WO2021169419A1 - 光线路终端、光网络单元及光通信系统 - Google Patents

光线路终端、光网络单元及光通信系统 Download PDF

Info

Publication number
WO2021169419A1
WO2021169419A1 PCT/CN2020/128729 CN2020128729W WO2021169419A1 WO 2021169419 A1 WO2021169419 A1 WO 2021169419A1 CN 2020128729 W CN2020128729 W CN 2020128729W WO 2021169419 A1 WO2021169419 A1 WO 2021169419A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
olt
downlink
bit
bit stream
Prior art date
Application number
PCT/CN2020/128729
Other languages
English (en)
French (fr)
Inventor
林华枫
凌魏
曾小飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227023681A priority Critical patent/KR20220113487A/ko
Priority to EP20920874.3A priority patent/EP4068654A4/en
Priority to JP2022544040A priority patent/JP7480309B2/ja
Publication of WO2021169419A1 publication Critical patent/WO2021169419A1/zh
Priority to US17/814,324 priority patent/US20220360356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0223Conversion to or from optical TDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • H04J14/083Add and drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This application relates to the field of optical communication technology, in particular to optical line terminals, optical network units and optical communication systems.
  • Passive optical network is a single-fiber bidirectional optical access network that adopts a point-to-multipoint (point to muti-point, P2MP) structure.
  • a PON is composed of an optical line termination (OLT) at the central office, an optical distribution network (ODN), and an optical network unit (ONU) on the user side.
  • OLT optical line termination
  • ODN optical distribution network
  • ONU optical network unit
  • the embodiments of the application provide optical line terminals, optical network units, and optical communication systems, which are used to solve the current problems of large delay and jitter when operators re-use FTTH and ODN to rapidly expand and deploy new services.
  • a first optical line terminal OLT includes: an electrical domain multiplexing module, a first optical modulator, and N2 upstream optical receivers, where N2 is a positive integer greater than 1, wherein, The electrical domain multiplexing module is used to receive the M1 downlink data frame and multiplex the M1 downlink data frame into a high-speed downlink bit stream, M1 is a positive integer; the first optical modulator is used for the high-speed After the downstream bit stream is converted into a physical electrical signal, the physical electrical signal is modulated into a downstream optical signal with a wavelength of ⁇ 0; each of the N2 upstream optical receivers receives upstream optical signals of different wavelengths.
  • the first OLT When the first OLT provided by the embodiment of this application reuses FTTH ODN to expand and deploy new services, in the upstream direction, different upstream optical receivers respectively receive upstream optical signals of different wavelengths, so that each user is equivalent to passing through a dedicated channel Carry out point-to-point data transmission; in the downstream direction, because the first OLT adopts the downstream time division broadcast mode, the downstream data frame of the M1 channel is multiplexed into a high-speed downstream bit stream, so that the first ONU can be extracted from the high-speed downstream bit stream It belongs to its own target downstream bit stream, so not only does the first ONU side receive no tunable filter, it greatly saves wavelength resources and costs, and from the user's point of view, each user can continue to receive downstream data packets, that is, each The user is also equivalent to receiving downlink data through a dedicated channel.
  • the data transmitted based on the optical communication system including the first OLT is equivalent to transmission on a dedicated channel. Therefore, compared with the prior art, it is possible to avoid the time delay caused by the use of time division multiplexing for both uplink and downlink. And the problem of greater jitter.
  • the first OLT provided in the embodiments of the present application, not only can the delay and jitter be reduced, but also the reliability of the system can be improved. Furthermore, it can support operators to reuse FTTH and ODN to rapidly expand and deploy new services, such as high-reliability and low-latency services, so as to achieve full-service access to an access network.
  • the rate of the downlink data frame of the M1 channel is D
  • the rate of the high-speed downlink bit stream is M1*D.
  • the electrical domain multiplexing module is used to multiplex the M1 downlink data frame into a high-speed downlink bit stream, including: electrical domain multiplexing module, used to pass bits
  • the interleaving method multiplexes M1 downlink data frames into a high-speed downlink bit stream, where the high-speed downlink bit stream includes one or more M1 bit packets, and the kth M1 bit packet of the one or more M1 bit packets Includes the k-th bit in the downlink data frame of the M1 channel. Based on this scheme, it is possible to multiplex the M1 downlink data frame into a high-speed downlink bit stream.
  • the first OLT further includes: N1 channel protocol processor, where N1 is a positive integer greater than or equal to M1; N1 channel protocol processor, configured to receive M1 channel After processing the M1 downstream data packet separately, output the M1 downstream data frame; the N1 protocol processor is also used to receive the N2 upstream electrical signal, and the N2 After the uplink electrical signal is restored to the N2 uplink data frame, the analysis and protocol processing of the N2 uplink data frame are completed to obtain the N2 user data packet. Based on this solution, in the downlink direction, M1 downlink data frames can be obtained; in the uplink direction, N2 user data packets can be recovered.
  • N1 M1
  • ⁇ 0 1370+/-10nm; the wavelength of the upstream optical signal of different wavelengths is between 1530-1540nm.
  • a first optical network unit ONU includes: a downstream optical receiver, an electrical domain demultiplexing module, and a second optical modulator; wherein the downstream optical receiver is used to receive wavelengths Is a downstream optical signal of ⁇ 0, and converts the downstream optical signal into a downstream electrical signal; the electrical domain demultiplexing module is used to restore the downstream electrical signal to a high-speed downstream bit stream, and extracts it from the high-speed downstream bit stream.
  • the second optical modulator is used to receive the upstream bitstream, convert the upstream bitstream into a physical electrical signal, and modulate the physical electrical signal into an upstream optical signal with a wavelength of ⁇ i, where, ⁇ i is different from ⁇ t, and ⁇ t is the wavelength of other upstream optical signals received by the first OLT corresponding to the first ONU.
  • ⁇ i is different from ⁇ t
  • ⁇ t is the wavelength of other upstream optical signals received by the first OLT corresponding to the first ONU.
  • each user is equivalent to point-to-point data transmission through a dedicated channel; in the downstream direction, because the first OLT adopts the downstream time division broadcast mode, the M1 downstream data frame is multiplexed into one channel
  • the high-speed downstream bit stream allows the first ONU to extract its own target downstream bit stream from the high-speed downstream bit stream. Therefore, not only does the first ONU side receive no tunable filter, it greatly saves wavelength resources and costs, and also From the user's point of view, each user can continuously receive downlink data packets, that is, each user is equivalent to receiving downlink data through a dedicated channel. In other words, the data transmitted based on the optical communication system including the first ONU is equivalent to transmission on a dedicated channel.
  • the present application based on the first ONU provided by the embodiment of the present application, not only can the delay and jitter be reduced, but also the reliability of the system can be improved. Furthermore, it can support operators to reuse FTTH and ODN to rapidly expand and deploy new services, such as high-reliability and low-latency services, so as to achieve full-service access to an access network.
  • the high-speed downlink bit stream includes one or more M1 bit packets, and the kth M1 bit packet of the one or more M1 bit packets includes M1 downlink data
  • the k-th bit in the frame electrical domain demultiplexing module, used to extract one of its own target downstream bit streams from the high-speed downstream bit stream, including: electrical domain demultiplexing module, used to de-interleave the bit
  • the method extracts a target downlink bit stream belonging to itself from the high-speed downlink bit stream, and the target downlink bit stream includes a corresponding bit in each bit group of the one or more M1 bit groups. Based on this scheme, it is possible to extract one of its own target downlink bit streams from the high-speed downlink bit stream.
  • ⁇ i is configured according to the configuration instruction sent by the first OLT in the downlink direction.
  • ⁇ 0 1370+/-10nm; ⁇ i and ⁇ t are both between 1530-1540 nm.
  • an optical communication system in a third aspect, includes the first OLT as described in the first aspect, a plurality of first ONUs as described in the second aspect, and a connection between the first OLT and the first ONU.
  • the ODN of an ONU the technical effect of the third aspect can be referred to the above-mentioned first aspect or the second aspect, which will not be repeated here.
  • the optical communication system further includes a second OLT, a coexistence multiplexer/demultiplexer connecting the first OLT and the second OLT, and one or more second ONUs; wherein, ODN It is also used to connect the second OLT and the second ONU.
  • the second OLT is an OLT in a fiber-to-the-home FTTH passive optical network PON system, and the second ONU is connected to an FTTH user.
  • Figure 1 is a schematic diagram of an existing PON architecture
  • FIG. 2 is a schematic structural diagram of an optical communication system provided by an embodiment of this application.
  • FIG. 3a is a schematic structural diagram of a first optical modulator according to an embodiment of the application.
  • FIG. 3b is a schematic structural diagram of a second optical modulator provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of an optical receiver provided by an embodiment of this application.
  • FIG. 5 is an example one of an optical communication system provided by an embodiment of this application.
  • FIG. 6 is an example 2 of an optical communication system provided by an embodiment of this application.
  • FIG. 7 is an example three of an optical communication system provided by an embodiment of this application.
  • FIG. 8 is an example four of an optical communication system provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another optical communication system provided by an embodiment of this application.
  • FIG. 10 is an example five of an optical communication system provided by an embodiment of this application.
  • FIG. 11 is an example six of an optical communication system provided by an embodiment of this application.
  • FIG. 12 is an example seven of an optical communication system provided by an embodiment of this application.
  • FIG. 13 is an example eight of an optical communication system provided by an embodiment of this application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • an optical communication system 20 includes a first OLT (OLT 201 in FIG. 2) and a plurality of first ONUs (ONU 202 in FIG. 2). , ONU203, etc.), and the ODN connecting the first OLT and the first ONU.
  • the ODN includes passive components such as an optical splitter, an optical fiber, and a connector (not shown).
  • the first OLT includes: an electrical domain multiplexing module, a first optical modulator, and N2 upstream optical receivers. N2 is a positive integer greater than 1.
  • the first ONU includes: an electrical domain demultiplexing module, a second optical modulator, and a downstream optical receiver.
  • the OLT 201 in FIG. 2 includes: an electrical domain multiplexing module 201b, an optical modulator 201c, and N2 upstream optical receivers 201e (such as upstream optical receiver 1, upstream optical receiver 2, ..., upstream Optical receiver N2).
  • an electrical domain multiplexing module 201b for example, the OLT 201 in FIG. 2 includes: an electrical domain multiplexing module 201b, an optical modulator 201c, and N2 upstream optical receivers 201e (such as upstream optical receiver 1, upstream optical receiver 2, ..., upstream Optical receiver N2).
  • the ONU 202 in FIG. 2 includes: an electrical domain demultiplexing module 202b, an optical modulator 202c, and a downstream optical receiver 202e.
  • the ONU 203 in FIG. 2 includes an electrical domain demultiplexing module 203b, an optical modulator 203c, and a downstream optical receiver 203e.
