WO2021170895A1 - Detector de rayos gamma con simetría plana, colimador multi-orificio y región de muestreo variable - Google Patents

Detector de rayos gamma con simetría plana, colimador multi-orificio y región de muestreo variable Download PDF

Info

Publication number
WO2021170895A1
WO2021170895A1 PCT/ES2021/070145 ES2021070145W WO2021170895A1 WO 2021170895 A1 WO2021170895 A1 WO 2021170895A1 ES 2021070145 W ES2021070145 W ES 2021070145W WO 2021170895 A1 WO2021170895 A1 WO 2021170895A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
collimator
detector
gamma
respect
Prior art date
Application number
PCT/ES2021/070145
Other languages
English (en)
French (fr)
Inventor
José María BENLLOCH BAVIERA
Victor Ilisie
Laura MOLINER MARTÍNEZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP21760171.5A priority Critical patent/EP4113540A1/en
Priority to US17/799,816 priority patent/US20230092129A1/en
Publication of WO2021170895A1 publication Critical patent/WO2021170895A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting

Definitions

  • the present invention belongs to the field of imaging systems based on gamma ray detectors such as, for example, gamma cameras, equipped with multi-pinhole type collimators. More specifically, the invention relates to a highly sensitive gamma ray detection device, which makes it possible to reconstruct tomographic images in real time and with high spatial resolution.
  • Gamma cameras have a high potential in the field of nuclear medicine, since they allow an early diagnosis of small tumors. These cameras are also very useful in a wide variety of preclinical studies (which helps to design more effective treatments against cancer), as well as during surgical interventions, to locate tumors and / or nodes prior to their removal.
  • the sensitivity of gamma cameras is measured by the ratio of emitted and detected photons.
  • both the sensitivity and the resolution Camera spatial values can have different values across the field of view (“FOV”).
  • the collimators used in these techniques are made of materials with high stopping power, that is, high density and atomic number (mainly, tungsten, lead, gold and platinum).
  • collimators have one or more series of holes that allow photons to pass along certain trajectories. Thus, only a small portion of the emitted photons reach the detector material (typically 10 4 -10 12 ), which significantly limits sensitivity.
  • collimator technology has also improved their intrinsic resolution.
  • the decision on which collimator to use for a given application depends mainly on the relationship between the size of the FOV and the detector, as well as the spatial resolution or sensitivity required.
  • Some of the main collimator technologies used today are, for example, parallel hole collimators, convergent / divergent hole collimators, coded, adaptive or variable aperture collimators, multi-slit or slit-slat collimators, collimators of floating slats, hybrid collimators, or multi-hole collimators, among many others.
  • the present invention refers mainly to this last group, also referred to as "multi-pinhole".
  • the present invention aims to overcome the limitations present in known multi-hole detectors, by means of a novel gamma ray detection device, which also has high sensitivity and reduced radiation exposure times compared to existing gamma cameras. .
  • an object of the present invention relates, mainly, to a high sensitivity gamma ray detection device, capable of reconstructing images in vivo or ex vivo, of tumors and lymph nodes during surgical interventions, avoiding the presence of artifacts in the reconstructed images.
  • Said device also makes it possible to obtain high resolution images during prolonged data collection, but using a reduced radiation dose for the patient. Its application is also useful in diagnostic tests in animals, as well as for conducting preclinical studies or in the dismantling of nuclear power plants.
  • the high sensitivity of the present detection device is mainly due to the use of collimators equipped with multiple orifices, where said collimators are configured to move continuously, which allows continuous sampling, providing greater resolution, sensitivity, contrast and uniformity with respect to other known gamma cameras. Furthermore, depending on the embodiment, each orifice of the collimator can also move independently. Thanks to this capacity and, as will be described in more detail below, the images can be taken without the appearance of artifacts associated with the multiplexing phenomenon, as a consequence of the overlapping areas of the radiation within the detector. Furthermore, the device of the invention allows obtaining complete tomographic images, without truncation.
  • an image device of a radiation-emitting object from the detection of gamma rays from said radiation source comprising:
  • a gamma ray collimator made for example with lead, tungsten or the like
  • a plurality of holes through which gamma rays penetrate
  • FOV field of view
  • the detector, the electronic reading and processing means and the gamma ray collimator of the device of the invention are arranged in respective substantially parallel planes, thus adopting a camera configuration with plane symmetry.
  • the position of the holes of the collimator is variable in relation to the position of the detector in the device, so that the sampling region over the field of view (FOV) of the detector provided by one or more incidence cones of the gamma radiation as it passes through the holes, is modified with the variation of the positions of said holes with respect to the detector.
  • the variation of the position of the holes of the collimator with respect to the detector occurs continuously, that is, part of the holes traveling a relative distance with respect to the detector, but without producing an occlusion. of said holes along the path of said distance, during the acquisition of the images.
  • the collimator comprises a plurality of opening patterns by plugging and / or uncapping the holes.
  • one or more of the collimator holes are covered by corresponding plugs (which prevent the passage of gamma radiation, made for example with lead, tungsten or the like), the plugs being arranged on the collimator or on a support arranged thereon, where said support is equipped with holes adapted to house the caps.
  • the positions of the holes are independently offset, relative to each other, in the collimator.
  • the position of the collimator and / or its orifices shows relative movement of rotation and / or translation with respect to the position of the detector.
  • the position of the collimator and / or its orifices has continuous relative movement of rotation with respect to the position of the detector, around an axis substantially perpendicular to the plane that forms the collimator, where said axis does not cross any collimator holes.
  • the axes of all the holes of the collimator are substantially parallel, so that the sampling region on the FOV of the detector provided by the cones of incidence of the gamma radiation as it passes through the holes does not present overlap for at least two holes.
  • the device has one or more areas of overlap between the cones of incidence on at least one detection surface of the detector, where said areas are modified with the variation of the positions of the holes with respect to the detector.
  • the image reconstruction will be performed first by forming an initial image only with the gamma rays that are not detected in the overlapping areas. Once said previous image has been formed, and by using statistical methods, the gamma rays detected in the overlapping areas will also be taken into account later and to increase sensitivity.
  • the device does not have any overlapping zone between the incidence cones on the detection surface.
  • the detection cones cover the entire detection surface (except for the periphery area) during continuous collimator movement. This configuration is for all intents and purposes equivalent to having overlapping zones on the detector surface, but knowing at all times through which hole a gamma ray has passed before hitting the overlapping zone. In this way, the multiplexing problem is solved, directly obtaining complete images (not truncated) without artifacts due to overlap.
  • the collimator is mobile with respect to the detector, so that each of its holes describes a circular path around its corresponding center of rotation (different for each of the holes).
  • the collimator is movable with respect to the detector, so that said collimator can rotate around a fixed point in space and, more preferably, said fixed point is such that the angles of visibility of the areas of the field of view (FOV) of the detector under the movement of the collimator are variable until reaching a complete or partial rotation of said collimator.
  • FOV field of view
  • the collimator has holes in the shape of a circular slot, and where said holes are partially covered or covered by a variable position plug in said slot.
  • the holes are cylindrical or double-cone shaped, and each hole can have a different field of view (angular aperture and inclination).
  • the holes of the collimator are distributed in such a way that each of said holes, except those arranged in the perimeter region of the collimator, has six neighboring holes, located at the same distance, forming a regular hexagon; and where, optionally, said holes have the same angular opening.
  • Another object of the invention refers to a system for generating images by means of gamma ray detection, which comprises one or more devices according to any of the embodiments described herein, and where the electronic means for reading and processing the signals of the detector are connected to an image reconstruction device, from the processing of said signals.
  • said system comprises a mobile platform adapted to orient the device towards different regions of a source of gamma radiation.
  • the term substantially shall be understood as "identical” or within a range of variation of ⁇ 10%.
  • Figure 1 Schematic representation of a preferred embodiment of the object of the present invention, referring to a gamma detection device composed of a mobile multi-hole collimator with plane symmetry.
  • Figure 2 Schematic representation of a matrix of plugs for gamma radiation configured to lodge in the holes of the planar collimator of Figure 1.
  • Figure 3 Schematic representation of a preferred embodiment of the object of the present invention, referring to a gamma detection device composed of a multi-hole mobile collimator with plane symmetry, where the relative movement of continuous rotation between said collimator and a detector is represented , where the axis of said rotation does not coincide with any of the axes of the collimator holes.
  • Figures 4A-4C Schematic representation of a possible sequence of translational movement of the multi-hole collimator with respect to the detector of the device, in a preferred embodiment of the invention.
