報132が未使用中を示している場合には、除細動カテーテル1の使用が有効であると判定し、読み出された使用状況情報132が使用中を示している場合には、上記した経過時間Δt1も考慮して、除細動カテーテル1の使用に関する有効性を判定するようにしたので、以下のようになる。すなわち、そのような使用状況情報132が使用中を示している場合でも、経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)も考慮して、その除細動カテーテル1の使用に関する有効性が判定されることから、使用に関する有効性が、より効果的に判定されるようになる。その結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, the usage status information 132 of the defibrillation catheter 1 held in the defibrillation catheter 1 is read out, and the above-mentioned identification information 131 is legitimate information. If it is determined that there is, and the read usage status information 132 indicates that it is not in use, it is determined that the use of the defibrillation catheter 1 is effective, and the read usage status information is read. When 132 indicates that the catheter is in use, the effectiveness regarding the use of the defibrillation catheter 1 is determined in consideration of the elapsed time Δt1 described above, so that the result is as follows. That is, even when such usage status information 132 indicates that the catheter is in use, the defibrillation catheter 1 is used in consideration of the elapsed time Δt1 (the elapsed time from the start of use of the defibrillation catheter 1). Since the effectiveness regarding the use is determined, the effectiveness regarding the use can be determined more effectively. As a result, it is possible to further improve convenience.
 更に、本実施の形態では、前述した入力部21と、判定部246による判定結果を出力する出力部(表示部25や音声出力部26)と、除細動カテーテル1の使用が有効であると判定された場合にのみ、入力部21での操作者による操作(電源部22による電力供給を実行させるための操作)の受付を有効化する実行許可部247とがそれぞれ、電源装置2に設けられているようにしたので、以下のようになる。すなわち、判定部246による判定結果を、操作者(ユーザ)が容易に把握できるようになる。また、除細動カテーテル1の使用が有効であると判定された場合にのみ、操作者による上記した操作の受付が有効化されることから、非正規な除細動カテーテル1の使用を、より効果的に排除できるようになる。これらの結果、利便性の更なる向上を図ることが可能となる。 Further, in the present embodiment, it is effective to use the input unit 21 described above, the output unit (display unit 25 and voice output unit 26) that outputs the determination result by the determination unit 246, and the defibrillation catheter 1. Only when it is determined, the power supply device 2 is provided with an execution permission unit 247 that enables the reception of the operation by the operator (the operation for executing the power supply by the power supply unit 22) at the input unit 21. Since I made it so, it becomes as follows. That is, the operator (user) can easily grasp the determination result by the determination unit 246. Further, since the acceptance of the above-mentioned operation by the operator is valid only when it is determined that the use of the defibrillation catheter 1 is effective, the use of the non-regular defibrillation catheter 1 is further promoted. You will be able to eliminate it effectively. As a result, it is possible to further improve convenience.
 加えて、本実施の形態では、上記した識別情報131として、暗号化された情報を用いるようにした場合には、以下のようになる。すなわち、上記した識別情報131が暗号化された情報であることから、その識別情報131の秘匿性(機密性)が高くなり、例えば他人による識別情報131の悪用等が、容易に防止されるようになる。その結果、利便性の更なる向上を図ることが可能となる。 In addition, in the present embodiment, when the encrypted information is used as the identification information 131 described above, the result is as follows. That is, since the above-mentioned identification information 131 is encrypted information, the confidentiality (confidentiality) of the identification information 131 is increased, and for example, misuse of the identification information 131 by another person can be easily prevented. become. As a result, it is possible to further improve convenience.
<2.変形例>
 続いて、上記実施の形態の変形例(変形例1~3)について説明する。これらの変形例1~3はそれぞれ、実施の形態で説明した、除細動カテーテル1の使用の有効性の判定処理(図8参照)に関する、変形例に対応している。具体的には、実施の形態で説明した判定処理では、除細動カテーテル1の使用回数Nの情報を考慮しない場合の判定処理となっていたが、以下説明する変形例1~3の判定処理ではそれぞれ、そのような使用回数Nの情報を考慮した場合の判定処理となっている。なお、以下では、実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
<2. Modification example>
Subsequently, modification examples (modification examples 1 to 3) of the above-described embodiment will be described. Each of these modifications 1 to 3 corresponds to the modifications related to the process of determining the effectiveness of the use of the defibrillation catheter 1 (see FIG. 8) described in the embodiment. Specifically, in the determination process described in the embodiment, the determination process is performed when the information on the number of times N of the defibrillation catheter 1 is used is not taken into consideration. However, the determination process of the modified examples 1 to 3 described below is performed. Each of these is a determination process when the information of the number of times of use N is taken into consideration. In the following, the same components as those in the embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
[変形例1]
(使用の有効性の判定処理)
 図12は、変形例1に係る、除細動カテーテル1の使用の有効性の判定処理の詳細処理例を、流れ図で表したものである。なお、この図12では、実施の形態で説明した図8から変更した部分の処理(後述するステップS401,S402,S408)と、その変更した部分の処理に関連する部分の処理とを、抽出して示しており、その他の部分の処理については、図8に示した処理と同一であるため、図示を省略している。
[Modification 1]
(Judgment processing of effectiveness of use)
FIG. 12 is a flow chart showing a detailed processing example of the processing for determining the effectiveness of the use of the defibrillation catheter 1 according to the modified example 1. In FIG. 12, the processing of the portion changed from FIG. 8 described in the embodiment (steps S401, S402, S408 described later) and the processing of the portion related to the processing of the modified portion are extracted. Since the processing of other parts is the same as the processing shown in FIG. 8, the illustration is omitted.
