WO2021168810A1 - 无人机控制方法、装置及无人机 - Google Patents

无人机控制方法、装置及无人机 Download PDF

Info

Publication number
WO2021168810A1
WO2021168810A1 PCT/CN2020/077231 CN2020077231W WO2021168810A1 WO 2021168810 A1 WO2021168810 A1 WO 2021168810A1 CN 2020077231 W CN2020077231 W CN 2020077231W WO 2021168810 A1 WO2021168810 A1 WO 2021168810A1
Authority
WO
WIPO (PCT)
Prior art keywords
waypoint
information
drone
control terminal
control
Prior art date
Application number
PCT/CN2020/077231
Other languages
English (en)
French (fr)
Inventor
陈超彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/077231 priority Critical patent/WO2021168810A1/zh
Priority to CN202080018844.2A priority patent/CN113574487A/zh
Publication of WO2021168810A1 publication Critical patent/WO2021168810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the invention belongs to the technical field of drone control, and particularly relates to a drone control method, device and drone.
  • UAV flight routes are widely used in agriculture, inspection and other fields, and can significantly improve task execution efficiency and automation.
  • Route flight tasks usually include: route flight.
  • Airline flight refers to the process of the drone flying automatically along the route formed by connecting several waypoints;
  • the specific execution of route flight tasks includes: the user configures the UAV's flight waypoints on the client; the UAV's route planning algorithm plans a route that meets the mission requirements based on the user configuration; the client will plan the route The mission is uploaded to the UAV; the UAV automatically executes the route flight. According to the above process, the UAV will automatically fly according to the planned route, so as to meet the operational requirements.
  • the flight airspace environment of drones is often unknown and complex and changeable, making it difficult to plan the flight path of the drone in advance.
  • the flight path of the drone has been planned in advance, it is difficult to plan in advance.
  • the influence of the airspace environment also makes it difficult for drones to execute their routes smoothly.
  • the present invention provides an unmanned aerial vehicle control method, device, control terminal and unmanned aerial vehicle, so as to solve the problem of low flexibility of unmanned aerial vehicle route planning in the prior art.
  • an embodiment of the present invention provides a drone control method, and the method may include:
  • control the drone When the waypoint information of the next waypoint sent by the control terminal is acquired, control the drone to fly to the next waypoint according to the waypoint information of the next waypoint.
  • an embodiment of the present invention provides an unmanned aerial vehicle control device.
  • the unmanned aerial vehicle control device may include: a communication device and a processor, wherein:
  • the communication device is configured to perform: acquiring waypoint information of a waypoint sent by the control terminal, where the waypoint information includes at least the two-dimensional position of the waypoint;
  • the processor is used to execute:
  • control the drone When the waypoint information of the next waypoint sent by the control terminal is acquired, control the drone to fly to the next waypoint according to the waypoint information of the next waypoint.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned drone control method is implemented A step of.
  • an unmanned aerial vehicle including: a power system for providing flight power for the unmanned aerial vehicle; and an unmanned aerial vehicle control device as described in the second aspect.
  • the present invention obtains the waypoint information of a waypoint sent by the control terminal, where the waypoint information includes at least the two-dimensional position of the waypoint; according to the waypoint information of a waypoint, the drone is controlled Fly to the waypoint; before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint sent by the control terminal, control the drone to hover; after obtaining the next flight from the control terminal When point the waypoint information, control the drone to fly to the next waypoint according to the waypoint information of the next waypoint.
  • the invention restricts the drone to be in a safe position by controlling the drone to hover before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint.
  • the user does not need to plan a complete route before the start of the flight mission. Instead, the user can plan the route of the drone through a step-by-step planning method from one waypoint to the next during the execution of the mission. Each step of the planning can be based on the latest environmental information of the UAV to fully guarantee flight safety.
  • Figure 1 is a flow chart of the steps of a drone control method provided by an embodiment of the present invention
  • FIG. 2 is a working schematic diagram of an unmanned aerial vehicle control method provided by an embodiment of the present invention
  • FIG. 3 is a working schematic diagram of another drone control method provided by an embodiment of the present invention.
  • Figure 4 is an interface diagram of a control terminal provided by an embodiment of the present invention.
  • Figure 5 is a block diagram of a drone control device provided by an embodiment of the present invention.
  • Fig. 6 is a block diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • Fig. 1 is a flow chart of the steps of a drone control method provided by an embodiment of the present invention. As shown in Fig. 1, the method may include:
  • Step 101 Obtain the waypoint information of a waypoint sent by the control terminal, where the waypoint information includes at least the two-dimensional position of the waypoint.
  • the user plans the flight route of the drone by planning the waypoints in the flight route, where the waypoint is a characteristic point in the flight route of the drone, and is a point that the drone needs to reach.
  • the waypoint indication information of the waypoint includes at least the two-dimensional position of the waypoint, where the two-dimensional position of the waypoint is longitude and latitude.
  • the waypoint information also includes altitude information.
  • the waypoint indication information also includes mission indication information.
  • the unmanned aerial vehicle control method provided by an embodiment of the present invention can be applied to an unmanned aerial vehicle 10.
  • the drone is equipped with a drone control device, and the control method can be executed by the drone control device.
  • the user can plan waypoints through the control terminal 20, and transmit the waypoints to the drone 10 through a wireless connection.
  • the control terminal 20 can be one or more of a remote control, a personal computer, and a mobile terminal. .
  • the control terminal 20 may display an interactive interface, for example, a corresponding waypoint planning interface, so that the user can perform waypoint selection or waypoint addition operations in the interactive interface.
  • the user operates the interactive interface displayed by the control terminal, and the control terminal generates waypoint information of the waypoint by retrieving the operation.
  • the control terminal 20 can designate a waypoint A close to the unknown airspace 30, and send the waypoint information of the waypoint A to the UAV 10, so that the UAV 10 can fly to the position of the waypoint A, so as to wait to enter the unknown airspace. 30 follow-up waypoint planning.
  • the waypoint information of a waypoint sent by the control terminal 20 may also be a certain waypoint in the unknown airspace 30.
  • the embodiment of the present invention does not limit this.
  • Step 102 Control the drone to fly to the waypoint according to the waypoint information of the one waypoint.
  • the drone can add the waypoint information of the waypoint to its own navigation system, and use the waypoint as the destination point, and control the drone with a mobile device to fly to the waypoint according to the waypoint information .
  • Step 103 Control the drone to hover before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint sent by the control terminal.
  • the UAV 10 since the environment in the unknown airspace 30 is complex and changeable, there may be many interference factors that interfere with the operation of the UAV 10, such as obstacles and strong winds. Therefore, the UAV 10 has Before flying to a waypoint (such as waypoint A), but before receiving the waypoint information of the next waypoint (such as waypoint B) sent by the control terminal, the drone 10 can keep hovering at the position of waypoint A Working status to avoid interference from interference factors in unknown airspace 30 and reduce flight risk.
  • a waypoint such as waypoint A
  • the drone 10 can keep hovering at the position of waypoint A Working status to avoid interference from interference factors in unknown airspace 30 and reduce flight risk.
  • Step 104 When the waypoint information of the next waypoint sent by the control terminal is acquired, control the UAV to fly to the waypoint according to the waypoint information of the next waypoint according to the waypoint information. The next waypoint.