  • Figures 5A-5B Representation of a possible center of rotation for a circular movement of the collimator around a fixed point, which is located, for example, at 1 ⁇ 4 of the distance between two consecutive holes (the circumferences represent the areas of incidence on the surface of the detector, corresponding to each hole). This pivot point allows non-cyclical sampling (up to 360 ° rotation) of the field of view.
  • the circles in Figure 5B represent the bases of the gamma ray incidence cones on the detection surface, which in this case do not overlap.
  • Figure 6. Schematic representation of a collimator with partially covered circular slot-shaped holes, whose covered areas vary throughout a data collection.
  • Figure 7. Schematic representation of a distribution of holes that repeats periodically, where each hole, except those located on the edge of the collimator, has six neighbors located at the same distance, forming a regular hexagon.
  • FIG 8A Two-dimensional schematic representation of a gamma camera with a multi-hole collimator and a gamma ray detector.
  • the zone of incidence of gamma rays, allowed by the collimator (which in three dimensions would correspond to cones of incidence) is also shown schematically.
  • the angular aperture allows for overlap of the incidence cones on the detector surface, which increases the sensitivity of the camera.
  • Figure 8B Schematic representation of a possible way to cover the holes of a multi-hole collimator according to the invention, to temporarily prevent the access of gamma rays to the overlap area on the detection surface.
  • the imaging device (1) of radiation-emitting objects from the gamma ray detection of the invention comprises, at least, the following essential elements (Figure 1): a detector (2) equipped with a means sensitive to gamma radiation and a corresponding detection electronics (3), configured to calculate the interaction energy of the gamma rays incident on the device (1), as well as to determine the position where said interaction occurs; and - a mobile gamma ray collimator (for example, made of lead, tungsten or the like) (4), equipped with a plurality of holes (5) (through which gamma rays penetrate), adapted to carry out a sampling of multiple regions of the field of view (FOV) of the detector (2), which guarantees, through adequate processing of the data acquired by the detector (2) (for example, through
  • FOV field of view
  • the detector (2), the electronic reading and processing means (3) and the gamma ray collimator (4) of the device of the invention are arranged in respective planes substantially parallel, thus adopting a camera configuration with planar symmetry.
  • the holes (5) are adapted in the device (1) to be covered and / or uncovered, thus providing the collimator (4) with different configurable opening patterns.
  • An example of this embodiment is shown in Figure 2, where a collimator (4) is represented, the holes (5) of which are covered by a plurality of plugs (6), formed for example of tungsten and / or lead.
  • said plugs (6) can be arranged directly on the collimator (4), or on a support (7) arranged thereon, where said support (7) is equipped with holes (5 ') adapted to house the plugs (6).
  • the variation of the position of the holes (5) of the collimator (4) with respect to the detector (2) occurs continuously, that is, the holes (5) travel a relative distance with respect to the detector (2), but without producing an occlusion of said holes along the path of said distance, except possibly for plugs placed prior to the acquisition.
  • the positions of the holes (5) can be moved independently of one another in the collimator (4).
  • the detector (2) can also be configured to rotate and / or move around the region of interest of the object / animal / patient of which it is desired to obtain the images. In this way, the overlapping areas, if they exist on the detection surface of the detector (2), vary during image acquisition.
  • the position of the collimator (4) and / or of its orifices (5) shows relative movement of continuous rotation with respect to the position of the detector, around an axis (4 ') substantially perpendicular to the plane that it forms the collimator (4), and where said axis (4 '), even more preferably, does not pass through any of the holes (5) of the collimator (4).
  • This situation is illustrated in Figure 3.
  • the axes corresponding to the holes (5) of the collimator (4) are substantially parallel, such that the sampling region on the FOV of the detector (2) provided by the radiation incidence cones gamma as it passes through the holes (5) does not overlap for at least two of said holes (5).
  • the relative movement between the collimator (4) and the detector (2) is preferably translational and / or rotary, as shown in Figures 4 and 5, respectively.
  • the example of translational displacement ( Figures 4A) consists of moving the collimator (4) with respect to the detector (2) ( Figures 4B-4C), with the aim that the holes (5) adopt different configurations for the same region of the field vision (FOV).
  • the collimator (4) moves relative to the detector (2), such that each of its holes (5) describes a circular path around its corresponding center of rotation (different for each of the holes, Figure 5A), the final position coinciding with the initial position.
  • the collimator (4) can rotate around a fixed point (F) in space, and with relative displacement with respect to the detector (2). Said point, preferably, is the center of the detector (so the axis of rotation passes through the center of the detector).
  • the collimator (4) has holes (5) in the form of a circular slot.
  • said holes (5) are partially covered or covered by a plug (6) (for example, tracing a portion circular), where the covered area varies throughout a data collection by the device (1), so that the holes (5) trace a circular path in space.
  • the holes (5) of the collimator (4) are distributed so that each of said holes (5) (except those arranged on the edge of the collimator (4)) has six neighboring holes (5), located at the same distance, forming a regular hexagon.
  • said holes (5) have the same angular opening, which ensures that each hole (5) allows a uniform sampling during image taking.
  • Figures 8A-8B show two situations where, in one of them, the device (1) of the invention finds all the holes (5) of its collimator (4) uncovered and where, in another, one of said holes (5) is covered with a plug (6).
  • the device (1) of the invention makes it possible to detect gamma rays (8) from a radiation source (9).
  • the opening of each hole (5) defines a cone (10) of incidence.
  • the incidence cones (10) may have areas (11) of overlap with the cones (10) defined by the neighboring holes (5).
  • the variation of the position of the holes (5) of the collimator (4) with respect to the detector (2) occurs continuously, that is, the holes (5) travel a relative distance with respect to the detector (2), but without producing an occlusion of said holes along the path of said distance, except possibly for plugs placed prior to the acquisition.
  • the holes (5) of the collimator (4) can be covered and / or moved independently, in order to obtain a general statistical sampling on the field of view (FOV ), or to temporarily prevent the penetration of gamma rays (8) in the overlapping zone (11).
  • FOV field of view
  • the electronics (3) it is possible to totally or partially eliminate the unwanted artifacts that the overlapping areas (11) produce, as well as to obtain a complete image without truncation in the device. .
  • the sensitive material of the detector (2) can be any material sensitive to radiation that produces a measurable physical magnitude when radiation interacts with said material.
  • detectors (2) that can be used within the scope of the invention are monolithic or pixelated scintillating crystals, organic or inorganic crystal scintillators, liquid scintillators and / or gaseous scintillators. Scintillators can produce a detection signal that is due to both scintillation and scintillation processes. Cherenkov radiation.
  • Organic crystal scintillators can be, for example, anthracene, stilbene, naphthalene, liquid scintillators (for example, organic liquids such as p-terphenyl (C 18H14), 2- (4-biphenylyl) -5-phenyl-1, 3, 4-oxadiazole PBD (C20H14N2O), butyl PBD (C24H22N20), gas scintillators (such as nitrogen, helium, argon, krypton, xenon), inorganic crystal scintillators, or combinations of any of these.
  • liquid scintillators for example, organic liquids such as p-terphenyl (C 18H14), 2- (4-biphenylyl) -5-phenyl-1, 3, 4-oxadiazole PBD (C20H14N2O), butyl PBD (C24H22N20), gas scintillators (such as nitrogen, helium, argon, krypton,
  • the commonly known inorganic scintillation crystals can be, for example, cesium iodide (Csl), thallium doped cesium iodide (Csl (TI)), bismuth germanate (BGO), thallium doped sodium iodide (Nal (TI)), barium fluoride ( BaF2), europium doped calcium fluoride (CaF2 (Eu)), cadmium tungstate (CdW04), cerium doped lanthanum chloride (LaCb (Ce)), cerium doped yttrium lutetium silicates (LuYSiOs (Ce) (YAG (Ce)), silver doped zinc sulfide (ZnS (Ag)) or cerium (III) doped yttrium aluminum granite Y3 AI50 12 (Ce) or LYSO. Additional examples ionals are CsF, KI (TI), CaF2 (Eu), Gd2Si05 [
  • the scintillators can be monolithic crystals or pixelated crystals, or any combination thereof.
  • Scintillating photon detection devices can be formed, for example, but not limited to photosensors.
  • the photosensors can be silicon photomultiplier arrays (SiPM), single photon avalanche diodes (SPAD), digital SiPM, avalanche photodiodes, position sensitive photomultipliers, phototransistors, photo-ICs, or combinations thereof.
  • SiPM silicon photomultiplier arrays
  • SPAD single photon avalanche diodes
  • digital SiPM avalanche photodiodes
  • position sensitive photomultipliers phototransistors
  • photo-ICs or combinations thereof.
  • solid-state detectors (2) based on semiconductors such as Si, Ge, CdTe, GaAs, Pbl2, Hgl2, CZT, HgCdTe (also known as CTM), etc., and / or scintillation detectors (2) can be used.
  • solid-state detectors (2) based on semiconductors such as Si, Ge, CdTe, GaAs, Pbl2, Hgl2, CZT, HgCdTe (also known as CTM), etc.
  • scintillation detectors (2) can be used.
  • xenon and / or Cherenkov radiation detectors (2) based on PbF2, NaBi (W04) 2, PbW04, MgF2, C6F14, C4F10 or silica airgel.
  • the sensitive materials of the detector (2) can be encapsulated or exposed, coupled to an optical reflective surface and / or use any known technique to improve the quality of the collected data.
  • the optical reflective surface can be polished or rough, specular, diffuse, retro-reflective or mixed.
  • one or more detectors (2) may comprise one or more optically painted surfaces.
  • Another object of the present invention relates to a gamma ray detection imaging system, comprising one or more devices (1) according to any of the embodiments described herein.
  • the electronic means (3) for reading and processing the gamma ray detection signals are preferably connected to an image reconstruction device from the processing of said signals.
  • system of the invention can be arranged on a mobile platform adapted to be oriented towards different regions of the gamma radiation source.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

