WO2021167386A1 - 연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법 - Google Patents

연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법 Download PDF

Info

Publication number
WO2021167386A1
WO2021167386A1 PCT/KR2021/002097 KR2021002097W WO2021167386A1 WO 2021167386 A1 WO2021167386 A1 WO 2021167386A1 KR 2021002097 W KR2021002097 W KR 2021002097W WO 2021167386 A1 WO2021167386 A1 WO 2021167386A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission packet
communication
sensor transmitter
communication terminal
identifier
Prior art date
Application number
PCT/KR2021/002097
Other languages
English (en)
French (fr)
Inventor
유충범
이예정
허훈우
서아리
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Priority to JP2022548085A priority Critical patent/JP2023514164A/ja
Priority to AU2021222846A priority patent/AU2021222846A1/en
Priority to EP21756240.4A priority patent/EP4085822A4/en
Priority to US17/797,727 priority patent/US20230076499A1/en
Priority to CN202180012941.5A priority patent/CN115052519A/zh
Publication of WO2021167386A1 publication Critical patent/WO2021167386A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150847Communication to or from blood sampling device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/155Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers

Definitions

  • the present invention relates to a method for transmitting and receiving biometric information in a continuous blood glucose measurement system, and more specifically, in each communication period, an identifier for the last transmission packet received from a communication terminal first is transmitted to a sensor transmitter, and the sensor transmitter generates after the last transmission packet
  • the present invention relates to a method for transmitting and receiving biometric information capable of transmitting biometric information generated by a sensor transmitter to a communication terminal without loss by transmitting the received transmission packet to a communication terminal.
  • Diabetes mellitus is a chronic disease that occurs frequently in modern people, with more than 2 million people in Korea accounting for 5% of the total population.
  • Diabetes mellitus is caused by an absolute or relatively insufficient amount of insulin produced by the pancreas due to various causes such as obesity, stress, wrong eating habits, and congenital heredity. get sick and get sick
  • Blood usually contains a certain concentration of glucose, and the tissue cells get energy from it.
  • glucose increases more than necessary, it is not stored properly in the liver, muscle, or fat cells and is accumulated in the blood. As it is excreted, sugar, which is absolutely necessary for each tissue in the body, becomes insufficient, causing abnormalities in each tissue of the body.
  • Diabetes mellitus is characterized by almost no subjective symptoms in the early stages. As the disease progresses, the symptoms characteristic of diabetes include polyphagia, polyuria, weight loss, general malaise, itchy skin, and long-lasting wounds on the hands and feet that do not heal. As the disease progresses further, complications that progress to visual impairment, hypertension, kidney disease, stroke, periodontal disease, muscle spasms and neuralgia, and gangrene appear.
  • Diabetes mellitus needs to constantly measure blood sugar for management, so the demand for devices related to blood sugar measurement is steadily increasing. It has been confirmed through various studies that, when diabetic patients strictly control blood sugar, the incidence of complications of diabetes is significantly reduced. Accordingly, it is very important for diabetic patients to measure blood sugar regularly to control blood sugar.
  • a finger prick method is mainly used for blood sugar management in diabetic patients.
  • Such a blood prick method helps the diabetic patient to manage blood sugar, but because only the result at the time of measurement is displayed, the blood sugar level that changes frequently is monitored. There is a problem that is difficult to pinpoint precisely.
  • the blood-collecting type blood glucose device needs to collect blood every time to measure blood glucose frequently during the day, so there is a problem in that the burden of blood collection is large for diabetic patients.
  • Diabetics typically alternate between hyperglycemic and hypoglycemic states, with emergencies occurring in hypoglycemic states. Hypoglycemia occurs when the sugar does not last for a long time and can lead to loss of consciousness or, in the worst case, death. Therefore, prompt detection of hypoglycemic conditions is very important for diabetic patients. However, there is a clear limit to the blood sampling type blood glucose meter that measures blood glucose intermittently.
  • CGMS continuous glucose monitoring system
  • the continuous blood glucose measurement system includes a sensor transmitter attached to a body part of a user to measure blood glucose by extracting body fluid, and a communication terminal for outputting a received blood glucose level.
  • the sensor transmitter measures the user's blood sugar for a predetermined period, for example, about 15 days, while the sensor is inserted into the human body to generate blood sugar information.
  • the sensor transmitter periodically generates blood sugar information, and the communication terminal periodically receives the blood sugar information and outputs the received blood sugar information so that the user can check it.
  • the sensor transmitter and the communication terminal transmit and receive blood glucose information in a wired communication method or a wireless communication method, and the communication terminal must continuously receive transmission packets from the sensor transmitter without loss.
  • the communication terminal cannot continuously receive blood glucose information from the sensor transmitter, and this prevents the user from continuously monitoring his or her blood glucose information through the communication terminal. happens to be
  • the present invention is to solve the problem of the conventional method for transmitting and receiving biometric information between a sensor transmitter and a communication terminal mentioned above. Accordingly, there is provided a method of generating a transmission packet to include an identifier for identifying the transmission packet and transmitting/receiving biometric information through the identifier of the transmission packet without loss of the transmission packet.
  • Another object of the present invention is to transmit the identifier of the last transmission packet received from the communication terminal to the sensor transmitter at each communication interval, and the sensor transmitter transmits the transmission packet generated after the last transmission packet to the communication terminal without loss. to provide a method for transmitting and receiving
  • Another object of the present invention is to transmit an identifier for the last transmission packet received by the communication terminal to the sensor transmitter at each communication interval, and the sensor transmitter transmits to the communication terminal during the communication interval based on the identifier for the last transmission packet
  • An object of the present invention is to provide a method for transmitting and receiving biometric information that does not require transmission and reception of an additional message for checking whether the transmission packet is successfully received between the communication terminal and the sensor transmitter by calculating the total number of transmission packets to be transmitted and providing the information to the communication terminal.
  • Another object of the present invention is to determine whether there is a non-received transmission packet based on the total number of transmission packets to be transmitted by the sensor transmitter and the identifier of the transmission packet received from the sensor transmitter, and request the non-received transmission packet during the next communication interval. It is to provide a method for transmitting and receiving biometric information that can be received.
  • the method for transmitting and receiving biometric information includes the steps of receiving the total number of transmission packets to be transmitted by the sensor transmitter from the sensor transmitter and receiving the transmission packets from the sensor transmitter during a set first communication interval and storing the received transmission packets, and on the basis of the total number of transmission packets, receiving transmission packets as much as the total number of transmission packets from the sensor transmitter or terminating communication with the sensor transmitter when the first communication interval ends It is characterized in that it includes.
  • the sensor transmitter generates a transmission packet to be transmitted to the communication terminal having the biometric information measured by the measurement sensor, and the transmission packet includes a generation identifier for identifying the transmission packet according to the generation order of the transmission packet.
  • the method for transmitting and receiving biometric information according to the present invention is characterized in that it further comprises the step of transmitting an information request message having an identifier of a last transmission packet pre-stored in the communication terminal from the communication terminal to the sensor transmitter.
  • the sensor transmitter is characterized in that it calculates the total number of transmission packets to be transmitted to the communication terminal during the first communication interval based on the previously stored identifier of the last transmission packet received from the communication terminal.
  • the method for transmitting and receiving biometric information includes counting the number of transmission packets received from the sensor transmitter based on the generation identifier of the transmission packet, and determining the identifier of the transmission packet last received during the first communication interval It is characterized in that it further comprises the step of
  • the method for transmitting and receiving biometric information according to the present invention further comprises the step of arranging the identifiers of the transmission packets received during the first communication interval in an ascending order.
  • the communication terminal in a second communication communication interval consecutive to the first communication interval, sends an information request message having an identifier of a transmission packet last received during the first communication interval to the sensor transmitter
  • the method further comprises transmitting to, the sensor transmitter based on the identifier of the last received transmission packet during the first communication interval based on the newly generated transmission packet after the identifier of the last received transmission packet during the first communication interval to calculate the total number of transmission packets to be transmitted by the sensor transmitter to the communication terminal during the second communication interval.
  • the identifier of the last transmission packet pre-stored in the communication terminal among the transmission packets received during the first communication interval based on the identifier of the transmission packet received during the first communication interval
  • the method further comprises the step of determining whether a transmission packet of the next sequence has been received, and an identifier of the last transmission packet pre-stored in the communication terminal among transmission packets received during the first communication interval. It is characterized in that the information request message including the identifier of the last transmission packet stored in advance is transmitted to the sensor transmitter.
  • the method for transmitting and receiving biometric information further comprises the step of determining whether there is a transmission packet that has not been continuously received during the first communication interval based on the identifier of the transmission packet received during the first communication interval. Including, when there is a transmission packet that has not been continuously received during the first communication interval, an information request message having an identifier of the last transmission packet among transmission packets continuously received during the first communication interval is sent to the sensor in the second communication interval It is characterized by transmitting to the transmitter.
  • the method for transmitting and receiving biometric information is based on the total number of transmission packets to be transmitted from the sensor transmitter during the first communication interval and the identifier of the transmission packet received from the communication terminal during the first communication interval. Further comprising the step of determining the identifier of the communication packet not received during the first communication interval, characterized in that for transmitting the information request message including the identifier of the communication packet not received during the first communication interval to the sensor transmitter.
  • the method for transmitting and receiving a transmission packet according to the present invention has various effects as follows.
  • the method for transmitting and receiving biometric information generates a transmission packet to include an identifier for identifying the transmission packet according to the generation order of the transmission packet when the sensor transmitter generates the transmission packet, thereby transmitting the transmission packet through the identifier of the transmission packet.
  • Biometric information can be transmitted and received without packet loss.
  • an identifier for the last transmission packet received from the communication terminal is first transmitted at each communication interval to the sensor transmitter, and the sensor transmitter transmits the identifier for the last transmission packet during the corresponding communication interval based on the identifier for the last transmission packet.
  • an identifier for the last transmission packet received from the communication terminal is first transmitted to the sensor transmitter at each communication interval, and the sensor transmitter transmits the transmission packet generated after the last transmission packet to the communication terminal.
  • the method for transmitting and receiving biometric information determines whether there is an unreceived transmission packet based on the total number of transmission packets to be transmitted by the sensor transmitter and the identifier of the transmission packet received from the sensor transmitter, and based on the non-received transmission packet By providing the identifier of the last received transmission packet from the communication terminal to the sensor transmitter, it is possible to request and receive an unreceived transmission packet during the next communication interval.
  • FIG. 1 is a schematic diagram illustrating a continuous blood glucose measurement system according to an embodiment of the present invention.
  • Figure 2 is a view showing an applicator for attaching the sensor transmitter of the present invention to the body.
  • 3 and 4 are diagrams for explaining a process of attaching the sensor transmitter to the human body using an applicator.
  • FIG. 5 is a diagram for explaining a message transmitted and received between a sensor transmitter and a communication terminal.
  • FIG. 6 is a functional block diagram illustrating a sensor transmitter according to an embodiment of the present invention.
  • FIG. 7 is a diagram for explaining an example in which biometric information is generated by a sensor transmitter.
  • FIG. 8 is a diagram for explaining an example of generating a transmission packet in a sensor transmitter.
  • FIG. 9 is a functional block diagram illustrating a communication terminal according to the present invention.
  • FIG. 10 is a functional block diagram illustrating an example of a packet manager according to the present invention.
  • FIG. 11 is a flowchart illustrating a method for receiving biometric information from a sensor transmitter according to the present invention.
  • FIG. 12 is a flowchart illustrating an example of generating an information request message after communication is terminated.
  • FIG. 13 is a flowchart illustrating an example of generating an information request message according to a non-received type of a transmission packet.
  • FIG. 1 is a schematic diagram illustrating a continuous blood glucose measurement system according to an embodiment of the present invention.
  • a continuous blood glucose measurement system 1 includes a sensor transmitter 10 and a communication terminal 30 .
  • the sensor transmitter 10 is attached to the body, and when the sensor transmitter 10 is attached to the body, one end of the sensor of the sensor transmitter 10 is inserted into the skin to periodically extract the body fluid of the human body to measure blood sugar.
  • the communication terminal 30 is a terminal capable of receiving blood sugar information from the sensor transmitter 10 and displaying the received blood sugar information to the user, and can communicate with the sensor transmitter 10 such as a smartphone, tablet PC, or laptop computer.
  • a mobile terminal can be used.
  • the communication terminal 13 is not limited thereto, and may be any type of terminal as long as it includes a communication function and can install a program or application.
  • the sensor transmitter 10 transmits blood glucose information measured periodically at the request of the communication terminal 30 or at every set time to the communication terminal 30 , and data communication between the sensor transmitter 10 and the communication terminal 30 .
  • the sensor transmitter 10 and the communication terminal 30 may be communication-connected to each other through a wired connection using a USB cable or the like, or may be communication-connected through a wireless communication method such as infrared communication, NFC communication, or Bluetooth.
  • the sensor transmitter 10 is attached to a part of the body through an applicator
  • Figure 2 is a view showing an applicator for attaching the sensor transmitter of the present invention to the body
  • Figures 3 and 4 are the sensor transmitter using the applicator It is a drawing for explaining the process of attaching to the human body.
  • the applicator 50 has a sensor transmitter 10 therein, and discharges the sensor transmitter 10 to the outside by the user's manipulation to the user's specific body part works to attach to
  • the applicator 50 is formed in an open shape on one side, and the sensor transmitter 10 is installed on the applicator 50 through the open surface of the applicator 50 .
  • the applicator 50 When the sensor transmitter 10 is attached to a body part using the applicator 50, in order to insert one end of the sensor provided in the sensor transmitter 10 into the skin, the applicator 50 is formed to wrap one end of the sensor inside.
  • a needle (not shown), a first elastic member (not shown) for pushing the needle and one end of the sensor together to the skin, and a second elastic member (not shown) for withdrawing only the needle are provided.
  • the needle and one end of the sensor are simultaneously inserted into the skin by compression release of the first elastic member (not shown) arranged in a compressed state inside the applicator 50, and one end of the sensor is inserted into the skin Only the needle is drawn out by the compression release of the second elastic member (not shown) compressed during the time. The user can safely and easily attach the sensor transmitter 10 to the skin through the applicator 50 .
  • the open surface of the applicator 50 is applied to a specific part of the body skin ( 20) is attached.
  • the sensor transmitter 10 may be attached to the skin 20 while being discharged from the applicator 50 .
  • the sensor transmitter 10 may be attached to the skin 20 in a state where one end of the sensor 12 is inserted into the skin 20 .
  • an adhesive tape may be provided on the body contact surface of the sensor transmitter 10 so that the sensor transmitter 10 can be fixedly attached to the skin 20 of the body. Therefore, when the applicator 50 is spaced apart from the skin 20 of the body, the sensor transmitter 10 is fixedly attached to the skin 20 of the body by an adhesive tape.
  • the sensor transmitter 10 communicates with the communication terminal 50 , and the sensor transmitter 10 transmits measured blood glucose information to the communication terminal.
  • the sensor transmitter 10 may measure not only blood sugar information but also various biometric information. Hereinafter, measurement of blood sugar information will be described as an example of biometric information.
  • FIG. 5 is a diagram for explaining a message transmitted and received between a sensor transmitter and a communication terminal.
  • the sensor transmitter when a transmission packet including measured blood glucose information is generated, the sensor transmitter periodically transmits the generated transmission packet to the communication terminal at a set communication interval, and the sensor transmitter transmits the transmission packet at each communication period. In order to do this, an advertisement message is transmitted to the peripheral device (S1).
