WO2021168751A1 - Techniques for coexistence of wireless communication devices that use the same frequency resources - Google Patents

Techniques for coexistence of wireless communication devices that use the same frequency resources Download PDF

Info

Publication number
WO2021168751A1
WO2021168751A1 PCT/CN2020/077029 CN2020077029W WO2021168751A1 WO 2021168751 A1 WO2021168751 A1 WO 2021168751A1 CN 2020077029 W CN2020077029 W CN 2020077029W WO 2021168751 A1 WO2021168751 A1 WO 2021168751A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
time period
guard time
communication
subframe
Prior art date
Application number
PCT/CN2020/077029
Other languages
French (fr)
Inventor
Yiqing Cao
Yan Li
Lu Gao
Bin Han
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/077029 priority Critical patent/WO2021168751A1/en
Publication of WO2021168751A1 publication Critical patent/WO2021168751A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to techniques for coexistence of wireless communication devices that use the same frequency resources.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method for wireless communication by a first base station may include determining, by the first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station.
  • the guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station.
  • the method may also include transmitting, by the first base station, an indication of the guard time period size.
  • a first base station configured for wireless communication.
  • the first base station may include means for determining a size of a guard time period based, at least in part, on a distance between the first base station and a second base station.
  • the guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station.
  • the apparatus may also include means for transmitting an indication of the guard time period size.
  • a non-transitory computer-readable medium having program code recorded thereon may include program code executable by a computer for causing the computer to determine a size of a guard time period based, at least in part, on a distance between a first base station and a second base station.
  • the guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station.
  • the program code may also include program code executable by a computer for causing the computer to transmit an indication of the guard time period size.
  • a first base station may include at least one processor.
  • the base station may also include at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to determine a size of a guard time period based, at least in part, on a distance between a first base station and a second base station.
  • the guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station.
  • the at least one memory may further store processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to transmit an indication of the guard time period size.
  • a method for wireless communication by a UE may include receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station.
  • the method may also include receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period.
  • the method may further include receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period.
  • a UE configured for wireless communication.
  • the apparatus may include means for receiving an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station.
  • the apparatus may also include means for receiving a first communication from the first base station in a frequency band immediately before the guard time period.
  • the apparatus may further include means for receiving a second communication from the second base station in the frequency band immediately after the guard time period.
  • a non-transitory computer-readable medium having program code recorded thereon may include program code executable by a computer for causing the computer to receive an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station.
  • the program code may also include program code executable by a computer for causing the computer to receive a first communication from the first base station in a frequency band immediately before the guard time period.
  • the program code may also include program code executable by a computer for causing the computer to receive a second communication from the second base station in the frequency band immediately after the guard time period.
  • a UE may include at least one processor.
  • the UE may also include at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to receive an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station.
  • the at least one memory may further store processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to receive a first communication from the first base station in a frequency band immediately before the guard time period.
  • the at least one memory may further store processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to receive a second communication from the second base station in the frequency band immediately after the guard time period.
  • Figure 1 is a block diagram illustrating details of a wireless communication system according to some implementations of the present disclosure.
  • Figure 2 is a block diagram conceptually illustrating a design of a base station/gNB and a user equipment (UE) configured according to some implementations of the present disclosure.
  • UE user equipment
  • Figure 3 is a block diagram illustrating a method for wireless communication by a base station according to some implementations of the present disclosure.
  • Figure 4 is a diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
  • Figure 5 is another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
  • Figure 6 is yet another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
  • Figure 7 is a block diagram illustrating a method for wireless communication by a UE according to some implementations of the present disclosure.
  • Figure 8 is a block diagram illustrating example components of a base station according to some implementations of the present disclosure.
  • Figure 9 is a block diagram illustrating example components of a UE according to some implementations of the present disclosure.
  • This disclosure relates generally to providing or participating in communication as between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, long term evolution (LTE) networks, Global System for Mobile Communications (GSM) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long term evolution
  • GSM Global System for Mobile Communications
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as GSM.
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may include one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network.
  • An operator network may also include one or more LTE networks, and one or more other networks.
  • the various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may, for example, implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile communications
  • LTE is a release of UMTS that uses E-UTRA.
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications. Indeed, the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects.
  • devices incorporating described aspects and features may also include additional components and features for implementation and practice of claimed and described implementations. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (for example RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • a first base station may determine a size of a guard time period based, at least in part, on a distance between the first base station and a second base station.
  • a UE may receive an indication of the guard time period size from at least one of the first base station or second base station.
  • the UE may receive a first communication from the first base station in a frequency band immediately before the guard time period.
  • the UE may also receive a second communication from the second base station in the frequency band immediately after the guard time period.
  • the guard time period may reduce interference between the transmissions of the first communication and the second communication to the UE.
  • guard time periods interference between transmissions of different base stations within the same frequency band to a same UE during a certain time period may be reduced.
  • This interference reduction may allow for enhanced base station coexistence, especially when a base station transmits information using high transmit power levels.
  • Such use of guard time periods also improves spectral efficiency and utilization by allowing multiple base stations to communicate with a UE using the same frequency band. Improved communication quality and reliability may also be experienced as a result of reduced interference.
  • Figure 1 is a block diagram illustrating details of a wireless communication system according to some implementations of the present disclosure.
  • Figure 1 shows wireless network 100 for communication according to some implementations. While discussion of the technology of this disclosure is provided relative to an LTE-Anetwork (shown in Figure 1) , this is for illustrative purposes. Principles of the technology disclosed can be used in other network deployments, including fifth generation (5G) networks. As appreciated by a person having ordinary skill in the art, components appearing in Figure 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • 5G fifth generation
  • wireless network 100 includes a number of base stations, such as may include evolved node Bs (eNBs) or G node Bs (gNBs) . These may be referred to as gNBs 105.
  • a gNB may be a station that communicates with the UEs and may also be referred to as a base station, a node B, an access point, and the like.
  • Each gNB 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a gNB and a gNB subsystem serving the coverage area, depending on the context in which the term is used.
  • gNBs 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include two or more operator wireless networks) , and may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency band in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • wireless network 100 may include two or more operator wireless networks
  • wireless network 100 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency band in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • a gNB may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a gNB for a macro cell may be referred to as a macro gNB.
  • a gNB for a small cell may be referred to as a small cell gNB, a pico gNB, a femto gNB or a home gNB.
  • gNBs 105a, 105b and 105c are macro gNBs for the macro cells 110a, 110b and 110c, respectively.
  • gNBs 105x, 105y, and 105z are small cell gNBs, which may include pico or femto gNBs that provide service to small cells 110x, 110y, and 110z, respectively.
  • a gNB may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the gNBs may have similar frame timing, and transmissions from different gNBs may be approximately aligned in time.
  • the gNBs may have different frame timing, and transmissions from different gNBs may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation Partnership Project (3GPP)
  • UE user equipment
  • 3GPP 3rd Generation Partnership Project
  • UE user equipment
  • MS mobile station
  • AT access terminal
  • mobile terminal a wireless terminal, a remote terminal
  • handset a terminal
  • a user agent a mobile client, a client, or some other suitable terminology.
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an “Internet of things” (IoT) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • IoT Internet of things
  • GPS global positioning system
  • a mobile apparatus may additionally be an “Internet of things” (IoT) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter,
  • a mobile apparatus such as UEs 115, may be able to communicate with macro gNBs, pico gNBs, femto gNBs, relays, and the like.
  • a lightning bolt e.g., communication links 125 indicates wireless transmissions between a UE and a serving gNB, which is a gNB designated to serve the UE on the downlink and uplink, or desired transmission between gNBs.
  • backhaul communication 134 is illustrated as wired backhaul communications that may occur between gNBs, backhaul communications may additionally or alternatively be provided by wireless communications.
  • FIG 2 is a block diagram conceptually illustrating a design of a base station/gNB 105 and a user equipment (UE) 115 configured according to some implementations of the present disclosure. These can be one of the base stations/gNBs and one of the UEs in Figure 1.
  • the gNB 105 may be small cell gNB 105z in Figure 1
  • UE 115 may be UE 115z, which in order to access small cell gNB 105z, would be included in a list of accessible UEs for small cell gNB 105z.
  • gNB 105 may also be a base station of some other type.
  • gNB 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r.
  • transmit processor 220 may receive data from data source 212 and control information from controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ indicator channel) PHICH, physical downlink control channel (PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • Transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CRS cell-specific reference signal
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from gNB 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from all demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
  • transmit processor 264 may receive and process data (e.g., for the PUSCH) from data source 262 and control information (e.g., for the PUCCH) from controller/processor 280. Transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to gNB 105.
  • data e.g., for the PUSCH
  • control information e.g., for the PUCCH
  • controller/processor 280 e.g., for the PUCCH
  • Transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
  • Controllers/processors 240 and 280 may direct the operation at gNB 105 and UE 115, respectively. Controller/processor 240 and other processors and modules at gNB 105 and controllers/processor 280 and other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein. Memories 242 and 282 may store data and program codes for gNB 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and uplink.
  • Base stations such as base stations 105, may use various communication transmission schemes to transmit information to UEs, such as UEs 115.
  • UEs such as UEs 115.
  • a base station may use a broadcast scheme to transmit information to many UEs.
  • a base station may use a unicast scheme to transmit information to a specific UE.
  • base stations may transmit information using various transmit power levels. For example, in some aspects, a base station may transmit information with a transmit power greater than or equal to 1 kilowatt. In some aspects, such a base station capable of transmitting information with a transmit power greater than or equal to 1 kilowatt may be referred to as a high-power high-tower (HPHT) base station.
  • HPHT base stations may be used to broadcast information to many UEs.
  • HPHT base stations may broadcast content, such as enhanced television (enTV) content or other content from other content providers, to many UEs.
  • an HPHT base station may be configured to transmit information using only a broadcast scheme. In other aspects, an HPHT base station may be configured to transmit information using at least one of a broadcast or unicast scheme.
  • a wireless communication network may also include other base stations besides HPHT base stations.
  • a wireless communication network may include macrocell and/or microcell base stations.
  • macrocell and/or microcell base stations may transmit information with a transmit power less than 1 kilowatt.
  • the transmit power of a macrocell and/or microcell may be ten decibels (dBs) lower than that of a HPHT base station.
  • a UE may receive information from one or more base stations.
  • the one or more base stations may use the same frequency resources, such as the same frequency band, to communicate with the UE.
  • a transmission to a UE from one base station may encounter interference due to a transmission to the UE from a neighbor base station. The problem may be exacerbated when an interfering base station is a HPHT base station transmitting information with high power.
  • techniques for coexistence of wireless communication devices that use the same frequency resources may help reduce the interference between transmissions from multiple base stations that communicate with a UE.
  • FIG. 3 is a block diagram illustrating a method for wireless communication by a base station according to some implementations of the present disclosure. Aspects of method 300 may be implemented with various other aspects of this disclosure described with respect to Figures 1-2, 4-6, and 8.
  • the method 300 may be performed by a transmitting wireless device, such as a base station/gNB.
  • controller/processor 240 of base station 105 may control base station 105 to perform method 300.
  • method 300 includes determining, by a first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station.
  • base station 105 may, under control of controller/processor 240, determine a size of a guard time period at 302 based, at least in part, on a distance between itself and a second base station.
  • a guard time period may refer to a time period of separation/isolation between periods of information transmission. In other aspects, a guard time period may refer to a time period not used for transmission of information.
  • a receiving device such as a UE, may expect that no information will be received during the guard time period or may determine not to process any information received during the guard time period.
  • a guard time period may be used to prevent interference between a first transmission/reception of information in a frequency band and a second transmission/reception of information in the same frequency band.
  • a guard time period may enable devices, such as base stations 105, to transmit information using the same frequency resources without their transmissions interfering with each other.
  • a “size” of a guard time period may be represented as an amount of time and/or a number of symbols.
  • FIG 4 is a diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
  • base station 402 may be a HPHT base station and base stations 404a-c may be non-HPHT base stations, such as macrocell base stations.
  • UE 406 is also illustrated in Figure 4.
  • Figure 4 shows some aspects associated with determining, by the base station 402, a size of a guard time period based on a distance between the base station 402 and a second base station (for example, one of base stations 404a-c) , for example, as described with reference to block 302 of the method 300 of Figure 3.
  • base stations 402 and/or 404a may determine that the inter-site distance (ISD) between them is 100 km. Based on the 100 km ISD between each other, the base stations 402 and/or 404a may determine a size of a guard time period to be used when they both communicate with UE 406 over the same frequency band.
  • the determined guard time period size may be represented as N symbols.
  • base stations 402 and/or 404a may account for their determined guard time period size when they both communicate with UE 406 in the same frequency band.
  • communication stream 410 may represent the information received by UE 406 from base stations 402 and/or 404a in the same frequency band.
  • base station 402 may transmit broadcast content to UE 406 in a broadcast subframe 412a that is immediately before a guard time period (GT) 414a and may transmit broadcast content to UE 406 in a broadcast subframe 412b that is immediately before a GT 414b.
  • GT guard time period
  • base station 404a may transmit information to UE 406 in a unicast subframe 416a that is immediately after the GT 414a and may transmit information to UE 406 in a unicast subframe 416b that is immediately after the GT 414b.
  • base station 404a may transmit information to UE 406 in a unicast subframe 416a that is immediately after the GT 414a and may transmit information to UE 406 in a unicast subframe 416b that is immediately after the GT 414b.
  • the size, for example the N-symbol size, of each of the GTs 414 may be the size determined by base stations 402 and/or 404a based on the ISD between them, as described with reference to block 302 of the method 300 of Figure 3.
  • interference between the information transmitted to UE 406 by base station 402 in broadcast subframes 412 and the information transmitted to UE 406 by base station 404a in unicast subframes 416 may be minimized by the inclusion of GTs 414, during which neither base station 402 nor base station 404a may transmit information to UE 406.
  • the base station 402 transmits a first communication, such as broadcast content in broadcast subframe 412, within a frequency band immediately before the GT 414, and the second base station 404a transmits a second communication, such as in unicast subframe 416, within the same frequency band immediately after the GT 414.
  • the base station 404a transmits a first communication, such as the information transmitted by base station 404a in unicast subframe 416, within a frequency band immediately after the GT 414
  • the second base station 402 transmits a second communication, such as broadcast content transmitted by base station 402 in broadcast subframe 412, within the same frequency band immediately before the GT 414.
  • the method 300 further includes, at block 304, transmitting, by the first base station, an indication of the guard time period size.
  • base station 105 may, under control of controller/processor 240, transmit an indication of the guard time period size to the UE.
  • Figure 4 may also illustrate a base station transmitting an indication of the guard time period size, such as at block 304.
  • base station 402 and 404a may transmit an indication of the determined size of GT 414 to UE 406.
  • UE 406 may account for the determined size of GT 414 when communicating with base stations 402 and 404a in the same frequency band.
  • base station 402 and/or base station 404b may transmit an indication of the determined size of GT 424 to UE 406.
  • base station 402 and/or base station 404c may transmit an indication of the determined size of GT 434 to UE 406.
  • transmitting an indication of the GT size may include a base station transmitting to a UE the determined GT size, for example as determined at block 302, to be used by multiple base stations that will communicate with the UE using the same frequency resources.
  • the transmitted GT size indication may be the GT size determined based on a distance between a first base station and a second base station.
  • the transmitted indication of the GT size may simply be a bit flag that specifies whether or not a GT will be used by two base stations that will be communicating with a UE using the same frequency resources.
  • base stations may simply send the bit flag to a UE to inform the UE as to whether or not a GT will be used by two base stations that will be communicating with a UE using the same frequency resources.
  • a ‘1’ value may indicate that a GT will be used, and a ‘0’ value may indicate that no GT will be used.
  • base stations may transmit the indication of the GT size using radio resource control (RRC) signaling and/or using downlink control information (DCI) messages.
  • RRC radio resource control
  • DCI downlink control information
  • the RRC signaling and/or DCI messages may be used to activate and/or deactivate the use of GTs by base stations and to activate and/or deactivate the receiving and/or processing by UEs of communication streams with GTs.
  • a RRC message sent by a base station to a UE to provide the GT size indication may include more information than just the GT size.
  • an RRC message may include a “Inter_system_guard_time” parameter to indicate a size of a GT in symbols.
  • the Inter_system_guard_time parameter may be set to n2 to indicate a GT size of two symbols, n4 to indicate a GT size of four symbols, n6 to indicate a GT size of six symbols, and so on.
  • An RRC message may also include a “GTstart” parameter to specify in which symbol the GT will start.
  • GTstart may be set to a value to indicate that the GT may start at the first symbol of a subframe used to transmit unicast information or may be set to another value to indicate that the GT may start at a symbol other than the first symbol of a subframe used to transmit unicast information.
  • An RRC message may also include a “GTstartsubframe” parameter to indicate on which subframe the GT structure will be included.
  • An RRC message may also include a “Periodicity” parameter to specify how long a UE should expect to have to deal with the guard time in a communication stream.
  • An RRC message may also include a “Repetition” parameter to specify when a UE can expect that a communication stream that includes a GT will be present.
  • base stations 402 and/or 404b may similarly perform the actions of method 300 and determine a GT to be utilized when communicating with a UE in a common frequency band. For example, in some aspects illustrated in Figure 4, base stations 402 and/or 404b may determine that the ISD between them is 50 km. Based on the 50 km ISD between each other, the base stations 402 and/or 404b may determine a size of a guard time period to be used when they both communicate with UE 406 over the same frequency band. Communication stream 420 may represent the information received by UE 406 from base stations 402 and/or 404b in the same frequency band.
  • base station 402 may transmit broadcast content to UE 406 in a broadcast subframe 422a that is immediately before a GT 424a and may transmit broadcast content to UE 406 in a broadcast subframe 422b that is immediately before a GT 424b.
  • base station 404b may transmit information to UE 406 in a unicast subframe 426a that is immediately after a GT 424a and may transmit information to UE 406 in a unicast subframe 426b that is immediately after a GT 424b.
  • base station 402 and/or base station 404b may transmit an indication of the determined size of GT 424 to UE 406.
  • UE 406 may account for the determined size of GT 424 when communicating with base stations 402 and 404b in the same frequency band.
  • base stations 402 and/or 404c may determine that the ISD between them is 30 km. Based on the 30 km ISD between each other, the base stations 402 and/or 404c may determine a size of a guard time period to be used when they both communicate with UE 406 over the same frequency band. Communication stream 430 may represent the information received by UE 406 from base stations 402 and/or 404c in the same frequency band.
  • base station 402 may transmit broadcast content to UE 406 in a broadcast subframe 432a that is immediately before a GT 434a and may transmit broadcast content to UE 406 in a broadcast subframe 432b that is immediately before a GT 434b.
  • base station 404c may transmit information to UE 406 in a unicast subframe 436a that is immediately after a GT 434a and may transmit information to UE 406 in a unicast subframe 436b that is immediately after a GT 434b.
  • base station 402 and/or base station 404c may transmit an indication of the determined size of GT 434 to UE 406.
  • UE 406 may account for the determined size of GT 434 when communicating with base stations 402 and 404c in the same frequency band.
  • a GT size may be different for different pairs of base stations. For example, because the distance between base stations 402 and 404a is greater than the distance between base stations 402 and 404c, the determined GT size to be used when base stations 402 and 404a communicate with UE 406 using the same frequency band may be greater than the determined GT size to be used when base stations 402 and 404c communicate with UE 406 using the same frequency band.
  • a unicast subframe may refer to the entire time period that includes both a GT and a time period during which information is transmitted to a UE using a unicast method.
  • a unicast subframe may refer to the entire time period that includes both GT 414a and transmission/reception block 416a, both GT 424a and transmission/reception block 426a, and/or both GT 434a and transmission/reception block 436a.
  • the first symbols of a unicast subframe that span the time period of a GT may be unused so as to serve as the GT 414a and the remaining symbols of the unicast subframe, such as the remaining symbols that span the time period of block 416a, may be used for unicast transmissions, such as from base station 404a to UE 406.
  • the remaining symbols that may be used for unicast transmissions may be scheduled by mini-slots or by a 5G NR type B scheduling method.
  • the size of a GT and/or the distance between a first base station and a second base station may be determined by a first base station, such as a HPHT base station, based on communication with the second base station, such as a non-HPHT base station.
  • a HPHT base station such as base station 402 illustrated in Figure 4
  • a non-HPHT base station such as base station 404a illustrated in Figure 4
  • base station 402 may communicate with base station 404b to determine that the ISD between base station 402 and base station 404b is 50 km.
  • base station 402 may communicate with base station 404c to determine that the ISD between base station 402 and base station 404c is 30 km. Based on the determined ISDs, the communicating base stations may determine the size of the GT needed to separate transmissions of broadcast information by base station 402 and transmissions of unicast information by base station 404. As shown in Figure 4, larger ISDs may require larger GT sizes. In such aspects, determining the size of a GT based on a distance between base stations, such as at block 302, may include communication between base stations.
  • the size of a GT and/or the distance between a first base station and a second base station may be determined by a first base station, such as a HPHT base station, based on information stored within the first base station.
  • a GT size may be set in a mobile phone specification or standard, and the base stations within a network may be programmed according to the mobile phone specification or standard that specifies the GT size to be used for wireless communication. Through the programming of the base stations, the GT size to be used for wireless communication may be stored within the base stations in a wireless network.
  • determining the size of a GT based on a distance between base stations, such as at block 302 may include the base stations reading the GT size stored within their memory.
  • the size of a GT and/or the distance between a first base station and a second base station may be stored within base stations when the wireless networks are planned for deployment.
  • the distances between base stations, and therefore the associated GT sizes associated with base stations, in a network may be known when the network is in the process of being planned. The known distances may be used to program the base stations with specific GT sizes to use for wireless communication.
  • base stations may be programmed to use a GT size corresponding to the largest ISD between a HPHT base station and a non-HPHT base station being deployed in the network.
  • all the base stations in a network may be programmed to use the same GT size for wireless communication, where the programmed GT size may correspond to the largest ISD between a HPHT base station and a non-HPHT base station deployed in the network.
  • determining the size of a GT based on a distance between base stations, such as at block 302, may include base stations determining the GT size programmed into the base station.
  • the size of the GT may be determined based on a larger of: (i) the distance between a first base station and a second base station, and (ii) a distance between a third base station and one of the first base station or the second base station.
  • the first base station may be base station 402
  • the second base station may be base station 404a
  • the third base station may be base station 404b.
  • the larger of (i) and (ii) may be the distance between the first base station 402 and the second base station 404a.
  • a size of a GT may be determined based on the distance between the first base station 402 and the second base station 404a.
  • the result of the previous paragraph may be extended such that the GT used by all devices in a network may be determined based on the largest distance between a HPHT base station and a non-HPHT base station.
  • the largest ISD between a HPHT base station and a non-HPHT base station may be the ISD between base station 402 and base station 404a.
  • the GT for all base stations may then be determined based on this ISD between base station 402 nad base station 404a.
  • the size of GT 414 that was determined based on the largest ISD between a HPHT base station and a non-HPHT base station, namely the 100 km between base station 402 and base station 404a, may be used to set the size of GT 414 when base station 402 and base station 404a communicate with UE 406 using the same frequency band.
  • the size of GT 414 may also be used to set the size of GT 424 when base station 402 and base station 404b communicate with UE 406 using the same frequency band.
  • the size of GT 414 may also be used to set the size of GT 434 when base station 402 and base station 404c communicate with UE 406 using the same frequency band.
  • only the largest ISD between a HPHT base station and a non-HPHT base station may need to be known to set the GT to be used by a HPHT base station and any of the non-HPHT base stations in the network when both the HPHT base station and a non-HPHT base station communicate with a UE in the same frequency band for a certain time period.
  • Figure 5 is another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
  • Figure 5 illustrates a base station transmitting a reference signal in a subframe that includes a GT, and similarly illustrates a UE receiving a reference signal in a subframe that includes a GT.
  • a subframe that includes a GT may be the subframe made up of the symbols used for GT 514b, the symbols used for the physical downlink control channel (PDCCH) 518, the symbols used for transmission/reception of unicast information 516b, and the symbols used for transmission/reception of a demodulation reference signal (DMRS) 550.
  • PDCCH physical downlink control channel
  • DMRS demodulation reference signal
  • a subframe that includes a GT may be the subframe made up of the symbols used for GT 524b, the symbols used for the physical downlink control channel (PDCCH) 528, the symbols used for transmission/reception of unicast information 526b, and the symbols used for transmission/reception of a demodulation reference signal (DMRS) 550.
  • a subframe that includes a GT may be the subframe made up of the symbols used for GT 534b, the symbols used for the physical downlink control channel (PDCCH) 538, the symbols used for transmission/reception of unicast information 536b, and the symbols used for transmission/reception of a demodulation reference signal (DMRS) 550.
  • transmitting or receiving a reference signal in a subframe that includes a GT may refer to the transmission or reception of the DMRS 550 by a base station or UE.
  • the reference signal may be aligned within the subframe that includes a GT so as to not overlap with the GT.
  • the DMRS 550 may be aligned so as to be transmitted/received one or more symbols after the end of a GT, such as any of GTs 514b, 524b, and 534b.
  • Figure 6 is yet another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
  • Figure 6 illustrates alternative locations of a GT than those illustrated in Figures 4 and 5.
  • the GT was located within a unicast subframe because in the absence of the GT the symbols occupied by the GT would have been used for transmission/reception of unicast information.
  • the symbols used for transmission/reception of broadcast information such as the symbols of blocks 412, 422, 432, 512, 522, and 532, were not reduced to make room for the GT.
  • the symbols available for transmission/reception of unicast information such as the symbols of blocks 416, 426, 436, 516, 526, and 536, were reduced to make room for the GTs 414, 424, 436, 514, 524, and 534, respectively.
  • the GT may be placed within a communication stream so as to reduce the amount of symbols available for transmission/reception of broadcast information instead of unicast information.
  • a broadcast subframe may refer to a subframe made up of the symbols used for transmission/reception of broadcast information 612 and the symbols used for GT 614.
  • the GT 614 may be located in the last symbols of a broadcast subframe, thereby reducing the symbols available for transmission/reception of broadcast information 612.
  • the symbols used for transmission/reception of unicast information such as the symbols of blocks 616, may not be reduced to make room for the GT 614.
  • communication stream 610 may illustrate a GT, such as GT 614, occupying a last one or more symbols of a subframe, such as a broadcast subframe made up of the symbols used for transmission/reception of broadcast information 612 and the symbols used for GT 614, that includes the first communication, such as broadcast information 612.
  • a GT such as GT 414
  • FIG. 7 is a block diagram illustrating a method for wireless communication by a UE according to some implementations of the present disclosure. Aspects of method 700 may be implemented with various other aspects of this disclosure described with respect to Figures 1-2, 4-6, and 9.
  • the method 700 may be performed by a receiving wireless device, such as a mobile device/UE.
  • controller/processor 280 of UE 115 may control UE 115 to perform method 300.
  • method 700 includes receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station.
  • a UE such as UE 406 may receive an indication of a GT size, such as the GT size indication described with respect to block 304 of method 300, from a first base station and/or a second base station, such as base station 402 and/or base station 404.
  • the GT size may be based on a distance between the first base station, such as base station 402, and the second base station, such as base station 404.
  • UE 115 may, under control of controller/processor 280, receive an indication of a guard time period size from at least one of a first base station or a second base station.
  • method 700 includes receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period.
  • a UE such as UE 406 may receive a first communication from the first base station, such as broadcast information 412 transmitted from base station 402, in a frequency band immediately before the GT, such as immediately before GT 414.
  • UE 115 may, under control of controller/processor 280, receive a first communication from the first base station in a frequency band immediately before the guard time period.
  • method 700 includes receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period.
  • a UE such as UE 406 may receive a second communication from the second base station, such as unicast information 416 transmitted from base station 404, in a frequency band immediately after the GT, such as immediately after GT 414.
  • UE 115 may, under control of controller/processor 280, receive a second communication from the second base station in the frequency band immediately after the guard time period.
  • FIG 8 is a block diagram illustrating example components of a base station according to some implementations of the present disclosure.
  • a base station 800 such as gNB 105 (see Figure 2) , may have a controller/processor 240, a memory 242, and antennas 234a through 234t, as described above.
  • the base station 800 may also have wireless radios 801a to 801t that include additional components also described above with reference to Figure 2.
  • Memory 242 of base station 800 stores one or more algorithms that configure processor/controller 240 to carry out one or more procedures as described above with reference to Figures 3.
  • GT Size Determination logic 802 configures controller processor 240 to carry out operations that include determining, by a first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station in any manner previously described, such as with reference to block 302 (see Figure 3) .
  • GT Indication Transmit logic 804 configures controller processor 240 to carry out operations that include transmitting, by the first base station, an indication of the guard time period size in any manner previously described, such as with reference to block 304 (see Figure 3) .
  • FIG 9 is a block diagram illustrating example components of a user equipment (UE) according to some implementations of the present disclosure.
  • UE 900 such as a UE 115 (see Figure 2) , may have a controller/processor 280, a memory 282, and antennas 252a through 252r, as described above.
  • UE 900 may also have wireless radios 901a to 901r that include additional components also described above with reference to Figure 2.
  • the memory 282 of UE 900 stores one or more algorithms that configure processor/controller 280 to carry out one or more procedures as described above with reference to Figures 7.
  • Receive GT Indication logic 902 configures controller/processor 280 to carry out operations that include receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station in any manner previously described, such as with reference to block 702 (see Figure 7) .
  • Receive First Communication logic 904 configures controller/processor 280 to carry out operations that include receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period in any manner previously described, such as with reference to block 704 (see Figure 7) .
  • Receive Second Communication logic 906 configures controller/processor 280 to carry out operations that include receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period in any manner previously described, such as with reference to block 706 (see Figure 7) .
  • the functional blocks and modules described herein may have processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, two or more microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In some aspects, techniques for coexistence of wireless communication devices that use the same frequency resources are disclosed. A first base station may determine a size of a guard time period based, at least in part, on a distance between the first base station and a second base station. A UE may receive an indication of the guard time period size from at least one of the first base station or second base station. The UE may receive a first communication from the first base station in a frequency band immediately before the guard time period. The UE may also receive a second communication from the second base station in the frequency band immediately after the guard time period. The guard time period may reduce interference between the transmissions of the first communication and the second communication to the UE.

Description

TECHNIQUES FOR COEXISTENCE OF WIRELESS COMMUNICATION DEVICES THAT USE THE SAME FREQUENCY RESOURCES TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to techniques for coexistence of wireless communication devices that use the same frequency resources.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless communication technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
BRIEF SUMMARY
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method for wireless communication by a first base station may include determining, by the first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station. The guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station. The method may also include transmitting, by the first base station, an indication of the guard time period size.
In another aspect of the disclosure, a first base station configured for wireless communication is provided. For example, the first base station may include means for determining a size of a guard time period based, at least in part, on a distance between the first base station and a second base station. The guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station. The apparatus may also include means for transmitting an indication of the guard time period size.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon is provided. The program code may include program code executable by a computer for causing the computer to determine a size of a guard time period based, at least in part, on a distance between a first base station and a second base station. The guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station. The program code may also include program code executable by a computer for causing the computer to transmit an indication of the guard time period size.
In another aspect of the disclosure, a first base station is provided. The base station may include at least one processor. The base station may also include at least one  memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to determine a size of a guard time period based, at least in part, on a distance between a first base station and a second base station. The guard time period may define a duration between a first communication to be transmitted to a UE by the first base station and a second communication to be transmitted to the UE by the second base station. The at least one memory may further store processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to transmit an indication of the guard time period size.
In an aspect of the disclosure, a method for wireless communication by a UE may include receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station. The method may also include receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period. The method may further include receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period.
In another aspect of the disclosure, a UE configured for wireless communication is provided. For example, the apparatus may include means for receiving an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station. The apparatus may also include means for receiving a first communication from the first base station in a frequency band immediately before the guard time period. The apparatus may further include means for receiving a second communication from the second base station in the frequency band immediately after the guard time period.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon is provided. The program code may include program code executable by a computer for causing the computer to receive an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station. The program code may also include program code executable by a computer for causing the computer to receive a first communication from the first base station in a frequency band immediately before the guard time period. The  program code may also include program code executable by a computer for causing the computer to receive a second communication from the second base station in the frequency band immediately after the guard time period.
In another aspect of the disclosure, a UE is provided. The UE may include at least one processor. The UE may also include at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to receive an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station. The at least one memory may further store processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to receive a first communication from the first base station in a frequency band immediately before the guard time period. The at least one memory may further store processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to receive a second communication from the second base station in the frequency band immediately after the guard time period.
Other aspects, features, and implementations of the present disclosure will become apparent to a person having ordinary skill in the art, upon reviewing the following description of specific, example implementations of the present disclosure in conjunction with the accompanying figures. While features of the present disclosure may be discussed relative to particular implementations and figures below, all implementations of the present disclosure can include one or more of the advantageous features discussed herein. In other words, while one or more implementations may be discussed as having particular advantageous features, one or more of such features may also be used in accordance with the various implementations of the disclosure discussed herein. In similar fashion, while example implementations may be discussed below as device, system, or method implementations, such example implementations can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components  of the same type may be distinguished by following the reference label with a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Figure 1 is a block diagram illustrating details of a wireless communication system according to some implementations of the present disclosure.
Figure 2 is a block diagram conceptually illustrating a design of a base station/gNB and a user equipment (UE) configured according to some implementations of the present disclosure.
Figure 3 is a block diagram illustrating a method for wireless communication by a base station according to some implementations of the present disclosure.
Figure 4 is a diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
Figure 5 is another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
Figure 6 is yet another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure.
Figure 7 is a block diagram illustrating a method for wireless communication by a UE according to some implementations of the present disclosure.
Figure 8 is a block diagram illustrating example components of a base station according to some implementations of the present disclosure.
Figure 9 is a block diagram illustrating example components of a UE according to some implementations of the present disclosure.
DETAILED DESCRIPTION
This disclosure relates generally to providing or participating in communication as between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various implementations, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA  (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, long term evolution (LTE) networks, Global System for Mobile Communications (GSM) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably according to the particular context.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as GSM. 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may include one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. An operator network may also include one or more LTE networks, and one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may, for example, implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, LTE is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project aimed at improving the universal mobile telecommunications system (UMTS)  mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
For clarity, particular aspects of the apparatus and techniques may be described below with reference to example LTE implementations or in an LTE-centric way, and LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications. Indeed, the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and implementations are described in this application by illustration to some examples, a person having ordinary skill in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, implementations, uses, or a combination thereof may come about via integrated chip implementations, other non-module-component based devices (for example, end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) , or a combination thereof. While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also include additional components and features for implementation and practice of claimed and described implementations. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (for example RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
Techniques of the present disclosure for coexistence of wireless communication devices that use the same frequency resources include the use of guard time periods between transmissions of different base stations within the same frequency band to a same UE during a certain time period. For example, a first base station may determine a size of a guard time period based, at least in part, on a distance between the first base station and a second base station. A UE may receive an indication of the guard time period size from at least one of the first base station or second base station. The UE may receive a first communication from the first base station in a frequency band immediately before the guard time period. The UE may also receive a second communication from the second base station in the frequency band immediately after the guard time period. The guard time period may reduce interference between the transmissions of the first communication and the second communication to the UE.
In accordance with aspects of the disclosure, by using guard time periods, interference between transmissions of different base stations within the same frequency band to a same UE during a certain time period may be reduced. This interference reduction may allow for enhanced base station coexistence, especially when a base station transmits information using high transmit power levels. Such use of guard time periods also improves spectral efficiency and utilization by allowing multiple base stations to communicate with a UE using the same frequency band. Improved communication quality and reliability may also be experienced as a result of reduced interference.
Figure 1 is a block diagram illustrating details of a wireless communication system according to some implementations of the present disclosure. Figure 1 shows wireless network 100 for communication according to some implementations. While discussion of the technology of this disclosure is provided relative to an LTE-Anetwork (shown in Figure 1) , this is for illustrative purposes. Principles of the technology disclosed can be used in other network deployments, including fifth generation (5G) networks. As appreciated by a person having ordinary skill in the art, components appearing in Figure 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Turning back to Figure 1 wireless network 100 includes a number of base stations, such as may include evolved node Bs (eNBs) or G node Bs (gNBs) . These may be referred to as gNBs 105. A gNB may be a station that communicates with the UEs and  may also be referred to as a base station, a node B, an access point, and the like. Each gNB 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a gNB and a gNB subsystem serving the coverage area, depending on the context in which the term is used. In implementations of wireless network 100 herein, gNBs 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include two or more operator wireless networks) , and may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency band in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
A gNB may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A gNB for a macro cell may be referred to as a macro gNB. A gNB for a small cell may be referred to as a small cell gNB, a pico gNB, a femto gNB or a home gNB. In the example shown in Figure 1,  gNBs  105a, 105b and 105c are macro gNBs for the  macro cells  110a, 110b and 110c, respectively.  gNBs  105x, 105y, and 105z are small cell gNBs, which may include pico or femto gNBs that provide service to  small cells  110x, 110y, and 110z, respectively. A gNB may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the gNBs may have similar frame timing, and transmissions from different gNBs may be approximately aligned in time. For asynchronous operation, the gNBs may have different frame timing, and transmissions from different gNBs may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout wireless network 100, and each UE may be stationary or mobile. Although a mobile apparatus is commonly referred to as user equipment (UE) in standards and specifications promulgated by the 3rd Generation  Partnership Project (3GPP) , such apparatus may also be referred to by a person having ordinary skill in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an “Internet of things” (IoT) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. ; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus, such as UEs 115, may be able to communicate with macro gNBs, pico gNBs, femto gNBs, relays, and the like. In Figure 1, a lightning bolt (e.g., communication links 125) indicates wireless transmissions between a UE and a serving gNB, which is a gNB designated to serve the UE on the downlink and uplink, or desired transmission between gNBs. Although backhaul communication 134 is illustrated as wired backhaul communications that may occur between gNBs, backhaul communications may additionally or alternatively be provided by wireless communications.
Figure 2 is a block diagram conceptually illustrating a design of a base station/gNB 105 and a user equipment (UE) 115 configured according to some implementations of the present disclosure. These can be one of the base stations/gNBs and one of the UEs in Figure 1. For a restricted association scenario (as mentioned above) , the gNB 105 may be small cell gNB 105z in Figure 1, and UE 115 may be UE  115z, which in order to access small cell gNB 105z, would be included in a list of accessible UEs for small cell gNB 105z. gNB 105 may also be a base station of some other type. gNB 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r.
At gNB 105, transmit processor 220 may receive data from data source 212 and control information from controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ indicator channel) PHICH, physical downlink control channel (PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. Transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, antennas 252a through 252r may receive the downlink signals from gNB 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 256 may obtain received symbols from all demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller/processor 280.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for the PUSCH) from data source 262 and control information (e.g., for the PUCCH) from controller/processor 280. Transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to gNB 105. At gNB 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller/processor 240.
Controllers/ processors  240 and 280 may direct the operation at gNB 105 and UE 115, respectively. Controller/processor 240 and other processors and modules at gNB 105 and controllers/processor 280 and other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for gNB 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink and uplink.
Base stations, such as base stations 105, may use various communication transmission schemes to transmit information to UEs, such as UEs 115. For example, in some aspects, a base station may use a broadcast scheme to transmit information to many UEs. In other aspects, a base station may use a unicast scheme to transmit information to a specific UE.
In some aspects, base stations may transmit information using various transmit power levels. For example, in some aspects, a base station may transmit information with a transmit power greater than or equal to 1 kilowatt. In some aspects, such a base station capable of transmitting information with a transmit power greater than or equal to 1 kilowatt may be referred to as a high-power high-tower (HPHT) base station. In some aspects, HPHT base stations may be used to broadcast information to many UEs. For example, in some aspects, HPHT base stations may broadcast content, such as enhanced television (enTV) content or other content from other content providers, to many UEs. In some aspects, an HPHT base station may be configured to transmit information using only a broadcast scheme. In other aspects, an HPHT base station may be configured to transmit information using at least one of a broadcast or unicast scheme.
According to some aspects, a wireless communication network may also include other base stations besides HPHT base stations. For example, in some aspects, a wireless communication network may include macrocell and/or microcell base stations. In some aspects, macrocell and/or microcell base stations may transmit information with a transmit power less than 1 kilowatt. For example, in some aspects, the transmit power of a macrocell and/or microcell may be ten decibels (dBs) lower than that of a HPHT base station.
A UE may receive information from one or more base stations. In some aspects, the one or more base stations may use the same frequency resources, such as the same frequency band, to communicate with the UE. According to some aspects, a transmission to a UE from one base station may encounter interference due to a transmission to the UE from a neighbor base station. The problem may be exacerbated when an interfering base station is a HPHT base station transmitting information with high power. According to some aspects, techniques for coexistence of wireless communication devices that use the same frequency resources may help reduce the interference between transmissions from multiple base stations that communicate with a UE.
Figure 3 is a block diagram illustrating a method for wireless communication by a base station according to some implementations of the present disclosure. Aspects of method 300 may be implemented with various other aspects of this disclosure described with respect to Figures 1-2, 4-6, and 8. The method 300 may be performed by a transmitting wireless device, such as a base station/gNB. For example, with reference to FIG. 2, controller/processor 240 of base station 105 may control base station 105 to perform method 300.
At block 302, method 300 includes determining, by a first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station. As an example, base station 105 may, under control of controller/processor 240, determine a size of a guard time period at 302 based, at least in part, on a distance between itself and a second base station.
In some aspects, a guard time period may refer to a time period of separation/isolation between periods of information transmission. In other aspects, a guard time period may refer to a time period not used for transmission of information. A receiving device, such as a UE, may expect that no information will be received during the guard time period or may determine not to process any information received during the guard time period. In some aspects, a guard time period may be used to prevent  interference between a first transmission/reception of information in a frequency band and a second transmission/reception of information in the same frequency band. According to some aspects, a guard time period may enable devices, such as base stations 105, to transmit information using the same frequency resources without their transmissions interfering with each other. A “size” of a guard time period may be represented as an amount of time and/or a number of symbols.
Figure 4 is a diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure. In Figure 4, base station 402 may be a HPHT base station and base stations 404a-c may be non-HPHT base stations, such as macrocell base stations. UE 406 is also illustrated in Figure 4.
Figure 4 shows some aspects associated with determining, by the base station 402, a size of a guard time period based on a distance between the base station 402 and a second base station (for example, one of base stations 404a-c) , for example, as described with reference to block 302 of the method 300 of Figure 3. For example, base stations 402 and/or 404a may determine that the inter-site distance (ISD) between them is 100 km. Based on the 100 km ISD between each other, the base stations 402 and/or 404a may determine a size of a guard time period to be used when they both communicate with UE 406 over the same frequency band. According to some aspects, the determined guard time period size may be represented as N symbols.
In some aspects, base stations 402 and/or 404a may account for their determined guard time period size when they both communicate with UE 406 in the same frequency band. For example, communication stream 410 may represent the information received by UE 406 from base stations 402 and/or 404a in the same frequency band. In some aspects, base station 402 may transmit broadcast content to UE 406 in a broadcast subframe 412a that is immediately before a guard time period (GT) 414a and may transmit broadcast content to UE 406 in a broadcast subframe 412b that is immediately before a GT 414b. And base station 404a may transmit information to UE 406 in a unicast subframe 416a that is immediately after the GT 414a and may transmit information to UE 406 in a unicast subframe 416b that is immediately after the GT 414b. In other words, between broadcast subframe 412a and unicast subframe 416a may be a GT 414a and between subframe 412b and unicast subframe 416b may be a GT 414b. The size, for example the N-symbol size, of each of the GTs 414 may be the size determined by base stations 402 and/or 404a based on the ISD between them, as described with  reference to block 302 of the method 300 of Figure 3. In some aspects, interference between the information transmitted to UE 406 by base station 402 in broadcast subframes 412 and the information transmitted to UE 406 by base station 404a in unicast subframes 416 may be minimized by the inclusion of GTs 414, during which neither base station 402 nor base station 404a may transmit information to UE 406.
In the preceding example, the base station 402 transmits a first communication, such as broadcast content in broadcast subframe 412, within a frequency band immediately before the GT 414, and the second base station 404a transmits a second communication, such as in unicast subframe 416, within the same frequency band immediately after the GT 414. Similarly, in some aspects, the base station 404a transmits a first communication, such as the information transmitted by base station 404a in unicast subframe 416, within a frequency band immediately after the GT 414, and the second base station 402 transmits a second communication, such as broadcast content transmitted by base station 402 in broadcast subframe 412, within the same frequency band immediately before the GT 414.
Returning back to Figure 3, the method 300 further includes, at block 304, transmitting, by the first base station, an indication of the guard time period size. As an example, base station 105 may, under control of controller/processor 240, transmit an indication of the guard time period size to the UE.
In some aspects, Figure 4 may also illustrate a base station transmitting an indication of the guard time period size, such as at block 304. In particular, continuing with the previous example in which  base stations  402 and 404a determined a size of a GT 414 to be used when they both communicate with UE 406 over the same frequency band, base station 402 and/or base station 404a may transmit an indication of the determined size of GT 414 to UE 406. In some aspects, UE 406 may account for the determined size of GT 414 when communicating with  base stations  402 and 404a in the same frequency band. In other aspects, base station 402 and/or base station 404b may transmit an indication of the determined size of GT 424 to UE 406. Similarly, in still other aspects, base station 402 and/or base station 404c may transmit an indication of the determined size of GT 434 to UE 406.
In some aspects, transmitting an indication of the GT size, such as at block 304, may include a base station transmitting to a UE the determined GT size, for example as determined at block 302, to be used by multiple base stations that will communicate with the UE using the same frequency resources. The transmitted GT size indication may be  the GT size determined based on a distance between a first base station and a second base station.
In other aspects, the transmitted indication of the GT size may simply be a bit flag that specifies whether or not a GT will be used by two base stations that will be communicating with a UE using the same frequency resources. For example, in aspects where the GT size is the same for all base stations, such as when the GT size is hardcoded into a base station based on known network deployment infrastructure or based on a GT size set in a mobile phone standard or specification, base stations may simply send the bit flag to a UE to inform the UE as to whether or not a GT will be used by two base stations that will be communicating with a UE using the same frequency resources. In some aspects, a ‘1’ value may indicate that a GT will be used, and a ‘0’ value may indicate that no GT will be used.
In some aspects, base stations may transmit the indication of the GT size using radio resource control (RRC) signaling and/or using downlink control information (DCI) messages. The RRC signaling and/or DCI messages may be used to activate and/or deactivate the use of GTs by base stations and to activate and/or deactivate the receiving and/or processing by UEs of communication streams with GTs.
In some aspects, a RRC message sent by a base station to a UE to provide the GT size indication may include more information than just the GT size. For example, an RRC message may include a “Inter_system_guard_time” parameter to indicate a size of a GT in symbols. For example, the Inter_system_guard_time parameter may be set to n2 to indicate a GT size of two symbols, n4 to indicate a GT size of four symbols, n6 to indicate a GT size of six symbols, and so on. An RRC message may also include a “GTstart” parameter to specify in which symbol the GT will start. For example, GTstart may be set to a value to indicate that the GT may start at the first symbol of a subframe used to transmit unicast information or may be set to another value to indicate that the GT may start at a symbol other than the first symbol of a subframe used to transmit unicast information. An RRC message may also include a “GTstartsubframe” parameter to indicate on which subframe the GT structure will be included. An RRC message may also include a “Periodicity” parameter to specify how long a UE should expect to have to deal with the guard time in a communication stream. An RRC message may also include a “Repetition” parameter to specify when a UE can expect that a communication stream that includes a GT will be present.
In some aspects, other base stations, whether HPHT or non-HPHT, in a wireless communication network may similarly perform the actions of method 300 and determine a GT to be utilized when communicating with a UE in a common frequency band. For example, in some aspects illustrated in Figure 4, base stations 402 and/or 404b may determine that the ISD between them is 50 km. Based on the 50 km ISD between each other, the base stations 402 and/or 404b may determine a size of a guard time period to be used when they both communicate with UE 406 over the same frequency band. Communication stream 420 may represent the information received by UE 406 from base stations 402 and/or 404b in the same frequency band. In some aspects, base station 402 may transmit broadcast content to UE 406 in a broadcast subframe 422a that is immediately before a GT 424a and may transmit broadcast content to UE 406 in a broadcast subframe 422b that is immediately before a GT 424b. And base station 404b may transmit information to UE 406 in a unicast subframe 426a that is immediately after a GT 424a and may transmit information to UE 406 in a unicast subframe 426b that is immediately after a GT 424b. In some aspects, base station 402 and/or base station 404b may transmit an indication of the determined size of GT 424 to UE 406. In some aspects, UE 406 may account for the determined size of GT 424 when communicating with  base stations  402 and 404b in the same frequency band.
As another example aspect illustrated in Figure 4, base stations 402 and/or 404c may determine that the ISD between them is 30 km. Based on the 30 km ISD between each other, the base stations 402 and/or 404c may determine a size of a guard time period to be used when they both communicate with UE 406 over the same frequency band. Communication stream 430 may represent the information received by UE 406 from base stations 402 and/or 404c in the same frequency band. In some aspects, base station 402 may transmit broadcast content to UE 406 in a broadcast subframe 432a that is immediately before a GT 434a and may transmit broadcast content to UE 406 in a broadcast subframe 432b that is immediately before a GT 434b. And base station 404c may transmit information to UE 406 in a unicast subframe 436a that is immediately after a GT 434a and may transmit information to UE 406 in a unicast subframe 436b that is immediately after a GT 434b. In some aspects, base station 402 and/or base station 404c may transmit an indication of the determined size of GT 434 to UE 406. In some aspects, UE 406 may account for the determined size of GT 434 when communicating with  base stations  402 and 404c in the same frequency band.
In some aspects, as illustrated in Figure 4, because a GT may be determined based on a distance between base stations and because different base stations may be separated by different distances, a GT size may be different for different pairs of base stations. For example, because the distance between  base stations  402 and 404a is greater than the distance between  base stations  402 and 404c, the determined GT size to be used when  base stations  402 and 404a communicate with UE 406 using the same frequency band may be greater than the determined GT size to be used when  base stations  402 and 404c communicate with UE 406 using the same frequency band.
In some aspects, a unicast subframe may refer to the entire time period that includes both a GT and a time period during which information is transmitted to a UE using a unicast method. As an example with reference to Figure 4, a unicast subframe may refer to the entire time period that includes both GT 414a and transmission/reception block 416a, both GT 424a and transmission/reception block 426a, and/or both GT 434a and transmission/reception block 436a. In such aspects, the first symbols of a unicast subframe that span the time period of a GT, such as GT 414a, may be unused so as to serve as the GT 414a and the remaining symbols of the unicast subframe, such as the remaining symbols that span the time period of block 416a, may be used for unicast transmissions, such as from base station 404a to UE 406. In some aspects, the remaining symbols that may be used for unicast transmissions may be scheduled by mini-slots or by a 5G NR type B scheduling method.
In some aspects, the size of a GT and/or the distance between a first base station and a second base station may be determined by a first base station, such as a HPHT base station, based on communication with the second base station, such as a non-HPHT base station. For example, in some aspects, a HPHT base station, such as base station 402 illustrated in Figure 4, may communicate with a non-HPHT base station, such as base station 404a illustrated in Figure 4, to determine that the ISD between base station 402 and base station 404a is 100 km. Similarly, base station 402 may communicate with base station 404b to determine that the ISD between base station 402 and base station 404b is 50 km. Similarly, base station 402 may communicate with base station 404c to determine that the ISD between base station 402 and base station 404c is 30 km. Based on the determined ISDs, the communicating base stations may determine the size of the GT needed to separate transmissions of broadcast information by base station 402 and transmissions of unicast information by base station 404. As shown in Figure 4, larger ISDs may require larger GT sizes. In such aspects, determining the size of a GT based on  a distance between base stations, such as at block 302, may include communication between base stations.
In other aspects, the size of a GT and/or the distance between a first base station and a second base station may be determined by a first base station, such as a HPHT base station, based on information stored within the first base station. For example, in some aspects, a GT size may be set in a mobile phone specification or standard, and the base stations within a network may be programmed according to the mobile phone specification or standard that specifies the GT size to be used for wireless communication. Through the programming of the base stations, the GT size to be used for wireless communication may be stored within the base stations in a wireless network. In such aspects, determining the size of a GT based on a distance between base stations, such as at block 302, may include the base stations reading the GT size stored within their memory.
In other aspects, the size of a GT and/or the distance between a first base station and a second base station may be stored within base stations when the wireless networks are planned for deployment. For example, in some aspects, the distances between base stations, and therefore the associated GT sizes associated with base stations, in a network may be known when the network is in the process of being planned. The known distances may be used to program the base stations with specific GT sizes to use for wireless communication. For example, in some aspects, base stations may be programmed to use a GT size corresponding to the largest ISD between a HPHT base station and a non-HPHT base station being deployed in the network. In other words, in some aspects all the base stations in a network may be programmed to use the same GT size for wireless communication, where the programmed GT size may correspond to the largest ISD between a HPHT base station and a non-HPHT base station deployed in the network. In such aspects, determining the size of a GT based on a distance between base stations, such as at block 302, may include base stations determining the GT size programmed into the base station.
In some aspects, the size of the GT may be determined based on a larger of: (i) the distance between a first base station and a second base station, and (ii) a distance between a third base station and one of the first base station or the second base station. For example, with reference to the aspect of Figure 4, the first base station may be base station 402, the second base station may be base station 404a, and the third base station may be base station 404b. In such an aspect, the larger of (i) and (ii) may be the distance  between the first base station 402 and the second base station 404a. As a result, a size of a GT may be determined based on the distance between the first base station 402 and the second base station 404a.
In some aspects, the result of the previous paragraph may be extended such that the GT used by all devices in a network may be determined based on the largest distance between a HPHT base station and a non-HPHT base station. As an example with reference to the aspect of Figure 4, the largest ISD between a HPHT base station and a non-HPHT base station may be the ISD between base station 402 and base station 404a. The GT for all base stations may then be determined based on this ISD between base station 402 nad base station 404a. In other words, the size of GT 414 that was determined based on the largest ISD between a HPHT base station and a non-HPHT base station, namely the 100 km between base station 402 and base station 404a, may be used to set the size of GT 414 when base station 402 and base station 404a communicate with UE 406 using the same frequency band. Similarly, the size of GT 414 may also be used to set the size of GT 424 when base station 402 and base station 404b communicate with UE 406 using the same frequency band. Similarly, the size of GT 414 may also be used to set the size of GT 434 when base station 402 and base station 404c communicate with UE 406 using the same frequency band. Therefore, in some aspects, only the largest ISD between a HPHT base station and a non-HPHT base station may need to be known to set the GT to be used by a HPHT base station and any of the non-HPHT base stations in the network when both the HPHT base station and a non-HPHT base station communicate with a UE in the same frequency band for a certain time period.
Figure 5 is another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure. In particular, Figure 5 illustrates a base station transmitting a reference signal in a subframe that includes a GT, and similarly illustrates a UE receiving a reference signal in a subframe that includes a GT. For example, in some aspects illustrated in Figure 5, a subframe that includes a GT may be the subframe made up of the symbols used for GT 514b, the symbols used for the physical downlink control channel (PDCCH) 518, the symbols used for transmission/reception of unicast information 516b, and the symbols used for transmission/reception of a demodulation reference signal (DMRS) 550. In other aspects illustrated in Figure 5, a subframe that includes a GT may be the subframe made up of the symbols used for GT 524b, the symbols used for the physical downlink control channel (PDCCH) 528, the symbols used for transmission/reception of  unicast information 526b, and the symbols used for transmission/reception of a demodulation reference signal (DMRS) 550. In still other aspects illustrated in Figure 5, a subframe that includes a GT may be the subframe made up of the symbols used for GT 534b, the symbols used for the physical downlink control channel (PDCCH) 538, the symbols used for transmission/reception of unicast information 536b, and the symbols used for transmission/reception of a demodulation reference signal (DMRS) 550. In any of the foregoing aspects of Figure 5, transmitting or receiving a reference signal in a subframe that includes a GT may refer to the transmission or reception of the DMRS 550 by a base station or UE.
In some aspects, the reference signal may be aligned within the subframe that includes a GT so as to not overlap with the GT. For example, as illustrated in Figure 5, the DMRS 550 may be aligned so as to be transmitted/received one or more symbols after the end of a GT, such as any of  GTs  514b, 524b, and 534b.
Figure 6 is yet another diagram illustrating the configuration and use of a guard time period for wireless communication according to some implementations of the present disclosure. In particular, Figure 6 illustrates alternative locations of a GT than those illustrated in Figures 4 and 5. For example, in the aspects of Figures 4 and 5 the GT was located within a unicast subframe because in the absence of the GT the symbols occupied by the GT would have been used for transmission/reception of unicast information. In other words, in Figures 4 and 5 the symbols used for transmission/reception of broadcast information, such as the symbols of blocks 412, 422, 432, 512, 522, and 532, were not reduced to make room for the GT. Instead, the symbols available for transmission/reception of unicast information, such as the symbols of blocks 416, 426, 436, 516, 526, and 536, were reduced to make room for the GTs 414, 424, 436, 514, 524, and 534, respectively.
In Figure 6, the GT may be placed within a communication stream so as to reduce the amount of symbols available for transmission/reception of broadcast information instead of unicast information. For example, in the aspect of Figure 6, a broadcast subframe may refer to a subframe made up of the symbols used for transmission/reception of broadcast information 612 and the symbols used for GT 614. In other words, in the aspect illustrated in Figure 6, the GT 614 may be located in the last symbols of a broadcast subframe, thereby reducing the symbols available for transmission/reception of broadcast information 612. In contrast, the symbols used for  transmission/reception of unicast information, such as the symbols of blocks 616, may not be reduced to make room for the GT 614.
As described in the previous paragraph, in some aspects, communication stream 610 may illustrate a GT, such as GT 614, occupying a last one or more symbols of a subframe, such as a broadcast subframe made up of the symbols used for transmission/reception of broadcast information 612 and the symbols used for GT 614, that includes the first communication, such as broadcast information 612. In other aspects, such as the aspects of Figures 4 and 5, a GT, such as GT 414, may occupy a first one or more symbols of a subframe, such as a unicast subframe made up of the symbols used for transmission/reception of unicast information 416 and the symbols used for GT 414, that includes the first communication, such as unicast information 416.
Figure 7 is a block diagram illustrating a method for wireless communication by a UE according to some implementations of the present disclosure. Aspects of method 700 may be implemented with various other aspects of this disclosure described with respect to Figures 1-2, 4-6, and 9. The method 700 may be performed by a receiving wireless device, such as a mobile device/UE. For example, with reference to FIG. 2, controller/processor 280 of UE 115 may control UE 115 to perform method 300.
At block 702, method 700 includes receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station. For example, as described with respect to the aspects of Figures 4-6, a UE, such as UE 406, may receive an indication of a GT size, such as the GT size indication described with respect to block 304 of method 300, from a first base station and/or a second base station, such as base station 402 and/or base station 404. In some aspects, such as the aspects described with respect to Figures 4-6, the GT size may be based on a distance between the first base station, such as base station 402, and the second base station, such as base station 404. As an example, UE 115 may, under control of controller/processor 280, receive an indication of a guard time period size from at least one of a first base station or a second base station.
At block 704, method 700 includes receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period. For example, as described with respect to the aspects of Figures 4-6, a UE, such as UE 406, may receive a first communication from the first base station, such as broadcast information 412 transmitted from base station 402, in a frequency band immediately before the GT, such as immediately before GT 414. As an example, UE 115 may, under  control of controller/processor 280, receive a first communication from the first base station in a frequency band immediately before the guard time period.
At block 706, method 700 includes receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period. For example, as described with respect to the aspects of Figures 4-6, a UE, such as UE 406, may receive a second communication from the second base station, such as unicast information 416 transmitted from base station 404, in a frequency band immediately after the GT, such as immediately after GT 414. As an example, UE 115 may, under control of controller/processor 280, receive a second communication from the second base station in the frequency band immediately after the guard time period.
Figure 8 is a block diagram illustrating example components of a base station according to some implementations of the present disclosure. A base station 800, such as gNB 105 (see Figure 2) , may have a controller/processor 240, a memory 242, and antennas 234a through 234t, as described above. The base station 800 may also have wireless radios 801a to 801t that include additional components also described above with reference to Figure 2. Memory 242 of base station 800 stores one or more algorithms that configure processor/controller 240 to carry out one or more procedures as described above with reference to Figures 3.
One or more algorithms stored by memory 242 configure processor/controller 240 to carry out one or more operations relating to wireless communication by the base station 800, as previously described. For example, GT Size Determination logic 802 configures controller processor 240 to carry out operations that include determining, by a first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station in any manner previously described, such as with reference to block 302 (see Figure 3) . Additionally, GT Indication Transmit logic 804 configures controller processor 240 to carry out operations that include transmitting, by the first base station, an indication of the guard time period size in any manner previously described, such as with reference to block 304 (see Figure 3) .
Figure 9 is a block diagram illustrating example components of a user equipment (UE) according to some implementations of the present disclosure. UE 900, such as a UE 115 (see Figure 2) , may have a controller/processor 280, a memory 282, and antennas 252a through 252r, as described above. UE 900 may also have wireless radios 901a to 901r that include additional components also described above with reference to Figure 2. The memory 282 of UE 900 stores one or more algorithms that configure  processor/controller 280 to carry out one or more procedures as described above with reference to Figures 7.
One or more algorithms stored by memory 282 configure processor/controller 280 to carry out one or more procedures relating to wireless communication by the UE 900, as previously described. For example, Receive GT Indication logic 902 configures controller/processor 280 to carry out operations that include receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station in any manner previously described, such as with reference to block 702 (see Figure 7) . Additionally, Receive First Communication logic 904 configures controller/processor 280 to carry out operations that include receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period in any manner previously described, such as with reference to block 704 (see Figure 7) . Additionally, Receive Second Communication logic 906 configures controller/processor 280 to carry out operations that include receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period in any manner previously described, such as with reference to block 706 (see Figure 7) .
A person having ordinary skill in the art will understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The functional blocks and modules described herein (e.g., the functional blocks and modules in FIGS. 2, 3 and 7) may have processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
A person having ordinary skill in the art will further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such  functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. A person having ordinary skill in the art may implement the described functionality in varying ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure. A person having ordinary skill in the art will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, two or more microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on  a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , hard disk, solid state disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (that is A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (36)

  1. A method for wireless communication by a first base station, the method comprising:
    determining, by the first base station, a size of a guard time period based, at least in part, on a distance between the first base station and a second base station, the guard time period defining a duration between a first communication to be transmitted to a user equipment (UE) by the first base station and a second communication to be transmitted to the UE by the second base station; and
    transmitting, by the first base station, an indication of the guard time period size.
  2. The method of claim 1, further comprising:
    transmitting, by the first base station, the first communication within a frequency band immediately before or immediately after the guard time period, the guard time period being immediately followed by or immediately preceded by, respectively, the transmission of the second communication from the second base station within the frequency band.
  3. The method of claim 2, wherein the guard time period occupies a first one or more symbols of a subframe that includes the first communication or a last one or more symbols of the subframe that includes the first communication.
  4. The method of claim 1, further comprising:
    determining, by the first base station, at least one of the size of the guard time period or the distance between the first base station and the second base station based, at least in part, on at least one of:
    communication with the second base station; or
    information stored within the first base station.
  5. The method of claim 1, further comprising:
    determining the size of the guard time period based, at least in part, on a larger of:
    the distance between the first base station and the second base station; and
    a distance between a third base station and one of the first base station or the second base station.
  6. The method of claim 1, further comprising:
    transmitting a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  7. A first base station configured for wireless communication, comprising:
    means for determining a size of a guard time period based, at least in part, on a distance between the first base station and a second base station, the guard time period defining a duration between a first communication to be transmitted to a user equipment (UE) by the first base station and a second communication to be transmitted to the UE by the second base station; and
    means for transmitting an indication of the guard time period size.
  8. The first base station of claim 7, further comprising:
    means for transmitting the first communication within a frequency band immediately before or immediately after the guard time period, the guard time period being immediately followed by or immediately preceded by, respectively, the transmission of the second communication from the second base station within the frequency band.
  9. The first base station of claim 8, wherein the guard time period occupies a first one or more symbols of a subframe that includes the first communication or a last one or more symbols of the subframe that includes the first communication.
  10. The first base station of claim 7, further comprising:
    means for determining at least one of the size of the guard time period or the distance between the first base station and the second base station based, at least in part, on at least one of:
    communication with the second base station; or
    information stored within the first base station.
  11. The first base station of claim 7, further comprising:
    means for determining the size of the guard time period based, at least in part, on a larger of:
    the distance between the first base station and the second base station; and
    a distance between a third base station and one of the first base station or the second base station.
  12. The first base station of clam 7, further comprising:
    transmitting a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  13. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to determine a size of a guard time period based, at least in part, on a distance between a first base station and a second base station, the guard time period defining a duration between a first communication to be transmitted to a user equipment (UE) by the first base station and a second communication to be transmitted to the UE by the second base station; and
    program code executable by the computer for causing the computer to transmit an indication of the guard time period size.
  14. The non-transitory computer-readable medium of claim 13, further comprising:
    program code executable by the computer for causing the computer to transmit the first communication within a frequency band immediately before or immediately after the guard time period, the guard time period being immediately followed by or immediately preceded by, respectively, the transmission of the second communication from the second base station within the frequency band.
  15. The non-transitory computer-readable medium of claim 14, wherein the guard time period occupies a first one or more symbols of a subframe that includes the first communication or a last one or more symbols of the subframe that includes the first communication.
  16. The non-transitory computer-readable medium of claim 13, further comprising:
    program code executable by the computer for causing the computer to determine at least one of the size of the guard time period or the distance between the first base station and the second base station based, at least in part, on at least one of:
    communication with the second base station; or
    information stored within the first base station.
  17. The non-transitory computer-readable medium of claim 13, further comprising:
    program code executable by the computer for causing the computer to determine the size of the guard time period based, at least in part, on a larger of:
    the distance between the first base station and the second base station; and
    a distance between a third base station and one of the first base station or the second base station.
  18. The non-transitory computer-readable medium of claim 13, further comprising:
    program code executable by the computer for causing the computer to transmit a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  19. A first base station, comprising:
    at least one processor; and
    at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to:
    determine a size of a guard time period based, at least in part, on a distance between a first base station and a second base station, the guard time period defining a duration between a first communication to be transmitted to a user equipment (UE) by the first base station and a second communication to be transmitted to the UE by the second base station; and
    transmit an indication of the guard time period size.
  20. The first base station of claim 19, the at least one memory further storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to:
    transmit the first communication within a frequency band immediately before or immediately after the guard time period, the guard time period being immediately followed by or immediately preceded by, respectively, the transmission of the second communication from the second base station within the frequency band.
  21. The first base station of claim 20, wherein the guard time period occupies a first one or more symbols of a subframe that includes the first communication or a last one or more symbols of the subframe that includes the first communication.
  22. The first base station of claim 19, the at least one memory further storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to:
    determine at least one of the size of the guard time period or the distance between the base station and the second base station based, at least in part, on at least one of:
    communication with the second base station; or
    information stored within the base station.
  23. The first base station of claim 19, the at least one memory further storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to:
    determine the size of the guard time period based, at least in part, on a larger of:
    the distance between the base station and the second base station; and
    a distance between a third base station and one of the base station or the second base station.
  24. The first base station of claim 19, the at least one memory further storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to:
    transmit a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  25. A method for wireless communication by a user equipment (UE) , the method comprising:
    receiving, by a UE, an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station;
    receiving, by the UE, a first communication from the first base station in a frequency band immediately before the guard time period; and
    receiving, by the UE, a second communication from the second base station in the frequency band immediately after the guard time period.
  26. The method of claim 25, wherein the guard time period occupies a last one or more symbols of a first subframe that includes the first communication or a first one or more symbols of a second subframe that includes the second communication.
  27. The method of claim 25, further comprising:
    receiving a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  28. A UE configured for wireless communication, comprising:
    means for receiving an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station;
    means for receiving a first communication from the first base station in a frequency band immediately before the guard time period; and
    means for receiving a second communication from the second base station in the frequency band immediately after the guard time period.
  29. The UE of claim 28, wherein the guard time period occupies a last one or more symbols of a first subframe that includes the first communication or a first one or more symbols of a second subframe that includes the second communication.
  30. The UE of claim 28, further comprising:
    means for receiving a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  31. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to receive an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station;
    program code executable by the computer for causing the computer to receive a first communication from the first base station in a frequency band immediately before the guard time period; and
    program code executable by the computer for causing the computer to receive a second communication from the second base station in the frequency band immediately after the guard time period.
  32. The non-transitory computer-readable medium of claim 31, wherein the guard time period occupies a last one or more symbols of a first subframe that includes the first communication or a first one or more symbols of a second subframe that includes the second communication.
  33. The non-transitory computer-readable medium of claim 31, further comprising:
    program code executable by the computer for causing the computer to receive a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
  34. A user equipment (UE) , comprising:
    at least one processor; and
    at least one memory communicatively coupled with the at least one processor and storing processor-readable code that, when executed by the at least one processor, is configured to:
    receive an indication of a guard time period size from at least one of a first base station or a second base station, the guard time period size being based on a distance between the first base station and the second base station;
    receive a first communication from the first base station in a frequency band immediately before the guard time period; and
    receive a second communication from the second base station in the frequency band immediately after the guard time period.
  35. The UE of claim 34, wherein the guard time period occupies a last one or more symbols of a first subframe that includes the first communication or a first one or more symbols of a second subframe that includes the second communication.
  36. The UE of claim 34, the at least one memory further storing processor-readable code that, when executed by the at least one processor in conjunction with at least one modem, is configured to:
    receive a reference signal in a subframe that includes the guard time period, wherein the reference signal is aligned within the subframe so as to not overlap with the guard time period.
PCT/CN2020/077029 2020-02-27 2020-02-27 Techniques for coexistence of wireless communication devices that use the same frequency resources WO2021168751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077029 WO2021168751A1 (en) 2020-02-27 2020-02-27 Techniques for coexistence of wireless communication devices that use the same frequency resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077029 WO2021168751A1 (en) 2020-02-27 2020-02-27 Techniques for coexistence of wireless communication devices that use the same frequency resources

Publications (1)

Publication Number Publication Date
WO2021168751A1 true WO2021168751A1 (en) 2021-09-02

Family

ID=77490638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077029 WO2021168751A1 (en) 2020-02-27 2020-02-27 Techniques for coexistence of wireless communication devices that use the same frequency resources

Country Status (1)

Country Link
WO (1) WO2021168751A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137500A (en) * 2010-01-26 2011-07-27 华为技术有限公司 Method, base station and system for data transmission
WO2012019321A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in time division duplexed wireless communication
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137500A (en) * 2010-01-26 2011-07-27 华为技术有限公司 Method, base station and system for data transmission
WO2012019321A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in time division duplexed wireless communication
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Design of Relay Frame Timing in LTE-A", 3GPP DRAFT; R1-100027, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Valencia, Spain; 20100118, 12 January 2010 (2010-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050417783 *

Similar Documents

Publication Publication Date Title
EP3577840B1 (en) Control resource set group design for improved communications devices, systems, and networks
US11032048B2 (en) Use-cases and constraints on multiple SRS resource sets for antenna switching in NR REL-15
US10531410B2 (en) Unified synchronization channel design used in different communication modes
US11083013B2 (en) UE/gNB transmission detection and impact on reliability
US11419083B2 (en) Unified synchronization channel design used in different communication modes
US10855422B2 (en) Autonomous modification of transmission parameters
EP3695526A1 (en) Uplink beam training
WO2019217716A1 (en) Nack triggered optimization to improve retx reliability for urllc-u
US11362878B2 (en) Radio (NR) remaining minimum system information (RMSI) multiplexing and periodicity considerations
EP3583723B1 (en) Future-compatible group common downlink control channel
WO2021168751A1 (en) Techniques for coexistence of wireless communication devices that use the same frequency resources
EP3874660A1 (en) Support of wideband physical resource group (prg) in long term evolution (lte)
EP3665834A1 (en) Carrier switching for multiple carriers using the same components of a component path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922028

Country of ref document: EP

Kind code of ref document: A1