WO2021167098A1 - Quantitative assessment index for fetal growth restriction - Google Patents

Quantitative assessment index for fetal growth restriction Download PDF

Info

Publication number
WO2021167098A1
WO2021167098A1 PCT/JP2021/006475 JP2021006475W WO2021167098A1 WO 2021167098 A1 WO2021167098 A1 WO 2021167098A1 JP 2021006475 W JP2021006475 W JP 2021006475W WO 2021167098 A1 WO2021167098 A1 WO 2021167098A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
group
body fluid
cells
expression
Prior art date
Application number
PCT/JP2021/006475
Other languages
French (fr)
Japanese (ja)
Inventor
義朗 佐藤
忍 清水
昌弘 早川
悠磨 北瀬
淳人 小野田
雅弘 辻
真理 出澤
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2022501095A priority Critical patent/JPWO2021167098A1/ja
Publication of WO2021167098A1 publication Critical patent/WO2021167098A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention provides a biomarker for early determination, diagnosis, or assistance in diagnosis of perinatal disorder in a newborn due to fetal stunting, and early determination or early determination of perinatal disorder in a newborn using the biomarker.
  • the present invention relates to an early diagnosis method and a method for determining the therapeutic effect of perinatal disorders at an early stage using the biomarker.
  • Pregnancy is associated with increased maternal cardiac output and a vast increase in uterine perfusion resulting from trophoblast-driven modification of the uterine spiral artery. Failure of this normal physiological process is also known as two of the most difficult obstetric complications, Fetal Growth Restriction (FGR) (or Intrauterine Growth Restriction; IUGR). Is involved in the causes of pre-eclampsia (pre-eclampsia) and pre-eclampsia (PET).
  • FGR Fetal Growth Restriction
  • IUGR Intrauterine Growth Restriction
  • Fetal growth restriction affects up to 8% of all pregnancies and is associated with high perinatal mortality, long-term neurological disorders and an increased incidence of cardiovascular disease in later years, based on evidence. There is no effective treatment. Severe early-onset fetal growth restriction affects 1: 500 pregnancies and is associated with high mortality and long-term complications in survivors. In the most severe cases, a viable birth weight (at least 500 g) cannot be reached, forcing a strict choice between abortion or allowing the foetation to die in utero. Small improvements in fetal growth (eg, up to 700 g birth weight) and birth gestation (eg, 26-28 weeks) are associated with major improvements in survival and morbidity.
  • Patent Document 1 proposes a therapeutic strategy that has succeeded in early evaluation and diagnosis of perinatal brain disorders (for example, neurodevelopmental disorders) due to fetal growth restriction.
  • the present invention overcomes the above-mentioned problems and diagnoses perinatal brain disorders (for example, neurodevelopmental disorders) in newborns associated with fetal growth restriction with high sensitivity, appropriately and accurately, thereby causing neurodevelopmental disorders at an early stage. Furthermore, it is an object of the present invention to determine an optimal treatment policy and to provide an evaluation / diagnosis method for early evaluation of the effect of intervening treatment in a newborn baby. The present invention also provides information that is the basis for elucidating the pathophysiology of perinatal brain disorders associated with fetal growth restriction.
  • the present inventors comprehensively analyzed proteins in cerebrospinal fluid from a rat model of fetal growth restriction, and as a result, evaluated, diagnosed, predicted, and treated developmental disorders associated with fetal growth restriction.
  • a method for early determination of perinatal disorders in newborns due to fetal growth restriction in mammalian subjects (A) ⁇ -2-Macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) ) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and one or more proteins selected from the group consisting of ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6).
  • Expression levels were tested in body fluid samples obtained from subjects in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; and (b).
  • the expression level is statistically significantly different from the expression level in the normal body fluid or the body fluid after treatment, or is compared with the expression level in the body fluid known to exhibit perinatal disorders.
  • the above method which comprises evaluating the subject as having a perinatal disorder when it does not show a statistically significant difference.
  • the protein is selected from the group consisting of ⁇ -2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). 1] The method described in.
  • [3] The method according to [1] or [2], wherein the subject is a human patient.
  • [4] When all of the tested proteins show a significant difference in the body fluid sample of the subject as compared with the normal body fluid, the subject is evaluated as having a perinatal disorder, [1] to The method according to any one of [3].
  • [5] The method according to any one of [1] to [4], wherein the expression level is determined by an immunoassay.
  • [6] The method according to any one of [1] to [4], wherein the expression level is determined by liquid chromatography / mass spectrometry.
  • [7] The method according to any one of [1] to [4], wherein the expression level is determined using a protein array.
  • -2 Selected from the group consisting of membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), neuroserpin (Serpini1), ubiquitin thioesterase OTUB1 (Otub1), and ubiquitin-like modification activating enzyme 1 (Uba1) 1
  • -2 selected from the group consisting of membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), neuroserpin (Serpini1), ubiquitin thioesterase OTUB1 (Otub1), and ubiquitin-like modification activating enzyme 1 (Uba1) 1
  • Uba1 ubiquitin-like modification activating enzyme 1
  • the protein is selected from the group consisting of ⁇ -2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). 8] Use described in. [10] A method for early determination of the therapeutic effect of neonatal perinatal disorders caused by fetal growth restriction in a mammalian subject.
  • A ⁇ -2-Macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) ) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and one or more proteins selected from the group consisting of ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6).
  • Expression levels were tested in body fluid samples obtained from the subject being treated in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; (B) In the body fluid known to show no statistically significant difference in expression level compared to the expression level in the normal body fluid or body fluid after treatment, or to exhibit perinatal disorders.
  • the above method comprising determining that treatment of perinatal disorders in the subject is effective when it shows a statistically significant difference compared to the expression level.
  • the protein is selected from the group consisting of ⁇ -2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). 10].
  • the biomarker of the present invention by using the biomarker of the present invention, the onset of perinatal brain disorder can be predicted in the neonatal period, and the onset of neurodevelopmental disorder in infants or children can be predicted at an early stage. Therefore, it is possible to perform optimal diagnostic guidelines, treatment evaluation, and elucidation of pathological conditions in newborn babies.
  • ⁇ -2-Macroglobulin was identified by proteomics analysis as a protein with significant variation.
  • Neuroserpin (Serpini1) has been identified by proteomics analysis as a protein with significant variation.
  • Polyubiquitin-B (Ubb) was identified by proteomics analysis as a protein with significant variation.
  • the OX-2 membrane glycoprotein (Cd200) was identified by proteomics analysis as a protein showing significant variation.
  • Ubiquitin thioesterase OTUB1 (Otub1) has been identified by proteomics analysis as a protein with significant variation.
  • Ubiquitin-like modification activating enzyme 1 (Uba1 or Ube1) was identified by proteomics analysis as a protein showing significant variation.
  • A2m over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown.
  • A2m expression in cerebrospinal fluid over time in various fetal growth restriction model groups sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)
  • the result of the measurement is shown.
  • A2m expression in serum in various fetal growth restriction model groups sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse” over time The measurement result is shown.
  • Serpini1 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown.
  • Serpini1 expression in cerebrospinal fluid over time in various fetal growth restriction model groups sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)
  • the result of the measurement is shown.
  • Serum expression in serum in various fetal growth restriction model groups sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse” over time The measurement result is shown.
  • Ubb expression in cerebrospinal fluid over time in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”))
  • Sham fetal growth restriction model
  • MSC MSC group
  • Muse Muse group
  • Serum Ubb expression in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”) over time The measurement result is shown.
  • Cd200 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown.
  • FGR fetal growth restriction model
  • Sham sham surgery group
  • MSC MSC group
  • Muse Muse group
  • Serum Cd200 expression in various fetal growth restriction model groups sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse” over time The measurement result is shown.
  • Otub1 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown.
  • FGR fetal growth restriction model
  • Sham vehicle group
  • MSC MSC group
  • Muse Muse group
  • the expression intensities of various biomarkers corresponding to FIG. 13B are shown.
  • the expression intensities of various biomarkers corresponding to FIG. 13C are shown. Indicates the location of the striatum of the brain.
  • the results of observing the expression of various biomarkers by tissue staining in each cell constituting the striatum in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown.
  • the results of observing the expression of various biomarkers by tissue staining in each cell constituting the striatum in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown.
  • the expression intensities of various biomarkers corresponding to FIG. 14B are shown.
  • FIG. 14C Indicates the location of the cerebral cortex of the brain.
  • the results of observing the expression of various biomarkers by tissue staining in each cell constituting the cerebral cortex in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown.
  • the results of observing the expression of various biomarkers by tissue staining in each cell constituting the cerebral cortex in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown.
  • the expression intensities of various biomarkers corresponding to FIG. 15B are shown.
  • the expression intensities of various biomarkers corresponding to FIG. 15C are shown.
  • the present invention provides a biomarker for early determination, diagnosis or assistance in diagnosis of perinatal brain disorder caused by fetal stunting, and early determination or early diagnosis of perinatal disorder in a newborn using the biomarker.
  • the present invention relates to a method and a method for determining the therapeutic effect of perinatal disorders at an early stage using the biomarker.
  • Fetal growth restriction is greatly involved in the life and neurological prognosis of the offspring. Fetal growth restriction is defined as a condition in which fetal growth is impaired in utero for some reason and the number of weeks of growth is impaired. At present, with the development of ultrasonic inspection equipment, it is common to make a diagnosis using ultrasonic inspection.
  • Fetal growth restriction is a heterogeneous disease, but fetal growth restriction that develops from the second trimester of pregnancy is often caused by congenital infections, genetic abnormalities, and congenital malformations, and intervention improves the prognosis of fetal growth restriction. It has been considered unlikely.
  • the fetal growth restriction that develops from the second trimester of pregnancy includes a group caused by placental dysfunction including the involvement of preeclampsia (HDP). Fetal growth restriction due to placental dysfunction has a worse prognosis when it develops in the second trimester of pregnancy than in the third trimester of pregnancy. It came to be divided. These are often separated by 32 to 34 weeks, although the definition varies from report to report.
  • TRUFFLE study a large-scale prospective observational study (TRUFFLE study) was reported in 2013. Between 2005 and 2010, 503 cases of early-onset fetal growth restriction who delivered between 26 and 32 weeks were registered at a facility centered on Europe. Fetal growth restriction was defined as a case in which the estimated fetal abdominal circumference was less than the 10th percentile and the umbilical artery blood flow pulsatile index was greater than or equal to the 95th percentile.
  • Fetal cell development is the period when the cell number itself increases rapidly in the first trimester of pregnancy (from the first trimester to the 16th week of pregnancy), and the cell itself as the number of cells increases in the second trimester of pregnancy (17th to 32nd week of pregnancy).
  • the period of hypertrophy, the third trimester of pregnancy (after 33 weeks of gestation), is the period in which the number of cells hardly increases and the cells become hypertrophied.
  • Fetal growth restriction is broadly classified into three types according to fetal cell development. The Consumer story is given in the next section, and the relationship between clinical classification and causes is shown in Table 1 below. However, there are many exceptions, and at present, it is rarely classified into type 1 and type 2.
  • Type 1 (symmetrical type) When the foetation is damaged in the early stages of pregnancy due to abnormalities of the foetation itself such as chromosomal abnormalities or TORCH syndrome, cell division and cell proliferation of the fetal organs are inhibited, so the size of the cells constituting the organs is normal. It exhibits hypoplasia with a small number of cells and is classified as type 1.
  • the hypoplastic type is characterized by well-proportioned growth in which the head and trunk are similarly suppressed because of the small number of foets, and the well-proportioned dysgenesis is called the symmetric type. Type 1 accounts for about 20% of all fetal growth restriction.
  • Type 2 (Asymmetric type) When a disorder occurs in the third trimester of pregnancy, cell division is already completed and cell hypertrophy is suppressed. When the number of cells is normal but the cells themselves are small, a malnutrition state called type 2 occurs. It is often caused by pathological abnormalities of the placenta caused by maternal diseases such as preeclampsia and diabetes that develop in late pregnancy. When fetal placenta circulation deteriorates, a vasodilatory effect (blood flow redistribution) occurs to protect important organs such as the brain, heart, and adrenal gland, and maintenance of cerebral blood flow is prioritized, so head growth is maintained.
  • a vasodilatory effect blood flow redistribution
  • Type 2 (asymmetric type) accounts for about 70% of all fetal growth restriction. However, it should be noted that when the brain sparring effect collapses and the growth of the head is impaired, it shifts to the symmetrical type (http://www.chugaiigaku.jp/upfile/browse/browse2521.pdf). Quoted from).
  • Perinatal encephalopathy refers to cerebral disorders that occur during the perinatal period (from 22 weeks gestation to less than 7 days after birth in humans), for example, low during labor. It means a brain disorder associated with oxygen-ischemic encephalopathy or systemic inflammatory reaction syndrome secondary to viral or bacterial infection.
  • the present invention also covers the time when neurodevelopmental disorders caused by fetal growth restriction are embodied as symptoms (for example, 2 to 3 years old in humans). More specifically, according to the present invention, perinatal brain disorders occur in human neonates (within 28 days of age), infants (less than 1 year of age), and infants (1 to 6 years of age). Target for improvement and treatment of brain disorders.
  • Cerebral palsy refers to irreversible cerebral palsy that occurs during the developmental period of the brain (in humans, it refers to the age of 13 days to 48 days after birth), and has non-progressive lesions, the symptoms of which are It is based on motor dysfunction, and most develop by the age of three. Specifically, it generally refers to brain damage that occurs by the neonatal period. The causes are divided according to the time of occurrence of the disorder.
  • Prenatal causes include intrauterine infection, placental insufficiency, fetal cerebrovascular accident, hereditary, etc.
  • birth causes include , Mechanical damage during labor, cerebral hemorrhage, anoxia, hypoxia, cerebral circulatory disorder, etc.
  • Postnatal causes include severe kernicterus (kernicterus), intracranial infection, cerebral hemorrhage, etc. Classification is based on the content of the paralysis.
  • the contents of muscle tone include strong (convulsive) straightness, toughness, ataxia, athetosis (involuntary movement that appears when maintaining a certain posture or trying to exercise), non-tension, etc.
  • Extremity paralysis hemiplegia, diplegia, paraplegia, double hemiplegia, monoplegia, etc.
  • Complications include intellectual disability (including learning disabilities), seizures, neurological disorders, and speech disorders.
  • Brain lesions caused by hypoxic-ischemic encephalopathy in mature infants are often cerebral cortical layer necrosis, basal ganglia necrosis, cerebral infarction, leukomalacia, bridge-shaped circumflex necrosis, and brain stem necrosis.
  • Basal ganglia necrosis causes atetose-type cerebral palsy
  • cerebral infarction causes spastic limb palsy and hemiplegia.
  • Brainstem necrosis often causes poor prognosis and death in infancy, and even if it survives, it causes dysphagia and respiratory dysregulation.
  • head ultrasound imaging, MRI, CT, electroencephalogram, and laser Doppler blood flow meters can be used to obtain physiological findings of the brain. Perinatal brain damage can be suspected if abnormal findings are obtained using these devices. In addition, it may be possible to make a diagnosis by directly observing learning disabilities and motor disorders in the subject.
  • perinatal brain disorders in newborns caused by fetal stunting in a mammalian subject can be detected.
  • a method for early determination, diagnosis or assistance (hereinafter, may be simply referred to as "early diagnosis method") is characterized in that one or more of six types of biomarkers described later are used.
  • the biomarkers (proteins) used are the expression level of proteins present in the body fluids of newborns who are thought to have the above-mentioned diseases, the expression levels of proteins present in normal body fluids or body fluids after treatment, or the diseases.
  • the expression level of the protein present in the body fluid of the subject is identified by comparing the expression level of the protein present in the body fluid of the subject known to show the presence or absence of the difference, or by identifying the protein that is upregulated or downregulated.
  • a biological sample eg, body fluid, tissue, organism, or cell culture
  • the expression level of the protein can be determined by using an immunoassay, mass spectrometry, or a protein array.
  • proteomics generally refers to (1) separation of individual proteins in a sample by two-dimensional gel electrophoresis; (2) identification of individual proteins recovered from the gel, such as liquid chromatography, mass spectrometry or N-terminal sequencing. Includes steps of singing and (3) analyzing data using bioinformatics. Proteomics methods can be a useful complement to other gene expression profiling methods.
  • the present invention mainly performs proteomic analysis of body fluids, but the "body fluids” used are not limited to cerebrospinal fluid (CSF), cord blood, cervical-vaginal fluid (CVF), amniotic fluid, and the like. Examples include blood, serum, plasma, urine, breast milk, mucus, saliva and sweat.
  • cerebrospinal fluid is preferable as the body fluid for diagnosing perinatal brain disorder associated with fetal growth restriction, which is a risk of neurodevelopmental disorder. This is because the information on biomolecules circulating in the brain due to the inflow and outflow of cerebrospinal fluid sensitively reflects the state of brain tissue and its changes.
  • serum which is the outflow destination of cerebrospinal fluid, is useful because it is non-invasive and can be easily collected.
  • Proteins present in biological samples are generally separated by two-dimensional gel electrophoresis according to pI and molecular weight. Proteins are first separated by their charge using isoelectric focusing (one-dimensional gel electrophoresis). This step may be performed using, for example, a commercially available fixed pH gradient (IPG) stripe.
  • IPG fixed pH gradient
  • the second dimension can be a conventional SDS-PAGE analysis, where concentrated IPG stripes are used as the sample.
  • proteins can be visualized by conventional dyes such as Coomassie blue or silver stain and can be imaged using known techniques and equipment such as Bio-Rad GS800 densitometer and PDQUEST software. can.
  • the individual spots are then excised from the gel, decolorized and trypsined.
  • the peptide mixture may be analyzed by mass spectrometry (MS).
  • MS mass spectrometry
  • HPLC capillary high performance liquid chromatography
  • the mass spectrometer consists of an ion source, a mass analyzer, an ion detector and a data acquisition unit.
  • the fragmented peptide is ionized at the ion source.
  • the ionized peptides are then separated by mass / charge ratio in a mass spectrometer to detect different ions.
  • mass spectrometry has been widely used in protein analysis since the development of matrix-assisted laser desorption / ionization / time-of-flight (MALDI-TOF) and electrospray ionization (ESI) methods.
  • MALDI-TOF and quadrupole-TOF, or an ion trap mass spectrometer connected to ESI are exemplified.
  • Protein arrays fix proteins on solid surfaces such as glass, silicon, microwells, nitrocellulose, PVDF membranes and microbeads using a variety of covalent and non-covalent attachment chemistries well known in the art. It is formed by doing.
  • the solid support is chemically stable before and after the coupling procedure, allows for good spot morphology, represents very small non-specific bonds, does not affect the background of the detection system, and does not affect the background of the detection system. Must be compatible with different detection systems.
  • the diagnostic method of the present invention may be carried out in the form of various immunoassay formats, which are well known in the art.
  • immunoassay formats There are two main types of immunoassays, homologous and heterogeneous.
  • an allogeneic immunoassay the immune response and detection between an antigen and an antibody is carried out in an allogeneic reaction.
  • the heterologous immunoassay comprises at least one separation step of separating the reaction product from the unreacted reagent.
  • the six proteins used in the present invention are proteins (or peptides) found in all 601 proteins based on the comprehensive analysis by the above proteomics. Specifically, ⁇ -2-macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin. (Serpini1) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Information on the amino acid sequences of these proteins is available using publicly available databases (eg, UniProt; https://www.uniprot.org/).
  • At least one, preferably at least two, three, four or five, or all of the above proteins is used.
  • four of the above six proteins that is, ⁇ -2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (that is, polyubiquitin-B) Ubb) and neuroserpin (Serpini1)
  • A2m ⁇ -2-macroglobulin
  • Cd200 OX-2 membrane glycoprotein
  • polyubiquitin-B that is, polyubiquitin-B) Ubb
  • neuroserpin Serpini1
  • these proteins have been shown to improve their expression fluctuations from an early stage by administration of pluripotent stem cells (Muse cells).
  • At least three are also found in neonatal serum. It was confirmed that there was a significant change in expression associated with fetal growth restriction and improvement of the change was observed by administration of pluripotent stem cells (Muse cells).
  • Fluctuations in the expression levels of the above 6 or 4 proteins in body fluid samples are known to indicate normal body fluids, post-treatment body fluids (due to drugs, pluripotent stem cells, etc.), or perinatal disorders. It is done by comparing with the expression level in the body fluid.
  • the body fluid used as the comparison standard is a normal body fluid or a body fluid after treatment
  • the expression level of the fluctuation is 1.1 times, 1.2 times, 1.3 times, 1.4 times based on these.
  • the increase or decrease may be fold, 9 times, 10 times, 15 times, 20 times, 30 times, 40 times, 50 times, 100 times, or more.
  • the difference from the body fluid is 100%, 90%, 80%, 70%, 60 of the expression level of the reference body fluid.
  • % 50%, 40%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0 .8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or less, or preferably 0%. ..
  • a method for early determination of the therapeutic effect of a neonatal perinatal disorder caused by fetal growth restriction in a mammalian subject is as described above for ⁇ -2-macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-.
  • A2m ⁇ -2-macroglobulin
  • Cd200 OX-2 membrane glycoprotein
  • polyubiquitin- polyubiquitin-.
  • Ubb (SEQ ID NO: 3), neurocerpin (Serpini1) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6).
  • the proteins of at least one, preferably at least two, three, four or five, or all are used and the expression level of the protein is normal in body fluid samples obtained from the subject being treated. Tested in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; and said expression levels as well as expression levels in said normal body fluids or post-treatment body fluids. The subject when it does not show a statistically significant difference in comparison or shows a statistically significant difference in comparison with the expression level in the body fluid known to show perinatal disorders. It can be determined that the treatment of perinatal disorders in Ubiquitin is effective.
  • Fluctuations in the expression level of the above proteins in body fluid samples include expression levels in normal body fluids, post-treatment body fluids (due to drugs, pluripotent stem cells, etc.), or body fluids known to exhibit perinatal disorders. It is done by comparison.
  • the reference body fluid is a normal body fluid or a body fluid after treatment
  • the difference from the standard body fluid is 100%, 90%, 80%, 70%, 60%, 50%, 40% of the expression level of the reference body fluid. , 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7 %, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or less, or preferably 0%.
  • the expression level of the fluctuation is 1.1 times, 1.2 times, and 1. 3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2 times, 2.5 times, 3 times, 4 times, 5 times,
  • the increase or decrease may be 6 times, 7 times, 8 times, 9 times, 10 times, 15 times, 20 times, 30 times, 40 times, 50 times, 100 times, or more.
  • the present invention provides a method for early diagnosis of brain disorders (eg, neurodevelopmental disorders) in post-growth infants and children by capturing mild perinatal brain disorders that are difficult to detect with current diagnostic methods. Can be provided. According to the present invention, it is possible to diagnose a brain disorder that occurs after growth, which has been overlooked so far, in the neonatal period, and to capture a perinatal brain disorder that has not been diagnosed so far.
  • brain disorders eg, neurodevelopmental disorders
  • A2m ( ⁇ -2-macroglobulin)
  • BBB blood-brain barrier
  • Results Significant increases were confirmed in serum and cerebrospinal fluid both 5 days and 14 days after birth. In addition, suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth. In the results of cerebrospinal fluid, the inhibitory effect of Muse cells could not be confirmed at the stage of 5 days after birth, but what was confirmed in serum was A2 m due to fetal growth restriction even in organs other than the brain (lungs, etc.). It is considered that the upregulation of serum was induced and the Muse cells acted on the organ earlier than the brain.
  • Serpini1 neuroserpin
  • a type of serine protease inhibitor, neuroserpin is expressed in large amounts in the brain. In addition to suppressing proteolytic degradation by inhibiting proteolytic enzymes, it also controls inflammation. It is said that nerve cells are important for normal functioning and control memory and emotions. It has also been reported to have a neuroprotective effect. Dysfunction of this protein induces dementia. Results: Significant increases were confirmed in serum and cerebrospinal fluid both 5 days and 14 days after birth. As with cerebrospinal fluid, the degree of increase in serum samples is greater at 14 after birth. Furthermore, compared with cerebrospinal fluid, it was hardly confirmed in the control, so the rate of increase was large.
  • Cd200 OX-2 Membrane Glycoprotein
  • Ubb polyubiquitin-B Characteristic: A protein that functions as a label given when removing unnecessary proteins or abnormal proteins. Increased expression of this protein means an increase in unwanted proteins. In addition, abnormal expression fluctuations cause neurodegenerative diseases. Results: A significant increase was confirmed on both 5 and 14 days after birth. In addition, suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs.
  • Uba1 (ubiquitin-like modification activating enzyme 1)
  • a type of ubiquitin activating enzyme which is a protein for activating ubiquitin for use in the next proteolysis of ubiquitin used for proteolysis. Like Ubb, it is an important molecule for protein quality control.
  • Uba1 may be referred to as "Ube1".
  • Otub1 ubiquitin thioesterase OTUB1
  • Deubiquitinating enzyme It is a protein for desorbing ubiquitin from ubiquitinated proteins and chromatin. Like Ubb, it is an important molecule for protein quality control.
  • ⁇ -2-macroglobulin SEQ ID NO: 1
  • OX-2 membrane glycoprotein Cd200
  • SEQ ID NO: 2 OX-2 membrane glycoprotein
  • Ubb polyubiquitin-B
  • Neurocerpin Serpini1
  • ubiquitin thioesterase OTUB1 Otub1
  • Uba1 ubiquitin-like modification activating enzyme 1
  • the proteomics profile contains information on at least two, at least three, at least four, at least five, or all expression levels of the above proteins in any combination.
  • the proteomics profile contains information on the level of expression of the protein, and one or more of the proteins tested statistically compared to the level of expression in normal or post-treatment body fluids.
  • the subject is diagnosed with perinatal disorder if it shows a significant difference or does not show a statistically significant difference compared to the expression level in the body fluid known to show perinatal disorder. do.
  • the "treatment" when the body fluid as a comparative reference is the body fluid after treatment is not limited, but is a treatment method for perinatal brain disorder (for example, hypothermia) as recognized by those skilled in the art.
  • therapies eg, umbilical cord blood stem cells, Muse cells.
  • “Muse (Multigeneage-Differentating Stress Enduring) cells” are bone marrow fluid, adipose tissue (Ogura, F., et al., Stem Cells Dev., Nov 20, 2013 (Epub) (published on Jan 17, 2014)) It can be obtained from skin tissues such as dermal connective tissue and is scattered in the connective tissues of each organ. In addition, these cells are cells having the properties of both pluripotent stem cells and mesenchymal stem cells. For example, the respective cell surface markers "SSEA-3 (Stage-specific embryonic antigen-3)" and " Identified as double positive for "CD105".
  • SSEA-3 Stage-specific embryonic antigen-3)
  • a Muse cell or a cell population containing a Muse cell can be separated from a living tissue using these antigen markers as an index, for example.
  • Muse cells are stress resistant and can be concentrated from mesenchymal tissues or cultured mesenchymal cells by various stress stimuli.
  • a cell fraction in which Muse cells are concentrated by stress stimulation can also be used. Details such as a method for separating Muse cells, a method for identifying them, and their characteristics are disclosed in International Publication No. WO2011 / 007900.
  • Wakao et al. 2011, supra, when mesenchymal cells are cultured from bone marrow, skin, etc.
  • SSEA-3 positive cells are CD105. It is known to be a positive cell. Therefore, when separating Muse cells from living mesenchymal tissues or cultured mesenchymal stem cells, Muse cells can be simply purified and used using SSEA-3 as an antigen marker. In the present specification, using SSEA-3 as an antigen marker, a cell population containing pluripotent stem cells (Muse cells) or Muse cells isolated from living mesenchymal tissues or cultured mesenchymal tissues is simply referred to as "Muse cells”. It may be described as "SSEA-3 positive cells”.
  • non-Muse cell refers to a stem cell contained in a living mesenchymal tissue or a cultured mesenchymal tissue, and is a stem cell other than the “SSEA-3 positive cell”.
  • a cell population obtained by removing SSEA-3 and CD105-positive cells from MSC can be used as non-Muse cells according to the method described in WO2011 / 007900 on Isolation and Identification of Human Muse Cells.
  • a Muse cell or a stem cell population containing Muse cells uses a living tissue (eg, an antibody against the cell surface marker SSEA-3 alone, or both antibodies against SSEA-3 and CD105, respectively).
  • a living tissue eg, an antibody against the cell surface marker SSEA-3 alone, or both antibodies against SSEA-3 and CD105, respectively.
  • Mesenchymal tissue refers to a living body of a mammal.
  • the living body does not include a fertilized egg or an embryo at a developmental stage before the blastogenic stage, but includes an embryo at a developmental stage after the blastogenic stage including a foetation or a blastoblast.
  • Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats and guinea pigs, rabbits, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets and the like. Be done. Muse cells used in the cell preparations and pharmaceutical compositions of the present invention are clearly distinguished from embryonic stem cells (ES cells) and iPS cells in that they are separated directly from living tissues using markers.
  • ES cells embryonic stem cells
  • iPS cells embryonic stem cells
  • the "mesenchymal tissue” refers to tissues such as bone, synovium, fat, blood, bone marrow, skeletal muscle, dermis, ligaments, tendons, dental pulp, umbilical cord, and cord blood, and tissues existing in various organs.
  • Muse cells can be obtained from bone marrow, skin and adipose tissue. For example, it is preferable to collect mesenchymal tissue of a living body, separate Muse cells from this tissue, and use it. In addition, Muse cells may be separated from cultured mesenchymal cells such as fibroblasts and bone marrow mesenchymal stem cells by using the above-mentioned separation means. In the cell preparation and pharmaceutical composition of the present invention, the Muse cells used may be autologous or allogeneic to the recipient.
  • Muse cells or cell populations containing Muse cells can be separated from living tissues using, for example, SSEA-3 positive and double positive of SSEA-3 and CD105 as indicators, but human adult skin. Is known to include various types of stem cells and progenitor cells. However, Muse cells are not the same as these cells.
  • Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural ridge stem cells (NCSC), melanoblasts (MB), perivascular cells (PC), endothelial progenitor cells (EP), and adipose-derived stem cells (ADSC). ).
  • SSEA-3 positive and double positive of SSEA-3 and CD105 as indicators, but human adult skin.
  • Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural ridge stem cells (NCSC), melanoblasts (MB), perivascular cells (PC), endothelial progenitor cells (EP), and adipose-derived stem cells (ADSC).
  • Muse cells include CD34 (markers for EP and ADSC), CD117 (c-kit) (markers for MB), CD146 (markers for PC and ADSC), CD271 (NGFR) (markers for NCSC), NG2 (PC marker), vWF factor (Fonville brand factor) (EP marker), Sox10 (NCSC marker), Snai1 (SKP marker), Slug (SKP marker), Tyrp1 (MB marker), and At least one of 11 markers selected from the group consisting of Dct (MB marker), for example, 2, 3, 4, 5, 6, 7, 8, 9, 10 The non-expression of 11 or 11 markers can be separated as an index.
  • the non-expression of CD117 and CD146 can be used as an index
  • the non-expression of CD117, CD146, NG2, CD34, vWF and CD271 can be used as an index
  • the non-expression of 11 markers can be separated as an index.
  • Muse cells having the above characteristics are as follows: (I) Low or no telomerase activity; (Ii) Has the ability to differentiate into cells of any of the three germ layers; It may have at least one property selected from the group consisting of (iii) no neoplastic growth; and (iv) capable of self-renewal.
  • the Muse cells used in the cell preparations and pharmaceutical compositions of the present invention have all of the above properties.
  • "the telomerase activity is low or absent” means that, for example, when the telomerase activity is detected using TRAPEZE XL telomerase detection kit (Millipore), it is low or cannot be detected. say.
  • telomerase activity means, for example, telomerase having the same level of telomerase activity as somatic human fibroblasts, or 1/5 or less, preferably 1/10 or less of that of Hela cells. It means having activity.
  • Muse cells have the ability to differentiate into three germ layers (endoderm lineage, mesodermal lineage, and ectodermal lineage) in vitro and in vivo, and are, for example, induced and cultured in vitro. Can differentiate into hepatocytes, nerve cells, skeletal muscle cells, smooth muscle cells, bone cells, fat cells and the like. It may also show the ability to differentiate into three germ layers when transplanted into the testis in vivo.
  • Muse cells proliferate at a growth rate of about 1.3 days in suspension culture, but grow from one cell in suspension culture to form embryo-like cell clusters, and the growth slows down in about 14 days.
  • these embryo-like cell clusters are brought into the adhesive culture, cell proliferation is started again, and the cells proliferated from the cell cluster spread.
  • transplanted into the testis it has the property of not becoming cancerous for at least half a year.
  • Muse cells have a self-renewal (self-renewal) ability.
  • self-renewal means that the differentiation of cells contained in embryoid body-like cell clusters obtained by culturing one Muse cell in suspension culture into three germ layer cells can be confirmed, and at the same time, at the same time, it can be confirmed.
  • the next generation embryo-like cell mass is formed, and from there, the embryos in the three germ layer differentiation and suspension culture are again formed. It means that a skeletal cell mass can be confirmed.
  • Self-renewal may be repeated one or more cycles.
  • the cell fraction containing Muse cells gives an external stress stimulus to the mesenchymal tissue or cultured mesenchymal cells of the living body, kills cells other than the cells resistant to the external stress, and causes the surviving cells.
  • It may be a cell fraction enriched with SSEA-3 positive and CD105 positive pluripotent stem cells having at least one, preferably all of the following properties, obtained by a method involving recovery.
  • Iii Low or no telomerase activity;
  • Iv Has the ability to differentiate into three germ layers;
  • V) does not show neoplastic growth; and
  • (vi) has self-renewal ability.
  • the above external stresses are protease treatment, culture at low oxygen concentration, culture under low phosphoric acid condition, culture at low serum concentration, culture under low nutritional condition, culture under heat shock exposure, low temperature. Culturing in, freezing treatment, culturing in the presence of harmful substances, culturing in the presence of active oxygen, culturing under mechanical stimulation, culturing under shaking treatment, culturing under pressure treatment or physical impact It may be any or a combination of two or more.
  • the treatment time with the protease is preferably 0.5 to 36 hours in total in order to give external stress to the cells.
  • the protease concentration may be any concentration used when peeling the cells adhered to the culture vessel, breaking up the cell mass into a single cell, or recovering a single cell from the tissue.
  • the protease is preferably serine protease, aspartic protease, cysteine protease, metal protease, glutamate protease or N-terminal threonine protease. Further, it is preferable that the protease is trypsin, collagenase or dispase.
  • One pregnant rat in each group was bred at room temperature 22-24 ° C., humidity 50-60%, 12-hour light-dark cycle, and free access to food and water.
  • intrauterine hypoperfusion treatment was performed by attaching Ameloid Constrictors (Research Instruments SW, CA, US) to the uterine and ovarian arteries.
  • the uterus exposed when the Ameroid Constrictor was worn was wrapped in gauze soaked with saline warmed to 37 ° C to prevent dryness and decrease in body temperature.
  • the pregnant rats in the sham group only the laparotomy and uterine exposure treatment were performed on the 17th day of pregnancy as in the vehicle group, and the abdomen was closed without wearing the Ameloid Constrictor.
  • Example 2 Collection of cerebrospinal fluid A capillary (DRM Microcap, 1-000-0500) was purchased for collection of cerebrospinal fluid and sharpened by crushing the tip. The posterior fossa of the rat pups asleep with isoflurane was exposed, a sharpened capillary was punctured into the cisterna magna, and cerebrospinal fluid was collected by capillary action. The collected cerebrospinal fluid was placed in a tube to which a proteolytic enzyme inhibitor had been added in advance, immediately frozen in liquid nitrogen, and stored frozen at -80 ° C until use.
  • Example 3 Serum collection 500 ⁇ L of blood was collected from the heart of a rat pups asleep with isoflurane and placed in a microvascular (BD Microtainer SST) containing a coagulation promoter and a serum separator. After 5 inversion mixing, blood cell components were precipitated by centrifugation at 10000 ⁇ g, and serum was collected. A proteolytic enzyme inhibitor was added to the collected serum, and the serum was stored frozen at ⁇ 80 ° C. until use.
  • BD Microtainer SST microvascular
  • Example 4 Comprehensive analysis of proteins in cerebrospinal fluid by proteomics
  • the protein concentration in the collected cerebrospinal fluid was measured by the BCA method and unified to a concentration of 50 ⁇ g / 100 ⁇ L.
  • the abundance of total protein contained in cerebrospinal fluid was measured by a liquid chromatograph / mass spectrometer (LC / MS), and a protein profile was obtained.
  • the Spearman correlation coefficient between the abundance of all 601 proteins detected in the cerebrospinal fluid and the body weight on the third day of birth was calculated, and the p-value and false discovery rate (FDR) were calculated based on the correlation coefficient. ) was calculated. It has already been confirmed that the body weight on the third day of birth correlates with the body weight at birth.
  • the proteins showing p ⁇ 0.05 and FDR ⁇ 0.10 140 kinds on the 4th day of birth and 123 kinds on the 5th day, a total of 212 kinds (51 kinds of duplication) were confirmed, and these 212 kinds of proteins were confirmed. It was found as a protein that fluctuates with fetal growth restriction.
  • a group of proteins satisfying the conditions of p ⁇ 0.05, Fold Engineering> 2, and Symbols number> 3 was extracted by functional analysis of the 212 proteins using Gene Ontology.
  • proteins related to biological processes 333 proteins related to biological processes, 42 proteins related to cell components, 50 proteins related to molecular function, and 123 proteins on the 5th day of birth , 191 proteins related to biological processes, 27 proteins related to cell components, and 35 proteins related to molecular function were extracted.
  • the ones extracted at the top as showing particularly remarkable fluctuations are proteins related to the differentiation of neural stem cells and glial cells, neurogenesis and control of cell death on the 4th day of birth, and the 5th day.
  • protein groups responsible for inflammatory / immune response, cell adhesion, and protein structure management were commonly extracted on the 4th and 5th days of birth.
  • Example 5 Quantification of proteins by polyacrylamide gel electrophoresis and Western blotting Cerebral spinal fluid and serum proteins sample denaturing buffer (125 mM Tris-HCl [pH 6.8], 20% glycerol, 4% w / v sodium dodecyl sulfate [SDS] ], 0.001% w / v bromophenol blue and 10% mercaptoethanol), and the protein was denatured by heating at 95 ° C. for 5 minutes. For each sample, 5 ⁇ g of protein per lane was added to a 10% SDS-polyacrylamide gel and first electrophoresed at 80 V, 10 ° C. for 120 minutes.
  • SDS sodium dodecyl sulfate
  • the proteins separated by electrophoresis were transferred onto a polyvinylidene difluoride membrane (Merck Millipore, MA, USA) at room temperature and 400 mA for 1 hour. After blocking the protein on the membrane with 5% skim milk dissolved in Tris buffered physiological saline (pH 7.4) (TBS-T) containing 0.1% Tween-20, the primary antibody, rabbit anti-albumin antibody (Proteintech:). 16475-1-AP, 1: 5000), rabbit anti-A2m antibody (Abcam: ab58703, 1: 500), rabbit anti-Cd200 antibody (Proteintech: 14057-1-AP, 1: 200), rabbit anti-Ube1 (Uba1) antibody.
  • TSS-T Tris buffered physiological saline
  • the rat albumin molecule is 66 kDa
  • the A2m molecule is 163 kDa
  • the neuroselpin molecule is 46 kDa
  • the Ubb molecule is 34 kDa
  • the CD200 molecule is 41 kDa
  • the OTUB1 molecule is 31 kDa
  • the UBE1 molecule is. The appearance of the band was confirmed at 117 kDa.
  • the density of each detected band was quantified by background subtraction, and the quantified values of A2m, neuroserpin, Ubb, Cd200, OTUB1, and UBE1 were corrected by the quantified values of albumin of each sample (FIGS. 7A to 12A).
  • FIGS. 7B and C, 8B and C, FIG. 9B and C, FIGS. 10B and C, FIG. 11B, and FIG. 12B show the abundance of each protein in cerebrospinal fluid (births 5, 7, 10, and 14 days), while FIGS. 7C, 8C, 9C, and 10C indicates the abundance of each protein in serum (5th and 14th day of birth).
  • A2m ( ⁇ -2-macroglobulin)
  • suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth (FIGS. 7B and C).
  • the inhibitory effect of Muse cells could not be confirmed at the stage of 5 days after birth (Fig. 7B), but what was confirmed in serum was the fetus in organs other than the brain (lungs, etc.). It is considered that the growth restriction induces the upregulation of A2m, and the Muse cells act on the organ earlier than the brain.
  • E Otub1 (ubiquitin thioesterase OTUB1)
  • Muse cells In cerebrospinal fluid, the expression of Muse cells was confirmed to be suppressed by Muse cells and MSCs on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs (Fig. 11B).
  • Uba1 ubiquitin-like modification activating enzyme 1
  • Muse cells In cerebrospinal fluid, the expression of Muse cells was confirmed to be suppressed by Muse cells and MSCs on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs (Fig. 12B).
  • PBS phosphate buffered saline
  • PFA paraformaldehyde
  • Brain samples were post-fixed with 4% PFA dissolved in 0.1 M phosphate buffer for 24 hours and then phosphate buffered sucrose containing 0.1% sodium azide (10% sucrose, 4-6 hours, 20% sucrose, 4-6 hours, 30% sucrose, 12-36 hours) was cryoprotected and rapidly frozen at ⁇ 80 ° C. After freezing, brain sections were sliced in the coronal direction to a thickness of 40 ⁇ m. The prepared section was blocked with 10% normal goat serum for 1 hour at room temperature, and then the primary antibody rabbit anti-A2m antibody (Abcam: ab58703, 1:50) and rabbit anti-CD200 antibody (Proteintech: 14057-1-AP, 1:50).
  • rabbit anti-Ube1 (Uba1) antibody (Proteintech: 15912-1-AP, 1:50), or rabbit anti-neuroseperpine antibody Abcam: ab33077, 1: 100) was reacted at 4 ° C. for 20 hours. After washing 3 times with PBS for 5 minutes, ATTO 488 conjugated secondary antibody goat anti-rabbit IgG (Rockland, 611-152-122, 1: 500) was reacted at 4 ° C. for 12 hours.
  • Mouse anti-S100 antibody (Abcam: ab4066, 1: 100) or mouse anti-Iba1 antibody (Abcam: ab15690, 1: 100) was reacted at 4 ° C. for 20 hours. Each of these antibodies was used as a marker for nerve cells, oligodendrocytes, astrocytes, and microglia.
  • ATTO 550 conjugated secondary antibody goat anti-mouse IgG (Rockland, 611-152-122, 1: 500) was reacted at 4 ° C. for 12 hours. After washing with PBS 3 times for 5 minutes, the cells were passed through purified water once and encapsulated with nuclear staining using Prolong Gold with DAPI. After drying, the observation was performed using a confocal laser scanning microscope (TiE-A1R, Nikon, Japan). Select 10 sections nasally from the intersection of the sagittal and coronal sutures (Bregma) of the brain, and observe the hippocampus (Fig. 13A), striatum (Fig. 14A), and cerebral cortex (Fig. 15A) of each section.
  • 100 cells were randomly selected from each brain region, and the expression levels of the four biomarker candidate proteins in NeuN-positive cells, Olig2-positive cells, S100-positive cells, and Iba1-positive cells were relative to the fluorescence intensity. Quantified. Of the 100 cells, the one in which the four candidate proteins showed the highest intensity was set to 100, and the non-expressing cell was set to 0.
  • CD200 showed strong expression in S100-positive cells in both the sham-surgery group and the FGR group, followed by NeuN-positive cells. In these cells, CD200 was more strongly expressed in the FGR group than in the sham surgery group. Ubb was detected in NeuN-positive cells, S100-positive cells and Olig2-positive cells, and its expression intensity was significantly increased in the FGR group. In addition, these results were very similar in all brain regions of the cerebral cortex, hippocampus, and striatum. From these results, it was clarified that the four biomarker candidate proteins were significantly upregulated in the brain tissue. It was also shown that the expression variation of the candidate protein depends not on the brain region but on the type of brain cells.
  • the biomarker of the present invention can be used for early diagnosis of perinatal disorders in newborns due to fetal growth restriction in mammalian subjects, and is applied to the treatment of neurodevelopmental disorders in infants and children. be able to.