  • the communication terminal that has received the advertisement message connects the sensor transmitter to communication.
  • the communication terminal transmits an information request message to the sensor transmitter (S3).
  • the information request message includes the identifier of the last transmission packet pre-stored in the communication terminal or information on the total number of transmission packets received and stored by the communication terminal. It may be an assigned serial number, and it is possible to determine the total number of transmission packets received from the communication terminal through the previously stored identifier of the last transmission packet.
  • the sensor transmitter calculates the total number of transmission packets to be transmitted from the sensor transmitter to the communication terminal during the communication-connected communication interval based on the identifier of the last transmission packet stored in advance in the communication terminal, and the number of transmission packets to be transmitted from the sensor transmitter to the communication terminal during the communication interval.
  • Transmission packet information including information on the total number of transmission packets is transmitted to the communication terminal (S5). That is, the sensor transmitter continuously measures biometric information to generate a transmission packet even when communication is not connected with the communication terminal.
  • the sensor transmitter continuously measures biometric information to generate a transmission packet even when communication is not connected with the communication terminal.
  • the total number of transmission packets to be transmitted to the communication terminal is determined.
  • the communication terminal receives transmission packets from the sensor transmitter during the communication interval, and when the total number of transmission packets is received from the sensor transmitter or the set communication interval expires, communication with the sensor transmitter is terminated (S7).
  • the communication terminal may determine the total number of transmission packets to be received from the sensor transmitter by the communication terminal from the total number of transmission packets among the transmission packet information, and the communication terminal counts the number of transmission packets received from the sensor transmitter during the connected communication interval If the total number of transmission packets is received, communication with the sensor transmitter is terminated even if the communication interval has not elapsed.
  • the communication terminal When a transmission packet is transmitted/received between the communication terminal and the sensor transmitter or communication between the communication terminal and the sensor transmitter is terminated, the communication terminal does not additionally generate or transmit a reception completion message indicating whether the transmission packet has been received to the sensor transmitter. does not additionally generate or transmit a transmission completion message indicating whether a transmission packet has been transmitted to the communication terminal.
  • an identifier for the last transmission packet received from the communication terminal is first transmitted to the sensor transmitter at each communication interval, and the sensor transmitter transmits an identifier for the last transmission packet during the communication interval based on the identifier for the last transmission packet.
  • FIG. 6 is a functional block diagram illustrating a sensor transmitter according to an embodiment of the present invention.
  • the sensor module 110 includes a sensor, and the sensor is partially inserted into the body to measure blood glucose information.
  • the sensor controller 130 receives blood glucose information measured from the sensor module 110 and stores the received blood glucose information in the storage unit 150 .
  • the blood sugar information received by the sensor controller 130 from the sensor module 110 is an analog signal, and the sensor controller 130 removes noise from the analog signal and converts it back to a digital signal to generate blood sugar information.
  • the sensor control unit 130 increments the count whenever blood glucose information is generated to store the total number of blood glucose information in the storage unit 150 . Meanwhile, when a preset number of blood glucose information is generated based on the counted number of generated blood glucose information, the sensor controller 130 controls the transmission packet generator 170 to generate transmission packets from a plurality of blood glucose information.
  • the transmission packet generator 170 Under the control of the sensor controller 130 , the transmission packet generator 170 generates a transmission packet composed of time-series blood glucose information for a predetermined time by combining the blood glucose information sequentially stored in the storage unit 150 .
  • the transmission packet generator 170 generates a transmission packet including a transmission packet identifier for identifying each transmission packet whenever a transmission packet is generated.
  • the sensor controller 130 increments the count whenever a transmission packet is generated by the transmission packet generator 170 to store the total number of transmission packets in the storage unit 150 .
  • the sensor control unit 130 transmits an advertisement message through the sensor communication unit 190 at regular transmission intervals to connect communication with the communication terminal, and the sensor control unit 130 determines the identifier of the last transmission packet pre-stored in the communication terminal during communication connection.
  • the number of transmission packets newly generated and stored in the storage unit 150 after the last transmission packet previously stored in the communication terminal by comparing the identifier of the last transmission packet received from the communication terminal and stored in the storage unit 150 with the identifier of the transmission packet stored in the storage unit 150 to calculate
  • the sensor control unit 130 determines the number of newly generated and stored transmission packets after the last transmission packet pre-stored in the communication terminal as the total number of transmission packets to be transmitted to the communication terminal during the communication interval, and information on the total number of determined transmission packets transmits control to the communication terminal.
  • FIG. 7 is a diagram for explaining an example in which biometric information is generated by a sensor transmitter.
  • the data on the biosignal measured by the sensor module is measured at predetermined intervals, and each time it is measured once, it may be measured several times.
  • the sensor module measures biosignal data every 10 seconds.
  • the bio-signal is measured 30 times for each measurement, and the time required to measure the bio-signal may be 1 second. Therefore, the sensor module measures analog biosignal data 30 times every 10 seconds.
  • the blood sugar information is measured 30 times between 2:14:25 and 26 seconds in the afternoon, and the blood sugar information is measured again 30 times between 2:14:35 and 36 seconds in the afternoon, for 10 seconds.
  • Blood glucose information can be measured at intervals.
  • the biosignal data measured in this way is converted into a digital signal by the sensor controller.
  • the sensor controller calculates an average value of 30 pieces of blood glucose information converted into a digital signal by a cutting average method, and calculates one average value every 10 seconds. At this time, the upper 7 data and the lower 7 data among the 30 blood glucose information data are removed, and the average value (A) of the remaining 16 data is calculated.
  • the calculated average cutting value A may be generated in units of 10 seconds, and as shown, six cutting average values A1 to A6 may be generated for 1 minute.
  • the blood glucose information data generated every minute is stored in the storage unit by the sensor controller, and the stored blood glucose information may be generated as a transmission packet and transmitted to the communication terminal through the sensor communication unit.
  • FIG. 8 is a diagram for explaining an example of generating a transmission packet in a sensor transmitter.
  • blood glucose information sequentially at each set blood glucose information generation period (TP) (B1, B2, B3, B4, B5, B6, ...) is generated, and whenever blood sugar information is generated, a transmission packet (P1, P2, P3, P4, P5, P6) including the corresponding blood sugar information is transmitted.
  • TP blood glucose information generation period
  • the generated transmission packet (P1, P2, P3, P4, P5, P6) are stored in the storage unit, the set communication cycle (T S) has come, the storage unit transmits the packet (P1, P2, P3 are stored in the case of , P4, P5) are transmitted to the communication terminal, respectively.
  • FIG 8 (b) the reference look at another example of generating a transmission packet at a predetermined blood glucose information generation period (T P) in sequence for each blood glucose information (B1, B2, B3, B4 , B5, B6, ...) to generate to, glucose information is stored in the storage unit every time the generated and if the incoming communication period is set (T S), which includes all of the blood glucose information (B1, B2, B3, B4, B5) is stored in the storage unit to the communication cycle A transmission packet P1 is generated and the generated transmission packet P1 is transmitted to the communication terminal.
  • T P blood glucose information generation period
  • FIG. 9 is a functional block diagram illustrating a communication terminal according to the present invention.
  • the terminal control unit 210 when receiving an advertisement message from the sensor transmitter at each set communication interval, connects the communication with the sensor transmitter through the terminal communication unit 230, and the communication interval When this time elapses or when the transmission packet is received from the sensor transmitter, communication with the communication terminal is terminated even before the communication interval elapses.
  • the packet management unit 240 determines the last transmission packet stored in the storage unit 250 based on the identifier of the transmission packet stored in the storage unit 250 under the control of the terminal control unit 210 .
  • the identifier is determined, an information request message having an identifier of the last transmitted packet stored in advance is generated, and the generated information request message is transmitted to the sensor transmitter through the terminal communication unit 230 .
  • the packet management unit 240 determines whether transmission packets have been received as many as the total number of transmission packets notified by the sensor transmitter based on the identifier of the transmission packet received from the sensor transmitter during the connected communication interval, and if there is a transmission packet not received from the sensor transmitter The non-received type is determined and the received transmission packet is selectively stored in the storage unit 250 .
  • the packet management unit 240 determines the identifier of the last stored transmission packet among the transmission packets stored in the storage unit 250, and generates an information request message having the identifier of the last stored transmission packet in the next communication interval to the sensor transmitter. send
  • the terminal control unit 210 outputs the biometric information of the received transmission packet to the display unit 270 so that the user can check it.
  • the terminal control unit 210 when there is a transmission packet or biometric information that has not been received from the sensor transmitter, the terminal control unit 210 outputs to the display unit 270 that there is an unreceived transmission packet, and even before the next communication interval arrives, the user interface
  • a command for requesting reception of a transmission packet that has not been received is input through the unit 290 , an unreceived transmission packet or biometric information may be requested from the sensor transmitter.
  • FIG. 10 is a functional block diagram illustrating an example of a packet manager according to the present invention.
  • the sorting unit 241 sorts transmission packets received from the sensor transmitter in an ascending order of identifiers during a connected communication interval.
  • the non-received packet determining unit 243 counts the number of transmitted packets received during the communication interval based on the identifier of the transmitted packets actually received during the communication interval in the communication terminal, and the counted number of transmitted packets and the number of transmitted packets received from the sensor transmitter.
  • the sensor transmitter determines whether there are unreceived transmission packets based on the total number of transmission packets to be transmitted.
  • the non-received packet determining unit 243 stores and controls transmission packets received during the communication interval in the storage unit when there are no unreceived transmission packets. However, if there is an unreceived transmission packet, it is determined whether the non-received transmission packet is the first transmission packet or an intermediate transmission packet among the transmission packets to be transmitted by the sensor transmitter during the communication interval.
  • the non-received packet determining unit 243 deletes all transmitted packets received during the communication interval without storing in the storage unit if the first transmitted packet is not received according to the non-received type of the transmitted packet, and the first transmitted packet is received but intermediate transmission In the case of not receiving consecutively from the packet, all transmission packets after the unreceived transmission packet are deleted, and transmission packets continuously received from the first transmission packet are stored and controlled in the storage unit.
  • the transmission packets to be received from the sensor transmitter during the communication interval are P1, P2, P3, P4, P5, and the actually received transmission packets are P2, P3, P4, P5, since the first transmission packet (P1) has not been received, the actual The received transmission packets (P2, P3, P4, P5) are also deleted and controlled.
  • the transmission packets to be received from the sensor transmitter during the communication interval are P1, P2, P3, P4, P5, and the actually received transmission packets are P1, P2, P4, P5, the first transmission packet (P3) has not been received continuously from the middle transmission packet (P3).
  • the transmission packets P1 and P2 consecutively received from the first transmission packet are stored and controlled in the storage, and transmission packets P4 and P5 that have not been continuously received are controlled to be deleted.
  • the message generating unit 245 determines the identifier of the last transmission packet stored in the storage unit, generates an information request message having the identifier of the last transmission packet stored in the storage unit, and when communication with the sensor transmitter is connected at a set communication interval First, the generated information request message is sent to the sensor transmitter.
  • FIG. 11 is a flowchart illustrating a method for receiving biometric information from a sensor transmitter according to the present invention.
  • the communication terminal receives an advertisement message from the sensor transmitter every set communication period (S110).
  • the communication terminal and the sensor transmitter connect communication, and since the communication connection is already known, a detailed description thereof will be omitted.
  • the communication terminal When communication is connected between the sensor transmitter and the communication terminal, the communication terminal first transmits an information request message to the sensor transmitter (S130).
  • the information request message includes the identifier of the last transmitted packet pre-stored in the communication terminal.
  • the sensor transmitter generates a transmission information message having information on the total number of transmission packets to be transmitted by the sensor transmitter to the communication terminal during the communication interval of the communication period of the communication connection based on the identifier of the last transmission packet pre-stored in the communication terminal.
  • the communication terminal first receives a transmission information message from the sensor transmitter before receiving the transmission packet from the sensor transmitter (S150).
  • the received transmission packet is stored in the storage unit and then communication is terminated (S190). However, if the communication interval has not expired and the sensor transmitter does not receive all transmission packets to be transmitted, it continues to receive transmission packets from the sensor transmitter until the communication interval elapses. However, when the communication interval expires in a state in which all transmission packets to be transmitted are not received from the sensor transmitter, communication is terminated (S190).
  • the sensor transmitter may transmit, to the communication terminal, transmission packets after the last transmission packet previously stored among transmission packets generated and stored in the sensor transmitter based on the identifier of the transmission packet last stored in the communication terminal, to the communication terminal. Based on the total number of transmission packets, the communication terminal may determine the number of transmission packets to be received during the communication interval of the corresponding communication period.
  • the communication terminal when there is an unreceived transmission packet during the communication interval of the corresponding communication period, the communication terminal provides information on the transmission packet that has not been received in the next communication period to the sensor transmitter, so that the transmission packet can be received without loss of the transmission packet.
  • FIG. 12 is a flowchart illustrating an example of generating an information request message after communication is terminated.
  • the sensor transmitter When the sensor transmitter receives all the transmission packets to be transmitted, it stores all the received transmission packets in the storage unit (S217), and generates an information request message including the identifier of the last transmission packet among the stored transmission packets to generate the next communication cycle Transmits the information request message generated in the sensor transmitter (S219).
  • the non-received type of the transmitted packet is determined (S215), and according to the determined non-received type, the received transmission packet is selectively stored in the storage unit, and the last transmission packet among the stored transmission packets is stored in the storage unit.
  • An information request message having an identifier is generated and the generated information request message is transmitted to the sensor transmitter in the next communication period (S219).
  • FIG. 13 is a flowchart illustrating an example of generating an information request message according to a non-received type of a transmission packet.
  • transmission packets received during the communication interval of the communication cycle are arranged based on the identifier (S231).
  • the transmitted packets received during the communication interval of the communication period are arranged in ascending order of identifiers.
  • all received transmission packets are stored in the storage unit.
  • the identifier of the last transmission packet is determined (S224) and the information request including the determined last transmission packet identifier A message is generated (S235).
  • the first transmission packet among the transmission packets to be transmitted by the sensor transmitter is received and some transmission packets are not received after the first transmission packet. Only the transmission packet is stored in the storage unit and all transmitted packets received after the unreceived transmission packet are discarded.
  • the identifier of the last transmission packet stored in the storage is determined (S239) and the information request having the identifier of the last transmission packet stored in the storage unit A message is generated (S235).
  • the above-described embodiments of the present invention can be written as a program that can be executed on a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium includes a magnetic storage medium (eg, ROM, floppy disk, hard disk, etc.), an optically readable medium (eg, CD-ROM, DVD, etc.) and a carrier wave (eg, Internet storage media such as transmission via