  • the drone when the drone obtains the waypoint information of the next waypoint sent by the control terminal, the drone can add the waypoint information of the next waypoint to its own navigation system, and use the The next waypoint is the destination point, and the drone is controlled to fly to the next waypoint.
  • the control terminal sends a waypoint information of waypoint A to the drone, and the drone flies to waypoint A.
  • the drone has flown to the waypoint A and has not received the control
  • the control terminal sends the waypoint information of the next waypoint B to the drone, and the drone flies from waypoint A to waypoint B
  • the UAV 10 moves from the B-C-D-E path in the unknown airspace 30, which improves the flexibility of route planning.
  • the waypoint information further includes task indication information
  • the method may further include:
  • Step A1 When the drone flies to the one waypoint, execute the work task corresponding to the task instruction information according to the waypoint information of the one waypoint.
  • Step A2 When the drone flies to the next waypoint, execute the work task corresponding to the task instruction information according to the waypoint information of the next waypoint.
  • the drone may have a loading device, such as a camera, a pan/tilt corresponding to the camera, and other devices capable of performing work tasks.
  • a loading device such as a camera, a pan/tilt corresponding to the camera, and other devices capable of performing work tasks.
  • the waypoint information sent by the control terminal also includes task instruction information, which can be used to instruct the drone to perform corresponding work tasks, such as shooting with a camera, rotating the pan/tilt to an appropriate angle, and so on.
  • task instruction information can be used to instruct the drone to perform corresponding work tasks, such as shooting with a camera, rotating the pan/tilt to an appropriate angle, and so on.
  • the drone can be controlled to perform corresponding work tasks according to the task instruction information.
  • the task indication information may be identification information corresponding to the work task, such as an identification code for turning on a photographing or video recording function of the camera, the angle of rotation of the pan/tilt, and so on.
  • the drone includes a photographing device, and the method may further include:
  • Step B1 Obtain indication information of the observation object, wherein the indication information includes at least two-dimensional position information.
  • the drone may include a photographing device to perform a photographing task of the observation object.
  • the drone may obtain indication information of the observation object, and the indication information includes at least two parts of the observation object.
  • Dimensional position information (such as longitude and latitude) to indicate the position of the observation object, so that the camera can adjust the shooting direction according to the instruction information during the shooting process, so that the camera always shoots or observes the observation object, improving the shooting quality .
  • the obtaining the indication information of the observation object may include: obtaining the observation information sent by the control terminal.
  • the user can operate the interactive interface displayed by the control terminal, and the control terminal can detect the user's operation and generate the indication information of the observation object.
  • the drone sends the image taken by the camera to the control terminal so that the control terminal displays the image
  • the obtaining the indication information of the observation object may include: obtaining all the information sent by the control terminal.
  • the position information of the observation object in the image wherein the position information of the observation object in the image is determined by the control terminal by detecting the observation object selection operation performed by the user on the displayed image.
  • the user can click or box-select the observation object in the displayed image, and the control terminal can send the position information of the observation object clicked or box-selected by the user in the image to the drone.
  • the drone may determine the observation information of the observation object according to the position information of the observation object in the image.
  • the indication information may also include other information of the observation object, such as the identification of the observation object.
  • Step B2 During the flight of the drone to the one waypoint and the next waypoint, adjust the shooting direction of the shooting device according to the instruction information of the observation object, so that the shooting The direction points to the observation object.
  • FIG. 3 shows a schematic diagram of the operation of another drone control method provided by an embodiment of the present invention.
  • the drone 10 When the drone 10 is flying to one waypoint and the next waypoint, it can be based on observations.
  • the instruction information of the object X adjusts the shooting direction of the shooting device 101 so that the shooting direction points to the observation object X.
  • Step B3 During the process of the drone flying to the waypoint and the next waypoint, the image collected by the camera is sent to the control terminal, so that the control terminal displays the ⁇ Descriptions of the image.
  • the control terminal may include a display device, and the drone may send the image collected by the shooting device to the control terminal through a wireless connection, so that the control terminal can display the image in real time, so that the user can real-time Understand the condition of the observation object.
  • the display device may display the aforementioned interactive interface, and the interactive interface may include an area for displaying the image.
  • the waypoint information of the one waypoint and the next waypoint is generated by a user operating an interactive interface displayed on the control terminal, and the method may further include:
  • Step C1 During the process of the drone flying to the waypoint, and/or when the drone is hovering at the one waypoint, obtain an indication of obstacles around the drone Obstacle information for the distribution of objects.
  • FIG. 4 shows an interactive interface diagram of a control terminal provided by an embodiment of the present invention, where the control terminal can use the positioning data generated by its own positioning system or receive the drone
  • the navigation map interface 40 is generated from the positioning data sent by the positioning system.
  • the navigation map interface 40 may include multiple candidate waypoints, such as waypoint B to waypoint G.
  • the user can select waypoint B to waypoint E. Operation, get the waypoint information of each waypoint from waypoint B to waypoint E.
  • the drone can also obtain information indicating the distribution of obstacles around the drone.
  • Obstacle information the obstacle may be an object that interferes with the normal operation of the drone, such as tall buildings, big trees, etc.
  • the obstacle information includes point cloud or depth information obtained by a sensor of the drone.
  • the drone can be equipped with a point cloud sensor or a depth sensor to collect point cloud or depth information respectively.
  • Step C2 Send the obstacle information to the control terminal, so that the control terminal displays the area around the drone where waypoints can be set in the interactive interface according to the obstacle information.
  • the control terminal after the control terminal receives the obstacle information, it can display the position of the corresponding obstacle 401 and the obstacle in the navigation map interface 40 (ie, the interactive interface) according to the obstacle information.
  • the size range of 401, the area where waypoints can be set around the drone can be regarded as the area in the navigation map interface 40 except for the size range of the obstacle 401.
  • step 104 may specifically include:
  • Sub-step 1041 when the waypoint information of the next waypoint sent by the control terminal is obtained, and the waypoint is located in the area where the waypoint can be set, according to the waypoint information of the next waypoint, Control the drone to fly to the next waypoint.
  • the drone can control the drone to fly to the The next waypoint.
  • step 104 may specifically include:
  • Sub-step 1042 when the waypoint is outside the area where the waypoint can be set, control the drone to output prompt information.
  • the drone can be controlled to output prompt information , Such as controlling the drone to light up warning lights, sound the whistle, and send alarm information to the control terminal.
  • the method further includes:
  • Step D1 When the drone flies to the waypoint, send waypoint request information to the control terminal, so that the control terminal displays the request prompt notification of the next waypoint.
  • the drone when it flies to a waypoint, it can send waypoint request information to the control terminal, so that the control terminal can display the request prompt notification of the next waypoint.
  • the next waypoint corresponding to the man-machine improves the flight continuity of the drone.
  • the method further includes:
  • Step E1 During the flight of the drone from the one waypoint to the next waypoint, if the cancellation instruction information of the next waypoint is received, control the drone to operate at the current Position hover.
  • control terminal can also send the cancellation instruction information of the next waypoint to the drone according to actual needs, and the drone can cancel the planned next waypoint according to the cancellation instruction information. And control the drone to hover at the current position to wait to receive a new waypoint. By canceling the instruction information, the user can cancel the next waypoint if it is judged that the planned next waypoint is not appropriate. .
  • the method further includes:
  • Step F1 During the flight of the drone from the one waypoint to the next waypoint, if the waypoint information of the next updated waypoint is received, control the drone to move to the The next update waypoint flight.
  • the control terminal can also send the waypoint information of the next updated waypoint to the drone according to actual needs, and the drone can update the planned waypoint information according to the waypoint information of the next updated waypoint.
  • the next waypoint is cancelled, and the next updated waypoint of the drone is controlled as the target point, and the drone is controlled to fly to the next updated waypoint.
  • the user can update the next waypoint to the updated waypoint in the case of judging that the planned next waypoint is not appropriate.
  • the UAV control method acquires the waypoint information of a waypoint sent by the control terminal, where the waypoint information includes at least the two-dimensional position of the waypoint; Waypoint information, control the drone to fly to the waypoint; before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint sent by the control terminal, control the drone to hover; When reaching the waypoint information of the next waypoint sent by the control terminal, control the drone to fly to the next waypoint according to the waypoint information of the next waypoint.
  • the invention restricts the drone to be in a safe position by controlling the drone to hover before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint.
  • the user does not need to plan a complete route before the start of the flight mission. Instead, the user can plan the route of the drone through a step-by-step planning method from one waypoint to the next during the execution of the mission. Each step of the planning can be based on the latest environmental information of the UAV to fully guarantee flight safety.
  • FIG. 5 is a block diagram of an unmanned aerial vehicle control device provided by an embodiment of the present invention.
  • the unmanned aerial vehicle control device 500 may include: a communication device 501 and a processor 502;
  • the communication device 501 is configured to perform: acquiring waypoint information of a waypoint sent by the control terminal, where the waypoint information includes at least the two-dimensional position of the waypoint;
  • the processor 502 is configured to execute:
  • control the drone When the waypoint information of the next waypoint sent by the control terminal is acquired, control the drone to fly to the next waypoint according to the waypoint information of the next waypoint.
  • the waypoint information further includes task indication information
  • the processor is further configured to execute:
  • the drone When the drone flies to the next waypoint, according to the waypoint information of the next waypoint, the drone is controlled to execute the work task corresponding to the task instruction information.
  • the drone includes a photographing device 503, and the processor is configured to execute: obtain indication information of an observation object, where the indication information includes at least two-dimensional position information;
  • the shooting direction of the shooting device is adjusted according to the instruction information of the observation object, so that the shooting direction points to all the waypoints.
  • the observation object is adjusted according to the instruction information of the observation object, so that the shooting direction points to all the waypoints.
  • the drone includes a photographing device
  • the processor is further configured to execute: during the flight of the drone to the waypoint and the next waypoint, The image collected by the photographing device is sent to the control terminal, so that the control terminal displays the image.
  • it further includes an observation sensor.
  • the waypoint information of the one waypoint and the next waypoint is generated by the user operating the interactive interface displayed on the control terminal, and the processing The device is also used to perform: in the process of the movable device flying to the waypoint, and/or when the movable device is hovering at the one waypoint, acquiring instructions for the drone Obstacle information of the surrounding obstacles;
  • the communication device is also used to execute:
  • the processor is specifically configured to execute:
  • the control terminal controls the waypoint information according to the waypoint information of the next waypoint.
  • the man-machine flies to the next waypoint.
  • the obstacle information includes point cloud or depth information obtained by a sensor of a drone.
  • the processor is further configured to execute: when the waypoint is outside the area where the waypoint can be set, control the drone to output prompt information.
  • the communication device is further configured to execute: when the drone flies to the waypoint, send waypoint request information to the control terminal, so that the control terminal displays the Request notification for the next waypoint.
  • the processor is further configured to execute: when the drone is flying from the one waypoint to the next waypoint, if the next waypoint is received
  • the cancellation instruction information of the drone controls the drone to hover at the current position.
  • the processor is further configured to execute: during the flight of the drone from the one waypoint to the next waypoint, if the next updated waypoint is received
  • the waypoint information controls the UAV to fly to the next updated waypoint.
  • the drone control device acquires the waypoint information of a waypoint sent by the control terminal, where the waypoint information includes at least the two-dimensional position of the waypoint; according to the waypoint of a waypoint Information, control the drone to fly to the waypoint; before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint sent by the control terminal, control the drone to hover; after the control is acquired
  • the terminal sends the waypoint information of the next waypoint, control the drone to fly to the next waypoint according to the waypoint information of the next waypoint.
  • the invention restricts the drone to be in a safe position by controlling the drone to hover before the drone has flown to the waypoint and has not received the waypoint information of the next waypoint.
  • the user does not need to plan a complete route before the start of the flight mission. Instead, the user can plan the route of the drone through a step-by-step planning method from one waypoint to the next during the execution of the mission. Each step of the planning can be based on the latest environmental information of the UAV to fully guarantee flight safety.
  • an embodiment of the present invention also provides an unmanned aerial vehicle 600, which includes the unmanned aerial vehicle control device 602 and the power system 601 as described above.
  • the power system 601 is used to provide flight power for the drone 600.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned drone control method embodiment is realized, and the same can be achieved. In order to avoid repetition, I won’t repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • this application can be provided as a method, a control terminal, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing terminal equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction control terminal, The instruction controls the terminal to realize the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operation steps are executed on the computer or other programmable terminal equipment to produce computer-implemented processing, so that the computer or other programmable terminal equipment
  • the instructions executed above provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机控制方法、装置及无人机,所述方法包括:获取控制终端发送的一个航点的航点信息(101),根据一个航点的航点信息,控制无人机飞行至航点(102);在无人机已飞行至航点,且未接收到控制终端发送的下一个航点的航点信息之前,控制无人机悬停(103);在获取到控制终端发送的下一个航点的航点信息时,控制无人机飞行至下一个航点(104)。本发明在无人机已飞行至航点,且未接收到下一个航点的航点信息之前,通过控制无人机悬停的方式。另外,用户可以实现步进式的航线规划,提高航线规划的灵活性,充分保障飞行安全。