Abstract

The purpose of the present invention is to provide an assessment and diagnosis method for predicting neurodevelopmental disorders at an early stage, determining the optimal treatment policy, and assessing the effect of intervention treatment in newborns at an early stage, by appropriately and accurately diagnosing, with high sensitivity, perinatal brain disorders (for example, neurodevelopmental disorders) in newborns associated with fetal growth restriction. According to the present invention, provided is a method for determining, at an early stage, perinatal brain disorders of newborns caused by fetal growth restriction, the method involving (a) a process for assessing the expression levels of one or more proteins selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), neuroserpin (Serpini1), ubiquitin thioesterase OTUB1 (Otub1), and ubiquitin-like modifier activating enzyme 1 (Uba1) in a body fluid sample obtained from a subject, in comparison with the expression levels in a control body fluid.

Description

胎児発育不全に対する定量的評価指標Quantitative evaluation index for fetal growth restriction
 本発明は、胎児発育不全に起因する新生児の周産期障害を早期に判定、診断、又は診断を補助するためのバイオマーカー、及び該バイオマーカーを用いた新生児の周産期障害の早期判定又は早期診断法、並びに該バイオマーカーを用いて周産期障害の治療効果を早期に判定する方法に関する。 The present invention provides a biomarker for early determination, diagnosis, or assistance in diagnosis of perinatal disorder in a newborn due to fetal stunting, and early determination or early determination of perinatal disorder in a newborn using the biomarker. The present invention relates to an early diagnosis method and a method for determining the therapeutic effect of perinatal disorders at an early stage using the biomarker.
 妊娠は、増加した母体心拍出量及び子宮螺旋動脈のトロホブラスト駆動修飾から生じる子宮灌流の膨大な増加と関連する。この正常な生理学的過程の失敗は、最も困難な産科的合併症のうちの2つである、胎児発育不全(Fetal Growth Restriction;FGR)(又は子宮内胎児発育遅延(Intrauterine Growth Restriction;IUGR)とも呼ばれる)及び子癇前症(Pre-Eclampsia Toxaemia;PET)の原因に関与している。 Pregnancy is associated with increased maternal cardiac output and a vast increase in uterine perfusion resulting from trophoblast-driven modification of the uterine spiral artery. Failure of this normal physiological process is also known as two of the most difficult obstetric complications, Fetal Growth Restriction (FGR) (or Intrauterine Growth Restriction; IUGR). Is involved in the causes of pre-eclampsia (pre-eclampsia) and pre-eclampsia (PET).
 胎児発育不全は、すべての妊娠の8%まで罹患し、高い周産期死亡率、長期間の神経学的障害及び後年における心臓血管疾患の発生の増加と関連し、科学的根拠に基づいた有効な処置は存在しない。重篤な早期発症胎児発育不全は、1:500の妊娠で罹患し、高い死亡率及び生存者での長期間にわたる合併症と関連する。最重症の場合は、生存可能な出産体重(少なくとも500g)に到達することができず、中絶するか、又は胎児が子宮内で死ぬようにするかの厳しい選択を迫られる。胎児成長(例えば、700gの出生時体重まで)の、及び誕生時の妊娠期間(例えば、26から28週)の少しの改善は、生存及び罹患率の主な改善と関連する。 Fetal growth restriction affects up to 8% of all pregnancies and is associated with high perinatal mortality, long-term neurological disorders and an increased incidence of cardiovascular disease in later years, based on evidence. There is no effective treatment. Severe early-onset fetal growth restriction affects 1: 500 pregnancies and is associated with high mortality and long-term complications in survivors. In the most severe cases, a viable birth weight (at least 500 g) cannot be reached, forcing a strict choice between abortion or allowing the foetation to die in utero. Small improvements in fetal growth (eg, up to 700 g birth weight) and birth gestation (eg, 26-28 weeks) are associated with major improvements in survival and morbidity.
 現在の妊娠管理は、発育不全胎児を有する女性を見つけ出すように設計されている。母体血清マーカー及び子宮動脈ドップラー超音波試験のような多くの戦略が利用可能であり、それらは、これらの状態を発症し得る女性を予測することができる。 Current pregnancy management is designed to find women with dysgenetic foets. Many strategies are available, such as maternal serum markers and uterine artery Doppler ultrasonic testing, which can predict women who may develop these conditions.
 これまでに、胎児発育不全に伴う新生児における周産期脳障害を治療するために幹細胞療法等による治療介入を行う試みがなされ、その後の幼児及び小児にける神経発達障害に対する治療効果を評価することが行われている(特許文献1)。しかしながら、現在、胎児発育不全による周産期脳障害(例えば、神経発達障害)を早期に評価・診断することに成功した治療戦略は存在しない。 So far, attempts have been made to perform therapeutic interventions such as stem cell therapy in order to treat perinatal brain disorders in newborns associated with fetal growth restriction, and to evaluate the therapeutic effect on neurodevelopmental disorders in infants and children thereafter. (Patent Document 1). However, at present, there is no therapeutic strategy that has succeeded in early evaluation and diagnosis of perinatal brain disorders (for example, neurodevelopmental disorders) due to fetal growth restriction.
国際公開第2017/199976号International Publication No. 2017/199976
 本発明は、上記の問題点を克服し、胎児発育不全に伴う新生児における周産期脳障害(例えば、神経発達障害)を高感度に、適切かつ正確に診断することにより、早期に神経発達障害を予測し、さらには、最適な治療方針の決定、及び介入した治療の効果を新生児において早期に評価するための評価・診断方法を提供することにある。また、本発明は、胎児発育不全に伴う周産期脳障害の病態解明に向けた基盤となる情報を提供する。 The present invention overcomes the above-mentioned problems and diagnoses perinatal brain disorders (for example, neurodevelopmental disorders) in newborns associated with fetal growth restriction with high sensitivity, appropriately and accurately, thereby causing neurodevelopmental disorders at an early stage. Furthermore, it is an object of the present invention to determine an optimal treatment policy and to provide an evaluation / diagnosis method for early evaluation of the effect of intervening treatment in a newborn baby. The present invention also provides information that is the basis for elucidating the pathophysiology of perinatal brain disorders associated with fetal growth restriction.
 本発明者らは、上記課題を解決するために、胎児発育不全ラットモデルから脳脊髄液中のタンパク質を網羅的に解析した結果、胎児発育不全に伴う発達障害の評価、診断、予測、及び治療のための少なくとも6種のバイオマーカーを同定することに成功し、本発明を完成するに至った。 In order to solve the above problems, the present inventors comprehensively analyzed proteins in cerebrospinal fluid from a rat model of fetal growth restriction, and as a result, evaluated, diagnosed, predicted, and treated developmental disorders associated with fetal growth restriction. We have succeeded in identifying at least 6 kinds of biomarkers for the present invention, and have completed the present invention.
 すなわち、本発明は、以下の通りである。
 [1]哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害を早期に判定する方法であって、
 (a)α-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)からなる群から選択される1つ又は複数のタンパク質の発現レベルを、被検体から得た体液試料において、正常な体液、治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較して試験し;ならびに
 (b)前記発現レベルが前記正常な体液又は治療後の体液における発現レベルと比較して統計学的に有意差を示すか、又は周産期障害を示すことが知られている前記体液における発現レベルと比較して統計学的に有意差を示さない場合に、前記被検体が周産期障害であると評価する
ことを含む上記方法。
 [2]前記タンパク質が、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)からなる群から選択される、[1]に記載の方法。
 [3]被検体がヒト患者である、[1]又は[2]に記載の方法。
 [4]前記の試験したタンパク質のすべてが正常な体液と比較して、被検体の体液試料において有意差を示す場合に、前記被検体が周産期障害であると評価する、[1]~[3]のいずれかに記載の方法。
 [5]前記発現レベルがイムノアッセイによって決定される、[1]~[4]のいずれかに記載の方法。
 [6]前記発現レベルが液体クロマトグラフィー/質量分析法によって決定される、[1]~[4]のいずれかに記載の方法。
 [7]前記発現レベルがタンパク質アレイを用いて決定される、[1]~[4]のいずれかに記載の方法。
 [8]哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害を早期に判定のための、前記被検体から得られた体液中のα-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、ニューロセルピン(Serpini1)、ユビキチンチオエステラーゼOTUB1(Otub1)、及びユビキチン様修飾活性化酵素1(Uba1)からなる群から選択される1つ又は複数のタンパク質発現のプロテオミクスプロファイルの使用。
 [9]前記タンパク質が、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)からなる群から選択される、[8]に記載の使用。
 [10]哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害の治療効果を早期に判定する方法であって、
 (a)α-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)からなる群から選択される1つ又は複数のタンパク質の発現レベルを、治療中の被検体から得た体液試料において、正常な体液、治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較して試験し;ならびに
 (b)前記発現レベルが前記正常な体液又は治療後の体液における発現レベルと比較して統計学的に有意差を示さないか、又は周産期障害を示すことが知られている前記体液における発現レベルと比較して統計学的に有意差を示す場合に、前記被検体における周産期障害の治療が有効であると判定する
ことを含む上記方法。
 [11]前記タンパク質が、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)からなる群から選択される、[10]に記載の方法。
That is, the present invention is as follows.
[1] A method for early determination of perinatal disorders in newborns due to fetal growth restriction in mammalian subjects.
(A) α-2-Macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) ) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and one or more proteins selected from the group consisting of ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Expression levels were tested in body fluid samples obtained from subjects in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; and (b). The expression level is statistically significantly different from the expression level in the normal body fluid or the body fluid after treatment, or is compared with the expression level in the body fluid known to exhibit perinatal disorders. The above method, which comprises evaluating the subject as having a perinatal disorder when it does not show a statistically significant difference.
[2] The protein is selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). 1] The method described in.
[3] The method according to [1] or [2], wherein the subject is a human patient.
[4] When all of the tested proteins show a significant difference in the body fluid sample of the subject as compared with the normal body fluid, the subject is evaluated as having a perinatal disorder, [1] to The method according to any one of [3].
[5] The method according to any one of [1] to [4], wherein the expression level is determined by an immunoassay.
[6] The method according to any one of [1] to [4], wherein the expression level is determined by liquid chromatography / mass spectrometry.
[7] The method according to any one of [1] to [4], wherein the expression level is determined using a protein array.
[8] Α-2-Macroglobulin (A2m), OX in the body fluid obtained from the subject, for early determination of neonatal perinatal disorders caused by fetal stunting in the mammalian subject. -2 Selected from the group consisting of membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), neuroserpin (Serpini1), ubiquitin thioesterase OTUB1 (Otub1), and ubiquitin-like modification activating enzyme 1 (Uba1) 1 Use of a proteomics profile of one or more protein expressions.
[9] The protein is selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). 8] Use described in.
[10] A method for early determination of the therapeutic effect of neonatal perinatal disorders caused by fetal growth restriction in a mammalian subject.
(A) α-2-Macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) ) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and one or more proteins selected from the group consisting of ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Expression levels were tested in body fluid samples obtained from the subject being treated in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; (B) In the body fluid known to show no statistically significant difference in expression level compared to the expression level in the normal body fluid or body fluid after treatment, or to exhibit perinatal disorders. The above method comprising determining that treatment of perinatal disorders in the subject is effective when it shows a statistically significant difference compared to the expression level.
[11] The protein is selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). 10].
 本発明によれば、本発明のバイオマーカーを使用することにより、新生児期に周産期脳障害の発症を予測することができ、また、幼児又は小児における神経発達障害を早期に予測することができるため、新生児において最適な診断指針、治療評価、及び病態解明を行うことができる。 According to the present invention, by using the biomarker of the present invention, the onset of perinatal brain disorder can be predicted in the neonatal period, and the onset of neurodevelopmental disorder in infants or children can be predicted at an early stage. Therefore, it is possible to perform optimal diagnostic guidelines, treatment evaluation, and elucidation of pathological conditions in newborn babies.
α-2-マクログロブリン(A2m)は、プロテオミクス解析により顕著な変動を示すタンパク質として特定された。α-2-Macroglobulin (A2m) was identified by proteomics analysis as a protein with significant variation. ニューロセルピン(Serpini1)は、プロテオミクス解析により顕著な変動を示すタンパク質として特定された。Neuroserpin (Serpini1) has been identified by proteomics analysis as a protein with significant variation. ポリユビキチン-B(Ubb)は、プロテオミクス解析により顕著な変動を示すタンパク質として特定された。Polyubiquitin-B (Ubb) was identified by proteomics analysis as a protein with significant variation. OX-2メンブレン糖タンパク質(Cd200)は、プロテオミクス解析により顕著な変動を示すタンパク質として特定された。The OX-2 membrane glycoprotein (Cd200) was identified by proteomics analysis as a protein showing significant variation. ユビキチンチオエステラーゼOTUB1(Otub1)は、プロテオミクス解析により顕著な変動を示すタンパク質として特定された。Ubiquitin thioesterase OTUB1 (Otub1) has been identified by proteomics analysis as a protein with significant variation. ユビキチン様修飾活性化酵素1(Uba1又はUbe1)は、プロテオミクス解析により顕著な変動を示すタンパク質として特定された。Ubiquitin-like modification activating enzyme 1 (Uba1 or Ube1) was identified by proteomics analysis as a protein showing significant variation. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における経時的なA2mの発現を示す。The expression of A2m over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における脳脊髄液中のA2m発現を経時的に測定した結果を示す。A2m expression in cerebrospinal fluid over time in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)) The result of the measurement is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における血清中のA2m発現を経時的に測定した結果を示す。A2m expression in serum in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”) over time The measurement result is shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における経時的なSerpini1の発現を示す。The expression of Serpini1 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における脳脊髄液中のSerpini1発現を経時的に測定した結果を示す。Serpini1 expression in cerebrospinal fluid over time in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)) The result of the measurement is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における血清中のSerpini1発現を経時的に測定した結果を示す。Serum expression in serum in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”) over time The measurement result is shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における経時的なUbbの発現を示す。The expression of Ubb over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における脳脊髄液中のUbb発現を経時的に測定した結果を示す。Ubb expression in cerebrospinal fluid over time in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)) The result of the measurement is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における血清中のUbb発現を経時的に測定した結果を示す。Serum Ubb expression in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”) over time The measurement result is shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における経時的なCd200の発現を示す。The expression of Cd200 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における脳脊髄液中のCd200発現を経時的に測定した結果を示す。Over time Cd200 expression in cerebrospinal fluid in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)) The result of the measurement is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における血清中のCd200発現を経時的に測定した結果を示す。Serum Cd200 expression in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”) over time The measurement result is shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における経時的なOtub1の発現を示す。The expression of Otub1 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における脳脊髄液中のOtub1発現を経時的に測定した結果を示す。Time-lapse of Otub1 expression in cerebrospinal fluid in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)) The result of the measurement is shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における経時的なUba1の発現を示す。The expression of Uba1 over time in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) is shown. 各種胎児発育不全モデル群(偽手術群(「Sham」)、ビークル群(Vehicle」)、MSC群(「MSC」)、及びMuse群(「Muse」))における脳脊髄液中のUba1発現を経時的に測定した結果を示す。Uba1 expression in cerebrospinal fluid over time in various fetal growth restriction model groups (sham surgery group (“Sham”), vehicle group (Vehicle)), MSC group (“MSC”), and Muse group (“Muse”)) The result of the measurement is shown. 脳の海馬の場所を示す。Indicates the location of the hippocampus in the brain. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における海馬を構成する各細胞において、組織染色により各種バイオマーカーの発現を観察した結果を示す。The results of observing the expression of various biomarkers by tissue staining in each cell constituting the hippocampus in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における海馬を構成する各細胞において、組織染色により各種バイオマーカーの発現を観察した結果を示す。The results of observing the expression of various biomarkers by tissue staining in each cell constituting the hippocampus in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown. 図13Bに対応した各種バイオマーカーの発現強度を示す。The expression intensities of various biomarkers corresponding to FIG. 13B are shown. 図13Cに対応した各種バイオマーカーの発現強度を示す。The expression intensities of various biomarkers corresponding to FIG. 13C are shown. 脳の線条体の場所を示す。Indicates the location of the striatum of the brain. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における線条体を構成する各細胞において、組織染色により各種バイオマーカーの発現を観察した結果を示す。The results of observing the expression of various biomarkers by tissue staining in each cell constituting the striatum in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における線条体を構成する各細胞において、組織染色により各種バイオマーカーの発現を観察した結果を示す。The results of observing the expression of various biomarkers by tissue staining in each cell constituting the striatum in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown. 図14Bに対応した各種バイオマーカーの発現強度を示す。The expression intensities of various biomarkers corresponding to FIG. 14B are shown. 図14Cに対応した各種バイオマーカーの発現強度を示す。The expression intensities of various biomarkers corresponding to FIG. 14C are shown. 脳の大脳皮質の場所を示す。Indicates the location of the cerebral cortex of the brain. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における大脳皮質を構成する各細胞において、組織染色により各種バイオマーカーの発現を観察した結果を示す。The results of observing the expression of various biomarkers by tissue staining in each cell constituting the cerebral cortex in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown. 胎児発育不全モデル(「FGR」)及び偽手術群(「Sham」)における大脳皮質を構成する各細胞において、組織染色により各種バイオマーカーの発現を観察した結果を示す。The results of observing the expression of various biomarkers by tissue staining in each cell constituting the cerebral cortex in the fetal growth restriction model (“FGR”) and the sham surgery group (“Sham”) are shown. 図15Bに対応した各種バイオマーカーの発現強度を示す。The expression intensities of various biomarkers corresponding to FIG. 15B are shown. 図15Cに対応した各種バイオマーカーの発現強度を示す。The expression intensities of various biomarkers corresponding to FIG. 15C are shown.
 以下、本発明の説明のために、好ましい実施形態に関して詳述する。なお、本発明は、以下の好ましい実施形態に限定されるものではなく、その要旨の範囲内で種々の変形を行ってもよいことは当業者に理解される。 Hereinafter, preferred embodiments will be described in detail for the purpose of explaining the present invention. It will be understood by those skilled in the art that the present invention is not limited to the following preferred embodiments, and various modifications may be made within the scope of the gist thereof.
 本明細書及び添付の特許請求の範囲に記載の技術用語及び科学用語の意味は、当業者が理解している意味に従うものとする。なお、本発明を構成する用語を以下に簡単に説明する。 The meanings of the technical and scientific terms described in this specification and the appended claims shall be in accordance with the meanings understood by those skilled in the art. The terms constituting the present invention will be briefly described below.
 本発明は、胎児発育不全に起因する周産期脳障害を早期に判定、診断又は診断を補助するためのバイオマーカー、及び該バイオマーカーを用いた新生児の周産期障害の早期判定又は早期診断法、並びに該バイオマーカーを用いて周産期障害の治療効果を早期に判定する方法に関する。 The present invention provides a biomarker for early determination, diagnosis or assistance in diagnosis of perinatal brain disorder caused by fetal stunting, and early determination or early diagnosis of perinatal disorder in a newborn using the biomarker. The present invention relates to a method and a method for determining the therapeutic effect of perinatal disorders at an early stage using the biomarker.
1.対象疾患
(1)胎児発育不全
 胎児発育不全(Fetal Growth Restriction;FGR)は、出生する児の生命及び神経学的予後に大きく関与している。胎児発育不全は、子宮内で胎児の発育が、何らかの原因により障害され、週数相当の発育ができなかった状態と定義される。現在は、超音波検査装置の発達により、超音波検査を用いて診断することが一般的である。
1. 1. Target diseases (1) Fetal growth restriction Fetal growth restriction (FGR) is greatly involved in the life and neurological prognosis of the offspring. Fetal growth restriction is defined as a condition in which fetal growth is impaired in utero for some reason and the number of weeks of growth is impaired. At present, with the development of ultrasonic inspection equipment, it is common to make a diagnosis using ultrasonic inspection.
 過去において、1970年代に入り、超音波診断装置の進化と計測された複数の胎児パラメーターを用いた統計処理が可能となり推定胎児体重(EFW)の計算式が報告された。2003年に、複数報告されていた推定体重の計算式を標準化するため、日本超音波学会により「超音波胎児計測の標準化と日本人の基準値」が作成され、2005年に日本産科婦人科学会でも正式に採用した。まとめられた内容は、2012年に発表された「推定胎児体重と胎児発育曲線」保健指導マニュアルの中に詳細が記載されている。これまで出生体重をもとにした胎児発育曲線しか作成することができなかったが、超音波検査における計測値から胎児発育曲線が作成されたことは、極めて画期的なことであった。特に、「超音波胎児計測の標準化と日本人の基準値」をもとに作成された胎児発育曲線において-1.5SDを下回る場合に、胎児発育不全と臨床診断することが日本では一般的である。 In the past, in the 1970s, the evolution of ultrasonic diagnostic equipment and statistical processing using multiple measured fetal parameters became possible, and the formula for calculating the estimated fetal weight (EFW) was reported. In 2003, in order to standardize the formulas for calculating estimated weight that had been reported multiple times, the Japanese Society of Ultrasound created "Standardization of Ultrasonic Fetal Measurement and Japanese Standards", and in 2005, the Japan Society of Obstetrics and Gynecology. But it was officially adopted. The summarized content is described in detail in the "Estimated Fetal Weight and Fetal Growth Curve" Health Guidance Manual published in 2012. Until now, only the fetal growth curve based on the birth weight could be created, but it was extremely epoch-making that the fetal growth curve was created from the measured values in the ultrasonic examination. In particular, it is common in Japan to make a clinical diagnosis of fetal growth restriction when the fetal growth curve created based on "standardization of ultrasonic fetal measurement and Japanese standard values" falls below -1.5SD. be.
 胎児発育不全は、異質性疾患であるが、特に妊娠第2三半期から発症する胎児発育不全は先天感染、遺伝子異常、先天奇形が原因であることが多く、介入による胎児発育不全の予後改善の可能性は低いと考えられてきた。一方で、妊娠第2三半期から発症する胎児発育不全の中には、妊娠高血圧症候群(HDP)の関与を含めた胎盤機能低下を原因とする群が含まれている。胎盤機能低下による胎児発育不全は、妊娠第3三半期より妊娠第2三半期に発症した場合の方が予後不良であるため、胎児発育不全の発症時期によって、早期発症型と後期発症型に次第に分けられるようになった。これらは、定義は報告によって異なるものの、32~34週を境界として分けられることが多い。早期発症型の胎児発育不全の予後に関しては、2013年に大規模な前向き観察研究(TRUFFLE study)が報告された。2005~2010年の間に、ヨーロッパを中心とした施設で、26~32週に分娩となった503例の早期発症型の胎児発育不全が登録された。胎児発育不全は、胎児の推定腹囲が10パーセンタイル未満、かつ臍帯動脈血流の拍動性指数が95パーセンタイル以上の症例と定義された。503例中27例(5.5%)が周産期死亡、118例(24%)が重度の新生児合併症(気管支肺異形成、III度以上の脳室内出血、脳室周囲白質軟化症、新生児敗血症、壊死性腸炎)を認め、早期発症型の胎児発育不全の予後は不良であった。また、登録から分娩までの期間と周産期死亡、重度の新生児合併症は、母体のHDPの発症、重症度と相関していた。さらに、TRUFFLE研究では、生後2年での生存率、神経学的予後が追跡調査されている。生存児の中で、神経学的評価がなされた402例中41例(10%)に神経学的異常を認めていた。2017年に、28週未満に診断され22~31週に分娩となった早期発症型の胎児発育不全の予後に関して、フランスのPopulation-basedコホート研究(EPIPAGE 2 Study)から報告された。3,698例中の新生児で、28週前に胎児発育不全と診断された新生児は436例(11.8%)であった。週数別の生残率は、25週では66%、26~27週では90%以上であった。胎児発育不全の診断時期が、新生児予後を予測する上で重要であると述べている。後期発症型の胎児発育不全は、早期発症型の胎児発育不全と比較して、予後良好であるものの、正常な発育の胎児と比較して、死産率は高く問題点も残されている。2015年に「Shining light in dark corners」として、後期発症型の胎児発育不全についての管理方法を中心に報告されている(http://www.chugaiigaku.jp/upfile/browse/browse2521.pdfからの引用)。 Fetal growth restriction is a heterogeneous disease, but fetal growth restriction that develops from the second trimester of pregnancy is often caused by congenital infections, genetic abnormalities, and congenital malformations, and intervention improves the prognosis of fetal growth restriction. It has been considered unlikely. On the other hand, the fetal growth restriction that develops from the second trimester of pregnancy includes a group caused by placental dysfunction including the involvement of preeclampsia (HDP). Fetal growth restriction due to placental dysfunction has a worse prognosis when it develops in the second trimester of pregnancy than in the third trimester of pregnancy. It came to be divided. These are often separated by 32 to 34 weeks, although the definition varies from report to report. Regarding the prognosis of early-onset fetal growth restriction, a large-scale prospective observational study (TRUFFLE study) was reported in 2013. Between 2005 and 2010, 503 cases of early-onset fetal growth restriction who delivered between 26 and 32 weeks were registered at a facility centered on Europe. Fetal growth restriction was defined as a case in which the estimated fetal abdominal circumference was less than the 10th percentile and the umbilical artery blood flow pulsatile index was greater than or equal to the 95th percentile. Of 503 cases, 27 (5.5%) died perinatal, 118 (24%) had severe neonatal complications (bronchopulmonary dysplasia, intraventricular hemorrhage of degree III or higher, periventricular leukomalacia, Neonatal septicemia and necrotizing enterocolitis) were observed, and the prognosis of early-onset fetal growth restriction was poor. In addition, the period from registration to delivery, perinatal mortality, and severe neonatal complications were correlated with the onset and severity of maternal HDP. In addition, the TRUFFLE study is following up on survival and neurological prognosis at 2 years of age. Among the surviving infants, 41 (10%) of the 402 patients who were evaluated neurologically had neurological abnormalities. In 2017, the prognosis of early-onset fetal growth restriction diagnosed in less than 28 weeks and delivered between 22 and 31 weeks was reported by the French Population-based cohort study (EPIPAGE 2 Study). Of the 3,698 newborns, 436 (11.8%) were diagnosed with fetal growth restriction 28 weeks ago. The survival rate by week was 66% at 25 weeks and 90% or more at 26-27 weeks. He states that the timing of fetal growth restriction is important in predicting neonatal prognosis. Late-onset fetal growth restriction has a better prognosis than early-onset fetal growth restriction, but stillbirth rates are higher and problems remain as compared to normally-developed fetal growth. In 2015, it was reported as "Shining light in dark quotes" focusing on the management method for late-onset fetal growth restriction (http://www.chugaiigaku.jp/upfile/browse/browse2521.pdf). Quote).
 胎児の細胞発育は、妊娠第1三半期(妊娠初期から妊娠16週)は細胞数そのものが急速に増加する時期、妊娠第2三半期(妊娠17~32週)は細胞数の増加と共に細胞そのものが肥大する時期、妊娠第3三半期(妊娠33週以降)は細胞数がほとんど増加せず細胞が肥大する時期である。胎児の細胞発育によって、胎児発育不全は大きく3つに分類される。原因論は、次項に譲るため、臨床分類と原因についての関係を以下の表1に示した。ただ例外も多く、現在、タイプ1、タイプ2に分類することは少なくなっている。 Fetal cell development is the period when the cell number itself increases rapidly in the first trimester of pregnancy (from the first trimester to the 16th week of pregnancy), and the cell itself as the number of cells increases in the second trimester of pregnancy (17th to 32nd week of pregnancy). The period of hypertrophy, the third trimester of pregnancy (after 33 weeks of gestation), is the period in which the number of cells hardly increases and the cells become hypertrophied. Fetal growth restriction is broadly classified into three types according to fetal cell development. The pourquoi story is given in the next section, and the relationship between clinical classification and causes is shown in Table 1 below. However, there are many exceptions, and at present, it is rarely classified into type 1 and type 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (i)タイプ1(対称タイプ)
 染色体異常など胎児自身の異常やTORCH症候群などにより妊娠初期に胎児が障害された場合、胎児臓器の細胞分裂、細胞増殖が阻害されるため、臓器を構成する細胞の大きさは正常であるが、細胞数が少ない低形成を呈し、タイプ1に分類される。低形成タイプは、胎児数が少ないことから、頭部も躯幹も同程度に抑制された均整のとれた発育をすることが特徴で、均整のとれた発育不全を対称タイプと呼称する。タイプ1は、胎児発育不全全体の約20%程度を占める。
(I) Type 1 (symmetrical type)
When the foetation is damaged in the early stages of pregnancy due to abnormalities of the foetation itself such as chromosomal abnormalities or TORCH syndrome, cell division and cell proliferation of the fetal organs are inhibited, so the size of the cells constituting the organs is normal. It exhibits hypoplasia with a small number of cells and is classified as type 1. The hypoplastic type is characterized by well-proportioned growth in which the head and trunk are similarly suppressed because of the small number of foets, and the well-proportioned dysgenesis is called the symmetric type. Type 1 accounts for about 20% of all fetal growth restriction.
(ii)複合タイプ(中間タイプ)
 細胞数の増加と共に細胞そのものが肥大する時期に障害された胎児発育不全が複合タイプとされ、胎児発育不全全体の約10%を占める。妊娠早期発症の妊娠高血圧症候群、慢性腎炎、高血圧、胎盤臍帯因子などが原因となる。
(Ii) Composite type (intermediate type)
Fetal growth restriction, which is impaired during the period when the cells themselves enlarge as the number of cells increases, is considered to be a complex type and accounts for about 10% of the total fetal growth restriction. Causes include preeclampsia, chronic nephritis, hypertension, and placental umbilical cord factors that develop early in pregnancy.
(iii)タイプ2(非対称タイプ)
 妊娠第3三半期に障害が起きると、すでに細胞分裂は終了しているため、細胞肥大が抑制される。細胞数が正常であるが、細胞自体が小さい場合にタイプ2と呼称される低栄養状態をきたす。主に、妊娠後期発症の妊娠高血圧症候群や糖尿病など母体疾患に起因した胎盤の病理学的異常が原因となることが多い。胎児胎盤循環が悪化すると、脳や心臓、副腎といった重要臓器を保護するように血管拡張効果(血流再分布)が起こり、脳血流の維持が優先されるため頭部の発育は保たれているが、躯幹、肝臓、腸管などの内臓への血流は低下し、腹部の小さい皮下脂肪の少ない痩せ細った体型の発育障害が起こり、非対称と表現される。タイプ2(非対称タイプ)は、胎児発育不全全体の約70%を占める。しかし、brain sparing effectが破綻し、頭部の発育も障害されると、対称タイプに移行することには留意しなければならない(http://www.chugaiigaku.jp/upfile/browse/browse2521.pdfからの引用)。
(Iii) Type 2 (Asymmetric type)
When a disorder occurs in the third trimester of pregnancy, cell division is already completed and cell hypertrophy is suppressed. When the number of cells is normal but the cells themselves are small, a malnutrition state called type 2 occurs. It is often caused by pathological abnormalities of the placenta caused by maternal diseases such as preeclampsia and diabetes that develop in late pregnancy. When fetal placenta circulation deteriorates, a vasodilatory effect (blood flow redistribution) occurs to protect important organs such as the brain, heart, and adrenal gland, and maintenance of cerebral blood flow is prioritized, so head growth is maintained. However, blood flow to internal organs such as the trunk, liver, and intestinal tract is reduced, and the abdomen has a small subcutaneous fat and a thin body with little subcutaneous fat. Type 2 (asymmetric type) accounts for about 70% of all fetal growth restriction. However, it should be noted that when the brain sparring effect collapses and the growth of the head is impaired, it shifts to the symmetrical type (http://www.chugaiigaku.jp/upfile/browse/browse2521.pdf). Quoted from).
(2)周産期脳障害
 「周産期脳障害」とは、周産期(ヒトでは妊娠22週から出生後7日未満の時期)に生じた脳障害をいい、例えば、分娩時の低酸素性虚血性脳症、又はウイルス若しくは細菌感染などに続発する全身炎症反応症候群などに関連付けられる脳障害を意味する。本発明では、胎児発育不全に起因した神経発達障害が症状として具現化する時期(例えば、ヒトでは満2~3歳)も適用範囲とする。より具体的には、本発明によれば、周産期脳障害であって、ヒト新生児(生後28日以内)、乳児(生後1年未満)、及び幼児(生後1~6年)に生じた脳障害を改善及び治療の対象とする。
(2) Perinatal encephalopathy "Perinatal encephalopathy" refers to cerebral disorders that occur during the perinatal period (from 22 weeks gestation to less than 7 days after birth in humans), for example, low during labor. It means a brain disorder associated with oxygen-ischemic encephalopathy or systemic inflammatory reaction syndrome secondary to viral or bacterial infection. The present invention also covers the time when neurodevelopmental disorders caused by fetal growth restriction are embodied as symptoms (for example, 2 to 3 years old in humans). More specifically, according to the present invention, perinatal brain disorders occur in human neonates (within 28 days of age), infants (less than 1 year of age), and infants (1 to 6 years of age). Target for improvement and treatment of brain disorders.
 「脳性麻痺」とは、脳の発育期(ヒトでは、妊娠13日目から生後48日齢を指す。)に生じた不可逆性の脳障害をいい、非進行性の病変を持ち、その症候は運動系の機能障害を基本とし、多くが3歳までに発症する。具体的には、新生児期までに生じる脳障害を一般に指す。その原因については、障害の生じる時期により分けられており、(a)出生前原因としては、胎内感染、胎盤機能不全、胎児期の脳血管障害、遺伝性など、(b)出生時原因としては、分娩時の機械的損傷、脳出血、無酸素症、低酸素症、脳循環障害など、(c)出生後原因としては、重症黄疸(核黄疸)、頭蓋内感染症、脳出血などがある。分類は、麻痺の内容によってされる。筋緊張の内容には、強(痙)直、強剛、失調、アテトーゼ(ある姿勢を維持したり、運動を行おうとする時に現れる不随意運動)、無緊張などがあり、麻痺の広がりには、四肢麻痺、片麻痺、両麻痺、対麻痺、二重片麻痺、単麻痺などがある。合併症候には、知能障害(学習障害を含む。)、てんかん発作、脳神経障害、言語障害などがある。成熟児の低酸素性虚血性脳症による脳の病変としては、大脳皮質層状壊死、基底核壊死、脳梗塞、白質軟化、橋鈎状回壊死が多く、脳幹の壊死も見られるといわれ、臨床的には、基底核壊死はアテトーゼ型脳性麻痺の原因、脳梗塞は痙性四肢麻痺、片麻痺の原因となる。脳幹壊死は、予後不良で乳児期に死亡することが多く、生存しても嚥下障害や呼吸調節異常を来す。 "Cerebral palsy" refers to irreversible cerebral palsy that occurs during the developmental period of the brain (in humans, it refers to the age of 13 days to 48 days after birth), and has non-progressive lesions, the symptoms of which are It is based on motor dysfunction, and most develop by the age of three. Specifically, it generally refers to brain damage that occurs by the neonatal period. The causes are divided according to the time of occurrence of the disorder. (a) Prenatal causes include intrauterine infection, placental insufficiency, fetal cerebrovascular accident, hereditary, etc. (b) Birth causes include , Mechanical damage during labor, cerebral hemorrhage, anoxia, hypoxia, cerebral circulatory disorder, etc. (c) Postnatal causes include severe kernicterus (kernicterus), intracranial infection, cerebral hemorrhage, etc. Classification is based on the content of the paralysis. The contents of muscle tone include strong (convulsive) straightness, toughness, ataxia, athetosis (involuntary movement that appears when maintaining a certain posture or trying to exercise), non-tension, etc. , Extremity paralysis, hemiplegia, diplegia, paraplegia, double hemiplegia, monoplegia, etc. Complications include intellectual disability (including learning disabilities), seizures, neurological disorders, and speech disorders. Brain lesions caused by hypoxic-ischemic encephalopathy in mature infants are often cerebral cortical layer necrosis, basal ganglia necrosis, cerebral infarction, leukomalacia, bridge-shaped circumflex necrosis, and brain stem necrosis. Basal ganglia necrosis causes atetose-type cerebral palsy, and cerebral infarction causes spastic limb palsy and hemiplegia. Brainstem necrosis often causes poor prognosis and death in infancy, and even if it survives, it causes dysphagia and respiratory dysregulation.
 脳の生理学的所見を得るために、例えば、頭部超音波画像診断、MRI、CT、脳波、及びレーザードップラー血流計を用いることができる。これらの装置を用いて異常な所見が得られた場合、周産期脳障害を疑うことができる。また、対象における学習障害や運動障害を直接観察することによって診断できることがある。 For example, head ultrasound imaging, MRI, CT, electroencephalogram, and laser Doppler blood flow meters can be used to obtain physiological findings of the brain. Perinatal brain damage can be suspected if abnormal findings are obtained using these devices. In addition, it may be possible to make a diagnosis by directly observing learning disabilities and motor disorders in the subject.
3.本発明のバイオマーカーによる新生児の周産期障害を早期に判定、診断又は診断を補助する方法
 本発明によれば、哺乳動物被検体における、胎児発育不全に起因する新生児の周産期脳障害を早期に判定、診断又は補助する方法(以下、単に「早期に診断する方法」と称することがある)は、後述する6種のバイオマーカーのうち1つ以上を使用することを特徴とする。使用されるバイオマーカー(タンパク質)は、上記疾患を有すると思われる新生児の体液中に存在するタンパク質の発現レベルと、正常な体液若しくは治療後の体液中に存在するタンパク質の発現レベル、又は該疾患を示すことが知られている対象の体液中に存在するタンパク質の発現レベルとを比較することによって、その差の有無、又は上方制御若しくは下方制御されるタンパク質を特定するにより同定される。一般的に、ある時間点で生物学的試料(例えば、体液、組織、生物、又は細胞培養物)中に存在するタンパク質の総体を「プロテオーム」と呼ぶ。なお、タンパク質の発現レベルは、イムノアッセイ、質量分析、又はタンパク質アレイを用いて決定することができる。
3. 3. Method for early determination, diagnosis or diagnosis of perinatal disorder in newborns by the biomarker of the present invention According to the present invention, perinatal brain disorders in newborns caused by fetal stunting in a mammalian subject can be detected. A method for early determination, diagnosis or assistance (hereinafter, may be simply referred to as "early diagnosis method") is characterized in that one or more of six types of biomarkers described later are used. The biomarkers (proteins) used are the expression level of proteins present in the body fluids of newborns who are thought to have the above-mentioned diseases, the expression levels of proteins present in normal body fluids or body fluids after treatment, or the diseases. It is identified by comparing the expression level of the protein present in the body fluid of the subject known to show the presence or absence of the difference, or by identifying the protein that is upregulated or downregulated. Generally, the total amount of proteins present in a biological sample (eg, body fluid, tissue, organism, or cell culture) at a given time point is referred to as a "proteome." The expression level of the protein can be determined by using an immunoassay, mass spectrometry, or a protein array.
 上記のような発現比較は、試料中のタンパク質発現の全体的な変化の研究(「プロテオミクス」又は「発現プロテオミクス」とも呼ばれる)であってもよい。プロテオミクスは、概して、(1)二次元ゲル電気泳動による試料中の個々のタンパク質の分離;(2)ゲルから回収される個々のタンパク質の同定、例えば、液体クロマトグラフィー、質量分析法又はN末端シーケンシング、及び(3)バイオインフォマティクスを用いたデータの分析のステップを含む。プロテオミクス方法は、他の遺伝子発現プロファイリング方法の有用な補足となり得る。 The expression comparison as described above may be a study of overall changes in protein expression in a sample (also referred to as "proteomics" or "expression proteomics"). Proteomics generally refers to (1) separation of individual proteins in a sample by two-dimensional gel electrophoresis; (2) identification of individual proteins recovered from the gel, such as liquid chromatography, mass spectrometry or N-terminal sequencing. Includes steps of singing and (3) analyzing data using bioinformatics. Proteomics methods can be a useful complement to other gene expression profiling methods.
 本発明は、主として体液のプロテオミクス分析を行うものであるが、使用される「体液」としては、限定されないが、脳脊髄液(CSF)、臍帯血、子宮頚-膣液(CVF)、羊水、血液、血清、血漿、尿、母乳、粘液、唾液及び汗が挙げられる。本発明では、神経発達障害のリスクとなる胎児発育不全に伴う周産期脳障害の診断を行うため、体液としては、脳脊髄液が好ましい。これは、脳脊髄液の流出入により、脳内を循環する生体分子の情報は、脳組織の状態やその変化を鋭敏に反映するためである。また、脳脊髄液の流出先である血清は、非侵襲的かつ容易に採取できるため有用である。 The present invention mainly performs proteomic analysis of body fluids, but the "body fluids" used are not limited to cerebrospinal fluid (CSF), cord blood, cervical-vaginal fluid (CVF), amniotic fluid, and the like. Examples include blood, serum, plasma, urine, breast milk, mucus, saliva and sweat. In the present invention, cerebrospinal fluid is preferable as the body fluid for diagnosing perinatal brain disorder associated with fetal growth restriction, which is a risk of neurodevelopmental disorder. This is because the information on biomolecules circulating in the brain due to the inflow and outflow of cerebrospinal fluid sensitively reflects the state of brain tissue and its changes. In addition, serum, which is the outflow destination of cerebrospinal fluid, is useful because it is non-invasive and can be easily collected.
 比較分析において、タンパク質の相対的な発現レベル又は量を正確に表し、正確な結果を得るために、当然に、例えば、正常試料と生物学的試料を正確にかつ同じ方法で扱うことが重要である。総タンパク質の必要量は、使用する解析技術に依存し、当業者によって容易に測定される。生物学的試料に存在するタンパク質は、一般的に、pI及び分子量に従って二次元ゲル電気泳動によって分離される。タンパク質は、初めに、等電点電気泳動(一次元ゲル電気泳動)を使用して、その電荷によって分離される。この工程は、例えば、市販されている固定されたpH勾配(IPG)ストライプを使用して行ってもよい。二次元目は、通常のSDS-PAGE分析であり得、ここで濃縮したIPGストライプが試料として用いられる。分離後、タンパク質は、クーマシーブルー又は銀染色のような従来の色素によって視覚化され得、例えば、Bio-Rad GS800濃度計及びPDQUESTソフトウェアなどの公知の技術及び器材を使用して撮像することができる。次に、個々のスポットをゲルから切り出し、脱色して、トリプシン消化する。ペプチド混合物は質量分析(MS)によって分析してよい。あるいは、ペプチドは、例えばキャピラリー高速液体クロマトグラフィー(HPLC)により分離してもよいし、別々又は組み合わせてMSによって分析してもよい。 In comparative analysis, it is of course important to treat, for example, normal and biological samples accurately and in the same way, in order to accurately represent the relative expression level or amount of protein and obtain accurate results. be. The total protein requirement depends on the analytical technique used and is easily measured by one of ordinary skill in the art. Proteins present in biological samples are generally separated by two-dimensional gel electrophoresis according to pI and molecular weight. Proteins are first separated by their charge using isoelectric focusing (one-dimensional gel electrophoresis). This step may be performed using, for example, a commercially available fixed pH gradient (IPG) stripe. The second dimension can be a conventional SDS-PAGE analysis, where concentrated IPG stripes are used as the sample. After separation, proteins can be visualized by conventional dyes such as Coomassie blue or silver stain and can be imaged using known techniques and equipment such as Bio-Rad GS800 densitometer and PDQUEST software. can. The individual spots are then excised from the gel, decolorized and trypsined. The peptide mixture may be analyzed by mass spectrometry (MS). Alternatively, the peptides may be separated, for example by capillary high performance liquid chromatography (HPLC), or analyzed separately or in combination by MS.
 質量分析計は、イオン源、質量アナライザー、イオン検出器及びデータ収集ユニットからなる。断片化されたペプチドは、イオン源においてイオン化される。その後、イオン化したペプチドを、質量分析器において質量/電荷比に従って分離し、異なるイオンを検出する。特に、マトリックス支援レーザー脱離イオン化/飛行時間型(MALDI-TOF)及びエレクトロスプレーイオン化(ESI)方法が開発された以降、質量分析法は、タンパク質分析において広く使われている。例えば、MALDI-TOF及び四極子-TOF、又はESIと接続したイオントラップ質量分析器などが例示される。 The mass spectrometer consists of an ion source, a mass analyzer, an ion detector and a data acquisition unit. The fragmented peptide is ionized at the ion source. The ionized peptides are then separated by mass / charge ratio in a mass spectrometer to detect different ions. In particular, mass spectrometry has been widely used in protein analysis since the development of matrix-assisted laser desorption / ionization / time-of-flight (MALDI-TOF) and electrospray ionization (ESI) methods. For example, MALDI-TOF and quadrupole-TOF, or an ion trap mass spectrometer connected to ESI are exemplified.
 タンパク質アレイは、当該技術分野において周知である様々な共有的及び非共有的付着化学を用いて、固形表面、例えば、ガラス、シリコン、マイクロウェル、ニトロセルロース、PVDF膜及びマイクロビーズ上にタンパク質を固定することによって形成される。固形支持体は、カップリング手順の前後では化学的に安定しており、良好なスポット形態が可能となり、ごく小さい非特異的結合を表すものであり、検出システムのバックグラウンドに影響を与えず、異なる検出システムと互換性を持つことを要する。 Protein arrays fix proteins on solid surfaces such as glass, silicon, microwells, nitrocellulose, PVDF membranes and microbeads using a variety of covalent and non-covalent attachment chemistries well known in the art. It is formed by doing. The solid support is chemically stable before and after the coupling procedure, allows for good spot morphology, represents very small non-specific bonds, does not affect the background of the detection system, and does not affect the background of the detection system. Must be compatible with different detection systems.
 本発明の診断方法は、様々なイムノアッセイ形式の形態で実施されてよく、それらは当該技術分野で周知である。イムノアッセイには、同種及び異種の2つの主なタイプがある。同種イムノアッセイでは、抗原と抗体との間の免疫反応と検出は、同種の反応で行われる。異種イムノアッセイは、反応していない試薬からの反応生成物の分離を行う少なくとも1つの分離工程を含む。 The diagnostic method of the present invention may be carried out in the form of various immunoassay formats, which are well known in the art. There are two main types of immunoassays, homologous and heterogeneous. In an allogeneic immunoassay, the immune response and detection between an antigen and an antibody is carried out in an allogeneic reaction. The heterologous immunoassay comprises at least one separation step of separating the reaction product from the unreacted reagent.
 本発明に使用される6種のタンパク質は、上記のプロテオミクスによる網羅的解析に基づいて、全601種から見出されたタンパク質(又はペプチド)である。具体的には、α-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)である。なお、これらのタンパク質のアミノ酸配列に関する情報は、一般的に公開されているデータベース(例えば、UniProt;https://www.uniprot.org/)を利用して入手可能である。 The six proteins used in the present invention are proteins (or peptides) found in all 601 proteins based on the comprehensive analysis by the above proteomics. Specifically, α-2-macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin. (Serpini1) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Information on the amino acid sequences of these proteins is available using publicly available databases (eg, UniProt; https://www.uniprot.org/).
 本発明の新生児の周産期脳障害の早期診断では、上記のタンパク質のうち、少なくとも1つ、好ましくは少なくとも2つ、3つ、4つ若しくは5つ、又はすべてを使用する。後述する実施例に示されるように、上記6種のタンパク質のうちの4種のタンパク質(すなわち、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1))は、脳脊髄液中に存在し、胎児発育不全により顕著にかつ慢性的に変動していたタンパク質である。また、これらのタンパク質は、多能性幹細胞(Muse細胞)の投与により、それらの発現変動が、早い段階から改善することが示されたものである。また、これらの4種のタンパク質のうち、少なくとも3種(すなわち、α-2-マクログロブリン(A2m)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)については、新生児の血清中からも確認され、胎児発育不全に伴う有意な発現変動と多能性幹細胞(Muse細胞)の投与により、その変動の改善が認められた。 In the early diagnosis of perinatal brain damage in newborns of the present invention, at least one, preferably at least two, three, four or five, or all of the above proteins is used. As shown in Examples described later, four of the above six proteins (that is, α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (that is, polyubiquitin-B) Ubb) and neuroserpin (Serpini1)) are proteins that are present in cerebrospinal fluid and have been significantly and chronically fluctuated due to fetal stunting. In addition, these proteins have been shown to improve their expression fluctuations from an early stage by administration of pluripotent stem cells (Muse cells). Of these four proteins, at least three (ie, α-2-macroglobulin (A2m), polyubiquitin-B (Ubb), and neuroserpin (Serpini1)) are also found in neonatal serum. It was confirmed that there was a significant change in expression associated with fetal growth restriction and improvement of the change was observed by administration of pluripotent stem cells (Muse cells).
 体液試料中に上記6種又は4種のタンパク質の発現レベルの変動は、正常な体液、(薬剤、多能性幹細胞等による)治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較することにより行われる。比較基準となる体液が、正常な体液又は治療後の体液である場合、変動は、これらを基準にして、発現レベルが1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍、2.5倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、100倍、又はそれ以上の増加又は減少であってもよい。また、比較基準となる体液が、周産期障害を示すことが知られている体液である場合、それとの差が、基準体液の発現レベルの100%、90%、80%、70%、60%、50%、40%、30%、20%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.9%、0.8%、0.7%、0.6%、0.5%、0.4%、0.3%、0.2%、0.1%、若しくはそれ以下、又は好ましくは0%である。 Fluctuations in the expression levels of the above 6 or 4 proteins in body fluid samples are known to indicate normal body fluids, post-treatment body fluids (due to drugs, pluripotent stem cells, etc.), or perinatal disorders. It is done by comparing with the expression level in the body fluid. When the body fluid used as the comparison standard is a normal body fluid or a body fluid after treatment, the expression level of the fluctuation is 1.1 times, 1.2 times, 1.3 times, 1.4 times based on these. , 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2 times, 2.5 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 The increase or decrease may be fold, 9 times, 10 times, 15 times, 20 times, 30 times, 40 times, 50 times, 100 times, or more. When the body fluid used as the comparison standard is a body fluid known to exhibit perinatal disorders, the difference from the body fluid is 100%, 90%, 80%, 70%, 60 of the expression level of the reference body fluid. %, 50%, 40%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0 .8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or less, or preferably 0%. ..
 本発明の別の態様によれば、哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害の治療効果を早期に判定する方法が提供される。周産期障害の該治療効果の該早期判定方法は、上記したα-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)のタンパク質のうち、少なくとも1つ、好ましくは少なくとも2つ、3つ、4つ若しくは5つ、又はすべてを使用し、該タンパク質の発現レベルを、治療中の被検体から得た体液試料において、正常な体液、治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較して試験し;ならびに前記発現レベルが前記正常な体液又は治療後の体液における発現レベルと比較して統計学的に有意差を示さないか、又は周産期障害を示すことが知られている前記体液における発現レベルと比較して統計学的に有意差を示す場合に、前記被検体における周産期障害の治療が有効であると判定することができる。 According to another aspect of the present invention, there is provided a method for early determination of the therapeutic effect of a neonatal perinatal disorder caused by fetal growth restriction in a mammalian subject. The method for early determination of the therapeutic effect of perinatal disorders is as described above for α-2-macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-. B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Of the proteins of, at least one, preferably at least two, three, four or five, or all are used and the expression level of the protein is normal in body fluid samples obtained from the subject being treated. Tested in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; and said expression levels as well as expression levels in said normal body fluids or post-treatment body fluids. The subject when it does not show a statistically significant difference in comparison or shows a statistically significant difference in comparison with the expression level in the body fluid known to show perinatal disorders. It can be determined that the treatment of perinatal disorders in Ubiquitin is effective.
 体液試料中に上記タンパク質の発現レベルの変動は、正常な体液、(薬剤、多能性幹細胞等による)治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較することにより行われる。比較基準となる体液が、正常な体液又は治療後の体液である場合、それとの差が、基準体液の発現レベルの100%、90%、80%、70%、60%、50%、40%、30%、20%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.9%、0.8%、0.7%、0.6%、0.5%、0.4%、0.3%、0.2%、0.1%、若しくはそれ以下、又は好ましくは0%である。また、比較基準となる体液が、周産期障害を示すことが知られている体液である場合、変動は、これらを基準にして、発現レベルが1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍、2.5倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍、40倍、50倍、100倍、又はそれ以上の増加又は減少であってもよい。 Fluctuations in the expression level of the above proteins in body fluid samples include expression levels in normal body fluids, post-treatment body fluids (due to drugs, pluripotent stem cells, etc.), or body fluids known to exhibit perinatal disorders. It is done by comparison. When the reference body fluid is a normal body fluid or a body fluid after treatment, the difference from the standard body fluid is 100%, 90%, 80%, 70%, 60%, 50%, 40% of the expression level of the reference body fluid. , 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7 %, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or less, or preferably 0%. In addition, when the body fluid used as a comparison standard is a body fluid known to exhibit perinatal disorders, the expression level of the fluctuation is 1.1 times, 1.2 times, and 1. 3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2 times, 2.5 times, 3 times, 4 times, 5 times, The increase or decrease may be 6 times, 7 times, 8 times, 9 times, 10 times, 15 times, 20 times, 30 times, 40 times, 50 times, 100 times, or more.
 本発明は、現行の診断方法では検出が困難である軽度の周産期脳障害を捉えて、それにより成育後の幼児及び小児における脳障害(例えば、神経発達障害)を早期に診断する方法を提供することができる。本発明によれば、これまで見落とされていた成育後に生じる脳障害を新生児期に診断することができ、これまで診断できていなかった周産期脳障害を捉えられることが可能である。 The present invention provides a method for early diagnosis of brain disorders (eg, neurodevelopmental disorders) in post-growth infants and children by capturing mild perinatal brain disorders that are difficult to detect with current diagnostic methods. Can be provided. According to the present invention, it is possible to diagnose a brain disorder that occurs after growth, which has been overlooked so far, in the neonatal period, and to capture a perinatal brain disorder that has not been diagnosed so far.
 後述する実施例に記載されるように、胎児発育不全ラットモデルから脳脊髄液中のタンパク質を網羅的に解析して得られ、胎児発育不全による周産期脳障害のマーカー、又は治療マーカー治療と関連付けられた6種のタンパク質の特徴を以下に概説する。 As described in Examples described later, it is obtained by comprehensively analyzing proteins in cerebrospinal fluid from a rat model of fetal growth restriction, and is used as a marker for perinatal brain damage due to fetal growth restriction or a therapeutic marker treatment. The characteristics of the six associated proteins are outlined below.
(a)A2m(α-2-マクログロブリン)
 特徴:急性期応答タンパク質の一種。細胞傷害に応じて亢進。脳の場合、血液脳関門(BBB)の破綻や神経細胞の傷害によって上昇する。
 結果:血清及び脳脊髄液において、出生後5日、14日ともに有意な増加を確認した。また、出生後5日、14日ともにMuse細胞による発現抑制を確認した。脳脊髄液の結果では、出生後5日目の段階でMuse細胞による抑制効果は確認できなかったが、血清中で確認できたのは、脳以外の器官(肺等)でも胎児発育不全によってA2mの発現亢進が誘導され、脳よりも早くMuse細胞がその器官に作用したためと考えられる。
(A) A2m (α-2-macroglobulin)
Features: A type of acute response protein. Increased in response to cytotoxicity. In the case of the brain, it is elevated by the breakdown of the blood-brain barrier (BBB) and damage to nerve cells.
Results: Significant increases were confirmed in serum and cerebrospinal fluid both 5 days and 14 days after birth. In addition, suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth. In the results of cerebrospinal fluid, the inhibitory effect of Muse cells could not be confirmed at the stage of 5 days after birth, but what was confirmed in serum was A2 m due to fetal growth restriction even in organs other than the brain (lungs, etc.). It is considered that the upregulation of serum was induced and the Muse cells acted on the organ earlier than the brain.
(b)Serpini1(ニューロセルピン)
 特徴:セリンプロテアーゼインヒビターの一種で、ニューロセルピンは脳内で多量に発現する。タンパク質分解酵素を阻害することでタンパク質の分解を抑制する他、炎症の制御などを担う。神経細胞が正常な機能を発揮するために重要であり、記憶や情動を制御していると言われる。神経保護作用を持つことも報告されている。このタンパク質の機能不全は認知症を誘発する。
 結果:血清及び脳脊髄液において、出生後5日、14日ともに有意な増加を確認した。血清試料は、脳脊髄液と同様に出生後14の方が増加の度合いが大きい。さらに脳脊髄液と比べて、対照ではほとんど確認できなかったため、その上昇幅が大きい。また、出生後5日、14日ともにMuse細胞及び間葉系幹細胞(MSC)による発現抑制を確認した。抑制効果はMuse細胞群の方が顕著であり、長期にわたって持続していると考えられる。
(B) Serpini1 (neuroserpin)
Features: A type of serine protease inhibitor, neuroserpin is expressed in large amounts in the brain. In addition to suppressing proteolytic degradation by inhibiting proteolytic enzymes, it also controls inflammation. It is said that nerve cells are important for normal functioning and control memory and emotions. It has also been reported to have a neuroprotective effect. Dysfunction of this protein induces dementia.
Results: Significant increases were confirmed in serum and cerebrospinal fluid both 5 days and 14 days after birth. As with cerebrospinal fluid, the degree of increase in serum samples is greater at 14 after birth. Furthermore, compared with cerebrospinal fluid, it was hardly confirmed in the control, so the rate of increase was large. In addition, suppression of expression by Muse cells and mesenchymal stem cells (MSC) was confirmed on both 5 and 14 days after birth. The inhibitory effect is more remarkable in the Muse cell group, and it is considered that the inhibitory effect is sustained for a long period of time.
(c)Cd200(OX-2メンブレン糖タンパク質)
 特徴:主に免疫系の細胞を抑制し、炎症を調整するタンパク質である。脳内では神経細胞に多く発現する。Cd200/Cd200Rのシグナル伝達により抗炎症性サイトカインが分泌され、炎症が抑制される。
 結果:出生後5日に有意な増加を確認したが、幹細胞による抑制効果は傾向にとどまった。
(C) Cd200 (OX-2 Membrane Glycoprotein)
Features: A protein that mainly suppresses cells of the immune system and regulates inflammation. It is highly expressed in nerve cells in the brain. Anti-inflammatory cytokines are secreted by Cd200 / Cd200R signal transduction, and inflammation is suppressed.
Results: A significant increase was confirmed 5 days after birth, but the inhibitory effect of stem cells remained on the trend.
(d)Ubb(ポリユビキチン-B)
 特徴:不要なタンパク質や異常なタンパク質を除去する際に付与されるラベルとして機能するタンパク質である。このタンパク質の発現亢進は、不要なタンパク質の増加を意味する。また、発現変動の異常は神経変性疾患の原因となる。
 結果:出生後5日、14日ともに有意な増加を確認した。また、出生後5日、14日ともにMuse細胞による発現抑制を確認した。効果はMuse細胞の方がMSCより早い。
(D) Ubb (polyubiquitin-B)
Characteristic: A protein that functions as a label given when removing unnecessary proteins or abnormal proteins. Increased expression of this protein means an increase in unwanted proteins. In addition, abnormal expression fluctuations cause neurodegenerative diseases.
Results: A significant increase was confirmed on both 5 and 14 days after birth. In addition, suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs.
(e)Uba1(ユビキチン様修飾活性化酵素1)
 特徴:ユビキチン活性化酵素の一種で、タンパク質分解に使用されたユビキチンを次のタンパク質分解に使用するためにユビキチンを活性化させるためのタンパク質である。Ubbと同様に、タンパク質の品質管理に重要な分子である。なお、Uba1は、「Ube1」と称されることがある。
(E) Uba1 (ubiquitin-like modification activating enzyme 1)
Features: A type of ubiquitin activating enzyme, which is a protein for activating ubiquitin for use in the next proteolysis of ubiquitin used for proteolysis. Like Ubb, it is an important molecule for protein quality control. Uba1 may be referred to as "Ube1".
(f)Otub1(ユビキチンチオエステラーゼOTUB1)
 特徴:脱ユビキチン化酵素。ユビキチン化された状態のタンパク質やクロマチンなどからユビキチンを脱離させるためのタンパク質である。Ubbと同様に、タンパク質の品質管理に重要な分子である。
(F) Otub1 (ubiquitin thioesterase OTUB1)
Features: Deubiquitinating enzyme. It is a protein for desorbing ubiquitin from ubiquitinated proteins and chromatin. Like Ubb, it is an important molecule for protein quality control.
 本発明の他の態様は、α-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)からなる群から選択されるいずれかのタンパク質の1つ又は複数の、哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害を早期診断するための体液のプロテオミクス(又はタンパク質)プロファイルの製造における使用を提供する。 Other embodiments of the present invention include α-2-macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3). , Neurocerpin (Serpini1) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Provided for use in the production of a proteomics (or protein) profile of body fluid for early diagnosis of neonatal perinatal disorders due to fetal stunting in a mammalian subject of one or more of the proteins of.
 ある実施態様では、このプロテオミクスプロファイルは、いずれかの組合せで、上記のタンパク質の少なくとも2つ、少なくとも3つ、少なくとも4つ、少なくとも5つ、又は全ての発現レベルの情報を含む。 In certain embodiments, the proteomics profile contains information on at least two, at least three, at least four, at least five, or all expression levels of the above proteins in any combination.
 一実施態様では、プロテオミクスプロファイルは、上記タンパク質の発現レベルの情報を含み、前記の試験したタンパク質の1つ又は複数が、正常な体液又は治療後の体液における発現レベルと比較して統計学的に有意差を示すか、又は周産期障害を示すことが知られている前記体液における発現レベルと比較して統計学的に有意差を示さない場合に、上記被検体を周産期障害と診断する。 In one embodiment, the proteomics profile contains information on the level of expression of the protein, and one or more of the proteins tested statistically compared to the level of expression in normal or post-treatment body fluids. The subject is diagnosed with perinatal disorder if it shows a significant difference or does not show a statistically significant difference compared to the expression level in the body fluid known to show perinatal disorder. do.
 本発明において、比較基準となる体液が治療後の体液である場合の「治療」とは、限定されないが、当業者に認識されるような、周産期脳障害の治療法(例えば、低体温療法)又は幹細胞療法(例えば、臍帯血幹細胞、Muse細胞)であり得る。 In the present invention, the "treatment" when the body fluid as a comparative reference is the body fluid after treatment is not limited, but is a treatment method for perinatal brain disorder (for example, hypothermia) as recognized by those skilled in the art. Therapies) or stem cell therapies (eg, umbilical cord blood stem cells, Muse cells).
 「Muse(Multilineage-differentiating Stress Enduring)細胞」は、骨髄液、脂肪組織(Ogura, F., et al., Stem Cells Dev., Nov 20, 2013 (Epub)(published on Jan 17,2014))や真皮結合組織等の皮膚組織から得ることができ、各臓器の結合組織にも散在する。また、この細胞は、多能性幹細胞と間葉系幹細胞の両方の性質を有する細胞であり、例えば、それぞれの細胞表面マーカーである「SSEA-3(Stage-specific embryonic antigen-3)」と「CD105」のダブル陽性として同定される。したがって、Muse細胞又はMuse細胞を含む細胞集団は、例えば、これらの抗原マーカーを指標として生体組織から分離することができる。また、Muse細胞はストレス耐性であり、間葉系組織又は培養間葉系細胞から種々のストレス刺激により濃縮することができる。本発明の細胞製剤には、ストレス刺激によりMuse細胞が濃縮された細胞画分を用いることもできる。Muse細胞の分離法、同定法、及び特徴などの詳細は、国際公開第WO2011/007900号に開示されている。また、Wakaoら(2011、上述)によって報告されているように、骨髄、皮膚などから間葉系細胞を培養し、それをMuse細胞の母集団として用いる場合、SSEA-3陽性細胞の全てがCD105陽性細胞であることが分かっている。したがって、生体の間葉系組織又は培養間葉系幹細胞からMuse細胞を分離する場合は、単にSSEA-3を抗原マーカーとしてMuse細胞を精製し、使用することができる。なお、本明細書においては、SSEA-3を抗原マーカーとして、生体の間葉系組織又は培養間葉系組織から分離された多能性幹細胞(Muse細胞)又はMuse細胞を含む細胞集団を単に「SSEA-3陽性細胞」と記載することがある。また、本明細書において、「非Muse細胞」とは、生体の間葉系組織又は培養間葉系組織に含まれる幹細胞であって、「SSEA-3陽性細胞」以外の幹細胞を指す。ヒトMuse細胞の分離及び同定に関する国際公開第WO2011/007900号に記載された方法に準じて、MSCからSSEA-3及びCD105陽性細胞を除いた細胞集団を非Muse細胞として用いることができる。 "Muse (Multigeneage-Differentating Stress Enduring) cells" are bone marrow fluid, adipose tissue (Ogura, F., et al., Stem Cells Dev., Nov 20, 2013 (Epub) (published on Jan 17, 2014)) It can be obtained from skin tissues such as dermal connective tissue and is scattered in the connective tissues of each organ. In addition, these cells are cells having the properties of both pluripotent stem cells and mesenchymal stem cells. For example, the respective cell surface markers "SSEA-3 (Stage-specific embryonic antigen-3)" and " Identified as double positive for "CD105". Therefore, a Muse cell or a cell population containing a Muse cell can be separated from a living tissue using these antigen markers as an index, for example. In addition, Muse cells are stress resistant and can be concentrated from mesenchymal tissues or cultured mesenchymal cells by various stress stimuli. For the cell preparation of the present invention, a cell fraction in which Muse cells are concentrated by stress stimulation can also be used. Details such as a method for separating Muse cells, a method for identifying them, and their characteristics are disclosed in International Publication No. WO2011 / 007900. In addition, as reported by Wakao et al. (2011, supra), when mesenchymal cells are cultured from bone marrow, skin, etc. and used as a population of Muse cells, all SSEA-3 positive cells are CD105. It is known to be a positive cell. Therefore, when separating Muse cells from living mesenchymal tissues or cultured mesenchymal stem cells, Muse cells can be simply purified and used using SSEA-3 as an antigen marker. In the present specification, using SSEA-3 as an antigen marker, a cell population containing pluripotent stem cells (Muse cells) or Muse cells isolated from living mesenchymal tissues or cultured mesenchymal tissues is simply referred to as "Muse cells". It may be described as "SSEA-3 positive cells". Further, in the present specification, the “non-Muse cell” refers to a stem cell contained in a living mesenchymal tissue or a cultured mesenchymal tissue, and is a stem cell other than the “SSEA-3 positive cell”. A cell population obtained by removing SSEA-3 and CD105-positive cells from MSC can be used as non-Muse cells according to the method described in WO2011 / 007900 on Isolation and Identification of Human Muse Cells.
 簡単には、Muse細胞又はMuse細胞を含む幹細胞集団は、細胞表面マーカーであるSSEA-3に対する抗体を単独で用いて、又はSSEA-3及びCD105に対するそれぞれの抗体を両方用いて、生体組織(例えば、間葉系組織)から分離することができる。ここで、「生体」とは、哺乳動物の生体をいう。本発明において、生体には、受精卵や胞胚期より発生段階が前の胚は含まれないが、胎児や胞胚を含む胞胚期以降の発生段階の胚は含まれる。哺乳動物には、限定されないが、ヒト、サル等の霊長類、マウス、ラット、モルモット等のげっ歯類、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が挙げられる。本発明の細胞製剤及び医薬組成物に使用されるMuse細胞は、生体の組織から直接マーカーを用いて分離される点で、胚性幹細胞(ES細胞)やiPS細胞と明確に区別される。また、「間葉系組織」とは、骨、滑膜、脂肪、血液、骨髄、骨格筋、真皮、靭帯、腱、歯髄、臍帯、臍帯血などの組織及び各種臓器に存在する組織をいう。例えば、Muse細胞は、骨髄や皮膚、脂肪組織から得ることができる。例えば、生体の間葉系組織を採取し、この組織からMuse細胞を分離し、利用することが好ましい。また、上記分離手段を用いて、線維芽細胞や骨髄間葉系幹細胞などの培養間葉系細胞からMuse細胞を分離してもよい。本発明の細胞製剤及び医薬組成物においては、使用されるMuse細胞は、レシピエントに対して自家であってもよく、又は他家であってもよい。 Briefly, a Muse cell or a stem cell population containing Muse cells uses a living tissue (eg, an antibody against the cell surface marker SSEA-3 alone, or both antibodies against SSEA-3 and CD105, respectively). , Mesenchymal tissue). Here, the "living body" refers to a living body of a mammal. In the present invention, the living body does not include a fertilized egg or an embryo at a developmental stage before the blastogenic stage, but includes an embryo at a developmental stage after the blastogenic stage including a foetation or a blastoblast. Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats and guinea pigs, rabbits, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets and the like. Be done. Muse cells used in the cell preparations and pharmaceutical compositions of the present invention are clearly distinguished from embryonic stem cells (ES cells) and iPS cells in that they are separated directly from living tissues using markers. The "mesenchymal tissue" refers to tissues such as bone, synovium, fat, blood, bone marrow, skeletal muscle, dermis, ligaments, tendons, dental pulp, umbilical cord, and cord blood, and tissues existing in various organs. For example, Muse cells can be obtained from bone marrow, skin and adipose tissue. For example, it is preferable to collect mesenchymal tissue of a living body, separate Muse cells from this tissue, and use it. In addition, Muse cells may be separated from cultured mesenchymal cells such as fibroblasts and bone marrow mesenchymal stem cells by using the above-mentioned separation means. In the cell preparation and pharmaceutical composition of the present invention, the Muse cells used may be autologous or allogeneic to the recipient.
 上記のように、Muse細胞又はMuse細胞を含む細胞集団は、例えば、SSEA-3陽性、及びSSEA-3とCD105の二重陽性を指標にして生体組織から分離することができるが、ヒト成人皮膚には、種々のタイプの幹細胞及び前駆細胞を含むことが知られている。しかしながら、Muse細胞は、これらの細胞と同じではない。このような幹細胞及び前駆細胞には、皮膚由来前駆細胞(SKP)、神経堤幹細胞(NCSC)、メラノブラスト(MB)、血管周囲細胞(PC)、内皮前駆細胞(EP)、脂肪由来幹細胞(ADSC)が挙げられる。これらの細胞に固有のマーカーの「非発現」を指標として、Muse細胞を分離することができる。より具体的には、Muse細胞は、CD34(EP及びADSCのマーカー)、CD117(c-kit)(MBのマーカー)、CD146(PC及びADSCのマーカー)、CD271(NGFR)(NCSCのマーカー)、NG2(PCのマーカー)、vWF因子(フォンビルブランド因子)(EPのマーカー)、Sox10(NCSCのマーカー)、Snai1(SKPのマーカー)、Slug(SKPのマーカー)、Tyrp1(MBのマーカー)、及びDct(MBのマーカー)からなる群から選択される11個のマーカーのうち少なくとも1個、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個又は11個のマーカーの非発現を指標に分離することができる。例えば、限定されないが、CD117及びCD146の非発現を指標に分離することができ、さらに、CD117、CD146、NG2、CD34、vWF及びCD271の非発現を指標に分離することができ、さらに、上記の11個のマーカーの非発現を指標に分離することができる。 As described above, Muse cells or cell populations containing Muse cells can be separated from living tissues using, for example, SSEA-3 positive and double positive of SSEA-3 and CD105 as indicators, but human adult skin. Is known to include various types of stem cells and progenitor cells. However, Muse cells are not the same as these cells. Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural ridge stem cells (NCSC), melanoblasts (MB), perivascular cells (PC), endothelial progenitor cells (EP), and adipose-derived stem cells (ADSC). ). Muse cells can be isolated using the "non-expression" of a marker unique to these cells as an index. More specifically, Muse cells include CD34 (markers for EP and ADSC), CD117 (c-kit) (markers for MB), CD146 (markers for PC and ADSC), CD271 (NGFR) (markers for NCSC), NG2 (PC marker), vWF factor (Fonville brand factor) (EP marker), Sox10 (NCSC marker), Snai1 (SKP marker), Slug (SKP marker), Tyrp1 (MB marker), and At least one of 11 markers selected from the group consisting of Dct (MB marker), for example, 2, 3, 4, 5, 6, 7, 8, 9, 10 The non-expression of 11 or 11 markers can be separated as an index. For example, without limitation, the non-expression of CD117 and CD146 can be used as an index, and the non-expression of CD117, CD146, NG2, CD34, vWF and CD271 can be used as an index. The non-expression of 11 markers can be separated as an index.
 また、上記特徴を有するMuse細胞は、以下:
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ
からなる群から選択される少なくとも1つの性質を有してもよい。本発明の一局面では、本発明の細胞製剤及び医薬組成物に使用されるMuse細胞は、上記性質を全て有する。ここで、上記(i)について、「テロメラーゼ活性が低いか又は無い」とは、例えば、TRAPEZE XL telomerase detection kit(Millipore社)を用いてテロメラーゼ活性を検出した場合に、低いか又は検出できないことをいう。テロメラーゼ活性が「低い」とは、例えば、体細胞であるヒト線維芽細胞と同程度のテロメラーゼ活性を有しているか、又はHela細胞に比べて1/5以下、好ましくは1/10以下のテロメラーゼ活性を有していることをいう。上記(ii)について、Muse細胞は、in vitro及びin vivoにおいて、三胚葉(内胚葉系、中胚葉系、及び外胚葉系)に分化する能力を有し、例えば、in vitroで誘導培養することにより、肝細胞、神経細胞、骨格筋細胞、平滑筋細胞、骨細胞、脂肪細胞等に分化し得る。また、in vivoで精巣に移植した場合にも三胚葉に分化する能力を示す場合がある。さらに、静注により生体に移植することで損傷を受けた臓器(心臓、皮膚、脊髄、肝、筋肉等)に遊走及び生着し、組織に応じた細胞に分化する能力を有する。上記(iii)について、Muse細胞は、浮遊培養では増殖速度約1.3日で増殖するが、浮遊培養では1細胞から増殖し、胚様体様細胞塊を作り14日間程度で増殖が減速する、という性質を有するが、これらの胚様体様細胞塊を接着培養に持っていくと、再び細胞増殖が開始され、細胞塊から増殖した細胞が広がっていく。さらに精巣に移植した場合、少なくとも半年間は癌化しないという性質を有する。また、上記(iv)について、Muse細胞は、セルフリニューアル(自己複製)能を有する。ここで、「セルフリニューアル」とは、1個のMuse細胞から浮遊培養で培養することにより得られる胚様体様細胞塊に含まれる細胞から3胚葉性の細胞への分化が確認できると同時に、胚様体様細胞塊の細胞を再び1細胞で浮遊培養に持っていくことにより、次の世代の胚様体様細胞塊を形成させ、そこから再び3胚葉性の分化と浮遊培養での胚様体様細胞塊が確認できることをいう。セルフリニューアルは1回又は複数回のサイクルを繰り返せばよい。
In addition, Muse cells having the above characteristics are as follows:
(I) Low or no telomerase activity;
(Ii) Has the ability to differentiate into cells of any of the three germ layers;
It may have at least one property selected from the group consisting of (iii) no neoplastic growth; and (iv) capable of self-renewal. In one aspect of the present invention, the Muse cells used in the cell preparations and pharmaceutical compositions of the present invention have all of the above properties. Here, with respect to the above (i), "the telomerase activity is low or absent" means that, for example, when the telomerase activity is detected using TRAPEZE XL telomerase detection kit (Millipore), it is low or cannot be detected. say. "Low" telomerase activity means, for example, telomerase having the same level of telomerase activity as somatic human fibroblasts, or 1/5 or less, preferably 1/10 or less of that of Hela cells. It means having activity. Regarding (ii) above, Muse cells have the ability to differentiate into three germ layers (endoderm lineage, mesodermal lineage, and ectodermal lineage) in vitro and in vivo, and are, for example, induced and cultured in vitro. Can differentiate into hepatocytes, nerve cells, skeletal muscle cells, smooth muscle cells, bone cells, fat cells and the like. It may also show the ability to differentiate into three germ layers when transplanted into the testis in vivo. Furthermore, it has the ability to migrate and engraft in organs (heart, skin, spinal cord, liver, muscle, etc.) damaged by transplantation into a living body by intravenous injection, and to differentiate into cells according to tissues. Regarding (iii) above, Muse cells proliferate at a growth rate of about 1.3 days in suspension culture, but grow from one cell in suspension culture to form embryo-like cell clusters, and the growth slows down in about 14 days. However, when these embryo-like cell clusters are brought into the adhesive culture, cell proliferation is started again, and the cells proliferated from the cell cluster spread. Furthermore, when transplanted into the testis, it has the property of not becoming cancerous for at least half a year. In addition, with respect to the above (iv), Muse cells have a self-renewal (self-renewal) ability. Here, "self-renewal" means that the differentiation of cells contained in embryoid body-like cell clusters obtained by culturing one Muse cell in suspension culture into three germ layer cells can be confirmed, and at the same time, at the same time, it can be confirmed. By bringing the cells of the embryo-like cell mass to the suspension culture again with one cell, the next generation embryo-like cell mass is formed, and from there, the embryos in the three germ layer differentiation and suspension culture are again formed. It means that a skeletal cell mass can be confirmed. Self-renewal may be repeated one or more cycles.
 また、Muse細胞を含む細胞画分は、生体の間葉系組織又は培養間葉系細胞に外的ストレス刺激を与え、該外的ストレスに耐性の細胞以外の細胞を死滅させ、生き残った細胞を回収することを含む方法によって得られる、以下の性質の少なくとも1つ、好ましくは全てを有する、SSEA-3陽性及びCD105陽性の多能性幹細胞が濃縮された細胞画分であってもよい。
(i)SSEA-3陽性;
(ii)CD105陽性;
(iii)テロメラーゼ活性が低いか又は無い;
(iv)三胚葉に分化する能力を持つ;
(v)腫瘍性増殖を示さない;及び
(vi)セルフリニューアル能を持つ。
In addition, the cell fraction containing Muse cells gives an external stress stimulus to the mesenchymal tissue or cultured mesenchymal cells of the living body, kills cells other than the cells resistant to the external stress, and causes the surviving cells. It may be a cell fraction enriched with SSEA-3 positive and CD105 positive pluripotent stem cells having at least one, preferably all of the following properties, obtained by a method involving recovery.
(I) SSEA-3 positive;
(Ii) CD105 positive;
(Iii) Low or no telomerase activity;
(Iv) Has the ability to differentiate into three germ layers;
(V) does not show neoplastic growth; and (vi) has self-renewal ability.
 上記外的ストレスは、プロテアーゼ処理、低酸素濃度での培養、低リン酸条件下での培養、低血清濃度での培養、低栄養条件での培養、熱ショックへの曝露下での培養、低温での培養、凍結処理、有害物質存在下での培養、活性酸素存在下での培養、機械的刺激下での培養、振とう処理下での培養、圧力処理下での培養又は物理的衝撃のいずれか又は複数の組み合わせであってもよい。例えば、上記プロテアーゼによる処理時間は、細胞に外的ストレスを与えるために合計0.5~36時間行うことが好ましい。また、プロテアーゼ濃度は、培養容器に接着した細胞を剥がすとき、細胞塊を単一細胞にばらばらにするとき、又は組織から単一細胞を回収するときに用いられる濃度であればよい。プロテアーゼは、セリンプロテアーゼ、アスパラギン酸プロテアーゼ、システインプロテアーゼ、金属プロテアーゼ、グルタミン酸プロテアーゼ又はN末端スレオニンプロテアーゼであることが好ましい。さらに、前記プロテアーゼがトリプシン、コラゲナーゼ又はジスパーゼであることが好ましい。 The above external stresses are protease treatment, culture at low oxygen concentration, culture under low phosphoric acid condition, culture at low serum concentration, culture under low nutritional condition, culture under heat shock exposure, low temperature. Culturing in, freezing treatment, culturing in the presence of harmful substances, culturing in the presence of active oxygen, culturing under mechanical stimulation, culturing under shaking treatment, culturing under pressure treatment or physical impact It may be any or a combination of two or more. For example, the treatment time with the protease is preferably 0.5 to 36 hours in total in order to give external stress to the cells. The protease concentration may be any concentration used when peeling the cells adhered to the culture vessel, breaking up the cell mass into a single cell, or recovering a single cell from the tissue. The protease is preferably serine protease, aspartic protease, cysteine protease, metal protease, glutamate protease or N-terminal threonine protease. Further, it is preferable that the protease is trypsin, collagenase or dispase.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
実施例1.胎児発育不全モデル動物の作製と動物の管理
 60匹の妊娠4日目のSDラット(11週齢)を日本SLC社(Hamamatsu、Shizuoka、Japan)より購入した。各ラットを偽手術群(シャム群、n=15)、平衡塩溶液投与を投与する胎児発育不全モデル群(ビークル群、n=15)、間葉系幹細胞を投与する胎児発育不全モデル群(MSC群、n=15)、ならびにMuse細胞を投与する胎児発育不全モデル群(Muse群、n=15)に、ランダムに振り分けた。各群の妊娠ラットは1ケージ当たり1匹、室温22~24℃、湿度50~60%、12時間の明暗周期、餌と水に対して自由にアクセス可能な環境下で飼育された。ビークル、MSC、Muse群の妊娠ラットの妊娠17日目に、子宮動脈及び卵巣動脈にアメロイドコンストリクター(Research Instruments SW、CA、US)を装着することで子宮内低灌流処置を施した。アメロイドコンストリクターの装着時に露出させた子宮は、37℃に加温した生理食塩水を染み込ませたガーゼで包み、乾燥と体温の低下を防いだ。シャム群の妊娠ラットに関しては、ビークル群と同様に妊娠17日目に開腹及び子宮露出処置だけを施し、アメロイドコンストリクターは装着せずに閉腹した。
Example 1. Preparation of fetal growth restriction model animals and animal management 60 SD rats (11 weeks old) on the 4th day of gestation were purchased from Japan SLC (Hamamatsu, Shizuoka, Japan). Fetal growth restriction model group (vehicle group, n = 15) to which each rat is administered with a sham operation group (sham group, n = 15), equilibrium salt solution administration, and fetal growth restriction model group (MSC) to which mesenchymal stem cells are administered. The group was randomly divided into a group, n = 15), and a fetal growth restriction model group (Muse group, n = 15) to which Muse cells were administered. One pregnant rat in each group was bred at room temperature 22-24 ° C., humidity 50-60%, 12-hour light-dark cycle, and free access to food and water. On the 17th day of gestation of pregnant rats in the vehicle, MSC, and Muse groups, intrauterine hypoperfusion treatment was performed by attaching Ameloid Constrictors (Research Instruments SW, CA, US) to the uterine and ovarian arteries. The uterus exposed when the Ameroid Constrictor was worn was wrapped in gauze soaked with saline warmed to 37 ° C to prevent dryness and decrease in body temperature. As for the pregnant rats in the sham group, only the laparotomy and uterine exposure treatment were performed on the 17th day of pregnancy as in the vehicle group, and the abdomen was closed without wearing the Ameloid Constrictor.
 妊娠21日目に各妊娠ラットから仔ラットの出生を確認し、各母ラットにつき10匹になるように、雌性仔ラットの中からランダムに間引きを行った。すべての雄性仔ラットの出生3日目から14日目まで体重推移を評価し、出生4、5、7、10、14日目の仔ラットから脳脊髄液を、出生5、14日目の仔ラットから血液を採取した。また、出生4日目に、シャム及びビークル群に平衡塩溶液を頸静脈から投与し、MSC群には間葉系幹細胞を、Muse群にはMuse細胞を1.0×10個投与した。すべての動物実験は、「Animal Research:Reporting In Vivo Experiments guidelines for the care and use of laboratory animals」に従い、名古屋大学動物実験倫理委員会(承認番号30082及び1107)の承認を得て遂行した。なお、すべての手術及びサンプル採取はイソフルランでの麻酔科で行い、痛みと苦しみが最小化するように最大限の努力を行った。 Birth of pups was confirmed from each gestation rat on the 21st day of gestation, and decimation was performed randomly from among female pups so that each mother rat would have 10 pups. Evaluate body weight transition from day 3 to day 14 of all male pups, and remove cerebrospinal fluid from pups on days 4, 5, 7, 10 and 14 of birth and pups on days 5 and 14 of birth. Blood was collected from rats. On the 4th day of birth, a balanced salt solution was administered to the sham and vehicle groups from the jugular vein, mesenchymal stem cells were administered to the MSC group, and 1.0 × 10 4 Muse cells were administered to the Muse group. All animal experiments were carried out in accordance with "Animal Research: Reporting In vivo Experiments guidelines for the care and use of laboratory analogs", and were approved by the Nagoya University Animal Experiment Ethics Committee (approval numbers 30082 and 1107). All surgery and sampling were performed in the anesthesiology department with isoflurane, and every effort was made to minimize pain and suffering.
実施例2.脳脊髄液の採取
 脳脊髄液の採取のためにキャピラリー(DRM Microcap、1-000-0500)を購入し、先端を破砕することで鋭利にした。イソフルランで眠らせた仔ラットの後頭蓋窩を露出させ、鋭利にしたキャピラリーを大槽内に穿刺し、毛細管現象により脳脊髄液を採取した。採取した脳脊髄液は、タンパク質分解酵素阻害剤をあらかじめ加えておいたチューブ内に入れ、即座に液体窒素で凍結し、使用するまで-80℃下で冷凍保存した。
Example 2. Collection of cerebrospinal fluid A capillary (DRM Microcap, 1-000-0500) was purchased for collection of cerebrospinal fluid and sharpened by crushing the tip. The posterior fossa of the rat pups asleep with isoflurane was exposed, a sharpened capillary was punctured into the cisterna magna, and cerebrospinal fluid was collected by capillary action. The collected cerebrospinal fluid was placed in a tube to which a proteolytic enzyme inhibitor had been added in advance, immediately frozen in liquid nitrogen, and stored frozen at -80 ° C until use.
実施例3.血清の採取
 イソフルランで眠らせた仔ラットの心臓から血液500μLを採取し、凝固促進剤と血清分離剤の入った微量採血管(BD Microtainer SST)に入れた。5回の転倒混和の後、10000×gの遠心により血球成分を沈殿させ、血清を採取した。採取した血清に、タンパク質分解酵素阻害剤を添加し、使用するまで-80℃下で冷凍保存した。
Example 3. Serum collection 500 μL of blood was collected from the heart of a rat pups asleep with isoflurane and placed in a microvascular (BD Microtainer SST) containing a coagulation promoter and a serum separator. After 5 inversion mixing, blood cell components were precipitated by centrifugation at 10000 × g, and serum was collected. A proteolytic enzyme inhibitor was added to the collected serum, and the serum was stored frozen at −80 ° C. until use.
実施例4.プロテオミクスによる脳脊髄液中タンパク質の網羅的解析
 採取した脳脊髄液のタンパク質濃度をBCA法により測定し、50μg/100μLの濃度に統一した。脳脊髄液に含まれる全タンパク質の存在量を液体クロマトグラフ/質量分析計(LC/MS)により測定し、タンパク質プロファイルを取得した。脳脊髄液から検出された全601種のタンパク質の存在量と出生3日目の体重のSpearman相関係数を算出し、その相関係数に基づいてp値及び偽発見率(False Discovery Rate;FDR)を算出した。なお、出生3日目の体重が出生時体重と相関することは既に確認している。p<0.05、FDR<0.10を示したタンパク質は、出生4日目で140種、5日目で123種、計212種(重複51種)が確認され、これら212種のタンパク質が胎児発育不全に伴って変動するタンパク質として見出された。その212種のタンパク質に関して遺伝子オントロジー(Gene Ontology)を用いた機能解析により、p<0.05、Fold Enrichment>2、Symbols number>3の条件を満たしたタンパク質群を抽出した。出生4日目の140種のタンパク質においては、生物学的プロセスに関する333のタンパク質群、細胞成分に関する42のタンパク質群、分子機能に関する50のタンパク質群が、出生5日目の123種のタンパク質においては、生物学的プロセスに関する191のタンパク質群、細胞成分に関する27のタンパク質群、分子機能に関する35のタンパク質群の遺伝子オントロジーが抽出された。これらの用語のうち、特に顕著な変動を示したものとして上位に抽出されたものが、出生4日目では神経幹細胞及びグリア細胞の分化、神経新生と細胞死の制御に関するタンパク質群、5日目においてはシナプス形成、神経回路の発達、行動機能に関するタンパク質群であった。さらに、炎症・免疫応答、細胞接着、タンパク質構造の管理を担うタンパク質群が、出生4、5日目に共通して抽出された。出生4、5日目に共通して変動したタンパク質群の中から、出生4日目と5日目のいずれのタイムポイントにおいても共通して増加あるいは減少したタンパク質を抽出した結果、14種のタンパク質が見出された。さらに、この14種のうち、脳での発現が認められるものをThe Human Protein Atlasを用いて調査した結果、6種類のタンパク質、α-2-マクログロブリン(A2m)(図1)、ニューロセルピン(Serpini1)(図2)、ポリユビキチン-B(Ubb)(図3)、OX-2メンブレン糖タンパク質(Cd200)(図4)、ユビキチンチオエステラーゼOTUB1(Otub1)(図5)、ユビキチン様修飾活性化酵素1(Uba1)(図6)が見出された。
Example 4. Comprehensive analysis of proteins in cerebrospinal fluid by proteomics The protein concentration in the collected cerebrospinal fluid was measured by the BCA method and unified to a concentration of 50 μg / 100 μL. The abundance of total protein contained in cerebrospinal fluid was measured by a liquid chromatograph / mass spectrometer (LC / MS), and a protein profile was obtained. The Spearman correlation coefficient between the abundance of all 601 proteins detected in the cerebrospinal fluid and the body weight on the third day of birth was calculated, and the p-value and false discovery rate (FDR) were calculated based on the correlation coefficient. ) Was calculated. It has already been confirmed that the body weight on the third day of birth correlates with the body weight at birth. As for the proteins showing p <0.05 and FDR <0.10, 140 kinds on the 4th day of birth and 123 kinds on the 5th day, a total of 212 kinds (51 kinds of duplication) were confirmed, and these 212 kinds of proteins were confirmed. It was found as a protein that fluctuates with fetal growth restriction. A group of proteins satisfying the conditions of p <0.05, Fold Engineering> 2, and Symbols number> 3 was extracted by functional analysis of the 212 proteins using Gene Ontology. Among the 140 proteins on the 4th day of birth, 333 proteins related to biological processes, 42 proteins related to cell components, 50 proteins related to molecular function, and 123 proteins on the 5th day of birth , 191 proteins related to biological processes, 27 proteins related to cell components, and 35 proteins related to molecular function were extracted. Among these terms, the ones extracted at the top as showing particularly remarkable fluctuations are proteins related to the differentiation of neural stem cells and glial cells, neurogenesis and control of cell death on the 4th day of birth, and the 5th day. In, it was a group of proteins related to synaptogenesis, neural circuit development, and behavioral function. Furthermore, protein groups responsible for inflammatory / immune response, cell adhesion, and protein structure management were commonly extracted on the 4th and 5th days of birth. As a result of extracting proteins that increased or decreased in common at both the time points on the 4th and 5th days of birth from the protein group that fluctuated in common on the 4th and 5th days of birth, 14 kinds of proteins Was found. Furthermore, among these 14 types, those observed to be expressed in the brain were investigated using The Human Protein Atlas, and as a result, 6 types of proteins, α-2-macroglobulin (A2m) (Fig. 1), and neurocerpin (Fig. 1) were used. Serpini1) (Fig. 2), Polyubiquitin-B (Ubb) (Fig. 3), OX-2 membrane glycoprotein (Cd200) (Fig. 4), Ubiquitin thioesterase OTUB1 (Otub1) (Fig. 5), Ubiquitin-like modification activation Enzyme 1 (Uba1) (Fig. 6) was found.
実施例5.ポリアクリルアミドゲル電気泳動とウエスタンブロッティング法によるタンパク質の定量
 脳脊髄液及び血清中タンパク質をサンプル変性用バッファー(125mM Tris-HCl[pH6.8]、20%グリセロール、4%w/vドデシル硫酸ナトリウム[SDS]、0.001%w/vブロモフェノールブルー及び10%メルカプトエタノール)と混和し、95℃で5分間加熱することでタンパク質の立体構造を変性させた。各サンプルについて、1レーンあたり5μgのタンパク質を10%SDS-ポリアクリルアミドゲルに加え、最初に80V、10℃で120分間電気泳動した。電気泳動により分離したタンパク質を室温、400mAで1時間、ポリビニリデンジフルオリド膜(Merck Millipore、MA、USA)上に転写した。0.1%Tween-20含むTris緩衝生理食塩水(pH7.4)(TBS-T)に可溶した5%スキムミルクでメンブレン上のタンパク質をブロッキングした後、一次抗体のウサギ抗アルブミン抗体(Proteintech:16475-1-AP、1:5000)、ウサギ抗A2m抗体(Abcam:ab58703、1:500)、ウサギ抗Cd200抗体(Proteintech:14057-1-AP、1:200)、ウサギ抗Ube1(Uba1)抗体(Proteinthch:15912-1-AP、1:400)、ウサギ抗Otub1抗体(Abcam:ab101471、1:500)、ウサギ抗ニューロセルピン抗体(Abcam:ab33077、1:200)、又はウサギ抗Ubb抗体(Stressmarq bioscience:SPC-119、1:500)を4℃で一晩反応させた。その後、一次抗体を反応させたメンブレンに、二次抗体の西洋ワサビペルオキシダーゼヤギ抗ウサギIgG抗体(Rockland:611-603-122、アルブミンで1:10000、その他で1:1000)を室温で1時間反応させた。各ステップの間に、メンブレンをTBS-Tで洗浄した。二次抗体結合は、Immobilon Westem Chemiluminescent HRP基質(Merck Millipore)を用いた化学発光により可視化、検出した。検出されたシグナルを定量化するために、ImageQuant LAS 4000(GE healthcare、IL、US)を使用して画像をスキャンし、Image Jソフトウェアを使用して分析した。ポリアクリルアミドゲル電気泳動法において、ラットアルブミン分子は66kDaに、A2m分子は163kDaに、ニューロセルピン分子は46kDaに、Ubb分子は34kDaに、CD200分子は41kDaに、OTUB1分子は31kDaに、及びUBE1分子は117kDaにバンドの出現を確認した。検出した各バンドの密度をバックグラウンド減算で定量化し、A2m、ニューロセルピン、Ubb、Cd200、OTUB1、及びUBE1それぞれの定量値を各サンプルのアルブミンの定量値により修正した(図7A~12A)。
Example 5. Quantification of proteins by polyacrylamide gel electrophoresis and Western blotting Cerebral spinal fluid and serum proteins sample denaturing buffer (125 mM Tris-HCl [pH 6.8], 20% glycerol, 4% w / v sodium dodecyl sulfate [SDS] ], 0.001% w / v bromophenol blue and 10% mercaptoethanol), and the protein was denatured by heating at 95 ° C. for 5 minutes. For each sample, 5 μg of protein per lane was added to a 10% SDS-polyacrylamide gel and first electrophoresed at 80 V, 10 ° C. for 120 minutes. The proteins separated by electrophoresis were transferred onto a polyvinylidene difluoride membrane (Merck Millipore, MA, USA) at room temperature and 400 mA for 1 hour. After blocking the protein on the membrane with 5% skim milk dissolved in Tris buffered physiological saline (pH 7.4) (TBS-T) containing 0.1% Tween-20, the primary antibody, rabbit anti-albumin antibody (Proteintech:). 16475-1-AP, 1: 5000), rabbit anti-A2m antibody (Abcam: ab58703, 1: 500), rabbit anti-Cd200 antibody (Proteintech: 14057-1-AP, 1: 200), rabbit anti-Ube1 (Uba1) antibody. (Proteinthch: 5912-1-AP, 1: 400), rabbit anti-Otub1 antibody (Abcam: ab101471, 1: 500), rabbit anti-neuroselpin antibody (Abcam: ab33077, 1: 200), or rabbit anti-Ubb antibody (Stressmarq). Bioscience: SPC-119, 1: 500) was reacted overnight at 4 ° C. Then, the secondary antibody, Horseradish peroxidase goat anti-rabbit IgG antibody (Rockland: 611-603-122, albumin 1: 10000, others 1: 1000) was reacted at room temperature for 1 hour on the membrane on which the primary antibody was reacted. I let you. During each step, the membrane was washed with TBS-T. Secondary antibody binding was visualized and detected by chemiluminescence using the Immobilon Westem Chemiluminescence HRP substrate (Merck Millipore). To quantify the detected signal, images were scanned using ImageQuant LAS 4000 (GE healthcare, IL, US) and analyzed using ImageJ software. In polyacrylamide gel electrophoresis, the rat albumin molecule is 66 kDa, the A2m molecule is 163 kDa, the neuroselpin molecule is 46 kDa, the Ubb molecule is 34 kDa, the CD200 molecule is 41 kDa, the OTUB1 molecule is 31 kDa, and the UBE1 molecule is. The appearance of the band was confirmed at 117 kDa. The density of each detected band was quantified by background subtraction, and the quantified values of A2m, neuroserpin, Ubb, Cd200, OTUB1, and UBE1 were corrected by the quantified values of albumin of each sample (FIGS. 7A to 12A).
 各種の胎児発育不全モデル群(偽手術群(シャム群)、ビークル群、MSC群、及びMuse群)において発現した各タンパク質の存在量を測定した結果を図7B及びC、図8B及びC、図9B及びC、図10B及びC、図11B、並びに図12B)に示す。図7B、8B、9B、10B、11B、及び12Bは、脳脊髄液中の各タンパク質の存在量(出生5、7、10、及び14日)を示し、一方、図7C、8C、9C、及び10Cは、血清中の各タンパク質の存在量(出生5日及び14日)を示す。 The results of measuring the abundance of each protein expressed in various fetal growth restriction model groups (sham surgery group (sham group), vehicle group, MSC group, and Muse group) are shown in FIGS. 7B and C, 8B and C, FIG. 9B and C, FIGS. 10B and C, FIG. 11B, and FIG. 12B). 7B, 8B, 9B, 10B, 11B, and 12B show the abundance of each protein in cerebrospinal fluid ( births 5, 7, 10, and 14 days), while FIGS. 7C, 8C, 9C, and 10C indicates the abundance of each protein in serum (5th and 14th day of birth).
(a)A2m(α-2-マクログロブリン)
 血清及び脳脊髄液において、出生後5日、14日ともに有意な増加を確認した。また、出生後5日、14日ともにMuse細胞による発現抑制を確認した(図7B及びC)。脳脊髄液の結果では、出生後5日目の段階でMuse細胞による抑制効果は確認できなかったが(図7B)、血清中で確認できたのは、脳以外の器官(肺等)でも胎児発育不全によってA2mの発現亢進が誘導され、脳よりも早くMuse細胞がその器官に作用しためと考えられる。
(A) A2m (α-2-macroglobulin)
Significant increases were confirmed in serum and cerebrospinal fluid both 5 days and 14 days after birth. In addition, suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth (FIGS. 7B and C). In the results of cerebrospinal fluid, the inhibitory effect of Muse cells could not be confirmed at the stage of 5 days after birth (Fig. 7B), but what was confirmed in serum was the fetus in organs other than the brain (lungs, etc.). It is considered that the growth restriction induces the upregulation of A2m, and the Muse cells act on the organ earlier than the brain.
(b)Serpini1(ニューロセルピン)
 血清及び脳脊髄液において、出生後5日、14日ともに有意な増加を確認した。血清試料(図8C)は、脳脊髄液(図8B)と同様に出生後14日の方が増加の度合いが大きい。さらに脳脊髄液と比べて、対照ではほとんど確認できなかったため、その上昇幅が大きい。また、出生後5日、14日ともにMuse細胞及び間葉系幹細胞(MSC)による発現抑制を確認した(図8C)。抑制効果はMuse細胞群の方が顕著であり、長期にわたって持続していると考えられる。
(B) Serpini1 (neuroserpin)
Significant increases were confirmed in serum and cerebrospinal fluid both 5 days and 14 days after birth. As with cerebrospinal fluid (Fig. 8B), the serum sample (Fig. 8C) increased more significantly 14 days after birth. Furthermore, compared with cerebrospinal fluid, it was hardly confirmed in the control, so the rate of increase was large. In addition, suppression of expression by Muse cells and mesenchymal stem cells (MSC) was confirmed on both 5 and 14 days after birth (Fig. 8C). The inhibitory effect is more remarkable in the Muse cell group, and it is considered that the inhibitory effect is sustained for a long period of time.
(c)Ubb(ポリユビキチン-B)
 出生後5日、14日ともに有意な増加を確認した。また、出生後5日、14日ともにMuse細胞による発現抑制を確認した。効果は、Muse細胞の方がMSCより早い(図9C及びD)。
(C) Ubb (polyubiquitin-B)
A significant increase was confirmed on both 5 and 14 days after birth. In addition, suppression of expression by Muse cells was confirmed on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs (FIGS. 9C and D).
(d)Cd200(OX-2メンブレン糖タンパク質)
 出生後5日に有意な増加を確認したが、幹細胞による抑制効果は傾向にとどまった(図10B及びC)。
(D) Cd200 (OX-2 Membrane Glycoprotein)
A significant increase was confirmed 5 days after birth, but the inhibitory effect of stem cells remained on the trend (FIGS. 10B and C).
(e)Otub1(ユビキチンチオエステラーゼOTUB1)
 脳脊髄液では、Muse細胞は、出生後5日、14日ともにMuse細胞及びMSCによる発現抑制を確認した。効果は、Muse細胞の方がMSCより早い(図11B)。
(E) Otub1 (ubiquitin thioesterase OTUB1)
In cerebrospinal fluid, the expression of Muse cells was confirmed to be suppressed by Muse cells and MSCs on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs (Fig. 11B).
(f)Uba1(ユビキチン様修飾活性化酵素1)
 脳脊髄液では、Muse細胞は、出生後5日、14日ともにMuse細胞及びMSCによる発現抑制を確認した。効果は、Muse細胞の方がMSCより早い(図12B)。
(F) Uba1 (ubiquitin-like modification activating enzyme 1)
In cerebrospinal fluid, the expression of Muse cells was confirmed to be suppressed by Muse cells and MSCs on both 5 days and 14 days after birth. The effect is faster in Muse cells than in MSCs (Fig. 12B).
実施例6.免疫蛍光法による各種タンパク質分子の脳内における発現局在及び発現変動の評価
 (方法)各種タンパク質の局在評価のために、出生5日目の仔ラット(n=5/群)の脳を使用した。麻酔したラットをリン酸緩衝生理食塩水(PBS)で経心的に灌流した後、0.1Mリン酸緩衝液中の4%パラホルムアルデヒド(PFA)を灌流して固定した。脳サンプルは、24時間、0.1 Mリン酸緩衝液に溶解した4%PFAで後固定した後、0.1%アジ化ナトリウムを含むリン酸緩衝スクロース(10%スクロース、4~6時間、20%スクロース、4~6時間、30%スクロース、12~36時間)で凍結保護し、-80℃で急速凍結を行った。凍結後、脳切片を40μmの厚みで冠状方向に薄切した。作成した切片を10%通常ヤギ血清で、室温下1時間ブロッキングした後、一次抗体ウサギ抗A2m抗体(Abcam:ab58703、1:50)、ウサギ抗CD200抗体(Proteintech:14057-1-AP、1:50)、ウサギ抗Ube1(Uba1)抗体(Proteintech:15912-1-AP、1:50)、又はウサギ抗ニューロセルピン抗体Abcam:ab33077、1:100)を4℃で20時間反応させた。PBSで3回5分間洗浄した後、ATTO 488コンジュゲートした二次抗体ヤギ抗ウサギIgG(Rockland、611-152-122、1:500)を4℃で12時間反応させた。その後、PBSで3回5分間洗浄し、一次抗体マウス抗NueN抗体(Merck:MAB377、1:100)、マウス抗Olig2抗体(Proteintech:66513-1-Ig:14057-1-AP、1:100)、マウス抗S100抗体(Abcam:ab4066、1:100)、又はマウス抗Iba1抗体(Abcam:ab15690、1:100)を4℃で20時間反応させた。これらの抗体はそれぞれ、神経細胞、オリゴデンドロサイト、アストロサイト、ミクログリアのマーカーとして用いた。PBSで3回5分間洗浄した後、ATTO 550コンジュゲートした二次抗体ヤギ抗マウスIgG (Rockland、611-152-122、1:500)を4℃で12時間反応させた。PBSで3回5分間洗浄した後、精製水に1回通して、Prolong Gold with DAPIを用いて核染色しつつ封入した。乾燥後、共焦点レーザー顕微鏡(TiE-A1R、Nikon、Japan)を用いて、観察した。脳の矢状縫合と冠状縫合の交点(Bregma)から鼻側方向に10切片を選択し、それぞれの切片の海馬(図13A)、線条体(図14A)及び大脳皮質(図15A)を観察した。各脳領域からランダムに100個の細胞を選択し、NeuN陽性細胞、Olig2陽性細胞、S100陽性細胞、ならびにIba1陽性細胞における、バイオマーカー候補の4種のタンパク質の発現量を蛍光強度から相対的に定量した。100個の細胞のうち、4種の候補タンパク質が最高強度を示したものを100とし、無発現細胞を0としている。
Example 6. Evaluation of expression localization and expression fluctuation of various protein molecules in the brain by immunofluorescence (Method) For evaluation of the localization of various proteins, the brains of 5 day-old pups (n = 5 / group) were used. bottom. Anesthetized rats were transcentricly perfused with phosphate buffered saline (PBS) and then perfused with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer for fixation. Brain samples were post-fixed with 4% PFA dissolved in 0.1 M phosphate buffer for 24 hours and then phosphate buffered sucrose containing 0.1% sodium azide (10% sucrose, 4-6 hours, 20% sucrose, 4-6 hours, 30% sucrose, 12-36 hours) was cryoprotected and rapidly frozen at −80 ° C. After freezing, brain sections were sliced in the coronal direction to a thickness of 40 μm. The prepared section was blocked with 10% normal goat serum for 1 hour at room temperature, and then the primary antibody rabbit anti-A2m antibody (Abcam: ab58703, 1:50) and rabbit anti-CD200 antibody (Proteintech: 14057-1-AP, 1:50). 50), rabbit anti-Ube1 (Uba1) antibody (Proteintech: 15912-1-AP, 1:50), or rabbit anti-neuroseperpine antibody Abcam: ab33077, 1: 100) was reacted at 4 ° C. for 20 hours. After washing 3 times with PBS for 5 minutes, ATTO 488 conjugated secondary antibody goat anti-rabbit IgG (Rockland, 611-152-122, 1: 500) was reacted at 4 ° C. for 12 hours. Then, it was washed with PBS three times for 5 minutes, and the primary antibody mouse anti-NueN antibody (Merck: MAB377, 1: 100) and mouse anti-Olig2 antibody (Proteintech: 66513-1-Ig: 14057-1-AP, 1: 100). , Mouse anti-S100 antibody (Abcam: ab4066, 1: 100) or mouse anti-Iba1 antibody (Abcam: ab15690, 1: 100) was reacted at 4 ° C. for 20 hours. Each of these antibodies was used as a marker for nerve cells, oligodendrocytes, astrocytes, and microglia. After washing 3 times with PBS for 5 minutes, ATTO 550 conjugated secondary antibody goat anti-mouse IgG (Rockland, 611-152-122, 1: 500) was reacted at 4 ° C. for 12 hours. After washing with PBS 3 times for 5 minutes, the cells were passed through purified water once and encapsulated with nuclear staining using Prolong Gold with DAPI. After drying, the observation was performed using a confocal laser scanning microscope (TiE-A1R, Nikon, Japan). Select 10 sections nasally from the intersection of the sagittal and coronal sutures (Bregma) of the brain, and observe the hippocampus (Fig. 13A), striatum (Fig. 14A), and cerebral cortex (Fig. 15A) of each section. bottom. 100 cells were randomly selected from each brain region, and the expression levels of the four biomarker candidate proteins in NeuN-positive cells, Olig2-positive cells, S100-positive cells, and Iba1-positive cells were relative to the fluorescence intensity. Quantified. Of the 100 cells, the one in which the four candidate proteins showed the highest intensity was set to 100, and the non-expressing cell was set to 0.
 (結果)図13B~E、図14B~E、及び図15B~Eに示されるように、ニューロセルピンは偽手術群とFGR群ともにNeuN陽性細胞(神経細胞)で強い発現が認められ、他の細胞では発現はほぼ認められなかった。また、その発現強度はFGR群で有意に上昇していた。A2mは偽手術群では総じて強い強度を示さなかった一方、FGR群のNeuN陽性細胞、S100陽性細胞(アストロサイト)ならびにOlig2陽性細胞(オリゴデンドロサイト)において、その高発現細胞の増加が認められた。CD200は偽手術群及びFGR群ともにS100陽性細胞で強い発現を示し、次いでNeuN陽性細胞で発現を示した。これらの細胞において、CD200は偽手術群に対してFGR群でより強い発現が認められた。UbbはNeuN陽性細胞、S100陽性細胞ならびにOlig2陽性細胞で検出され、さらにその発現強度はFGR群で有意に上昇していた。また、これらの結果は大脳皮質、海馬、線条体いずれの脳領域においても酷似していた。これらの結果から、4種のバイオマーカー候補タンパク質は脳組織においても、有意に発現亢進していることが明らかになった。また、その候補タンパク質の発現変動は、脳領域ではなく、脳細胞の種類に依存していることが示された。 (Results) As shown in FIGS. 13B to 13B, 14B to E, and 15B to E, neuroserpin was strongly expressed in NeuN-positive cells (nerve cells) in both the sham surgery group and the FGR group, and other neuroserpins were observed. Almost no expression was observed in cells. In addition, the expression intensity was significantly increased in the FGR group. While A2m did not show strong strength in the sham surgery group as a whole, an increase in highly expressed cells was observed in NeuN-positive cells, S100-positive cells (astrocytes) and Oligo2-positive cells (oligodendrocytes) in the FGR group. .. CD200 showed strong expression in S100-positive cells in both the sham-surgery group and the FGR group, followed by NeuN-positive cells. In these cells, CD200 was more strongly expressed in the FGR group than in the sham surgery group. Ubb was detected in NeuN-positive cells, S100-positive cells and Olig2-positive cells, and its expression intensity was significantly increased in the FGR group. In addition, these results were very similar in all brain regions of the cerebral cortex, hippocampus, and striatum. From these results, it was clarified that the four biomarker candidate proteins were significantly upregulated in the brain tissue. It was also shown that the expression variation of the candidate protein depends not on the brain region but on the type of brain cells.
 本発明のバイオマーカーは、哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害を早期に診断するために使用することができ、幼児及び小児における神経発達障害の治療に応用することができる。 The biomarker of the present invention can be used for early diagnosis of perinatal disorders in newborns due to fetal growth restriction in mammalian subjects, and is applied to the treatment of neurodevelopmental disorders in infants and children. be able to.
 本明細書に引用する全ての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。 All publications and patent documents cited herein are incorporated herein by reference in their entirety. Although specific embodiments of the present invention have been described herein for purposes of illustration, it will be appreciated by those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. It will be easily understood.

Claims (11)

  1.  哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害を早期に判定する方法であって、
     (a)α-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)からなる群から選択される1つ又は複数のタンパク質の発現レベルを、被検体から得た体液試料において、正常な体液、治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較して試験し;ならびに
     (b)前記発現レベルが前記正常な体液又は治療後の体液における発現レベルと比較して統計学的に有意差を示すか、又は周産期障害を示すことが知られている前記体液における発現レベルと比較して統計学的に有意差を示さない場合に、前記被検体が周産期障害であると評価する
    ことを含む上記方法。
    A method for early determination of neonatal perinatal disorders due to fetal growth restriction in mammalian subjects.
    (A) α-2-Macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) ) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and one or more proteins selected from the group consisting of ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Expression levels were tested in body fluid samples obtained from subjects in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; and (b). The expression level is statistically significantly different from the expression level in the normal body fluid or the body fluid after treatment, or is compared with the expression level in the body fluid known to exhibit perinatal disorders. The above method, which comprises evaluating the subject as having a perinatal disorder when it does not show a statistically significant difference.
  2.  前記タンパク質が、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)からなる群から選択される、請求項1に記載の方法。 The protein according to claim 1, wherein the protein is selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). The method described.
  3.  被検体がヒト患者である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the subject is a human patient.
  4.  前記の試験したタンパク質のすべてが正常な体液と比較して、被検体の体液試料において有意差を示す場合に、前記被検体が周産期障害であると評価する、請求項1~3のいずれか1項に記載の方法。 Any of claims 1 to 3, wherein the subject is evaluated as having a perinatal disorder when all of the tested proteins show a significant difference in the body fluid sample of the subject as compared with the normal body fluid. The method according to item 1.
  5.  前記発現レベルがイムノアッセイによって決定される、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the expression level is determined by an immunoassay.
  6.  前記発現レベルが液体クロマトグラフィー/質量分析法によって決定される、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the expression level is determined by liquid chromatography / mass spectrometry.
  7.  前記発現レベルがタンパク質アレイを用いて決定される、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the expression level is determined using a protein array.
  8.  哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害を早期に判定するための、前記被検体から得られた体液中のα-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、ニューロセルピン(Serpini1)、ユビキチンチオエステラーゼOTUB1(Otub1)、及びユビキチン様修飾活性化酵素1(Uba1)からなる群から選択される1つ又は複数のタンパク質発現のプロテオミクスプロファイルの使用。 Α-2-Macroglobulin (A2m), OX-2 membrane in body fluid obtained from the subject to determine early neonatal perinatal disorders due to fetal stunting in a mammalian subject One or more selected from the group consisting of glycoprotein (Cd200), polyubiquitin-B (Ubb), neuroserpin (Serpini1), ubiquitin thioesterase OTUB1 (Otub1), and ubiquitin-like modification activating enzyme 1 (Uba1). Use of a proteomic profile of protein expression in Ubiquitin.
  9.  前記タンパク質が、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)からなる群から選択される、請求項8に記載の使用。 8. The protein is selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). Use of description.
  10.  哺乳動物被検体における、胎児発育不全に起因する新生児の周産期障害の治療効果を早期に判定する方法であって、
     (a)α-2-マクログロブリン(A2m)(配列番号1)、OX-2メンブレン糖タンパク質(Cd200)(配列番号2)、ポリユビキチン-B(Ubb)(配列番号3)、ニューロセルピン(Serpini1)(配列番号4)、ユビキチンチオエステラーゼOTUB1(Otub1)(配列番号5)、及びユビキチン様修飾活性化酵素1(Uba1)(配列番号6)からなる群から選択される1つ又は複数のタンパク質の発現レベルを、治療中の被検体から得た体液試料において、正常な体液、治療後の体液、又は周産期障害を示すことが知られている体液における発現レベルと比較して試験し;ならびに
     (b)前記発現レベルが前記正常な体液又は治療後の体液における発現レベルと比較して統計学的に有意差を示さないか、又は周産期障害を示すことが知られている前記体液における発現レベルと比較して統計学的に有意差を示す場合に、前記被検体における周産期障害の治療が有効であると判定する
    ことを含む上記方法。
    A method for early determination of the therapeutic effect of neonatal perinatal disorders due to fetal growth restriction in mammalian subjects.
    (A) α-2-Macroglobulin (A2m) (SEQ ID NO: 1), OX-2 membrane glycoprotein (Cd200) (SEQ ID NO: 2), polyubiquitin-B (Ubb) (SEQ ID NO: 3), neurocerpin (Serpini1) ) (SEQ ID NO: 4), ubiquitin thioesterase OTUB1 (Otub1) (SEQ ID NO: 5), and one or more proteins selected from the group consisting of ubiquitin-like modification activating enzyme 1 (Uba1) (SEQ ID NO: 6). Expression levels were tested in body fluid samples obtained from the subject being treated in comparison to expression levels in normal body fluids, post-treatment body fluids, or body fluids known to exhibit perinatal disorders; (B) In the body fluid known to show no statistically significant difference in expression level compared to the expression level in the normal body fluid or body fluid after treatment, or to exhibit perinatal disorders. The above method comprising determining that treatment of perinatal disorders in the subject is effective when it shows a statistically significant difference compared to the expression level.
  11.  前記タンパク質が、α-2-マクログロブリン(A2m)、OX-2メンブレン糖タンパク質(Cd200)、ポリユビキチン-B(Ubb)、及びニューロセルピン(Serpini1)からなる群から選択される、請求項10に記載の方法。 10. The protein is selected from the group consisting of α-2-macroglobulin (A2m), OX-2 membrane glycoprotein (Cd200), polyubiquitin-B (Ubb), and neuroserpin (Serpini1). The method described.
PCT/JP2021/006475 2020-02-21 2021-02-19 Quantitative assessment index for fetal growth restriction WO2021167098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501095A JPWO2021167098A1 (en) 2020-02-21 2021-02-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020028828 2020-02-21
JP2020-028828 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167098A1 true WO2021167098A1 (en) 2021-08-26

Family

ID=77390905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006475 WO2021167098A1 (en) 2020-02-21 2021-02-19 Quantitative assessment index for fetal growth restriction

Country Status (2)

Country Link
JP (1) JPWO2021167098A1 (en)
WO (1) WO2021167098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116179681A (en) * 2022-12-26 2023-05-30 朗肽生物制药股份有限公司 Cyclic RNAZBTB10 and detection primer and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130295679A1 (en) * 2010-11-16 2013-11-07 University College Cork - National University Of Ireland, Cork Prediction of a small-for-gestational age (sga) infant
JP2015533504A (en) * 2012-10-19 2015-11-26 ウェイン ステイト ユニヴァーシティ Identification and analysis of fetal trophoblast cells in cervical mucus for prenatal diagnosis
JP2017516119A (en) * 2014-05-16 2017-06-15 セザンヌ ソシエテ パ アクシオンス シンプリフィエ Early placental insulin-like peptide (pro-EPIL)
WO2018235878A1 (en) * 2017-06-20 2018-12-27 国立大学法人名古屋大学 Amelioration and treatment of brain disorder resulting from fetal growth retardation using pluripotent stem cells
JP2020502533A (en) * 2016-12-23 2020-01-23 パングラッツ−フューラー,スザンネ Alpha-B crystallin in the diagnosis of neonatal brain injury

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130295679A1 (en) * 2010-11-16 2013-11-07 University College Cork - National University Of Ireland, Cork Prediction of a small-for-gestational age (sga) infant
JP2015533504A (en) * 2012-10-19 2015-11-26 ウェイン ステイト ユニヴァーシティ Identification and analysis of fetal trophoblast cells in cervical mucus for prenatal diagnosis
JP2017516119A (en) * 2014-05-16 2017-06-15 セザンヌ ソシエテ パ アクシオンス シンプリフィエ Early placental insulin-like peptide (pro-EPIL)
JP2020502533A (en) * 2016-12-23 2020-01-23 パングラッツ−フューラー,スザンネ Alpha-B crystallin in the diagnosis of neonatal brain injury
WO2018235878A1 (en) * 2017-06-20 2018-12-27 国立大学法人名古屋大学 Amelioration and treatment of brain disorder resulting from fetal growth retardation using pluripotent stem cells

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
CHEN RONG-JUN ET AL.: "Effects of intrauterine growth restriction on gene expression in small intestine of piglets", ANIMAL HUSBANDRY AND FEED SCIENCE, vol. 1, no. 4-5, 2009, pages 41 - 46 *
DESSÌ ANGELICA, MURGIA ANTONIO, AGOSTINO ROCCO, PATTUMELLI MARIA, SCHIRRU ANDREA, SCANO PAOLA, FANOS VASSILIOS, CABONI PIERLUIGI: "Exploring the Role of Different Neonatal Nutrition Regimens during the First Week of Life by Urinary GC-MS Metabolomics", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 17, no. 2, 22 February 2016 (2016-02-22), XP055856109, DOI: 10.3390/ijms17020265 *
GACCIOLI FRANCESCA; AYE IRVING L.M.H.; SOVIO ULLA; CHARNOCK-JONES D. STEPHEN; SMITH GORDON C.S.: "Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers", AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY, MOSBY, ST LOUIS, MO, US, vol. 218, no. 2, 22 December 2017 (2017-12-22), US , XP086376106, ISSN: 0002-9378, DOI: 10.1016/j.ajog.2017.12.002 *
HASHIMOTO, MAKOTO ET AL.: "Relationship between short term growth and insulin-like growth factor at three weeks and five weeks old in premature infant", JOURNAL OF JAPAN SOCIETY FOR NEONATAL HEALTH AND DEVELOPMENT, vol. 31, no. 1, 15 February 2019 (2019-02-15), pages 83 - 89 *
HAYYAKAWA, MASAHIRO ET AL.: "Research on histological and molecular biological changes in central nerves of rat in intrauterine fetal growth restriction model", JOURNAL OF JAPAN SOCIETY OF PERINATAL AND NEONATAL MEDICINE, vol. 44, December 2008 (2008-12-01), pages 20 *
HUANG SHIMENG; LI NA; LIU CONG; LI TIANTIAN; WANG WEI; JIANG LILI; LI ZHEN; HAN DANDAN; TAO SHIYU; WANG JUNJUN: "Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth", THE JOURNAL OF MICROBIOLOGY, THE MICROBIOLOGICAL SOCIETY OF KOREA // HAN-GUG MISAENGMUL HAG-HOE, KR, vol. 57, no. 9, 11 June 2019 (2019-06-11), KR , pages 748 - 758, XP036872817, ISSN: 1225-8873, DOI: 10.1007/s12275-019-8690-x *
KARAMESSINIS PANAGIOTIS M., ARIADNE MALAMITSI-PUCHNER, THEODORA BOUTSIKOU, MANOUSOS MAKRIDAKIS, KONSTANTINOS VOUGAS, MICHAEL FOUNT: "Marked defects in the expression and glycosylation of alpha2-HS glycoprotein/fetuin-A in plasma from neonates with intrauterine growth restriction: proteomics screening and potential clinical implications", MOLECULAR & CELLULAR PROTEOMICS : MCP, vol. 7, no. 3, 7 December 2007 (2007-12-07), pages 591 - 599, XP055856114, DOI: 10.1074/mcp.M700422-MCP200 *
KINJO, TADAMUNE ET AL.: "Research on etiology and pathology of fetal growth restriction (FGR) understood from abnormality in innate immune system - about relationship between vasculitis and human FGR development", ANNUAL REPORT OF FUKUOKA CHILDREN'S HOSPITAL, vol. 38, December 2017 (2017-12-01), pages 209 - 210 *
ONODA, ATSUTO ET AL.: "Analysis of proteome in cerebrospinal fluid in perinatal brain damage caused by fetal growth restriction", PHARMACEUTICAL HEALTH SCIENCE ENVIRONMENTAL TOXICOLOGY, vol. 2019, 17 August 2019 (2019-08-17), pages 151 *
ONODA, ATSUTO ET AL.: "Comprehensive analysis of protein in cerebrospinal fluid of rat in fetal growth retardation model", THE 55TH JOURNAL OF JAPAN SOCIETY OF PERINATAL AND NEONATAL MEDICINE, 2019, pages 313 *
RUIS-GONZALEZ MARIA D., MARIA D. CANETE, JOSÉ L. GOMEZ-CHAPARRO, NIEVES ABRIL, RAMON CANETE, JUAN LOPEZ-BAREA: "Alterations of protein expression in serum of infants with intrauterine growth restriction and different gestational ages", JOURNAL OF PROTEOMICS, vol. 119, 24 April 2015 (2015-04-24), pages 169 - 182, XP055856116, DOI: 10.1016/j.jprot.2015.02.003 *
SHARP ANDREW; JACKSON RICHARD; CORNFORTH CHRISTINE; HARROLD JANE; TURNER MARK A.; KENNY LOUISE; BAKER PHILIP N.; JOHNSTONE EDWARD : "A prediction model for short-term neonatal outcomes in severe early-onset fetal growth restriction", EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, ELSEVIER IRELAND LTD., IE, vol. 241, 16 August 2019 (2019-08-16), IE , pages 109 - 118, XP085833816, ISSN: 0301-2115, DOI: 10.1016/j.ejogrb.2019.08.007 *
SHOUJI, HIROMICHI ET AL.: "Review of analysis of urinary metabolome of intrauterine growth restricted mice", THE JOURNAL OF THE JAPAN PEDIATRIC SOCIETY, vol. 120, no. 2, 1 February 2016 (2016-02-01), pages 238 *
STRINI} TOMISLAV, BUKOVI} DAMIR, RADI} ANTE, UMILIN LADA [, HAUPTMAN DINKO, SOVI} TOMISLAV: "Comparison of Fetal Plasma Cortisol Level between Eutrophic and Hypotrophic Newborns", COLLEGIUM ANTROPOLOGICUM, vol. 29, no. 2, 1 January 2005 (2005-01-01), pages 739 - 741, XP055856111 *
TSUGE MITSURU; HIDA AKIRA I.; MINEMATSU TOSHIO; HONDA NAOTOSHI; OSHIRO YUMI; YOKOYAMA MIKIFUMI; KONDO YOICHI: "Prospective Cohort Study of Congenital Cytomegalovirus Infection during Pregnancy with Fetal Growth Restriction: Serologic Analysis and Placental Pathology", JOURNAL OF PEDIATRICS., MOSBY-YEAR BOOK, ST. LOUIS, MO, US, vol. 206, 6 November 2018 (2018-11-06), US , pages 42, XP085610843, ISSN: 0022-3476, DOI: 10.1016/j.jpeds.2018.10.003 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116179681A (en) * 2022-12-26 2023-05-30 朗肽生物制药股份有限公司 Cyclic RNAZBTB10 and detection primer and application thereof
CN116179681B (en) * 2022-12-26 2023-09-22 朗肽生物制药股份有限公司 Cyclic RNAZBTB10 and detection primer and application thereof

Also Published As

Publication number Publication date
JPWO2021167098A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP5011410B2 (en) Proteomic analysis of biological fluids
Carrillo-Jimenez et al. TET2 regulates the neuroinflammatory response in microglia
Lall et al. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation
JP5976732B2 (en) Biomarker detection methods and assays for neurological conditions
KR101406393B1 (en) Pharmaceutical use of FAM19A5 involved in gliogenesis
JP2006524331A5 (en)
Sedmak et al. Developmental expression patterns of KCC2 and functionally associated molecules in the human brain
AU2010291933B2 (en) Micro-RNA, autoantibody and protein markers for diagnosis of neuronal injury
Moses et al. Secretory PLA 2-IIA: A new inflammatory factor for Alzheimer's disease
JP2010509596A (en) Proteomic analysis of cervical fluid for detection of intrauterine infection or determination of risk of preterm birth in pregnant females
Lu et al. CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia
Hess et al. The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit
JP6707181B2 (en) Kits or packages for identifying pregnant women at risk of preterm birth and use of such kits or packages
Meng et al. Use of phospholipase C zeta analysis to identify candidates for artificial oocyte activation: a case series of clinical pregnancies and a proposed algorithm for patient management
Dustova et al. Gulchekhra A. Ikhtiyarova
WO2021167098A1 (en) Quantitative assessment index for fetal growth restriction
KR20220133829A (en) Biomarker for diagnosing dysfunction of corneal endothelial cells
Castagna et al. Female urinary proteomics: New insight into exogenous and physiological hormone‐dependent changes
RU2286575C1 (en) Method for predicting the flow of neurological disorders in early-aged children at perinatal lesion of central nervous system (cns)
Kumar et al. Dynamic alteration in the vaginal secretory proteome across the early and mid-trimesters of pregnancy
CN111575362B (en) Medicine for predicting activity of systemic lupus erythematosus disease
Wei et al. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury
RU2480762C1 (en) Method for prediction of essential arterial hypertension in females with hypertensive disorders accompanying pregnancy
RU2629395C1 (en) Method for forecasting neurologic disorders in newborns with delay of internal development of fruit
WO2023201511A1 (en) Biomarker for early diagnosis of alzheimer&#39;s disease and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757861

Country of ref document: EP

Kind code of ref document: A1