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Computer Security & Cryptography (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 연속혈당 측정 시스템에서 생체 정보를 송수신하는 방법에 관한 것으로, 보다 구체적으로 통신 주기마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷 이후 생성된 송신 패킷을 통신 단말기로 송신함으로써 센서 트랜스미터에서 생성된 생체 정보를 분실없이 통신 단말기로 송신할 수 있는 생체 정보의 송수신 방법에 관한 것이다.

Description

연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법
본 발명은 연속혈당 측정 시스템에서 생체 정보를 송수신하는 방법에 관한 것으로, 보다 구체적으로 통신 주기마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷 이후 생성된 송신 패킷을 통신 단말기로 송신함으로써 센서 트랜스미터에서 생성된 생체 정보를 분실없이 통신 단말기로 송신할 수 있는 생체 정보의 송수신 방법에 관한 것이다.
당뇨병은 현대인에게 많이 발생되는 만성질환으로 국내의 경우 전체 인구의 5%에 해당하는 200만 명 이상에 이르고 있다.
당뇨병은 비만, 스트레스, 잘못된 식습관, 선천적 유전 등 다양한 원인에 의해 췌장에서 만들어지는 인슐린이 절대적으로 부족하거나 상대적으로 부족하여 혈액에서 당에 대한 균형을 바로 잡아주지 못함으로써 혈액 안에 당 성분이 절대적으로 많아지게 되어 발병한다.
혈액 중에는 보통 일정 농도의 포도당이 함유되어 있으며 조직 세포는 여기에서 에너지를 얻고 있다.
그러나, 포도당이 필요 이상으로 증가하게 되면 간장이나 근육 또는 지방세포 등에 적절히 저장되지 못하고 혈액 속에 축적되며, 이로 인해 당뇨병 환자는 정상인보다 훨씬 높은 혈당이 유지되며, 과다한 혈당은 조직을 그대로 통과하여 소변으로 배출됨에 따라 신체의 각 조직에 절대적으로 필요한 당분은 부족해져서 신체 각 조직에 이상을 불러일으키게 된다.
당뇨병은 초기에는 거의 자각 증상이 없는 것이 특징인데, 병이 진행되면 당뇨병 특유의 다음, 다식, 다뇨, 체중감소, 전신 권태, 피부 가려움증, 손과 발의 상처가 낫지 않고 오래가는 경우 등의 특유의 증상이 나타나며, 병이 한층 더 진행되면 시력장애, 고혈압, 신장병, 중풍, 치주질환, 근육 경련 및 신경통, 괴저 등으로 진전되는 합병증이 나타난다.
이러한 당뇨병을 진단하고 합병증으로 진전되지 않도록 관리하기 위해서는 체계적인 혈당 측정과 치료가 병행되어야 한다.
당뇨병은 관리를 위해 꾸준하게 혈당을 측정할 필요가 있어 혈당 측정과 관련된 장치는 그 수요가 꾸준히 증가하는 추세이다. 당뇨병 환자가 혈당 조절을 엄격하게 하는 경우, 당뇨병의 합병증 발생이 현저하게 줄어드는 것은 각종 연구를 통해 확인되고 있다. 그에 따라 당뇨병 환자는 혈당 조절을 위해 규칙적으로 혈당을 측정하는 것이 매우 중요하다.
당뇨병 환자의 혈당 관리를 위해 일반적으로 채혈식 혈당기(finger prick method)가 주로 사용되는데, 이러한 채혈식 혈당기는 당뇨병 환자의 혈당 관리에 도움을 주지만, 측정 당시의 결과만 나타나기 때문에 자주 변화하는 혈당 수치를 정확하게 파악하는 것이 어려운 문제가 있다. 또한, 채혈식 혈당기는 하루에도 수시로 혈당을 측정하기 위해 매번 채혈을 할 필요가 있어, 당뇨병 환자에게 채혈에 대한 부담이 큰 문제가 있다.
당뇨병 환자는, 일반적으로 고혈당 및 저혈당 상태를 오가는데, 응급상황은 저혈당 상태에서 발생한다. 저혈당 상태는 당분이 오랫동안 지속되지 않는 경우에 발생하며, 의식을 잃거나 최악의 경우 목숨을 잃을 수도 있다. 따라서 저혈당 상태를 즉각적으로 발견하는 것은 당뇨병 환자에게 매우 중요하다. 하지만, 간헐적으로 혈당을 측정하는 채혈식 혈당기는 분명한 한계가 있다.
이러한 채혈식 혈당기의 한계를 극복하기 위해, 인체 내에 삽입하여 수분 간격으로 혈당을 측정하는 연속 혈당 측정 시스템(CGMS, Continuous Glucose Monitoring System)이 개발되었으며, 이를 이용하여 당뇨병 환자의 관리와 응급 상황에 용이하게 대처할 수 있다.
연속 혈당 측정 시스템은 사용자의 신체 부위에 부착되어 체액을 추출하여 혈당을 측정하는 센서 트랜스미터와, 전송받은 혈당 수치를 출력하는 통신 단말기 등을 포함하여 구성된다. 센서 트랜스미터는 인체에 센서가 삽입된 상태로 일정기간, 예컨대, 대략 15일 정도 동안 사용자의 혈당을 측정하여 혈당 정보를 생성한다. 센서 트랜스미터 주기적으로 혈당 정보를 생성하며, 통신 단말기는 혈당 정보를 주기적으로 수신하여 수신한 혈당 정보를 사용자가 확인할 수 있게 출력한다.
위에서 설명한 연속 혈당 측정 시스템에서 센서 트랜스미터와 통신 단말기는 유선 통신 방식 또는 무선 통신 방식으로 혈당 정보를 송수신하는데, 통신 단말기는 센서 트랜스미터로부터 송신 패킷을 분실없이 연속하여 수신하여야 한다.
그러나 센서 트랜스미터와 통신 단말기 사이의 일시적 통신 단절 또는 사용자의 동작 미숙으로 인하여 통신 단말기는 혈당 정보를 연속하여 센서 트랜스미터로부터 수신하지 못하며 이로 인하여 사용자는 통신 단말기를 통해 자신의 혈당 정보를 연속하여 모니터링하지 못하게 되는 경우가 발생한다.
본 발명은 위에서 언급한 종래 센서 트랜스미터와 통신 단말기 사이에서 생체 정보를 송수신하는 방법이 가지는 문제점을 해결하기 위한 것으로, 본 발명이 이루고자 하는 목적은 센서 트랜스미터에서 송신 패킷을 생성시 송신 패킷의 생성 순서에 따라 송신 패킷을 식별하기 위한 식별자를 포함하도록 송신 패킷을 생성하며 송신 패킷의 식별자를 통해 송신 패킷의 분실없이 생체 정보를 송수신할 수 있는 방법을 제공하는 것이다.
본 발명이 이루고자 하는 다른 목적은 통신 간격마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷 이후 생성된 송신 패킷을 분실없이 통신 단말기로 송신하는 생체 정보의 송수신 방법을 제공하는 것이다.
본 발명이 이루고자 하는 또 다른 목적은 통신 간격마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷에 대한 식별자에 기초하여 해당 통신 간격 동안 통신 단말기로 송신할 송신 패킷의 전체 개수 정보를 계산하여 통신 단말기로 제공하여 통신 단말기와 센서 트랜스미터 사이에서 송신 패킷을 성공적으로 수신하였는지 확인하는 추가적인 메시지의 송수신이 불필요한 생체 정보의 송수신 방법을 제공하는 것이다.
본 발명이 이루고자 하는 또 다른 목적은 센서 트랜스미터가 송신할 송신 패킷의 전체 개수와 센서 트랜스미터로터 수신한 송신 패킷의 식별자에 기초하여 미수신 송신 패킷의 존재 여부를 판단하며 미수신 송신 패킷을 다음 통신 간격 동안 요청하여 수신할 수 있는 생체 정보의 송수신 방법을 제공하는 것이다.
본 발명의 목적을 달성하기 위하여, 본 발명에 따른 생체 정보의 송수신 방법은 센서 트랜스미터로부터 센서 트랜스미터가 송신할 송신 패킷의 전체 개수를 수신하는 단계와 설정된 제1 통신 간격 동안 센서 트랜스미터로부터 송신 패킷을 수신하고 수신한 송신 패킷을 저장하는 단계와, 송신 패킷의 전체 개수에 기초하여센서 트랜스미터로부터 송신 패킷의 전체 개수만큼 송신 패킷을 수신하거나 제1 통신 간격이 종료하는 경우 센서 트랜스미터와의 통신을 종료하는 단계를 포함하는 것을 특징으로 한다.
여기서 통신 단말기와 센터 트랜스미터 사이에서 통신을 종료시, 통신 단말기와 센서 트랜스미터 사이에서는 별도의 수신 완료 메시지를 송수신하지 않는 것을 특징으로 한다.
여기서 센서 트랜스미터는 측정 센서를 통해 측정한 생체 정보를 구비하는, 통신 단말기로 송신할 송신 패킷을 생성하며, 송신 패킷에는 송신 패킷의 생성 순서에 따라 송신 패킷을 식별하기 위한 생성 식별자가 포함되어 있는 것을 특징으로
바람직하게 본 발명에 따른 생체 정보의 송수신 방법은 통신 단말기에서 센서 트랜스미터로 통신 단말기에 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 송신하는 단계를 더 포함하는 것을 특징으로 한다.
여기서 센서 트랜스미터는 통신 단말기로부터 수신한, 기저장된 마지막 송신 패킷의 식별자에 기초하여 제1 통신 간격 동안 통신 단말기로 송신할 송신 패킷의 전체 개수를 계산하는 것을 특징으로 한다.
바람직하게 본 발명에 따른 생체 정보의 송수신 방법은 송신 패킷의 생성 식별자에 기초하여 센서 트랜스미터로부터 수신한 송신 패킷의 수를 카운트하는 단계와, 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자를 판단하는 단계를 더 포함하는 것을 특징으로 한다.
바람직하게 본 발명에 따른 생체 정보의 송수신 방법은 제1 통신 간격 동안 수신한 송신 패킷의 식별자를 오름순서로 정렬하는 단계를 더 포함하는 것을 특징으로 한다.
바람직하게 본 발명에 따른 생체 정보의 송수신 방법은 제1 통신 간격에 연속하는 제2 통신 통신 간격에 통신 단말기는 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 센서 트랜스미터로 송신하는 단계를 더 포함하며, 센서 트랜스미터는 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자에 기초하여 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자 이후부터 새로 생성된 송신 패킷에 기초하여 제2 통신 간격 동안에 센서 트랜스미터가 통신 단말기로 송신할 송신 패킷의 전체 개수를 계산하는 것을 특징으로 한다.