Description

无人机控制方法、装置及无人机 技术领域
本发明属于无人机控制技术领域,特别是涉及一种无人机控制方法、装置及无人机。
背景技术
无人机航线飞行广泛应用于农业、巡检等领域,能够显著提高任务执行效率和自动化程度。航线飞行任务通常包括:航线飞行。航线飞行是指无人机沿着若干航点连接成的航路自动飞行的过程;
在目前,航线飞行任务的具体执行包括:用户在客户端配置无人机的飞行航点;无人机的航线规划算法依据用户配置,规划出满足任务要求的航线;客户端将规划好的航线任务上传到无人机;无人机自动执行航线飞行。按照上述过程,无人机将按照规划航线自动飞行,从而实现作业需求。
但是,目前的方案中,由于无人机的飞行空域环境常常未知且复杂多变,使得无人机的航线往往难以进行事先规划,另外,即使无人机的航线已事先规划完毕,在复杂飞行空域环境的影响下,也使得无人机的航线难以顺利执行。
发明内容
本发明提供一种无人机控制方法、装置、控制终端及无人机,以便解决现有技术中无人机的航线规划的灵活性不高的问题。
第一方面,本发明实施例提供了一种无人机控制方法,该方法可以包括:
获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括所述航点的二维位置;
根据所述一个航点的航点信息,控制所述无人机飞行至所述航点;
在所述无人机已飞行至所述航点,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制所述无人机悬停;
在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
第二方面,本发明实施例提供了一种无人机控制装置,该无人机控制装置可以包括:通信装置和处理器,其中,
所述通信装置用于执行:获取控制终端发送的一个航点的航点信息,其 中,航点信息至少包括所述航点的二维位置;
所述处理器用于执行:
根据所述一个航点的航点信息,控制所述无人机飞行至所述航点;
在所述无人机已飞行至所述航点,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制所述无人机悬停;
在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
本发明实施例的第三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述所述的无人机控制方法的步骤。
本发明实施例的第四方面,提供了一种无人机,包括:动力系统,用于为无人机提供飞行动力;如第二方面所述的无人机控制装置。
在本发明实施例中,本发明通过获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括航点的二维位置;根据一个航点的航点信息,控制无人机飞行至航点;在无人机已飞行至航点,且未接收到控制终端发送的下一个航点的航点信息之前,控制无人机悬停;在获取到控制终端发送的下一个航点的航点信息时,根据下一个航点的航点信息,控制无人机飞行至下一个航点。本发明在无人机已飞行至航点,且未接收到下一个航点的航点信息之前,通过控制无人机悬停的方式,限制无人机处于安全位置,避免无人机在未知空域中受到干扰因素的干扰,降低飞行风险。另外,用户无需在飞行任务开始之前就规划好完整的航线,而是可以在任务执行过程中通过一个航点至下一个航点的步进式规划方式,实现无人机的航线规划,使得每一步规划都可以基于无人机当前最新的环境信息,充分保障飞行安全。
附图说明
图1是本发明实施例提供的一种无人机控制方法的步骤流程图;
图2是本发明实施例提供的一种无人机控制方法的工作示意图;
图3是本发明实施例提供的另一种无人机控制方法的工作示意图;
图4是本发明实施例提供的一种控制终端的界面图;
图5是本发明实施例提供的一种无人机控制装置的框图;
图6是本发明实施例提供的一种无人机的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例提供的一种无人机控制方法的步骤流程图,如图1所示,该方法可以包括:
步骤101、获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括所述航点的二维位置。
具体地,用户通过规划飞行航线中的航点来规划无人机的飞行航线,其中,航点是无人机的飞行航线中的特征点,是无人机需要到达的点。所述航点的航点指示信息至少包括航点的二维位置,其中,所述航点的二维位置为经度和纬度。在某些情况中,所述航点信息还包括高度信息。在某些情况中,所述航点指示信息还包括任务指示信息,当无人机飞行至所述航点时,执行所述任务指示信息对应的工作任务。
参照图2,其示出了本发明实施例提供的一种无人机控制方法的工作示意图,本发明实施例提供的一种无人机控制方法可以应用于一种无人机10,无人机上设置有无人机控制装置,所述控制方法可以由所述无人机控制装置来执行。
进一步的,用户可以通过控制终端20,进行航点的规划,并将航点通过无线连接传输至无人机10,控制终端20可以为遥控器、个人电脑、移动终端中的一种或多种。具体的,控制终端20中可以显示交互界面,例如,相应的航点规划界面,以使得用户在所述交互界面中进行航点选择或航点添加操作。用户对所述控制终端显示的交互界面进行操作,控制终端通过检索所述操作生成航点的航点信息。
具体的,参照图2,在一种实际应用场景中,假设未知空域30之外的区域为已知空域,无人机10需在未知空域30中进行飞行作业任务,则在开始飞行任务之前,控制终端20可以指定一个靠近未知空域30的航点A,并将航点A的航点信息发送给无人机10,以供无人机10飞行至航点A的位置,以等待进入未知空域30的后续航点规划。
需要说明的是,在该步骤中,控制终端20发送的一个航点的航点信息 也可以为未知空域30中的某个航点。本发明实施例对此不做限定。
步骤102、根据所述一个航点的航点信息,控制所述无人机飞行至所述航点。
在该步骤中,无人机可以将航点的航点信息添加至自身的导航系统,并以该航点为目的点,根据所述航点信息控制可移动设备无人机飞行至该航点。
步骤103,在所述无人机已飞行至所述航点,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制所述无人机悬停。
在本发明实施例中,参照图2,由于未知空域30中环境复杂多变,可能存在较多干扰无人机10运行的干扰因素,如障碍物、大风等,因此,在无人机10已飞行至航点(如航点A),但还未接收到控制终端发送的下一个航点(如航点B)的航点信息之前,无人机10可以在航点A位置处保持悬停工作状态,以避免遭受未知空域30中干扰因素的干扰,降低飞行风险。
步骤104,在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,根据所述航点信息控制所述无人机飞行至所述下一个航点。
在本发明实施例中,在无人机获取到控制终端发送的下一个航点的航点信息时,无人机可以将下一个航点的航点信息添加至自身的导航系统,并以该下一个航点为目的点,控制无人机飞行至该下一个航点。
具体的,控制终端发送一个航点A的航点信息给无人机,无人机向航点A飞行,在所述无人机已飞行至所述航点A,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制无人机悬停。无人机在航点A悬停时或者向航点A飞行的过程中,控制终端发送的下一个航点B的航点信息给无人机,无人机从航点A向航点B飞行,在所述无人机已飞行至所述航点B,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制无人机悬停。通过这样方式,无人机10在未知空域30由B-C-D-E的移动路径,提高了航线规划的灵活性。