  • the electrical domain multiplexing module is used to receive M1 downlink data frames and multiplex the M1 downlink data frames into a high-speed downlink bit stream, M1 is a positive integer; the first optical modulator, Used to convert the high-speed downstream bit stream into a physical electrical signal, and then modulate the physical electrical signal into a downstream optical signal with a wavelength of ⁇ 0; each of the N2 upstream optical receivers receives upstream optical signals of different wavelengths. .
  • the electrical domain multiplexing module is used to multiplex the M1 downlink data frame into a high-speed downlink bit stream, including: the electrical domain multiplexing module is used to interleave the M1
  • the downlink data frames of the channel are multiplexed into a high-speed downlink bit stream, where the high-speed downlink bit stream includes one or more M1 bit packets, and the kth M1 bit packet of one or more M1 bit packets includes the M1 downlink bit stream. The kth bit in the data frame.
  • the downlink optical receiver is used to receive the downlink optical signal with a wavelength of ⁇ 0 and convert the downlink optical signal into a downlink electrical signal;
  • the electrical domain demultiplexing module is used to restore the downlink electrical signal to a high-speed downlink After the bitstream, it extracts its own target downstream bitstream from the high-speed downstream bitstream;
  • the second optical modulator is used to receive the upstream bitstream and convert the upstream bitstream into a physical electrical signal, and then convert the physical electrical signal It is modulated into an upstream optical signal with a wavelength of ⁇ i, where ⁇ i is different from ⁇ t, and ⁇ t is the wavelength of other upstream optical signals received by the first OLT connected to the first ONU.
  • the electrical domain demultiplexing module is used to extract its own target downlink bit stream from the high-speed downlink bit stream, including: electrical domain demultiplexing module, used to de-interleave the bit
  • the method extracts one of its own target downlink bit streams from the high-speed downlink bit stream, and the target downlink bit stream includes one corresponding bit in each bit group of one or more M1 bit groups.
  • the first OLT may further include: a N1-way protocol processor.
  • N1 is a positive integer greater than or equal to M1.
  • the first ONU may also include: a single-channel protocol processor.
  • the OLT 201 in FIG. 2 may also include: N1 protocol processor 201a.
  • the ONU 202 in FIG. 2 may also include: a single-channel protocol processor 202a.
  • the ONU 203 in FIG. 2 may also include: a single-channel protocol processor 203a.
  • the N1 protocol processor in the downlink direction, is used to receive the M1 downlink data packet, and after processing the M1 downlink data packet separately, output the M1 downlink data frame.
  • the N1 protocol processor In the upstream direction, is used to receive the N2 uplink electrical signal, and after the N2 uplink electrical signal is restored to the N2 uplink data frame, the analysis and protocol of the N2 uplink data frame are completed Process, get the user data packet of N2 way.
  • a single-channel protocol processor in the downlink direction, is used to restore the target downlink bit stream to the target downlink data frame, and complete the analysis and protocol processing of the target downlink data frame to obtain the target user data packet.
  • a single-channel protocol processor is used to receive upstream data packets, and after processing the upstream data packets, output a single-channel upstream bit stream.
  • the N1 protocol processor and/or the single protocol processor can be replaced by other modules, as long as the replacement module has the corresponding function, a unified description is provided here, and the implementation of this application The example does not make specific restrictions on this.
  • the first OLT may further include a first multiplexer/demultiplexer.
  • the first ONU may also include: a second multiplexer/demultiplexer.
  • the OLT 201 in FIG. 2 may also include: a multiplexer/demultiplexer 201d.
  • the ONU 202 in FIG. 2 may also include: a multiplexer/demultiplexer 202d.
  • the ONU 203 in FIG. 2 may also include: a multiplexer/demultiplexer 203d.
  • the first multiplexer/demultiplexer in the downstream direction, is used to couple the downstream optical signal with a wavelength of ⁇ 0 to the backbone fiber in the ODN.
  • the first multiplexer/demultiplexer is used to receive N2 uplink optical signals of different wavelengths from the backbone fiber, and output the N2 uplink optical signals of different wavelengths to the N2 uplink optical receivers. Different uplink optical receivers.
  • the second multiplexer/demultiplexer in the downstream direction, is used to receive the downstream optical signal with a wavelength of ⁇ 0 from the backbone fiber, and output the downstream optical signal with the wavelength of ⁇ 0.
  • the second multiplexer/demultiplexer is used to couple the upstream optical signal with a wavelength of ⁇ i to the backbone fiber in the ODN.
  • the first multiplexer/demultiplexer and/or the second multiplexer/demultiplexer can be replaced by other modules, as long as the replacement module has the corresponding function, it will be explained here.
  • the embodiments of the present application do not specifically limit this.
  • FIG. 2 is only an exemplary list of two first ONUs. If the optical communication system 20 includes more than two first ONUs, the structure of other first ONUs can refer to the ONU 202 shown in FIG. 2 or ONU203, I won’t repeat it here.
  • the working principles of the first OLT and the first ONU will be introduced as follows in conjunction with the optical communication system 20 shown in FIG. 2.
  • the N1 protocol processor 201a is configured to receive the M1 downlink data packet, and after processing the M1 downlink data packet separately, output the M1 downlink data frame, where M1 is a positive integer less than or equal to N1.
  • the processing of the N1 protocol processor 201a on the downlink data packet includes, but is not limited to, protocol processing and frame encapsulation, which are described here in a unified manner and will not be repeated in the following.
  • N1 channels there are N1 channels between channel 1 (CH1 for short) and channel N1 (CHN1 for short) between the protocol processor 201a of channel N1 and the electrical domain multiplexing module 201b in Figure 2, and the downlink data frame of channel M1 It is transmitted on M1 of the N1 channels.
  • the electrical domain multiplexing module 201b is used to receive the M1 downlink data frame from the N1 protocol processor 201a, and multiplex the M1 downlink data frame into a high-speed downlink bit stream, and then output the high-speed downlink bit stream .
  • the electrical domain multiplexing module 201b may multiplex the M1 downlink data frame into a high-speed downlink bit stream in a bit interleaving manner.
  • the high-speed downlink bit stream includes one or more M1 bit packets, and the k th M1 bit packet of the one or more M1 bit packets includes the k th bit in the M1 downlink data frame.
  • bit interleaving refers to using time division multiplexing to separate symbols in time, and the time in between can be filled with symbols of other codewords.
  • bit interleaving refers to using time division multiplexing to separate symbols in time, and the time in between can be filled with symbols of other codewords.
  • the first bit of the 4 message packets is taken out to form a new 4-bit packet, called the first frame; respectively, the second of the 4 message packets Take out the bits to form a new 4-bit group, called the second frame; take out the 3rd bits of the 4 message groups respectively, and form a new 4-bit group, called the third frame; respectively
  • the fourth bit in the 4 message packets is taken out to form a new 4-bit packet, which is called the fourth frame.
  • the rate of the downlink data frame of the M1 channel is D
  • the rate of the high-speed downlink bit stream is M1*D.
  • the optical modulator 201c is configured to receive the high-speed downstream bit stream from the electrical domain multiplexing module 201b, and after modulating the high-speed downstream bit stream into a downstream optical signal with a wavelength of ⁇ 0, output the downstream optical signal.
  • the optical modulator 201c may first convert the high-speed downstream bit stream into a physical electrical signal, and then modulate the physical electrical signal into a downstream optical signal with a wavelength of ⁇ 0. This is not done in this embodiment of the application. Specific restrictions.
  • the optical modulator 201c in the embodiment of the present application may include a laser diode driver (LDD) and a fixed wavelength laser diode (LD).
  • the LDD is used to convert the high-speed downstream bit stream into a physical electrical signal
  • the fixed-wavelength LD is used to modulate the physical electrical signal into a downstream optical signal with a wavelength of ⁇ 0.
  • the structure of the light modulator 201c in the embodiment of the present application may also be other, which is not specifically limited in the embodiment of the present application.
  • the digital signal input from the N1 protocol processor 201a is converted into an optical signal.
  • the multiplexer/demultiplexer 201d is used to receive the downstream optical signal from the optical modulator 201c, and couple the downstream optical signal to the backbone fiber in the ODN.
  • the downstream optical signal transmitted through the backbone fiber enters the optical splitter in the ODN shown in Figure 2, and after splitting by the optical splitter, it is respectively input to the M1 first ONUs corresponding to the downstream data packets of the M1 road.
  • the multiplexer/demultiplexer 202d is used to receive the downstream optical signal with a wavelength of ⁇ 0 from the backbone fiber, separate the downstream optical signal with the wavelength of ⁇ 0, and then output the downstream optical signal with the wavelength of ⁇ 0.
  • the downlink optical receiver 202e is configured to receive the downlink optical signal from the multiplexer/demultiplexer 202d, and after converting the downlink optical signal into a downlink electrical signal, output the downlink electrical signal.
  • the downlink optical receiver 202e may also amplify the downlink electrical signal converted from the downlink optical signal, so as to output the amplified downlink electrical signal, which is not specifically limited in the embodiment of the present application.
  • the downstream optical receiver 202e in the embodiment of the present application may include avalanche photodiode (APD) and trans-impedance amplifier (TIA)/line Amplifier (l ine amplifier, LA).
  • APD is used to convert downlink optical signals into downlink electrical signals
  • TIA/LA is used to amplify downlink electrical signals.
  • TIA/LA is an optional module in the downstream optical receiver 202e, which may not be set in the downstream optical receiver 202e, but set between the downstream optical receiver 202e and the electrical domain demultiplexing module 202b; or ONU 202 It may also not include TIA/LA (that is, there is no need to amplify the downlink electrical signal converted from the downlink optical signal), which is explained here in a unified manner, and will not be repeated in the following.
  • the structure of the downlink optical receiver 202e in the embodiment of the present application may also be other, which is not specifically limited in the embodiment of the present application.
  • the electrical domain demultiplexing module 202b is used to receive the downlink electrical signal from the downlink optical receiver 202e, restore the downlink electrical signal to a high-speed downlink bit stream, and extract its own target downlink bit stream from the high-speed downlink bit stream. After that, the target downstream bit stream is output.
  • the electrical domain demultiplexing module 202b can extract its own target downlink bit stream from the high-speed downlink bit stream in a bit de-interleaving manner, and this embodiment of the present application will not specifically describe this. limited.
  • bit deinterleaving refers to periodically extracting 1 bit according to a fixed interval.
  • the rate of the target downstream bit stream in the ONU 202 is the same as the rate of a downstream data frame corresponding to the ONU 202 in the M1 downstream data frame.
  • a target downlink bit stream corresponding to the target user can be restored.
  • the single-channel protocol processor 202a is used to receive the target downlink bit stream from the electrical domain demultiplexing module 202b, and after the target downlink bit stream is restored to the target downlink data frame, complete the analysis and protocol processing of the target downlink data frame, Get the target user data packet.
  • the first ONU is the ONU 202 in FIG. 2 as an example for description. If the first ONU is the ONU 203 in FIG. 2 or another ONU corresponding to the downstream data packet of the M1 path, its working principle is similar to the working principle of the above-mentioned ONU 202, and will not be repeated here.
