WO2021170025A1 - 动力电池荷电状态下限控制方法、装置及车辆 - Google Patents
动力电池荷电状态下限控制方法、装置及车辆 Download PDFInfo
- Publication number
- WO2021170025A1 WO2021170025A1 PCT/CN2021/077832 CN2021077832W WO2021170025A1 WO 2021170025 A1 WO2021170025 A1 WO 2021170025A1 CN 2021077832 W CN2021077832 W CN 2021077832W WO 2021170025 A1 WO2021170025 A1 WO 2021170025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- ambient temperature
- time
- lowest
- lowest ambient
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N19/00—Starting aids for combustion engines, not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/66—Ambient conditions
- B60L2240/662—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/56—Temperature prediction, e.g. for pre-cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
- F02N11/0862—Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/04—Parameters used for control of starting apparatus said parameters being related to the starter motor
- F02N2200/046—Energy or power necessary for starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/06—Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
- F02N2200/061—Battery state of charge [SOC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/12—Parameters used for control of starting apparatus said parameters being related to the vehicle exterior
- F02N2200/122—Atmospheric temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2300/00—Control related aspects of engine starting
- F02N2300/20—Control related aspects of engine starting characterised by the control method
- F02N2300/2006—Control related aspects of engine starting characterised by the control method using prediction of future conditions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
Definitions
- the present disclosure relates to the technical field of new energy vehicles, and in particular to a method, a device and a vehicle for controlling the lower limit of the state of charge of a power battery.
- the lower limit of the state of charge (SOC) of the power battery used in hybrid electric vehicles is fixed during the use of the vehicle.
- SOC state of charge
- the low SOC value of the battery is not enough to enable the vehicle to start normally at low temperatures, thereby affecting the normal function use of the vehicle after the next power-on.
- the present disclosure aims to propose a lower limit control method, device and vehicle for the power battery state of charge to ensure that the SOC value of the battery can enable the vehicle to start normally in a low temperature environment.
- a method for controlling a lower limit of the state of charge of a power battery comprising: detecting a minimum ambient temperature for at least a period of time; and predicting a preset time after the at least a period of time based on the minimum ambient temperature for the at least a period of time According to the lowest ambient temperature in the preset time period, determine the lowest state of charge value that can meet the vehicle's engine start-up power requirements at the lowest ambient temperature in the preset time period according to the lowest ambient temperature in the preset time period; The minimum state of charge value adjusts the lower limit of the state of charge.
- the lowest ambient temperature in the at least a period of time only includes the lowest ambient temperature in the first period of time, and according to the lowest ambient temperature in the at least a period of time, it is predicted that within the preset period of time after the at least a period of time
- the lowest ambient temperature includes: calculating the lowest ambient temperature in the preset time period according to the lowest ambient temperature in the first period of time, the temperature constant, and the first ambient temperature predictive factor.
- the lowest ambient temperature in the at least a period of time includes the lowest ambient temperature in a first period of time and the lowest ambient temperature in a second period of time, and the second period of time is after the first period of time, according to The lowest ambient temperature within at least a period of time, and predicting the lowest ambient temperature within a preset period of time after the at least a period of time includes: determining that the lowest ambient temperature in the first period of time is less than or equal to the second In the case of the lowest ambient temperature in the time period, it is predicted that the lowest ambient temperature in the preset time period is the lowest ambient temperature in the first period of time.
- the lowest ambient temperature in the at least a period of time includes the lowest ambient temperature in a first period of time and the lowest ambient temperature in a second period of time, and the second period of time is after the first period of time, according to The minimum ambient temperature in at least a period of time, and predicting the minimum ambient temperature in a preset period of time after the at least period of time includes: judging that the lowest environmental temperature in the first period of time is greater than the second period of time The lowest ambient temperature in the first period of time, the lowest ambient temperature in the second period of time, and the second ambient temperature prediction factor to calculate the lowest environmental temperature in the preset period of time temperature.
- determining the lowest state of charge value that can meet the vehicle's engine start power requirement at the lowest ambient temperature in the preset time period includes: It is assumed that the lowest ambient temperature in the time period is brought into the discharge power Map of the power battery to obtain the lowest state of charge value.
- the lower limit control method of the power battery state of charge described in the present disclosure has the following advantages:
- the present disclosure adopts a method for controlling the lower limit of the state of charge of a power battery, which includes: detecting a minimum ambient temperature in at least a period of time; and predicting a preset period of time after the at least a period of time based on the minimum ambient temperature in the at least a period of time According to the lowest ambient temperature in the preset time period, determine the lowest state of charge value that can meet the vehicle's engine starting power requirements at the lowest ambient temperature in the preset time period; The minimum state of charge value is used to adjust the lower limit of the state of charge.
- the lower limit value of the battery SOC is adjusted for the lowest ambient temperature in the future preset time period, so that the SOC value of the vehicle’s battery is not lower than the lower limit value, To ensure that the SOC value of the battery can make the vehicle start normally in a low temperature environment.