可选的,航点信息还包括任务指示信息,所述方法还可以包括:
步骤A1、在所述无人机飞行至所述一个航点时,根据所述一个航点的航点信息,执行所述任务指示信息对应的工作任务。
步骤A2、在所述无人机飞行至所述下一个航点时,根据所述下一个航点的航点信息,执行所述任务指示信息对应的工作任务。
在本发明实施例中,无人机可以具有负载装置,如拍摄装置、拍摄装置对应的云台,以及其他能够执行工作任务的装置等。
具体的,控制终端发送的航点信息还包括任务指示信息,任务指示信息可以用于指示无人机执行相应的工作任务,如通过拍摄装置进行拍摄、旋转云台至合适的角度等。当无人机飞行至所述航点时,可以根据所述任务指示信息控制无人机执行相应的工作任务。其中,所述任务指示信息可以是工作任务对应的标识信息,例如开启拍摄装置拍照或者录像功能的标识码、云台转动的角度等等。
可选的,无人机包括拍摄装置,所述方法还可以包括:
步骤B1、获取观测对象的指示信息,其中,所述指示信息至少包括二维位置信息。
在本发明实施例中,无人机可以包括拍摄装置,以进行对观测对象的拍摄任务,为了保证拍摄任务的质量,无人机可以获取观测对象的指示信息,指示信息至少包括观测对象的二维位置信息(例如经度和纬度),以对观测对象的位置进行指示,使得拍摄装置可以在拍摄过程中,根据指示信息调整拍摄方向以使拍摄装置一直对观测对象进行拍摄或者观测,提高拍摄质量。
具体地,所述获取观测对象的指示信息可以包括:获取所述控制终端发送的观测信息。用户可以对控制终端显示的交互界面进行操作,控制终端可以检测用户的操作,并生成所述观测对象的指示信息。
在实施例中,无人机将拍摄装置拍摄的图像发送给所述控制终端以使所述控制终端显示所述图像,所述获取观测对象的指示信息可以包括:获取所述控制终端发送的所述观测对象在所述图像的位置信息,其中,所述观测对象在图像中的位置信息是控制终端通过检测用户对显示的图像进行的观测对象选择操作确定的。进一步地,用户可以点击或者框选所述显示的图像中观测对象,控制终端可以将用户点击或者框选的观测对象在所述图像中的位置信息发送给无人机。无人机可以根据观测对象在所述图像的位置信息确定所述观测对象的观测信息。
在某些实施例中,指示信息还可以包括观测对象的其他信息,如观测对象的标识等。
步骤B2、在所述无人机飞行至所述一个航点和所述下一个航点的过程中,根据所述观测对象的指示信息,调整所述拍摄装置的拍摄方向,以使所述拍摄方向指向所述观测对象。
例如,参照图3,其示出了本发明实施例提供的另一种无人机控制方法的工作示意图,在无人机10飞行至一个航点和下一个航点的过程中,可以根据观测对象X的指示信息,调整拍摄装置101的拍摄方向,以使拍摄方向 指向观测对象X。
步骤B3、在所述无人机飞行至所述航点和所述下一个航点的过程中,将所述拍摄装置采集到的图像发送至所述控制终端,以使所述控制终端显示所述图像。
在本发明实施例中,控制终端中可以包括显示装置,无人机可以通过无线连接,将拍摄装置采集到的图像发送至控制终端,以使控制终端对图像进行实时显示,使得用户可以实时的了解观测对象的状况。例如,所述显示装置可以显示如前所述的交互界面,交互界面中可以包括显示所述图像的区域。
可选的,所述一个航点和所述下一个航点的航点信息,是由用户对所述控制终端显示的交互界面进行操作而生成的,所述方法还可以包括:
步骤C1、在所述无人机飞行至所述航点的过程中,和/或在所述无人机在所述一个航点悬停时,获取用于指示所述无人机周围的障碍物分布的障碍物信息。
在本发明实施例中,参照图4,其示出了本发明实施例提供的一种控制终端的交互界面图,其中,控制终端可以通过自身的定位系统产生的定位数据,或接收无人机的定位系统发送的定位数据,生成导航地图界面40,其中,导航地图界面40可以包括多个候选航点,如航点B至航点G,用户可以通过对航点B至航点E的选择操作,获取航点B至航点E的各个航点的航点信息。
进一步的,在无人机飞行至所述航点的过程中,和/或在无人机在一个航点悬停时,无人机还可以获取用于指示无人机周围的障碍物分布的障碍物信息,该障碍物可以为具有干扰无人机正常运行的物体,如高楼,大树等。
可选的,障碍物信息包括无人机的传感器获取的点云或深度信息。
其中,无人机可以设置有点云传感器或深度传感器,用于分别采集点云或深度信息。
步骤C2、将所述障碍物信息发送给所述控制终端,以使所述控制终端根据所述障碍物信息,在所述交互界面中显示所述无人机周围可设置航点的区域。
在本发明实施例中,参照图4,控制终端在接收到障碍物信息之后,可以在导航地图界面40(即交互界面)中,根据障碍物信息,显示对应的障碍物401的位置和障碍物401的大小范围,无人机周围可设置航点的区域即可以为导航地图界面40中,除障碍物401的大小范围之外的区域。
可选的,步骤104具体可以包括:
子步骤1041、当获取到所述控制终端发送的下一个航点的航点信息,且所述航点位于所述可设置航点的区域时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
在该步骤中,针对用户在交互界面中选取的位于可设置航点的区域的下一个航点,无人机可以根据下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
可选的,步骤104具体可以包括:
子步骤1042、当所述航点位于所述可设置航点的区域之外时,控制所述无人机输出提示信息。
在该步骤中,当航点位于可设置航点的区域之外时,可认为选取的航点周围存在影响无人机正常飞行的障碍物或干扰现象,此时可以控制无人机输出提示信息,如控制无人机点亮警示灯、鸣笛、发送告警信息至控制终端等。
可选的,所述方法还包括:
步骤D1、在所述无人机飞行至所述航点时,向所述控制终端发送航点请求信息,以使所述控制终端显示所述下一航点的请求提示通知。
在该步骤中,无人机在飞行至较高或较远或飞行区域可视程度较低的情况下,用户常常难以观测到无人机飞行的位置,也就无法通过肉眼观测到无人机是否飞行至航点。
因此,在无人机飞行至航点时,可以向控制终端发送航点请求信息,以使控制终端显示下一航点的请求提示通知,用户可以通过下一航点的请求提示通知,规划无人机对应的下一航点,提高无人机飞行连贯性。
可选的,所述方法还包括:
步骤E1、在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到所述下一航点的撤销指示信息,控制所述无人机在当前位置悬停。
在本发明实施例中,控制终端还可以根据实际需求,发送下一航点的撤销指示信息至无人机,无人机可以根据撤销指示信息,将已规划好的下一个航点进行撤销,并控制无人机在当前位置悬停,以等待接收新的航点,通过撤销指示信息,可以使得用户在判断已规划的下一航点不合适的情况下,对该下一航点进行撤销。
可选的,所述方法还包括:
步骤F1、在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到下一更新航点的航点信息,控制所述无人机向所述下一更 新航点飞行。
在本发明实施例中,控制终端还可以根据实际需求,发送下一更新航点的航点信息至无人机,无人机可以根据下一更新航点的航点信息,将已规划好的下一个航点进行撤销,并控制无人机以下一更新航点为目标点,控制所述无人机向所述下一更新航点飞行。通过下一更新航点的航点信息,可以使得用户在判断已规划的下一航点不合适的情况下,将该下一航点更新为该更新航点。
综上,本发明实施例提供的一种无人机控制方法,通过获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括航点的二维位置;根据一个航点的航点信息,控制无人机飞行至航点;在无人机已飞行至航点,且未接收到控制终端发送的下一个航点的航点信息之前,控制无人机悬停;在获取到控制终端发送的下一个航点的航点信息时,根据下一个航点的航点信息,控制无人机飞行至下一个航点。本发明在无人机已飞行至航点,且未接收到下一个航点的航点信息之前,通过控制无人机悬停的方式,限制无人机处于安全位置,避免无人机在未知空域中收到干扰因素的干扰,降低飞行风险。另外,用户无需在飞行任务开始之前就规划好完整的航线,而是可以在任务执行过程中通过一个航点至下一个航点的步进式规划方式,实现无人机的航线规划,使得每一步规划都可以基于无人机当前最新的环境信息,充分保障飞行安全。
图5是本发明实施例提供的一种无人机控制装置的框图,如图5所示,该无人机控制装置500可以包括:通信装置501和处理器502;
所述通信装置501用于执行:获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括所述航点的二维位置;
所述处理器502用于执行:
根据所述一个航点的航点信息,控制所述无人机飞行至所述航点;
在所述无人机已飞行至所述航点,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制所述无人机悬停;
在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
在某些实施例中,所述航点信息还包括任务指示信息,所述处理器还用于执行:
在所述无人机飞行至所述一个航点时,根据所述一个航点的航点信息, 控制无人机执行所述任务指示信息对应的工作任务;
在所述无人机飞行至所述下一个航点时,根据所述下一个航点的航点信息,控制无人机执行所述任务指示信息对应的工作任务。
在某些实施例中,所述无人机包括拍摄装置503,所述处理器用于执行:获取观测对象的指示信息,其中,所述指示信息至少包括二维位置信息;
在所述无人机飞行至所述一个航点和所述下一个航点的过程中,根据所述观测对象的指示信息,调整所述拍摄装置的拍摄方向,以使所述拍摄方向指向所述观测对象。
在某些实施例中,所述无人机包括拍摄装置,所述处理器还用于执行:在所述无人机飞行至所述航点和所述下一个航点的过程中,将所述拍摄装置采集到的图像发送至所述控制终端,以使所述控制终端显示所述图像。
在某些实施例中,还包括观测传感器,所述一个航点和所述下一个航点的航点信息,是由用户对所述控制终端显示的交互界面进行操作而生成的,所述处理器还用于执行:在所述可移动设备飞行至所述航点的过程中,和/或在所述可移动设备在所述一个航点悬停时,获取用于指示所述无人机周围的障碍物分布的障碍物信息;
所述通信装置还用于执行:
将所述障碍物信息发送给所述控制终端,以使所述控制终端根据所述障碍物信息,在所述交互界面中显示所述无人机周围可设置航点的区域;
所述处理器具体用于执行:
当获取到所述控制终端发送的下一个航点的航点信息,且所述航点位于所述可设置航点的区域时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
在某些实施例中,所述障碍物信息包括无人机的传感器获取的点云或深度信息。
在某些实施例中,所述处理器还用于执行:当所述航点位于所述可设置航点的区域之外时,控制所述无人机输出提示信息。
在某些实施例中,所述通信装置还用于执行:在所述无人机飞行至所述航点时,向所述控制终端发送航点请求信息,以使所述控制终端显示所述下一航点的请求提示通知。
在某些实施例中,所述处理器还用于执行:在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到所述下一航点的撤销指示信息,控制所述无人机在当前位置悬停。
在某些实施例中,所述处理器还用于执行:在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到下一更新航点的航点信息,控制所述无人机向所述下一更新航点飞行。
综上,本发明实施例提供的无人机控制装置,通过获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括航点的二维位置;根据一个航点的航点信息,控制无人机飞行至航点;在无人机已飞行至航点,且未接收到控制终端发送的下一个航点的航点信息之前,控制无人机悬停;在获取到控制终端发送的下一个航点的航点信息时,根据下一个航点的航点信息,控制无人机飞行至下一个航点。本发明在无人机已飞行至航点,且未接收到下一个航点的航点信息之前,通过控制无人机悬停的方式,限制无人机处于安全位置,避免无人机在未知空域中收到干扰因素的干扰,降低飞行风险。另外,用户无需在飞行任务开始之前就规划好完整的航线,而是可以在任务执行过程中通过一个航点至下一个航点的步进式规划方式,实现无人机的航线规划,使得每一步规划都可以基于无人机当前最新的环境信息,充分保障飞行安全。
参照图6,本发明实施例还提供一种无人机600,包括如前所述的无人机控制装置602和动力系统601。其中,所述动力系统601用于为无人机600提供飞行动力。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述无人机控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请的实施例可提供为方法、控制终端、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、终端设备(系统)、和计算机程序产品 的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的控制终端。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令控制终端的制造品,该指令控制终端实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种无人机控制方法,其特征在于,包括:
    获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括所述航点的二维位置;
    根据所述一个航点的航点信息,控制所述无人机飞行至所述航点;
    在所述无人机已飞行至所述航点,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制所述无人机悬停;
    在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
  2. 根据权利要求1所述的方法,其特征在于,所述航点信息还包括任务指示信息,所述方法还包括:
    在所述无人机飞行至所述一个航点时,根据所述一个航点的航点信息,控制无人机执行所述任务指示信息对应的工作任务;
    在所述无人机飞行至所述下一个航点时,根据所述下一个航点的航点信息,控制无人机执行所述任务指示信息对应的工作任务。