La presente invención pertenece al campo de los sistemas de imagen basados en detectores de rayos gamma tales como, por ejemplo, las cámaras gamma, equipados con colimadores de tipo multi-orificio (en inglés, "multi-pinhole"). Más concretamente, la invención se refiere a un dispositivo de simetría plana para la detección de rayos gamma de elevada sensibilidad, que permite reconstruir imágenes tomográficas en tiempo real y con muy buena resolución espacial. Ventajosamente, los colimadores de tipo multi-orificio del dispositivo se desplazan durante la toma de datos y/o uno o más de sus orificios se desplazan de forma independiente, gracias a lo cual se consigue eliminar totalmente los posibles artefactos debidos a las zonas del solapamiento del detector.

Description

DESCRIPCIÓN
DETECTOR DE RAYOS GAMMA CON SIMETRÍA PLANA, COLIMADOR MULTI- ORIFICIO Y REGIÓN DE MUESTREO VARIABLE
CAMPO DE LA INVENCIÓN
La presente invención pertenece al campo de los sistemas de imagen basados en detectores de rayos gamma tales como, por ejemplo, las cámaras gamma, equipados con colimadores de tipo multi-orificio (en inglés, “multi-pinhole”). Más concretamente, la invención se refiere a un dispositivo de detección de rayos gamma de elevada sensibilidad, que permite reconstruir imágenes tomográficas en tiempo real y con alta resolución espacial.
ANTECEDENTES DE LA INVENCIÓN
Las cámaras gamma poseen un alto potencial en el campo de la medicina nuclear, ya que permiten realizar un diagnóstico precoz de tumores de tamaño reducido. Dichas cámaras también resultan de gran utilidad en una amplia variedad de estudios preclínicos (lo que contribuye a diseñar tratamientos más efectivos contra el cáncer), así como durante las intervenciones quirúrgicas, para localizar tumores y/o ganglios previamente a su extirpación.
Uno de los problemas más recurrentes de las cámaras gamma es su baja sensibilidad. Ello hace necesario que las dosis de radiofármacos empleadas en los pacientes y/o animales para estudios preclínicos con estas cámaras sean, por lo general, muy altas, lo que conlleva la necesidad de largas exposiciones de radiación para obtener imágenes precisas de una región de interés (por ejemplo, durante un escaneo mediante una cámara gamma, para obtener detalles sobre la estructura tumoral). Asimismo, debido a su baja sensibilidad, una imagen obtenida con una mini cámara gamma de uso intra-quirúrgico tarda en formarse aproximadamente un minuto. Como este proceso se debe repetir, generalmente, muchas veces hasta encontrar la zona de interés, ello implica que tanto el paciente como el equipo médico involucrado han de exponerse a una dosis elevada de radiación gamma durante el uso de la cámara. Esta circunstancia genera, en el presente campo técnico, la necesidad de desarrollar nuevos modelos de cámaras gamma de alta sensibilidad, que posean tiempos de exposición a la radiación reducidos respecto a las cámaras conocidas hasta la fecha.
La sensibilidad de las cámaras gamma se mide por medio de la relación entre los fotones emitidos y los detectados. No obstante, en general tanto la sensibilidad como la resolución espacial de las cámaras pueden tener distintos valores a lo largo del campo de visión (“FOV” por sus siglas en inglés, “Field of View”). Por su parte, los colimadores utilizados en estas técnicas están hechos de materiales con alto poder de frenado, es decir, alta densidad y número atómico (principalmente, tungsteno, plomo, oro y platino). Asimismo, los colimadores presentan una o más series de orificios que permiten el paso de fotones según trayectorias determinadas. Así, sólo una pequeña porción de los fotones emitidos alcanza el material detector (típicamente, 104-1012), lo que limita significativamente la sensibilidad.
Aumentar el tamaño de los orificios aumenta la sensibilidad, pero degrada la resolución espacial. El compromiso entre la resolución espacial y la sensibilidad depende, principalmente, del tamaño de la región de interés (“ROI”, por sus siglas en inglés, “Región of Interest”) u órganos a explorar, del tipo de colimador, de la energía de los fotones emitidos, de la resolución espacial intrínseca del detector y del radio de rotación del sistema (“ROR”, de “Radius of Rotation”, por sus siglas en inglés).
La relevancia de la resolución espacial y de la sensibilidad en las cámaras gamma está muy condicionada por la aplicación específica de su uso. Por ejemplo, para estudios diagnósticos en pequeños animales, tener una buena resolución espacial es generalmente más importante que en la mayoría de las aplicaciones en humanos. Sin embargo, existen otros estudios en los que la sensibilidad se considera más importante que la resolución espacial, como por ejemplo en técnicas de tipo “Gated Cardiac Imaging”. Estas diferencias según las distintas aplicaciones han sido las responsables, en los últimos años, del desarrollo de nuevos sistemas y colimadores aptos para su uso en cámaras gamma.
Las nuevas tecnologías de desarrollo de detectores han mejorado también la resolución intrínseca de los mismos. Así, la decisión sobre qué colimador utilizar para una determinada aplicación depende, principalmente, de la relación entre el tamaño del FOV y del detector, así como de la resolución espacial o sensibilidad requerida. Algunas de las tecnologías principales de colimadores empleadas en la actualidad son, por ejemplo, los colimadores de orificios paralelos, los colimadores con orificios convergentes/divergentes, los colimadores de apertura codificada, adaptativa o variable, colimadores multi-slit o slit-slat, colimadores de slat flotante, colimadores híbridos, o colimadores multi-orificio, entre otros muchos. La presente invención se refiere principalmente a este último grupo, también denominado como “multi-pinhole”.
A modo de ejemplo, en los equipos de tomografía computerizada por emisión de un único fotón (o “SPECT”, del inglés “Single-photon emission computed tomography”), es conocido el uso de sistemas de oclusión controlada de los orificios de un colimador respecto a la posición de un detector. Este tipo de sistemas de oclusión controlada se divulga, por ejemplo, en la solicitud de patente EP 2482101 A1 para equipos SPECT con simetría cilindrica (que no forman parte del objeto de la presente invención). No obstante, dicha oclusión de los orificios del colimador da lugar a interrupciones en el campo de visión durante la toma de imágenes, lo que impide realizar un muestreo continuo de los fotones, suponiendo una merma de resolución, sensibilidad, contraste y uniformidad respecto a lo que sería deseable. Los sistemas de control de oclusión presentan, además, una complejidad considerable desde el punto de vista de la implementación de los equipos de tomografía.
En el ámbito de las cámaras con colimadores multi-orificio, otro de los principales problemas es la aparición de “artefactos” en las imágenes, asociados al fenómeno de multiplexación como consecuencia de las zonas de solapamiento de la radiación dentro del detector, al atravesar los múltiples orificios del colimador. Si se desea evitar el fenómeno de multiplexación reduciendo las zonas de solapamiento, por lo general, las cámaras presentarán dificultades para obtener imágenes tomográficas completas, sin truncamiento.
Con la presente invención se pretende superar las limitaciones presentes en los detectores multi-orificio conocidos, mediante un novedoso dispositivo de detección de rayos gamma, que presenta, además, una alta sensibilidad y tiempos de exposición a la radiación reducidos respecto a las cámaras gamma existentes.
DESCRIPCIÓN BREVE DE LA INVENCIÓN