- Another objective of the present disclosure is to provide a lower limit control device for the state of charge of a power battery to ensure that the SOC value of the battery can enable the vehicle to start normally in a low temperature environment.
- a lower limit control device for the state of charge of a power battery comprising: a detection unit, a prediction unit, and a processing unit, wherein the detection unit is used to detect the lowest ambient temperature in at least a period of time; the prediction unit is used According to the lowest ambient temperature in the at least a period of time, predict the lowest ambient temperature in a preset period of time after the at least a period of time; the processing unit is configured to: according to the lowest ambient temperature in the preset period of time, Determine the lowest state of charge value that can meet the vehicle's engine starting power requirement at the lowest ambient temperature within the preset time period; adjust the lower limit of the state of charge according to the lowest state of charge value.
- the lowest ambient temperature in the at least a period of time only includes the lowest ambient temperature in the first period of time
- the predicting unit is configured to: according to the lowest ambient temperature, the temperature constant, and the first period of time in the first period of time.
- the environmental temperature prediction factor calculates the lowest environmental temperature in the preset time period.
- the lowest ambient temperature in the at least a period of time includes the lowest ambient temperature in a first period of time and the lowest ambient temperature in a second period of time, and the second period of time is after the first period of time, so
- the prediction unit is configured to predict that the lowest ambient temperature in the preset time period is the The lowest ambient temperature in the first period of time.
- the lowest ambient temperature in the at least a period of time includes the lowest ambient temperature in a first period of time and the lowest ambient temperature in a second period of time, and the second period of time is after the first period of time, so
- the prediction unit is configured to: when judging that the lowest ambient temperature in the first period of time is greater than the lowest ambient temperature in the second period of time, according to the lowest ambient temperature in the first period of time, the second The lowest ambient temperature within a period of time and the second ambient temperature predictive factor are calculated to calculate the lowest ambient temperature within the preset period of time.
- processing unit is configured to: bring the lowest ambient temperature within the preset time period into the discharge power Map of the power battery to obtain the lowest state of charge value.
- the lower limit control device of the power battery state of charge and the aforementioned lower limit control method of the power battery state of charge have the same advantages over the prior art, and will not be repeated here.
- Another object of the present disclosure is to provide a vehicle to ensure that the SOC value of the battery can enable the vehicle to start normally in a low temperature environment.
- a vehicle includes the lower limit control device for the state of charge of a power battery as described above.
- Another object of the present disclosure is to provide a machine-readable storage medium to ensure that the SOC value of the battery can enable the vehicle to start normally in a low-temperature environment.
- a machine-readable storage medium has instructions stored on the machine-readable storage medium, and the instructions are used to make a machine execute the above-mentioned method for controlling the lower limit of the state of charge of a power battery.
- the machine-readable storage medium has the same advantages as the aforementioned method for controlling the lower limit of the state of charge of the power battery over the prior art, and will not be repeated here.
- FIG. 1 is a flowchart of a lower limit control method of a power battery state of charge provided by an embodiment of the present disclosure
- 2A-2B are flowcharts of a method for controlling the lower limit of the state of charge of a power battery according to another embodiment of the present disclosure
- Fig. 3 is a structural block diagram of a lower limit control device for a power battery state of charge provided by an embodiment of the present disclosure.
- Fig. 1 is a flowchart of a method for controlling a lower limit of the state of charge of a power battery according to an embodiment of the present disclosure. As shown in Figure 1, the control method includes:
- Step S11 detecting the lowest ambient temperature for at least a period of time
- the ambient temperature can be detected by a temperature sensor, and then the minimum ambient temperature can be calculated after storage.
- the at least period of time may be, for example, a period of time, such as 5 days, 10 days, or 30 days, or two periods of time, such as two 5 days. If it is two periods of time, the lowest ambient temperature of the two periods of time will be obtained respectively.
- the battery management system wakes up the vehicle's CAN network after regular self-wakeup (can be multiple times a day), and then waits for sleep or T-Box regular self-wakeup (can be multiple times a day), then wakes up the vehicle CAN network, and then waits for sleep .
- the air conditioner controller is awakened and sends the current ambient temperature to the hybrid control unit (HCU), and then waits for sleep.
- the host system Head Unit System, HUT
- HUT Head Unit System
- the HCU receives the ambient temperature after being awakened, and updates the received ambient temperature to the ambient temperature record of the day, based on the effective ambient temperature record of the day (not equal to the default value of 100, if the air conditioner controller temperature detection fails, the temperature is invalid) , Calculate and record the lowest ambient temperature of the day, so that the lowest ambient temperature in any period of time can be obtained according to the daily lowest ambient temperature. If the daily ambient temperature records for a certain period of time are invalid (ie, the default value is 100), the lowest ambient temperature during this period of time is also invalid (ie, the default value is 100).
- Step S12 predicting the lowest ambient temperature in a preset time period after the at least a period of time according to the lowest ambient temperature in the at least a period of time;
- step S212 is executed instead of step S12, and the lowest ambient temperature in the preset time period is calculated according to the lowest ambient temperature, the temperature constant, and the first ambient temperature prediction factor in the first period of time. temperature.
