WO2021168531A1 - Scorpiobot - Google Patents

Scorpiobot Download PDF

Info

Publication number
WO2021168531A1
WO2021168531A1 PCT/CA2020/050259 CA2020050259W WO2021168531A1 WO 2021168531 A1 WO2021168531 A1 WO 2021168531A1 CA 2020050259 W CA2020050259 W CA 2020050259W WO 2021168531 A1 WO2021168531 A1 WO 2021168531A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
arms
user
articulated
arm
Prior art date
Application number
PCT/CA2020/050259
Other languages
French (fr)
Inventor
Guillaume SEGUIN DE BROIN
Original Assignee
Seguin De Broin Guillaume
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seguin De Broin Guillaume filed Critical Seguin De Broin Guillaume
Priority to PCT/CA2020/050259 priority Critical patent/WO2021168531A1/en
Publication of WO2021168531A1 publication Critical patent/WO2021168531A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/04Viewing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • B25J3/04Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements involving servo mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric

Definitions

  • the ScorpioBot invention falls within the technical field of bionic robotics.
  • the invention is a robot that can move freely in its environment, at different speeds, and can climb obstacles.
  • the robot is equipped with articulated arms controlled remotely, which allows it to interact with its environment.
  • the object of this invention is to enable the user to perform technical work in addition to exploration and reconnaissance work, in places that are difficult to access or have dangerous access.
  • bionic robotics The technical field of bionic robotics is inspired, among other things, by the animal world to create new, more efficient technological tools.
  • Spiders are among other things known for their great mobility, and many spider robots have been built. However, he begins to need to go beyond simple exploration, to interact with the world on a smaller scale than ours. Thus, an animal like the scorpion, combining a mode of movement similar to that of a spider with pincers and a stinger, makes it possible to reconcile free movement and manipulative tools, for an interaction with the environment.
  • the present invention is called ScorpioBot and is a remote controlled miniature scorpion robot.
  • the present invention comprises a frame on which are fixed: 6 articulated arms serving to move the robot; two arms located at the front of the robot, in the viewing angle of the front camera, and a final articulated arm located at the rear of the robot.
  • the robot frame is the body of the robot. It houses all the communications systems, the logic units (microcontrollers), as well as the power circuits for the control of the arms.
  • the chassis also houses the lithium battery necessary for the autonomy of the robot and a front camera, to allow the user to take the position of observer or control of the robot.
  • articulated arms used to move the robot. They are each made up of three moving parts. These arms are called “legs". The legs are fixed by the holes 1-C in a normal way to the plane formed by the frame. Starting from the frame, there is a first circular 2-D part, allowing the connection between part 2-B and the frame. This part can be rotated to an angle close to plus or minus 90 degrees from its original position, thanks to a servomotor fixed below the frame. It also contains another servo motor to control the inclination of part 2-B.
  • the second part 2-B is fixed between the circular part 2-D and the part 2-A. It contains a rotary servomotor (or linear, with a device to convert this linear movement into rotary movement, such as a ball screw connected to a pivot for example) to control part 2-A, base of the robot's leg.
  • a rotary servomotor or linear, with a device to convert this linear movement into rotary movement, such as a ball screw connected to a pivot for example
  • servomotors are all connected to a microcontroller, which thanks to a power circuit (such as drivers, H-bridge, relays or even IGBTs) controls the movement of the robot in accordance with the instructions received from the user and from the control device.