  • the first ONU is the ONU 202 in FIG. 2 as an example for description, then:
  • the single-channel protocol processor 202a is configured to receive uplink data packets, and after processing the uplink data packets, output a single-channel uplink bit stream.
  • the processing of the uplink data packet by the single-channel protocol processor 202a includes, but is not limited to, protocol processing, frame encapsulation, and frame-to-bit stream conversion, which are explained here in a unified manner and will not be repeated in the following.
  • the optical modulator 202c is configured to receive the upstream bit stream from the single-channel protocol processor 202a, and after modulating the upstream bit stream into an upstream optical signal with a wavelength of ⁇ 1, output the upstream optical signal.
  • the optical modulator 202c may first convert the upstream bit stream into a physical electrical signal, and then modulate the physical electrical signal into an upstream optical signal with a wavelength of ⁇ 1, which is not specifically described in this embodiment of the application. limited.
  • the optical modulator 202c in the embodiment of the present application may include an LDD and a tunable wavelength LD.
  • the LDD is used to convert the upstream bit stream into a physical electrical signal
  • the adjustable LD wavelength is used to modulate the physical electrical signal into an upstream optical signal with a wavelength of ⁇ 1.
  • the structure of the light modulator 202c in the embodiment of the present application may also be other, which is not specifically limited in the embodiment of the present application.
  • the digital signal input from the single-channel protocol processor 202a is converted into an optical signal.
  • the multiplexer/demultiplexer 202d is used to receive the upstream optical signal from the optical modulator 202c, and couple the upstream optical signal to the backbone fiber in the ODN.
  • the working principle of the ONU 203 is similar to the working principle of the above-mentioned ONU 202. It is modulated into an upstream optical signal with a wavelength of ⁇ 1; and the optical modulator 203c is used to modulate the upstream bit stream into an upstream optical signal with a wavelength of ⁇ 2, and ⁇ 1 is not equal to ⁇ 2, that is, the wavelengths of the optical signals in ONU202 and ONU203 are different.
  • the first ONU is another ONU with the same structure, its working principle is similar to the working principle of the above-mentioned ONU 202 or ONU 203 except that the wavelength of the upstream optical signal modulated by the optical modulator is different, and will not be repeated here.
  • ⁇ 0 1370+/-10nm; the wavelengths of the N2 uplink optical signals with different wavelengths are between 1530-1540nm, and N2 is a positive integer less than or equal to N1.
  • N2 upstream optical signals of different wavelengths (assuming that they include the upstream optical signal output by ONU202 with a wavelength of ⁇ 1 and the upstream optical signal output by ONU203 with a wavelength of ⁇ 2) after being split by the optical splitter in the ODN shown in FIG. 2 , Into the backbone fiber.
  • the multiplexer/demultiplexer 201d is used to receive N2 uplink optical signals of different wavelengths from the backbone fiber, and output the N2 uplink optical signals of different wavelengths to the different uplink optical receivers of the N2 uplink optical receivers 201e.
  • the upstream optical signal with the wavelength ⁇ 1 output by the ONU 202 can be output to the upstream optical receiver 1 in FIG. 2, and the upstream optical signal with the wavelength ⁇ 2 output by the ONU 203 can be output to the upstream optical receiver 2 in FIG. 2. and many more.
  • Each of the N2 uplink optical receivers 201e is used to convert the input uplink optical signal into an uplink electrical signal, and output the uplink electrical signal.
  • the uplink optical receiver 201e may also amplify the uplink electrical signal converted from the uplink optical signal, so as to output the amplified uplink electrical signal, which is not specifically limited in the embodiment of the present application.
  • the structure of the upstream optical receiver 201e can refer to the structure of the downstream optical receiver 202e, which will not be repeated here.
  • each of the N2 upstream optical receivers 201e and the N1 protocol processor 201a such as the upstream optical receiver 1 and the N1 protocol processor.
  • the above-mentioned uplink electrical signals processed by each of the N2 uplink optical receivers 201e are respectively input to the N1 protocol processor 201a through corresponding N2 channels.
  • the N-channel protocol processor 201a is used to receive the N2 uplink electrical signals from the N2 uplink optical receivers, and restore the N2 uplink electrical signals to the N2 uplink data frames, and then complete the N2 uplink data frames Analyze and process the protocol to obtain the N2 user data packet.
  • the optical communication system 20 in the embodiment of the present application can implement digital signal-optical signal-electrical signal-digital signal conversion.
  • each user can continue to receive downlink data packets, that is, each user is equivalent to receiving downlink data through a dedicated channel.
  • the optical communication system 20 shown in FIG. 2 is a time and wavelength division multiplexing optical access system (TWDM OAS) (ie, downlink time division, uplink wavelength division) based on this
  • TWDM OAS time and wavelength division multiplexing optical access system
  • the data transmitted by the optical communication system is equivalent to transmission on a dedicated channel. Therefore, compared with the prior art, the problem of large delay and jitter caused by the use of time division multiplexing in both the uplink and the downlink can be avoided.
  • the communication system provided by the embodiments of the present application, not only can the time delay and jitter be reduced, but also the reliability of the system can be improved. Furthermore, it can support operators to reuse FTTH and ODN to rapidly expand and deploy new services, such as high-reliability and low-latency services, so as to achieve full-service access to an access network.
  • N1 N2.
  • the optical communication system 50 shown in FIG. 5 takes as an example that the rate of the downlink data frame corresponding to each user is the same as the rate of the uplink data frame, that is, the rate of the uplink data frame corresponding to each user is also 1.25G. .
  • the optical communication system 50 shown in FIG. 5 is described by taking as an example that the rate of the downlink data frame corresponding to each user is different from the rate of the uplink data frame. For example, the rate of the uplink data frame corresponding to each user is 1.24G.
  • the optical communication system shown in Figure 5 or Figure 6 can provide 10 low-latency, exclusive bandwidth P2P gigabit ethernet (GE) channels for carrying services such as enterprise private lines and wireless bearers.
  • GE gigabit ethernet
  • the optical communication system 60 shown in FIG. 6 is compared with the optical communication system 50 shown in FIG.
  • Optical receivers need to use higher bandwidth optoelectronic chips.
  • the number of protocol processors N1, the number of multiplexed channels M1, the rate of each channel of the downlink data frame, and whether the uplink and downlink data rates are symmetrical in the foregoing Figures 5 and 6 are just to illustrate the implementation of this application.
  • the architecture and working principle of the optical communication system provided in the examples are convenient for the examples listed, and do not therefore limit the number of protocol processors N1, the number of multiplexed channels M1, and the number of multiplexed channels in the optical communication system provided by the embodiments of the present invention.
  • the rate of the downlink data frame and the uplink and downlink data rates are symmetrical, for example, the rate of the downlink data frame corresponding to each user or the rate of the uplink data frame can also be determined according to the service requirements of different users. Go into details.
  • the channels where the other N3 uplink optical receivers are located are management and backup channels.
  • this management and backup channel mainly has two functions: On the one hand, it is used for the initial registration, authentication, and going online after the first ONU is powered on.
  • the newly online first The ONU is deployed to its dedicated channel (the first ONU is used to adjust the number of selected channels through the electrical domain demultiplexing module in the downstream, and the upstream optical modulator is used to adjust the wavelength of the upstream optical signal); on the other hand, if the first ONU appears When the wavelength of the upstream optical signal is mismatched and interferes with the normal operation of a data channel, it is used as a backup channel.
  • FIG. 7 it is similar to the optical communication system shown in FIG. 5.
  • the difference is, for example, in the optical communication system 70 shown in FIG. N+1 risk backup design, thereby improving the reliability and robustness of the optical communication system.
  • the optical communication system 90 provided by the embodiment of the present application includes the first OLT and multiple first ONUs shown in FIG. , And the ODN connecting the first OLT and the first ONU, it may also include a second OLT (such as OLT901 in Figure 9), a coexistence multiplexer/demultiplexer 902 that connects the first OLT and the second OLT, and one or more A second ONU (ONU903 and ONU904 in Figure 9).
  • a second OLT such as OLT901 in Figure 9
  • coexistence multiplexer/demultiplexer 902 that connects the first OLT and the second OLT
  • a second ONU ONU903 and ONU904 in Figure 9
  • the ODN is also used to connect the second OLT and the second ONU
  • the second OLT is the OLT in the TDM-PON system
  • the second ONU is connected to the FTTH user.
  • the related structure and working principle of the second OLT (OLT901 in FIG. 9) and the second ONU (ONU903 or ONU904 in FIG. 9) can refer to the existing TDM-PON system, which will not be repeated here.
  • the coexistence combiner/demultiplexer 902 can realize the PON system designed for low-latency and high-reliability services provided by the embodiments of the present application (as mentioned above, it can be called TWDM OAS system) and the current TDM designed for FTTH business scenarios. -Coexistence of PON system.
  • the optical communication system 100 shown in FIG. 10 includes the first OLT, multiple first ONUs, and the ODN connecting the first OLT and the first ONU in the optical communication system 50 shown in FIG. 5, It may also include the above-mentioned second OLT (such as the above-mentioned OLT901), a coexistence multiplexer/demultiplexer 902 connecting the first OLT and the second OLT, and one or more second ONUs (such as the above-mentioned ONU903 and ONU904).
  • the above-mentioned second OLT such as the above-mentioned OLT901
  • a coexistence multiplexer/demultiplexer 902 connecting the first OLT and the second OLT
  • one or more second ONUs such as the above-mentioned ONU903 and ONU904
  • the optical communication system 110 shown in FIG. 11 includes one of the first OLT, the multiple first ONUs, and the ODN connecting the first OLT and the first ONU in the optical communication system 60 shown in FIG.
  • it may also include the above-mentioned second OLT (such as the above-mentioned OLT901), a coexistence multiplexer/demultiplexer 902 connecting the first OLT and the second OLT, and one or more second ONUs (such as the above-mentioned ONU903 and ONU904). ).
  • the optical communication system 120 shown in FIG. 12 includes one of the first OLT, multiple first ONUs, and the ODN connecting the first OLT and the first ONU in the optical communication system 70 shown in FIG.
  • it may also include the above-mentioned second OLT (such as the above-mentioned OLT901), a coexistence multiplexer/demultiplexer 902 connecting the first OLT and the second OLT, and one or more second ONUs (such as the above-mentioned ONU903 and ONU904). ).
  • the optical communication system 130 shown in FIG. 13 includes one of the first OLT, multiple first ONUs, and the ODN connecting the first OLT and the first ONU in the optical communication system 80 shown in FIG.
  • it may also include the above-mentioned second OLT (such as the above-mentioned OLT901), a coexistence multiplexer/demultiplexer 902 connecting the first OLT and the second OLT, and one or more second ONUs (such as the above-mentioned ONU903 and ONU904). ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请实施例提供光线路终端、光网络单元及光通信系统,可以支撑运营商重用FTTH ODN快速拓展和部署新业务,从而实现一张接入网全业务接入。光通信系统包括第一光线路终端OLT、多个第一光网络单元ONU以及连接第一OLT和第一ONU的ODN。下行方向,第一OLT用于将接收到的M1路的下行数据包转换成一路波长为λ0的下行光信号,第一ONU用于接收下行光信号,经过处理之后输出目标用户数据包。上行方向,第一ONU用于将接收到的上行数据包转换成波长为λi的上行光信号,第一OLT用于接收多个不同波长的上行光信号,经过处理之后输出相应路数的用户数据包。