바람직하게 본 발명의 일 실시예에 따른 생체 정보의 송수신 방법은 제1 통신 간격 동안 수신한 송신 패킷의 식별자에 기초하여 제1 통신 간격 동안 수신한 송신 패킷 중 통신 단말기에 기저장된 마지막 송신 패킷의 식별자 다음 순서의 송신 패킷을 수신하였는지 판단하는 단계를 더 포함하며, 제1 통신 간격 동안 수신한 송신 패킷 중 통신 단말기에 기저장된 마지막 송신 패킷의 식별자 다음 순서의 송신 패킷을 수신하지 못한 경우, 통신 단말기에 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 센서 트랜스미터로 송신하는 것을 특징으로 한다.
바람직하게 본 발명의 다른 실시예에 따른 생체 정보의 송수신 방법은 제1 통신 간격 동안 수신한 송신 패킷의 식별자에 기초하여 제1 통신 간격 동안 연속하여 수신하지 못한 송신 패킷이 존재하는지 판단하는 단계를 더 포함하며, 제1 통신 간격 동안 연속하여 수신하지 못한 송신 패킷이 존재하는 경우, 제1 통신 간격 동안 연속하여 수신한 송신 패킷 중 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 제2 통신 간격에 센서 트랜스미터로 송신하는 것을 특징으로 한다.
바람직하게 본 발명의 또 다른 실시예에 따른 생체 정보의 송수신 방법은 제1 통신 간격 동안 센서 트랜스미터에서 송신할 송신 패킷의 전체 개수와 제1 통신 간격 동안 통신 단말기에서 수신한 송신 패킷의 식별자에 기초하여 제1 통신 간격 동안 미수신한 통신 패킷의 식별자를 판단하는 단계를 더 포함하며, 제1 통신 간격 동안 미수신한 통신 패킷의 식별자를 구비하는 정보 요청 메시지를 센서 트랜스미터로 송신하는 것을 특징으로 한다.
본 발명에 따른 송신 패킷의 송수신 방법은 다음과 같은 다양한 효과들을 가진다.
첫째, 본 발명에 따른 생체 정보의 송수신 방법은 센서 트랜스미터에서 송신 패킷을 생성시 송신 패킷의 생성 순서에 따라 송신 패킷을 식별하기 위한 식별자를 포함하도록 송신 패킷을 생성함으로써, 송신 패킷의 식별자를 통해 송신 패킷의 분실없이 생체 정보를 송수신할 수 있다.
둘째, 본 발명에 따른 생체 정보의 송수신 방법은 각 통신 간격마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷에 대한 식별자에 기초하여 해당 통신 간격 동안 통신 단말기로 송신할 송신 패킷의 전체 개수 정보를 계산하여 통신 단말기로 제공함으로써, 송신 패킷의 송신 완료 후 센서 트랜스미터에서 송신 완료 메시지를 송신하지 않거나 송신 패킷의 수신 완료 후 통신 단말기에서 수신 완료 메시지를 송신하지 않더라도 송신 패킷의 분실없이 생체 정보를 송수신할 수 있다.
셋째, 본 발명에 따른 생체 정보의 송수신 방법은 각 통신 간격마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷 이후 생성된 송신 패킷을 통신 단말기로 송신함으로써, 센서 트랜스미터에서 생성된 생체 정보를 분실없이 통신 단말기로 송신할 수 있다.
넷째, 본 발명에 따른 생체 정보의 송수신 방법은 센서 트랜스미터가 송신할 송신 패킷의 전체 개수와 센서 트랜스미터로터 수신한 송신 패킷의 식별자에 기초하여 미수신 송신 패킷의 존재 여부를 판단하며 미수신 송신 패킷에 기초하여 통신 단말기에서 마지막으로 수신한 송신 패킷의 식별자를 센서 트랜스미터로 제공함으로써, 다음 통신 간격 동안 미수신 송신 패킷을 요청하여 수신할 수 있다.
도 1은 본 발명의 일 실시예에 따른 연속 혈당 측정 시스템을 도시한 개략도이다.
도 2는 본 발명의 센서 트랜스미터를 신체에 부착하기 위한 어플리케이터를 도시한 도면이다.
도 3 및 도 4는 센서 트랜스미터를 어플리케이터를 이용하여 인체에 부착하는 과정을 설명하기 위한 도면이다.
도 5는 센서 트랜스미터와 통신 단말기 사이에서 송수신되는 메시지를 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따른 센서 트랜스미터를 설명하기 위한 기능 블록도이다.
도 7은 센서 트랜스미터에서 생체 정보가 생성되는 일 예를 설명하기 위한 도면이다.
도 8은 센서 트랜스미터에서 송신 패킷을 생성하는 예를 설명하기 위한 도면이다.
도 9는 본 발명에 따른 통신 단말기를 설명하기 위한 기능 블록도이다.
도 10은 본 발명에 따른 패킷 관리부의 일 예를 설명하기 위한 기능 블록도이다.
도 11은 본 발명에 따라 센서 트랜스미터로부터 생체 정보를 수신하는 방법을 설명하기 위한 흐름도이다.
도 12는 통신 종료 후 정보 요청 메시지를 생성하는 일 예를 설명하기 위한 흐름도이다.
도 13은 송신 패킷의 미수신 유형에 따라 정보 요청 메시지를 생성하는 일 예를 설명하기 위한 흐름도이다.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다.
이하 첨부한 도면을 참고로 본 발명에 따른 생체 정보의 송수신 방법에 대해 보다 구체적으로 살펴본다.
도 1은 본 발명의 일 실시예에 따른 연속 혈당 측정 시스템을 도시한 개략도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 연속 혈당 측정 시스템(1)은 센서 트랜스미터(10) 및 통신 단말기(30)를 포함한다.
센서 트랜스미터(10)는 신체에 부착되는데 센서 트랜스미터(10)가 신체에 부착시 센서 트랜스미터(10)의 센서 일단은 피부에 삽입되어 인체의 체액을 주기적으로 추출하여 혈당을 측정한다.
통신 단말기(30)는 센서 트랜스미터(10)로부터 혈당 정보를 수신하고 수신한 혈당 정보를 사용자에 표시할 수 있는 단말기로, 스마트폰, 태블릿 PC, 또는 노트북 등과 같이 센서 트랜스미터(10)와 통신할 수 있는 이동 단말기가 이용될 수 있다. 물론, 통신 단말기(13)는 이에 한정되는 것은 아니며, 통신 기능을 포함하고 프로그램이나 어플리케이션이 설치될 수 있는 단말기이면 어떤 종류의 단말기일 수 있다.
센서 트랜스미터(10)는 통신 단말기(30)의 요청에 의해 또는 설정된 시각마다 주기적으로 측정된 혈당 정보를 통신 단말기(30)로 전송하는데, 센서 트랜스미터(10)와 통신 단말기(30) 사이에서 데이터 통신을 위해 센서 트랜스미터(10)와 통신 단말기(30)는 서로 USB 케이블 등에 의해 유선으로 통신 연결되거나 또는 적외선 통신, NFC 통신, 블루투스 등의 무선 통신 방식으로 통신 연결될 수 있다.
여기서 센서 트랜스미터(10)는 어플리케이터를 통해 신체 일부에 부착되는데, 도 2는 본 발명의 센서 트랜스미터를 신체에 부착하기 위한 어플리케이터를 도시한 도면이고, 도 3 및 도 4는 센서 트랜스미터를 어플리케이터를 이용하여 인체에 부착하는 과정을 설명하기 위한 도면이다.
먼저, 도 2를 참고로 어플리케이터(50)에 대해 살펴보면, 어플리케이터(50)는, 센서 트랜스미터(10)를 내부에 구비하며 사용자의 조작으로 센서 트랜스미터(10)를 외부로 토출하여 사용자의 특정 신체 부위에 부착시키도록 작동한다. 어플리케이터(50)는 일면이 개방된 형상으로 형성되어 있는데, 센서 트랜스미터(10)는 어플리케이터(50)의 개방된 일면을 통해 어플리케이터(50)에 설치된다.
어플리케이터(50)를 이용하여 센서 트랜스미터(10)를 신체 일부에 부착시, 센서 트랜스미터(10)에 구비된 센서의 일단을 피부에 삽입하기 위해 어플리케이터(50)는 센서의 일단을 내부에 감싸도록 형성된 니들(미도시), 니들과 센서 일단을 함께 피부로 밀어내는 제1 탄성 부재(미도시), 니들만을 인출하기 위한 제2 탄성 부재(미도시)를 구비하고 있다. 이러한 어플리케이터(50)의 구성을 통해 어플리케이터(50) 내부에 압축된 상태로 배치된 제1 탄성 부재(미도시)의 압축 해지로 니들과 센서 일단을 동시에 피부에 삽입하며, 센서 일단이 피부에 삽입시 압축된 제2 탄성부재(미도시)의 압축 해지에 의해 니들만을 인출한다. 사용자는 어플리케이터(50)를 통해 안전하고 용이하게 센서 트랜스미터(10)를 피부에 부착시킬 수 있다.
센서 트랜스미터(10)를 신체에 부착시키는 과정을 도 3 및 도 4를 참조하여 보다 상세하게 살펴보면, 보호캡(51)을 분리한 상태에서 어플리케이터(50)의 개방된 일면을 신체의 특정 부위 피부(20)에 밀착시킨다. 이렇게 어플리케이터(50)를 신체의 피부(20)에 밀착시킨 상태에서 어플리케이터(50)를 작동시키면, 센서 트랜스미터(10)는 어플리케이터(50)에서 토출되면서 피부(20)에 부착될 수 있다. 여기서 센서 트랜스미터(10)의 하부에는 센서(12)의 일단이 센서 트랜스미터(10)에서 노출되어 배치되어 있으며, 센서(12)의 일단은 어플리케이터(50)에 구비된 니들을 통해 일부가 피부(20)에 삽입된다. 따라서 센서(12)의 일단이 피부(20)에 삽입된 상태로 센서 트랜스미터(10)는 피부(20)에 부착될 수 있다.
여기서, 센서 트랜스미터(10)의 신체 접촉면에는 센서 트랜스미터(10)가 신체의 피부(20)에 고정 부착될 수 있게 접착테이프가 구비될 수 있다. 따라서 어플리케이터(50)를 신체의 피부(20)에서 이격시키면 접착테이프에 의해 센서 트랜스미터(10)는 신체의 피부(20)에 고정 부착된 상태가 된다.
이후 센서 트랜스미터(10)에 전원이 인가되면 센서 트랜스미터(10)는 통신 단말기(50)와 통신을 연결하며, 센서 트랜스미터(10)는 측정한 혈당 정보를 통신 단말기로 전송하게 된다.
센서 트랜스미터(10)는 혈당 정보뿐만 아니라 다양한 생체 정보를 측정할 수 있는데, 이하에서는 생체 정보의 일 예로 혈당 정보를 측정하는 것으로 설명한다.
도 5는 센서 트랜스미터와 통신 단말기 사이에서 송수신되는 메시지를 설명하기 위한 도면이다.
도 5를 참고로 살펴보면, 센서 트랜스미터는 측정한 혈당 정보를 구비하는 송신 패킷이 생성되는 경우 생성된 송신 패킷을 설정된 통신 간격으로 주기적으로 통신 단말기로 송신하는데, 센서 트랜스미터는 통신 주기마다 송신 패킷을 송신하기 위하여 광고 메시지를 주변 디바이스로 송신한다(S1).
