WO2021168653A1 - 一种针对nr-v2x组播通信的功率节省方法 - Google Patents

一种针对nr-v2x组播通信的功率节省方法 Download PDF

Info

Publication number
WO2021168653A1
WO2021168653A1 PCT/CN2020/076607 CN2020076607W WO2021168653A1 WO 2021168653 A1 WO2021168653 A1 WO 2021168653A1 CN 2020076607 W CN2020076607 W CN 2020076607W WO 2021168653 A1 WO2021168653 A1 WO 2021168653A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx cycle
sensing
multicast
area
ues
Prior art date
Application number
PCT/CN2020/076607
Other languages
English (en)
French (fr)
Inventor
张波
Original Assignee
张波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张波 filed Critical 张波
Priority to PCT/CN2020/076607 priority Critical patent/WO2021168653A1/zh
Priority to CN202080068307.9A priority patent/CN114902760A/zh
Priority to US17/822,292 priority patent/US20230276525A1/en
Publication of WO2021168653A1 publication Critical patent/WO2021168653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to communication methods, and in particular to a power saving method for NR-V2X multicast communication.
  • the idle mode mechanism When the user (User Equipment, UE) enters the idle mode mechanism, although the network can still track the UE through the paging mechanism (Paging), the UE is no longer actively connected to the base station (such as 4G base station eNB); the idle mode allows the UE to remain in the emergency mode. Low power consumption mode, because the UE only needs to perform very limited functions in this mode.
  • the base station such as 4G base station eNB
  • the UE can save power consumption by allowing the UE to cut off the power at predetermined time intervals according to the instructions of the eNB.
  • DRX provides significant benefits in terms of resource utilization and energy saving, but requires a trade-off between energy saving and transmission delay. Therefore, in order to balance battery saving and transmission delay, LTE (Long Term Evolution) supports short DRX and long DRX. Concept, and allows the UE to be configured with two DRX cycle cycles (DRX Cycle), namely a short DRX cycle cycle and a long DRX cycle cycle.
  • LTE-V2X Long Term Evolution Vehicle-to-Everything
  • the energy-saving mechanism is very unique.
  • the UE does not receive the downlink channel during DRX.
  • V2X transmission must be sensed (Sensing) before transmission to reduce random resource selection conflicts, thereby improving the packet reception ratio (PRR) performance.
  • LTE-V2X introduces a partial sensing (Partial Sensing) mechanism, which allows the UE to perform a sensing operation in a specific sensing window (Sensing Window) within a limited time.
  • Partial Sensing Partial Sensing
  • each UE is configured or pre-configured (ie, (pre)configured) with UE-specific parameters related to sensing. For example, if partial sensing is configured for a pedestrian UE, within the sensing window (for example, 1000 subframes), before performing partial sensing, the UE needs to obtain two parameters: one is used to indicate that the possible candidate resources include The minimum number of subframes (represented as minNumCandidateSF), and the other is used to indicate the sensing subframes when certain subframes are regarded as candidate resources (represented as gap Candidate Sensing).
  • minNumCandidateSF The minimum number of subframes
  • candidate resources represented as gap Candidate Sensing
  • the sensing and resource selection process is designed for periodic data packet broadcast services.
  • the sensing and receiving are performed through periodic triggering, and the DRX cycle is performed in K DRX cycles within the sensing window.
  • Configure effectively, and the transmission process uses periodic or event-triggered methods according to the type of service.
  • This partial sensing mechanism can be well applied to broadcast and unicast.
  • this part of the sensing mechanism is only applicable to broadcast communications with periodic data packet traffic.
  • NR-V2X New Radio Vehicle-to-Everything
  • NR-V2X New Radio Vehicle-to-Everything
  • the biggest challenge in achieving energy saving is how to balance multicast performance and power consumption.
  • a single DRX parameter set is not enough to satisfy different communication types of services.
  • Remote Driving (Remote Driving), etc. they have different performance requirements, such as reliability (eg, Packet Reception Ratio, PRR), coverage (eg, Communication Range) and latency (Latency). Therefore, when realizing multicast power saving, the biggest challenge is to ensure that all group members receive and sense the channel in the same transmission time slot.
  • reliability eg, Packet Reception Ratio, PRR
  • coverage eg, Communication Range
  • Latency Latency
  • the traditional energy-saving mechanism of LTE-V2X will not be able to be used effectively.
  • multicast communication when the multicast member UE randomly sleeps and wakes up during the DRX cycle, there is a problem that some member UEs cannot communicate with each other, which will seriously reduce the performance of PRR.
  • the first type is based on the communication range (Communication Range), which is composed of UEs within the communication range; the second type is composed of groups with the same dedicated destination ID (Destination ID)
  • the multicast composed of broadcast members is determined by the higher-level and delivered to each multicast member in advance.
  • Figure 2 shows the worst case of partial sensing in multicast, where five receiving Rx UEs (Receive UE) sleep and wake up randomly during the DRX cycle (for example, 100ms), and cannot receive transmissions from Tx UE (Transmit UE). Data packets, so the PRR is zero. If a multicast UE is forced to sleep and wake up at the same time, although all multicast UEs can receive data packets, the optional resources used for multicast UE transmission are restricted, so the problem of resource conflicts between Tx UEs occurs.
  • this application provides a power saving method for NR-V2X multicast communication.
  • the first aspect of the present application is to provide a power saving method for NR-V2X multicast communication.
  • the multicast is a multicast based on the communication range. There are at least 2 areas along the first direction, and the length of each area is It is L and the width is W, and each area is adjacent to each other in the length direction; among them:
  • all Rx UEs and Tx UEs in each area have the same sensing mode (Sensing Mode), all Rx UEs can receive data packets sent by Tx UE, and all Rx UEs and Tx UEs are in sensing mode at the same time ;
  • a UE zone correlation window (UE Zone Correlation Window) is formed along the length of the communication range.
  • the length of the UE zone correlation window is represented by the zone length L, that is, counted by the number of zones, and at least the communication range Twice the length
  • Each UE independently maintains the sensing mode on its own time slot, and the sensing interval of adjacent UEs is shifted by one or more time slots (according to different applications, the number of shifted time slots can be any integer greater than or equal to 1), Tx UE performs multicast communication in the nth (n is a natural number ⁇ 1) time slot, then all Rx UEs can receive;
  • the method includes:
  • the Zone-ID is mapped to the slot index, that is, the UE located in the area represented by the Zone-ID executes the sensing mode in the mapped slot.
  • the mapping rule is defined as: all the consecutive adjacent areas where the UE is located are mapped to the UE sensing mode.
  • Measure adjacent time slots that is, UEs located in adjacent areas are also considered to be located in adjacent time slots.
  • mapping relationship between the area ID and the time slot index may be indicated by (pre)configuration (for example, through RRC), or may be indicated by control information (for example, SCI, MAC, CE).
  • the UE's sensing interval counted by the number of timeslots (usually an odd number) is expressed as (2Y+1) timeslot; the sensing interval expressed by timeslot depends on the L of the area and the communication range dcr ;
  • Y min is defined as the number of areas within the communication range, which is equivalent to the communication range; the selected Y is an integer and is always greater than or equal to Y min ;
  • Zone-ID of the nth zone n y N x + n x
  • N x is the longitude of Zone-ID
  • N y is the latitude of Zone-ID
  • x and y are the distance between the UE’s current location longitude, latitude and the reference coordinate (0,0)
  • Z(n,m) (pre) is configured as:
  • n,m 0,1,...,N x -1.
  • n x (n c + ⁇ k )mod N x ;
  • ⁇ k is set as the mapping offset in the k-th DRX cycle, 0 ⁇ k ⁇ N x .
  • the sensing mode of the n c time slot in the k DRX cycle period is associated with the m area, and is defined as Sk (n c , m);
  • N x ⁇ N c More preferably, N x ⁇ N c , then one n x can be mapped to multiple n c , thereby generating multiple sensing intervals in a single DRX cycle period.
  • the DRX cycle period may be (pre-)configured based on the longitude DRX cycle period and/or the latitude-based DRX cycle period to realize the dual DRX cycle period.
  • two DRX cycle periods can be (pre)configured in the same resource pool, or each DRX cycle cycle can be (pre)configured for each independent resource pool; for example, when the UE is walking or driving on the road
  • the UE can detect the street direction and the regional direction, and then select the corresponding resource pool for V2X energy-saving communication. In this way, the UE only needs to sense part of the resource pool, thereby achieving more effective energy saving.
  • the slot index is n
  • the number of DRX cycles in the sensing window is K
  • the communication range is associated with the priority of the data packet, and the specific communication range requirement is indicated by the SCI, preferably at least 4 bits.
  • the communication range may be at least ⁇ 50, 80, 180, 200, 350, 400, 500, 700, 1000 ⁇ meters.
  • the area size is fixed, and the UE sensing interval parameter Y is adjusted in each DRX cycle based on a (pre-)configured sequence model. More preferably, the number of UEs in each area is kept unchanged.
  • the Tx UE when it sends a data packet related to the communication range, it can select the resources in its DRX cycle by selecting a (pre-)configured UE sensing interval that matches the communication range.
  • N c is fixed, and then the longitude N x and/or latitude N y of the Zone-ID are statically or dynamically controlled in each DRX cycle.
  • the longitude N x and latitude N y of the parameter Zone-ID are expanded to N x,k and N y,k
  • the parameter N c is expanded to N c,k
  • the parameter sets of N c, k , Y k and L k elements are statically or dynamically (pre-)configured
  • the parameter sets related to the K DRX cycle periods can be defined as
  • G K ⁇ G 1 ,G 2 ,...,G K ⁇ ,
  • the parameter subset G k related to the k-th DRX cycle can be defined as
  • G k ⁇ N x,k ,N c,k ,Y k ,L k ⁇ .
  • the second aspect of this application is to provide a power saving method for NR-V2X multicast communication.
  • the member UE in the j-th multicast is activated in the k-th DRX cycle and n k, j time slots, n k, j can be expressed as
  • n k,j (ID j + ⁇ k )mod N k ,
  • N k is the k-th DRX cycle the number of slots, i.e., cycle length
  • [Delta] k is the k-th shift map DRX cycle periods, 0 ⁇ k ⁇ N k.
  • R & lt k, j resource pools are activated, R & lt k, j can be expressed as
  • N R is the number of resource pools (pre-)configured by the UE
  • ⁇ k is the mapping offset in the k-th DRX cycle
  • 0 ⁇ k ⁇ N R is the number of resource pools (pre-)configured by the UE
  • all UEs associated with the j-th multicast perform sensing in 2Y k,j +1 time slots in the k-th DRX cycle period.
  • the sensing interval of each multicast UE is kept substantially constant, and Y k,j is simplified to Y j .
  • a continuous slot (Contiguous Slot) sensing method is used to combine the nth slot in the kth DRX cycle and the sensing state of the jth multicast service S k,j (n ) (Pre) configured as
  • S k,j (n) 1
  • the UE associated with the jth multicast indicated by the target ID is activated for sensing in the nth time slot in the kth DRX cycle, otherwise the UE remains in Sleep mode.
  • a distributed slot (Distributed Slot) sensing method is used.
  • the N of the j-th multicast service associated with the nk, j-th time slot is The sensing state S k,j (n k,j ) of k timeslots can be (pre-)configured as
  • the nth element in S k,j (n k,j ) is equal to 1, and the UE associated with the jth multicast indicated by the target ID (ie ID j) is The nth time slot is activated for sensing, otherwise the UE remains in sleep mode.
  • the total time slot sensing state in the k-th DRX cycle period It can be calculated by the union of the set S k,j (n k,j ), namely
  • the UE may also be controlled to perform sensing in a part of the resource pool, so as to achieve an energy-saving effect.
  • the member UE in the j-th multicast is activated in the k-th DRX cycle and the r k, j resource pool, and r k, j can be expressed as
  • N R is the number of resource pools that the UE is (pre-)configured
  • ⁇ k is the mapping offset in the k-th DRX cycle, 0 ⁇ k ⁇ N R.
  • the resource pool is defined as a subset of available time slots and frequency resource blocks for side link transmission or reception.
  • the resource pool in the time domain is indicated by bit mapping and repeated at certain intervals.
  • the repetition time interval of the resource pool can be assumed to be the same as the DRX cycle, or be an integer multiple of each other.
  • all UEs associated with the multicast can combine time slot and resource pool associated parameters to perform more effective energy-saving sensing in different DRX cycle periods.
  • the zone ID (Zone-ID) and the destination ID (Destination ID) are used as control parameters, and all group members use them as reference points, and statically or dynamically control the DRX cycle period and the active interval of the UE (Active Interval). ) So as to achieve the power saving effect.
  • the functions of the two control parameters are different. The first one is used for multicast based on the communication range, and the latter is used for multicast that indicates the target ID by the higher layer.
  • the mechanism of the present invention can ensure the overall performance in terms of energy saving, reliability and delay.
  • Figure 2 is a partial sensing example of random sleep and wakeup for multicast communication.
  • Figure 3 shows an example of energy saving analysis from a location perspective.
  • Figure 4 shows an example of energy saving analysis from a time perspective.
  • Fig. 6 is an example of a dual DRX cycle cycle related to an area.
  • Figure 7 is an example of a dual DRX cycle that can improve regional coverage.
  • Fig. 10 is an example of the dynamic area size based on the (pre-)configuration sequence model in the DRX cycle.
  • Fig. 11 is a partial sensing method of continuous time slots based on the target ID.
  • FIG. 12 is an example of partial sensing of a distributed time slot sensing method based on a target ID.
  • Fig. 13 is an example of partial resource pool sensing based on target ID.
  • the first type is based on the communication range (Communication Range), which is composed of UEs within the communication range; the second type is composed of the same dedicated destination ID (Destination ID).
  • the dedicated target ID is determined by the upper layer and delivered to each multicast member in advance.
  • the Tx UE will send its own location and the communication range related to the data packet. All Rx UEs calculate the distance from the Tx UE, compare the communication range, and then judge whether they are the multicast member.
  • the application layer determines the target L2 ID, passes it to the 3GPP layer in advance, and informs each multicast member. Whenever a multicast data packet is sent, the upper layer will pass the target L2 ID together with the data packet to the MAC layer, and the Tx UE will send the target ID together with the data packet to all UEs. Then, the Rx UE compares the previously owned target ID with the target ID received together with the data packet.
  • the data packet is a multicast data packet with the target ID.
  • V2X UE will be allowed to support multiple unicast connections or multiple broadcast group connections at the same time. Therefore, the target L2 IDs of different multicasts are different; some multicast target IDs can be generated in the AS (Access Stratum) layer, and some multicast target IDs can come from the upper layer (such as the V2X application layer).
  • SCI Sidelink Control Information
  • the Tx UE For the multicast based on the communication range, the Tx UE needs to transmit its location information and communication range in the SCI, so that each Rx UE judges whether the Rx UE belongs to the multicast range through the Tx UE and the Rx UE's own location. For the multicast based on the target ID, the Tx UE needs to send the target ID associated with the multicast in the SCI, so that each Rx UE can determine whether it belongs to the multicast scope.
  • SCI Sidelink Control Information
  • the Rx UE Once the Rx UE determines that it belongs to the multicast scope (for any type of multicast), the Rx UE will start the HARQ process and decide whether to feed back ACK (Acknowledgement) or NACK (Negative Acknowledgement).
  • this application separately introduces parameters related to Zone-ID and target ID to solve the problem of power consumption and energy saving.
  • the biggest challenge is to ensure that all nearby multicast member UEs have enough time slots to perform sensing at the same time, so that there are enough candidate resources to select resources.
  • energy saving from the perspective of UE location. An example is given in Figure 3, where the area is composed of the area length L value and the area width W value. For simplicity, only the Zone-ID longitude is considered to achieve energy saving.
  • the five Rx UEs ie Rx UE-1 to Rx UE-5) within the communication range will have the same sensing mode (Sensing Mode) as the Tx UE. .
  • Rx UEs are in the sensing mode at the same time in adjacent areas and can receive data packets sent from Tx UEs.
  • This application introduces the parameter UE zone correlation window (UE Zone Correlation Window).
  • the length of the UE zone correlation window is counted by the number of zones, and the zone where the Tx UE is located is the center.
  • the size of the UE area correlation window is represented by the area length L, which is at least twice the length of the communication range.
  • FIG. 4 shows an example in which each UE maintains a sensing mode on five time slots, and the sensing interval of two adjacent UEs is shifted by one time slot. If the Tx UE performs multicast communication in the nth time slot, all Rx UEs (Rx UE-1Rx UE5) can receive correspondingly, thereby ensuring the communication range of the two areas.
  • the energy-saving solution in multicast is to map Zone-ID to the slot index, which means that if the UE is located in this area, it should perform the sensing mode in the mapped slot.
  • the mapping relationship between the area ID and the time slot index may be indicated by (pre)configuration (for example, through RRC), or may be indicated by control information (for example, SCI, MAC CE).
  • the mapping rule can be defined as that the UE is located in a continuous adjacent area (ie, the UE area related window) is mapped to the UE sensing adjacent time slot. For example, from a location perspective, UE-1 and UE-2 in Figure 3 belong to adjacent UEs, while from a time domain perspective, UE-1 and UE-2 in Figure 4 should also be considered adjacent UE.
  • each Zone-ID is mapped to consecutive time slots with an index, where the number of consecutive time slots depends on the communication range and zone size (Zone Size). Based on this mapping rule, as long as the UE knows which zone (ie Zone-ID) it is located in, it can accurately determine the corresponding time slot for sensing, sending and receiving.
  • mapping rules between one-dimensional Zone-ID (longitude or latitude) and time slots.
  • the same mapping rule can also be implemented between the two-dimensional Zone-ID (longitude and latitude) and the time slot.
  • Zone-ID In order to formulate the relationship between Zone-ID and slot index, some necessary parameters are defined here, as shown below:
  • UE Active Interval The UE's sensing interval (UE Active Interval), which is counted by the number of time slots, is expressed as 2Y+1 time slot;
  • the sensing interval can be implemented by a timer.
  • Y min d cr /L
  • the communication range is different for different data packets, so the minimum Y min can be determined by statistical methods
  • the selected Y should always be greater than or equal to Y min , that is, Y ⁇ Y min .
  • ⁇ Tx UE uses the following formula to determine its Zone-ID
  • Zone-ID n y N x +n x ,
  • L is the length of the zone
  • W is the width of the zone
  • N x is the longitude of Zone-ID
  • N y is the latitude of Zone-ID
  • x and y are the longitude, latitude and reference coordinates (0,0 )
  • n x 0,1,...,N x -1
  • n y 0,1,...,N y -1.
  • N x N y .
  • the so-called regional correlation coefficient In order to formulate the regional correlation between the nth region and the mth region, we introduce a new parameter Z(n,m) associated with the mth region, the so-called regional correlation coefficient.
  • the m-th area is located in the center of the area correlation window, so the area correlation coefficient Z(n,m) can be (pre-)configured as
  • n,m 0,1,...,N x -1.
  • n x (n c + ⁇ k )mod N x ,
  • ⁇ k is set as the mapping offset (generally an integer) in the k-th DRX cycle, which mainly plays a role of pseudo-randomization between n x and n c , where 0 ⁇ k ⁇ N x .
  • the mapping offset can be configured or pre-configured by RRC signaling, and can also be updated by SCI or MAC CE signaling. The discussion on the mapping offset will be described in detail in Embodiment 3.
  • the parameters n x and N x can also be replaced by n y and N y .
  • the sensing mode of the n c time slot in the k DRX cycle period can be associated with the m area and defined as S k (n c ,m)
  • N x and N c are different, that is, N x ⁇ N c . If N x ⁇ N c , one n x can be mapped to multiple n c , thereby generating multiple sensing intervals in a single DRX cycle period. On the other hand, if N x > N c , then one n c can be mapped into multiple n x , so that any sensing interval may not be generated in the DRX cycle period. For multicast that uses periodic traffic services, it may cause larger delays. The related discussion of N x and N c will be described in detail in Embodiment 6.
  • the two-dimensional area is composed of the longitude of the area ID and the latitude of the area ID. Therefore, the DRX cycle period can be (pre-)configured based on the longitude DRX cycle cycle or the latitude-based DRX cycle cycle to achieve a dual DRX cycle cycle. From an implementation perspective, two DRX cycle periods can be (pre)configured in the same resource pool, or each DRX cycle cycle can be (pre)configured for each independent resource pool. The former is conducive to balancing the UE's sensing interval and resource efficiency, and the latter is conducive to improving coverage performance. As a use case, when the UE is walking or driving on the road, the UE can detect the street direction and the area direction, and flexibly select (pre-)configured DRX cycle periods, so as to be effectively used for partial sensing.
  • Figure 6 illustrates the dual DRX cycle cycles related to the area, one of which belongs to the longitude-based DRX cycle and the other belongs to the latitude-based DRX cycle.
  • DRX based on a double cycle period can improve coverage and sensing performance.
  • the multicast sensing area can be doubled, and the number of UEs in the sensing mode can also be doubled, while the energy-saving effect of the UE remains unchanged.
  • the details are shown in Figure 7.
  • mapping offset value ⁇ k different DRX cycle is fixed, then the probability that a resource conflict Tx choice between the UE may be increased. This is because the resource candidates selected by the UE in the same sensing interval are the same in the time domain and the frequency domain, which reduces the freedom of resource selection and affects the overall performance of NR-V2X.
  • mapping offset values ⁇ k are configured in the DRX cycle period, so as to reduce the probability of UE selection resource conflict.
  • the current slot index is n
  • the number of DRX cycle cycles in the sensing window is K.
  • the index k n of the DRX cycle associated with the nth slot can be derived by the following formula
  • Figure 8 is wrong! The reference source was not found.
  • the communication range is associated with the priority of the data packet, and the specific communication range is required to be indicated by the SCI, which is indicated by at least 4 bits.
  • the communication range can be at least ⁇ 50, 80, 180, 200, 350, 400, 500, 700, 1000 ⁇ meters. Therefore, new mechanisms must be introduced for various communication range solutions.
  • the other is related to the area size, which can be (pre-)configured with different area sizes in different DRX cycle cycles and implemented based on the area size sequence model.
  • These control parameters complement each other and can be flexibly (pre-)configured at the same time.
  • one of the parameters will be fixed and the other parameter will be dynamically adjusted.
  • these two parameters may also be used in combination with other parameters, like e.g. Map Offset ⁇ k.
  • a Tx UE when a Tx UE sends a data packet related to the communication range, it can select the resources in its DRX cycle by selecting a (pre)configured UE sensing interval that matches the communication range. It should be noted that the greater the communication range changes, the more DRX cycle cycles are required to select the communication range, and the longer the delay for the Tx UE to send relevant data packets.
  • the UE can determine the zone size according to the communication range and the zone-ID longitude and latitude. In this embodiment, if the UE sensing interval is fixed and the area size related to each DRX cycle period is changed, the communication range can also be controlled accordingly. Note that the larger the area size, the greater the number of UEs in each area, and the greater the conflict in the selection of resources by the Tx UE, and vice versa.
  • L K W K.
  • the Tx UE when it sends data packets related to the communication range, it can select the resources in its DRX cycle by selecting the (pre-)configured area size that matches the communication range.
  • the Tx UE can select the resource in the first DRX cycle period for data packet transmission; if the relevant communication range is relatively large If it is small, the Tx UE can select the resource in the third DRX cycle for data packet transmission. Regarding the sensing procedure of the Rx UE in the DRX cycle, there is no change. Note that by using this (pre)configuration mechanism and mapping rules, the communication range in adjacent DRX cycles is adjusted in a two-fold relationship.
  • a relatively simple and effective solution is to set the maximum number of sensing intervals in each DRX cycle, and then all UEs belonging to the same multicast select sensing opportunities according to ascending or descending order, which is specifically configured by RRC signaling (pre-)configuration.
  • N x > N c a single n c can be mapped to multiple n x , so that there is no sensing opportunity for the UE in the DRX cycle period. For multicast that uses regular traffic services, this may cause a large delay.
  • a comprehensive solution is based on a (pre-)configuration method to control the relationship between N x and N c in each DRX cycle.
  • N c For periodic traffic, we can fix N c , and then control N x statically in each DRX cycle.
  • This mechanism can be implemented in conjunction with the controllable area size based on the sequence model. For example, according to the communication range from the upper layer, if the longitude N x or the latitude N y of the Zone-ID needs to be reduced, the size of the zone should be increased.
  • the longitude N x and the latitude N y of the parameter Zone-ID are expanded to N x,k and N y,k
  • the parameter N c is expanded to N c,k .
  • the parameter set of N x,k (or N y,k ), N c,k , Y k and L k elements can be statically (pre-)configured.
  • the parameter set related to the K DRX cycle period can be defined as
  • G K ⁇ G 1 ,G 2 ,...,G K ⁇ ,
  • the parameter subset G k related to the k-th DRX cycle can be defined as
  • G k ⁇ N x,k ,N c,k ,Y k ,L k ⁇ .
  • Multicast services can be implemented based on a dedicated target ID determined by higher layers; that is, different multicasts have different target L2IDs. Therefore, energy saving based on DRX can also effectively rely on the target ID information.
  • LSB Location Significant Bit
  • each UE can determine the UE sensing interval based on the (pre)configured value in the DRX cycle period.
  • n k,j can be expressed as
  • n k,j (ID j + ⁇ k )mod N k ,
  • N k is the length of the k-th DRX cycle period in the time slot
  • ⁇ k is the mapping offset in the k-th DRX cycle period (generally an integer), which mainly plays a role of pseudo-randomization, 0 ⁇ k ⁇ N k .
  • Embodiment 3 for the mapping offset.
  • the sensing interval of each multicast UE can be kept basically constant. In other words, the parameter Y k,j can be simplified to Y j .
  • the sensing time slot can be (pre-)configured based on a continuous slot (Contiguous Slot) sensing method or a distributed slot (Distributed Slot) sensing method. If the continuous time slot sensing method is used, for example, the nth time slot of the kth DRX cycle, the sensing state S k,j (n) (pre) of the jth multicast service is configured as
  • the UE associated with the jth multicast indicated by the target ID should be activated for sensing in the nth slot in the kth DRX cycle. Otherwise, the UE should remain in sleep mode.
  • the sensing time slots of each UE between different multicasts may overlap, which helps to reduce the entire UE sensing interval in the DRX cycle period, but does not affect the overall performance.
  • Fig. 11 illustrates a partial sensing method of continuous time slots based on the target ID.
  • the sensing state S k of the N k time slot of the j-th multicast service associated with the n k, j-th time slot ,j (n k,j ) can be (pre-)configured as
  • the target ID i.e., ID j
  • the UE should be activated for sensing in the nth slot in the kth DRX cycle, otherwise the UE should remain in sleep mode. Therefore, by The total time slot represented can be calculated by the union of the set S k,j (n k,j )
  • Figure 12 shows an example of partial sensing based on the target ID and distributed time slot sensing mode, in which two multicasts jointly activate the 13th time slot, thereby reducing the total number of sensing time slots.
  • the parameter Y k,j should not be set too large, a larger Y k,j requires more sensing time and thus leads to greater power consumption.
  • the appropriate value of Y k,j depends on the priority of the multicast service.
  • the more overlapping sensing time slots the better the energy saving effect.
  • the sensing time slot overlap may reduce the degree of freedom of resource selection in the candidate time slot set, and cause resource selection conflicts between Tx UEs.
  • each UE can join at most J multicasts at the same time. If the UE wants to further reduce power consumption, it needs to limit the number of multicasts sensed by the UE. If the UE is restricted to only sense J lim multicast, where J lim ⁇ J. Which multicast the UE joins for sensing will depend on the following factors:
  • the member UE in the j-th multicast should be activated in the rk, j-th resource pool in the k-th DRX cycle period.
  • r k,j can be expressed as
  • N R is the number of resource pools that the UE is (pre-)configured
  • ⁇ k is the mapping offset in the k-th DRX cycle, 0 ⁇ k ⁇ N R. Refer to Embodiment 3 for the mapping offset.
  • the resource pool is defined as a subset of available time slots and frequency resource blocks for side link transmission or reception.
  • the resource pool in the time domain is indicated by bit mapping and repeated at certain intervals. We can assume that the repetition time interval of the resource pool is the same as the DRX cycle, or is an integer multiple of each other.
  • the Tx UE associated with the jth group selects the resources in the r k, j resource pool and sends the data packet in the k DRX cycle.
  • all Rx UEs associated with the jth group only need to access the rk ,jth resource pool, and perform sensing in all (or part) time slots in the kth DRX cycle. Note that considering part of the time slot for sensing is mainly because the resource pool sensing mechanism and the aforementioned part of the time slot sensing mechanism can be combined with each other, so as to obtain a better energy-saving effect.
  • the UE only needs to sense the corresponding resource pool.
  • the NR-V2X system allows the UE to support multiple different services at the same time, such as a multicast service based on the target ID, a multicast service based on the communication range, and a unicast service. Therefore, all the mechanisms proposed above can fully participate in the UE sensing interval determination in each DRX cycle, thereby more effectively implementing NR-V2X partial sensing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种NR-V2X组播通信中的功率节省方法,通过使用区域ID(Zone-ID)和目标ID(Destination ID)作为控制参数,所有组成员均将其作为参考点,并静态或动态地控制DRX循环周期和UE的激活间隔(Active Interval)从而达到省电效果。上述两个控制参数的作用不同,前一个用于基于通信范围的组播,而后一个用于高层指示目标ID的组播。该方法能够实现节能的效果,并且能够提高可靠性以及减小延迟。

Description

一种针对NR-V2X组播通信的功率节省方法 技术领域
本申请涉及通信方法,尤其是涉及一种针对NR-V2X组播通信的功率节省方法。
背景技术
在通信领域,目前有两种电能管理机制,一种是空闲模式机制(Idel Mode)、一种是不连续接收机制(Discontinuous Reception,DRX)。
当用户(User Equipment,UE)进入空闲模式机制时,尽管网络仍然能够通过寻呼机制(Paging)来跟踪UE,但UE不再主动连接到基站(如4G基站eNB);空闲模式允许UE保持在非常低的功耗模式,因为UE仅需要在该模式下执行非常有限的功能。
在DRX模式下,UE可以按照eNB的指示,通过允许UE在预定时间间隔切断电源来节省功耗。DRX在资源利用和节能方面都提供了显着的好处,但要求在节能和传送延迟之间进行权衡,因此,为了平衡节省电池和传送延迟,LTE(Long Term Evolution)支持短DRX和长DRX的概念,并且允许UE被配置有两个DRX循环周期(DRX Cycle),即短DRX循环周期和长DRX循环周期。
在LTE-V2X(Long Term Evolution Vehicle-to-Everything)中,尽管仍涉及DRX循环周期,但节能机制十分独特。在Uu链路中,出于节省电池的目的,在DRX期间UE不接收下行链路信道。但是,在侧链中(Sidelink),V2X传输必须在传输前进行感测(Sensing),以减少随机资源选择冲突,从而提高数据包接收率(Packet Reception Ratio,PRR)性能。为此,LTE-V2X引入了部分感测(Partial Sensing)机制,该机制允许UE在特定的感测窗口(Sensing Window),并在有限的时间内进行感测操作。利用部分感测机制,每个UE被配置或预配置(即:(预)配置)有与感测相关的UE特定参数。例如,如果为行 人UE配置了部分感测,则在感测窗口(例如1000个子帧)内,在执行部分感测之前,UE需要得到两个参数:一个是用来指示可能的候选资源中包含的最小子帧数(表示为minNumCandidateSF),另一个是用来指示当将某些子帧视为候选资源时的感测子帧(表示为gap Candidate Sensing)。
在传统LTE-V2X中,感测和资源选择过程是针对周期数据包广播服务而设计的,通过周期触发方式来执行感测和接收,并且在感测窗口内的K个DRX循环周期中对DRX有效地进行配置,而传输过程则根据业务类型利用周期性或事件触发方式。一旦UE在子帧中感测,它可能不需要解码物理侧链路数据信道(PSSCH:Physical Sidelink Shared Channel)上的数据包,但是,一旦UE解码PSSCH上的数据包,它必须在子帧中预先感测或解码物理侧链路控制信道(PSCCH:Physical Sidelink Control Channel)上的SCI(Sidelink Control Information)。也就是说,只有当UE处于感测模式的时候,UE才可能执行接收和发送。UE是否要在第k个DRX循环周期中执行感测模式取决于(预)配置序列模型q K={q 1,q 2,…,q K}。这意味着,如果q k=1,UE应该在第k个DRX循环周期中执行感测模式,否则,UE应该保持在睡眠模式。这种部分感测机制可以很好地适用于广播和单播。
图1详细说明了LTE-V2X的部分感测规程,其中针对要激活的UE(预)配置感测子集(Sensing Subset),UE感测间隔X=5,DRX循环周期数K=10,以及使用序列模型(Sequence Pattern)q K={1100100001}进行有效的制定DRX循环周期。但是,此部分感测机制仅适用于具有周期性数据包流量的广播通信。
NR-V2X(New Radio Vehicle-to-Everything)应用领域非常广泛,它支持30多个用例,包括单播(Unicast),组播(Groupcast)和广播(Broadcast)通信。针对如此复杂的应用领域,实现节能的最大挑战是如何平衡组播性能和功率消耗。一般认为,单个DRX参数集不足以满足不同通信类型的服务,比如,在主要用例组播中,存在车辆组驾驶(Vehicle Platooning)、自动协作驾驶(Automated Cooperative Driving)、传感器信息共享(Sensor Sharing)、远程驾驶(Remote Driving)等;它们具有不同的性能要求,例如可靠性(如,Packet Reception Ratio,PRR),覆盖范围(如,通信范围,Communication Range) 和迟延(Latency)。因此,在实现组播功耗节省时,最大的挑战在于确保所有组成员都在相同的传输时隙来接收和感测信道。
由于NR-V2X中用例情况更为复杂,特别针对组播通信,传统LTE-V2X的节能机制将无法有效使用。在组播通信中,当组播成员UE在DRX循环周期内随机睡眠和唤醒时,存在部分成员UE相互无法通信的问题,会严重降低PRR的性能。组播有两种类型:第一种基于通信范围(Communication Range)的组播,该组播是由位于通信范围内的UE组成;第二种是由相同专用目标ID(Destination ID)的各个组播成员组成的组播,并拥有高层确定,并事先传递给每个组播成员。
图2给出了组播中部分感测的最坏情况,其中五个接受Rx UE(Receive UE)在DRX循环周期(例100ms)中随机睡眠和唤醒,无法接收来自Tx UE(Transmit UE)发送的数据包,因此导致PRR为零。如果组播UE被迫同时睡眠和唤醒,虽然所有组播UE都能够进行数据包接收,但是用于组播UE传输的可选资源被受到限制,因此出现Tx UE之间的资源冲突的问题。
发明内容
针对现有技术存在的问题,本申请提供了针对NR-V2X组播通信的功率节省方法。
本申请第一个方面是提供一种针对NR-V2X组播通信的功率节省方法,所述组播为基于通信范围的组播,沿第一方向设有至少2个区域,每个区域的长度为L、宽度为W,各个区域在长度方向上依次邻接;其中:
在通信范围内,各个区域内的所有Rx UE与Tx UE有相同的感测模式(Sensing Mode),所有Rx UE能够接收Tx UE发送的数据包,所有Rx UE与Tx UE均同时处于感测模式;以Tx UE区域为中心,在通信范围长度方向,形成UE区域相关窗口(UE Zone Correlation Window),所述UE区域相关窗口长度由区域长度L表示,即以区域数量计数,并至少是通信范围长度的两倍;
每个UE独立地在各自时隙上保持感测模式,并且相邻UE的感测间隔被位移一个或一个以上时隙(根据不同的应用,位移时隙数可以大于等于1的任何整数), Tx UE在第n(n为≥1的自然数)个时隙中进行组播通信,则所有Rx UE都能够进行接收;
所述方法包括:
将Zone-ID映射到时隙索引中,即,位于Zone-ID所代表的区域的UE在映射时隙中执行感测模式,映射规则定义为:所有UE位于的连续相邻区域映射到UE感测相邻时隙,即,位于相邻区域的UE也视为位于相邻时隙。
优选地,区域ID和时隙索引之间的映射关系可以由(预)配置指示(例如,通过RRC),或者可以由控制信息指示(例如,SCI,MAC CE)。
优选地,由时隙数(通常可以为奇数)来计数的UE的感测间隔,表示为(2Y+1)时隙;用时隙表示的感测间隔取决于区域的L和通信范围d cr
Y min=d cr/L
Y min被定义为通信范围内区域数,等同于通信范围;被选择的Y为整数,并始终大于或等于Y min
第n个区域的Zone-ID=n yN x+n x
Figure PCTCN2020076607-appb-000001
Figure PCTCN2020076607-appb-000002
其中,N x为Zone-ID的经度,N y为Zone-ID纬度值;x和y分别为UE当前位置经度,纬度与参考坐标(0,0)之间的距离,n x=0,1,…,N x-1和n y=0,1,…,N y-1。
每个DRX循环周期中的时隙索引为n c=0,1,…,N c-1,其中,N c为每个DRX循环周期中的时隙数;n c=n t mod N c;n t是时域上的时隙索引,为任意整数;
第n个区域和第m个区域之间区域相关系数为Z(n,m),第m个区域位于区域相关窗口的中心,因此,Z(n,m)(预)配置为:
Figure PCTCN2020076607-appb-000003
其中n,m=0,1,…,N x-1。
在一种优选实施例中,n x=(n ck)mod N x
其中Δ k被设置为第k个DRX循环周期中的映射偏移,0≤Δ k<N x
更优选地,第k个DRX循环周期中的第n c个时隙的感测模式与第m个区域相关联,并定义为S k(n c,m);
S k(n c,m)=Z(n x,m);
当S k(n c,m)=1,位于第m个区域的UE,则在第k个DRX循环周期的、第n c个时隙中被激活处于感测模式,否则,该UE保持在睡眠模式。
更优选地,N x<N c,则一个n x可以映射到多个n c,从而在单个DRX循环周期内产生多个感测间隔。
更优选地,N x>N c,则可以将一个n c映射到多个n x中,从而在DRX循环周期内可能不产生任何感测间隔。
更优选地,N x=N c=N(N为自然数)。
在一种优选实施例中,DRX循环周期可以基于经度的DRX循环周期和/或基于纬度的DRX循环周期进行(预)配置,实现双重DRX循环周期。
更优选地,两个DRX循环周期可以在同一资源池中(预)配置,或者每个DRX循环周期可以针对每个独立的资源池进行(预)配置;例如:当UE在道路上行走或驾驶时,UE可以检测街道方向以及区域方向,然后选择相应的资源池进行V2X节能通信。这样UE就只需要感测部分的资源池,从而达到更有效的节能。
在一种优选实施例中,时隙索引为n,并且在感测窗口中的DRX循环周期数为K;(预)配置的序列模型Δ K={Δ 12,…,Δ K},在不同的DRX循环周期中改变映射偏移值Δ k,与第n个时隙相关联的DRX循环周期的索引k n
Figure PCTCN2020076607-appb-000004
其中,k n=1,2,…,K,
Figure PCTCN2020076607-appb-000005
为天井函数。
在一种优选实施例中,根据NR-V2X中的规范,通信范围与数据包优先度相关联,具体的通信范围要求由SCI指示,优选地,至少由4比特来指示。
更优选地,通信范围至少可以有{50,80,180,200,350,400,500,700, 1000}米。
可以基于(预)配置的序列模型的方法来达到控制通信范围的目的。
在一种优选实施例中,固定区域尺寸,并基于(预)配置的序列模型在每个DRX循环周期中调整UE感测间隔参数Y。更优选地,保持每个区域中的UE数量不变。
优选地,在第k个DRX循环周期中UE感测间隔的值取决于Y K={Y 1,Y 2,…,Y K}的序列模型。其中,2Y k+1被定义为第k个DRX循环周期中UE感测间隔。
优选地,Tx UE在发送和通信范围相关的数据包时,它可以通过选择和通信范围相符合的(预)配置的UE感测间隔来选择其DRX循环周期内的资源。
在另一种优选实施例中,固定UE感测间隔,并在每个DRX循环周期中,通过(预)配置区域长度的L K={L 1,L 2,…,L K}序列模型或区域宽度的W K={W 1,W 2,…,W K}序列模型来控制通信范围。
优选地,固定N c,然后在每个DRX循环周期中静态地或动态地控制Zone-ID的经度N x和/或纬度N y
优选地,参数Zone-ID的经度N x和纬度N y被扩展为N x,k和N y,k,而参数N c被扩展为N c,k;对N x,k(或N y,k),N c,k,Y k和L k元素的参数集进行静态的或动态的(预)配置;K个DRX循环周期相关的参数集可定义为
G K={G 1,G 2,…,G K},
其中,与第k个DRX周期相关的参数子集G k可定义为
G k={N x,k,N c,k,Y k,L k}。
本申请第二个方面是提供一种针对NR-V2X组播通信的功率节省方法,所述组播为基于由高层确定的专用目标ID来实现,不同的组播具有不同的目标L2ID,第j组播中的所有UE都事先知道与组播服务相关联的专用目标ID,将其标记为ID j,其中j=0,1,…,J-1,J是组播服务允许的最大组播数。
优选地,第j个组播中的成员UE在第k个DRX循环周期、第n k,j个时隙 中被激活,n k,j可以表示为
n k,j=(ID jk)mod N k
其中,N k是第k个DRX循环周期的时隙数,即循环周期长度,Δ k是第k个DRX循环周期中的映射偏移,0≤Δ k<N k
或者,优选地,第j个组播中的成员UE在第k个DRX循环周期的,第r k,j个资源池中被激活,r k,j可以表示为
r k,j=(ID jk)mod N R,
其中,N R是UE被(预)配置的资源池数,Δ k是第k个DRX循环周期中的映射偏移,0≤Δ k<N R
优选地,与第j个组播相关联的所有UE在第k个DRX循环周期内的2Y k,j+1个时隙中进行感测。
更优选地,保持每个组播UE感测间隔基本恒定,Y k,j简化为Y j
在一种优选实施例,使用连续时隙(Contiguous Slot)感测方式,将第k个DRX循环周期中的第n个时隙,第j个组播业务的感测状态S k,j(n)(预)配置为
Figure PCTCN2020076607-appb-000006
其中n=0,1,…,N k-1,Y k,j是第k个DRX循环周期内第j个组播中UE感测间隔(预)配置参数。
优选地,S k,j(n)=1,则与目标ID指示的第j组播相关联的UE在第k个DRX循环周期中的第n个时隙被激活感测,否则UE保持在睡眠模式。
在另一种优选实施例中,使用分布式时隙(Distributed Slot)感测方式,第k个DRX循环周期中,与第n k,j个时隙相关联的第j个组播业务的N k时隙的感测状态S k,j(n k,j)可(预)配置为
S k,j(n k,j)={S k,j(0),S k,j(1),…,S k,j(N k-1),}
如:
Figure PCTCN2020076607-appb-000007
优选地,S k,j(n k,j)中的第n个元素等于1,与目标ID(即ID j)指示的第j个组播相关联的UE在第k个DRX循环周期中的第n个时隙被激活感测,否则UE保持睡眠模式。
优选地,在第k个DRX循环周期中的总时隙感测状态
Figure PCTCN2020076607-appb-000008
可以通过集合S k,j(n k,j)的并集计算获得,即
Figure PCTCN2020076607-appb-000009
优选地,根据高层指示目标ID,UE也可以控制在部分的资源池中进行感测,从而达到节能效果。
优选地,第j个组播中的成员UE在第k个DRX循环周期、第r k,j个资源池中被激活,r k,j可以表示为
r k,j=(ID jk)mod N R
其中,N R是UE被(予)配置的资源池数,Δ k是第k个DRX循环周期中的映射偏移,0≤Δ k<N R
优选地,资源池被定义为侧链路传输或接收可用时隙和频率资源块的子集。时域中的资源池由比特映射指示,并以一定间隔重复。资源池的重复时间间隔可以假定与DRX周期相同,或者相互成整数倍。
更优选地,组播相关联的所有UE可以组合时隙和资源池相关联参数在不同的DRX循环周期中进行更有效节能感测。
本发明中采取使用区域ID(Zone-ID)和目标ID(Destination ID)作为控制参数,所有组成员均将其作为参考点,并静态或动态地控制DRX循环周期和UE的激活间隔(Active Interval)从而到达省电效果。两控制参数的作用不同,前一个用于基于通信范围的组播,而后一个用于高层指示目标ID的组播。本发 明机制可确保在节能,可靠性和延迟方面的整体性能。
附图说明
图1为LTE-V2X的部分感测规程示例,其中Y=5,K=10,q K={1100100001}。
图2为针对组播通信的随机睡眠和唤醒的部分感测示例。
图3为从位置角度的节能分析示例。
图4为从时间角度的节能分析示例。
图5为基于区域的部分感测示例,假设5个Rx UE,Y=2,K=10,Δ k=0,和q K={1100100000}。
图6为和区域相关的双重DRX循环周期示例。
图7为能够改善区域覆盖范围的双重DRX循环周期示例。
图8为动态映射偏移Δ K示例。
图9为基于DRX循环周期内(预)配置序列模型的动态UE感测间隔示例,,并带有可配置参数,如N=16,K=3和Y K={3,2,1}。
图10为基于DRX循环周期内(预)配置序列模型的动态区域尺寸示例。
图11为基于目标ID的连续时隙的部分感测方式。
图12为基于目标ID的分布式时隙感测方式的部分感测的示例。
图13为基于目标ID的部分资源池感测的示例。
具体实施方式
众所周知,组播有两种类型:第一种基于通信范围(Communication Range)的组播,该组播是由位于通信范围内的UE组成;第二种是由拥有相同专用目标ID(Destination ID)的各个组播成员组成的组播,该专用目标ID由高层确定,并事先传递给每个组播成员。
在第一种组播中,Tx UE会发送自己的位置和数据包相关的通信范围。所有的Rx UE通过计算和Tx UE的距离,比较通信范围,然后判断是否该组播成员。在第二种组播中,应用层确定目标L2 ID,事先将其传递到3GPP层,并通知每个组播成员。每当有组播数据包发送时,高层会将目标L2 ID与数据包一起传递到MAC层,Tx UE会将目标ID与数据包一起发送给所有的UE。然后,Rx UE 会根据事先拥有的目标ID和数据包一起接受到的目标ID相比,如果一致则数据包是该目标ID组播的数据包。一般,针对特定的服务,V2X UE会被允许同时支持多个单播连接或多个播组连接。因此,不同组播的目标L2 ID是不同的;有的组播目标ID可以在AS(Access Stratum)层内生成,而有的组播目标ID可以来自上层(如V2X应用层)。
不同类型的组播需要不同的侧链路控制信息(SCI:Sidelink Control Information)。针对基于通信范围的组播,Tx UE需要在SCI中传递其位置信息和通信范围,从而每个Rx UE通过Tx UE和Rx UE自己的位置判断Rx UE是否属于该组播范围。针对基于目标ID的组播,Tx UE需要在SCI中发送与组播相关联的目标ID,从而每个Rx UE可以判断是否属于该组播范围。一旦Rx UE判断是属于该组播范围(针对任何类型组播),Rx UE将启动HARQ进程,决定是否反馈ACK(Acknowledgement)或NACK(Negative Acknowledgement)。
针对基于通信范围的组播和基于目标ID的组播,本申请分别引入与Zone-ID和目标ID相关的参数用于解决功耗节能问题。
实施例1
在基于通信范围的组播中,最大的挑战是确保附近的所有组播成员UE同时具有足够时隙执行感测,从而具有足够的候选资源来选择资源。在这里,首先我们仅从UE位置角度考虑节能。图3中给出了一个示例,其中区域由区域长度L值和区域宽度W值组成。为简单起见,仅考虑Zone-ID经度来实现节能,其中在通信范围内的五个Rx UE(即Rx UE-1至Rx UE-5)将和Tx UE有相同的感测模式(Sensing Mode)。因此,所有Rx UE在相邻区域中同时处于感测模式,并且能够接收从Tx UE发送的数据包。这就要求位于通信范围内的所有Rx UE和Tx UE均同时处于感测模式,因此Tx UE与Rx UE之间就必须有着高度区域(或位置)相关性。本申请引入参数UE区域相关窗口(UE Zone Correlation Window),UE区域相关窗口长度以区域数量计数,并以Tx UE所在的区域为中心。UE区域相关窗口大小由区域长度L来表示,至少是通信范围的两倍长度。
图4给出了一个示例,其中每个UE在五个时隙上保持感测模式,并且两个相邻UE的感测间隔被移位一个时隙。如果Tx UE在第n个时隙中进行组播通信,则所有Rx UE(Rx UE-1Rx UE5)都能够进行相应的接收,从而保证了两 个区域的通信范围。
因此,组播中节能的解决方案是将Zone-ID映射到时隙索引中,这意味着如果UE位于该区域,则它应该在映射时隙中执行感测模式。区域ID和时隙索引之间的映射关系可以由(预)配置指示(例如,通过RRC),或者可以由控制信息指示(例如,SCI,MAC CE)。映射规则可以定义为UE位于连续相邻区域(即,UE区域相关窗口)映射到UE感测相邻时隙。例如,从位置角度来看,图3中的UE-1和UE-2属于相邻UE,而从时域角度来看,图4中的UE-1和UE-2也应该被视为相邻UE。基于(预)配置,每个Zone-ID被映射到具有索引的连续时隙中,其中连续时隙的数量取决于通信范围和区域尺寸(Zone Size)。基于该映射规则,只要UE知道其位于哪个区域(即Zone-ID),它就能够准确地判断相应的时隙进行感测,发送和接收。
注意的是,以上讨论是基于一维Zone-ID(经度或纬度)和时隙之间的映射规则。相同的映射规则也可以在二维Zone-ID(经度和纬度)与时隙之间实现。在实施例中,为简单起见,我们仅关注一维Zone-ID映射。
为了制定Zone-ID与时隙索引之间的关系,在此定义一些必要的参数,如下所示:
●由时隙数来计数的UE的感测间隔(UE Active Interval),表示为2Y+1时隙;
Figure PCTCN2020076607-appb-000010
UE在检测侧链路信道时,感测间隔可以通过计时器来实现。
●用时隙表示的感测间隔取决于区域的长度L或宽度W(为简单起见,假设为L=W)和通信范围d cr
Figure PCTCN2020076607-appb-000011
参数Y min被定义为Y min=d cr/L;
Figure PCTCN2020076607-appb-000012
针对不同的数据包通信范围是不同的,因此可以通过统计方式来确定最小Y min
Figure PCTCN2020076607-appb-000013
由于感测间隔的一部分是用于资源选择目的的,因此被选择的Y应始终大于或等于Y min,即Y≥Y min
●Tx UE使用以下公式确定其所在的Zone-ID
Figure PCTCN2020076607-appb-000014
Figure PCTCN2020076607-appb-000015
Zone-ID=n yN x+n x,
其中,L为区域长度值,W为区域宽度值,N x为Zone-ID的经度,N y为Zone-ID纬度值,x和y分别为UE当前位置经度,纬度与参考坐标(0,0)之间的距离,n x=0,1,…,N x-1和n y=0,1,…,N y-1。为了简单起见,我们假设N x=N y
●每个DRX循环周期中的时隙索引为n c,其中n c=0,1,…,N c-1,N c为每个DRX循环周期中的时隙数(例如,N c=100)。注意,DRX循环周期中的时隙索引n c和时间上的时隙索引n t之间的关系保持为n c=n tmod N c,其中n t时域上的时隙索引,为是任意整数。
为了公式化第n个区域与第m个区域之间的区域相关性,我们引入了一个与第m个区域相关联的新参数Z(n,m),即所谓的区域相关系数。第m个区域位于区域相关窗口的中心,因此,区域相关系数Z(n,m)可以(预)配置为
Figure PCTCN2020076607-appb-000016
其中n,m=0,1,…,N x-1。
这意味着,如果Z(n,m)=1,则第n个区域位于与第m个区域相关联的区域相关窗口之内,否则就在区域相关窗口之外。
n x和n c之间的映射规则定义为n x=(n ck)mod N x
其中n x=0,1,…,N x-1和n c=0,1,…,N c-1。另外,Δ k被设置为第k个DRX循环周期中的映射偏移(一般为整数),主要起到n x和n c之间的伪随机化作用,其中0≤Δ k<N x。该映射偏移可以由RRC信令配置或预配置的,也可以由SCI或MAC CE信令加以更新。关于映射偏移讨论将在实施例3中进行详细叙述。此外,参数n x和N x也可以被n y和N y替代。
因此,可以将第k个DRX循环周期中的第n c个时隙的感测模式与第m个区域相关联,并定义为S k(n c,m)
S k(n c,m)=Z(n x,m),
其中n x=0,1,…,N x-1和n c=0,1,…,N c-1。
这意味着,如果S k(n c,m)=1,位于第m个区域的UE,则应在第k个DRX循环周期的,第n c个时隙中被激活处于感测模式,否则,该UE应保持在睡眠模式。这样不但能保证同一组播的相邻UE同时处于感测模式,而且处于感测模式 的组播的相邻UE在Tx UE相关联的通信范围之内。
通常,N x和N c是不同的,即N x≠N c。如果N x<N c,则一个n x可以映射到多个n c,从而在单个DRX循环周期内产生多个感测间隔。另一方面,如果N x>N c,则可以将一个n c映射到多个n x中,从而在DRX循环周期内可能不产生任何感测间隔。对于使用周期流量服务的组播来说,可能会导致较大的延迟。N x和N c的相关讨论将在实施例6中进行详细叙述。
在此我们先简单地假设N x=N c=N(如,N=100),然后针对周期性流量的组播,考虑基于本映射机制,并基于区域的部分感测。图5举例说明了基于区域的部分感测,其中有五个部分感测Rx UE(即UE-1~5),Y=2,K=10,Δ k=0,序列模型q K={1100100000}。
实施例2
二维区域由区域ID的经度和区域ID的纬度组成。因此,DRX循环周期可以基于经度的DRX循环周期或基于纬度的DRX循环周期进行(预)配置,实现双重DRX循环周期。从实现角度,两个DRX循环周期可以在同一资源池中(预)配置,或者每个DRX循环周期可以针对每个独立的资源池进行(预)配置。前者有利于平衡UE的感测间隔和资源效率,后者有利于提高覆盖性能。作为用例,当UE在道路上行走或驾驶时,UE可以检测街道方向以及区域方向,灵活选择(预)配置的DRX循环周期,从而有效地用于部分感测。
图6举例说明了和区域相关的双重DRX循环周期,其中一个属于基于经度的DRX循环周期,另一个属于基于纬度的DRX循环周期。
与基于单循环周期的DRX相比,基于双循环周期的DRX可以提高覆盖范围和感测性能。经过两个DRX循环周期之后,组播感测面积可以加倍,并且处于感测模式的UE的数量也可以增加两倍,而UE节能效果没有变化。详细如图7所示。
实施例3
如果在不同的DRX循环周期中映射偏移Δ k值是固定的话,则Tx UE之间选择的资源冲突概率可能会增大。这是因为UE在相同的感测间隔所选择的资源候选在时域和频域会相同,从而降低了资源选择的自由度并影响NR-V2X整体性能。
在此,本实施例在DRX循环周期中配置不同的映射偏移值Δ k,从而减低UE选择资源冲突概率。为了简单起见,假定N x=N c=N,但本提案也适合于N x≠N c的情况。假设当前时隙索引为n,并且在感测窗口中的DRX循环周期数为K。与第n个时隙相关联的DRX循环周期的索引k n可以通过以下公式导出
Figure PCTCN2020076607-appb-000017
其中,k n=1,2,…,K,
Figure PCTCN2020076607-appb-000018
为天井函数。
为了减小资源冲突的可能性,本实施例考虑(预)配置的序列模型Δ K={Δ 12,…,Δ K},在不同的DRX循环周期中改变映射偏移值Δ k。图8错误!未找到引用源。举例说明了感测窗口内的动态映射偏移,并带有可配置的参数N=100,K=10,和配置序列模型Δ K={0,10,…,90}。
实施例4
根据NR-V2X中的规范,通信范围与数据包优先度相关联,具体的通信范围要求由SCI指示,至少由4比特来指示。通信范围至少可以有{50,80,180,200,350,400,500,700,1000}米。因此针对各种通信范围解决方案,必须引入新的机制。在这里,我们认为有两个参数在不同的DRX循环周期内是可以控制的。一个与UE感测间隔有关,可以在不同的DRX循环周期内(预)配置不同的UE感测间隔,并基于UE感测间隔序列模型来实现。另一个与区域尺寸相关,可以在不同的DRX循环周期内(预)配置不同的区域尺寸,并基于区域尺寸序列模型来实现。这些控制参数相互相关相补,可以同时被灵活(预)配置。但是,在我们的控制通信范围讨论中,为简单起见,其中一个参数将被固定不变,而将另一个参数被动态调整。当然,这两个参数也可以用于组合其他参数,例如映射偏移Δ k等。
本实施例中,为了实现针对各种数据包所需的各种通信范围的动态解决方案,我们固定区域尺寸,并基于(预)配置的序列模型在每个DRX循环周期中调整UE感测间隔参数Y。注意,固定区域尺寸等效地保持每个区域中的UE数量不变。在此,我们考虑在不同的DRX循环周期中(预)配置不同的UE感测间隔,并将它们与相应的通信范围关联起来。在第k n个DRX循环周期中UE感测间隔的值取决于Y K={Y 1,Y 2,…,Y K}的序列模型,其中k n与第n个时隙相关联, 在公式-1中被定义,k n=1,2,…,K。
在实际情况中,Tx UE在发送和通信范围相关的数据包时,它可以通过选择和通信范围相符合的(预)配置的UE感测间隔来选择其DRX循环周期内的资源。应当注意的是,通信范围变化越大,选择符合通信范围的DRX循环周期数就需要越多,Tx UE发送相关数据包的迟延就越长。
图9举例说明了感测窗口中可用的多个UE感测间隔,并带有可配置参数,如N=16,K=3和Y K={3,2,1}。
实施例5
如之前所讨论的,UE可以根据通信范围以及Zone-ID经度和纬度来确定区域尺寸。本实施例中,如果固定UE感测间隔,而改变每个DRX循环周期相关的区域尺寸,也可以相应地控制通信范围。注意,区域尺寸越大,每个区域中UE数就越多,Tx UE选择资源的冲突就越大,反之亦然。
在每个DRX循环周期中,通过(预)配置区域长度的L K={L 1,L 2,…,L K}序列模型或区域宽度的W K={W 1,W 2,…,W K}序列模型来控制通信范围。为简单起见,我们可以假定L K=W K
在实际情况中,Tx UE在发送和通信范围相关的数据包时,它可以通过选择和通信范围相符合的(预)配置的区域尺寸来选择其DRX循环周期内的资源。
图10举例说明了感测窗口中可用的多个UE感测间隔,并带有可配置参数,如N=16,K=3和L K={4A,2A,A}。可以看到,在第1个DRX循环周期中,每个时隙与大小为4A的区域相关联,在第2个DRX循环周期中,每个时隙与大小为2A的区域相关联,在第3个DRX循环周期中,每个时隙与大小为A的区域相关联。在使用此(预)配置机制和映射规则时,如果Tx UE数据包的相关通信范围较大,则Tx UE可以选择第1个DRX循环周期中的资源进行数据包传输;如果相关的通讯范围较小,则Tx UE可以选择第3个DRX循环周期中的资源进行数据包传输。关于Rx UE在DRX循环周期中的感测规程,则没有任何变化。注意,通过使用此(预)配置机制和映射规则,相邻DRX周期中的通信范围以两倍的关系被调整。
实施例6
N x和N c通常是不同的。如果是N x<N c,则单个n x可以映射到多个n c,从 而在单个DRX循环周期内产生多个感测间隔。例如,当6比特专用于Zone-ID经度时,可以计算出N x=64。但是,当我们考虑周期为100ms的周期性流量时,则N c=100,其中时隙间隔为1ms。在这种情况下,UE可以在DRX循环周期中被最大激活两次。比较简单有效的解决方案是在每个DRX循环周期中设置最大感测间隔数,然后属于同一组播的所有UE根据升序或降序选择感测机会,具体由RRC信令(预)配置。
另一方面,如果N x>N c,则单个n c可以映射到多个n x,从而在DRX循环周期内没有UE的感测机会。对于使用定期流量服务的组播来说,这可能会导致较大的延迟。
针对以上两种情况,综合的解决方案是基于(预)配置方式来控制每个DRX循环周期中N x和N c之间的关系。针对周期性的流量,我们可以固定N c,然后在每个DRX循环周期中静态地控制N x。可以结合基于序列模型的可控区域尺寸来执行此机制。例如,根据来自高层的通信范围,如果需要减小Zone-ID的经度N x或纬度N y,则应增加区域的大小。在此,参数Zone-ID的经度N x和纬度N y被扩展为N x,k和N y,k,而参数N c被扩展为N c,k。其结果是,可以对N x,k(或N y,k),N c,k,Y k和L k元素的参数集进行静态的(预)配置。K个DRX循环周期相关的参数集可定义为
G K={G 1,G 2,…,G K},
其中,与第k个DRX周期相关的参数子集G k可定义为
G k={N x,k,N c,k,Y k,L k}。
实施例7
组播服务可以基于由高层确定的专用目标ID来实现;即,不同的组播具有不同的目标L2ID。因此,基于DRX的节能也能够有效地依赖于目标ID信息。通过获取目标L2ID的LSB(Least Significant Bit),每个UE可以基于DRX循环周期内的(预)配置值来确定UE感测间隔。
假设第j组播中的所有UE都事先知道与组播服务相关联的专用目标ID,将其标记为ID j,其中j=0,1,…,J-1,J是组播服务允许的最大组播数。这是因为NR-V2X是允许UE同时支持多个播组服务。因此,根据目标ID(即ID j)的指示,第j个组播中的成员UE应该在第k个DRX循环周期的,第n k,j个时隙中被 激活。n k,j可以表示为
n k,j=(ID jk)mod N k,
其中,N k是时隙中第k个DRX循环周期的长度,Δ k是第k个DRX循环周期中的映射偏移(一般为整数),主要起到伪随机化作用,0≤Δ k<N k。关于映射偏移参考实施例3。
针对发送和接收的UE,仅需要指定DRX循环周期中的单个时隙。然而,出于感测和资源选择的目的,则需要多个时隙,以确保在候选时隙集中获取足够的资源。因此,在这种情况下,与第j个组播相关联的所有UE需要在第k个DRX循环周期内的2Y k,j+1个时隙中进行感测。由于每个组播中的服务一般比较类似,因此可以保持每个组播UE感测间隔基本恒定。也就是说,参数Y k,j可以简化为Y j
此外,可以基于连续时隙(Contiguous Slot)感测方式或分布式时隙(Distributed Slot)感测方式来(预)配置感测时隙。如果使用连续时隙感测方式,例如,将第k个DRX循环周期的第n个时隙,第j个组播业务的感测状态S k,j(n)(预)配置为
Figure PCTCN2020076607-appb-000019
其中n=0,1,…,N k-1,Y k,j是第k个DRX循环周期内第j个组播中UE感测间隔(预)配置参数。
应该注意的是,如果S k,j(n)=1,则与目标ID指示的第j组播相关联的UE应该在第k个DRX循环周期中的第n个时隙被激活感测,否则UE应该保持在睡眠模式。每个DRX循环周期中,每个UE在不同组播之间的感测时隙可能会重叠,从而有助于减少DRX循环周期内的整个UE感测间隔,但不会影响整体的性能。
作为示例,假设UE间隔仅基于组播服务,而与DRX循环周期的索引无关。因此,如果给定可配置的参数N=16,K=3,J=2,Δ k=0,{ID 0 ID 1}={43 20},{Y 0 Y 1}={1 2},根据ID j值,我们能够推导n k,j
Figure PCTCN2020076607-appb-000020
通过这些配置参数和推导值,图11示例了基于目标ID的连续时隙的部分感测方式。
如果使用分布式时隙感测方式,例如,在第k个DRX循环周期中,与第n k,j个时隙相关联的第j个组播业务的N k时隙的感测状态S k,j(n k,j)可(预)配置为
S k,j(n k,j)={S k,j(0),S k,j(1),…,S k,j(N k-1),}
例如:
Figure PCTCN2020076607-appb-000021
应该注意的是,如果S k,j(n k,j)中的第n个元素S k,j(n)等于1,则与目标ID(即ID j)指示的第j个组播相关联的UE应该在第k个DRX循环周期中的第n个时隙被激活感测,否则UE应保持睡眠模式。因此,由
Figure PCTCN2020076607-appb-000022
表示的总时隙可以通过集合S k,j(n k,j)的并集计算获得
Figure PCTCN2020076607-appb-000023
例如,假设N=16,K=3,J=2,{ID 0 ID 1}={43 20}和{Y 0 Y 1}={1 2},我们可以根据比特映射方式对S k,j(n k,j)进行(预)配置
Figure PCTCN2020076607-appb-000024
由于这两组播的UE感测间隔有部分重叠,因此这两组播的并集可以被描述为
Figure PCTCN2020076607-appb-000025
图12中显示了基于目标ID和分布式时隙感测方式的部分感测的示例,其中两个组播共同激活了第13个时隙,从而可以减少了总的感测时隙数量。
值得注意的是,参数Y k,j不应被设置太大,较大的Y k,j需要更多的感测时间从而导致更大的功耗。适当的Y k,j值取决于组播服务的优先级。此外,重叠的感 测时隙越多,节能效果越好。但是,感测时隙重叠可能会降低候选时隙集中资源选择的自由度,并导致Tx UE间的资源选择冲突。
假设每个UE可以同时加入最多J个组播。如果UE希望进一步降低功耗,则需要限制UE感测组播数量。如果限制UE仅感测J lim组播,其中J lim≤J。UE加入哪个组播进行感测将取决于以下的因素:
●组播业务的优先级,或
●从高层传递的目标ID的新鲜度(即,组播业务持续的时间),或
●和目标ID组播相关的传输次数,或
●以上综合因素。
实施例8
根据目标ID(即ID j)的指示,第j个组播中的成员UE应该在第k个DRX循环周期的,第r k,j个资源池中被激活。r k,j可以表示为
r k,j=(ID jk)mod N R,
其中,N R是UE被(予)配置的资源池数,Δ k是第k个DRX循环周期中的映射偏移,0≤Δ k<N R。关于映射偏移参考实施例3。
应当注意,资源池被定义为侧链路传输或接收可用时隙和频率资源块的子集。时域中的资源池由比特映射指示,并以一定间隔重复。我们可以假设资源池的重复时间间隔与DRX周期相同,或者相互成整数倍。
因此,与第j组相关联的Tx UE选择第r k,j个资源池中的资源,在第k个DRX周期中发送数据包。同时,与第j组相关联的所有Rx UE仅需要访问第r k,j个资源池,并且在第k个DRX周期内的全部(或部分)时隙进行感测。注意,考虑部分时隙进行感测主要是可以将该资源池感测机制和前述的部分时隙感测机制相互结合,从而获得更有好的节能效果。
作为示例,UE仅需要感测相应的资源池。为了简单起见,我们假设资源池的重复时间间隔与DRX周期相同,资源池的感测是基于N R=3(由R 0,R 1和R 2资源池表示),K=3,M=2,{Δ 1 Δ 2 Δ 3}={0 2 1},和{ID 0 ID 1}={43 20}的配置假设。在此,我们可以推导给出资源池索引
Figure PCTCN2020076607-appb-000026
Figure PCTCN2020076607-appb-000027
使用这些配置参数和推导出的资源池索引,基于组播目标ID的资源池感测如图13所示。
通常,NR-V2X系统允许UE同时支持多种不同业务,例如基于目标ID的组播服务,基于通信范围的组播服务,以及单播服务。因此,以上提出的所有机制可以全面地参与在每个DRX循环周期中的UE感测间隔决定,从而更有效地实现NR-V2X的部分感测。

Claims (18)

  1. 一种针对NR-V2X组播通信的功率节省方法,其特征在于,所述组播为基于通信范围的组播,沿第一方向设有至少2个区域,每个区域的长度为L、宽度为W,各个区域在长度方向上依次邻接;其中:
    在通信范围内,各个区域内的所有Rx UE与Tx UE有相同的感测模式(Sensing Mode),所有Rx UE能够接收Tx UE发送的数据包,所有Rx UE与Tx UE均同时处于感测模式;以Tx UE区域中心,在通信范围长度方向,形成UE区域相关窗口(UE Zone Correlation Window),所述UE区域相关窗口长度由区域长度L表示,即以区域数量计数,并至少是通信范围长度的两倍;
    每个UE独立地在各自时隙上保持感测模式,并且相邻UE的感测间隔被位移一个或更多个时隙,Tx UE在第n(n为≥1的自然数)个时隙中进行组播通信,则所有Rx UE都能够进行接收;
    所述方法包括:
    将Zone-ID映射到时隙索引中,即,位于Zone-ID所代表的区域的UE在映射时隙中执行感测模式,映射规则定义为:所有UE位于的连续相邻区域映射到UE感测相邻时隙,即,位于相邻区域的UE也视为位于相邻时隙。
  2. 根据权利要求1所述的方法,其特征在于,由时隙数来计数的UE的感测间隔,表示为2Y+1时隙;用时隙表示的感测间隔取决于区域的L和通信范围d cr
    Y min=d cr/L
    被选择的Y始终大于或等于Y min
    第n个区域的Zone-ID=n yN x+n x
    Figure PCTCN2020076607-appb-100001
    Figure PCTCN2020076607-appb-100002
    其中,N x为Zone-ID的经度,N y为Zone-ID纬度值;x和y分别为UE当前位置经度,纬度与参考坐标(0,0)之间的距离,n x=0,1,…,N x-1和n y=0,1,…,N y-1。
  3. 根据权利要求2所述的方法,其特征在于,每个DRX循环周期中的时隙索引为n c=0,1,…,N c-1,其中,N c为每个DRX循环周期中的时隙数;n c=n tmod N c;n t是任意整数;
    第n个区域和第m个区域之间区域相关系数为Z(n,m),第m个区域位于位于区域相关窗口的中心,因此,Z(n,m)(预)配置为:
    Figure PCTCN2020076607-appb-100003
    其中n,m=0,1,…,N x-1。
  4. 根据权利要求3所述的方法,其特征在于,n x=(n ck)mod N x
    其中Δ k被设置为第k个DRX循环周期中的映射偏移,0≤Δ k<N x
  5. 根据权利要求4所述的方法,其特征在于,第k个DRX循环周期中的第n c个时隙的感测模式与第m个区域相关联,并定义为S k(n c,m);
    S k(n c,m)=Z(n x,m);
    当S k(n c,m)=1,位于第m个区域的UE,则在第k个DRX循环周期的、第n c个时隙中被激活处于感测模式,否则,该UE保持在睡眠模式。
  6. 根据权利要求5所述的方法,其特征在于,前时隙索引为n,并且在感测窗口中的DRX循环周期数为K;(预)配置的序列模型Δ K={Δ 12,…,Δ K},在不同的DRX循环周期中改变映射偏移值Δ k,与第n个时隙相关联的DRX循环周期的索引k n
    Figure PCTCN2020076607-appb-100004
    其中,k n=1,2,…,K,
    Figure PCTCN2020076607-appb-100005
    为天井函数。
  7. 根据权利要求5所述的方法,其特征在于,固定UE感测间隔,并在每个DRX循环周期中,通过(预)配置区域长度的L K={L 1,L 2,…,L K}序列模型或区域宽度的W K={W 1,W 2,…,W K}序列模型来控制通信范围。
  8. 根据权利要求7所述的方法,其特征在于,参数Zone-ID的经度N x和纬度N y被扩展为N x,k和N y,k,而参数N c被扩展为N c,k;对N x,k(或N y,k),N c,k,Y k和 L k元素的参数集进行静态的(预)配置;K个DRX循环周期相关的参数集可定义为
    G K={G 1,G 2,…,G K},
    其中,与第k个DRX周期相关的参数子集G k可定义为
    G k={N x,k,N c,k,Y k,L k}。
  9. 一种针对NR-V2X组播通信的功率节省方法,其特征在于,所述组播为基于由高层确定的专用目标ID来实现,不同的组播具有不同的目标L2 ID,第j组播中的所有UE都事先知道与组播服务相关联的专用目标ID,将其标记为ID j,其中j=0,1,…,J-1,J是组播服务允许的最大组播数;其中:
    第j个组播中的成员UE在第k个DRX循环周期、第n k,j个时隙中被激活,n k,j表示为
    n k,j=(ID jk)mod N k
    或者,第j个组播中的成员UE在第k个DRX循环周期的,第r k,j个资源池中被激活,可以表示为
    r k,j=(ID jk)mod N R,
    其中,N k是时隙中第k个DRX循环周期的长度,N R是UE被(予)配置的资源池数,Δ k是第k个DRX循环周期中的映射偏移,0≤Δ k<N R
  10. 根据权利要求9所述的方法,其特征在于,与第j个组播相关联的所有UE在第k个DRX循环周期内的2Y k,j+1个时隙中进行感测。
  11. 根据权利要求9所述的方法,其特征在于,保持每个组播UE感测间隔基本恒定,Y k,j简化为Y j
  12. 根据权利要求10所述的方法,其特征在于,使用连续时隙感测方式,将第k个DRX循环周期的第n个时隙,第j个组播业务的感测状态S k,j(n)(预)配置为
    Figure PCTCN2020076607-appb-100006
    其中n=0,1,…,N k-1,Y k,j是第k个DRX循环周期内第j个组播中UE感测间隔(预)配置参数。
  13. 根据权利要求12所述的方法,其特征在于,S k,j(n)=1,则与目标ID指示的第j组播相关联的UE在第k个DRX循环周期中的第n个时隙被激活感测,否则UE保持在睡眠模式。
  14. 根据权利要求10所述的方法,其特征在于,使用分布式时隙感测方式,第k个DRX循环周期中,与第n k,j个时隙相关联的第j个组播业务的Nk时隙的感测状态S k,j(n k,j)(预)配置为
    S k,j(n k,j)={S k,j(0),S k,j(1),…,S k,j(N k-1),}。
  15. 根据权利要求14所述的方法,其特征在于,S k,j(n k,j)中的第n个元素S k,j(n)等于1,与目标ID指示的第j个组播相关联的UE在第k个DRX循环周期中的第n个时隙被激活感测,否则UE保持睡眠模式。
  16. 根据权利要求15所述的方法,其特征在于,总时隙
    Figure PCTCN2020076607-appb-100007
    可以通过集合S k,j(n k,j)的并集计算获得,即
    Figure PCTCN2020076607-appb-100008
  17. 根据权利要求9所述的方法,其特征在于,资源池被定义为侧链路传输或接收可用时隙和频率资源块的子集。时域中的资源池由比特映射指示,并以一定间隔重复。资源池的重复时间间隔可以与DRX周期相同,或者相互成整数倍。
  18. 根据权利要求9所述的方法,其特征在于,与第j组相关联的Tx UE选择第r k,j个资源池中的资源,在第k个DRX周期中发送数据包。同时,与第j组相关联的所有Rx UE仅需要访问第r k,j个资源池,并且在第k个DRX周期内的全部或部分时隙进行感测.
PCT/CN2020/076607 2020-02-25 2020-02-25 一种针对nr-v2x组播通信的功率节省方法 WO2021168653A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/076607 WO2021168653A1 (zh) 2020-02-25 2020-02-25 一种针对nr-v2x组播通信的功率节省方法
CN202080068307.9A CN114902760A (zh) 2020-02-25 2020-02-25 一种针对nr-v2x组播通信的功率节省方法
US17/822,292 US20230276525A1 (en) 2020-02-25 2020-02-25 Power saving method with regard to nr-v2x groupcast communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076607 WO2021168653A1 (zh) 2020-02-25 2020-02-25 一种针对nr-v2x组播通信的功率节省方法

Publications (1)

Publication Number Publication Date
WO2021168653A1 true WO2021168653A1 (zh) 2021-09-02

Family

ID=77492044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076607 WO2021168653A1 (zh) 2020-02-25 2020-02-25 一种针对nr-v2x组播通信的功率节省方法

Country Status (3)

Country Link
US (1) US20230276525A1 (zh)
CN (1) CN114902760A (zh)
WO (1) WO2021168653A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464722A (zh) * 2007-12-20 2009-06-24 英特尔公司 利用位置感测模块的功率节省设备、系统和方法
CN108886767A (zh) * 2016-03-25 2018-11-23 松下电器(美国)知识产权公司 用于车辆通信的无线电资源的改进的分派
WO2019066629A1 (ko) * 2017-09-29 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말
CN110169159A (zh) * 2016-08-08 2019-08-23 夏普株式会社 用于v2x通信的高功效资源利用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464722A (zh) * 2007-12-20 2009-06-24 英特尔公司 利用位置感测模块的功率节省设备、系统和方法
CN108886767A (zh) * 2016-03-25 2018-11-23 松下电器(美国)知识产权公司 用于车辆通信的无线电资源的改进的分派
CN110169159A (zh) * 2016-08-08 2019-08-23 夏普株式会社 用于v2x通信的高功效资源利用
WO2019066629A1 (ko) * 2017-09-29 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Discussion on resource sensing and selection for pedestrian UEs", 3GPP DRAFT; R1-166993_DISCUSSION ON RESOURCE SENSING AND SELECTION FOR PEDESTRIAN UES_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20160822 - 20160826, 12 August 2016 (2016-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051141961 *

Also Published As

Publication number Publication date
CN114902760A (zh) 2022-08-12
US20230276525A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US11729843B2 (en) Method and apparatus of handling device-to-device resource selection with consideration on discontinuous reception operation in a wireless communication system
US11678263B2 (en) Method and apparatus for enhancing discontinuous reception in wireless systems
KR102029330B1 (ko) 트리거링된 타겟 웨이크 시간 동작
JP4630875B2 (ja) 電力を節約するための方法及び無線装置
CN114765889A (zh) 无线通信系统中处理部分感测和不连续接收的方法和设备
TW202231103A (zh) 用於尋呼增強的使用者設備分組方法及使用者設備
Muzakkari et al. Recent advances in energy efficient-QoS aware MAC protocols for wireless sensor networks
CN114765887A (zh) 无线通信系统中处理不连续接收和部分感测的方法和设备
Miller et al. On-demand TDMA scheduling for energy conservation in sensor networks
Park et al. RIX-MAC: an energy-efficient receiver-initiated wakeup MAC protocol for WSNs
WO2021168653A1 (zh) 一种针对nr-v2x组播通信的功率节省方法
Park et al. Design and analysis of asynchronous wakeup for wireless sensor networks
Krishnamurthy et al. Reservation-based protocol for monitoring applications using IEEE 802.15. 4 sensor networks
Balachandran et al. Adaptive sleeping and awakening protocol (ASAP) for energy efficient adhoc sensor networks
Ghrab et al. ECAB: An Efficient Context-Aware multi-hop Broadcasting protocol for wireless sensor networks
Liu et al. ORAS: Opportunistic routing with asynchronous sleep in Wireless Sensor Networks
WO2022110103A1 (zh) 一种节能nr侧链路传输和接收的方法
TW201631947A (zh) 觸發式目標蘇醒時間操作(三)
Tripathy Study and analysis of performance of IEEE 802.11 power saving mode
Sumathi et al. Energy efficient bandwidth constrained QoS enabled multipath routing for MANETs
Chen et al. Medium access control based on adaptive sleeping and probabilistic routing for delay tolerant mobile sensor networks
CN116998200A (zh) 无线通信系统中支持侧链路不连续接收的方法和设备
Tan et al. Energy-efficient geographic routing in asynchronous wireless sensor networks
Kumar et al. An energy-efficient and low latency (E 2 L 2) MAC protocol for low traffic wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920919

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20920919

Country of ref document: EP

Kind code of ref document: A1