- the specific calculation formula is:
- T0 T1+C ⁇ q1
- T1 the lowest ambient temperature in the preset time period
- T1 the lowest ambient temperature in the first period of time
- C the temperature constant
- q1 the first ambient temperature prediction factor.
- the temperature constant is, for example, -5°C, and this value can be calibrated according to actual needs.
- the first environmental temperature prediction factor can be obtained by querying the "correspondence table of the environmental temperature prediction factor and the minimum environmental temperature" by bringing in the minimum environmental temperature T1 in the first period of time.
- the range of the first environmental temperature prediction factor q1 is preferably 0-2.
- the "correspondence table between ambient temperature prediction factors and the lowest ambient temperature” can be obtained by pre-calibration.
- step S22-S224 if at least a period of time is two periods of time, namely the first period of time and the second period of time (the second period of time is after the first period of time), and the minimum ambient temperature of the two periods of time is valid Yes, then perform the following steps S222-S224 instead of step S12:
- Step S222 determining whether the lowest ambient temperature in the first period of time is less than or equal to the lowest ambient temperature in the second period of time;
- Step S223 When the lowest ambient temperature in the first period of time is less than or equal to the lowest ambient temperature in the second period of time, predict that the lowest ambient temperature in the preset period of time is the lowest ambient temperature in the first period of time. temperature.
- Step S224 when the lowest ambient temperature in the first period of time is greater than the lowest ambient temperature in the second period of time, according to the lowest ambient temperature in the first period of time, the lowest ambient temperature in the second period of time, and the second ambient temperature
- the predictive factor calculates the lowest ambient temperature in the preset time period.
- T0 T2+(T2-T1) ⁇ q2, where T0 is the lowest ambient temperature in the preset time period, T1 is the lowest ambient temperature in the first period of time, T2 is the lowest ambient temperature in the second period of time, and q2 is The second environmental temperature predictor.
- the second ambient temperature predictive factor q2 can also be checked by bringing in the difference between the lowest ambient temperature T2 in the second period of time and the lowest ambient temperature T1 in the first period of time to check the "correspondence table of ambient temperature predictive factor and the lowest ambient temperature” get.
- the range of the second environmental temperature prediction factor q2 is preferably 0-2.
- Step S13 according to the lowest ambient temperature in the preset time period, determine the lowest state of charge value that can meet the vehicle's engine start power requirement at the lowest ambient temperature in the preset time period;
- the lowest environmental temperature within the preset time period is brought into the discharge power Map of the power battery to obtain the lowest SOC value.
- the discharge power Map of the power battery is known, but it varies according to the vehicle or the power battery.
- Step S14 adjusting the lower limit value of the state of charge according to the minimum state of charge value.
- the minimum SOC value is added with a reserved amount as the predicted lower limit of the SOC to ensure a low-temperature cold start of the engine. It is also possible to take the lower limit of the SOC predicted to ensure low-temperature cold start of the engine and the lower limit of the battery pack SOC usage defined by the battery supplier as the final lower limit of the SOC. If it is predicted that the temperature will decrease in the next 10 days and the SOC value must be above 25% to start the vehicle normally, the lower limit of the SOC should be adjusted from the fixed 15% to 25% so that the SOC value cannot be lower than 25%, for example, it is about to be low. Stop using at 25%, or keep charging above 25% when it is lower than 25%.
- Fig. 3 is a structural block diagram of a lower limit control device for a power battery state of charge provided by an embodiment of the present disclosure.
- the control device includes: a detection unit 1, a prediction unit 2, and a processing unit 3.
- the detection unit 1 is used to detect the lowest ambient temperature in at least a period of time;
- the prediction unit 2 is used to According to the lowest ambient temperature in the at least a period of time, predict the lowest ambient temperature in a preset period of time after the at least a period of time;
- the processing unit 3 is configured to: according to the lowest ambient temperature in the preset period of time , Determining the lowest state of charge value that can meet the vehicle's engine starting power requirement at the lowest ambient temperature within the preset time period; adjusting the lower limit of the state of charge according to the lowest state of charge value.
- the lowest ambient temperature in at least a period of time only includes the lowest ambient temperature in a first period of time
- the prediction unit 2 is configured to: according to the lowest ambient temperature, temperature constant, and the first period of time in the first period An ambient temperature prediction factor, which calculates the lowest ambient temperature in the preset time period.
- the lowest ambient temperature in the at least a period of time includes the lowest ambient temperature in a first period of time and the lowest ambient temperature in a second period of time, and the second period of time is after the first period of time, so
- the prediction unit 2 is configured to: when determining that the lowest ambient temperature in the first period of time is less than or equal to the lowest ambient temperature in the second period of time, predict that the lowest ambient temperature in the preset period of time is The lowest ambient temperature in the first period of time.
- the lowest ambient temperature in the at least a period of time includes the lowest ambient temperature in a first period of time and the lowest ambient temperature in a second period of time, and the second period of time is after the first period of time, so
- the prediction unit 2 is configured to: when judging that the lowest ambient temperature in the first period of time is greater than the lowest ambient temperature in the second period of time, according to the lowest ambient temperature in the first period of time, the first period of time.