 この図12に示した本変形例の判定処理では、まず、前提として、図8に示した実施の形態の判定処理におけるステップS308の代わりに、以下説明するステップS408の処理が行われる。すなわち、ステップS308と同様にして、その時点における日時情報Idt2が(初回の)使用開始日時dtsとして、記憶部13に対する書込みが行われると共に、この記憶部13内における使用状況情報132の内容が、現在の「未使用中」から「使用中」に変更されるよう、更新処理が行われる。加えて、このステップS408では、記憶部13内における、前述した除細動カテーテル1の使用回数Nの値が、「+1」となる(1つ増加する)ように、更新処理が行われる。 In the determination process of the present modification shown in FIG. 12, first, as a premise, the process of step S408 described below is performed instead of step S308 in the determination process of the embodiment shown in FIG. That is, in the same manner as in step S308, the date and time information Idt2 at that time is written to the storage unit 13 as the (first) use start date and time dts, and the content of the usage status information 132 in the storage unit 13 is changed. The update process is performed so that the current "unused" is changed to "in use". In addition, in this step S408, the renewal process is performed so that the value of the number of times N of the defibrillation catheter 1 used in the storage unit 13 becomes "+1" (increases by one).
 また、本変形例の判定処理では、前述したステップS312において、前述した経過時間Δt1が閾値時間Δtth1超過であると判定された場合には(ステップS312:N)、次に、以下のような処理が行われる。すなわち、本変形例では実施の形態(図8)とは異なり、使用状況情報132の内容が「使用中」から「使用禁止」へと、直ぐには変更されないようになっている。具体的には、この場合、次に判定部246は、ステップS302において読み出された使用回数Nが、前述した閾値回数Nth以内であるのか否か(N≦Nthを満たすのか否か)について、判定を行う(ステップS401)。なお、この閾値回数Nthの一例としては、5回が挙げられるが、この例には限られず、任意の値に設定可能である。 Further, in the determination process of this modification, when it is determined in step S312 described above that the elapsed time Δt1 described above exceeds the threshold time Δth1 (step S312: N), then the following process is performed. Is done. That is, in this modification, unlike the embodiment (FIG. 8), the content of the usage status information 132 is not immediately changed from "in use" to "prohibited to use". Specifically, in this case, the determination unit 246 then determines whether or not the number of uses N read in step S302 is within the above-mentioned threshold number Nth (whether or not N ≦ Nth is satisfied). The determination is made (step S401). An example of the threshold number Nth is 5 times, but the present invention is not limited to this example, and any value can be set.
 ここで、使用回数Nが閾値回数Nth以内である(N≦Nthを満たす)と判定された場合には(ステップS401:Y)、次に、以下のような各処理が行われる(ステップS402)。すなわち、まず、除細動カテーテル1の記憶部13内における使用回数Nの値が、「+1」となるように、更新処理が行われる。また、その時点における日時情報Idt2が、前述した(初回の)使用開始日時dtsとして、記憶部13に対する上書き(前述した使用日時情報133に対する上書き)が行われる。 Here, when it is determined that the number of uses N is within the threshold number Nth (satisfying N ≦ Nth) (step S401: Y), the following processes are then performed (step S402). .. That is, first, the renewal process is performed so that the value of the number of times of use N in the storage unit 13 of the defibrillation catheter 1 becomes "+1". Further, the date and time information Idt2 at that time overwrites the storage unit 13 (overwrites the above-mentioned use date and time information 133) as the above-mentioned (first) use start date and time dts.
 なお、このようにして、使用開始日時dtsの上書きがなされることで、除細動カテーテル1の次回の接続時には、ステップS311において、この上書き後の使用開始日時dtsを利用して、前述した経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)が導出されることになる。これにより、その後のステップS312において、この経過時間Δt1が閾値時間Δtth1以内であれば(ステップS312:Y)、除細動カテーテル1の使用が「有効」であると判定される(ステップS309)ことになる。 By overwriting the use start date and time dts in this way, when the defibrillation catheter 1 is connected next time, the above-mentioned progress is made by using the use start date and time dts after the overwriting in step S311. The time Δt1 (elapsed time from the start of use of the defibrillation catheter 1) will be derived. As a result, in the subsequent step S312, if the elapsed time Δt1 is within the threshold time Δtth1 (step S312: Y), it is determined that the use of the defibrillation catheter 1 is “effective” (step S309). become.
 上記したステップS402の後は、前述したステップS309へと進むことになる。すなわち、除細動カテーテル1の使用が「有効」であると判定されると共に、表示部25において「Valid device connected」と表示される。そして、除細動の実行用の操作の受付が有効化された(ステップS310)後、図12に示した一連の処理(使用の有効性の判定処理)が終了となり、前述した図7のステップS12へと進むことになる。 After the above-mentioned step S402, the process proceeds to the above-mentioned step S309. That is, it is determined that the use of the defibrillation catheter 1 is "effective", and "Valid device connected" is displayed on the display unit 25. Then, after the acceptance of the operation for executing defibrillation is enabled (step S310), the series of processes shown in FIG. 12 (determination process of effectiveness of use) is completed, and the step of FIG. 7 described above is completed. It will proceed to S12.
 一方、使用回数Nが閾値回数Nth超過である(N>Nthを満たす)と判定された場合には(ステップS401:N)、次に、前述したステップS313へと進むことになる。すなわち、除細動カテーテル1内の記憶部13において、使用状況情報132の内容が、現在の「使用中」から「使用禁止」に変更されるよう、更新処理が行われる。その後は、前述したステップS314へと進むことになる。すなわち、期間満了によって除細動カテーテル1の使用が「無効」であると判定されると共に、表示部25において「Expiry device connected」と表示される。そして、実行許可部247によって、除細動の実行用の操作の受付の無効化が維持され(前述したステップS306)、その後は前述したステップS300へと戻り、除細動カテーテル1の接続の確認処理が、再度行われることになる。 On the other hand, if it is determined that the number of uses N exceeds the threshold number Nth (satisfies N> Nth) (step S401: N), the process proceeds to step S313 described above. That is, in the storage unit 13 in the defibrillation catheter 1, the update process is performed so that the content of the usage status information 132 is changed from the current "in use" to "prohibition of use". After that, the process proceeds to step S314 described above. That is, the use of the defibrillation catheter 1 is determined to be "invalid" by the expiration of the period, and "Expiry device connected" is displayed on the display unit 25. Then, the execution permission unit 247 maintains the invalidation of the reception of the operation for executing the defibrillation (step S306 described above), and then returns to the step S300 described above to confirm the connection of the defibrillation catheter 1. The process will be performed again.
(作用・効果)
 このようにして本変形例では、上記実施の形態で説明した作用および効果に加えて(あるいは代えて)、例えば、以下のような作用および効果が得られる。
(Action / effect)
In this way, in this modification, in addition to (or instead of) the actions and effects described in the above-described embodiment, for example, the following actions and effects can be obtained.
 すなわち、まず、本変形例では、除細動カテーテル1内に保持されている除細動カテーテル1の使用回数Nの情報が、読み出されるようになっていると共に、識別情報131が正規な情報であると判定された場合において、前述した経過時間Δt1が閾値時間Δtth1超過である場合には、読み出された除細動カテーテル1の使用回数Nの情報も考慮して、その除細動カテーテル1の使用に関する有効性を判定するようにしたので、以下のようになる。すなわち、上記した識別情報131が正規な情報であると共に、経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)が閾値時間Δtth1超過である場合でも、除細動カテーテル1の使用回数Nの情報も考慮して、その除細動カテーテル1の使用に関する有効性が判定されることになる。したがって、このような経過時間Δt1および使用回数Nの双方の情報を加味して、除細動カテーテル1の使用に関する有効性が、更に効果的に判定されるようになる。その結果、本変形例では、利便性の更なる向上を図ることが可能となる。 That is, first, in this modification, the information on the number of times N of the defibrillation catheter 1 used in the defibrillation catheter 1 is read out, and the identification information 131 is regular information. If it is determined that there is, and the above-mentioned elapsed time Δt1 exceeds the threshold time Δtth1, the defibrillation catheter 1 is taken into consideration in consideration of the information of the number of times N of the defibrillation catheter 1 that has been read out. Since the validity of the use of is judged, it becomes as follows. That is, even when the above-mentioned identification information 131 is legitimate information and the elapsed time Δt1 (elapsed time from the start of use of the defibrillation catheter 1) exceeds the threshold time Δts1, the defibrillation catheter 1 is used. Taking into account the information on the number of times N, the effectiveness of the defibrillation catheter 1 for use will be determined. Therefore, the effectiveness regarding the use of the defibrillation catheter 1 can be more effectively determined by adding the information of both the elapsed time Δt1 and the number of times of use N. As a result, in this modified example, it is possible to further improve the convenience.