Description

光线路终端、光网络单元及光通信系统
本申请要求于2020年2月25日提交中国国家知识产权局、申请号为202010117620.9、发明名称为“光线路终端、光网络单元及光通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及光线路终端、光网络单元及光通信系统。
背景技术
无源光网络(passive optical network,PON)是一种采用点到多点(point to muti-point,P2MP)结构的单纤双向光接入网络。如图1所示,PON由局端的光线路终端(optical line termination,OLT)、光分配网络(optical distribution network,ODN)和用户侧的光网络单元(optical network unit,ONU)组成。由于PON接入可以提供足够的接入带宽,而且具有部署成本低,运维简单等优点,因此成为当前光纤到户(fiber to the home,FTTH)的主要解决方案。
目前,随着FTTH业务的全面部署,现网的ODN资源已经非常丰富,因此运营商希望重用FTTH ODN快速拓展和部署新业务,实现一张ODN网络全业务接入。然而,对于面向FTTH业务场景设计的时分复用(time division multiplexing,TDM)-PON,虽然其具有时分复用、带宽汇聚和收敛(1:N收敛)以及基于功率分支(power splitter)的点对多点(P2MP)ODN拓扑等典型特征,用于FTTH业务场景时优势非常明显,但是应用于对时延和可靠性要求的其它新业务场景时,由于上行或下行均是时分复用,因此将导致时延和抖动较大。
因此,如何在重用FTTH ODN拓展和部署新业务时,减小时延和抖动,是目前亟待解决的问题。
发明内容
本申请实施例提供光线路终端、光网络单元及光通信系统,用于解决目前运营商在重用FTTH ODN快速拓展和部署新业务时,时延和抖动较大的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种第一光线路终端OLT,该第一OLT包括:电域复用模块、第一光调制器以及N2个上行光接收机,N2为大于1的正整数;其中,电域复用模块,用于接收M1路的下行数据帧,并将该M1路的下行数据帧复接成一路高速下行比特流,M1为正整数;第一光调制器,用于将该高速下行比特流转换成物理电信号之后,将物理电信号调制成波长为λ0的下行光信号;N2个上行光接收机中的每个光接收机,分别接收不同波长的 上行光信号。本申请实施例提供的第一OLT在重用FTTH ODN拓展和部署新业务时,在上行方向,通过不同的上行光接收机分别接收不同波长的上行光信号,使得每个用户均相当于通过专用通道进行点对点的数据传输;在下行方向,由于第一OLT采用下行时分广播方式,将M1路的下行数据帧复接成一路高速下行比特流,进而使得第一ONU可以从高速下行比特流中提取得到属于自己的一路目标下行比特流,因此不仅第一ONU侧接收无需可调滤波器,大幅节省波长资源和成本,并且从用户角度来看,每个用户均可以持续接收下行数据包,即每个用户也相当于通过专用通道接收下行数据。也就是说,基于包括该第一OLT的光通信系统传输的数据,均相当于在专用通道上进行传输,因此相对于现有技术,可以避免由于上行和下行均采用时分复用而导致时延和抖动较大的问题。另一方面,通过为不同的上行光信号设计不同波长,还可以避免由于存在流氓ONU风险,影响系统可靠性的问题,从而可以提高系统的可靠性。综上,基于本申请实施例提供的第一OLT,不仅可以减少时延和抖动,并且可以提高系统的可靠性。进一步的,可以支撑运营商重用FTTH ODN快速拓展和部署新业务,如高可靠性、低时延的业务,从而实现一张接入网全业务接入。
结合第一方面,在一种可能的实现方式中,M1路的下行数据帧的速率均为D,高速下行比特流的速率为M1*D。通过该方案,可以简化设计。
结合第一方面,在一种可能的实现方式中,电域复用模块,用于将M1路的下行数据帧复接成一路高速下行比特流,包括:电域复用模块,用于通过比特交织方式将M1路的下行数据帧复接成一路高速下行比特流,其中,该高速下行比特流中包括一个或多个M1比特分组,该一个或多个M1比特分组的第k个M1比特分组中包括该M1路的下行数据帧中的第k个比特。基于该方案,可以实现将M1路的下行数据帧复接成一路高速下行比特流。
结合第一方面,在一种可能的实现方式中,该第一OLT还包括:N1路的协议处理器,N1为大于或者等于M1的正整数;N1路的协议处理器,用于接收M1路的下行数据包,并将该M1路的下行数据包分别进行处理之后,输出M1路的下行数据帧;N1路的协议处理器,还用于接收N2路的上行电信号,并将该N2路的上行电信号恢复成N2路的上行数据帧之后,完成该N2路的上行数据帧的解析和协议处理,得到N2路的用户数据包。基于该方案,在下行方向,可以获得M1路的下行数据帧;在上行方向,可以恢复出N2路的用户数据包。
结合第一方面,在一种可能的实现方式中,N1=M1,这样可以使得N1路的协议处理器得到最大化的利用。
结合第一方面,在一种可能的实现方式中,N1=N2,这样可以使得N1路的协议处理器得到最大化的利用。
结合第一方面,在一种可能的实现方式中,第一OLT还包括:除N2个上行光接收机之外的其它N3个上行光接收机,N3为正整数,N1=N2+N3;其中,其它N3个上行光接收机所在的通道为管理和备份通道。这样可以提高第一OLT所在的光通信系统的可靠性和健壮性,确保业务质量和安全。
结合第一方面,在一种可能的实现方式中,λ0=1370+/-10nm;不同波长的上行光信号的波长在1530-1540nm之间。
第二方面,提供了一种第一光网络单元ONU,该第一ONU包括:下行光接收机、电域 解复用模块以及第二光调制器;其中,下行光接收机,用于接收波长为λ0的下行光信号,并将该下行光信号转化为下行电信号;电域解复用模块,用于将该下行电信号恢复成高速下行比特流,并从高速下行比特流中提取得到属于自己的一路目标下行比特流;第二光调制器,用于接收上行比特流,并将上行比特流转换成物理电信号,且将该物理电信号调制成波长为λi的上行光信号,其中,λi与λt不同,λt为与第一ONU对应的第一OLT接收的其他上行光信号的波长。本申请实施例提供的第一ONU在重用FTTH ODN拓展和部署新业务时,在上行方向,通过设计不同的上行光信号,使得第一ONU连接的第一OLT可以通过不同的上行光接收机分别接收不同波长的上行光信号,进而使得每个用户均相当于通过专用通道进行点对点的数据传输;在下行方向,由于第一OLT采用下行时分广播方式,将M1路的下行数据帧复接成一路高速下行比特流,进而使得第一ONU可以从高速下行比特流中提取得到属于自己的一路目标下行比特流,因此不仅第一ONU侧接收无需可调滤波器,大幅节省波长资源和成本,并且从用户角度来看,每个用户均可以持续接收下行数据包,即每个用户也相当于通过专用通道接收下行数据。也就是说,基于包括该第一ONU的光通信系统传输的数据,均相当于在专用通道上进行传输,因此相对于现有技术,可以避免由于上行和下行均采用时分复用而导致时延和抖动较大的问题。另一方面,通过为不同的上行光信号设计不同波长,还可以避免由于存在流氓ONU风险,影响系统可靠性的问题,从而可以提高系统的可靠性。综上,基于本申请实施例提供的第一ONU,不仅可以减少时延和抖动,并且可以提高系统的可靠性。进一步的,可以支撑运营商重用FTTH ODN快速拓展和部署新业务,如高可靠性、低时延的业务,从而实现一张接入网全业务接入。
结合第二方面,在一种可能的实现方式中,高速下行比特流中包括一个或多个M1比特分组,该一个或多个M1比特分组的第k个M1比特分组中包括M1路的下行数据帧中的第k个比特;电域解复用模块,用于从高速下行比特流中提取得到属于自己的一路目标下行比特流,包括:电域解复用模块,用于通过比特解交织的方式从高速下行比特流中提取得到属于自己的一路目标下行比特流,该目标下行比特流中包括该一个或多个M1比特分组的每个比特分组中的一个对应比特。基于该方案,可以实现从高速下行比特流中提取得到属于自己的一路目标下行比特流。
结合第二方面,在一种可能的实现方式中,λi是根据第一OLT在下行方向发送的配置指令配置的。
结合第二方面,在一种可能的实现方式中,λ0=1370+/-10nm;λi和λt均在1530-1540nm之间。
第三方面,提供了一种光通信系统,该光通信系统包括如第一方面所述的第一OLT、多个如第二方面所述的第一ONU,以及连接该第一OLT和该第一ONU的ODN。其中,第三方面的技术效果可参考上述第一方面或第二方面,在此不再赘述。
在一种可能的实现方式中,该光通信系统还包括第二OLT、连接该第一OLT和该第二OLT的共存合波/分波器、以及一个或多个第二ONU;其中,ODN还用于连接该第二OLT和该第二ONU,该第二OLT为光纤到户FTTH无源光网络PON系统中的OLT,该第二ONU连接FTTH用户。基于该方案,可以实现本申请实施例提供的针对低时延高可靠性业务设计的PON系统与当前针对FTTH业务场景设计的TDM-PON系统的共存。
附图说明
图1为现有的PON的架构示意图;
图2为本申请实施例提供的一种光通信系统的结构示意图;
图3a为本申请实施例提供的一种第一光调制器的结构示意图;
图3b为本申请实施例提供的一种第二光调制器的结构示意图;
图4为本申请实施例提供的一种光接收机的结构示意图;
图5为本申请实施例提供的光通信系统的示例一;
图6为本申请实施例提供的光通信系统的示例二;
图7为本申请实施例提供的光通信系统的示例三;
图8为本申请实施例提供的光通信系统的示例四;