  3. 根据权利要求所述的1或2所述的方法,所述无人机包括拍摄装置,其特征在于,所述方法还包括:
    获取观测对象的指示信息,其中,所述指示信息至少包括二维位置信息;
    在所述无人机飞行至所述一个航点和所述下一个航点的过程中,根据所述观测对象的指示信息,调整所述拍摄装置的拍摄方向,以使所述拍摄方向指向所述观测对象。
  4. 根据权利要求1-3任一项所述的方法,所述无人机包括拍摄装置,其特征在于,所述方法还包括:
    在所述无人机飞行至所述航点和所述下一个航点的过程中,将所述拍摄装置采集到的图像发送至所述控制终端,以使所述控制终端显示所述图像。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述一个航点和所述下一个航点的航点信息,是由用户对所述控制终端显示的交互界面进行操作而生成的,所述方法还包括:
    在所述无人机飞行至所述航点的过程中,和/或在所述无人机在所述一个 航点悬停时,获取用于指示所述无人机周围的障碍物分布的障碍物信息;
    将所述障碍物信息发送给所述控制终端,以使所述控制终端根据所述障碍物信息,在所述交互界面中显示所述无人机周围可设置航点的区域;
    所述在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点,包括:
    当获取到所述控制终端发送的下一个航点的航点信息,且所述航点位于所述可设置航点的区域时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
  6. 根据权利要求5所述的方法,其特征在于,所述障碍物信息包括无人机的传感器获取的点云或深度信息。
  7. 根据权利要求5或6所述方法,其特征在于,所述方法还包括:
    当所述航点位于所述可设置航点的区域之外时,控制所述无人机输出提示信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    在所述无人机飞行至所述航点时,向所述控制终端发送航点请求信息,以使所述控制终端显示所述下一航点的请求提示通知。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到所述下一航点的撤销指示信息,控制所述无人机在当前位置悬停。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到下一更新航点的航点信息,控制所述无人机向所述下一更新航点飞行。
  11. 一种无人机控制装置,其特征在于,所述装置包括:通信装置和处理器,其中,
    所述通信装置用于执行:获取控制终端发送的一个航点的航点信息,其中,航点信息至少包括所述航点的二维位置;
    所述处理器用于执行:
    根据所述一个航点的航点信息,控制所述无人机飞行至所述航点;
    在所述无人机已飞行至所述航点,且未接收到所述控制终端发送的下一个航点的航点信息之前,控制所述无人机悬停;
    在获取到所述控制终端发送的下一个航点的航点信息时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
  12. 根据权利要求11所述的装置,其特征在于,所述航点信息还包括任务指示信息,所述处理器还用于执行:
    在所述无人机飞行至所述一个航点时,根据所述一个航点的航点信息,控制无人机执行所述任务指示信息对应的工作任务;
    在所述无人机飞行至所述下一个航点时,根据所述下一个航点的航点信息,控制无人机执行所述任务指示信息对应的工作任务。
  13. 根据权利要求11或12所述的装置,其特征在于,所述无人机包括拍摄装置,所述处理器用于执行:获取观测对象的指示信息,其中,所述指示信息至少包括二维位置信息;
    在所述无人机飞行至所述一个航点和所述下一个航点的过程中,根据所述观测对象的指示信息,调整所述拍摄装置的拍摄方向,以使所述拍摄方向指向所述观测对象。
  14. 根据权利要求11至13任一项所述的装置,其特征在于,所述无人机包括拍摄装置,所述处理器还用于执行:在所述无人机飞行至所述航点和所述下一个航点的过程中,将所述拍摄装置采集到的图像发送至所述控制终端,以使所述控制终端显示所述图像。
  15. 根据权利要求11至14任一项所述的装置,其特征在于,还包括观测传感器,所述一个航点和所述下一个航点的航点信息,是由用户对所述控制终端显示的交互界面进行操作而生成的,所述处理器还用于执行:在所述可移动设备飞行至所述航点的过程中,和/或在所述可移动设备在所述一个航点悬停时,获取用于指示所述无人机周围的障碍物分布的障碍物信息;
    所述通信装置还用于执行:
    将所述障碍物信息发送给所述控制终端,以使所述控制终端根据所述障 碍物信息,在所述交互界面中显示所述无人机周围可设置航点的区域;
    所述处理器具体用于执行:
    当获取到所述控制终端发送的下一个航点的航点信息,且所述航点位于所述可设置航点的区域时,根据所述下一个航点的航点信息,控制所述无人机飞行至所述下一个航点。
  16. 根据权利要求15所述的装置,其特征在于,所述障碍物信息包括无人机的传感器获取的点云或深度信息。
  17. 根据权利要求15或16所述的装置,其特征在于,所述处理器还用于执行:当所述航点位于所述可设置航点的区域之外时,控制所述无人机输出提示信息。
  18. 根据权利要求11至17任一项所述的装置,其特征在于,所述通信装置还用于执行:在所述无人机飞行至所述航点时,向所述控制终端发送航点请求信息,以使所述控制终端显示所述下一航点的请求提示通知。
  19. 根据权利要求11至18任一项所述的装置,其特征在于,所述处理器还用于执行:在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到所述下一航点的撤销指示信息,控制所述无人机在当前位置悬停。
  20. 根据权利要求11至19任一项所述的装置,其特征在于,所述处理器还用于执行:在所述无人机飞行从所述一个航点向所述下一个航点飞行的过程中,若接收到下一更新航点的航点信息,控制所述无人机向所述下一更新航点飞行。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现权利要求1至10中任一项所述的无人机控制方法的步骤。
  22. 一种无人机,包括:
    动力系统,用于为无人机提供飞行动力;
    权利要求11至20任一所述的无人机控制装置。
PCT/CN2020/077231 2020-02-28 2020-02-28 无人机控制方法、装置及无人机 WO2021168810A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/077231 WO2021168810A1 (zh) 2020-02-28 2020-02-28 无人机控制方法、装置及无人机
CN202080018844.2A CN113574487A (zh) 2020-02-28 2020-02-28 无人机控制方法、装置及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077231 WO2021168810A1 (zh) 2020-02-28 2020-02-28 无人机控制方法、装置及无人机