광고 메시지를 수신한 통신 단말기는 센서 트랜스미터와 통신을 연결하는데, 통신 단말기와 센서 트랜스미터 사이에 통신이 연결되는 경우 통신 단말기는 정보 요청 메시지를 센서 트랜스미터로 송신한다(S3). 여기서 정보 요청 메시지에는 통신 단말기에 기저장된 마지막 송신 패킷의 식별자 또는 통신 단말기에서 수신 저장한 전체 송신 패킷의 수에 대한 정보가 포함되는데, 송신 패킷의 식별자는 센서 트랜스미터에서 송신 패킷이 생성된 순서에 따라 할당되는 일련 번호일 수 있으며 기저장된 마지막 송신 패킷의 식별자를 통해 통신 단말기에서 수신한 전체 송신 패킷의 수를 판단할 수 있다.
센서 트랜스미터는 통신 단말기에 기저장된 마지막 송신 패킷의 식별자에 기초하여 통신 연결된 해당 통신 간격 동안 센서 트랜스미터에서 통신 단말기로 송신할 송신 패킷의 전체 개수를 계산하며, 통신 간격 동안 센서 트랜스미터에서 통신 단말기로 송신할 송신 패킷의 전체 개수에 대한 정보를 구비하는 송신 패킷 정보를 통신 단말기로 송신한다(S5). 즉 센서 트랜스미터는 통신 단말기와 통신 연결되지 않은 상태에서도 계속해서 생체 정보를 측정하여 송신 패킷을 생성하는데, 통신 단말기에 기저장된 마지막 송신 패킷의 식별자 이후 생성된 송신 패킷의 수를 카운트하여 연결된 통신 간격 동안 통신 단말기로 송신할 송신 패킷의 전체 개수를 판단한다.
통신 단말기는 통신 간격 동안 센서 트랜스미터로부터 송신 패킷을 수신하는데, 센서 트랜스미터로부터 송신 패킷의 전체 개수만큼 수신하거나 설정된 통신 간격이 만료하는 경우 센서 트랜스미터와의 통신을 종료한다(S7).
통신 단말기는 송신 패킷 정보 중 송신 패킷의 전체 개수로부터 통신 단말기가 센서 트랜스미터로부터 수신할 송신 패킷의 전체 수를 판단할 수 있는데, 통신 단말기는 연결된 통신 간격 동안 센서 트랜스미터로부터 수신한 송신 패킷의 수를 카운트하며 송신 패킷의 전체 개수만큼 수신한 경우 통신 간격이 경과하지 않더다라도 센서 트랜스미터와의 통신을 종료한다.
통신 단말기와 센서 트랜스미터 사이에서 송신 패킷을 송수신하거나 통신 단말기와 센서 트랜스미터 사이에서 통신을 종료하는 경우, 통신 단말기는 센서 트랜스미터로 송신 패킷을 수신하였는지 알려주는 수신 완료 메시지를 추가적으로 생성하거나 송신하지 않으며 센서 트랜스미터는 통신 단말기로 송신 패킷을 송신하였는지 알려주는 송신 완료 메시지를 추가적으로 생성하거나 송신하지 않는다.
본원발명에서는 수신 완료 메시지 또는 송신 완료 메시지를 이용하는 대신 통신 간격마다 먼저 통신 단말기에서 수신한 마지막 송신 패킷에 대한 식별자를 센서 트랜스미터로 송신하며 센서 트랜스미터는 마지막 송신 패킷에 대한 식별자에 기초하여 해당 통신 간격 동안 통신 단말기로 송신할 송신 패킷의 전체 개수를 계산하여 통신 단말기로 제공함으로써, 송신 패킷의 송신 완료 후 센서 트랜스미터에서 송신 완료 메시지를 송신하지 않거나 송신 패킷의 수신 완료 후 통신 단말기에서 수신 완료 메시지를 송신하지 않더라도 송신 패킷의 분실없이 생체 정보를 송수할 수 있다.
도 6은 본 발명의 일 실시예에 따른 센서 트랜스미터를 설명하기 위한 기능 블록도이다.
도 6을 참고로 보다 구체적으로 살펴보면, 센서 모듈(110)은 센서를 구비하는데 센서는 신체에 일부 삽입되어 혈당 정보를 측정한다.
센서 제어부(130)는 센서 모듈(110)로부터 측정된 혈당 정보를 수신하고 수신한 혈당 정보를 저장부(150)에 저장한다. 여기서 센서 제어부(130)가 센서 모듈(110)로부터 수신하는 혈당 정보는 아날로그 신호인데, 센서 제어부(130)는 아날로그 신호에서 노이즈를 제거하고 다시 디지털 신호로 변경하여 혈당 정보를 생성한다.
센서 제어부(130)는 혈당 정보가 생성될 때마다 카운트를 증가하여 전체 혈당 정보 수를 저장부(150)에 저장하도록 한다. 한편, 센서 제어부(130)는 카운트한 혈당 정보의 생성 수에 기초하여 기설정된 수의 혈당 정보가 생성되는 경우 다수의 혈당 정보로부터 송신 패킷을 생성하도록 송신 패킷 생성부(170)를 제어한다.
센서 제어부(130)의 제어에 따라 송신 패킷 생성부(170)는 저장부(150)에 순차적으로 저장되어 있는 혈당 정보를 조합하여 일정 시간 동안의 시계열적인 혈당 정보로 이루어진 송신 패킷을 생성한다. 여기서 송신 패킷 생성부(170)는 송신 패킷을 생성할 때마다 각 송신 패킷을 식별하기 위한 송신 패킷 식별자를 포함하여 송신 패킷을 생성한다.
센서 제어부(130)는 송신 패킷 생성부(170)에서 송신 패킷이 생성될 때마다 카운트를 증가시켜 전체 송신 패킷 수를 저장부(150)에 저장하도록 한다.
센서 제어부(130)는 일정한 송신 주기마다 센서 통신부(190)를 통해 광고 메시지를 송신하여 통신 단말기와 통신을 연결하는데, 센서 제어부(130)는 통신 연결시 통신 단말기에 기저장된 마지막 송신 패킷의 식별자를 통신 단말기로부터 수신하며 기저장된 마지막 송신 패킷의 식별자와 저장부(150)에 저장된 송신 패킷의 식별자를 비교하여 통신 단말기에 기저장된 마지막 송신 패킷 이후 새로 생성되어 저장부(150)에 저장된 송신 패킷의 수를 계산한다. 센서 제어부(130)는 통신 단말기에 기저장된 마지막 송신 패킷 이후 새로 생성되어 저장된 송신 패킷의 수를 해당 통신 간격 동안 통신 단말기로 송신할 송신 패킷의 전체 개수로 판단하며 판단한 송신 패킷의 전체 개수에 대한 정보를 통신 단말기로 송신 제어한다.
도 7은 센서 트랜스미터에서 생체 정보가 생성되는 일 예를 설명하기 위한 도면이다.
먼저, 센서 모듈에서 측정되는 생체 신호에 대한 데이터는, 앞서 설명한 바와 같이, 소정의 간격마다 측정되는데, 한 번 측정될 때마다 여러 번에 걸쳐 측정될 수 있다. 예컨대, 센서 모듈은 10초마다 생체 신호 데이터를 측정한다. 이때, 한 번 측정할 때마다 30번에 걸쳐 생체 신호를 측정하며, 생체 신호의 측정에 소요되는 시간은 1초일 수 있다. 따라서 센서 모듈은 10초마다 30번의 아날로그 생체 신호 데이터를 측정한다.
즉, 일례로, 오후 2시 14분 25초부터 26초 사이에 혈당 정보를 30번 측정하고, 오후 2시 14분 35초부터 36초 사이에 혈당 정보를 다시 30번 측정하는 것과 같이, 10초 간격으로 혈당 정보를 측정할 수 있다.
이렇게 측정된 생체 신호 데이터는 센서 제어부에 의해 디지털 신호로 변환된다. 센서 제어부는, 디지털 신호로 변환된 혈당 정보 데이터 30개를 절삭 평균 방식으로 평균값을 계산하여 10초마다 하나의 평균값을 산정한다. 이때, 30개의 혈당 정보 데이터 중 상위 7개의 데이터와 하위 7개의 데이터를 제거하고, 나머지 16개의 데이터의 평균값(A)을 산정한다.
이렇게 산정된 절삭 평균값(A)은 10초 단위로 생성될 수 있으며, 도시된 바와 같이, 1분 동안 여섯 개의 절삭 평균값(A1 ~ A6)이 생성될 수 있다.
또한, 1분 동안 여섯 개의 절삭 평균값(A1 ~ A6)을 생성하고, 생성한 여섯 개의 절삭 평균값(A1 ~ A6)을 이용하여 다시 2차 절삭 평균값(B1)을 생성한다. 이때, 생성된 2차 절삭 평균값(B1)은 여섯 개의 절삭 평균값(A1 ~ A6) 중 가장 큰 값 및 가장 작은 값을 제거하고 나머지 네 개의 값의 평균으로부터 계산된다. 따라서 1분에 하나의 2차 절삭 평균값(B)으로부터 혈당 정보를 생성한다.
이렇게 1분마다 생성된 혈당 정보 데이터는 센서 제어부에 의해 저장부에 저장되고, 저장된 혈당 정보는 송신 패킷으로 생성되어 센서 통신부를 통해 통신 단말기로 전송될 수 있다.
도 8은 센서 트랜스미터에서 송신 패킷을 생성하는 예를 설명하기 위한 도면으로, 도 8(a)을 참고로 송신 패킷을 생성하는 일 예를 살펴보면 설정된 혈당 정보 생성 주기(TP)마다 순차적으로 혈당 정보(B1, B2, B3, B4, B5, B6,...)를 생성하는데, 혈당 정보가 생성될 때마다 해당 혈당 정보를 구비하는 송신 패킷(P1, P2, P3, P4, P5, P6)을 생성한다. 송신 패킷을 생성시 송신 패킷의 생성 순서에 따라 고유한 일련의 식별자가 할당되어 해당 송신 패킷의 식별자와 혈당 정보를 구비하도록 송신 패킷이 생성된다. 바람직하게 송신 패킷의 생성 순서에 따라 순차적으로 증가하는 시퀀스를 송신 패킷의 식별자로 할당하거나 송신 패킷의 생성 시각을 송신 패킷의 식별자로 할당할 수 있다.
생성된 송신 패킷(P1, P2, P3, P4, P5, P6)은 저장부에 저장되는데, 설정된 통신 주기(TS)가 도래하는 경우, 저장부에 저장되어 있는 송신 패킷(P1, P2, P3, P4, P5)을 각각 통신 단말기로 송신한다.
도 8(b)을 참고로 송신 패킷을 생성하는 다른 예를 살펴보면 설정된 혈당 정보 생성 주기(TP)마다 순차적으로 혈당 정보(B1, B2, B3, B4, B5, B6,...)를 생성하는데, 혈당 정보는 생성될 때마다 저장부에 저장되며 설정된 통신 주기(TS)가 도래하는 경우, 통신 주기까지 저장부에 저장된 혈당 정보(B1, B2, B3, B4, B5)를 모두 포함하는 송신 패킷(P1)을 생성하고 생성한 송신 패킷(P1)을 통신 단말기로 송신한다.
도 9는 본 발명에 따른 통신 단말기를 설명하기 위한 기능 블록도이다.
도 9를 참고로 보다 구체적으로 살펴보면, 단말기 제어부(210)는 설정한 통신 간격마다 센서 트랜스미터로부터 광고(advertisement) 메시지를 수신하는 경우단말기 통신부(230)를 통해 센서 트랜스미터와 통신을 연결하고, 통신 간격이 경과하거나 또는 센서 트랜스미터로부터 송신 패킷을 수신 완료하는 경우 통신 간격이 경과하기 전이라도 통신 단말기와의 통신을 종료한다.
한편 패킷 관리부(240)는 센서 트랜스미터와 통신이 연결된 경우, 단말기 제어부(210)의 제어에 따라 저장부(250)에 저장된 송신 패킷의 식별자에 기초하여 저장부(250)에 기저장된 마지막 송신 패킷의 식별자를 판단하며, 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성하고 생성한 정보 요청 메시지를 단말기 통신부(230)를 통해 센서 트랜스미터로 송신한다.