图9为本申请实施例提供的另一种光通信系统的结构示意图;
图10为本申请实施例提供的光通信系统的示例五;
图11为本申请实施例提供的光通信系统的示例六;
图12为本申请实施例提供的光通信系统的示例七;
图13为本申请实施例提供的光通信系统的示例八。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的OLT、ONU及光通信系统进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
如图2所示,为本申请实施例提供的一种光通信系统20,该光通信系统20包括第一OLT(如图2中的OLT201)、多个第一ONU(如图2中的ONU202,ONU203等)、以及连接第一OLT和第一ONU的ODN。其中,ODN包括分光器、光纤以及连接头(未示出)等无源器件。第一OLT包括:电域复用模块、第一光调制器以及N2个上行光接收机。N2为大于1 的正整数。第一ONU包括:电域解复用模块、第二光调制器、以及下行光接收机。
比如,图2中的OLT201包括:电域复用模块201b、光调制器201c以及N2个上行光接收机201e(如图2中的上行光接收机1、上行光接收机2、……、上行光接收机N2)。
比如,图2中的ONU202包括:电域解复用模块202b、光调制器202c、以及下行光接收机202e。
比如,图2中的ONU203包括:电域解复用模块203b、光调制器203c、以及下行光接收机203e。
本申请实施例中,电域复用模块,用于接收M1路的下行数据帧,并将M1路的下行数据帧复接成一路高速下行比特流,M1为正整数;第一光调制器,用于将高速下行比特流转换成物理电信号之后,将物理电信号调制成波长为λ0的下行光信号;N2个上行光接收机中的每个光接收机,分别接收不同波长的上行光信号。
一种可能的实现方式中,电域复用模块,用于将所述M1路的下行数据帧复接成一路高速下行比特流,包括:电域复用模块,用于通过比特交织方式将M1路的下行数据帧复接成一路高速下行比特流,其中,高速下行比特流中包括一个或多个M1比特分组,一个或多个M1比特分组的第k个M1比特分组中包括M1路的下行数据帧中的第k个比特。
本申请实施例中,下行光接收机,用于接收波长为λ0的下行光信号,并将下行光信号转化为下行电信号;电域解复用模块,用于将下行电信号恢复成高速下行比特流之后,从高速下行比特流中提取得到属于自己的一路目标下行比特流;第二光调制器,用于接收上行比特流,并将上行比特流转换成物理电信号之后,将物理电信号调制成波长为λi的上行光信号,其中,λi与λt不同,λt为与第一ONU连接的第一OLT接收的其他上行光信号的波长。
一种可能的实现方式中,电域解复用模块,用于从高速下行比特流中提取得到属于自己的一路目标下行比特流,包括:电域解复用模块,用于通过比特解交织的方式从高速下行比特流中提取得到属于自己的一路目标下行比特流,目标下行比特流中包括一个或多个M1比特分组的每个比特分组中的一个对应比特。
可选的,本申请实施例中,第一OLT还可以包括:N1路的协议处理器。其中,N1为大于或者等于M1的正整数。第一ONU还可以包括:单路的协议处理器。
比如,图2中的OLT201还可以包括:N1路的协议处理器201a。
比如,图2中的ONU202还可以包括:单路的协议处理器202a。
比如,图2中的ONU203还可以包括:单路的协议处理器203a。
本申请实施例中,在下行方向,N1路的协议处理器,用于接收M1路的下行数据包,并将M1路的下行数据包分别进行处理之后,输出M1路的下行数据帧。在上行方向,N1路的协议处理器,用于接收N2路的上行电信号,并将N2路的上行电信号恢复成N2路的上行数据帧之后,完成N2路的上行数据帧的解析和协议处理,得到N2路的用户数据包。
本申请实施例中,在下行方向,单路的协议处理器,用于将目标下行比特流恢复成目标下行数据帧之后,完成目标下行数据帧的解析和协议处理,得到目标用户数据包。在上行方向,单路的协议处理器,用于接收上行数据包,并将上行数据包进行处理之后,输出单路的上行比特流。
需要说明的是,本申请实施例中,N1路的协议处理器和/或单路的协议处理器可以用其他模块替代,只要替代模块具备相应的功能即可,在此统一说明,本申请实施例对此不做具体限定。
可选的,本申请实施例中,第一OLT还可以包括第一合波/分波器。第一ONU还可以包括:第二合波/分波器。
比如,图2中的OLT201还可以包括:合波/分波器201d。
比如,图2中的ONU202还可以包括:合波/分波器202d。
比如,图2中的ONU203还可以包括:合波/分波器203d。
本申请实施例中,在下行方向,第一合波/分波器,用于将波长为λ0的下行光信号耦合至ODN中的主干光纤。在下行方向,第一合波/分波器,用于接收来自主干光纤的N2个不同波长的上行光信号,并将N2个不同波长的上行光信号分别输出给N2个上行光接收机中的不同上行光接收机。
本申请实施例中,在下行方向,第二合波/分波器,用于接收来自主干光纤的波长为λ0的下行光信号,并输出该波长为λ0的下行光信号。在上行方向,第二合波/分波器,用于将波长为λi的上行光信号耦合至ODN中的主干光纤。
需要说明的是,本申请实施例中,第一合波/分波器和/或第二合波/分波器可以用其他模块替代,只要替代模块具备相应的功能即可,在此统一说明,本申请实施例对此不做具体限定。
需要说明的是,图2仅是示例性的列出了两个第一ONU,若光通信系统20中包括大于2个第一ONU,其它第一ONU的结构可参考图2所示的ONU202或ONU203,在此不予赘述。
下面将结合图2所示的光通信系统20,分别对第一OLT和第一ONU的工作原理介绍如下。
在下行数据方向:
N1路的协议处理器201a,用于接收M1路的下行数据包,并将M1路的下行数据包分别进行处理之后,输出M1路的下行数据帧,M1为小于或者等于N1的正整数。
可选的,本申请实施例中,N1路的协议处理器201a对下行数据包的处理包括但不限于协议处理和帧封装,在此统一说明,以下不再赘述。
如图2所示,图2中N1路的协议处理器201a与电域复用模块201b之间有通道1(简称CH1)至通道N1(简称CHN1)共N1个通道,M1路的下行数据帧在N1个通道中的其中M1个通道上传输。
可选的,本申请实施例中,M1=N1,这样可以使得N1路的协议处理器201a得到最大化的利用。
电域复用模块201b,用于接收来自N1路的协议处理器201a的M1路的下行数据帧,并将M1路的下行数据帧复接成一路高速下行比特流之后,输出该高速下行比特流。
可选的,本申请实施例中,电域复用模块201b可以通过比特交织(bit interleaving)方式将M1路的下行数据帧复接成一路高速下行比特流。该高速下行比特流中包括一个或多个M1比特分组,一个或多个M1比特分组的第k个M1比特分组中包括M1路的下行数据帧中的第k个比特。
其中,本申请实施例中,比特交织是指,采用时分复用的方式,在时间上分离码元,介于其间的时间可以由其它码字的码元来填充。比如,对于一些4比特组成的消息分组,分别将4个消息分组中的第1个比特取出来,组成一个新的4比特分组,称作第一帧;分别将4个消息分组中的第2个比特取出来,组成一个新的4比特分组,称作第二帧;分别将4个消息分组中的第3个比特取出来,组成一个新的4比特分组,称作第三帧;分别将4个消息分组中的第4个比特取出来,组成一个新的4比特分组,称作第四帧。
其中,本申请实施例中,高速下行比特流的速率等于M1路的下行数据帧中各路下行数据帧的速率之和。比如,假设M1路的下行数据帧的速率分别为D1,D2,……,DM1,则高速下行比特流的速率=D1+D2+……+DM1。
一种可能的实现方式中,本申请实施例中,M1路的下行数据帧的速率均为D,高速下行比特流的速率为M1*D。
光调制器201c,用于接收来自电域复用模块201b的高速下行比特流,并将高速下行比特流调制成波长为λ0的下行光信号之后,输出下行光信号。
可选的,本申请实施例中,光调制器201c可以先将高速下行比特流转换成物理电信号,进而将物理电信号调制成波长为λ0的下行光信号,本申请实施例对此不做具体限定。
一种可能的实现方式中,如图3a所示,本申请实施例中的光调制器201c可以包括激光二极管驱动器(laser diode driver,LDD)和固定波长激光二极管(laser diode,LD)。其中,LDD用于将高速下行比特流转换成物理电信号,固定波长LD用于将物理电信号调制成波长为λ0的下行光信号。当然,本申请实施例中的光调制器201c的结构还可以为其他,本申请实施例对此不做具体限定。
至此,从N1路的协议处理器201a输入的数字信号转换为光信号。
进一步的,合波/分波器201d用于接收来自光调制器201c的下行光信号,并将下行光信号耦合至ODN中的主干光纤。
经过主干光纤传输的下行光信号进入图2所示的ODN中的分光器,经过分光器的分光之后,分别输入至M1路的下行数据包对应的M1个第一ONU中,下面以第一ONU为图2中的ONU202为例进行说明。
合波/分波器202d,用于接收来自主干光纤的波长为λ0的下行光信号,并将该波长为λ0的下行光信号分离出来之后输出该波长为λ0的下行光信号。
下行光接收机202e,用于接收来自合波/分波器202d的下行光信号,并将下行光信号转化为下行电信号之后,输出该下行电信号。可选的,下行光接收机202e还可以放大由下行光信号转化得到的下行电信号,从而输出放大后的下行电信号,本申请实施例对此不做具体限定。