- the lowest ambient temperature in the two periods of time and the second ambient temperature predictive factor are calculated to calculate the lowest ambient temperature in the preset period of time.
- processing unit 3 is configured to: bring the lowest ambient temperature within the preset time period into the discharge power Map of the power battery to obtain the lowest state of charge value.
- the embodiment of the lower limit control device for the power battery state of charge described above is similar to the embodiment of the lower limit control method for the power battery state of charge described above, and will not be repeated here.
- the present disclosure also provides a vehicle, which includes the lower limit control device for the state of charge of the power battery described above.
- the present disclosure also provides a machine-readable storage medium with instructions stored on the machine-readable storage medium for causing a machine to execute the method for controlling the lower limit of the state of charge of the power battery described above.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
提供了一种动力电池荷电状态下限控制方法、装置和车辆。动力电池荷电状态下限控制方法包括:检测至少一段时间内的最低环境温度(S11);根据至少一段时间内的最低环境温度,预测至少一段时间之后的预设时间段内的最低环境温度(S12);根据预设时间段内的最低环境温度,确定在预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值(S13);根据最低荷电状态值,调整所述荷电状态的下限值(S14),可以保证在低温环境下电池的SOC值能够使车辆正常启动。
Description
相关申请的交叉引用
本申请人要求申请日为2020年02月25日、申请号为202010115664.8、名称为“动力电池荷电状态下限控制方法、装置及车辆”的中国发明专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及新能源车辆技术领域,特别涉及一种动力电池荷电状态下限控制方法、装置及车辆。
随着能源危机与环境污染问题的日益显现,混合动力汽车因其在节能和环保方面的突出优势已经成为汽车行业发展的重要方向。目前,混合动力汽车采用的动力电池的荷电状态(State of Charge,SOC)的下限在车辆使用过程中是固定的,当车辆的电池处于低SOC值停车下电后,可能会由于环境温度降低导致电池的低SOC值不足以使车辆在低温下正常启动,从而影响车辆下次上电后的正常功能使用。
发明内容
有鉴于此,本公开旨在提出一种动力电池荷电状态下限控制方法、装置及车辆,以保证在低温环境下电池的SOC值能够使车辆正常启动。
为达到上述目的,本公开的技术方案是这样实现的:
一种动力电池荷电状态下限控制方法,所述控制方法包括:检测至少一段时间内的最低环境温度;根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;根据所述最低荷电状态值,调整所述荷电状态的下限值。
进一步的,所述至少一段时间内的最低环境温度仅包括第一段时间内的最低环境温度,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度包括:根据所述第一段时间内的最低环境温度、温度常数以及第 一环境温度预测因子,计算所述预设时间段内的最低环境温度。
进一步的,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度包括:在判断所述第一段时间内的最低环境温度小于或等于所述第二时间段内的最低环境温度时,预测所述预设时间段内的最低环境温度为所述第一段时间内的最低环境温度。
进一步的,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度包括:在判断所述第一段时间内的最低环境温度大于所述第二时间段内的最低环境温度时,根据所述第一段时间内的最低环境温度、所述第二段时间内的最低环境温度以及第二环境温度预测因子,计算所述预设时间段内的最低环境温度。
进一步的,根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值包括:将所述预设时间段内的最低环境温度带入动力电池的放电功率Map得到所述最低荷电状态值。
相对于现有技术,本公开所述的动力电池荷电状态下限控制方法具有以下优势:
本公开采用一种动力电池荷电状态下限控制方法,包括:检测至少一段时间内的最低环境温度;根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;根据所述最低荷电状态值,调整所述荷电状态的下限值。由于预测了未来预设时间段内的最低环境温度,因此针对该未来预设时间段内的最低环境温度调整电池的SOC下限值,使得车辆的电池的SOC值不低于该下限值,以保证在低温环境下电池的SOC值能够使车辆正常启动。
本公开的另一目的在于提出一种动力电池荷电状态下限控制装置,以保证在低温环境下电池的SOC值能够使车辆正常启动。
为达到上述目的,本公开的技术方案是这样实现的:
一种动力电池荷电状态下限控制装置,所述控制装置包括:检测单元、预测单元以及处理单元,其中,所述检测单元用于检测至少一段时间内的最低环境温度;所述预 测单元用于根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;所述处理单元用于:根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;根据所述最低荷电状态值,调整所述荷电状态的下限值。