A la luz de los problemas del estado de la técnica expuestos en la sección anterior, un objeto de la presente invención se refiere, principalmente, a un dispositivo de detección de rayos gamma de alta sensibilidad, capaz de reconstruir imágenes in vivo o ex vivo, de tumores y ganglios durante intervenciones quirúrgicas, evitando la presencia de artefactos en las imágenes reconstruidas. Dicho dispositivo permite, además, obtener imágenes de alta resolución durante tomas prolongadas de datos, pero empleando una dosis de radiación reducida para el paciente. Su aplicación también resulta útil en pruebas diagnósticas en animales, así como para la realización de estudios preclínicos o en el desmantelamiento de centrales nucleares. La alta sensibilidad del presente dispositivo de detección se debe, principalmente, al uso de colimadores equipados con múltiples orificios, donde dichos colimadores están configurados para desplazarse de forma continua, lo que permite realizar un muestreo continuo, proporcionando una mayor resolución, sensibilidad, contraste y uniformidad respecto a otras cámaras gamma conocidas. Además, dependiendo de la realización, cada orificio del colimador puede también moverse de forma independiente. Gracias a esta capacidad y, como se describirá en más detalle a continuación, las tomas de imágenes pueden realizarse sin la aparición de artefactos asociados al fenómeno de multiplexación, como consecuencia de las zonas de solapamiento de la radiación dentro del detector. Además, el dispositivo de la invención permite la obtención de imágenes tomográficas completas, sin truncamiento.
Más concretamente, el citado objeto de la invención se realiza, preferentemente, por medio de un dispositivo de imagen de un objeto emisor de radiación a partir de la detección de rayos gamma procedentes de dicha fuente de radiación, que comprende:
- un detector equipado con uno o más materiales sensibles a la radiación gamma;
- medios electrónicos configurados para la lectura y el procesamiento de una o más señales de radiación gamma por parte del detector; y
- un colimador de rayos gamma (realizado por ejemplo con plomo, tungsteno o similar) equipado con una pluralidad de orificios (a través de los cuales penetran los rayos gamma) dispuestos, en relación con el detector, de forma que proporcionan al menos una región de muestreo sobre el campo de visión (FOV) del detector.
Preferentemente, el detector, los medios electrónicos de lectura y procesamiento y el colimador de rayos gamma del dispositivo de la invención se encuentran dispuestos en planos respectivos sustancialmente paralelos, adoptándose así una configuración de cámara con simetría plana.
Ventajosamente en dicho dispositivo, la posición de los orificios del colimador es variable con relación a la posición del detector en el dispositivo, de forma que la región de muestreo sobre el campo de visión (FOV) del detector proporcionada por uno o más conos de incidencia de la radiación gamma a su paso por los orificios, se ve modificada con la variación de las posiciones de dichos orificios respecto del detector. Asimismo, y aún más preferentemente en la invención, la variación de la posición de los orificios del colimador respecto al detector se produce de forma continua, es decir, recorriéndose por parte de los orificios una distancia relativa respecto al detector, pero sin producirse una oclusión de dichos orificios a lo largo del recorrido de dicha distancia, durante la obtención de las imágenes.
En una realización preferente de la invención, el colimador comprende una pluralidad de patrones de apertura mediante el tapado y/o destapado de los orificios. En otra realización preferente de la invención, uno o más de los orificios del colimador se encuentran tapados por tapones (que impiden el paso de la radiación gamma, fabricados por ejemplo con plomo, tungsteno o similar) correspondientes, estando los tapones dispuestos sobre el colimador o sobre un soporte dispuesto sobre el mismo, donde dicho soporte está equipado con orificios adaptados para alojar los tapones.
En una realización preferente de la invención, las posiciones de los orificios son desplazares de forma independiente, las unas respecto de las otras, en el colimador.
En otra realización preferente de la invención, la posición del colimador y/o de sus orificios presenta movimiento relativo de rotación y/o de traslación respecto a la posición del detector.
En otra realización preferente de la invención, la posición del colimador y/o de sus orificios presenta movimiento relativo continuo de rotación respecto a la posición del detector, alrededor de un eje sustancialmente perpendicular al plano que forma el colimador, donde dicho eje no atraviesa ninguno de los orificios del colimador.
En otra realización preferente de la invención, los ejes de todos los orificios del colimador son sustancialmente paralelos, de forma que la región de muestreo sobre el FOV del detector proporcionada por los conos de incidencia de la radiación gamma a su paso por los orificios no presenta solapamiento para, al menos, dos orificios.
En otra realización preferente de la invención, el dispositivo presenta una o más zonas de solapamiento entre los conos de incidencia sobre al menos una superficie de detección del detector, donde dichas zonas se ven modificadas con la variación de las posiciones de los orificios respecto del detector. Preferentemente, para esta configuración y con la finalidad de evitar el fenómeno de multiplexación, la reconstrucción de imagen se realizará primero formando una imagen inicial únicamente con los rayos gamma que no son detectados en las zonas de solapamiento. Formada dicha imagen previa, y mediante el empleo de métodos estadísticos, se tendrán en cuenta también, posteriormente y para aumentar la sensibilidad, los rayos gamma que se detectan en las zonas de solapamiento.
En otra realización preferente de la invención, el dispositivo no presenta ninguna zona de solapamiento entre los conos de incidencia sobre la superficie de detección. Sin embargo, como dichas zonas sobre la superficie de detección se ven modificadas con la variación de las posiciones de los orificios respecto del detector, los conos de detección cubren toda la superficie de detección (salvo la zona de la periferia) durante el movimiento continuo del colimador. Esta configuración, es a todos los efectos equivalente a tener zonas de solapamiento sobre la superficie del detector, pero sabiendo en todo momento por qué orificio ha pasado un rayo gamma antes de impactar sobre la zona de solapamiento. De esta forma, se resuelve el problema de la multiplexación, obteniendo directamente imágenes completas (no truncadas) sin artefactos debidos al solapamiento.
En otra realización preferente de la invención, el colimador es móvil respecto al detector, de forma que cada uno de sus orificios describe una trayectoria circular alrededor de su correspondiente centro de giro (distinto para cada uno de los orificios). Alternativamente, el colimador es móvil respecto al detector, de forma que dicho colimador puede girar alrededor de un punto fijo del espacio y, más preferentemente, dicho punto fijo es tal que los ángulos de visibilidad de las zonas del campo de visión (FOV) del detector bajo el movimiento del colimador son variables hasta alcanzar una rotación completa o parcial de dicho colimador.
En otra realización preferente de la invención, el colimador presenta orificios en forma de ranura circular, y donde dichos orificios están parcialmente tapados o cubiertos por un tapón de posición variable en dicha ranura.
En otra realización preferente, los agujeros tienen forma de cilindrica o de doble cono, y cada orificio puede tener un campo de visión diferente (apertura angular e inclinación).
En otra realización preferente de la invención, los orificios del colimador están distribuidos de forma que cada uno de dichos orificios, excepto los dispuestos en la región perimetral del colimador, tiene seis orificios vecinos, situados a la misma distancia, formando un hexágono regular; y donde, opcionalmente, dichos orificios poseen la misma apertura angular.