一种可能的实现方式中,如图4所示,本申请实施例中的下行光接收机202e可以包括雪崩二极管(avalanche photodiode,APD)、以及跨阻放大器(trans-impedance amplifier,TIA)/线路放大器(l ine amplifier,LA)。APD用于将下行光信号转化为下行电信号,TIA/LA用于对下行电信号进行放大。其中,TIA/LA为下行光接收机202e中的可选模块,可以不设置在下行光接收机202e中,而是设置在下行光接收机202e和电域解复用模块202b之间;或者ONU202中也可以不包括TIA/LA(即不需要放大由下行光信号转 化得到的下行电信号),在此统一说明,以下不再赘述。当然,本申请实施例中的下行光接收机202e的结构还可以为其他,本申请实施例对此不做具体限定。
至此,上述的光信号转换为电信号。
电域解复用模块202b,用于接收来自下行光接收机202e的下行电信号,并将下行电信号恢复成高速下行比特流,从高速下行比特流中提取得到属于自己的一路目标下行比特流之后,输出该目标下行比特流。
可选的,本申请实施例中,电域解复用模块202b可以按比特解交织的方式从高速下行比特流中提取得到属于自己的一路目标下行比特流,本申请实施例对此不做具体限定。
其中,本申请实施例中,比特解交织是指根据固定间隔周期性提取1个比特。
本申请实施例中,ONU202中目标下行比特流的速率与M1路的下行数据帧中与ONU202对应的一路下行数据帧的速率相同。也就是说,通过电域解复用模块202b,可以还原出目标用户对应的一路目标下行比特流。
至此,上述的电信号转换为数字信号。
单路的协议处理器202a,用于接收来自电域解复用模块202b的目标下行比特流,并将目标下行比特流恢复成目标下行数据帧之后,完成目标下行数据帧的解析和协议处理,得到目标用户数据包。
需要说明的是,上述实施例以第一ONU为图2中的ONU202为例进行说明。若第一ONU为图2中的ONU203或者M1路的下行数据包对应的其他ONU,其工作原理与上述ONU202的工作原理类似,在此不再赘述。
在上行数据方向:
若以第一ONU为图2中的ONU202为例进行说明,则:
单路的协议处理器202a,用于接收上行数据包,并将上行数据包进行处理之后,输出单路的上行比特流。
可选的,本申请实施例中,单路的协议处理器202a对上行数据包的处理包括但不限于协议处理,帧封装以及帧到比特流的转换,在此统一说明,以下不再赘述。
光调制器202c,用于接收来自单路的协议处理器202a的上行比特流,并将上行比特流调制成波长为λ1的上行光信号之后,输出上行光信号。
可选的,本申请实施例中,光调制器202c可以先将上行比特流转换成物理电信号,进而将物理电信号调制成波长为λ1的上行光信号,本申请实施例对此不做具体限定。
一种可能的实现方式中,如图3b所示,本申请实施例中的光调制器202c可以包括LDD和可调波长LD。其中,LDD用于将上行比特流转换成物理电信号,可调LD波长用于将物理电信号调制成波长为λ1的上行光信号。当然,本申请实施例中的光调制器202c的结构还可以为其它,本申请实施例对此不做具体限定。
至此,从单路的协议处理器202a输入的数字信号转换为光信号。
合波/分波器202d,用于接收来自光调制器202c的上行光信号,并将上行光信号耦合至ODN中的主干光纤。
若以第一ONU为图2中的ONU203为例进行说明,则ONU203的工作原理与上述ONU202的工作原理类似,区别比如在于,本申请实施例中,光调制器202c,用于将上行比特流调 制成波长为λ1的上行光信号;而光调制器203c,用于将上行比特流调制成波长为λ2的上行光信号,且λ1不等于λ2,即ONU202和ONU203中光信号的波长不同。
当然,若第一ONU为其他相同结构的ONU,则除了光调制器调制出的上行光信号的波长不同之外,其工作原理与上述ONU202或者ONU203的工作原理类似,在此不再赘述。
可选的,本申请实施例中,λ0=1370+/-10nm;N2个不同波长的上行光信号的波长在1530-1540nm之间,N2为小于或者等于N1的正整数。
进一步的,N2个不同波长的上行光信号(假设包括ONU202输出的波长为λ1的上行光信号以及ONU203输出的波长为λ2的上行光信号)经过图2所示的ODN中的分光器的分光之后,进入主干光纤。
合波/分波器201d,用于接收来自主干光纤的N2个不同波长的上行光信号,并将N2个不同波长的上行光信号分别输出给N2个上行光接收机201e中的不同上行光接收机,其中,N2个不同波长均不等于λ0。
示例性的,ONU202输出的波长为λ1的上行光信号可以输出至图2中的上行光接收机1,ONU203输出的波长为λ2的上行光信号可以输出至图2中的上行光接收机2,等等。
N2个上行光接收机中的每个上行光接收机201e,分别用于将输入的上行光信号转化为上行电信号,并输出该上行电信号。可选的,上行光接收机201e还可以放大由上行光信号转化得到的上行电信号,从而输出放大后的上行电信号,本申请实施例对此不做具体限定。其中,上行光接收机201e的结构可参考上述下行光接收机202e的结构,在此不予赘述。
至此,上述的光信号转换为电信号。
如图2所示,N2个上行光接收机201e中的每个上行光接收机201e与N1路的协议处理器201a之间均存在一个通道,如上行光接收机1与N1路的协议处理器201a之间存在通道1(简称CH1),上行光接收机2与N1路的协议处理器201a之间存在通道2(简称CH2)、……、上行光接收机N2与N1路的协议处理器201a之间存在通道N2(简称CHN2)。上述经过N2个上行光接收机中的每个上行光接收机201e处理之后的上行电信号分别经过相应的N2个通道输入至N1路的协议处理器201a。
N路的协议处理器201a,用于接收来自N2个上行光接收机的N2路上行电信号,并将N2路的上行电信号恢复成N2路的上行数据帧之后,完成N2路的上行数据帧的解析和协议处理,得到N2路的用户数据包。
至此,上述的电信号转换为数字信号。
通过上述下行数据方向上和上行数据方向上第一OLT和第一ONU的工作原理可知,本申请实施例中的光通信系统20可以实现数字信号—光信号—电信号—数字信号的转换。
本申请实施例提供的光通信系统在重用FTTH ODN拓展和部署新业务时,在上行方向,通过设计不同的上行光信号,使得第一ONU连接的第一OLT可以通过不同的上行光接收机分别接收不同波长的上行光信号,进而使得每个用户均相当于通过专用通道进行点对点(point-to-point,P2P)的数据传输;在下行方向,由于第一OLT采用下行时分广播方式,将M1路的下行数据帧复接成一路高速下行比特流,进而使得第一ONU可以从高速下行比特流中提取得到属于自己的一路目标下行比特流,因此不仅第一ONU侧接收无需可调 滤波器,大幅节省波长资源和成本,并且从用户角度来看,每个用户均可以持续接收下行数据包,即每个用户也相当于通过专用通道接收下行数据。也就是说,图2所示的光通信系统20是一种时分波分混合的光接入系统(time and wavelength division multiplexing optical access system,TWDM OAS)(即下行时分,上行波分),基于该光通信系统传输的数据,均相当于在专用通道上进行传输,因此相对于现有技术,可以避免由于上行和下行均采用时分复用而导致时延和抖动较大的问题。另一方面,通过为不同的上行光信号设计不同波长,还可以避免由于存在流氓ONU风险,影响系统可靠性的问题,从而可以提高系统的可靠性。综上,基于本申请实施例提供的通信系统,不仅可以减少时延和抖动,并且可以提高系统的可靠性。进一步的,可以支撑运营商重用FTTH ODN快速拓展和部署新业务,如高可靠性、低时延的业务,从而实现一张接入网全业务接入。
基于图2所示的光通信系统,一种可能的实现方式中,本申请实施例中,N1=N2。
示例性的,如图5所示的光通信系统50,N1=N2=M1=10,假设10路的下行数据帧的速率均为1.25G,则高速下行比特流的速率为10*1.25G=12.5G。此外,图5所示的光通信系统50以每个用户对应的下行数据帧的速率与上行数据帧的速率相同为例进行说明,即每个用户对应的上行数据帧的速率也均为1.25G。
或者,示例性的,如图6所示的光通信系统60,N1=N2=M1=10,假设10路的下行数据帧的速率均为2.48G,则高速下行比特流的速率为10*2.48G=24.8G。此外,图5所示的光通信系统50以每个用户对应的下行数据帧的速率与上行数据帧的速率不同为例进行说明,如每个用户对应的上行数据帧的速率均为1.24G。
图5或图6所示的光通信系统可提供10路低时延、独享带宽的P2P千兆以太网(gigabit ethernet,GE)通道,用于承载诸如企业专线、无线承载等业务。其中,图6所示的光通信系统60相比于图5所示的光通信系统50,由于每路的下行数据帧的速率提高,因此,第一OLT的光调制器和第一ONU的下行光接收机均需采用更高带宽的光电芯片。
需要说明的是,上述图5和图6中的协议处理器的路数N1、复用的通道数M1、每路的下行数据帧的速率、以及上下行数据速率是否对称只是为了说明本申请实施例提供的光通信系统的架构及其工作原理方便所列举的示例,并不因此限定本发明实施例提供的光通信系统中协议处理器的路数N1、复用的通道数M1、每路的下行数据帧的速率、以及上下行数据速率是否对称,比如,每个用户对应的下行数据帧的速率或者上行数据帧的速率还可以根据不同用户的业务诉求确定,在此统一说明,以下不再赘述。