패킷 관리부(240)는 연결된 통신 간격 동안 센서 트랜스미터로부터 수신한 송신 패킷의 식별자에 기초하여 센서 트랜스미터가 알려준 송신 패킷의 전체 개수만큼 송신 패킷을 수신하였는지 판단하며 센서 트랜스미터로부터 미수신한 송신 패킷이 존재하는 경우 미수신 유형을 판단하여 수신한 송신 패킷을 선택적으로 저장부(250)에 저장한다. 패킷 관리부(240)는 저장부(250)에 저장되 송신 패킷 중 마지막으로 저장된 송신 패킷의 식별자를 판단하여 다음 통신 간격에 마지막으로 저장된 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성하여 센서 트랜스미터로 송신한다.
한편, 단말기 제어부(210)는 수신한 송신 패킷의 생체 정보를 사용자가 확인할 수 있도록 디스플레이부(270)에 출력한다.
바람직하게, 단말기 제어부(210)는 센서 트랜스미터로부터 미수신한 송신 패킷 또는 생체 정보가 존재하는 경우, 미수신한 송신 패킷이 존재함을 디스플레이부(270)에 출력하며 다음 통신 간격이 도래하기 전이라도 사용자 인터페이스부(290)를 통해 미수신한 송신 패킷의 수신 요청 명령이 입력되는 경우 미수신한 송신 패킷 또는 생체 정보를 센서 트랜스미터로부터 요청할 수 있다.
도 10은 본 발명에 따른 패킷 관리부의 일 예를 설명하기 위한 기능 블록도이다.
도 10을 참고로 보다 구체적으로 살펴보면, 정렬부(241)는 연결된 통신 간격 동안 센서 트랜스미터로부터 수신한 송신 패킷을 식별자의 오름차순으로 정렬한다. 미수신 패킷 판단부(243)는 통신 단말기에서 통신 간격 동안 실제 수신한 송신 패킷의 식별자에 기초하여 통신 간격 동안 수신한 송신 패킷의 수를 카운트하며 카운트한 송신 패킷의 수와 센서 트랜스미터로부터 수신한, 통신 간격 동안 센서 트랜스미터가 송신할 송신 패키의 전체 개수에 기초하여 미수신한 송신 패킷이 존재하는지 여부를 판단한다.
미수신 패킷 판단부(243)는 미수신한 송신 패킷이 존재하지 않는 경우 통신 간격 동안 수신한 송신 패킷을 저장부에 저장 제어하다. 그러나 미수신한 송신 패킷이 존재하는 경우, 미수신한 송신 패킷이 통신 간격 동안 센서 트랜스미터가 송신할 송신 패킷 중 첫 번째 송신 패킷인지 아니면 중간 송신 패킷인지 판단한다. 미수신 패킷 판단부(243)는 송신 패킷의 미수신 유형에 따라 첫 번째 송신 패킷부터 미수신한 경우 통신 간격 동안 수신한 모든 송신 패킷을 저장부에 저장하지 않고 삭제하며, 첫 번째 송신 패킷은 수신하였지만 중간 송신 패킷부터 연속하여 미수신한 경우 미수신한 송신 패킷 이후의 모든 송신 패킷을 삭제하고 첫 번째 송신 패킷부터 연속하여 수신한 송신 패킷은 저장부에 저장 제어한다.
예를 들어 통신 간격 동안 센서 트랜스미터로부터 수신할 송신 패킷이 P1, P2, P3, P4, P5이며 실제 수신한 송신 패킷이 P2, P3, P4, P5인 경우 첫 번째 송신 패킷(P1)부터 미수신하였으므로 실제 수신한 송신 패킷(P2, P3, P4, P5)도 삭제 제어한다. 한편, 통신 간격 동안 센서 트랜스미터로부터 수신할 송신 패킷이 P1, P2, P3, P4, P5이며 실제 수신한 송신 패킷이 P1, P2, P4, P5인 경우 중간 송신 패킷(P3)부터 연속하여 미수신하였으므로 첫 번째 송신 패킷부터 연속하여 수신한 송신 패킷(P1, P2)은 저장부에 저장 제어하고 연속하여 미수신한 송신 패킷(P4, P5)는 삭제 제어한다.
메시지 생성부(245)는 저장부에 기저장된 마지막 송신 패킷의 식별자를 판단하며, 저장부에 저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성하고 설정된 통신 간격에 센서 트랜스미터와 통신이 연결된 경우 먼저 생성한 정보 요청 메시지를 센서 트랜스미터로 송신한다.
도 11은 본 발명에 따라 센서 트랜스미터로부터 생체 정보를 수신하는 방법을 설명하기 위한 흐름도이다.
도 11을 참고로 보다 구체적으로 살펴보면, 통신 단말기는 설정된 통신 주기마다 센서 트랜스미터로부터 광고 메시지를 수신한다(S110). 광고 메시지에 응답하여 통신 단말기와 센서 트랜스미터는 통신을 연결하는데, 통신 연결은 이미 공지된 내용이므로 이에 대한 구체적인 설명은 생략한다.
센서 트랜스미터와 통신 단말기 사이에서 통신이 연결된 경우, 통신 단말기는 먼저 센서 트랜스미터로 정보 요청 메시지를 송신한다(S130). 정보 요청 메시지에는 통신 단말기에 기저장된 마지막 송신 패킷의 식별자가 포함되어 있다.
센서 트랜스미터는 통신 단말기에 기저장된 마지막 송신 패킷의 식별자에 기초하여 통신 연결된 해당 통신 주기의 통신 간격 동안 센서 트랜스미터가 통신 단말기로 송신할 송신 패킷의 전체 개수에 대한 정보를 구비하는 송신 정보 메시지를 생성하는데, 통신 단말기는 센서 트랜스미터로부터 송신 패킷을 수신하기 전 먼저 센서 트랜스미터로부터 송신 정보 메시지를 수신한다(S150).
해당 통신 주기의 통신 간격이 만료하였는지 판단하여(S170), 통신 간격이 만료하지 않은 경우 센서 트랜스미터에서 송신할 송신 패킷을 모두 수신 완료하였는지 판단한다(S180).
센서 트랜스미터에서 송신할 송신 패킷을 모두 수신 완료한 경우 수신한 송신 패킷을 저장부에 저장 후 통신을 종료한다(S190). 그러나 통신 간격이 만료하지 않았으며 센서 트랜스미터에서 송신할 송신 패킷을 모두 수신하지 못한 경우 통신 간격이 경과하기 전까기 계속해서 센서 트랜스미터에서 송신하는 송신 패킷을 수신한다. 그러나 센서 트랜스미터에서 송신할 송신 패킷을 모두 수신하지 못한 상태에서 통신 간격이 만료한 경우 통신을 종료한다(S190).
본원발명에서 센서 트랜스미터는 통신 단말기에 마지막으로 기저장된 송신 패킷의 식별자에 기초하여 센서 트랜스미터에서 생성되어 저장된 송신 패킷 중 기저장된 마지막 송신 패킷 이후의 송신 패킷을 통신 단말기로 송신할 수 있으며, 통신 단말기는 송신 패킷의 전체 개수에 기초하여 통신 단말기가 해당 통신 주기의 통신 간격 동안 수신할 송신 패킷의 수를 판단할 수 있다.
이를 통해 통신 단말기는 해당 통신 주기의 통신 간격 동안 미수신한 송신 패킷이 존재하는 경우 다음 통신 주기에 미수신한 송신 패킷에 대한 정보를 센서 트랜스미터로 제공하여 송신 패킷의 분실없이 송신 패킷을 수신할 수 있다.
또한 통신 단말기가 송신 패킷을 수신 완료하였는지 확인하기 위한 별도의 수신 완료 메시지 또는 센서 트랜스미터가 송신 패킷을 송신 완료하였는지를 확인하기 위한 별도의 송신 완료 메시지를 생성하거나 송신할 필요가 없게 된다.
도 12는 통신 종료 후 정보 요청 메시지를 생성하는 일 예를 설명하기 위한 흐름도이다.
도 12를 참고로 보다 구체적으로 살펴보면, 통신 연결된 통신 주기의 통신 간격이 만료하였는지 판단한다(S211). 통신 간격이 만료한 경우 미수신한 송신 패킷이 존재하는지 여부를 판단한다(S213).
센서 트랜스미터가 송신하고자 하는 송신 패킷을 모두 수신한 경우 수신한 송신 패킷을 모두 저장부에 저장하며(S217), 저장한 송신 패킷 중 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성하여 다음 통신 주기에 생성한 정보 요청 메시지를 센서 트랜스미터로 송신한다(S219).
한편 센서 트랜스미터로부터 미수신한 송신 패킷이 존재하는 경우 송신 패킷의 미수신 유형을 판단하며(S215), 판단한 미수신 유형에 따라 선택적으로 수신한 송신 패킷을 저장부에 저장하고 저장한 송신 패킷 중 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성하여 다음 통신 주기에 생성한 정보 요청 메시지를 센서 트랜스미터로 송신한다(S219).
도 13은 송신 패킷의 미수신 유형에 따라 정보 요청 메시지를 생성하는 일 예를 설명하기 위한 흐름도이다.
도 13을 참고로 보다 구체적으로 살펴보면, 통신 주기의 통신 간격 동안 수신한 송신 패킷을 식별자에 기초하여 정렬한다(S231). 바람직하게 통신 주기의 통신 간격 동안 수신한 송신 패킷을 식별자의 오름차순으로 정렬한다.
정렬된 송신 패킷의 식별자에 기초하여 통신 주기의 통신 간격 동안 센서 트랜스미터로부터 수신한 송신 패킷의 수를 카운트하며(S232), 통신 간격 동안 센서 트랜스미터에서 송신하고자 하는 송신 패킷의 전체 개수(NT)와 통신 간격 동안 통신 단말기에서 실제 수신한 송신 패킷의 수(NR)를 비교하여 미수신한 송신 패킷이 존재하는지 판단한다(S233).
미수신한 송신 패킷이 존재하지 않는 경우, 수신한 송신 패킷은 모두 저장부에 저장되는데 저장부에 저장된 송신 패킷 중 마지막 송신 패킷의 식별자를 판단하고(S224) 판단한 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성한다(S235).
한편 미수신한 송신 패킷이 존재하는 경우, 통신 간격 동안 센서 트랜스미터에서 송신하고자 하는 송신 패킷 중 첫 번째 송신 패킷을 미수신하였는지 판단한다(S236). 첫 번째 송신 패킷을 미수신한 경우 통신 간격 동안 센서 트랜스미터로부터 수신한 송신 패킷은 저장하지 않고 모두 폐기되는데, 저장부에 기저장된 마지막 송신 패킷의 식별자를 판단하고(S237) 저장부에 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성한다(S235).
한편 미수신한 송신 패킷이 존재하며 통신 간격 동안 센서 트랜스미터에서 송신하고자 하는 송신 패킷 중 첫 번째 송신 패킷은 수신하고 첫 번째 송신 패킷 이후 일부 송신 패킷을 수신하지 못한 경우, 첫 번째 송신 패킷 이후 연속하여 수신한 송신 패킷만을 저장부에 저장하고 미수신 송신 패킷 이후 수신한 송신 패킷을 모두 폐기하는데, 저장부에 저장된 마지막 송신 패킷의 식별자를 판단하고(S239) 저장부에 저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성한다(S235).
한편, 상술한 본 발명의 실시 예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.
상기 컴퓨터로 읽을 수 있는 기록 매체는 마그네틱 저장 매체(예를 들어, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장 매체를 포함한다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (14)