Publications (1)

Publication Number Publication Date
WO2021168810A1 true WO2021168810A1 (zh) 2021-09-02

Family

ID=77489727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077231 WO2021168810A1 (zh) 2020-02-28 2020-02-28 无人机控制方法、装置及无人机

Country Status (2)

Country Link
CN (1) CN113574487A (zh)
WO (1) WO2021168810A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167500A (zh) * 2022-05-19 2022-10-11 北京远度互联科技有限公司 一种无人机飞行控制方法、装置、系统和可读存储介质
CN117032294A (zh) * 2023-10-09 2023-11-10 中国电信股份有限公司无人科技技术创新中心 一种基于5g网联的无人机航线规划系统及规划方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933745A2 (de) * 1998-01-30 1999-08-04 Nokia Mobile Phones Ltd. Navigationsverfahren, insbesondere für Fahrzeuge
WO2015180133A1 (zh) * 2014-05-30 2015-12-03 深圳市大疆创新科技有限公司 无人机的航向生成方法和系统
CN105867420A (zh) * 2016-05-16 2016-08-17 深圳市智璟科技有限公司 一种应用于无人机的快速模式切换系统及方法
CN107943093A (zh) * 2014-12-15 2018-04-20 深圳市大疆创新科技有限公司 一种飞行器控制方法、装置及飞行器
CN108701373A (zh) * 2017-11-07 2018-10-23 深圳市大疆创新科技有限公司 基于无人机航拍的三维重建方法、系统及装置
CN106406351B (zh) * 2016-10-28 2020-01-14 易瓦特科技股份公司 用于控制无人机航线的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790155B (zh) * 2016-04-08 2018-11-13 四川桑莱特智能电气设备股份有限公司 一种基于差分gps的输电线路无人机自主巡检系统及方法
CN107735737B (zh) * 2016-10-31 2021-11-19 深圳市大疆创新科技有限公司 一种航点编辑方法、装置、设备及飞行器
CN107943082A (zh) * 2017-12-01 2018-04-20 亿航智能设备(广州)有限公司 无人机飞控方法、装置和计算机可读介质
CN110570692B (zh) * 2018-06-06 2020-12-25 杭州海康机器人技术有限公司 一种无人机航线检测方法及装置
CN109542119B (zh) * 2018-12-08 2022-03-01 深圳飞马机器人科技有限公司 飞行器航线规划方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933745A2 (de) * 1998-01-30 1999-08-04 Nokia Mobile Phones Ltd. Navigationsverfahren, insbesondere für Fahrzeuge
WO2015180133A1 (zh) * 2014-05-30 2015-12-03 深圳市大疆创新科技有限公司 无人机的航向生成方法和系统
CN107943093A (zh) * 2014-12-15 2018-04-20 深圳市大疆创新科技有限公司 一种飞行器控制方法、装置及飞行器
CN105867420A (zh) * 2016-05-16 2016-08-17 深圳市智璟科技有限公司 一种应用于无人机的快速模式切换系统及方法
CN106406351B (zh) * 2016-10-28 2020-01-14 易瓦特科技股份公司 用于控制无人机航线的方法和设备
CN108701373A (zh) * 2017-11-07 2018-10-23 深圳市大疆创新科技有限公司 基于无人机航拍的三维重建方法、系统及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167500A (zh) * 2022-05-19 2022-10-11 北京远度互联科技有限公司 一种无人机飞行控制方法、装置、系统和可读存储介质
CN117032294A (zh) * 2023-10-09 2023-11-10 中国电信股份有限公司无人科技技术创新中心 一种基于5g网联的无人机航线规划系统及规划方法
CN117032294B (zh) * 2023-10-09 2023-12-12 中国电信股份有限公司无人科技技术创新中心 一种基于5g网联的无人机航线规划系统及规划方法

Also Published As

Publication number Publication date
CN113574487A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN111656424B (zh) 基于大数据的自动飞行无人机系统及其自动飞行方法
US11727814B2 (en) Drone flight operations
US10824170B2 (en) Autonomous cargo delivery system
EP3743781B1 (en) Automated and adaptive three-dimensional robotic site surveying
CN109029422B (zh) 一种多无人机协作构建三维调查地图的方法和装置
US9466219B1 (en) Unmanned vehicle mission planning, coordination and collaboration
US20190079509A1 (en) Autonomous Package Delivery System
US10283000B2 (en) Unmanned aerial vehicle deployment system
US8626361B2 (en) System and methods for unmanned aerial vehicle navigation
JP2020098567A (ja) 適応検知・回避システム
JP2014040231A (ja) 自主的な空間飛行計画および仮想空間抑制システム
WO2017139282A1 (en) Unmanned aerial vehicle privacy controls
WO2021168810A1 (zh) 无人机控制方法、装置及无人机
AU2017251682A1 (en) Systems and methods for establishing a flight pattern adjacent to a target for a vehicle to follow
WO2017147142A1 (en) Unmanned aerial vehicle visual line of sight control
US20220392353A1 (en) Unmanned aerial vehicle privacy controls
Millan-Romera et al. A UTM simulator based on ROS and Gazebo
WO2024067133A1 (zh) 基于3d地图的无人驾驶航空器飞行控制方法、系统和介质
KR20220075682A (ko) 자율주행 ai 드론 장치 및 그 자율주행방법
US20230042820A1 (en) Systems and methods for providing obstacle information to aircraft operator displays
KR20200080379A (ko) 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법
JP2009110507A (ja) ネットワークにおける異種データソース間情報共有方法及びシステム
Van Rensburg Investigating factors influencing UAS task automation in dynamic environments
WO2022234574A1 (en) Multi-drone beyond visual line of sight (bvlos) operation
Suvitie Control of an Autonomous Multicopter Fleet for Search and Rescue Missions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922417

Country of ref document: EP

Kind code of ref document: A1