为了进一步提高光通信系统的可靠性和健壮性,确保业务质量和安全,另一种可能的实现方式中,本申请实施例中,N2<N1。相应的,第一OLT还包括:除N2个上行光接收机之外的其它N3个上行光接收机,N3为正整数,N1=N2+N3。其中,其它N3个上行光接收机所在的通道为管理和备份通道。可选的,该管理和备份通道主要有两方面的功能:一方面,用于第一ONU上电后的初始注册、认证和上线,完成注册上线后,根据调度管理,把新上线的第一ONU调配到其专属的通道上(第一ONU下行通过电域解复用模块调整选取的通道数,上行通过光调制器调整上行光信号的波长);另一方面,若万一出现第一ONU上的上行光信号的波长误配、干扰某一数据通道正常工作时,作为备份通道使用。
示例性的,如图7所示,与图5所示的光通信系统类似,区别比如在于,图7所示的 光通信系统70中,N1=10,N2=9,N3=1,即采用N+1风险备份设计,从而提高光通信系统的可靠性和健壮性。
或者,示例性的,如图8所示,与图6所示的光通信系统类似,区别比如在于,图8所示的光通信系统80中,N1=10,N2=9,N3=1,即采用N+1风险备份设计,从而提高光通信系统的可靠性和健壮性。
进一步的,为了与当前针对FTTH业务场景设计的TDM-PON系统共存,如图9所示,本申请实施例提供的光通信系统90除了包括图2所示的第一OLT、多个第一ONU、以及连接第一OLT和第一ONU的ODN,还可以包括第二OLT(如图9中的OLT901)、连接第一OLT和第二OLT的共存合波/分波器902、以及一个或多个第二ONU(如图9中的ONU903和ONU904)。其中,ODN还用于连接第二OLT和第二ONU,第二OLT为TDM-PON系统中的OLT,第二ONU连接FTTH用户。其中,第二OLT(如图9中的OLT901)以及第二ONU(如图9中的ONU903或者ONU904)的相关结构及工作原理可参考现有的TDM-PON系统,在此不予赘述。共存合/分波器902,可以实现本申请实施例提供的针对低时延高可靠性业务设计的PON系统(如上所述,可以称之为TWDM OAS系统)与当前针对FTTH业务场景设计的TDM-PON系统的共存。
示例性的,图10所示的光通信系统100除了包括图5所示的光通信系统50中的第一OLT、多个第一ONU、以及连接第一OLT和第一ONU的ODN之外,还可以包括上述的第二OLT(如上述的OLT901)、连接第一OLT和第二OLT的共存合波/分波器902、以及一个或多个第二ONU(如上述的ONU903和ONU904)。
或者,示例性的,图11所示的光通信系统110除了包括图6所示的光通信系统60中的第一OLT、多个第一ONU、以及连接第一OLT和第一ONU的ODN之外,还可以包括上述的第二OLT(如上述的OLT901)、连接第一OLT和第二OLT的共存合波/分波器902、以及一个或多个第二ONU(如上述的ONU903和ONU904)。
或者,示例性的,图12所示的光通信系统120除了包括图7所示的光通信系统70中的第一OLT、多个第一ONU、以及连接第一OLT和第一ONU的ODN之外,还可以包括上述的第二OLT(如上述的OLT901)、连接第一OLT和第二OLT的共存合波/分波器902、以及一个或多个第二ONU(如上述的ONU903和ONU904)。
或者,示例性的,图13所示的光通信系统130除了包括图8所示的光通信系统80中的第一OLT、多个第一ONU、以及连接第一OLT和第一ONU的ODN之外,还可以包括上述的第二OLT(如上述的OLT901)、连接第一OLT和第二OLT的共存合波/分波器902、以及一个或多个第二ONU(如上述的ONU903和ONU904)。
以上尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种第一光线路终端OLT,其特征在于,所述第一OLT包括:电域复用模块、第一光调制器以及N2个上行光接收机,N2为大于1的正整数;
    其中,所述电域复用模块,用于接收M1路的下行数据帧,并将所述M1路的下行数据帧复接成一路高速下行比特流,M1为正整数;
    所述第一光调制器,用于将所述高速下行比特流转换成物理电信号之后,将所述物理电信号调制成波长为λ0的下行光信号;
    所述N2个上行光接收机中的每个光接收机,分别接收不同波长的上行光信号。
  2. 根据权利要求1所述的第一OLT,其特征在于,所述M1路的下行数据帧的速率均为D,所述高速下行比特流的速率为M1*D。
  3. 根据权利要求1或2所述的第一OLT,其特征在于,所述电域复用模块,用于将所述M1路的下行数据帧复接成一路高速下行比特流,包括:
    所述电域复用模块,用于通过比特交织方式将所述M1路的下行数据帧复接成一路高速下行比特流,其中,所述高速下行比特流中包括一个或多个M1比特分组,所述一个或多个M1比特分组的第k个M1比特分组中包括所述M1路的下行数据帧中的第k个比特。
  4. 根据权利要求1-3任一项所述的第一OLT,其特征在于,所述第一OLT还包括:N1路的协议处理器,N1为大于或者等于M1的正整数;
    所述N1路的协议处理器,用于接收M1路的下行数据包,并将所述M1路的下行数据包分别进行处理之后,输出所述M1路的下行数据帧;
    所述N1路的协议处理器,还用于接收N2路的上行电信号,并将所述N2路的上行电信号恢复成N2路的上行数据帧之后,完成所述N2路的上行数据帧的解析和协议处理,得到N2路的用户数据包。
  5. 根据权利要求4所述的第一OLT,其特征在于,N1=M1。
  6. 根据权利要求4或5所述的第一OLT,其特征在于,N1=N2。
  7. 根据权利要求4或5所述的第一OLT,其特征在于,所述第一OLT还包括:除所述N2个上行光接收机之外的其它N3个上行光接收机,N3为正整数,N1=N2+N3;
    其中,所述其它N3个上行光接收机所在的通道为管理和备份通道。
  8. 一种第一光网络单元ONU,其特征在于,所述第一ONU包括:下行光接收机、电域解复用模块以及第二光调制器;
    其中,所述下行光接收机,用于接收波长为λ0的下行光信号,并将所述下行光信号转化为下行电信号;
    所述电域解复用模块,用于将所述下行电信号恢复成高速下行比特流之后,从所述高速下行比特流中提取得到属于自己的一路目标下行比特流;
    所述第二光调制器,用于接收上行比特流,并将所述上行比特流转换成物理电信号之后,将所述物理电信号调制成波长为λi的上行光信号,其中,λi与λt不同,λt为与所述第一ONU连接的第一光线路终端OLT接收的其他上行光信号的波长。
  9. 根据权利要求8所述的第一ONU,其特征在于,所述高速下行比特流中包括一个或 多个M1比特分组,所述一个或多个M1比特分组的第k个M1比特分组中包括M1路的下行数据帧中的第k个比特;
    所述电域解复用模块,用于从所述高速下行比特流中提取得到属于自己的一路目标下行比特流,包括:
    所述电域解复用模块,用于通过比特解交织的方式从所述高速下行比特流中提取得到属于自己的一路目标下行比特流,所述目标下行比特流中包括所述一个或多个M1比特分组的每个比特分组中的一个对应比特。
  10. 根据权利要求8或9所述的第一ONU,其特征在于,λi是根据所述第一OLT在下行方向发送的配置指令配置的。
  11. 一种光通信系统,其特征在于,所述光通信系统包括如权利要求1-7任一项所述的第一OLT、多个如权利要求8-10任一项所述的第一ONU,以及连接所述第一OLT和所述第一ONU的ODN。
  12. 根据权利要求11所述的光通信系统,其特征在于,所述光通信系统还包括第二OLT、连接所述第一OLT和所述第二OLT的共存合波/分波器、以及一个或多个第二ONU;其中,所述ODN还用于连接所述第二OLT和所述第二ONU,所述第二OLT为光纤到户FTTH无源光网络PON系统中的OLT,所述第二ONU连接FTTH用户。
PCT/CN2020/128729 2020-02-25 2020-11-13 光线路终端、光网络单元及光通信系统 WO2021169419A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227023681A KR20220113487A (ko) 2020-02-25 2020-11-13 광 회선 단말기, 광 네트워크 유닛 및 광 통신 시스템
EP20920874.3A EP4068654A4 (en) 2020-02-25 2020-11-13 OPTICAL LINE TERMINAL, OPTICAL NETWORK UNIT AND OPTICAL COMMUNICATION SYSTEM
JP2022544040A JP7480309B2 (ja) 2020-02-25 2020-11-13 光回線端末、光ネットワークユニット、及び光通信システム
US17/814,324 US20220360356A1 (en) 2020-02-25 2022-07-22 Optical Line Terminal, Optical Network Unit, and Optical Communications System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010117620.9A CN113382316B (zh) 2020-02-25 2020-02-25 光线路终端、光网络单元及光通信系统
CN202010117620.9 2020-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,324 Continuation US20220360356A1 (en) 2020-02-25 2022-07-22 Optical Line Terminal, Optical Network Unit, and Optical Communications System