  1. 사용자의 신체 부위 일부에 배치되어 사용자의 생체 정보를 측정하는 센서 트랜스미터와 상기 센서 트랜스미터로부터 생체 정보를 수신하는 통신 단말기 사이에서 생체 정보를 송수신하는 방법에 있어서,
    상기 통신 단말기는 상기 센서 트랜스미터로부터 상기 센서 트랜스미터가 송신할 송신 패킷의 전체 개수를 수신하는 단계;
    상기 통신 단말기는 설정된 제1 통신 간격 동안 상기 센서 트랜스미터로부터 송신 패킷을 수신하고 수신한 송신 패킷을 저장하는 단계; 및
    상기 통신 단말기는 송신 패킷의 전체 개수에 기초하여 상기 센서 트랜스미터로부터 상기 송신 패킷의 전체 개수만큼 송신 패킷을 수신하거나 상기 제1 통신 간격이 종료하는 경우 상기 센서 트랜스미터와의 통신을 종료하는 단계를 포함하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  2. 제 1 항에 있어서, 상기 생체 정보의 송수신 방법은
    상기 통신 단말기와 상기 센터 트랜스미터 사이에서 통신을 종료시, 상기 통신 단말기와 상기 센서 트랜스미터 사이에서는 별도의 수신 완료 메시지를 송수신하지 않는 것을 특징으로 하는 생체 정보의 송수신 방법.
  3. 제 1 항에 있어서,
    상기 센서 트랜스미터에서 측정 센서를 통해 측정한 생체 정보를 구비하는, 상기 통신 단말기로 송신할 송신 패킷을 생성하며,
    상기 송신 패킷에는 송신 패킷의 생성 순서에 따라 상기 송신 패킷을 식별하기 위한 생성 식별자가 포함되어 있는 것을 특징으로 하는 생체 정보의 송수신 방법.
  4. 제 3 항에 있어서, 상기 생체 정보의 송수신 방법은
    상기 통신 단말기에서 상기 센서 트랜스미터로 상기 통신 단말기에 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 송신하는 단계를 더 포함하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  5. 제 4 항에 있어서, 상기 생체 정보의 송수신 방법에서
    상기 센서 트랜스미터는 상기 통신 단말기로부터 수신한, 기저장된 마지막 송신 패킷의 식별자에 기초하여 상기 제1 통신 간격 동안 상기 통신 단말기로 송신할 송신 패킷의 전체 개수를 계산하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  6. 제 4 항에 있어서,
    상기 송신 패킷의 생성 식별자에 기초하여 상기 센서 트랜스미터로부터 수신한 송신 패킷의 수를 카운트하는 단계; 및
    상기 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자를 판단하는 단계를 더 포함하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  7. 제 6 항에 있어서,
    상기 제1 통신 간격 동안 수신한 송신 패킷의 식별자를 오름순서로 정렬하는 단계를 더 포함하는 것을 특징으로 하는 생체 정보의 송수신 방법
  8. 제 6 항 또는 제 7 항에 있어서,
    상기 제1 통신 간격에 연속하는 제2 통신 통신 간격에 상기 통신 단말기는 상기 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 상기 센서 트랜스미터로 송신하는 단계를 더 포함하며,
    상기 센서 트랜스미터는 상기 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자에 기초하여 상기 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자 이후부터 새로 생성된 송신 패킷에 기초하여 상기 제2 통신 간격 동안에 상기 센서 트랜스미터가 상기 통신 단말기로 송신할 송신 패킷의 전체 개수를 계산하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  9. 제 8 항에 있어서,
    상기 통신 단말기는 상기 제1 통신 간격 동안 수신한 송신 패킷의 식별자에 기초하여 상기 제1 통신 간격 동안 수신한 송신 패킷 중 상기 통신 단말기에 기저장된 마지막 송신 패킷의 식별자 다음 순서의 송신 패킷을 수신하였는지 판단하는 단계를 더 포함하며,
    상기 제1 통신 간격 동안 수신한 송신 패킷 중 상기 통신 단말기에 기저장된 마지막 송신 패킷의 식별자 다음 순서의 송신 패킷을 수신하지 못한 경우, 상기 통신 단말기에 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 상기 센서 트랜스미터로 송신하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  10. 제 9 항에 있어서,
    상기 통신 단말기는 상기 제1 통신 간격 동안 수신한 송신 패킷의 식별자에 기초하여 상기 제1 통신 간격 동안 연속하여 수신하지 못한 송신 패킷이 존재하는지 판단하는 단계를 더 포함하며,
    상기 제1 통신 간격 동안 연속하여 수신하지 못한 송신 패킷이 존재하는 경우, 상기 제1 통신 간격 동안 연속하여 수신한 송신 패킷 중 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 상기 제2 통신 간격에 상기 센서 트랜스미터로 송신하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  11. 제 8 항에 있어서,
    상기 제1 통신 간격 동안 상기 센서 트랜스미터에서 송신할 송신 패킷의 전체 개수와 상기 제1 통신 간격 동안 상기 통신 단말기에서 수신한 송신 패킷의 식별자에 기초하여 상기 제1 통신 간격 동안 미수신한 통신 패킷의 식별자를 판단하는 단계를 더 포함하며,
    상기 제1 통신 간격 동안 미수신한 통신 패킷의 식별자를 구비하는 정보 요청 메시지를 상기 센서 트랜스미터로 송신하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  12. 사용자의 신체 부위 일부에 배치되어 사용자의 생체 정보를 측정하는 센서 트랜스미터와 상기 센서 트랜스미터로부터 생체 정보를 수신하는 통신 단말기 사이에서 생체 정보를 송수신하는 방법에 있어서,
    상기 통신 단말기와 상기 센서 트랜스미터 사이에 통신을 연결하는 단계;
    상기 통신 단말기에서 상기 센서 트랜스미터로 상기 통신 단말기에 기저장된 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 송신하는 단계;
    상기 마지막 송신 패킷의 식별자에 기초하여 상기 센서 트랜스미터에서 생성된, 상기 마지막 송신 패킷의 식별자 이후의 송신 패킷이 존재하는지 판단하는 단계; 및
    상기 센서 트랜스미터에서 상기 마지막 송신 패킷의 식별자 이후 생성된 송신 패킷을 상기 통신 단말기로 송신하는 단계를 포함하는 것을 특징으로 하는 생체 정보의 송수신 방법.
  13. 제 12 항에 있어서,
    상기 센서 트랜스미터에서 측정 센서를 통해 측정한 생체 정보를 구비하는, 상기 통신 단말기로 송신할 송신 패킷을 생성하며,
    상기 송신 패킷에는 송신 패킷의 생성 순서에 따라 상기 송신 패킷을 식별하기 위한 생성 식별자가 포함되어 있는 것을 특징으로 하는 생체 정보의 송수신 방법.
  14. 제 13 항에 있어서, 상기 통신 단말기는
    상기 제1 통신 간격 동안 마지막으로 수신한 송신 패킷의 식별자를 판단하며 상기 마지막 송신 패킷의 식별자를 구비하는 정보 요청 메시지를 생성하는 것을 특징으로 하는 생체 정보의 송수신 방법.
PCT/KR2021/002097 2020-02-19 2021-02-19 연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법 WO2021167386A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022548085A JP2023514164A (ja) 2020-02-19 2021-02-19 連続血糖測定システムで送信パケット識別子に基づいて紛失なしに生体情報を送受信する方法
AU2021222846A AU2021222846A1 (en) 2020-02-19 2021-02-19 Method for transmitting/receiving biometric information without loss on basis of transmit packet identifier in continuous glucose monitoring system
EP21756240.4A EP4085822A4 (en) 2020-02-19 2021-02-19 METHOD FOR LOSSLESS TRANSMISSION/RECEIVING BIOMETRIC INFORMATION BASED ON TRANSMISSION PACKET IDENTIFIER IN CONTINUOUS GLUCOSE MONITORING SYSTEM
US17/797,727 US20230076499A1 (en) 2020-02-19 2021-02-19 Method for transmitting and receiving biometric information without loss based on transmission packet identifier in continuous blood glucose monitor system
CN202180012941.5A CN115052519A (zh) 2020-02-19 2021-02-19 在连续血糖测量系统中基于发送数据包标识符无丢失地收发生物信息的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0020122 2020-02-19
KR1020200020122A KR102330791B1 (ko) 2020-02-19 2020-02-19 연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법