  • a power circuit such as drivers, H-bridge, relays or even IGBTs
  • the robot is equipped with two manipulator arms located at the front of the robot. These arms are tilted parallel to the frame, and are positioned so that they are in the angle of the camera. These arms are remotely controlled articulated arms which follow an architecture similar to that of the legs.
  • a circular part 3-A such as the circular part of the legs; it is fixed on the front holes, next to the camera. This part has the particularity of being able to perform an almost complete rotation, again thanks to a servomotor located behind the part.
  • the notable difference between an arm and a leg concerns the third part 3-F, the final part of the arm.
  • a tool tip At the end of the arms is a tool tip.
  • This tool-tip consists of a 3-H junction where the user connects a miniature tool; a clamp, a measuring probe (multimeter type, thermometer) that he can then use to interact with the environment and perform precision work, where the leg is used only to move the robot.
  • the robot has a last remote controlled articulated arm located parallel to the legs, but in the opposite direction. This arm is attached to the rear part of the frame 1-B and serves as an additional manipulator for jobs requiring larger tools, or requiring an arm with more power.
  • This arm is equipped with a tool tip (3-H), as on the two front arms, but is designed to be used by larger tools, for harder tasks (drilling, cutting, welding) or transport of objects.
  • a storage space is dedicated to the transport of objects.
  • this arm can grab objects that it will store in the appropriate space.
  • the robot has two operating modes. The first is a mode of observation and the second is a mode of interaction.
  • the first mode allows the user to move the robot.
  • the robot is controlled by an application available on phones and computers, which displays the live feedback from the camera. The user interacts with the device which communicates and transmits information to the robot (movement).
  • the second mode is the manipulation mode.
  • This mode allows the user to take control of the robot arms and perform the desired work with the tools.
  • the user needs the app for video feedback.
  • the user has four bracelets (4-A) equipped with 3-axis accelerometers (4-B).
  • the user places a bracelet on each of their biceps, and a bracelet on each of their forearms.
  • the user takes remote controls (5-A) in his hands to be able to control the robot, direct it and operate the tools without having to hold the video device (phone or computer).
  • the components of the accelerations of each limb are communicated to the robot, which reproduces the movements identically, and thus, the user can precisely control the robot and the work being performed.
  • the first diagram is a diagram of the robot chassis.
  • Part 1-A is the upper part of the robot chassis, and part 1-D is the lower part.
  • Exhibit 1-B represents the clip of the additional manipulator arm at the rear of the robot.
  • Holes 1-C are provided for attaching the robot legs.
  • Part 1-E serves as an attachment for the front camera.
  • the second diagram represents a leg of the robot.
  • Part 2-A is the final part of the robot's paw.
  • Part 2-B corresponds to the central part of the leg, where the 2- C servomotor is housed.
  • part 2-D corresponds to the circular part which makes the connection between the frame and the leg.
  • the third diagram symbolizes the two front arms of the robot. Parts 3-A and 3-B are similar to part 2-D of the leg. Part 3-C is the centerpiece of the arm, like part 2-B. Parts 3-D and 3-E represent the space left for the servomotor. Finally, part 3-H is the junction between the arm and the interchangeable tool.
  • the fourth diagram represents an accelerometer bracelet (part 4-A). Room 4-B, the accelerometer. Part 4-C represents the Bluetooth module used for communication between the bracelets and the robot, part 4-D the microcontroller used and part 4-E, The Li-Po film battery for the bracelet.
  • the fifth diagram is one of the remote controls used to control the robot when the manipulation mode is activated.

Abstract

The present invention relates to a scorpion robot made up of 6 walking legs, of a body similar to a spider or scorpion and of 3 articulated arms that are remote-controllable by virtue of removable accelerometric sensors that the user places on their own arms. The arms of the robot are equipped with miniature tools (gripper, saw, thermometer probe, multimeter) that the user can change as required. Thus, the invention allows the user to take advantage of the mobility of the scorpion to enter locations that are poorly accessible or dangerous and carry out precision work there.

Description

Description de l'invention « SCORPIOBOT » Description of the invention "SCORPIOBOT"
Domaine technique Technical area
L’invention ScorpioBot s’inscrit dans le domaine technique de la robotique bionique. L’invention est un robot pouvant se déplacer librement dans son environnement, à différentes allures, et pouvant escalader les obstacles. Le robot est équipé de bras articulés pilotés à distance, ce qui lui permet d’interagir avec son environnement. Cette invention a pour but de permettre à l’utilisateur d’effectuer un travail technique en plus d’un travail d’exploration et de reconnaissance, dans des endroits difficiles d’accès ou à accès dangereux. The ScorpioBot invention falls within the technical field of bionic robotics. The invention is a robot that can move freely in its environment, at different speeds, and can climb obstacles. The robot is equipped with articulated arms controlled remotely, which allows it to interact with its environment. The object of this invention is to enable the user to perform technical work in addition to exploration and reconnaissance work, in places that are difficult to access or have dangerous access.
Technique antérieure Prior art
Le domaine technique de la robotique bionique s’inspire entre autres du monde animal pour créer de nouveaux outils technologiques, plus performants. The technical field of bionic robotics is inspired, among other things, by the animal world to create new, more efficient technological tools.
Les araignées sont entre autres reconnues pour leur grande mobilité, et de nombreux robots araignées ont été construits. Cependant, il commence à avoir nécessité de dépasser l’exploration simple, pour interagir avec le monde à une échelle plus réduite de la nôtre. Ainsi, un animal comme le scorpion, alliant un mode de déplacement proche de celui d’une araignée avec des pinces et un dard, permet de concilier déplacement libre et outils manipulateurs, pour une interaction avec l’environnement. Spiders are among other things known for their great mobility, and many spider robots have been built. However, he begins to need to go beyond simple exploration, to interact with the world on a smaller scale than ours. Thus, an animal like the scorpion, combining a mode of movement similar to that of a spider with pincers and a stinger, makes it possible to reconcile free movement and manipulative tools, for an interaction with the environment.
Exposé de l’invention La présente invention se nomme ScorpioBot et est un robot scorpion miniature télécommandé. La présente invention comprend un châssis sur lequel sont fixés : 6 bras articulés servant au déplacement du robot; deux bras situés à l’avant du robot, dans l’angle de vue de la caméra frontale, et un dernier bras articulé situé à l’arrière du robot. Disclosure of the Invention The present invention is called ScorpioBot and is a remote controlled miniature scorpion robot. The present invention comprises a frame on which are fixed: 6 articulated arms serving to move the robot; two arms located at the front of the robot, in the viewing angle of the front camera, and a final articulated arm located at the rear of the robot.
Ces trois derniers bras sont pilotables à distance par l’utilisateur, ce qui lui permet d’interagir avec l’environnement du robot. De plus, ces bras robotisés sont équipés d’un embout outil interchangeable, pour effectuer un travail technique dans des lieux difficiles d’accès. Le châssis du robot est le corps du robot. Il abrite tous les systèmes de communications, les unités logiques (microcontrôleurs), ainsi que les circuits de puissance pour le contrôle des bras. Le châssis abrite aussi l’accumulateur au lithium nécessaire à l’autonomie du robot et une caméra frontale, pour permettre à l’utilisateur de prendre le poste d’observateur ou de contrôle du robot. These last three arms can be controlled remotely by the user, which allows him to interact with the environment of the robot. In addition, these robotic arms are equipped with an interchangeable tool tip, to perform technical work in places that are difficult to access. The robot frame is the body of the robot. It houses all the communications systems, the logic units (microcontrollers), as well as the power circuits for the control of the arms. The chassis also houses the lithium battery necessary for the autonomy of the robot and a front camera, to allow the user to take the position of observer or control of the robot.
Les bras articulés servant au déplacement du robot sont au nombre de six. Ils sont composés chacun de trois pièces en mouvement. Ces bras sont intitulés « pattes ». Les pattes sont fixées par les trous 1-C de façon normale au plan formé par le châssis. En partant du châssis, on trouve une première pièce circulaire 2-D, permettant de faire l’attache entre la pièce 2-B et le châssis. Cette pièce peut être tournée jusqu’à un angle proche de plus ou moins 90 degrés en partant de sa position d’origine, grâce à un servomoteur fixé en dessous du châssis. Elle contient aussi un autre servomoteur pour contrôler l’inclinaison de la pièce 2-B. There are six articulated arms used to move the robot. They are each made up of three moving parts. These arms are called "legs". The legs are fixed by the holes 1-C in a normal way to the plane formed by the frame. Starting from the frame, there is a first circular 2-D part, allowing the connection between part 2-B and the frame. This part can be rotated to an angle close to plus or minus 90 degrees from its original position, thanks to a servomotor fixed below the frame. It also contains another servo motor to control the inclination of part 2-B.
La deuxième pièce 2-B se fixe entre la pièce circulaire 2-D et la pièce 2-A. Elle contient un servomoteur rotatif (ou linéaire, avec un dispositif pour convertir ce mouvement linéaire en mouvement rotatif, telle une vis à bille reliée à un pivot par exemple) pour contrôler la partie 2-A, base de la patte du robot. The second part 2-B is fixed between the circular part 2-D and the part 2-A. It contains a rotary servomotor (or linear, with a device to convert this linear movement into rotary movement, such as a ball screw connected to a pivot for example) to control part 2-A, base of the robot's leg.
Ces servomoteurs sont tous connectés à un microcontrôleur, qui grâce à un circuit de puissance (type drivers, pont en H, relais ou encore IGBT) contrôle le déplacement du robot conformément aux instructions reçues de l’utilisateur et du périphérique de contrôle. These servomotors are all connected to a microcontroller, which thanks to a power circuit (such as drivers, H-bridge, relays or even IGBTs) controls the movement of the robot in accordance with the instructions received from the user and from the control device.
Le robot est équipé de deux bras manipulateurs situés à l’avant du robot. Ces bras sont inclinés de façon parallèle au châssis, et sont placés de façon à être dans l’angle de la caméra. Ces bras sont des bras articulés télécommandés qui suivent une architecture similaire à celle des pattes. On retrouve en première partie une pièce circulaire 3-A telle la pièce circulaire des pattes; elle est fixée sur les trous frontaux, à côté de la caméra. Cette pièce a la particularité de pouvoir effectuer une rotation quasi complète, toujours grâce à un servomoteur situé derrière la pièce. The robot is equipped with two manipulator arms located at the front of the robot. These arms are tilted parallel to the frame, and are positioned so that they are in the angle of the camera. These arms are remotely controlled articulated arms which follow an architecture similar to that of the legs. In the first part we find a circular part 3-A such as the circular part of the legs; it is fixed on the front holes, next to the camera. This part has the particularity of being able to perform an almost complete rotation, again thanks to a servomotor located behind the part.
La différence notable entre un bras et une patte concerne la troisième pièce 3-F, la partie finale du bras. À l’extrémité des bras se trouve un embout-outil. Cet embout-outil est constitué d’une jonction 3-H où l’utilisateur vient brancher un outil miniature; une pince, une sonde de mesure (type multimètre, thermomètre) qu’il pourra par la suite utiliser pour interagir avec l’environnement et effectuer un travail de précision, là où la patte sert uniquement à déplacer le robot. Le robot possède un dernier bras articulé télécommandé situé de façon parallèle aux pattes, mais dans la direction inverse. Ce bras est fixé sur la partie arrière du châssis 1-B et sert de manipulateur additionnel pour les travaux nécessitant des outils plus volumineux, ou nécessitant un bras ayant plus de puissance. Ce bras est équipé d’un embout outil (3-H), comme sur les deux bras avant, mais est conçu pour être utilisé par des outils plus volumineux, pour des taches plus dures (perçage, coupe, soudure) ou des taches de transport d’objets. Sur le haut du châssis, un espace de stockage est dédié au transport d’objet. Ainsi, ce bras peut se saisir d’objets qu’il rangera dans l’espace approprié. The notable difference between an arm and a leg concerns the third part 3-F, the final part of the arm. At the end of the arms is a tool tip. This tool-tip consists of a 3-H junction where the user connects a miniature tool; a clamp, a measuring probe (multimeter type, thermometer) that he can then use to interact with the environment and perform precision work, where the leg is used only to move the robot. The robot has a last remote controlled articulated arm located parallel to the legs, but in the opposite direction. This arm is attached to the rear part of the frame 1-B and serves as an additional manipulator for jobs requiring larger tools, or requiring an arm with more power. This arm is equipped with a tool tip (3-H), as on the two front arms, but is designed to be used by larger tools, for harder tasks (drilling, cutting, welding) or transport of objects. On the top of the chassis, a storage space is dedicated to the transport of objects. Thus, this arm can grab objects that it will store in the appropriate space.
Toutes les liaisons entre les différentes parties en mouvement (jambe, bras) sont équipées de roulements à billes. All the connections between the different moving parts (leg, arm) are fitted with ball bearings.
Le robot présente deux modes de fonctionnement. Le premier est un mode d’observation et le second un mode d’interaction. Le premier mode (mode d’observation) permet à l’utilisateur de déplacer le robot. Le contrôle du robot se fait grâce à une application disponible sur téléphones et ordinateurs, qui affiche le retour en direct de la caméra. L’utilisateur interagit avec le périphérique qui communique et transmet les informations au robot (déplacement). The robot has two operating modes. The first is a mode of observation and the second is a mode of interaction. The first mode (observation mode) allows the user to move the robot. The robot is controlled by an application available on phones and computers, which displays the live feedback from the camera. The user interacts with the device which communicates and transmits information to the robot (movement).
Le second mode est le mode manipulation. Ce mode permet à l’utilisateur de prendre le contrôle des bras du robot et d’effectuer le travail souhaité avec les outils. L’utilisateur a besoin de l’application pour avoir le retour vidéo. Pour contrôler un ou plusieurs bras, l’utilisateur dispose de quatre bracelets (4-A) équipés d’accéléromètres 3 axes (4-B). L’utilisateur place un bracelet sur chacun de ses biceps, et un bracelet sur chacun de ses avant-bras. Après une calibration des capteurs, l’utilisateur prend dans ses mains des télécommandes (5-A) pour pouvoir contrôler le robot, le diriger et actionner les outils sans avoir à tenir le périphérique vidéo (téléphone ou ordinateur). Les composantes des accélérations de chacun des membres sont communiquées au robot, qui reproduit les mouvements à l’identique, et ainsi, l’utilisateur peut contrôler avec précision le robot et le travail effectué. The second mode is the manipulation mode. This mode allows the user to take control of the robot arms and perform the desired work with the tools. The user needs the app for video feedback. To control one or more arms, the user has four bracelets (4-A) equipped with 3-axis accelerometers (4-B). The user places a bracelet on each of their biceps, and a bracelet on each of their forearms. After a calibration of the sensors, the user takes remote controls (5-A) in his hands to be able to control the robot, direct it and operate the tools without having to hold the video device (phone or computer). The components of the accelerations of each limb are communicated to the robot, which reproduces the movements identically, and thus, the user can precisely control the robot and the work being performed.
Les descriptions ci-dessus ne sont que des exemples préférés de l’invention et ne sont pas destinées à limiter la présente invention. Toute modification, remplacement équivalent ou amélioration apportée à l’invention doit être incluse dans la portée de protection de l’invention. The above descriptions are only preferred examples of the invention and are not intended to limit the present invention. Any modification, equivalent replacement or improvement made to the invention should be included within the scope of protection of the invention.
Description des schémas Description of the diagrams
Le premier schéma est un schéma du châssis du robot. La pièce 1-A correspond à la partie supérieure du châssis du robot, et la pièce 1-D la partie inférieure. La pièce 1-B représente l’attache du bras manipulateur additionnel à l’arrière du robot. Les trous 1-C sont prévus pour attacher les pattes du robot. La pièce 1-E sert d’attache à la caméra frontale. The first diagram is a diagram of the robot chassis. Part 1-A is the upper part of the robot chassis, and part 1-D is the lower part. Exhibit 1-B represents the clip of the additional manipulator arm at the rear of the robot. Holes 1-C are provided for attaching the robot legs. Part 1-E serves as an attachment for the front camera.
Le deuxième schéma représente une patte du robot. La partie 2-A est la partie finale de la patte du robot. La pièce 2-B correspond à la partie centrale de la patte, où se loge le servomoteur 2- C. Enfin, la pièce 2-D correspond à la pièce circulaire qui fait la liaison entre le châssis et la patte. The second diagram represents a leg of the robot. Part 2-A is the final part of the robot's paw. Part 2-B corresponds to the central part of the leg, where the 2- C servomotor is housed. Finally, part 2-D corresponds to the circular part which makes the connection between the frame and the leg.
Le troisième schéma symbolise les deux bras avant du robot. Les pièces 3-A et 3-B sont similaires à la pièce 2-D de la patte. La pièce 3-C est la pièce centrale du bras, comme la pièce 2-B. Les pièces 3-D et 3-E représente l’espace laissé pour le servomoteur. Enfin, la pièce 3-H est la jonction entre le bras et l’outil interchangeable. Le quatrième schéma représente un bracelet accéléromètrique (pièce 4-A). La pièce 4-B, l’accéléromètre. La pièce 4-C représente le module Bluetooth utilisé pour la communication entre les bracelets et le robot, la pièce 4-D le microcontrôleur utilisé et la pièce 4-E, La batterie Li-Po film pour le bracelet. The third diagram symbolizes the two front arms of the robot. Parts 3-A and 3-B are similar to part 2-D of the leg. Part 3-C is the centerpiece of the arm, like part 2-B. Parts 3-D and 3-E represent the space left for the servomotor. Finally, part 3-H is the junction between the arm and the interchangeable tool. The fourth diagram represents an accelerometer bracelet (part 4-A). Room 4-B, the accelerometer. Part 4-C represents the Bluetooth module used for communication between the bracelets and the robot, part 4-D the microcontroller used and part 4-E, The Li-Po film battery for the bracelet.
Le cinquième schéma est une des télécommandes utilisées pour contrôler le robot lorsque le mode manipulation est activé. On y trouve une poignée 5-A, un joystick 5-D, deux gâchettes 5-B et 5-C et deux boutons 5-E. The fifth diagram is one of the remote controls used to control the robot when the manipulation mode is activated. There is a 5-A handle, a 5-D joystick, two 5-B and 5-C triggers and two 5-E buttons.

Claims

“Réclamation” "Claim"
C1 : Châssis composé de 6 pattes articulés, motorisées par servomoteurs, servant au déplacement du robot. C1: Frame made up of 6 articulated legs, motorized by servomotors, used to move the robot.
C2 : Le robot possède deux bras articulés à l'avant, motorisées par servomoteurs. Ces bras sont des bras manipulateurs, orientés dans la direction de la caméra. En leur extrémités se trouve une pince outil pour interagir avec l’environnement. C2: The robot has two articulated arms at the front, motorized by servomotors. These arms are manipulator arms, oriented in the direction of the camera. At their ends is a tool clamp for interacting with the environment.
C3 : Un dernier bras articulé se trouve monté sur la partie arrière du drone, comme le dard d'un scorpion. Ce bras est aussi équipé d'une tête outil interchangeable. C3: A last articulated arm is mounted on the rear part of the drone, like the sting of a scorpion. This arm is also equipped with an interchangeable tool head.
C4 : Le contrôle des bras articulés (mode interaction) se fait grâce à l’utilisation de bracelets équipés d’accéléromètres 3 axes qu’on place sur les biceps et les avants bras de l’utilisateur. Ainsi, les bras articulés du robot miment les mouvements d’un ou plusieurs bras de l’utilisateur. Pour déplacer le robot alors que le mode interaction est activé, l’utilisateurs dispose de deux télécommandes à la main comprenant des joysticks de direction, des commandes pour activer un outil et utiliser le bras arrière. C4: Control of the articulated arms (interaction mode) is achieved through the use of bracelets equipped with 3-axis accelerometers that are placed on the user's biceps and forearms. Thus, the robot's articulated arms mimic the movements of one or more of the user's arms. To move the robot while the interaction mode is activated, the user has two hand-held remotes including steering joysticks, controls for activating a tool and using the rear arm.
PCT/CA2020/050259 2020-02-27 2020-02-27 Scorpiobot WO2021168531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CA2020/050259 WO2021168531A1 (en) 2020-02-27 2020-02-27 Scorpiobot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2020/050259 WO2021168531A1 (en) 2020-02-27 2020-02-27 Scorpiobot

Publications (1)

Publication Number Publication Date
WO2021168531A1 true WO2021168531A1 (en) 2021-09-02

Family

ID=77489742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2020/050259 WO2021168531A1 (en) 2020-02-27 2020-02-27 Scorpiobot

Country Status (1)

Country Link
WO (1) WO2021168531A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113894807A (en) * 2021-10-22 2022-01-07 南通大学 Bionic scorpion robot
CN115339537B (en) * 2022-08-18 2023-06-02 深圳技术大学 Walking device and mechanical scorpion
CN116198628A (en) * 2023-05-06 2023-06-02 太原科技大学 Post-disaster reconnaissance hexapod robot based on multi-sensor fusion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408824B2 (en) * 2005-03-14 2010-02-03 日晃オートメ株式会社 Articulated walking device
US8882660B2 (en) * 2009-05-29 2014-11-11 Nanyang Technological University Robotic system for flexible endoscopy
US9579797B2 (en) * 2014-04-10 2017-02-28 Quanser Consulting Inc. Robotic systems and methods of operating robotic systems
US20170348858A1 (en) * 2016-06-02 2017-12-07 Princo Corp. Multiaxial motion control device and method, in particular control device and method for a robot arm
CN206825433U (en) * 2017-05-09 2018-01-02 山东科技大学 A kind of bionical scorpion Detecting Robot
US20190072931A1 (en) * 2016-04-25 2019-03-07 Siemens Aktiengesellschaft Agile manufacturing platform and system
CN109693249A (en) * 2019-03-13 2019-04-30 长沙紫宸科技开发有限公司 A kind of office building or household imitate scorpion safety protection robot

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408824B2 (en) * 2005-03-14 2010-02-03 日晃オートメ株式会社 Articulated walking device
US8882660B2 (en) * 2009-05-29 2014-11-11 Nanyang Technological University Robotic system for flexible endoscopy
US9579797B2 (en) * 2014-04-10 2017-02-28 Quanser Consulting Inc. Robotic systems and methods of operating robotic systems
US20190072931A1 (en) * 2016-04-25 2019-03-07 Siemens Aktiengesellschaft Agile manufacturing platform and system
US20170348858A1 (en) * 2016-06-02 2017-12-07 Princo Corp. Multiaxial motion control device and method, in particular control device and method for a robot arm
CN206825433U (en) * 2017-05-09 2018-01-02 山东科技大学 A kind of bionical scorpion Detecting Robot
CN109693249A (en) * 2019-03-13 2019-04-30 长沙紫宸科技开发有限公司 A kind of office building or household imitate scorpion safety protection robot

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KLAASSEN, B. LINNEMANN, R. SPENNEBERG, D. KIRCHNER, F.: "Biomimetic walking robot SCORPION: Control and modeling", ROBOTICS AND AUTONOMOUS SYSTEMS, ELSEVIER BV, AMSTERDAM, NL, vol. 41, no. 2-3, 30 November 2002 (2002-11-30), AMSTERDAM, NL, pages 69 - 76, XP004391222, ISSN: 0921-8890, DOI: 10.1016/S0921-8890(02)00258-0 *
LINNEMANN RALF, KLAASSEN BERNHARD, KIRCHNER FRANK: "Walking Robot Scorpion - Experiences with a full parametric Model", CONFERENCE: EUROPEAN SIMULATION MULTICONFERENCE (ESM), 1 July 2001 (2001-07-01), XP055850832 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113894807A (en) * 2021-10-22 2022-01-07 南通大学 Bionic scorpion robot
CN115339537B (en) * 2022-08-18 2023-06-02 深圳技术大学 Walking device and mechanical scorpion
CN116198628A (en) * 2023-05-06 2023-06-02 太原科技大学 Post-disaster reconnaissance hexapod robot based on multi-sensor fusion
CN116198628B (en) * 2023-05-06 2023-06-30 太原科技大学 Post-disaster reconnaissance hexapod robot based on multi-sensor fusion

Similar Documents

Publication Publication Date Title
WO2021168531A1 (en) Scorpiobot
Schwarz et al. Nimbro rescue: solving disaster‐response tasks with the mobile manipulation robot momaro
Klamt et al. Remote mobile manipulation with the centauro robot: Full‐body telepresence and autonomous operator assistance
US20110040427A1 (en) Hybrid mobile robot
US8079432B2 (en) Maneuvering robotic vehicles having a positionable sensor head
CN105101903A (en) Hybrid control surgical robotic system
Rodehutskors et al. Intuitive bimanual telemanipulation under communication restrictions by immersive 3D visualization and motion tracking
Hermann et al. Hardware and software architecture of the bimanual mobile manipulation robot HoLLiE and its actuated upper body
Hirai The Honda humanoid robot: development and future perspective
KR20140010519A (en) Robot arm combined with leg for the multi-legged seabed robot
Schwarz et al. DRC team nimbro rescue: perception and control for centaur-like mobile manipulation robot momaro
CN111687847B (en) Remote control device and control interaction mode of foot robot
Purushottam et al. Hands-free telelocomotion of a wheeled humanoid
Purushottam et al. Hands-free telelocomotion of a wheeled humanoid toward dynamic mobile manipulation via teleoperation
Silva et al. CRABOT: A Six-legged Platform for Environmental Exploration and Object Manipulation.
Post et al. Lessons learned from the york university rover team (yurt) at the university rover challenge 2008–2009
US20070059124A1 (en) Portable personal wearable active third arm
Edlinger et al. Mechanical design and system architecture of a tracked vehicle robot for urban search and rescue operations
Lewinger Insect-inspired, actively compliant robotic hexapod
WO2023171361A1 (en) Robot
Wormley et al. High dexterity robotics for safety and emergency response-17104
Wang et al. A survey on the structures of current mobile humanoid robots
Chiodini et al. Morpheus: A field robotics testbed for soil sampling and autonomous navigation
EP3328593B1 (en) Collaborative robot on motorised carriage providing support for the operator
Baker et al. The joysnake a haptic operator console for high-degreeof-freedom robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/12/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20921189

Country of ref document: EP

Kind code of ref document: A1