Publications (1)

Publication Number Publication Date
WO2021169419A1 true WO2021169419A1 (zh) 2021-09-02

Family

ID=77489845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128729 WO2021169419A1 (zh) 2020-02-25 2020-11-13 光线路终端、光网络单元及光通信系统

Country Status (6)

Country Link
US (1) US20220360356A1 (zh)
EP (1) EP4068654A4 (zh)
JP (1) JP7480309B2 (zh)
KR (1) KR20220113487A (zh)
CN (1) CN113382316B (zh)
WO (1) WO2021169419A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071266A (zh) * 2021-11-08 2022-02-18 四川天邑康和通信股份有限公司 一种应用于fttr的p2mp型全光网的组网系统
CN114374898B (zh) * 2021-12-27 2023-07-28 暨南大学 无源光网络架构和基于该构架的onu间通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569122A (zh) * 2007-05-30 2009-10-28 华为技术有限公司 10g gpon的交织
US20090317084A1 (en) * 2008-06-23 2009-12-24 Electronics And Telecommunications Research Institute Passive optical network system and optical signal receiving method thereof
CN103281637A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103634066A (zh) * 2012-08-28 2014-03-12 上海贝尔股份有限公司 光线路终端及光网络单元
CN106331908A (zh) * 2015-06-30 2017-01-11 上海贝尔股份有限公司 一种无源光网络系统及其装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724902B1 (ko) * 2004-01-30 2007-06-04 삼성전자주식회사 댁내 방송서비스 수용을 위한 수동형 광가입자망에프티티에이치 시스템
WO2014063349A1 (zh) * 2012-10-26 2014-05-01 华为技术有限公司 无源光网络通信方法和系统、光线路终端
EP2775733A1 (en) * 2013-03-05 2014-09-10 British Telecommunications public limited company Communications network
US9538266B2 (en) * 2015-03-09 2017-01-03 Alcatel Lucent Circuit and method for optical bit interleaving in a passive optical network using multi-level signals
US10020889B2 (en) * 2015-03-25 2018-07-10 Futurewei Technologies, Inc. Channel ranging adjustment in multiple-wavelength passive optical networks (PONs)
JP2018157518A (ja) * 2017-03-21 2018-10-04 富士通株式会社 通信システム、光回線終端装置及び通信切替方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569122A (zh) * 2007-05-30 2009-10-28 华为技术有限公司 10g gpon的交织
US20090317084A1 (en) * 2008-06-23 2009-12-24 Electronics And Telecommunications Research Institute Passive optical network system and optical signal receiving method thereof
CN103634066A (zh) * 2012-08-28 2014-03-12 上海贝尔股份有限公司 光线路终端及光网络单元
CN103281637A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN106331908A (zh) * 2015-06-30 2017-01-11 上海贝尔股份有限公司 一种无源光网络系统及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068654A4

Also Published As

Publication number Publication date
EP4068654A1 (en) 2022-10-05
EP4068654A4 (en) 2023-07-26
CN113382316A (zh) 2021-09-10
JP7480309B2 (ja) 2024-05-09
CN113382316B (zh) 2023-11-17
KR20220113487A (ko) 2022-08-12
US20220360356A1 (en) 2022-11-10
JP2023511883A (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
EP1981196B1 (en) A passive optical network, equipment and method for supporting the multicast service
US8532489B2 (en) Multi-fiber ten gigabit passive optical network optical line terminal for optical distribution network coexistence with gigabit passive optical network
EP2122878B1 (en) Backward compatible pon coexistence
JP2004282742A (ja) コード分割多重接続方式を適用した受動型光加入者ネットワーク
US8005363B2 (en) Passive optical network with wavelength division multiplexing
KR20130095314A (ko) 수동 광 네트워크를 위한 멀티플렉스 변환
WO2007071154A1 (fr) Reseau optique passif a multiplexage par repartition en longueur d'onde et son procede de mise en oeuvre
US20080298806A1 (en) Interleaving for 10G GPON
JP5068594B2 (ja) 光ネットワーク終端装置、光アクセスシステムおよび通信サービスシステム
US20220360356A1 (en) Optical Line Terminal, Optical Network Unit, and Optical Communications System
KR20090018573A (ko) 시간분할 다중화 수동형 광전송 방식에 파장분할 다중화기술을 적용한 광가입자망 시스템 및 서비스 제공 방법
EP2285019A1 (en) Optical communication system, apparatus and method
US20220158751A1 (en) System and methods for coherent optical extension
US20120121252A1 (en) Optical communication system for supporting remote operation management
US20090263133A1 (en) Optical communication network system, parent station optical communication device, and child station optical communication device
WO2019015484A1 (zh) 一种光模块以及网络设备
US9699532B2 (en) Systems and methods of hybrid DWDM aggregation and extension for time division multiplexing passive optical networks
JP5896415B2 (ja) 光送受信装置
US20100124420A1 (en) Communication device and communication method
KR20120074964A (ko) 10g 이더넷 pon 중계 장치 및 그 시스템
KR20090063834A (ko) 광대역 무선 서비스를 위한 광 네트워크 시스템
WO2024045813A1 (zh) 一种数据传输方法,相关设备以及系统
KR20090100083A (ko) Tdm-pon 기반의 원격 중계 장치 및 그 시스템
Miyazawa et al. Optical access architecture designs based on WDM-direct toward new generation networks
Qin et al. The study of dual rate 10G-EPON system for coexistence with 1G-EPON

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023681

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020920874

Country of ref document: EP

Effective date: 20220627

ENP Entry into the national phase

Ref document number: 2022544040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 522440087

Country of ref document: SA