Otro objeto de la invención se refiere a un sistema de generación de imágenes mediante detección de rayos gamma, que comprende uno o más dispositivos según cualquiera de las realizaciones descritas en el presente documento, y donde los medios electrónicos para la lectura y procesamiento de las señales del detector están conectados a un dispositivo de reconstrucción de imágenes, a partir del procesamiento de dichas señales.
En una realización preferente de la invención, el citado sistema comprende una plataforma móvil adaptada para orientar el dispositivo hacia diferentes regiones de una fuente de radiación gamma. En el ámbito de la presente invención, el término sustancialmente se entenderá como “idéntico” o comprendido en un margen de variación de ±10%.
DESCRIPCIÓN DE LOS DIBUJOS
Las anteriores y otras características y ventajas se comprenderán plenamente a partir de la descripción detallada de la invención, así como de los ejemplos de realización preferente referidos a las figuras adjuntas, que se describen en los párrafos siguientes.
Figura 1. Representación esquemática de una realización preferente del objeto de la presente invención, referida a un dispositivo de detección gamma compuesto por un colimador móvil multi-orificio con simetría plana.
Figura 2. Representación esquemática de una matriz de tapones para la radiación gamma configurados para alojarse en los agujeros del colimador plano de la Figura 1.
Figura 3. Representación esquemática de una realización preferente del objeto de la presente invención, referida a un dispositivo de detección gamma compuesto por un colimador móvil multi-orificio con simetría plana, donde se representa el movimiento relativo de rotación continua entre dicho colimador y un detector, donde el eje de dicha rotación se no coincide con ninguno de los ejes de los orificios del colimador.
Figuras 4A-4C. Representación esquemática de una posible secuencia de movimiento de traslación de colimador multi-orificio respecto al detector del dispositivo, en una realización preferente de la invención.
Figuras 5A-5B. Representación de un posible centro de giro para un movimiento circular del colimador alrededor de un punto fijo, que se sitúa, por ejemplo, a ¼ de la distancia entre dos orificios consecutivos (las circunferencias representan las zonas de incidencia sobre la superficie del detector, correspondiente a cada orificio). Dicho punto de giro permite un muestreo no cíclico (hasta alcanzar los 360° de rotación) del campo de visión. Las circunferencias de la Figura 5B representan las bases de los conos de incidencia de los rayos gamma sobre la superficie de detección, que en este caso no presentan solapamiento.
Figura 6. Representación esquemática de un colimador con agujeros en forma de ranura circular, parcialmente tapados, cuyas zonas tapadas varían a lo largo de una toma de datos. Figura 7. Representación esquemática de una distribución de orificios que se repite periódicamente, donde cada orificio, excepto los situados en el borde del colimador, tiene seis vecinos situados a la misma distancia, formando un hexágono regular.
Figura 8A. Representación esquemática en dos dimensiones de una cámara gamma con colimador multi-orificio y con un detector de rayos gamma. Se muestra también de forma esquemática la zona de incidencia de los rayos gamma, permitida por el colimador (que en tres dimensiones corresponderían a conos de incidencia). La apertura angular permite que haya solapamiento de los conos de incidencia sobre la superficie del detector, lo cual aumenta la sensibilidad de la cámara.
Figura 8B. Representación esquemática de una posible forma de tapar los agujeros de un colimador multi-orificio según la invención, para impedir temporalmente el acceso a los rayos gamma a la zona de solapamiento sobre la superficie de detección.
Referencias numéricas utilizadas en los dibujos:
Figure imgf000010_0001
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se expone, a continuación, una descripción detallada de la invención referida a diferentes realizaciones preferentes de la misma, basadas en las Figuras 1-8 del presente documento. Dicha descripción se aporta con fines ilustrativos, pero no limitativos, de la invención reivindicada. Según lo descrito en apartados precedentes, el dispositivo de imagen (1) de objetos emisores de radiación a partir de la detección de rayos gamma de la invención comprende, al menos, los siguientes elementos esenciales (Figura 1): un detector (2) equipado con un medio sensible a la radiación gamma y una electrónica (3) de detección correspondiente, configurados para calcular la energía de interacción de los rayos gamma incidentes sobre el dispositivo (1), así como para determinar la posición donde se produce dicha interacción; y - un colimador de rayos gamma (por ejemplo, de plomo, tungsteno o similar) (4) móvil, equipado con una pluralidad de orificios (5) (a través de los cuales penetran los rayos gamma), adaptado para realizar un muestreo de múltiples regiones del campo de visión (FOV) del detector (2), lo que garantiza, mediante un adecuado procesamiento de los datos adquiridos por el detector (2) (por ejemplo, a través de un ordenador conectado a la electrónica (3) de detección), la ausencia de artefactos y la obtención de una imagen final completa, sin truncamiento.
Preferentemente en el dispositivo, y según se muestra en la Figura 1, el detector (2), los medios electrónicos (3) de lectura y procesamiento y el colimador (4) de rayos gamma del dispositivo de la invención se encuentran dispuestos en planos respectivos sustancialmente paralelos, adoptándose así una configuración de cámara con simetría plana.
Complementaria o alternativamente, los orificios (5) están adaptados en el dispositivo (1) para poder ser tapados y/o destapados, dotando por tanto al colimador (4) de diferentes patrones de apertura configurables. Un ejemplo de esta realización se muestra en la Figura 2, donde se representa un colimador (4) cuyos orificios (5) se encuentran tapados por una pluralidad de tapones (6), formados por ejemplo de tungsteno y/o de plomo. En diferentes realizaciones de la invención, dichos tapones (6) pueden disponerse directamente sobre el colimador (4), o sobre un soporte (7) dispuesto sobre el mismo, donde dicho soporte (7) está equipado con orificios (5’) adaptados para alojar los tapones (6). En cualquiera de las configuraciones anteriores, la variación de la posición de los orificios (5) del colimador (4) respecto al detector (2) se produce de forma continua, es decir, recorriéndose por parte de los orificios (5) una distancia relativa respecto al detector (2), pero sin producirse una oclusión de dichos orificios a lo largo del recorrido de dicha distancia, salvo posiblemente por tapones colocados previamente a la adquisición.
En otra realización preferente de la invención, las posiciones de los orificios (5) pueden desplazarse de forma independiente las unas respecto de las otras en el colimador (4). Opcionalmente, el detector (2) puede además estar configurado para rotar y/o desplazarse alrededor de la región de interés del objeto/animal/paciente del que se desean obtener las imágenes. De esta forma, las zonas de solapamiento, si existen sobre la superficie de detección del detector (2), varían durante la adquisición de imágenes.
En otra realización preferente de la invención, la posición del colimador (4) y/o de sus orificios (5) presenta movimiento relativo de rotación continua respecto a la posición del detector, alrededor de un eje (4’) sustancialmente perpendicular al plano que forma el colimador (4), y donde dicho eje (4’), aún más preferentemente, no atraviesa ninguno de los orificios (5) del colimador (4). Dicha situación se ilustra en la Figura 3.