进一步的,所述至少一段时间内的最低环境温度仅包括第一段时间内的最低环境温度,所述预测单元用于:根据所述第一段时间内的最低环境温度、温度常数以及第一环境温度预测因子,计算所述预设时间段内的最低环境温度。
进一步的,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,所述预测单元用于:在判断所述第一段时间内的最低环境温度小于或等于所述第二时间段内的最低环境温度时,预测所述预设时间段内的最低环境温度为所述第一段时间内的最低环境温度。
进一步的,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,所述预测单元用于:在判断所述第一段时间内的最低环境温度大于所述第二时间段内的最低环境温度时,根据所述第一段时间内的最低环境温度、所述第二段时间内的最低环境温度以及第二环境温度预测因子,计算所述预设时间段内的最低环境温度。
进一步的,所述处理单元用于:将所述预设时间段内的最低环境温度带入动力电池的放电功率Map得到所述最低荷电状态值。
所述动力电池荷电状态下限控制装置与上述动力电池荷电状态下限控制方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种车辆,以保证在低温环境下电池的SOC值能够使车辆正常启动。
为达到上述目的,本公开的技术方案是这样实现的:
一种车辆,该车辆包括上文所述的动力电池荷电状态下限控制装置。
所述车辆与上述动力电池荷电状态下限控制装置相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种机器可读存储介质,以保证在低温环境下电池的SOC值能够使车辆正常启动。
为达到上述目的,本公开的技术方案是这样实现的:
一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上文所述的动力电池荷电状态下限控制方法。
所述机器可读存储介质与上述动力电池荷电状态下限控制方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施方式及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开一实施例提供的动力电池荷电状态下限控制方法的流程图;
图2A-2B是本公开另一实施例提供的动力电池荷电状态下限控制方法的流程图;
图3是本公开一实施例提供的动力电池荷电状态下限控制装置的结构框图。
附图标记说明:
1 检测单元 2 预测单元
3 处理单元
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。
下面将参考附图并结合实施方式来详细说明本公开。
图1是本公开一实施例提供的动力电池荷电状态下限控制方法的流程图。如图1所示,所述控制方法包括:
步骤S11,检测至少一段时间内的最低环境温度;
具体地,环境温度可以使用温度传感器进行检测,然后进行存储后再进行最低环境温度的计算。至少一段时间例如可以是一段时间,例如5天、10天或者30天,也可以是两段时间,例如两个5天。如果是两段时间,则分别得到这两段时间各自的最低环境温度。
当然,由于本公开是针对车辆的,因此也可以使用车辆上的各功能设备进行检测最低环境温度的处理。例如,具体地:
电池管理系统(Battery Management System,BMS)定时自唤醒(可以一天多次)后唤醒车辆CAN网络,然后等待睡眠或者T-Box定时自唤醒(可以一天多次)后唤醒车辆CAN网络,然后等待睡眠。接着空调控制器被唤醒后将当前的环境温度发送给混合动力整车控制器(Hybrid Control Unit,HCU),然后等待睡眠。主机系统(Head Unit System,HUT)被唤醒后将当前的日期和时间发送给HCU,然后等待睡眠。HCU被唤醒后接收环境温度,并将接收到的环境温度更新到当日环境温度记录中,同时基于有效的当日环境温度记录(不等于默认值100,如果空调控制器温度检测出现故障则温度无效),计算当日的最低环境温度,并进行记录,从而根据每日的最低环境温度,可以得到任意一段时间内的最低环境温度。如果在某段时间内每日的环境温度记录都是无效的(即默认值100),则这段时间的最低环境温度也无效(即默认值100)。
步骤S12,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;
具体地,如图2A所示,如果至少一段时间仅为一段时间,例如第一段时间,或者至少一段时间为两段时间,但是其中一段时间的最低环境温度是无效的(即默认值100),那么在该种情况下,则执行步骤S212代替步骤S12,根据所述第一段时间内的最低环境温度、温度常数以及第一环境温度预测因子,计算所述预设时间段内的最低环境温度。具体计算公式为:
T0=T1+C×q1,其中T0为预设时间段内的最低环境温度,T1为第一段时间内的最低环境温度,C为温度常数,q1为第一环境温度预测因子。温度常数例如为-5℃,该数值可以根据实际需要进行标定。第一环境温度预测因子可以通过带入第一段时间内的最低环境温度T1查询“环境温度预测因子与最低环境温度的对应表”得到。第一环境温度预测因子q1的范围优选为0-2。该“环境温度预测因子与最低环境温度的对应表”可以通过预先进行标定得到,例如需要根据前10天的最低环境温度预测之后10天(即上文预设时间段)的最低环境温度,则在设定温度常数C之后,检测前10天的最低环境温度,然后检测之后10天的最低环境温度,再带入上式T0=T1+C×q1中得到第一环境温度预测因子q1,如此进行多次,通过大量实际数据可以得到各种前10天的最低环境温度对应的第一环境温度预测因子q1,该标定方式是较为常见的,在此不再赘述。
如图2B所示,如果至少一段时间内为两段时间,即第一时间段和第二时间段(第二时间段在第一时间段之后),且两段时间的最低环境温度都是有效的,那么执行以下步骤S222-S224代替步骤S12:
步骤S222,判断在第一段时间内的最低环境温度是否小于或等于第二时间段内的最低环境温度;
步骤S223,在第一段时间内的最低环境温度小于或等于第二时间段内的最低环境温度时,预测所述预设时间段内的最低环境温度为所述第一段时间内的最低环境温度。
步骤S224,在第一段时间内的最低环境温度大于第二时间段内的最低环境温度时,根据第一段时间内的最低环境温度、第二段时间内的最低环境温度以及第二环境温度预测因子,计算所述预设时间段内的最低环境温度。
在该步骤S224中,具体地计算公式为:
T0=T2+(T2-T1)×q2,其中T0为预设时间段内的最低环境温度,T1为第一段时间内的最低环境温度,T2为第二段时间内的最低环境温度,q2为第二环境温度预测因子。第二环境温度预测因子q2也同样可以通过带入第二段时间内的最低环境温度T2与第一段时间内的最低环境温度T1的差查“环境温度预测因子与最低环境温度的对应表”得到。第二环境温度预测因子q2的范围优选为0-2。
步骤S13,根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;