Publications (1)

Publication Number Publication Date
WO2021167386A1 true WO2021167386A1 (ko) 2021-08-26

Family

ID=77391422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002097 WO2021167386A1 (ko) 2020-02-19 2021-02-19 연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법

Country Status (7)

Country Link
US (1) US20230076499A1 (ko)
EP (1) EP4085822A4 (ko)
JP (1) JP2023514164A (ko)
KR (1) KR102330791B1 (ko)
CN (1) CN115052519A (ko)
AU (1) AU2021222846A1 (ko)
WO (1) WO2021167386A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD995794S1 (en) * 2021-04-12 2023-08-15 Medwand Solutions, Inc. Integrated multi-sensored medical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070031810A (ko) * 2005-09-15 2007-03-20 삼성전자주식회사 이동통신 시스템에서 패킷 데이터의 수신 상태를 나타내는상태 보고를 송수신하는 방법 및 장치
KR20080031175A (ko) * 2005-05-06 2008-04-08 캘리포니아 인스티튜트 오브 테크놀로지 손실된 패킷 검출 방법 및 패킷에 대한 재전송 메카니즘을결정하는 방법
KR20110121445A (ko) * 2010-04-30 2011-11-07 주식회사 엠디웨어 생체 측정 데이터의 처리 방법 및 시스템
US20150359490A1 (en) * 2014-06-13 2015-12-17 Medtronic Minimed, Inc. Physiological sensor history backfill system and method
KR20180132555A (ko) * 2017-06-02 2018-12-12 주식회사 아이센스 연속 혈당 측정기용 센서 어플리케이터 조립체

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389491B1 (en) * 2015-12-18 2024-05-22 Dexcom, Inc. Data backfilling for continuous glucose monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031175A (ko) * 2005-05-06 2008-04-08 캘리포니아 인스티튜트 오브 테크놀로지 손실된 패킷 검출 방법 및 패킷에 대한 재전송 메카니즘을결정하는 방법
KR20070031810A (ko) * 2005-09-15 2007-03-20 삼성전자주식회사 이동통신 시스템에서 패킷 데이터의 수신 상태를 나타내는상태 보고를 송수신하는 방법 및 장치
KR20110121445A (ko) * 2010-04-30 2011-11-07 주식회사 엠디웨어 생체 측정 데이터의 처리 방법 및 시스템
US20150359490A1 (en) * 2014-06-13 2015-12-17 Medtronic Minimed, Inc. Physiological sensor history backfill system and method
KR20180132555A (ko) * 2017-06-02 2018-12-12 주식회사 아이센스 연속 혈당 측정기용 센서 어플리케이터 조립체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4085822A4 *

Also Published As

Publication number Publication date
CN115052519A (zh) 2022-09-13
KR20210105529A (ko) 2021-08-27
US20230076499A1 (en) 2023-03-09
JP2023514164A (ja) 2023-04-05
AU2021222846A1 (en) 2022-09-01
EP4085822A4 (en) 2024-01-24
KR102330791B1 (ko) 2021-11-24
EP4085822A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021015389A1 (ko) 연속 혈당 측정 시스템에서 생체 정보를 분실없이 송수신하는 방법
WO2021025261A1 (ko) 연속 혈당 측정 시스템에서 교정 정보를 관리하는 방법
WO2021182871A1 (ko) 체내 삽입용 센서의 교정 민감도를 계산하는 방법
WO2021107335A1 (ko) 연속혈당측정시스템에서 혈당값을 교정하는 방법
WO2021167386A1 (ko) 연속 혈당 측정 시스템에서 송신 패킷 식별자에 기초하여 분실없이 생체 정보를 송수신하는 방법
WO2022225199A1 (ko) 카메라 기반 생체 징후 데이터 추출과 전자 문진을 통한 비대면 건강상태 측정 시스템 및 그 방법
WO2014157945A1 (ko) 생체 정보 측정 시계 및 생체 정보 측정 방법
WO2016145673A1 (zh) 基于血糖管理的一体化连续式血糖仪
WO2019160254A1 (ko) 센서 사용 정보를 이용한 생체 정보의 관리 방법
WO2021172968A2 (ko) 연속혈당측정시스템에서 생체 정보를 송수신하는 방법
WO2020032382A1 (ko) 연속혈당측정기의 동작 제어 장치
WO2022173103A1 (ko) 웨어러블 다중 생체 신호 측정장치 및 이를 이용한 인공지능 기반의 원격 모니터링 시스템
CN106725392A (zh) 血压检测系统和方法
WO2021010569A1 (ko) 연속 혈당 측정 시스템의 근거리 통신 연결 방법
WO2021025260A1 (ko) 생체 정보 측정 데이터의 노이즈 처리 방법
CN111166289B (zh) 一种远程内分泌紊乱检测设备
WO2019160255A1 (ko) 메모리에 저장된 센서 사용 정보를 이용하는 연속 생체정보 측정장치
WO2021167384A1 (ko) 미수신 생체 정보가 속한 영역에 기초하여 미수신 생체 정보를 송수신하는 방법
CN206792398U (zh) 血压检测装置
WO2021141186A1 (ko) 멀티형 인지재활 훈련 시스템 및 방법
WO2023101099A1 (ko) 혈당 반응값을 활용한 식이 추천 시스템 및 그 방법
WO2018208007A1 (ko) 센서 교체형 다회용 혈당 측정 장치
CN101524274A (zh) 一种计算机程序控制的呼吸频率检测装置
WO2023136574A1 (ko) 연속생체 정보 측정 시스템에서 생체 신호를 교정하는 방법
WO2022186444A1 (ko) 연속 혈당 측정장치용 어플리케이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548085

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2021756240

Country of ref document: EP

Effective date: 20220803

ENP Entry into the national phase

Ref document number: 2021222846

Country of ref document: AU

Date of ref document: 20210219

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE