WO2021167205A1 - Method for improving flowability of powder, and method for producing powder having improved flowability - Google Patents

Method for improving flowability of powder, and method for producing powder having improved flowability Download PDF

Info

Publication number
WO2021167205A1
WO2021167205A1 PCT/KR2020/015711 KR2020015711W WO2021167205A1 WO 2021167205 A1 WO2021167205 A1 WO 2021167205A1 KR 2020015711 W KR2020015711 W KR 2020015711W WO 2021167205 A1 WO2021167205 A1 WO 2021167205A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
metal
flowability
gas
alloy
Prior art date
Application number
PCT/KR2020/015711
Other languages
French (fr)
Korean (ko)
Inventor
최중호
김경태
양상선
유지훈
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2021167205A1 publication Critical patent/WO2021167205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/15Intermetallic

Definitions

  • the present invention relates to a method for improving the fluidity of a powder, a method for manufacturing a powder having improved fluidity, and a powder with improved fluidity produced thereby.
  • Metal powder has no segregation due to rapid solidification, fine grains, and controllable porosity according to processing methods.
  • the field of application is steadily increasing.
  • Metal powder manufacturing apparatus is a metal melting tank formed with an orifice for discharging molten metal at the bottom; a vibration transmission rod for refining the molten metal by transmitting the vibration generated from the vibration generating mechanism to the molten metal inside the melting tank; a high-pressure gas storage tank accommodating the high-pressure gas ejected into the molten metal droplets through a supply tube in order to further refine the molten metal droplets discharged from the melting tank; and a metal powder spray tank that receives and cools the molten metal droplets that are refined and discharged by the high-pressure gas, so that the production of fine spherical metal powder having an average particle diameter of 20 ⁇ m or less can be stably and inexpensively performed, and MIM metal We are proposing technologies for practical use of powders and metal powders for electronic products.
  • Spherical alloy powder and its manufacturing method is one of rapid solidification (RSP), in the case of the conventional gas atomization process, by melting the alloy raw material of the target composition into a crucible and then in the chamber.
  • RSP rapid solidification
  • the semi-liquid particles sprayed by the annular spray nozzle collide with the inside of the water-cooled cylindrical cooling roller rotating at high speed again to form secondary It is possible to obtain a more homogeneous microstructure by reducing micro-segregation by increasing the cooling effect of the molten alloy by recovering the alloy powder by cooling with are doing
  • Korean Patent Laid-Open Publication No. 2001-0011544 Metal for producing particulate powder such as powder for cream solder using ultrasonic waves and device therefor is a method for reducing molten substances into small It is sprayed with droplets, and the sprayed small droplets are cooled to solidify, but the powder particle size can be adjusted by varying the frequency of ultrasonic waves.
  • the flow rate is sprayed on the ultrasonic horn to produce powder for cream solder, and the spraying step is dropped onto the ultrasonic horn vibrating in the range of 20 to 44 kHz in an inert gas atmosphere, so that good quality cream solder powder can be continuously manufactured in large quantities.
  • technology is proposed for
  • Laid-Open Patent Publication No. 10-2007-0105256 Metal powder manufacturing apparatus, metal powder and compact is a supply unit (tundish) for supplying molten metal, a liquid ejection unit provided below the supply unit, and liquid ejection It has a nozzle and a cylindrical body provided below the part, the nozzle has an orifice for jetting a liquid jet (second liquid), and when the dispersion liquid collides with this liquid jet, the propagation direction of the dispersion liquid is forcibly changed.
  • mass production of metal powder manufacturing uses an atomizer device, and is divided into a gas atomizer method and a water atomizer method.
  • the water spray atomizer device may be divided into a method of spraying only pure water or a mixture of water and gas.
  • the water atomizer method is similar to the gas atomizer method in its operation method and the break-up theoretical model of droplets, but the difference is that the liquid of water is used instead of the gas which is a gas for the transfer of kinetic energy to break the droplets. There is this.
  • the water atomizer device injects high-density water instead of gas, it has the advantage of generating relatively large kinetic energy and producing up to 1 ⁇ m-sized metal powder, but using water instead of inert gas It has limitations in oxidation of phosphorus metal powder and post-processing problems.
  • the inventors of the present invention can mass-produce various kinds of metal powders by manufacturing powders using a gas atomizer, and completed the present invention by conducting research on improving the flowability of the powders to be manufactured.
  • An object of the present invention is to provide a method for improving the flowability of a powder, particularly a metal or alloy powder produced by gas atomization, a method for producing a powder having improved flowability, and a powder with improved flowability produced thereby.
  • It provides a method of improving the flowability of a powder comprising a.
  • It provides a method for producing a powder with improved fluidity comprising a.
  • the powder can be produced in large quantities by manufacturing the powder through gas atomization, and there is an advantage that powders of various metals can be manufactured.
  • the flowability of the manufactured powder is improved, and there is an effect that it can be applied to various applications such as 3D printing.
  • FIG. 1 is a schematic diagram and a photograph of an apparatus for measuring the flow of powder in the present invention
  • 5 is a graph showing whether the flowability is improved when heat treatment is performed on IN718 alloy powder.
  • the term 'base metal' refers to a metal that occupies the largest percentage by weight in an alloy.
  • It provides a method of improving the flowability of a powder comprising a.
  • the method for improving the flowability of powder of the present invention includes preparing a powder by gas atomization using a metal having a higher diffusion coefficient than nickel (Ni) or an alloy using the same as a base metal as a raw material.
  • the present invention targets the powder produced by the gas atomization method as described above, and particularly, the powder with low flowability produced by the gas atomization method.
  • the step of producing a powder through gas atomization is performed by gas atomization using a metal having a higher diffusion coefficient than nickel (Ni) or an alloy using the same as a base metal as a raw material. characterized in that it is manufactured.
  • Ni nickel
  • the flowability of the powder is not improved even if heat treatment is performed after the powder is manufactured.
  • the metal having a higher diffusion coefficient than nickel is preferably one selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe).
  • Cu copper
  • Mg magnesium
  • Al aluminum
  • Ti titanium
  • Fe iron
  • a metal having a higher diffusion coefficient than nickel is used as the base metal, and it is preferable to include the base metal in an amount of 50% by weight or more based on the total weight of the alloy.
  • the base metal is included in an amount of less than 50% by weight based on the total weight of the alloy, the flowability may not be improved through heat treatment.
  • Gas atomization in the method of the present invention may be performed under conditions of a melting point temperature of a raw material to a melting point temperature + 500 °C and a gas injection pressure of 10 to 100 bar.
  • gas atomization is performed under the above conditions, a large number of powders can be produced in a short time.
  • the surface roughness of the powder is greatly increased, and there is a problem in that the flowability of the powder is reduced.
  • the present invention improves the flowability of the powder by performing heat treatment on the powder thus prepared, as a result, there is an advantage that a powder having excellent flowability can be mass produced in a short time.
  • the method for improving the flowability of powder of the present invention includes performing heat treatment on the powder prepared through the above step at a temperature ranging from 20% to 70% based on the melting point of the raw material. If the temperature of the heat treatment is less than 20% based on the melting point of the raw material, there is a problem that the flowability of the powder is not sufficiently improved. There is a problem that the powder cannot be used in the field of application.
  • the heat treatment temperature is more preferably performed in a temperature range of 30% to 50% based on the melting point of the raw material in terms of preventing oxidation of the powder while improving the flowability.
  • the heat treatment is preferably carried out in one type of environment selected from the group consisting of argon, nitrogen, hydrogen, and nitrogen and hydrogen environment. If the heat treatment is performed in a different environment, there may be a problem in that the metal powder is oxidized.
  • the method for improving the flowability of the powder of the present invention is characterized in that the hall flow value of the powder produced therethrough is improved to 10 to 70 s/50g.
  • the method for producing a powder having improved flowability of the present invention includes a step of preparing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material.
  • the present invention targets the powder produced by the gas atomization method as described above, and particularly, the powder with low flowability produced by the gas atomization method.
  • the step of manufacturing the powder through gas atomization is performed by gas atomization using a metal having a larger diffusion coefficient than nickel (Ni) or an alloy using the same as a base metal as a raw material. characterized in that it is manufactured.
  • Ni nickel
  • the flowability of the powder is not improved even if heat treatment is performed after the powder is manufactured.
  • the metal having a higher diffusion coefficient than nickel is preferably one selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe).
  • Cu copper
  • Mg magnesium
  • Al aluminum
  • Ti titanium
  • Fe iron
  • a metal having a higher diffusion coefficient than nickel is used as the base metal, and it is preferable to include the base metal in an amount of 50% by weight or more based on the total weight of the alloy.
  • the base metal is included in an amount of less than 50% by weight based on the total weight of the alloy, the flowability may not be improved through heat treatment.
  • gas atomization may be performed under conditions of a melting point temperature to a melting point temperature of the raw material + 500 °C and a gas injection pressure of 10 to 100 bar.
  • gas atomization is performed under the above conditions, a large number of powders can be produced in a short time.
  • the surface roughness of the powder is greatly increased, and there is a problem in that the flowability of the powder is reduced.
  • the present invention improves the flowability of the powder by performing heat treatment on the powder thus prepared, as a result, there is an advantage that a powder having excellent flowability can be mass produced in a short time.
  • the method for producing powder with improved fluidity of the present invention includes performing heat treatment on the powder prepared through the above steps in a temperature range of 20% to 70% based on the melting point of the raw material. If the temperature of the heat treatment is less than 20% based on the melting point of the raw material, there is a problem that the flowability of the powder is not sufficiently improved. There is a problem that the powder cannot be used in the field of application.
  • the heat treatment temperature is more preferably performed in a temperature range of 30% to 50% based on the melting point of the raw material in terms of preventing oxidation of the powder while improving the flowability.
  • the heat treatment is preferably carried out in one type of environment selected from the group consisting of argon, nitrogen, hydrogen, and nitrogen and hydrogen environment. If the heat treatment is performed in a different environment, there may be a problem in that the metal powder is oxidized.
  • the method for producing a powder having improved flowability of the present invention is characterized in that the powder produced through this has a hall flow value of 10 to 70 s/50g.
  • the powder produced by the method of the present invention has a hole flow value within the above range, and thus, when the powder is applied to an application field such as 3D printing, there is an effect that the application field process can be smoothly performed. If the hole flow value exceeds 70 s/50g, for example, if the powder is applied to 3D printing, the powder may not be uniformly applied in the printing process, so that the density and mechanical properties of the molded body are deteriorated. can
  • the alloy used in the manufacturing method of the present invention preferably contains the base metal in an amount of 50% by weight or more based on the total weight of the alloy.
  • the flowability may not be improved through heat treatment.
  • the method for manufacturing powder with improved fluidity of the present invention is a method for manufacturing powder with improved fluidity while manufacturing powder through gas atomization. Since powder is manufactured through gas atomization, various metal or alloy powders are used While it can be mass-produced, there is an effect of improving the flowability of the manufactured powder.
  • the present invention provides a powder with improved flowability, which is manufactured by the above method and has a hall flow value of 10 to 70 s/50 g of the prepared powder.
  • the powder may not be uniformly applied in the printing process, so that the density and mechanical properties of the molded body are deteriorated.
  • the powder having improved fluidity may be one type of metal powder selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe).
  • the powder of the present invention is manufactured through the gas atomization method, it can be mass-produced in a short time and, unlike the plasma process, which can produce only limited metal powders such as titanium, various types of metal powders are produced. While it can be manufactured, there is an advantage that the flowability is improved, and it can be applied to a variety of applications.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1 below.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 200° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 300° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas spray pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 400° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 600° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 600° C. and a heat treatment atmosphere of N 2 for 1 hour.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 600° C. and a heat treatment atmosphere of H 2 for 1 hour.
  • a powder was prepared by the following method using a mold steel having the composition shown in Table 1.
  • the alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas spray pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at a temperature of 600° C. and an Ar heat treatment atmosphere for 1 hour.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Heat treatment temperature (°C) 200 300 400 600 600 600 heat treatment atmosphere N 2 +H 2 N 2 +H 2 N 2 +H 2 N 2 +H 2 N 2 +H 2 N 2 H 2 Ar
  • a powder was prepared by the following method using a commercial STS316L alloy.
  • a powder was prepared by the following method using a commercial STS316L alloy.
  • a powder was prepared by the following method using a commercial STS316L alloy.
  • a powder was prepared by the following method using a commercial STS316L alloy.
  • a powder was prepared by the following method using a commercial STS316L alloy.
  • Table 3 summarizes the heat treatment conditions of Examples 8 to 12.
  • Example 8 Example 9 Example 10 Example 11 Example 12 Heat treatment temperature (°C) 400 500 600 700 800 heat treatment atmosphere Ar Ar Ar Ar Ar
  • the raw material was heated to a temperature of 1650° C. using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
  • a powder was prepared by the following method.
  • the raw material was heated to a temperature of 1700° C. using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
  • a powder was prepared by the following method.
  • the raw material was heated to a temperature of 1650° C. using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
  • a powder was prepared by the following method using a raw material having an alloy composition of Ti-6Al-4V.
  • Example 13 Example 14
  • Example 15 Example 16 alloy composition Fe60Co15Ni15Cr10 Fe55Co18Cr12.5Ni7Mo7.5 Fe62Ni11Cr13Al14 Ti-6Al-4V
  • the alloy ingot of AlSi10Mg composition was heated to a temperature of 770 ° C using induction inside the gas atomizer, and the molten metal was finely crushed with argon gas while spraying it through the gas atomizer at a gas spray pressure of 70 bar to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated at 200° C. and under argon atmosphere for 1 hour.
  • a powder was prepared by the following method using the ingot of the composition shown in Table 5 below.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. Heat treatment was not performed on the obtained powder.
  • the IN718 nickel-based alloy ingot was heated to a temperature of 1580 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder.
  • the cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
  • the obtained powder was heat-treated in an argon atmosphere at 600 °C (Comparative Example 8), 800 °C (Comparative Example 9), and 1000 °C (Comparative Example 10) for 1 hour. Comparative Example 11 was obtained in which no heat treatment was performed on the obtained powder.
  • Fluidity analysis of the powder was performed according to ASTM B 213.
  • Example Fluidity (s/50g) One 23.3 2 14.41 3 14.65 4 15.76 5 15.08 6 14.89 7 14.48 8 16.16 9 15.69 10 15.68 11 15.08 12 16.64 13 13.96 14 13.90 15 17.01 16 25.09 17 68.81 comparative example One not measurable 2 not measurable 3 not measurable 4 not measurable 5 not measurable 6 not measurable 7 not measurable 8 not measurable 9 not measurable 10 not measurable 11 not measurable
  • Metals or alloys with a higher diffusion coefficient than nickel have improved fluidity through the heat treatment process.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The purpose of the present invention is to provide: a method for improving the flowability of a powder, in particular a metal or alloy powder produced through gas atomization; a method for producing a powder having improved flowability; and a powder having improved flowability produced thereby. To this end, the present invention provides a method for improving the flowability of a powder, the method comprising the steps of: preparing a powder by gas atomization using, as a raw material, a metal having a diffusion coefficient greater than that of nickel (Ni), or an alloy based on said metal; and heat-treating the prepared powder in a temperature range of 20-70% of the melting point of the raw material. According to the present invention, there are advantages in that a powder can be produced in large quantities through gas atomization, and powders of various metals can be produced. In addition, there is an effect that the produced powder has improved flowability despite being produced through gas atomization, and thus can be applied to various applications such as 3D printing.

Description

분말의 유동도 향상방법 및 유동도가 향상된 분말의 제조방법Method for improving the flowability of powder and manufacturing method for powder with improved flowability
본 발명은 분말의 유동도 향상방법, 유동도가 향상된 분말의 제조방법 및 이에 의하여 제조되는 유동도가 향상된 분말에 관한 것이다.The present invention relates to a method for improving the fluidity of a powder, a method for manufacturing a powder having improved fluidity, and a powder with improved fluidity produced thereby.
금속분말은 급속 응고로 인해 편석이 없고, 결정립이 미세하며, 가공방법에 따라 기공률을 제어하는 것이 가능하므로, 우수한 기계적 특성 및 내마모성을 갖는 구조용 부품뿐만 아니라 다공성 기능부품을 제조할 수 있어 금속분말 부품의 적용 분야가 꾸준히 증가하고 있다.Metal powder has no segregation due to rapid solidification, fine grains, and controllable porosity according to processing methods. The field of application is steadily increasing.
이와 같은 금속분말의 제조와 관련하여 대한민국 등록특허공보 등록번호 제10-0800505호 "금속분말 제조장치"는 하부에 용융금속을 배출하기 위한 오리피스가 형성된 금속 용해조; 진동발생기구로부터 발생한 진동을 용해조 내부의 용융금속에 전달하여 용융금속을 미세화하기 위한 진동 전달로드; 용해조로부터 배출되는 용융금속의 액적을 더욱 미세화하기 위하여 공급 튜브를 통해 용융금속 액적에 분출되는 고압 가스를 수용한 고압가스저장조; 및 고압가스에 의하여 미세화되어 배출되는 용융 금속 액적을 수용하여 냉각하는 금속분말 분무탱크를 구비하여, 평균 입경이 20㎛ 이하인 미세한 구상금속분말의 제조를 안정적으로 저가로 수행할 수 있으며, MIM용 금속분말 및 전자제품용 금속분말 등의 실용화를 위한 기술을 제안하고 있다.In relation to the production of such metal powder, Republic of Korea Patent Registration No. 10-0800505 "Metal powder manufacturing apparatus" is a metal melting tank formed with an orifice for discharging molten metal at the bottom; a vibration transmission rod for refining the molten metal by transmitting the vibration generated from the vibration generating mechanism to the molten metal inside the melting tank; a high-pressure gas storage tank accommodating the high-pressure gas ejected into the molten metal droplets through a supply tube in order to further refine the molten metal droplets discharged from the melting tank; and a metal powder spray tank that receives and cools the molten metal droplets that are refined and discharged by the high-pressure gas, so that the production of fine spherical metal powder having an average particle diameter of 20 μm or less can be stably and inexpensively performed, and MIM metal We are proposing technologies for practical use of powders and metal powders for electronic products.
등록번호 제10-1096734호 "구형의 합금분말 및 그 제조방법"은 급속응고법(RSP)중의 하나인 종래의 가스 분무법(gas atomization process)의 경우에 목적 조성의 합금원료를 도가니에 용융하여 챔버내에 환상의 분사 노즐로 고압가스를 분사 및 냉각시켜 미세분말을 제조하는 것과는 달리, 상기한 환상의 분사 노즐에 의해 분사된 반액상의 미립자를 재차 고속으로 회전하는 수냉된 원통형 냉각 롤러의 내측에 부딪혀 2차적으로 냉각시켜 합금분말을 회수하여 용융합금의 냉각효과를 더욱 높게 하여 미세편석을 줄여 보다 균질한 미세조직을 얻을 수 있을 뿐만 아니라, 0.1∼2,000㎛ 크기의 구형의 합금분말을 제공하기 위한 기술을 제안하고 있다.Registration No. 10-1096734, "Spherical alloy powder and its manufacturing method" is one of rapid solidification (RSP), in the case of the conventional gas atomization process, by melting the alloy raw material of the target composition into a crucible and then in the chamber. Unlike producing fine powder by spraying and cooling high-pressure gas with an annular spray nozzle, the semi-liquid particles sprayed by the annular spray nozzle collide with the inside of the water-cooled cylindrical cooling roller rotating at high speed again to form secondary It is possible to obtain a more homogeneous microstructure by reducing micro-segregation by increasing the cooling effect of the molten alloy by recovering the alloy powder by cooling with are doing
공개특허공보 공개번호 특2001-0011544호 "초음파를 이용한 크림솔더용 분말과 같은 미립자분말의 제조방법과 그 장치"는 액적낙하장치로부터 용융상태의 액적을 초음파속으로 낙하시킴으로써 용융상태의 물질을 작은 액적들로 분무시키고, 그 분무된 작은 액적들을 냉각시켜 응고시키되, 초음파의 진동수를 가변시킴으로써 분말 입도 크기를 조절할 수 있으며, 용융상태의 물질이 37Pb-63Sn 공정조성을 가지는 경우, 연속공급이 가능하고 일정한 유량을 초음파 혼 위에서 분무시켜 크림솔더용 분말을 제조하며, 분무단계가 불활성가스분위기에서 20∼44kHz 범위로 진동하는 초음파 혼 위에 적하시킴으로써 양질의 크림솔더용 분말을 대량으로 연속하여 제조할 수 있도록 하기 위한 기술을 제안하고 있다.Korean Patent Laid-Open Publication No. 2001-0011544 "Method for producing particulate powder such as powder for cream solder using ultrasonic waves and device therefor" is a method for reducing molten substances into small It is sprayed with droplets, and the sprayed small droplets are cooled to solidify, but the powder particle size can be adjusted by varying the frequency of ultrasonic waves. The flow rate is sprayed on the ultrasonic horn to produce powder for cream solder, and the spraying step is dropped onto the ultrasonic horn vibrating in the range of 20 to 44 kHz in an inert gas atmosphere, so that good quality cream solder powder can be continuously manufactured in large quantities. technology is proposed for
한편, 공개특허공보 공개번호 제10-2007-0105256호 "금속 분말 제조 장치, 금속 분말 및 성형체"는 용융 금속을 공급하는 공급부(턴디쉬)와, 공급부의 하방에 마련된 액체 분출부와, 액체 분출부의 하방에 마련된 노즐 및 통 형상체를 갖고, 노즐은 액체 제트(제 2 액체)를 분사하는 오리피스를 갖고 있고, 이 액체 제트에 분산액이 충돌하면, 분산액의 진행 방향은 강제적으로 변화되도록 하는 기술을 제안하고 있다.On the other hand, Laid-Open Patent Publication No. 10-2007-0105256 "Metal powder manufacturing apparatus, metal powder and compact" is a supply unit (tundish) for supplying molten metal, a liquid ejection unit provided below the supply unit, and liquid ejection It has a nozzle and a cylindrical body provided below the part, the nozzle has an orifice for jetting a liquid jet (second liquid), and when the dispersion liquid collides with this liquid jet, the propagation direction of the dispersion liquid is forcibly changed. is proposing
이와 같이 일반적으로 금속 분말 제조의 대량 생산은 아토마이저 장치를 이용하며, 가스 아토마이저(gas atomizer) 방식과 수분사 아토마이저(water atomizer) 방식으로 나뉜다.In general, mass production of metal powder manufacturing uses an atomizer device, and is divided into a gas atomizer method and a water atomizer method.
이때, 수분사 아토마이저 장치는 순수 물만을 분사하거나, 물과 가스를 혼합하여 분사하는 방식으로 구분할 수 있다. 수분사 아토마이저 방식은 가스 아토마이저 방식과 비교하여 작동 방식 및 액적의 분쇄(break-up) 이론 모델이 유사하지만, 액적을 분쇄하기 위한 운동에너지 전달을 가스인 기체 대신에 물의 액체를 사용하는 차이점이 있다.In this case, the water spray atomizer device may be divided into a method of spraying only pure water or a mixture of water and gas. The water atomizer method is similar to the gas atomizer method in its operation method and the break-up theoretical model of droplets, but the difference is that the liquid of water is used instead of the gas which is a gas for the transfer of kinetic energy to break the droplets. There is this.
따라서, 수분사 아토마이저 장치는 가스 대신 밀도가 큰 물을 분사하기 때문에, 상대적으로 큰 운동에너지를 발생하여 1㎛ 크기의 금속 분말까지 생성할 수 있는 장점을 갖지만, 비활성 기체 대신 물을 사용하면서 생성물인금속 분말의 산화(Oxidization)와 후처리 문제의 한계점을 가지고 있다.Therefore, since the water atomizer device injects high-density water instead of gas, it has the advantage of generating relatively large kinetic energy and producing up to 1 μm-sized metal powder, but using water instead of inert gas It has limitations in oxidation of phosphorus metal powder and post-processing problems.
그러나 이상의 가스 아토마이저를 이용하여 제조되는 금속 분말의 경우, 표면이 거칠기 때문에 분말의 유동도가 크게 떨어지고, 이에 따라, 제조된 분말을 예를 들어 3D 프린팅 공정의 원료로 사용하는 경우, 프린팅 공정에 원활하게 진행되지 않게 되는 문제점이 있다.However, in the case of metal powder manufactured using the above gas atomizer, the flowability of the powder is greatly reduced because the surface is rough. There is a problem that it does not proceed smoothly.
한편, 플라즈마 공정을 통하여 분말을 제조하는 경우, 분말의 유동도가 우수하여 응용분야에 적용하는데 문제가 없으나, 공정의 특성상 제조시간이 많이 소요되는 문제점이 있고, 또한 티타늄 분말을 제외한 다른 금속 분말은 제조하기 어려워, 다양한 금속 분말을 필요로하는 응용분야에 대한 적합성이 떨어지는 문제점이 있다.On the other hand, when the powder is manufactured through the plasma process, there is no problem in applying it to the application field due to the excellent fluidity of the powder, but there is a problem that it takes a lot of manufacturing time due to the nature of the process. It is difficult to manufacture, and there is a problem in that it is not suitable for applications requiring various metal powders.
이에 본 발명의 발명자들은 가스아토마이저를 이용하여 분말을 제조하여 다양한 종류의 금속분말을 대량생산할 수 있되, 제조되는 분말의 유동도를 개선시키는 연구를 수행하여 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention can mass-produce various kinds of metal powders by manufacturing powders using a gas atomizer, and completed the present invention by conducting research on improving the flowability of the powders to be manufactured.
본 발명의 목적은 분말, 특히 가스 아토마이제이션으로 제조되는 금속 또는 합금 분말의 유동도를 향상시키는 방법, 유동도가 향상된 분말의 제조방법 및 이에 의하여 제조되는 유동도가 향상된 분말을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for improving the flowability of a powder, particularly a metal or alloy powder produced by gas atomization, a method for producing a powder having improved flowability, and a powder with improved flowability produced thereby.
이를 위하여 본 발명은To this end, the present invention
니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계; 및manufacturing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material; and
상기 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계;performing heat treatment on the prepared powder in a temperature range of 20% to 70% based on the melting point of the raw material;
를 포함하는 분말의 유동도 향상방법을 제공한다.It provides a method of improving the flowability of a powder comprising a.
또한, 본 발명은Also, the present invention
니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계; 및manufacturing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material; and
상기 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계;performing heat treatment on the prepared powder in a temperature range of 20% to 70% based on the melting point of the raw material;
를 포함하는 유동도가 향상된 분말의 제조방법을 제공한다.It provides a method for producing a powder with improved fluidity comprising a.
나아가, 본 발명은Furthermore, the present invention
상기의 방법으로 제조되고, 제조된 분말의 홀 플로우(hall flow) 값이 10 내지 70 s/50g인 것을 특징으로 하는 유동도가 향상된 분말을 제공한다.It provides a powder with improved flowability, which is prepared by the above method and has a hall flow value of 10 to 70 s/50 g of the prepared powder.
본 발명에 따르면, 가스 아토마이제이션을 통하여 분말을 제조하여 분말을 대량으로 생산할 수 있고, 또한 다양한 금속의 분말을 제조할 수 있다는 장점이 있고, 또한, 가스 아토마이제이션을 통하여 제조함에도 불구하고, 제조된 분말의 유동도가 개선되어, 이를 3D 프린팅 등 다양한 응용분야에 적용할 수 있는 효과가 있다.According to the present invention, the powder can be produced in large quantities by manufacturing the powder through gas atomization, and there is an advantage that powders of various metals can be manufactured. In addition, despite the production through gas atomization, The flowability of the manufactured powder is improved, and there is an effect that it can be applied to various applications such as 3D printing.
도 1은 본 발명에서 분말의 유동도를 측정하는 장치의 모식도 및 사진이고,1 is a schematic diagram and a photograph of an apparatus for measuring the flow of powder in the present invention,
도 2는 금형강 분말에 대한 열처리 온도에 따른 유동도 차이를 보여주는 그래프이고,2 is a graph showing the difference in fluidity according to the heat treatment temperature for the mold steel powder,
도 3은 금형강 분말에 대한 열처리 분위기에 따른 유동도 차이를 보여주는 그래프이고,3 is a graph showing the difference in fluidity according to the heat treatment atmosphere for the mold steel powder,
도 4는 SUS316L 합금 분말에 대한 열처리 온도에 따른 유동도 차이를 보여주는 그래프이고, 및4 is a graph showing the difference in flowability according to heat treatment temperature for SUS316L alloy powder, and
도 5는 IN718 합금 분말에 대하여 열처리를 수행하는 경우 유동도가 개선되는지를 보여주는 그래프이다.5 is a graph showing whether the flowability is improved when heat treatment is performed on IN718 alloy powder.
본 발명에서 '기본금속'이란 합금에서 가장 많은 중량%를 차지하는 금속을 의미한다.In the present invention, the term 'base metal' refers to a metal that occupies the largest percentage by weight in an alloy.
본 발명은 the present invention
니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계; 및manufacturing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material; and
상기 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계;performing heat treatment on the prepared powder in a temperature range of 20% to 70% based on the melting point of the raw material;
를 포함하는 분말의 유동도 향상방법을 제공한다.It provides a method of improving the flowability of a powder comprising a.
이하 본 발명의 유동도 향상방법을 각 단계별로 상세히 설명한다.Hereinafter, the flow improvement method of the present invention will be described in detail for each step.
본 발명의 분말의 유동도 향상방법은 니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계를 포함한다.The method for improving the flowability of powder of the present invention includes preparing a powder by gas atomization using a metal having a higher diffusion coefficient than nickel (Ni) or an alloy using the same as a base metal as a raw material.
일반적으로 가스 아토마이제이션 방법으로 금속 또는 합금 분말을 제조하는 경우, 예를 들어 플라즈마 처리를 통하여 제조하는 경우와 비교하여 분말을 대량으로 생산할 수 있다는 장점과, 다양한 금속의 분말을 제조할 수 있다는 장점이 있으나, 제조되는 분말의 유동도가 떨어져서, 3D 프린팅 등의 응용분야에 적용하는데 문제가 발생하게 된다. 본 발명은 이와 같이 가스 아토마이제이션 방법으로 제조되는 분말을 대상으로 하며, 특히, 가스 아토마이제이션 방법으로 제조되는 유동도가 떨어지는 분말을 대상으로 한다.In general, when a metal or alloy powder is manufactured by a gas atomization method, for example, the advantage of being able to produce a large amount of powder compared to the case of manufacturing through plasma treatment, and the advantage of being able to manufacture powder of various metals However, the flowability of the powder to be manufactured is low, which causes a problem in application to applications such as 3D printing. The present invention targets the powder produced by the gas atomization method as described above, and particularly, the powder with low flowability produced by the gas atomization method.
한편, 본 발명의 유동도 향상방법에서 가스 아토마이제이션을 통하여 분말을 제조하는 단계는 니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 것을 특징으로 한다. 니켈 또는 이보다 확산계수값이 낮은 금속이나 이를 포함하는 합금의 경우, 분말을 제조한 이후에 열처리를 수행하여도 분말의 유동도가 개선되지 않는다.On the other hand, in the method for improving the flowability of the present invention, the step of producing a powder through gas atomization is performed by gas atomization using a metal having a higher diffusion coefficient than nickel (Ni) or an alloy using the same as a base metal as a raw material. characterized in that it is manufactured. In the case of nickel or a metal having a lower diffusion coefficient than this or an alloy containing the same, the flowability of the powder is not improved even if heat treatment is performed after the powder is manufactured.
구체적으로 니켈보다 확산계수값이 큰 금속으로는 구리(Cu), 마그네슘(Mg), 알루미늄(Al), 티타늄(Ti), 및 철(Fe)로 이루어진 군으로부터 선택되는 1종인 것이 바람직하다. 상기 금속들 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조한 후, 열처리를 수행하는 경우 유동도가 개선되는 효과가 있다.Specifically, the metal having a higher diffusion coefficient than nickel is preferably one selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe). When a powder is prepared by gas atomization using the above metals or an alloy having the same as a base metal as a raw material, and then heat treatment is performed, flowability is improved.
본 발명의 방법에서 가스 아토마이제이션의 원료가 되는 합금의 경우, 니켈보다 확산계수값이 큰 금속을 기본금속으로 하되, 총 합금 중량 대비 50 중량% 이상 상기 기본금속을 포함하는 것이 바람직하다. 니켈보다 확산계수값이 큰 금속을 총 합금 중량대비 50 중량% 미만으로 포함하는 경우, 열처리를 통하여 유동도가 개선되지 않을 수 있다.In the case of an alloy as a raw material for gas atomization in the method of the present invention, a metal having a higher diffusion coefficient than nickel is used as the base metal, and it is preferable to include the base metal in an amount of 50% by weight or more based on the total weight of the alloy. When a metal having a higher diffusion coefficient than nickel is included in an amount of less than 50% by weight based on the total weight of the alloy, the flowability may not be improved through heat treatment.
본 발명의 방법에서 가스 아토마이제이션은 원료의 녹는점 온도 내지 녹는점 온도+ 500 ℃의 온도범위 및 10 내지 100 bar의 가스분사압력의 조건에서 수행될 수 있다. 상기 조건에서 가스 아토마이제이션이 수행되는 경우 짧은 시간에 많은 분말을 제조할 수 있으나, 이와 같이 제조하는 경우 분말의 표면 거칠기가 크게 증가하여, 분말의 유동도가 저하되는 문제점이 있다. 그러나, 본 발명은 이와 같이 제조된 분말에 대하여 열처리를 수행함으로써 분말의 유동도를 개선시키기 때문에, 결과적으로 짧은 시간에 유동도가 우수한 분말을 대량으로 생산할 수 있는 장점이 있다.Gas atomization in the method of the present invention may be performed under conditions of a melting point temperature of a raw material to a melting point temperature + 500 °C and a gas injection pressure of 10 to 100 bar. When gas atomization is performed under the above conditions, a large number of powders can be produced in a short time. However, in the case of such preparation, the surface roughness of the powder is greatly increased, and there is a problem in that the flowability of the powder is reduced. However, since the present invention improves the flowability of the powder by performing heat treatment on the powder thus prepared, as a result, there is an advantage that a powder having excellent flowability can be mass produced in a short time.
본 발명의 분말의 유동도 향상방법은 상기 단계를 통하여 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계를 포함한다. 열처리의 온도가 원료의 녹는점 기준 20 % 미만인 경우에는 분말의 유동도가 충분히 향상되지 않는 문제점이 있고, 그 온도가 녹는점 기준 70 %를 초과하는 경우, 열처리 과정에서 분말이 산화되어, 열처리된 분말을 응용분야에 사용할 수 없는 문제점이 있다. 또한, 상기 열처리 온도는 원료의 녹는점 기준 30 % 내지 50 %의 온도범위에서 수행하는 것이 유동도를 개선하면서도 분말의 산화를 방지한다는 차원에서 더 바람직하다.The method for improving the flowability of powder of the present invention includes performing heat treatment on the powder prepared through the above step at a temperature ranging from 20% to 70% based on the melting point of the raw material. If the temperature of the heat treatment is less than 20% based on the melting point of the raw material, there is a problem that the flowability of the powder is not sufficiently improved. There is a problem that the powder cannot be used in the field of application. In addition, the heat treatment temperature is more preferably performed in a temperature range of 30% to 50% based on the melting point of the raw material in terms of preventing oxidation of the powder while improving the flowability.
또한, 상기 열처리는 아르곤, 질소, 수소, 및 질소와 수소 환경으로 이루어진 군으로부터 선택되는 1종의 환경에서 수행되는 것이 바람직하다. 이와 다른 환경에서 열처리가 수행되는 경우 금속 분말이 산화되는 문제가 발생할 수 있다.In addition, the heat treatment is preferably carried out in one type of environment selected from the group consisting of argon, nitrogen, hydrogen, and nitrogen and hydrogen environment. If the heat treatment is performed in a different environment, there may be a problem in that the metal powder is oxidized.
본 발명의 분말의 유동도 향상방법은 이를 통하여 제조되는 분말의 홀 플로우(hall flow) 값을 10 내지 70 s/50g으로 향상시키는 것을 특징으로 한다. 본 발명의 방법으로 분말의 홀 플로우 값을 상기 범위와 같이 향상시킴으로써, 해당 분말을 3D 프린팅 등의 응용분야에 적용하는 경우, 응용분야의 공정이 원활히 수행될 수 있는 효과가 있다. 만약 홀 플로우값이 70 s/50g을 초과하는 경우에는 예를 들어 그 분말을 3D 프린팅에 적용하는 경우, 프린팅 공정에서 분말이 균일하게 도포 되지 못하여 조형체의 밀도 및 기계적 특성이 저하되는 문제가 발생할 수 있다.The method for improving the flowability of the powder of the present invention is characterized in that the hall flow value of the powder produced therethrough is improved to 10 to 70 s/50g. By improving the hole flow value of the powder as in the above range by the method of the present invention, when the powder is applied to an application field such as 3D printing, there is an effect that the process of the application field can be smoothly performed. If the hole flow value exceeds 70 s/50g, for example, if the powder is applied to 3D printing, the powder may not be uniformly applied in the printing process, so that the density and mechanical properties of the molded body are deteriorated. can
본 발명의 분말의 유동도 향상방법은 가스 아토마이제이션을 통하여 제조되어 유동도가 떨어지는 분말의 유동도를 향상시키는 방법으로, 가스 아토마이제이션을 통하여 분말을 제조하기 때문에 다양한 금속 또는 합금 분말을 대량으로 생산할 수 있으면서도, 제조된 분말의 유동도를 향상시킬 수 있는 효과가 있다.The flowability improvement method of the powder of the present invention is a method of improving the flowability of powders with low fluidity produced through gas atomization. While it can be produced as a powder, there is an effect of improving the flowability of the prepared powder.
또한 본 발명은Also, the present invention
니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계; 및manufacturing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material; and
상기 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계;performing heat treatment on the prepared powder in a temperature range of 20% to 70% based on the melting point of the raw material;
를 포함하는 유동도가 향상된 분말의 제조방법을 제공한다.It provides a method for producing a powder with improved fluidity comprising a.
이하 본 발명의 제조방법을 각 단계별로 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in detail for each step.
본 발명의 유동도가 향상된 분말의 제조방법은 니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계를 포함한다.The method for producing a powder having improved flowability of the present invention includes a step of preparing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material.
일반적으로 가스 아토마이제이션 방법으로 금속 또는 합금 분말을 제조하는 경우, 예를 들어 플라즈마 처리를 통하여 제조하는 경우와 비교하여 분말을 대량으로 생산할 수 있다는 장점과, 다양한 금속의 분말을 제조할 수 있다는 장점이 있으나, 제조되는 분말의 유동도가 떨어져서, 3D 프린팅 등의 응용분야에 적용하는데 문제가 발생하게 된다. 본 발명은 이와 같이 가스 아토마이제이션 방법으로 제조되는 분말을 대상으로 하며, 특히, 가스 아토마이제이션 방법으로 제조되는 유동도가 떨어지는 분말을 대상으로 한다.In general, when a metal or alloy powder is manufactured by a gas atomization method, for example, the advantage of being able to produce a large amount of powder compared to the case of manufacturing through plasma treatment, and the advantage of being able to manufacture powder of various metals However, the flowability of the powder to be manufactured is low, which causes a problem in application to applications such as 3D printing. The present invention targets the powder produced by the gas atomization method as described above, and particularly, the powder with low flowability produced by the gas atomization method.
한편, 본 발명의 분말의 제조방법에서 가스 아토마이제이션을 통하여 분말을 제조하는 단계는 니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 것을 특징으로 한다. 니켈 또는 이보다 확산계수값이 낮은 금속이나 이를 포함하는 합금의 경우, 분말을 제조한 이후에 열처리를 수행하여도 분말의 유동도가 개선되지 않는다.On the other hand, in the powder manufacturing method of the present invention, the step of manufacturing the powder through gas atomization is performed by gas atomization using a metal having a larger diffusion coefficient than nickel (Ni) or an alloy using the same as a base metal as a raw material. characterized in that it is manufactured. In the case of nickel or a metal having a lower diffusion coefficient than this or an alloy containing the same, the flowability of the powder is not improved even if heat treatment is performed after the powder is manufactured.
구체적으로 니켈보다 확산계수값이 큰 금속으로는 구리(Cu), 마그네슘(Mg), 알루미늄(Al), 티타늄(Ti), 및 철(Fe)로 이루어진 군으로부터 선택되는 1종인 것이 바람직하다. 상기 금속들 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조한 후, 열처리를 수행하는 경우 유동도가 개선된 분말을 제조할 수 있는 효과가 있다.Specifically, the metal having a higher diffusion coefficient than nickel is preferably one selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe). When the powder is manufactured by gas atomization using the above metals or an alloy having the same as a base metal as a raw material, and then heat treatment is performed, there is an effect that a powder having improved fluidity can be manufactured.
본 발명의 방법에서 가스 아토마이제이션의 원료가 되는 합금의 경우, 니켈보다 확산계수값이 큰 금속을 기본금속으로 하되, 총 합금 중량 대비 50 중량% 이상 상기 기본금속을 포함하는 것이 바람직하다. 니켈보다 확산계수값이 큰 금속을 총 합금 중량대비 50 중량% 미만으로 포함하는 경우, 열처리를 통하여 유동도가 개선되지 않을 수 있다.In the case of an alloy as a raw material for gas atomization in the method of the present invention, a metal having a higher diffusion coefficient than nickel is used as the base metal, and it is preferable to include the base metal in an amount of 50% by weight or more based on the total weight of the alloy. When a metal having a higher diffusion coefficient than nickel is included in an amount of less than 50% by weight based on the total weight of the alloy, the flowability may not be improved through heat treatment.
본 발명의 방법에서 가스 아토마이제이션은 원료의 녹는점 온도 내지 녹는점 온도+500 ℃의 온도범위 및 10 내지 100 bar의 가스분사압력의 조건에서 수행될 수 있다. 상기 조건에서 가스 아토마이제이션이 수행되는 경우 짧은 시간에 많은 분말을 제조할 수 있으나, 이와 같이 제조하는 경우 분말의 표면 거칠기가 크게 증가하여, 분말의 유동도가 저하되는 문제점이 있다. 그러나, 본 발명은 이와 같이 제조된 분말에 대하여 열처리를 수행함으로써 분말의 유동도를 개선시키기 때문에, 결과적으로 짧은 시간에 유동도가 우수한 분말을 대량으로 생산할 수 있는 장점이 있다.In the method of the present invention, gas atomization may be performed under conditions of a melting point temperature to a melting point temperature of the raw material + 500 °C and a gas injection pressure of 10 to 100 bar. When gas atomization is performed under the above conditions, a large number of powders can be produced in a short time. However, in the case of such preparation, the surface roughness of the powder is greatly increased, and there is a problem in that the flowability of the powder is reduced. However, since the present invention improves the flowability of the powder by performing heat treatment on the powder thus prepared, as a result, there is an advantage that a powder having excellent flowability can be mass produced in a short time.
본 발명의 유동도가 향상된 분말의 제조방법은 상기 단계를 통하여 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계를 포함한다. 열처리의 온도가 원료의 녹는점 기준 20 % 미만인 경우에는 분말의 유동도가 충분히 향상되지 않는 문제점이 있고, 그 온도가 녹는점 기준 70 %를 초과하는 경우, 열처리 과정에서 분말이 산화되어, 열처리된 분말을 응용분야에 사용할 수 없는 문제점이 있다. 또한, 상기 열처리 온도는 원료의 녹는점 기준 30 % 내지 50 %의 온도범위에서 수행하는 것이 유동도를 개선하면서도 분말의 산화를 방지한다는 차원에서 더 바람직하다.The method for producing powder with improved fluidity of the present invention includes performing heat treatment on the powder prepared through the above steps in a temperature range of 20% to 70% based on the melting point of the raw material. If the temperature of the heat treatment is less than 20% based on the melting point of the raw material, there is a problem that the flowability of the powder is not sufficiently improved. There is a problem that the powder cannot be used in the field of application. In addition, the heat treatment temperature is more preferably performed in a temperature range of 30% to 50% based on the melting point of the raw material in terms of preventing oxidation of the powder while improving the flowability.
또한, 상기 열처리는 아르곤, 질소, 수소, 및 질소와 수소 환경으로 이루어진 군으로부터 선택되는 1종의 환경에서 수행되는 것이 바람직하다. 이와 다른 환경에서 열처리가 수행되는 경우 금속 분말이 산화되는 문제가 발생할 수 있다.In addition, the heat treatment is preferably carried out in one type of environment selected from the group consisting of argon, nitrogen, hydrogen, and nitrogen and hydrogen environment. If the heat treatment is performed in a different environment, there may be a problem in that the metal powder is oxidized.
본 발명의 유동도가 향상된 분말의 제조방법은 이를 통하여 제조되는 분말의 홀 플로우(hall flow) 값이 10 내지 70 s/50g인 것을 특징으로 한다. 본 발명의 방법으로 제조된 분말은 상기 범위의 홀 플로우 값을 가짐으로써, 해당 분말을 3D 프린팅 등의 응용분야에 적용하는 경우, 응용분야의 공정이 원활히 수행될 수 있는 효과가 있다. 만약 홀 플로우값이 70 s/50g을 초과하는 경우에는 예를 들어 그 분말을 3D 프린팅에 적용하는 경우, 프린팅 공정에서 분말이 균일하게 도포 되지 못하여 조형체의 밀도 및 기계적 특성이 저하되는 문제가 발생할 수 있다.The method for producing a powder having improved flowability of the present invention is characterized in that the powder produced through this has a hall flow value of 10 to 70 s/50g. The powder produced by the method of the present invention has a hole flow value within the above range, and thus, when the powder is applied to an application field such as 3D printing, there is an effect that the application field process can be smoothly performed. If the hole flow value exceeds 70 s/50g, for example, if the powder is applied to 3D printing, the powder may not be uniformly applied in the printing process, so that the density and mechanical properties of the molded body are deteriorated. can
본 발명의 제조방법에서 사용되는 합금은 총 합금 중량 대비 50 중량% 이상 상기 기본금속을 포함하는 것이 바람직하다. 니켈보다 확산계수값이 큰 금속을 총 합금 중량대비 50 중량% 미만으로 포함하는 경우, 열처리를 통하여 유동도가 개선되지 않을 수 있다.The alloy used in the manufacturing method of the present invention preferably contains the base metal in an amount of 50% by weight or more based on the total weight of the alloy. When a metal having a higher diffusion coefficient than nickel is included in an amount of less than 50% by weight based on the total weight of the alloy, the flowability may not be improved through heat treatment.
본 발명의 유동도가 향상된 분말의 제조방법은 가스 아토마이제이션을 통하여 분말을 제조하면서도 유동도가 향상된 분말을 제조하는 방법으로, 가스 아토마이제이션을 통하여 분말을 제조하기 때문에 다양한 금속 또는 합금 분말을 대량으로 생산할 수 있으면서도, 제조된 분말의 유동도를 향상시킬 수 있는 효과가 있다.The method for manufacturing powder with improved fluidity of the present invention is a method for manufacturing powder with improved fluidity while manufacturing powder through gas atomization. Since powder is manufactured through gas atomization, various metal or alloy powders are used While it can be mass-produced, there is an effect of improving the flowability of the manufactured powder.
나아가 본 발명은 상기의 방법으로 제조되고, 제조된 분말의 홀 플로우(hall flow) 값이 10 내지 70 s/50g 인 것을 특징으로 하는 유동도가 향상된 분말을 제공한다.Further, the present invention provides a powder with improved flowability, which is manufactured by the above method and has a hall flow value of 10 to 70 s/50 g of the prepared powder.
만약 홀 플로우값이 70 s/50g을 초과하는 경우에는 예를 들어 그 분말을 3D 프린팅에 적용하는 경우, 프린팅 공정에서 분말이 균일하게 도포 되지 못하여 조형체의 밀도 및 기계적 특성이 저하되는 문제가 발생할 수 있다.If the hole flow value exceeds 70 s/50g, for example, if the powder is applied to 3D printing, the powder may not be uniformly applied in the printing process, so that the density and mechanical properties of the molded body are deteriorated. can
이때, 상기 유동도가 향상된 분말은 구리(Cu), 마그네슘(Mg), 알루미늄(Al), 티타늄(Ti), 및 철(Fe)로 이루어진 군으로부터 선택되는 1종의 금속 분말일 수 있다.In this case, the powder having improved fluidity may be one type of metal powder selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe).
본 발명의 분말은 가스 아토마이제이션 방법을 통하여 제조되기 때문에, 짧은 시간에 대량으로 생산될 수 있고, 또한 티타늄 등과 같이 제한된 금속 분말만을 제조할 수 있는 플라즈마 공정과는 달리, 다양한 종류의 금속 분말이 제조될 수 이는 장점이 있으면서도, 유동도가 개선되어, 다양한 응용분야에 적용할 수 있는 장점이 있다.Since the powder of the present invention is manufactured through the gas atomization method, it can be mass-produced in a short time and, unlike the plasma process, which can produce only limited metal powders such as titanium, various types of metal powders are produced. While it can be manufactured, there is an advantage that the flowability is improved, and it can be applied to a variety of applications.
이하, 본 발명을 실시예, 비교예 및 실험예를 통하여 보다 구체적으로 설명한다. 그러나, 이하의 실시예, 비교예 및 실험예는 본 발명의 내용을 예시적이고 구체적으로 설명하고자 하는 것일 뿐, 이하의 내용에 의하여 본 발명의 권리범위가 한정 해석되는 것을 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples, Comparative Examples and Experimental Examples. However, the following Examples, Comparative Examples, and Experimental Examples are only intended to illustrate and specifically describe the contents of the present invention, and are not intended to limit and interpret the scope of the present invention by the following contents.
<실시예 1><Example 1>
금형강을 이용한 분말의 제조Production of powder using mold steel
다음 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1 below.
CC CrCr MoMo VV NbNb FeFe
0.90.9 5.35.3 2.82.8 0.40.4 1.21.2 Bal.Bal.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 200 ℃의 온도 및 N 2+H 2 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 200° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
<실시예 2><Example 2>
금형강을 이용한 분말의 제조Production of powder using mold steel
상기 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 300 ℃의 온도 및 N 2+H 2 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 300° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
<실시예 3><Example 3>
금형강을 이용한 분말의 제조Production of powder using mold steel
상기 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas spray pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 400 ℃의 온도 및 N 2+H 2 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 400° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
<실시예 4><Example 4>
금형강을 이용한 분말의 제조Production of powder using mold steel
상기 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 600 ℃의 온도 및 N 2+H 2 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 600° C. and a heat treatment atmosphere of N 2 +H 2 for 1 hour.
<실시예 5><Example 5>
금형강을 이용한 분말의 제조Production of powder using mold steel
상기 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 600 ℃의 온도 및 N 2 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 600° C. and a heat treatment atmosphere of N 2 for 1 hour.
<실시예 6><Example 6>
금형강을 이용한 분말의 제조Production of powder using mold steel
상기 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 600 ℃의 온도 및 H 2 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 600° C. and a heat treatment atmosphere of H 2 for 1 hour.
<실시예 7><Example 7>
금형강을 이용한 분말의 제조Production of powder using mold steel
상기 표 1의 조성을 갖는 금형강을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a mold steel having the composition shown in Table 1.
상기 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. The alloy ingot of the above composition was heated to a temperature of 1650 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas spray pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers.
수득된 분말을 600 ℃의 온도 및 Ar 의 열처리 분위기에서 1시간동안 열처리를 수행하였다.The obtained powder was heat-treated at a temperature of 600° C. and an Ar heat treatment atmosphere for 1 hour.
상기 실시예 1 내지 7의 열처리 조건을 다음의 표 2에 정리하였다.The heat treatment conditions of Examples 1 to 7 are summarized in Table 2 below.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7
열처리 온도(℃)Heat treatment temperature (℃) 200200 300300 400400 600600 600600 600600 600600
열처리 분위기heat treatment atmosphere N 2+H 2 N 2 +H 2 N 2+H 2 N 2 +H 2 N 2+H 2 N 2 +H 2 N 2+H 2 N 2 +H 2 N 2 N 2 H 2 H 2 ArAr
<실시예 8><Example 8>
STS316L을 이용한 분말의 제조Preparation of powder using STS316L
상용 STS316L 합금을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a commercial STS316L alloy.
상용 STS316L 합금을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 400 ℃ 온도 및 Ar 분위기에서 1시간동안 열처리를 수행하였다.Commercial STS316L alloy was heated to a temperature of 1650 °C using induction inside a gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated at a temperature of 400° C. and an Ar atmosphere for 1 hour.
<실시예 9><Example 9>
STS316L을 이용한 분말의 제조Preparation of powder using STS316L
상용 STS316L 합금을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a commercial STS316L alloy.
상용 STS316L 합금을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 500 ℃ 온도 및 Ar 분위기에서 1시간동안 열처리를 수행하였다.Commercial STS316L alloy was heated to a temperature of 1650 °C using induction inside a gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated at a temperature of 500° C. and an Ar atmosphere for 1 hour.
<실시예 10><Example 10>
STS316L을 이용한 분말의 제조Preparation of powder using STS316L
상용 STS316L 합금을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a commercial STS316L alloy.
상용 STS316L 합금을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 600 ℃ 온도 및 Ar 분위기에서 1시간동안 열처리를 수행하였다.Commercial STS316L alloy was heated to a temperature of 1650 °C using induction inside a gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated at a temperature of 600° C. and an Ar atmosphere for 1 hour.
<실시예 11><Example 11>
STS316L을 이용한 분말의 제조Preparation of powder using STS316L
상용 STS316L 합금을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a commercial STS316L alloy.
상용 STS316L 합금을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 700 ℃ 온도 및 Ar 분위기에서 1시간동안 열처리를 수행하였다.Commercial STS316L alloy was heated to a temperature of 1650 °C using induction inside a gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated at a temperature of 700° C. and an Ar atmosphere for 1 hour.
<실시예 12><Example 12>
STS316L을 이용한 분말의 제조Preparation of powder using STS316L
상용 STS316L 합금을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a commercial STS316L alloy.
상용 STS316L 합금을 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 800 ℃ 온도 및 Ar 분위기에서 1시간동안 열처리를 수행하였다.Commercial STS316L alloy was heated to a temperature of 1650 °C using induction inside a gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated at 800° C. and Ar atmosphere for 1 hour.
실시예 8 내지 실시예 12의 열처리 조건을 표 3에 정리하였다.Table 3 summarizes the heat treatment conditions of Examples 8 to 12.
실시예 8Example 8 실시예 9Example 9 실시예 10Example 10 실시예 11Example 11 실시예 12Example 12
열처리 온도(℃)Heat treatment temperature (℃) 400400 500500 600600 700700 800800
열처리 분위기heat treatment atmosphere ArAr ArAr ArAr ArAr ArAr
<실시예 13 내지 16><Examples 13 to 16>
합금조성이 Fe60Co15Ni15Cr10인 원료를 이용하여 다음의 방법으로 분말을 제조하였다.Using a raw material having an alloy composition of Fe60Co15Ni15Cr10, a powder was prepared by the following method.
상기 원료를 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 600 ℃ 및 아르곤 분위기의 조건에서 1시간동안 열처리를 수행하였다.The raw material was heated to a temperature of 1650° C. using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
<실시예 14><Example 14>
합금조성이 Fe55Co18Cr12.5Ni7Mo7.5인 원료를 이용하여 다음의 방법으로 분말을 제조하였다.Using a raw material having an alloy composition of Fe55Co18Cr12.5Ni7Mo7.5, a powder was prepared by the following method.
상기 원료를 가스아토마이저 내부의 인덕션을 이용하여 1700 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 600 ℃ 및 아르곤 분위기의 조건에서 1시간동안 열처리를 수행하였다.The raw material was heated to a temperature of 1700° C. using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
<실시예 15><Example 15>
합금조성이 Fe62Ni11Cr13Al14인 원료를 이용하여 다음의 방법으로 분말을 제조하였다.Using a raw material having an alloy composition of Fe62Ni11Cr13Al14, a powder was prepared by the following method.
상기 원료를 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 600 ℃ 및 아르곤 분위기의 조건에서 1시간동안 열처리를 수행하였다.The raw material was heated to a temperature of 1650° C. using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
<실시예 16><Example 16>
합금조성이 Ti-6Al-4V인 원료를 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using a raw material having an alloy composition of Ti-6Al-4V.
상기 원료를 가스아토마이저 내부의 인덕션을 이용하여 1830 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 600 ℃ 및 아르곤 분위기의 조건에서 1시간동안 열처리를 수행하였다.The raw material was heated to a temperature of 1830 °C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was subjected to heat treatment at 600° C. and argon atmosphere for 1 hour.
상기 실시예13 내지 16의 합금 조성을 다음 표 4에 정리하였다.The alloy compositions of Examples 13 to 16 are summarized in Table 4 below.
실시예 13Example 13 실시예 14Example 14 실시예 15Example 15 실시예 16Example 16
합금조성alloy composition Fe60Co15Ni15Cr10Fe60Co15Ni15Cr10 Fe55Co18Cr12.5Ni7Mo7.5Fe55Co18Cr12.5Ni7Mo7.5 Fe62Ni11Cr13Al14Fe62Ni11Cr13Al14 Ti-6Al-4VTi-6Al-4V
<실시예 17><Example 17>
AlSi10Mg 조성의 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 770 ℃ 온도까지 가열 하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 200 ℃ 및 아르곤 분위기의 조건에서 1시간동안 열처리를 수행하였다.The alloy ingot of AlSi10Mg composition was heated to a temperature of 770 ° C using induction inside the gas atomizer, and the molten metal was finely crushed with argon gas while spraying it through the gas atomizer at a gas spray pressure of 70 bar to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated at 200° C. and under argon atmosphere for 1 hour.
<비교예 1 내지 7><Comparative Examples 1 to 7>
다음 표 5의 조성의 잉곳을 이용하여 다음의 방법으로 분말을 제조하였다.A powder was prepared by the following method using the ingot of the composition shown in Table 5 below.
비교예comparative example 조성Furtherance
1One 상기 금형강 조성The mold steel composition
22 상기 STS316L 조성The STS316L composition
33 실시예 13의 조성Composition of Example 13
44 실시예 14의 조성Composition of Example 14
55 실시예 15의 조성Composition of Example 15
66 실시예 16의 조성Composition of Example 16
77 실시예 17의 조성Composition of Example 17
상기 표 5의 원료를 각각 가스아토마이저 내부의 인덕션을 이용하여 1650 ℃ (비교예 1), 1650 ℃ (비교예 2), 1650 ℃ (비교예 3), 1700 ℃ (비교예 4), 1650 ℃ (비교예 5), 1830 ℃ (비교예 6), 770 ℃ (비교예 7) 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말에 대하여 열처리는 수행하지 않았다.1650 °C (Comparative Example 1), 1650 °C (Comparative Example 2), 1650 °C (Comparative Example 3), 1700 °C (Comparative Example 4), 1650 °C for each of the raw materials in Table 5 using induction inside the gas atomizer (Comparative Example 5), 1830 ℃ (Comparative Example 6), 770 ℃ (Comparative Example 7) was heated to a temperature, which was sprayed with a gas atomizing pressure of 70 bar through a gas atomizer while crushing the molten metal finely with argon gas to obtain a powder prepared. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. Heat treatment was not performed on the obtained powder.
<비교예 8 내지 11><Comparative Examples 8 to 11>
IN718 니켈계 합금 잉곳을 가스아토마이저 내부의 인덕션을 이용하여 1580 ℃ 온도까지 가열하였고, 이를 가스아토마이저를 통하여 70 bar의 가스분무압력으로 분무하면서 아르곤 가스로 용탕을 잘게 부수어 분말을 제조하였다. 냉각된 분말은 체를 이용하여 45 마이크로미터 초과 크기의 분말과 에어로졸 분급기를 이용하여 20 마이크로미터 미만의 분말을 제거하여 최종적으로 20 내지 45 마이크로미터 크기의 분말을 수득하였다. 수득된 분말을 아르곤 분위기에서 600 ℃(비교예 8), 800 ℃(비교예 9), 1000 ℃(비교예 10) 조건에서 1시간동안 열처리를 수행하였다. 수득된 분말에 대하여 열처리를 수행하지 않은 것을 비교예 11로 하였다.The IN718 nickel-based alloy ingot was heated to a temperature of 1580 ° C using induction inside the gas atomizer, and the molten metal was crushed with argon gas while spraying it at a gas atomization pressure of 70 bar through the gas atomizer to prepare a powder. The cooled powder was removed by using a sieve to remove a powder having a size greater than 45 micrometers and an aerosol classifier to remove a powder smaller than 20 micrometers to finally obtain a powder having a size of 20 to 45 micrometers. The obtained powder was heat-treated in an argon atmosphere at 600 °C (Comparative Example 8), 800 °C (Comparative Example 9), and 1000 °C (Comparative Example 10) for 1 hour. Comparative Example 11 was obtained in which no heat treatment was performed on the obtained powder.
<실험예><Experimental example>
분말의 유동도 분석Fluidity Analysis of Powders
분말의 유동도 분석은 ASTM B 213에 따라 수행되었다.Fluidity analysis of the powder was performed according to ASTM B 213.
구체적으로는 실시예 1 내지 17 빛 비교예 1 내지 11에서 제조된 분말 각각 50 g을 준비하고, 도 1과 같은 홀플로우 미터(hall flow meter)의 깔대기 아래를 막고 분말을 도입하였다. 아래 막은 부분을 개방하면서 시간을 재기 시작하여, 분말이 다 떨어지고 나면 시간을 멈추고 그 시간을 기록하였다. 그 결과를 표 6 및 도 2 내지 도 5에 나타내었다.Specifically, 50 g of each of the powders prepared in Examples 1 to 17 and Comparative Examples 1 to 11 were prepared, and the powder was introduced by blocking the bottom of the funnel of a hall flow meter as shown in FIG. 1 . The time was started as the lower membrane was opened, stopped and the time recorded when the powder had run out. The results are shown in Table 6 and FIGS. 2 to 5 .
실시예Example 유동도 (s/50g)Fluidity (s/50g)
1One 23.323.3
22 14.4114.41
33 14.6514.65
44 15.7615.76
55 15.0815.08
66 14.8914.89
77 14.4814.48
88 16.1616.16
99 15.6915.69
1010 15.6815.68
1111 15.0815.08
1212 16.6416.64
1313 13.9613.96
1414 13.9013.90
1515 17.0117.01
1616 25.0925.09
1717 68.8168.81
비교예comparative example
1One 측정불가not measurable
22 측정불가not measurable
33 측정불가not measurable
44 측정불가not measurable
55 측정불가not measurable
66 측정불가not measurable
77 측정불가not measurable
88 측정불가not measurable
99 측정불가not measurable
1010 측정불가not measurable
1111 측정불가not measurable
표 6과 도 2 내지 도 5에 따르면 다음의 사실을 확인할 수 있다.According to Table 6 and FIGS. 2 to 5 , the following facts can be confirmed.
실험대상 모든 금속 또는 합금의 경우, 열처리를 수행하지 않는 경우 유동도가 매우 나빠 측정이 불가능하였다.In the case of all the metals or alloys subject to the test, if the heat treatment was not performed, the flowability was very poor, so measurement was impossible.
니켈보다 확산계수가 큰 금속 또는 합금들은 열처리 공정을 통하여 유동도가 개선되었다.Metals or alloys with a higher diffusion coefficient than nickel have improved fluidity through the heat treatment process.
니켈의 경우 아무리 열처리 온도를 올려도 분말의 유동도가 개선되지 않았다.In the case of nickel, the flowability of the powder did not improve no matter how much the heat treatment temperature was increased.
상기 실험결과를 통하여 본 발명의 방법에 따르면, 가스아토마이제이션을 통하여 다양한 종류의 분말을 대량생산하면서도 산화의 위험 없이, 분말의 유동도를 크게 개선시킬 수 있어, 제조된 분말을 다양한 응용분야에 적용할 수 있게 되는 효과가 있다.According to the method of the present invention through the above experimental results, it is possible to greatly improve the flowability of the powder without risk of oxidation while mass-producing various types of powder through gas atomization, so that the manufactured powder can be used in various applications. There is an effect that can be applied.

Claims (15)

  1. 니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계; 및manufacturing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material; and
    상기 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계;performing heat treatment on the prepared powder in a temperature range of 20% to 70% based on the melting point of the raw material;
    를 포함하는 분말의 유동도 향상방법.A method of improving the flowability of a powder comprising a.
  2. 제1항에 있어서, 상기 니켈보다 확산계수값이 큰 금속은 구리(Cu), 마그네슘(Mg), 알루미늄(Al), 티타늄(Ti), 및 철(Fe)로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 분말의 유동도 향상방법.The method of claim 1, wherein the metal having a diffusion coefficient greater than that of nickel is one selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe). A method for improving the flowability of powders.
  3. 제1항에 있어서, 상기 합금은 기본금속을 총 합금 중량 대비 50 중량% 이상 포함하는 것을 특징으로 하는 분말의 유동도 향상방법.The method of claim 1, wherein the alloy contains 50% by weight or more of the base metal based on the total weight of the alloy.
  4. 제1항에 있어서, 상기 가스 아토마이제이션은 원료의 녹는점 온도 내지 녹는점 온도+500 ℃의 온도범위에서 수행되는 것을 특징으로 하는 분말의 유동도 향상방법.The method of claim 1, wherein the gas atomization is performed in a temperature range of a melting point temperature of a raw material to a melting point temperature + 500°C.
  5. 제1항에 있어서, 상기 가스 아토마이제이션은 10 내지 100 bar의 가스분사압력의 조건에서 수행되는 것을 특징으로 하는 분말의 유동도 향상방법.The method of claim 1, wherein the gas atomization is performed under a gas injection pressure of 10 to 100 bar.
  6. 제1항에 있어서, 상기 열처리는 원료의 녹는점 기준 30 % 내지 50 %의 온도범위에서 수행되는 것을 특징으로 하는 분말의 유동도 향상방법.The method of claim 1, wherein the heat treatment is performed in a temperature range of 30% to 50% based on the melting point of the raw material.
  7. 제1항에 있어서, 상기 열처리는 아르곤, 질소, 수소, 및 질소와 수소 환경으로 이루어진 군으로부터 선택되는 1종의 환경에서 수행되는 것을 특징으로 하는 분말의 유동도 향상방법.The method of claim 1, wherein the heat treatment is performed in one type of environment selected from the group consisting of argon, nitrogen, hydrogen, and a nitrogen and hydrogen environment.
  8. 제1항에 있어서, 상기 분말의 유동도 향상방법은 분말의 홀 플로우(hall flow) 값을 10 내지 70 s/50g으로 향상시키는 것으로 특징으로 하는 분말의 유동도 향상방법.The method according to claim 1, wherein the powder flowability improving method is to improve the powder's hall flow value from 10 to 70 s/50g.
  9. 니켈(Ni)보다 확산계수값이 큰 금속 또는 이를 기본금속으로 하는 합금을 원료로 하여 가스 아토마이제이션으로 분말을 제조하는 단계; 및manufacturing a powder by gas atomization using a metal having a diffusion coefficient greater than that of nickel (Ni) or an alloy having the same as a base metal as a raw material; and
    상기 제조된 분말을 원료의 녹는점 기준 20 % 내지 70 %의 온도범위에서 열처리를 수행하는 단계;performing heat treatment on the prepared powder in a temperature range of 20% to 70% based on the melting point of the raw material;
    를 포함하는 유동도가 향상된 분말의 제조방법.A method for producing a powder with improved fluidity comprising a.
  10. 제9항에 있어서, 상기 니켈보다 확산계수값이 큰 금속은 구리(Cu), 마그네슘(Mg), 알루미늄(Al), 티타늄(Ti), 및 철(Fe)로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 유동도가 향상된 분말의 제조방법.The method of claim 9, wherein the metal having a diffusion coefficient greater than that of nickel is one selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe). A method for producing a powder with improved fluidity.
  11. 제9항에 있어서, 상기 열처리는 원료의 녹는점 기준 30 % 내지 50 %의 온도범위에서 수행되는 것을 특징으로 하는 유동도가 향상된 분말의 제조방법.The method of claim 9, wherein the heat treatment is performed in a temperature range of 30% to 50% based on the melting point of the raw material.
  12. 제9항에 있어서, 상기 열처리는 아르곤, 질소, 수소, 및 질소와 수소 환경으로 이루어진 군으로부터 선택되는 1종의 환경에서 수행되는 것을 특징으로 하는 유동도가 향상된 분말의 제조방법.10. The method of claim 9, wherein the heat treatment is performed in one environment selected from the group consisting of argon, nitrogen, hydrogen, and a nitrogen and hydrogen environment.
  13. 제9항에 있어서, 상기 합금은 기본금속을 총 합금 중량 대비 50 중량% 이상 포함하는 것을 특징으로 하는 유동도가 향상된 분말의 제조방법.[10] The method of claim 9, wherein the alloy contains 50% by weight or more of the base metal based on the total weight of the alloy.
  14. 제9항의 방법으로 제조되고, 제조된 분말의 홀 플로우(hall flow) 값이 10 내지 70 s/50g인 것을 특징으로 하는 유동도가 향상된 분말.10. A powder prepared by the method of claim 9, wherein the powder has a hall flow value of 10 to 70 s/50g.
  15. 제14항에 있어서, 상기 유동도가 향상된 분말은 구리(Cu), 마그네슘(Mg), 알루미늄(Al), 티타늄(Ti), 및 철(Fe)로 이루어진 군으로부터 선택되는 1종의 금속 분말인 것을 특징으로 하는 유동도가 향상된 분말.15. The method of claim 14, wherein the powder with improved fluidity is one type of metal powder selected from the group consisting of copper (Cu), magnesium (Mg), aluminum (Al), titanium (Ti), and iron (Fe). Powder with improved fluidity, characterized in that.
PCT/KR2020/015711 2020-02-18 2020-11-10 Method for improving flowability of powder, and method for producing powder having improved flowability WO2021167205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0019779 2020-02-18
KR1020200019779A KR102295736B1 (en) 2020-02-18 2020-02-18 Method for improving the flow characteristic of powder and the method for preparing the powder with improved flow characteristic

Publications (1)

Publication Number Publication Date
WO2021167205A1 true WO2021167205A1 (en) 2021-08-26

Family

ID=77390935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015711 WO2021167205A1 (en) 2020-02-18 2020-11-10 Method for improving flowability of powder, and method for producing powder having improved flowability

Country Status (2)

Country Link
KR (1) KR102295736B1 (en)
WO (1) WO2021167205A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264115A (en) * 1993-03-09 1994-09-20 Takeshi Masumoto Apparatus for production of metallic powder
KR20080074638A (en) * 2007-02-09 2008-08-13 한국기계연구원 Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method
KR20130078560A (en) * 2011-12-30 2013-07-10 한국기계연구원 Fabrication method of amorphous alloy powder using gas atomization
KR101517583B1 (en) * 2013-12-24 2015-05-07 한국기계연구원 Apparatus and Method for Manufacturing Minute Powder Using Mixed gas injection
KR20190105371A (en) * 2018-03-05 2019-09-17 한국생산기술연구원 A method for producing a dispersion strengthened powder and a powder produced thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0166934B1 (en) * 1995-06-13 1999-01-15 구자홍 Combustion apparatus of coal oil fan heater
KR101143887B1 (en) * 2009-12-15 2012-05-11 한국기계연구원 The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby
KR102391013B1 (en) * 2017-12-13 2022-04-27 현대자동차주식회사 Stainless steel powder and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264115A (en) * 1993-03-09 1994-09-20 Takeshi Masumoto Apparatus for production of metallic powder
KR20080074638A (en) * 2007-02-09 2008-08-13 한국기계연구원 Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method
KR20130078560A (en) * 2011-12-30 2013-07-10 한국기계연구원 Fabrication method of amorphous alloy powder using gas atomization
KR101517583B1 (en) * 2013-12-24 2015-05-07 한국기계연구원 Apparatus and Method for Manufacturing Minute Powder Using Mixed gas injection
KR20190105371A (en) * 2018-03-05 2019-09-17 한국생산기술연구원 A method for producing a dispersion strengthened powder and a powder produced thereby

Also Published As

Publication number Publication date
KR20210105475A (en) 2021-08-27
KR102295736B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020013632A1 (en) Iron-based alloy powder and molded article using same
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2016105064A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016105059A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2017020645A1 (en) Electronic device, die-casting aluminium alloy, and preparation method for die-casting aluminium alloy
WO2016104880A1 (en) Hpf molding member having excellent delamination resistance and manufacturing method therefor
WO2011074720A1 (en) Production method and production device for a composite metal powder using the gas spraying method
WO2018030790A1 (en) High-strength hot rolled steel sheet having low inhomogeneity and excellent surface quality, and manufacturing method therefor
WO2018117545A1 (en) Steel material for pressure vessels which has excellent resistance to hydrogen induced cracking and manufacturing method thereof
WO2017222342A1 (en) Clad steel plate having excellent strength and formability, and production method therefor
WO2017095175A1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
WO2012169847A2 (en) Compound powder manufacturing apparatus, manufacturing method for iron-boron powder mixture using same, boron alloy powder mixture and method for preparing same, powder conjugates and method for manufacturing same, and steel pipe and method for producing same
WO2016105062A1 (en) High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2018056792A1 (en) Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same
WO2021162422A1 (en) Ceramic component and method for manufacturing ceramic component
WO2019103539A1 (en) Titanium-aluminum-based alloy for 3d printing, having excellent high temperature characteristics, and manufacturing method therefor
WO2019231023A1 (en) Al-fe-alloy plated steel sheet for hot forming, having excellent twb welding characteristics, hot forming member, and manufacturing methods therefor
WO2019009675A1 (en) Advanced-high strength hot-rolled steel sheet having reduced material deviation and enhanced surface quality and method for manufacturing same
WO2019098599A1 (en) Alnico-based magnetic particles for security ink
WO2021167205A1 (en) Method for improving flowability of powder, and method for producing powder having improved flowability
WO2018074652A1 (en) Catalyst and continuous process for mass production of multi-walled carbon nanotube
WO2015074349A1 (en) Method for preparing silver metallic oxide graphite composite electrical contact material and product thereof
WO2017131271A1 (en) Red ginseng concentrate grains, and method for producing red ginseng concentrate grains by using red ginseng concentrate powder and fluidized bed coating machine
WO2017119787A1 (en) Fe-based soft magnetic alloy, manufacturing method therefor, and magnetic parts using fe-based soft magnetic alloy
WO2016104837A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920372

Country of ref document: EP

Kind code of ref document: A1