具体地,将所述预设时间段内的最低环境温度带入动力电池的放电功率Map得到所述最低SOC值。动力电池的放电功率Map是已知的,但根据车辆或者动力电池不同而不同。
步骤S14,根据所述最低荷电状态值,调整所述荷电状态的下限值。
具体地,将最低SOC值加上一个预留量,作为预测的确保发动机低温冷启动的SOC的下限值。也可以将预测的确保发动机低温冷启动的SOC的下限值和电池供应商定义的电池包SOC使用下限取大,作为最终的SOC的下限值。如果预测未来10天温度降低,需要SOC值为25%以上才能正常启动车辆,则将SOC的下限值从固定的15%调整到25%,使SOC值不能低于25%,例如在即将低于25%时停止使用,或者在低于25%时充电保持在25%之上,这样可以解决动力电池在车辆停车下电后,未来10天内环境温度降低导致动力电池包温度降低致使电池放电功率不满足发动机启动功率需求,而使发动机不能启动、车辆不能使用的问题。
图3是本公开一实施例提供的动力电池荷电状态下限控制装置的结构框图。如图3所示,所述控制装置包括:检测单元1、预测单元2以及处理单元3,其中,所述检测单元1用于检测至少一段时间内的最低环境温度;所述预测单元2用于根据所述至少一 段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;所述处理单元3用于:根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;根据所述最低荷电状态值,调整所述荷电状态的下限值。
进一步的,所述至少一段时间内的最低环境温度仅包括第一段时间内的最低环境温度,所述预测单元2用于:根据所述第一段时间内的最低环境温度、温度常数以及第一环境温度预测因子,计算所述预设时间段内的最低环境温度。
进一步的,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,所述预测单元2用于:在判断所述第一段时间内的最低环境温度小于或等于所述第二时间段内的最低环境温度时,预测所述预设时间段内的最低环境温度为所述第一段时间内的最低环境温度。
进一步的,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,所述预测单元2用于:在判断所述第一段时间内的最低环境温度大于所述第二时间段内的最低环境温度时,根据所述第一段时间内的最低环境温度、所述第二段时间内的最低环境温度以及第二环境温度预测因子,计算所述预设时间段内的最低环境温度。
进一步的,所述处理单元3用于:将所述预设时间段内的最低环境温度带入动力电池的放电功率Map得到所述最低荷电状态值。
上文所述的动力电池荷电状态下限控制装置的实施例与上文所述的动力电池荷电状态下限控制方法的实施例类似,在此不再赘述。
本公开还提供一种车辆,该车辆包括上文所述的动力电池荷电状态下限控制装置。
本公开还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上文所述的动力电池荷电状态下限控制方法。
上文所述的车辆、机器可读存储介质的实施例与上文所述的动力电池荷电状态下限控制方法的实施例类似,在此不再赘述。
以上所述仅为本公开的较佳实施方式而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (12)
- 一种动力电池荷电状态下限控制方法,其特征在于,所述控制方法包括:检测至少一段时间内的最低环境温度;根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;根据所述最低荷电状态值,调整所述荷电状态的下限值。
- 根据权利要求1所述的动力电池荷电状态下限控制方法,其特征在于,所述至少一段时间内的最低环境温度仅包括第一段时间内的最低环境温度,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度包括:根据所述第一段时间内的最低环境温度、温度常数以及第一环境温度预测因子,计算所述预设时间段内的最低环境温度。
- 根据权利要求1所述的动力电池荷电状态下限控制方法,其特征在于,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度包括:在判断所述第一段时间内的最低环境温度小于或等于所述第二时间段内的最低环境温度时,预测所述预设时间段内的最低环境温度为所述第一段时间内的最低环境温度。
- 根据权利要求1所述的动力电池荷电状态下限控制方法,其特征在于,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度包括:在判断所述第一段时间内的最低环境温度大于所述第二时间段内的最低环境温度时,根据所述第一段时间内的最低环境温度、所述第二段时间内的最低环境温度以及第 二环境温度预测因子,计算所述预设时间段内的最低环境温度。
- 根据权利要求1所述的动力电池荷电状态下限控制方法,其特征在于,根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值包括:将所述预设时间段内的最低环境温度带入动力电池的放电功率Map得到所述最低荷电状态值。
- 一种动力电池荷电状态下限控制装置,其特征在于,所述控制装置包括:检测单元、预测单元以及处理单元,其中,所述检测单元用于检测至少一段时间内的最低环境温度;所述预测单元用于根据所述至少一段时间内的最低环境温度,预测所述至少一段时间之后的预设时间段内的最低环境温度;所述处理单元用于:根据所述预设时间段内的最低环境温度,确定在所述预设时间段内的最低环境温度下能满足车辆的发动机启动功率需求的最低荷电状态值;根据所述最低荷电状态值,调整所述荷电状态的下限值。
- 根据权利要求6所述的动力电池荷电状态下限控制装置,其特征在于,所述至少一段时间内的最低环境温度仅包括第一段时间内的最低环境温度,所述预测单元用于:根据所述第一段时间内的最低环境温度、温度常数以及第一环境温度预测因子,计算所述预设时间段内的最低环境温度。
- 根据权利要求6所述的动力电池荷电状态下限控制装置,其特征在于,所述至少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,所述预测单元用于:在判断所述第一段时间内的最低环境温度小于或等于所述第二时间段内的最低环境温度时,预测所述预设时间段内的最低环境温度为所述第一段时间内的最低环境温度。
- 根据权利要求6所述的动力电池荷电状态下限控制装置,其特征在于,所述至 少一段时间内的最低环境温度包括第一段时间内的最低环境温度和第二段时间内的最低环境温度,所述第二时间段在所述第一时间段之后,所述预测单元用于:在判断所述第一段时间内的最低环境温度大于所述第二时间段内的最低环境温度时,根据所述第一段时间内的最低环境温度、所述第二段时间内的最低环境温度以及第二环境温度预测因子,计算所述预设时间段内的最低环境温度。
- 根据权利要求6所述的动力电池荷电状态下限控制装置,其特征在于,所述处理单元用于:将所述预设时间段内的最低环境温度带入动力电池的放电功率Map得到所述最低荷电状态值。