En otra realización preferente de la invención, los ejes correspondientes a los orificios (5) del colimador (4) son sustancialmente paralelos, de forma que la región de muestreo sobre el FOV del detector (2) proporcionada por los conos de incidencia de la radiación gamma a su paso por los orificios (5) no presenta solapamiento para, al menos, dos de dichos orificios (5).
Como se ha mencionado para distintas realizaciones de la invención, el movimiento relativo entre el colimador (4) y el detector (2) es, preferentemente, de traslación y/o giratorio, tal y como se muestra en las Figuras 4 y 5, respectivamente. El ejemplo del desplazamiento de traslación (Figuras 4A) consiste en mover el colimador (4) respecto al detector (2) (Figuras 4B-4C), con el objetivo de que los orificios (5) adopten configuraciones diferentes para una misma región del campo de visión (FOV).
Para el caso giratorio (Figuras 5A-5B), en una realización preferente de la invención, el colimador (4) se mueve de forma relativa respecto al detector (2), tal que cada uno de sus orificios (5) describe una trayectoria circular alrededor de su correspondiente centro de giro (distinto para cada uno de los orificios, Figura 5A), coincidiendo la posición final con la inicial. En otra de las realizaciones del movimiento circular (Figura 5B), el colimador (4) puede girar alrededor de un punto fijo (F) del espacio, y con desplazamiento relativo respecto al detector (2). Dicho punto, preferentemente, es el centro del detector (de forma el eje de rotación pasa por el centro del detector).
En una tercera realización preferente del caso giratorio (Figura 6), el colimador (4) presenta orificios (5) en forma de ranura circular. Preferentemente, dichos orificios (5) están parcialmente tapados o cubiertos por un tapón (6) (por ejemplo, trazando una porción circular), donde, la zona tapada varía a lo largo de una toma de datos por parte del dispositivo (1), de forma que los orificios (5) trazan una trayectoria circular en el espacio.
En otra realización preferente de la invención (Figura 7), los orificios (5) del colimador (4) están distribuidos de forma que cada uno de dichos orificios (5) (excepto los dispuestos en el borde del colimador (4)) tiene seis orificios (5) vecinos, situados a la misma distancia, formando un hexágono regular. Preferentemente, dichos orificios (5) poseen la misma apertura angular, lo que asegura que cada orificio (5) permita realizar un muestreo uniforme durante la toma de imágenes.
A modo de ejemplo de funcionamiento, las Figuras 8A-8B muestran dos situaciones donde, en una de ellas, el dispositivo (1) de la invención se encuentra con todos los orificios (5) de su colimador (4) destapados y donde, en otra, uno de dichos orificios (5) se encuentra tapado con un tapón (6). De forma preferente, el dispositivo (1) de la invención permite detectar rayos gamma (8) procedentes de una fuente (9) de radiación. Asimismo, la apertura de cada orificio (5) define un cono (10) de incidencia. Y, como se aprecia en la Figura 8A, los conos (10) de incidencia pueden tener zonas (11) de solapamiento con los conos (10) definidos por los orificios (5) vecinos. En cualquiera de las configuraciones anteriores, la variación de la posición de los orificios (5) del colimador (4) respecto al detector (2) se produce de forma continua, es decir, recorriéndose por parte de los orificios (5) una distancia relativa respecto al detector (2), pero sin producirse una oclusión de dichos orificios a lo largo del recorrido de dicha distancia, salvo posiblemente por tapones colocados previamente a la adquisición.
Por su parte, tal como se aprecia en la Figura 8B, los orificios (5) del colimador (4) se pueden tapar y/o mover de forma independiente, con el objetivo de obtener un muestreo estadístico general sobre el campo de visión (FOV), o para prevenir temporalmente la penetración de los rayos gamma (8) en la zona (11) de solapamiento. Con ello y mediante un adecuado procesamiento de los datos de detección leídos por la electrónica (3), es posible eliminar total o parcialmente los artefactos indeseados que producen las zonas (11) de solapamiento, así como obtener una imagen completa sin truncamiento en el dispositivo.
El material sensible del detector (2) puede ser cualquier material sensible a la radiación que produzca una magnitud física mensurable cuando la radiación interactúa con dicho material. Algunos ejemplos de detectores (2) utilizables en el ámbito de la invención son los cristales centelleantes monolíticos o pixelados, centelladores de cristales orgánicos o inorgánicos, centelladores líquidos y/o centelladores gaseosos. Los centelladores pueden producir una señal de detección que se debe tanto a los procesos de centelleo como a los de radiación Cherenkov. Los centelladores de cristales orgánicos pueden ser, por ejemplo, antraceno, estilbeno, naftaleno, centelladores líquidos (por ejemplo, líquidos orgánicos como p-terfenilo (C 18H14), 2-(4-bifenilil)-5-fenil-1 ,3,4-oxadiazol PBD (C20H14N2O), butilo PBD (C24H22N20), centelleadores de gases (como nitrógeno, helio, argón, criptón, xenón), centelladores de cristales inorgánicos, o combinaciones de cualquiera de los mismos. Los cristales de centelleo inorgánicos comúnmente conocidos pueden ser, por ejemplo, yoduro de cesio (Csl), yoduro de cesio dopado con talio (Csl (TI)), germanato de bismuto (BGO), yoduro de sodio dopado con talio (Nal (TI)), fluoruro de bario (BaF2), fluoruro de calcio dopado con europio (CaF2(Eu)), tungstato de cadmio (CdW04), cloruro de lantano dopado con cerio (LaCb(Ce)), silicatos de lutecio itrio dopados con cerio (LuYSiOs(Ce)(YAG(Ce)), sulfuro de cinc dopado con plata (ZnS(Ag)) o granito de itrio aluminio dopado con cerio (III) Y3 AI50 12 (Ce) o LYSO. Ejemplos adicionales son CsF, KI(TI), CaF2(Eu), Gd2Si05[Ce] (GSO), LSO, GAGG(Ce).
Como se ha mencionado, los centelleadores pueden ser cristales monolíticos o cristales pixelados, o cualquier combinación de los mismos.
Los dispositivos de detección de los fotones centelleantes, pueden estar formados, por ejemplo, pero no limitados a, fotosensores. Los fotosensores pueden ser matrices de fotomultiplicadores de silicio (SiPM), diodos de avalancha de fotones individuales (SPAD), SiPM digitales, fotodiodos de avalancha, fotomultiplicadores sensibles a la posición, fototransistores, foto-ICs o combinaciones de los mismos. Ello significa que un detector (2) puede estar acoplado, por ejemplo, a una matriz de SiPM y otro detector (2) en un mismo dispositivo (1) puede estar acoplado a una matriz de fototransistores, según las definiciones anteriores.
Asimismo, pueden utilizarse detectores (2) de estado sólido basados en semiconductores tales como Si, Ge, CdTe, GaAs, Pbl2, Hgl2, CZT, HgCdTe (también conocido como CTM), etc., y/o detectores (2) de centelleo basados en xenón y/o detectores (2) de radiación Cherenkov basados en PbF2, NaBi (W04)2, PbW04, MgF2, C6F14, C4F10 o aerogel de sílice.
Además, los materiales sensibles del detector (2) pueden estar encapsulados o expuestos, acoplados a una superficie reflectante óptica y/o utilizar cualquier técnica conocida para mejorar la calidad de los datos recogidos. La superficie reflectante óptica puede ser pulida o rugosa, especular, difusa, retro-reflectante o mixta. Asimismo, uno o más detectores (2) pueden comprender una o más superficies pintadas ópticamente. Otro objeto de la presente invención se refiere a un sistema de generación de imágenes mediante detección de rayos gamma, que comprende uno o más dispositivos (1) según cualquiera de las realizaciones descritas en el presente documento. En dicho sistema, los medios electrónicos (3) para la lectura y procesamiento de las señales de detección de los rayos gamma están preferentemente conectados a un dispositivo de reconstrucción de imágenes a partir del procesamiento de dichas señales.
En una realización preferente del sistema de la invención, éste puede estar dispuesto en una plataforma móvil adaptada para ser orientada hacia diferentes regiones de la fuente de radiación gamma.