 また、本変形例では、上記した経過時間Δt1が閾値時間Δtth1超過である場合において、上記した使用回数Nが閾値回数Nth以内である場合には、除細動カテーテル1の使用が有効であると判定し、使用回数Nが閾値回数Nth超過である場合には、除細動カテーテル1の使用が無効であると判定するようにしたので、以下のようになる。すなわち、このような経過時間Δt1および使用回数Nと、閾値時間Δtth1および閾値回数Nthとの兼ね合いを考慮することで、使用期限や使用回数限度を超えた劣化品となる除細動カテーテル1の使用を、より効果的に排除できるようになる。その結果、本変形例では、利便性をより一層向上させることが可能となる。 Further, in this modification, when the above-mentioned elapsed time Δt1 exceeds the threshold time Δts1 and the above-mentioned number of uses N is within the threshold number Nth, it is considered that the use of the defibrillation catheter 1 is effective. When the determination is made and the number of uses N exceeds the threshold number Nth, it is determined that the use of the defibrillation catheter 1 is invalid, so that the result is as follows. That is, the use of the defibrillation catheter 1 which is a deteriorated product exceeding the expiration date and the limit of the number of times of use by considering the balance between the elapsed time Δt1 and the number of times of use N and the threshold time Δtth1 and the number of times of use Nth. Can be eliminated more effectively. As a result, in this modified example, the convenience can be further improved.
[変形例2,3]
 続いて、上記した変形例1(図12に示した判定処理)における一部分のみを変更した判定処理に対応する、変形例2,3について説明する。これらの変形例2,3においても、基本的には、上記した変形例1と同様の作用および効果が得られる。
[Modifications 2 and 3]
Subsequently, the modifications 2 and 3 corresponding to the determination process in which only a part of the modification process 1 (determination process shown in FIG. 12) is changed will be described. In these modified examples 2 and 3, basically, the same actions and effects as those in the above-mentioned modified example 1 can be obtained.
 まず、変形例2の判定処理では、図12中のステップS311において、前述した(初回の)使用開始日時dtsの代わりに、以下の情報を用いて、前述した経過時間Δt1(除細動カテーテル1の使用開始時からの経過時間)が導出される。すなわち、この変形例2では、上記した使用開始日時dtsの代わりに、前述した2回目以降の(各回の接続時の)使用開始日時dtn(図5参照)のうち、記憶部13内における「最新の使用開始日時dtn」の情報を利用して、上記した経過時間Δt1が導出されるようになっている(Δt1=Idt2-dtn)。具体的には、例えば、記憶部13内に、「dts,dt1,dt2,dt3,dt4」の各情報(使用開始日時の情報)が保持されている場合には、これらの各情報のうち、最新の使用開始日時である「dt4」(4回目の接続時における使用開始日時)の情報を利用して、経過時間Δt1が導出される。言い換えれば、この変形例2では、記憶部13内に保持されている使用開始日時dtnのうち、「n」(接続回数)の値が最も大きい情報が、利用されることになる。 First, in the determination process of the second modification, in step S311 in FIG. 12, the above-mentioned elapsed time Δt1 (defibrillation catheter 1) is used instead of the above-mentioned (first) use start date and time dts. Elapsed time from the start of use) is derived. That is, in this modification 2, instead of the above-mentioned use start date and time dts, the "latest" in the storage unit 13 of the above-mentioned second and subsequent use start date and time dts (at the time of each connection) (see FIG. 5). The above-mentioned elapsed time Δt1 is derived by using the information of “use start date and time dtn” (Δt1 = Idt2-dtn). Specifically, for example, when each information (information on the start date and time of use) of "dts, dt1, dt2, dt3, dt4" is held in the storage unit 13, among these pieces of information, The elapsed time Δt1 is derived by using the information of the latest use start date and time “dt4” (use start date and time at the time of the fourth connection). In other words, in this modification 2, the information having the largest value of "n" (number of connections) among the use start date and time dtn held in the storage unit 13 is used.
 なお、上記した使用開始日時dtnは、前述した除細動カテーテル1の使用回数N(図5参照)の値が、1つ増加する(「+1」となる)時点において、以下のようにして、記憶部13内に書き込まれるようになっている。すなわち、そのような時点における日時情報Idt2が、使用開始日時dtnとして、記憶部13に対する書込み(前述した使用日時情報133に対する書込み)が行われるようになっている。この点は、以下説明する変形例3においても、同様である。 The above-mentioned use start date and time dtn is set as follows at the time when the value of the number of times N (see FIG. 5) of the defibrillation catheter 1 used is increased by 1 (becomes "+1"). It is designed to be written in the storage unit 13. That is, the date and time information Idt2 at such a time point is written to the storage unit 13 (writing to the above-mentioned use date and time information 133) as the use start date and time dtn. This point is the same in the modified example 3 described below.
 一方、変形例3の判定処理では、図12中のステップS311において、(初回の)使用開始日時dtsの代わりに、以下の情報を用いて、上記した経過時間Δt1が導出される。すなわち、この変形例3では、使用開始日時dtsの代わりに、変形例2と同様の2回目以降の使用開始日時dtnのうち、記憶部13内における「除細動カテーテル1の使用回数N(図5参照)に対応した、使用開始日時dtn」の情報を利用して、経過時間Δt1が導出されるようになっている(Δt1=Idt2-dtn)。具体的には、例えば、記憶部13内から読み出された使用回数Nが、4回目を示す情報である場合には、この使用回数Nに対応した使用開始日時である「dt4」の情報を利用して、経過時間Δt1が導出される。 On the other hand, in the determination process of the modification example 3, in step S311 in FIG. 12, the above-mentioned elapsed time Δt1 is derived by using the following information instead of the (first) use start date and time dts. That is, in this modification 3, instead of the use start date and time dts, the “number of times the defibrillation catheter 1 is used N (FIG. The elapsed time Δt1 is derived by using the information of the "use start date and time dtn" corresponding to (see 5) (Δt1 = Idt2-dtn). Specifically, for example, when the number of times of use N read from the storage unit 13 is the information indicating the fourth time, the information of "dt4" which is the start date and time of use corresponding to the number of times of use N is used. Using this, the elapsed time Δt1 is derived.
 このような変形例2,3では、上記したステップS311の後のステップS312において、上記した使用開始日時dtnを基準とした経過時間Δt1が、閾値時間Δtth1以内であれば(ステップS312:Y)、以下のようになる。すなわち、除細動カテーテル1の使用が「有効」であると判定され(ステップS309)、除細動の実行用の操作の受付が、有効化される(ステップS310)ことになる。 In such modifications 2 and 3, if the elapsed time Δt1 based on the above-mentioned use start date and time dtn is within the threshold time Δth1 in step S312 after the above-mentioned step S311 (step S312: Y). It becomes as follows. That is, the use of the defibrillation catheter 1 is determined to be "effective" (step S309), and the acceptance of the operation for performing the defibrillation is activated (step S310).
<3.その他の変形例>
 以上、実施の形態および変形例をいくつか挙げて本発明を説明したが、本発明はこれらの実施の形態等には限定されず、種々の変形が可能である。
<3. Other variants>
Although the present invention has been described above with reference to some embodiments and modifications, the present invention is not limited to these embodiments and the like, and various modifications are possible.
 例えば、上記実施の形態等において説明した各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態等では、除細動カテーテル1の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。具体的には、例えばシャフト11の内部に、首振り部材として、撓み方向に変形可能な板バネが設けられているようにしてもよい。また、シャフト11における電極の構成(リング状電極および先端電極の配置や形状、個数等)は、上記実施の形態等で挙げたものには限られない。更に、除細動カテーテル1における各部材の構成(形状、配置、材料、個数等)については、上記実施の形態等で説明したものには限られず、他の形状や配置、材料、個数等であってもよい。加えて、上記実施の形態等で説明した各種パラメータの値や範囲、大小関係等についても、上記実施の形態等で説明したものには限られず、他の値や範囲、大小関係等であってもよい。 For example, the material and the like of each member described in the above-described embodiment and the like are not limited, and other materials may be used. Further, in the above-described embodiment and the like, the configuration of the defibrillation catheter 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided. Specifically, for example, a leaf spring that can be deformed in the bending direction may be provided as a swinging member inside the shaft 11. Further, the configuration of the electrodes on the shaft 11 (arrangement, shape, number, etc. of the ring-shaped electrode and the tip electrode) is not limited to those mentioned in the above-described embodiment. Further, the configuration (shape, arrangement, material, number, etc.) of each member in the defibrillation catheter 1 is not limited to that described in the above embodiment, but may be other shapes, arrangements, materials, numbers, etc. There may be. In addition, the values, ranges, magnitude relationships, etc. of the various parameters described in the above-described embodiment are not limited to those described in the above-described embodiments, but are other values, ranges, magnitude relationships, etc. May be good.
 また、上記実施の形態等では、シャフト11における先端領域P1付近の形状が、ハンドル12での操作に応じて片方向に変化するタイプの除細動カテーテルを例に挙げて説明したが、これには限られない。すなわち、本発明は、例えば、シャフト11における先端領域P1付近の形状がハンドル12での操作に応じて両方向に変化するタイプの除細動カテーテルにも適用することが可能であり、この場合には操作用ワイヤを複数本用いることとなる。また、本発明は、シャフト11における先端領域P1付近の形状が固定となっているタイプの除細動カテーテルにも適用することが可能であり、この場合には、操作用ワイヤや回転板122等が不要となる。すなわち、ハンドル本体121のみでハンドルが構成されることになる。 Further, in the above-described embodiment and the like, a defibrillation catheter of a type in which the shape of the shaft 11 in the vicinity of the tip region P1 changes in one direction in response to an operation with the handle 12 has been described as an example. Is not limited. That is, the present invention can be applied to, for example, a type of defibrillation catheter in which the shape of the shaft 11 near the tip region P1 changes in both directions in response to an operation with the handle 12. A plurality of operating wires will be used. The present invention can also be applied to a type of defibrillation catheter in which the shape of the shaft 11 near the tip region P1 is fixed. In this case, an operation wire, a rotating plate 122, etc. Is no longer needed. That is, the handle is composed of only the handle body 121.
 更に、上記実施の形態等では、生体測定機構6が複数の電極パッド(電極パッド61)を用いて構成されている場合の例を挙げて説明したが、この例には限られない。すなわち、例えば、除細動カテーテル1とは異なる別の電極カテーテル(患者9の心腔内に挿入されたもの)等を、生体測定機構として用いるようにしてもよい。 Further, in the above-described embodiment and the like, an example in which the biological measurement mechanism 6 is configured by using a plurality of electrode pads (electrode pads 61) has been described, but the present invention is not limited to this example. That is, for example, another electrode catheter (inserted into the heart chamber of the patient 9) different from the defibrillation catheter 1 may be used as the biometric measurement mechanism.
 加えて、上記実施の形態等では、電源装置2のブロック構成を具体的に挙げて説明したが、上記実施の形態等で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、電源装置2内の切替部23による供給経路の切替動作についても、上記実施の形態等で説明した切替動作には限られず、他の手法を用いた切替動作であってもよい。更に、除細動カテーテルシステム3全体としても、上記実施の形態等で説明した各装置に加えて、他の装置を更に備えていてもよい。具体的には、例えば、場合によっては、心電計4や生体測定機構6(電極パッド61)等を、除細動カテーテルシステムに含めて構成するようにしてもよい。 In addition, in the above-described embodiment and the like, the block configuration of the power supply device 2 has been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like, and other blocks are provided. Further may be provided. Further, the switching operation of the supply path by the switching unit 23 in the power supply device 2 is not limited to the switching operation described in the above-described embodiment and the like, and may be a switching operation using another method. Further, the defibrillation catheter system 3 as a whole may further include other devices in addition to the devices described in the above-described embodiments and the like. Specifically, for example, in some cases, the electrocardiograph 4 and the biometric measurement mechanism 6 (electrode pad 61) may be included in the defibrillation catheter system.
 また、操作者による操作に応じた日時情報Idt2の設定変更の制限手法については、上記実施の形態等で説明した手法には限られず、他の手法を用いて、そのような設定変更の制限をするようにしてもよい。更に、日時情報Idt1,Idt2の利用方法についても、上記実施の形態等で説明した利用方法の例(図4参照)には限られず、他の利用方法を適用するようにしてもよい。加えて、上記実施の形態等では、前述した経過時間Δt1,Δt2の双方が導出部244によって導出されている場合を例に挙げて説明したが、この例には限られず、例えば、これらの経過時間Δt1,Δt2のうちの一方のみが、導出部244によって導出されるようにしてもよい。 Further, the method for restricting the setting change of the date and time information Idt2 according to the operation by the operator is not limited to the method described in the above-described embodiment or the like, and other methods are used to restrict such setting change. You may try to do it. Further, the usage method of the date and time information Idt1 and Idt2 is not limited to the example of the usage method described in the above-described embodiment and the like (see FIG. 4), and other usage methods may be applied. In addition, in the above-described embodiment and the like, the case where both of the above-mentioned elapsed times Δt1 and Δt2 are derived by the out-licensing unit 244 has been described as an example, but the present invention is not limited to this example, and for example, the progress of these. Only one of the times Δt1 and Δt2 may be derived by the out-licensing unit 244.
 更に、上記実施の形態等では、判定部246における、除細動カテーテル1の使用の有効性に関する判定処理の手法について、具体的に挙げて説明したが、この例には限られず、他の手法を用いて、除細動カテーテル1の使用の有効性に関する判定処理を行うようにしてもよい。加えて、読出部245によって読み出される各種データの種類や、記憶部13,242にそれぞれ保持されている各種データの種類についても、上記実施の形態等で説明したものには限られず、他の種類のデータであってもよい。更に、実行許可部247によって実行が許可される(入力部21での操作の受付が有効化される)処理としては、上記実施の形態等で説明したような、電源部22からの電力供給用(除細動の実行用)の処理には限られない。すなわち、例えば、このような除細動の実行用の処理と、所定の電位測定(心電位測定等)の処理との双方が、実行許可部247によって実行が許可されるようにしてもよい。 Further, in the above-described embodiment and the like, the method of the determination process regarding the effectiveness of the use of the defibrillation catheter 1 in the determination unit 246 has been specifically described and described, but the method is not limited to this example and is not limited to other methods. May be used to perform a determination process relating to the effectiveness of the use of the defibrillation catheter 1. In addition, the types of various data read by the reading unit 245 and the types of various data held in the storage units 13 and 242 are not limited to those described in the above-described embodiment and the like, and other types are also used. It may be the data of. Further, as the process in which the execution is permitted by the execution permission unit 247 (the reception of the operation in the input unit 21 is enabled), the power is supplied from the power supply unit 22 as described in the above embodiment or the like. It is not limited to the processing (for defibrillation execution). That is, for example, both the process for executing such defibrillation and the process for predetermined potential measurement (electrocardiographic measurement, etc.) may be permitted to be executed by the execution permission unit 247.
 加えて、上記実施の形態等では、本発明における「電極を有する医療デバイス」の一例として、患者9の心腔内に挿入されて電気的な除細動を行う電極カテーテル(除細動カテーテル1)を挙げて説明したが、この例には限られない。すなわち、他の種類の「電極を有する医療デバイス」(例えば、患部に対する焼灼(アブレーション)の際に用いられる、電極カテーテルや電極針等のアブレーションデバイスなど)を、本発明の「医療デバイスシステム」に適用するようにしてもよい。 In addition, in the above-described embodiment and the like, as an example of the "medical device having an electrode" in the present invention, an electrode catheter (defibrillation catheter 1) that is inserted into the heart chamber of the patient 9 to perform electrical defibrillation. ), But it is not limited to this example. That is, other types of "medical devices having electrodes" (for example, ablation devices such as electrode catheters and electrode needles used for ablation of affected areas) are incorporated into the "medical device system" of the present invention. It may be applied.
 また、上記実施の形態等で説明した一連の処理は、ハードウェア(回路)で行われるようにしてもよいし、ソフトウェア(プログラム)で行われるようにしてもよい。ソフトウェアで行われるようにした場合、そのソフトウェアは、各機能をコンピュータにより実行させるためのプログラム群で構成される。各プログラムは、例えば、上記コンピュータに予め組み込まれて用いられてもよいし、ネットワークや記録媒体から上記コンピュータにインストールして用いられてもよい。 Further, the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program). When it is done by software, the software is composed of a group of programs for executing each function by a computer. Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.
 更に、これまでに説明した各種の例を、任意の組み合わせで適用させるようにしてもよい。 Furthermore, the various examples described so far may be applied in any combination.

Claims (7)

  1.  電極を有する医療デバイスと、
     前記医療デバイスに対して電力供給を行う電源装置と
     を備え、
     前記電源装置は、
     前記電力供給を行う電源部と、
     操作者による操作に応じて随時に設定変更が可能な、第1の日時情報を出力する第1の時計部と、
     前記操作者による操作に応じた設定変更が制限されている、第2の日時情報を出力する第2の時計部と
     を有する医療デバイスシステム。
    Medical devices with electrodes and
    It is equipped with a power supply device that supplies power to the medical device.
    The power supply unit
    The power supply unit that supplies power and
    A first clock unit that outputs the first date and time information, which can be changed at any time according to the operation by the operator, and
    A medical device system having a second clock unit that outputs second date and time information, for which setting changes according to the operation by the operator are restricted.
  2.  前記第2の日時情報については、前記操作者による操作に応じた設定変更が、前記電源装置の初回起動時に限って、可能となっている
     請求項1に記載の医療デバイスシステム。
    The medical device system according to claim 1, wherein the setting of the second date and time information can be changed according to the operation by the operator only when the power supply device is started for the first time.
  3.  前記第2の日時情報については、前記操作者による操作に応じた設定変更が、一切不可能となっている
     請求項1に記載の医療デバイスシステム。
    The medical device system according to claim 1, wherein the second date and time information cannot be changed at all according to the operation by the operator.
  4.  前記第1の時計部では、前記第1の日時情報が、前記電源装置とは異なる他の機器内で設定されている第3の日時情報と一致するように、設定可能となっている
     請求項1ないし請求項3のいずれか1項に記載の医療デバイスシステム。
    A claim that the first clock unit can be set so that the first date and time information matches the third date and time information set in another device different from the power supply device. The medical device system according to any one of claims 1 to 3.
  5.  前記電源装置は、
     前記第2の日時情報を利用して、前記第2の日時情報の初期設定時からの前記電源装置の経過時間と、前記医療デバイスの使用開始時からの経過時間と、のうちの少なくとも一方を導出する、導出部を更に有している
     請求項1ないし請求項4のいずれか1項に記載の医療デバイスシステム。
    The power supply unit
    Using the second date and time information, at least one of the elapsed time of the power supply device from the initial setting of the second date and time information and the elapsed time from the start of use of the medical device can be obtained. The medical device system according to any one of claims 1 to 4, further comprising a derivation unit to be derived.
  6.  前記電源装置は、
     前記医療デバイス内に保持されている固有の識別情報を読み出す読出部と、
     前記読出部によって読み出された前記識別情報に基づいて、前記医療デバイスの使用に関する有効性を判定する判定部と、
     を更に有している
     請求項1ないし請求項5のいずれか1項に記載の医療デバイスシステム。
    The power supply unit
    A reading unit that reads out unique identification information held in the medical device,
    A determination unit that determines the effectiveness of using the medical device based on the identification information read by the reading unit, and a determination unit.
    The medical device system according to any one of claims 1 to 5, further comprising.
  7.  前記医療デバイスが、患者の心腔内に挿入されて電気的な除細動を行う除細動カテーテルである
     請求項1ないし請求項6のいずれか1項に記載の医療デバイスシステム。
    The medical device system according to any one of claims 1 to 6, wherein the medical device is a defibrillation catheter that is inserted into a patient's heart cavity to perform electrical defibrillation.
PCT/JP2020/008230 2020-02-28 2020-02-28 Medical device system WO2021171531A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022502754A JPWO2021171531A1 (en) 2020-02-28 2020-02-28
PCT/JP2020/008230 WO2021171531A1 (en) 2020-02-28 2020-02-28 Medical device system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008230 WO2021171531A1 (en) 2020-02-28 2020-02-28 Medical device system

Publications (1)

Publication Number Publication Date
WO2021171531A1 true WO2021171531A1 (en) 2021-09-02

Family

ID=77491188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008230 WO2021171531A1 (en) 2020-02-28 2020-02-28 Medical device system

Country Status (2)

Country Link
JP (1) JPWO2021171531A1 (en)
WO (1) WO2021171531A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672802B1 (en) * 2010-03-25 2011-04-20 日本ライフライン株式会社 Intracardiac defibrillation catheter system
JP3186551U (en) * 2013-08-01 2013-10-10 株式会社Ksf Alarm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672802B1 (en) * 2010-03-25 2011-04-20 日本ライフライン株式会社 Intracardiac defibrillation catheter system
JP3186551U (en) * 2013-08-01 2013-10-10 株式会社Ksf Alarm

Also Published As

Publication number Publication date
JPWO2021171531A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
EP2412402B1 (en) Intracardiac defibrillation catheter system
Meyer et al. Electrodeposited iridium oxide for neural stimulation and recording electrodes
EP2319444B1 (en) Apparatus for diagnosing and treating neural dysfunction
JP4672802B1 (en) Intracardiac defibrillation catheter system
CN115349944A (en) Pulse ablation system
WO2021171531A1 (en) Medical device system
WO2021171540A1 (en) Defibrillation catheter system
WO2020136168A1 (en) Device for an electrophysiology procedure
JP6560288B2 (en) Defibrillation catheter system
US20230211154A1 (en) Intracardiac defibrillation catheter system
JP4672801B1 (en) Intracardiac defibrillation catheter system
JP2023143343A (en) Defibrillation system, power supply device, switching equipment, and control method of defibrillation system
JP2020523080A (en) Electrophysiology device with electrodes with increased surface area
CN219147881U (en) Pulse ablation system
WO2022195644A1 (en) Intracardiac defibrillation catheter system
Dondelinger Electromyography—An Overview
Das et al. Recent Advancements in Bioelectronic Medicine: A Review
Koo et al. Experimental factors effecting stability of Electrochemical Impedance Spectroscopy Measurements
WO2016038713A1 (en) Nerve stimulation device, nerve stimulation system and nerve stimulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922281

Country of ref document: EP

Kind code of ref document: A1