- 一种车辆,其特征在于,该车辆包括权利要求6-10中任一项权利要求所述的动力电池荷电状态下限控制装置。
- 一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行权利要求1-5中任一项权利要求所述的动力电池荷电状态下限控制方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21760211.9A EP4063178A4 (en) | 2020-02-25 | 2021-02-25 | METHOD AND APPARATUS FOR CONTROLLING THE LOWER STATE OF CHARGE LIMIT FOR A POWER BATTERY AND VEHICLE |
US17/854,358 US20220336873A1 (en) | 2020-02-25 | 2022-06-30 | Method for controlling lower limit of state of charge of power battery, and vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010115664.8 | 2020-02-25 | ||
CN202010115664.8A CN112519633A (zh) | 2020-02-25 | 2020-02-25 | 动力电池荷电状态下限控制方法、装置及车辆 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/854,358 Continuation US20220336873A1 (en) | 2020-02-25 | 2022-06-30 | Method for controlling lower limit of state of charge of power battery, and vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021170025A1 true WO2021170025A1 (zh) | 2021-09-02 |
Family
ID=74978685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/077832 WO2021170025A1 (zh) | 2020-02-25 | 2021-02-25 | 动力电池荷电状态下限控制方法、装置及车辆 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220336873A1 (zh) |
EP (1) | EP4063178A4 (zh) |
CN (1) | CN112519633A (zh) |
WO (1) | WO2021170025A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114103921B (zh) * | 2020-08-27 | 2023-12-12 | 比亚迪股份有限公司 | 车辆保电控制方法、装置及可读存储介质 |
CN113002364A (zh) * | 2021-04-22 | 2021-06-22 | 一汽解放汽车有限公司 | 电池充电截止电荷状态确定方法、装置、电子设备及介质 |
US12110002B2 (en) * | 2022-01-11 | 2024-10-08 | Ford Global Technologies, Llc | Method and system for hybrid vehicle power generation |
US20230229225A1 (en) * | 2022-01-18 | 2023-07-20 | Dell Products L.P. | Intelligent battery discharge control to support environmental extremes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012080689A (ja) * | 2010-10-04 | 2012-04-19 | Panasonic Corp | 電気自動車用電源装置 |
CN103529395A (zh) * | 2013-10-25 | 2014-01-22 | 长城汽车股份有限公司 | 动力电池组的冷启动功率评估方法 |
CN104638318A (zh) * | 2014-11-28 | 2015-05-20 | 富奥汽车零部件股份有限公司 | 一种电动车动力电池组低温快速加热方法及系统 |
CN107817685A (zh) * | 2017-12-05 | 2018-03-20 | 上海中信信息发展股份有限公司 | 智能温度监控方法、装置、系统及终端 |
CN110281858A (zh) * | 2018-03-19 | 2019-09-27 | 福特全球技术公司 | 用于防止冷启动故障的车辆充电控制 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7741805B2 (en) * | 2007-08-14 | 2010-06-22 | Gm Global Technology Operations, Inc. | Method and apparatus for managing power flow of an electric power storage device |
US8937452B2 (en) * | 2011-02-04 | 2015-01-20 | GM Global Technology Operations LLC | Method of controlling a state-of-charge (SOC) of a vehicle battery |
CN103077297B (zh) * | 2012-10-12 | 2015-11-25 | 西安交通大学 | 一种短时间间隔大气环境温度预测方法 |
US9457682B2 (en) * | 2013-08-30 | 2016-10-04 | GM Global Technology Operations LLC | Method for predicting charging process duration |
US9428077B2 (en) * | 2013-10-07 | 2016-08-30 | Ford Global Technologies, Llc | Freeze preparation for a fuel cell system |
US9902400B2 (en) * | 2015-11-19 | 2018-02-27 | GM Global Technology Operations LLC | Method and system for controlling a vehicle capable of operating in fuel economy mode |