Claims

REIVINDICACIONES
1.- Dispositivo de imagen (1) de objetos (9) emisores de radiación a partir de la detección de rayos gamma (8) procedentes de dicha fuente (9) de radiación, que comprende:
- un detector (2) equipado con uno o más materiales sensibles a la radiación gamma;
- medios electrónicos (3) configurados para la lectura y el procesamiento de una o más señales de detección de radiación gamma por parte del detector (1);
- un colimador de rayos gamma (4) equipado con una pluralidad de orificios (5), a través de los cuales pueden penetrar los rayos gamma y dispuestos, en relación con el detector (1), de forma que proporcionan al menos una región de muestreo sobre el campo de visión (FOV) del detector (2); donde el detector (2), los medios electrónicos (3) de lectura y procesamiento y el colimador (4) de rayos gamma del dispositivo de la invención se encuentran dispuestos en planos respectivos sustancialmente paralelos, adoptándose una configuración de cámara con simetría plana; estando dicho dispositivo (1) caracterizado por que la posición de los orificios (5) de dicho colimador (4) es variable con relación a la posición del detector (2) en el dispositivo (1), de forma que la región de muestreo sobre el campo de visión (FOV) del detector (2), proporcionada por uno o más conos (10) de incidencia de la radiación gamma a su paso por los orificios (5), se ve modificada con la variación de las posiciones de dichos orificios (5) respecto del detector (2); y donde el colimador (4) y el detector (2) están dispuestos de forma que la variación de la posición de los orificios (5) del colimador (4) respecto al detector (2) se produce de forma continua, es decir, recorriéndose por parte de los orificios (5) una distancia relativa respecto al detector (2), pero sin producirse una oclusión de dichos orificios (5) a lo largo del recorrido de dicha distancia durante el muestreo.
2.- Dispositivo (1) según la reivindicación anterior, donde las posiciones de los orificios (5) son desplazables de forma independiente, las unas respecto de las otras en el colimador (4).
3.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde la posición del colimador (4) y/o de sus orificios (5) presenta movimiento relativo de rotación y/o de traslación respecto a la posición del detector (2).
4 Dispositivo (1) según la reivindicación anterior, donde la posición del colimador (4) y/o de sus orificios (5) presenta movimiento relativo de rotación respecto a la posición del detector (2), alrededor de un eje (4’) sustancialmente perpendicular al plano que forma el colimador (4), donde dicho eje (4’) no atraviesa ninguno de los orificios del colimador.
5.- Dispositivo (1) según la reivindicación anterior, donde el colimador (4) es móvil respecto al detector (2) de forma que cada uno de sus orificios (5) describe una trayectoria circular alrededor su correspondiente centro de giro, siendo distinto para cada uno de los orificios (5).
6.- Dispositivo (1) según la reivindicación anterior, donde dicho punto fijo es tal que los ángulos de visibilidad de las zonas del campo de visión (FOV) del detector (2), bajo el movimiento del colimador (4) no se repiten hasta alcanzar una rotación completa o parcial de dicho colimador (4).
7.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde los ejes de todos los orificios (5) del colimador (4) son sustancialmente paralelos, de forma que la región de muestreo sobre el campo de visión del detector (2) proporcionada por una pluralidad de conos de incidencia de la radiación gamma a su paso por los orificios (5) no presenta solapamiento para, al menos, dos de dichos orificios (5).
8.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde uno o más de los orificios (5) del colimador (4) se encuentran tapados por tapones (6) correspondientes, estando los tapones dispuestos sobre el colimador (4), o sobre un soporte (7) dispuesto sobre el mismo, donde dicho soporte (7) está equipado con orificios (5’) adaptados para alojar los tapones (6).
9.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, que presenta ninguna, una o más zonas de solapamiento entre los conos (10) de incidencia sobre al menos una superficie de detección del detector (2), y donde dichas zonas se ven modificadas con la variación de las posiciones de los orificios (5) respecto del detector (2).
10.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, que comprende una pluralidad de detectores (2) dispuestos alrededor de la fuente de radiación (9), formando una estructura de anillo cerrado o abierto, donde el colimador (4) forma una estructura coaxial a la del detector (2).
11.- Dispositivo (1) según la reivindicación anterior, donde la estructura formada por el colimador (4) es rotante, o rota y se traslada realizando un movimiento helicoidal, con relación a la estructura formada por los detectores (2).
12.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde el colimador (4) presenta:
- orificios (5) en forma de ranura circular, y donde dichos orificios (5) están parcialmente tapados o cubiertos por un tapón (6) de posición variable en dicha ranura; y/u
- orificios (5) en forma cilindrica o de cuña o de doble cono.
13.- Dispositivo (1) según cualquiera de las reivindicaciones anteriores, donde los orificios (5) del colimador (4) están distribuidos de forma que cada uno de dichos orificios (5), excepto los dispuestos en la región perimetral del colimador (4), tiene seis orificios (5) vecinos, situados a la misma distancia, formando un hexágono regular; y donde, opcionalmente, dichos orificios (5) poseen la misma apertura angular.
14- Sistema de generación de imágenes mediante detección de rayos gamma (8), que comprende uno o más dispositivos (1) según cualquiera de las reivindicaciones anteriores, donde los medios electrónicos (3) para la lectura y procesamiento de las señales del detector (2) están conectados a un dispositivo de reconstrucción de imágenes, a partir del procesamiento de dichas señales.
15.- Sistema según la reivindicación anterior, que comprende una plataforma móvil adaptada para orientar el dispositivo (1) hacia diferentes regiones de una fuente (9) de radiación gamma.
PCT/ES2021/070145 2020-02-28 2021-02-26 Detector de rayos gamma con simetría plana, colimador multi-orificio y región de muestreo variable WO2021170895A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21760171.5A EP4113540A1 (en) 2020-02-28 2021-02-26 Gamma ray detector with planar symmetry, multi-pinhole collimator and variable sampling region
US17/799,816 US20230092129A1 (en) 2020-02-28 2021-02-26 Gamma ray detector with planar symmetry, multi-pinhole collimator and variable sampling region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030173A ES2850778B2 (es) 2020-02-28 2020-02-28 Detector de rayos gamma con colimador multi-orificio y region de muestreo variable
ESP202030173 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021170895A1 true WO2021170895A1 (es) 2021-09-02

Family

ID=77443246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070145 WO2021170895A1 (es) 2020-02-28 2021-02-26 Detector de rayos gamma con simetría plana, colimador multi-orificio y región de muestreo variable

Country Status (4)

Country Link
US (1) US20230092129A1 (es)
EP (1) EP4113540A1 (es)
ES (1) ES2850778B2 (es)
WO (1) WO2021170895A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114587398A (zh) * 2022-03-16 2022-06-07 中核高能(天津)装备有限公司 用于单光子发射断层成像的装置及投影数据的处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428223A (en) * 1993-04-28 1995-06-27 U.S. Philips Corporation Minicamera for proximity detection of nuclear radiation emitted by a radioisotope, and its application as a surgical tool
US20080116386A1 (en) * 2006-11-17 2008-05-22 Wagenaar Douglas J Multi-aperture single photon emission computed tomography (SPECT) imaging apparatus
EP2482101A1 (en) 2011-01-31 2012-08-01 Milabs B.V. A Focused pinhole gamma detection device
US20120232385A1 (en) * 2009-11-13 2012-09-13 Hitachi, Ltd. Radiation imaging device and nuclear medicine diagnostic device using same
US20130158389A1 (en) * 2011-12-16 2013-06-20 Mayo Foundation For Medical Education And Research Multi-segment slant hole collimator system and method for tumor analysis in radiotracer-guided biopsy
WO2016012476A1 (en) * 2014-07-22 2016-01-28 Universiteit Gent Stationary spect imaging
CN106512234A (zh) * 2016-11-08 2017-03-22 郑晓牧 一种伽玛刀准直器
ES2621025A1 (es) * 2015-12-30 2017-06-30 Kepco Nuclear Fuel Co., Ltd Dispositivo para medir la densidad de una barra de combustible
EP3446631A1 (en) * 2016-04-18 2019-02-27 Korea University Research and Business Foundation Variable pinhole collimator and radiographic imaging device using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008314B (zh) * 2010-12-17 2012-11-14 清华大学 用于小动物成像的准直器装置
US10324200B2 (en) * 2017-05-15 2019-06-18 General Electric Company Systems and methods for improved collimation sensitivity
US11096651B2 (en) * 2020-01-17 2021-08-24 GE Precision Healthcare LLC Systems and methods for mechanically calibrating a multidetector of a nuclear medicine imaging system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428223A (en) * 1993-04-28 1995-06-27 U.S. Philips Corporation Minicamera for proximity detection of nuclear radiation emitted by a radioisotope, and its application as a surgical tool
US20080116386A1 (en) * 2006-11-17 2008-05-22 Wagenaar Douglas J Multi-aperture single photon emission computed tomography (SPECT) imaging apparatus
US20120232385A1 (en) * 2009-11-13 2012-09-13 Hitachi, Ltd. Radiation imaging device and nuclear medicine diagnostic device using same
EP2482101A1 (en) 2011-01-31 2012-08-01 Milabs B.V. A Focused pinhole gamma detection device
US20130158389A1 (en) * 2011-12-16 2013-06-20 Mayo Foundation For Medical Education And Research Multi-segment slant hole collimator system and method for tumor analysis in radiotracer-guided biopsy
WO2016012476A1 (en) * 2014-07-22 2016-01-28 Universiteit Gent Stationary spect imaging
ES2621025A1 (es) * 2015-12-30 2017-06-30 Kepco Nuclear Fuel Co., Ltd Dispositivo para medir la densidad de una barra de combustible
EP3446631A1 (en) * 2016-04-18 2019-02-27 Korea University Research and Business Foundation Variable pinhole collimator and radiographic imaging device using same
CN106512234A (zh) * 2016-11-08 2017-03-22 郑晓牧 一种伽玛刀准直器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114587398A (zh) * 2022-03-16 2022-06-07 中核高能(天津)装备有限公司 用于单光子发射断层成像的装置及投影数据的处理方法

Also Published As

Publication number Publication date
EP4113540A1 (en) 2023-01-04
ES2850778B2 (es) 2023-02-21
ES2850778A8 (es) 2021-11-10
US20230092129A1 (en) 2023-03-23
ES2850778A1 (es) 2021-08-31

Similar Documents

Publication Publication Date Title
US10281594B2 (en) Gamma-ray Compton TOF camera system
US6794653B2 (en) SPECT for breast cancer detection
US7635848B2 (en) Edge-on SAR scintillator devices and systems for enhanced SPECT, PET, and compton gamma cameras
ES2527827T3 (es) Dispositivo de tiras y procedimiento para la determinación de la localización y tiempo de reacción de los cuantos gamma y el uso del dispositivo para determinar la localización y tiempo de reacción de los cuantos gamma en la tomografía por emisión de positrones
ES2757984B2 (es) Dispositivo para la deteccion de rayos gamma con tabiques activos
EP2746816B1 (en) Gamma ray scintillation detector preserving the original scintillation light distribution
US4057726A (en) Collimator trans-axial tomographic scintillation camera
EP2847617B1 (en) Spect/pet imaging system
US9529100B2 (en) Positron emission tomography detector and positron emission tomography system using same
US7560699B2 (en) Small field-of-view detector head (“SPECT”) attenuation correction system
US20140203180A1 (en) Scintillation detector with active light guide
JP6114298B2 (ja) 全身spectシステム
US7375338B1 (en) Swappable collimators method and system
WO2021170895A1 (es) Detector de rayos gamma con simetría plana, colimador multi-orificio y región de muestreo variable
US20050285042A1 (en) Nuclear imaging system using rotating scintillation bar detectors with slat collimation and method for imaging using the same
MacDonald et al. Depth of interaction for PET using segmented crystals
WO2020013689A1 (en) Active collimator system comprising a monolayer of monolithic converters
WO2016112135A1 (en) Compact trapezoidal pet detector with light sharing
US20050029461A1 (en) Gamma camera using rotating scintillation bar detector and method for tomographic imaging using the same
WO2019135676A1 (en) Active collimator for positron emission and single photon emission computed tomography
Strocovsky et al. 3D gamma-ray imaging systems in nuclear medicine and collimator purposes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760171

Country of ref document: EP

Effective date: 20220928