US10328814B2 (en) * | 2016-04-05 | 2019-06-25 | Ford Global Technologies, Llc | Systems and methods to determine electric vehicle range based on environmental factors |
US11358584B2 (en) * | 2019-04-02 | 2022-06-14 | Ford Global Technologies, Llc | Electrified vehicle energy management for robust cold power discharge capability |
CN112498172B (zh) * | 2020-02-25 | 2022-07-15 | 长城汽车股份有限公司 | 动力电池荷电状态下限控制方法、装置及车辆 |
CN114103921B (zh) * | 2020-08-27 | 2023-12-12 | 比亚迪股份有限公司 | 车辆保电控制方法、装置及可读存储介质 |
-
2020
- 2020-02-25 CN CN202010115664.8A patent/CN112519633A/zh active Pending
-
2021
- 2021-02-25 EP EP21760211.9A patent/EP4063178A4/en active Pending
- 2021-02-25 WO PCT/CN2021/077832 patent/WO2021170025A1/zh unknown
-
2022
- 2022-06-30 US US17/854,358 patent/US20220336873A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012080689A (ja) * | 2010-10-04 | 2012-04-19 | Panasonic Corp | 電気自動車用電源装置 |
CN103529395A (zh) * | 2013-10-25 | 2014-01-22 | 长城汽车股份有限公司 | 动力电池组的冷启动功率评估方法 |
CN104638318A (zh) * | 2014-11-28 | 2015-05-20 | 富奥汽车零部件股份有限公司 | 一种电动车动力电池组低温快速加热方法及系统 |
CN107817685A (zh) * | 2017-12-05 | 2018-03-20 | 上海中信信息发展股份有限公司 | 智能温度监控方法、装置、系统及终端 |
CN110281858A (zh) * | 2018-03-19 | 2019-09-27 | 福特全球技术公司 | 用于防止冷启动故障的车辆充电控制 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4063178A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4063178A4 (en) | 2023-05-17 |
CN112519633A (zh) | 2021-03-19 |
EP4063178A1 (en) | 2022-09-28 |
US20220336873A1 (en) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021170025A1 (zh) | 动力电池荷电状态下限控制方法、装置及车辆 | |
WO2021170024A1 (zh) | 动力电池荷电状态下限控制方法、装置及车辆 | |
US10220724B2 (en) | System and method for controlling start of fuel cell vehicle | |
CN109435761B (zh) | 一种蓄电池电压监控方法及整车控制器 | |
CN112014617B (zh) | 一种整车静态电流测试的方法、测试装置及系统 | |
US10056628B2 (en) | Method for controlling startup of fuel cell vehicle | |
JP2019170147A (ja) | ソーラバッテリーシステム及びその制御方法 | |
US20220340012A1 (en) | Battery pack control method and system, and vehicle | |
CN113799657B (zh) | 一种电动汽车及其电池自唤醒加热方法 | |
CN113829953A (zh) | 电动汽车动力电池冷却控制方法及控制装置 | |
CN114851866A (zh) | 蓄电池补电方法、装置、整车控制器和存储介质 | |
KR102692276B1 (ko) | 하이브리드 차량의 난방 부하 판별방법 | |
EP4343925A1 (en) | Battery heating method and heating apparatus | |
CN116639110A (zh) | 混合动力汽车的能量管理方法、装置、设备及存储介质 | |
CN113928180B (zh) | 车辆的电池包插枪控温控制方法和系统 | |
US20240092220A1 (en) | Key-off electrical load management for a vehicle | |
CN112776619A (zh) | 一种充电方法及装置 | |
CN114379419B (zh) | 电动汽车及其动力电池均衡方法、电池管理系统及介质 | |
CN109539481A (zh) | 一种空调节能控制方法、空调系统、计算机及存储介质 | |
CN114919465B (zh) | 一种高温高寒条件下电动汽车存放装置及方法 | |
CN115447513B (zh) | 一种基于温度和电压的蓄电池防亏电系统、方法及车辆 | |
CN116039545A (zh) | 一种基于云服务平台的车载蓄电池智能补电控制方法 | |
CN110456838B (zh) | 一种车内超温控制系统和方法 | |
CN114475364A (zh) | 电池包的定时保温方法、装置和电子设备 | |
CN118343026A (zh) | 新能源电动汽车蓄电池智能动态补电方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21760211 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021760211 Country of ref document: EP Effective date: 20220621 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |