WO2021167082A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2021167082A1
WO2021167082A1 PCT/JP2021/006429 JP2021006429W WO2021167082A1 WO 2021167082 A1 WO2021167082 A1 WO 2021167082A1 JP 2021006429 W JP2021006429 W JP 2021006429W WO 2021167082 A1 WO2021167082 A1 WO 2021167082A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
time
unit
values
sets
Prior art date
Application number
PCT/JP2021/006429
Other languages
French (fr)
Japanese (ja)
Inventor
悠希 中澤
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021167082A1 publication Critical patent/WO2021167082A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • Patent Document 1 discloses a plant condition monitoring device using the MT method (Maharanobis Taguchi System).
  • the MT method is a method of determining whether or not the unit space is normal based on the Mahalanobis distance, which represents the distance from the reference data group (normal data group) constituting the unit space.
  • the unit space used as a reference when calculating the Mahalanobis distance is, for example, a time when it goes back n days from the time when it goes back m days from the day when the state is monitored. It is created based on multiple sets of multidimensional state quantities in the time series acquired during the period up to.
  • a certain time delay may occur between the change in the manipulated variable and the change in the controlled variable (for example, Patent Document 2).
  • Mahalanobis distance is a value that takes into account the correlation between multidimensional state quantities. As the absolute value of the correlation coefficient between each state quantity constituting the unit space increases, the unit space decreases and the Mahalanobis distance increases. If the unit space can be reduced and the Mahalanobis distance can be increased, it becomes easier to improve the accuracy and sensitivity of detecting an abnormal state and reduce the amount of data when creating a unit space.
  • Patent Document 2 for example, when a time delay occurs between the state quantities, the absolute value of the correlation coefficient between the state quantity without delay and the state quantity with delay decreases. In this case, it becomes difficult to reduce the unit space. Therefore, compared to the case where the unit space can be easily reduced, the Mahalanobis distance is used to determine whether the unit space is normal or not, and the unit space is created. There is a problem that it becomes difficult to properly perform the processing related to the distance.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an information processing device, an information processing method, and a program capable of more appropriately performing processing related to Mahalanobis distance.
  • the information processing apparatus uses one of a plurality of detection values in a set as a reference detection value, and corrects information for correcting each detection time of the other plurality of detection values.
  • a storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of the plurality of detection values in which each detection time corrected based on the correction information corresponds to each other.
  • a detection value acquisition unit that acquires a plurality of sets of the plurality of detection values in a time series, a detection time correction unit that corrects each detection time of the acquired plurality of detection values based on the correction information, and the unit.
  • a Mahalanobis distance calculation unit for calculating a Mahalanobis distance of a plurality of sets of the detected values whose corrected detection times correspond to each other based on spatial information is provided.
  • the information processing apparatus is a storage unit that stores a plurality of sets of a plurality of detection values acquired in advance in chronological order, and a plurality of sets based on the plurality of the plurality of sets of the detection values.
  • a correction information creation unit that creates correction information for correcting each detection time of each of the other plurality of detection values using one of the detection values as a reference detection value and stores the correction information in the storage unit, and the plurality of sets. Based on the plurality of sets of the time series of the plurality of the detected values in which the respective detection times of the plurality of the detected values are corrected based on the correction information, and the respective detection times correspond to each other based on the plurality of the detected values of the unit. It includes a unit space information creating unit that creates the unit space information representing a space and stores it in the storage unit.
  • the information processing method stores correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as a reference detection value, and the correction information.
  • a storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of the plurality of detection values whose detection times are corrected based on the above, the plurality of detection values
  • the information processing method uses a storage unit that stores a plurality of sets of a plurality of detected values acquired in advance in chronological order, and one set is based on the plurality of the detected values of the plurality of sets.
  • the unit space is based on a plurality of sets of time series of the plurality of detection values in which the detection times of the plurality of detection values are corrected based on the correction information based on the plurality of detection values. It has a step of creating the unit space information representing the above and storing the unit space information in the storage unit.
  • the program according to the present disclosure stores correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as a reference detection value, and is based on the correction information.
  • the plurality of detected values are detected using a storage unit that stores unit space information representing the unit space created based on a plurality of sets of time series of the plurality of detected values whose corrected detection times correspond to each other.
  • a step of acquiring a plurality of sets of a series, a step of correcting each detection time of the acquired plurality of detection values based on the correction information, and a step of correcting each of the corrected detection times based on the unit space information are mutually exclusive.
  • the program according to the present disclosure uses a storage unit that stores a plurality of sets of a plurality of detection values acquired in advance in chronological order, and based on the plurality of the plurality of detection values of the plurality of sets, a plurality of sets.
  • Based on the detection value each detection time of the plurality of detection values is corrected based on the correction information, and each detection time represents the unit space based on a plurality of sets of time series of the plurality of detection values corresponding to each other.
  • the computer is made to execute the step of creating the unit space information and storing it in the storage unit.
  • the processing related to the Mahalanobis distance can be performed more appropriately.
  • FIG. 1 It is a block diagram which shows the structural example of the information processing apparatus which concerns on 1st Embodiment of this disclosure. It is a flowchart which shows the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram which shows an example of the monitoring target of the monitoring device 5 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG.
  • FIG. 1 is a block diagram showing a configuration example of an information processing device according to the first embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an operation example of the information processing apparatus 1 shown in FIG.
  • FIG. 3 is a schematic diagram showing an example of a monitoring target of the monitoring device 5 shown in FIG. 4 to 8 are schematic views for explaining an operation example of the information processing apparatus 1 shown in FIG.
  • the same reference numerals are used for the same or corresponding configurations, and the description thereof will be omitted as appropriate.
  • the information processing device 1 shown in FIG. 1 can be configured by using a computer such as a server or a personal computer or a computer and its peripheral devices, and includes hardware such as a computer and software such as a program executed by the computer.
  • a processing unit 2 and a storage unit 3 are provided as a functional configuration composed of combinations.
  • the processing unit 2 includes a detection value acquisition unit 21, a detection time correction unit 22, a Mahalanobis distance calculation unit 23, a determination unit 24, a correction information creation unit 25, and a unit space information creation unit 26.
  • the correction information creation unit 25 has a correlation coefficient calculation unit 251 and a delay time definition unit 252.
  • the storage unit 3 stores the correction information 31, the unit space information 32, the detected value time series information (for creating the unit space) 33, and the detected value time series information (for evaluation) 34.
  • the processing unit 2 shown in FIG. 1 performs processing related to the Mahalanobis distance, such as a processing for determining whether or not it is normal using the Mahalanobis distance and a processing for creating a unit space.
  • the detection value acquisition unit 21 receives time-series data (time-series set) representing a plurality of types of detection values from the monitoring device 5 at a predetermined cycle, and stores the detection value time-series information (unit space creation) in the storage unit 3. (For) 33, or as detected value time series information (for evaluation) 34.
  • the time-series set means a plurality of sets of time-series data having different detection times, with a set of multiple types of detection values having the same detection time as one set.
  • the monitoring device 5 uses sensors or the like provided in each part of the plant to determine a plurality of types of predetermined temperature, pressure, volume, output, rotation speed, and the like.
  • the time series of physical quantities is acquired and transmitted as a detection value to the information processing apparatus 1 at a predetermined cycle.
  • a plurality of detected values (k types of detected values) are represented by x1, x2, ..., Xk.
  • the n detection values x1 in the time series are x11, x21, ..., Xn1
  • the n detection values x2 in the time series are x12, x22, ..., Xn2
  • the n detection values xk in the time series are x1k. It is expressed as x2k, ..., Xnk.
  • the detection values x11, x12, ..., X1k are a set of detection values having the same detection time (time t1)
  • the detection values x21, x22, ..., X2k have the same detection time (time t2).
  • the detection values xn1, xn2, ..., Xnk are a set of detection values having the same detection time (time tun).
  • the power plant 40, the generator 41, the generator 42, the gas turbine 43, the steam turbine 44, the boiler 45, and the condenser 46 shown in FIG. 3 are provided.
  • the generator 41 is driven by a gas turbine 43 to generate electric power (GTMW).
  • the gas turbine 43 includes a compressor, a combustor, and a turbine, and the air sucked into the compressor becomes high-temperature and high-pressure air by the compressor and is guided to the combustor.
  • fuel gas is supplied to high-temperature and high-pressure air and burned.
  • the fuel gas burned in the combustor becomes high-temperature and high-pressure combustion gas and is supplied to the turbine to drive the turbine. Further, the combustion gas is supplied as exhaust gas to the boiler 45 via the turbine.
  • the boiler 45 heats the hot water supplied from the condenser 46 and converts it into steam to rotate the steam turbine 44.
  • the steam turbine 44 drives a generator 42, and the driven generator 42 generates electric power (STMW). Further, the steam obtained by rotating the steam turbine 44 is cooled by seawater in the condenser 46 and converted into hot water.
  • FIG. 4 schematically shows the time change of the flow rate of the fuel gas (kg / s), the output GTMW (MW) of the generator 41, and the output STMW (MW) of the generator 42.
  • the flow rate of the fuel gas, the output GTMW of the generator 41, and the output STMW of the generator 42 correspond to, for example, any of the plurality of detected values x1, x2, ..., Xk described above.
  • the output GTMW of the generator 41 changes following the behavior of the combustion gas with almost no delay.
  • the detection time correction unit 22 corrects each detection time of the acquired plurality of detected values based on the correction information 31.
  • the correction information 31 is information for correcting each detection time of the other plurality of detection values by using one of the plurality of detection values in one set as the reference detection value.
  • the correction information 31 includes, for example, information representing each delay time of each detection time of a plurality of other detection values with reference to the detection time of the reference detection value. For example, in the example shown in FIG. 4, when the fuel gas flow rate is used as the reference detection value, the delay time of the fuel gas flow rate and the delay time of the output GTMW of the electric machine 41 are set to zero in the correction information 31, and the generator 42 The delay time of the output STMW is set to ⁇ T.
  • the reference detection value is a detection value that serves as a reference when defining the correction information 31, and is preferably a detection value that affects many behaviors of other detection values (detection values other than the reference detection value).
  • detection values other detection values
  • FIG. 4 in addition to the fuel gas flow rate, the output GTMW of the electric machine 41 and the like can be used.
  • the time delay value is, for example, the absolute value of the correlation coefficient between the reference detection value and the other detection value when the time difference between the detection time of the reference detection value and the detection time of the other detection value is changed.
  • the time difference that becomes the maximum value can be defined as the delay time.
  • the horizontal axis represents the time difference between the detection time of the reference detection value and the detection time of other detection values
  • the vertical axis represents the correlation coefficient between the reference detection value and the other detection values.
  • FIG. 5 shows the correspondence between the time series of the reference detection values for a predetermined time from a certain detection time and the correlation coefficient with the time series of other detection values for a predetermined time from the detection time shifted by the time difference from the detection time. Show the relationship.
  • the time difference When the time difference is zero, it corresponds to the correlation coefficient between the time series of the reference detection values for a predetermined time from the same detection time and the time series of other detection values.
  • the absolute value of the correlation coefficient between the time series of the reference detection values for a predetermined time from a certain detection time and the time series of other detection values for a predetermined time from the time obtained by adding the delay time to the detection time is the maximum. It has become. Since the time when the correlation coefficient is maximized has a strong correlation, it can be defined as the delay time for correcting the detection time.
  • the time difference can be shifted in units of 1 minute, for example.
  • the detection time correction unit 22 is delayed by, for example, the detection time of the detection value representing the flow rate of the fuel gas and the time delay ( ⁇ T) of the detection value representing the output STMW of the generator 42.
  • the detection time (time stamp) of the detection value representing the output STMW of the generator 42 is modified so that the detection time can be associated with each other.
  • FIGS. 6 and 7 when the curve representing the correlation coefficient between the reference detection value and the other detection value does not exceed the predetermined threshold value (1) as in the case of curve Re, for example.
  • the time at which the correlation coefficient becomes maximum (Re_max) is not defined as the delay time, and for example, the delay time may be defined as zero.
  • FIG. 6 shows an example of curves Ra, Rb, Rc, Rd and Re of the correlation coefficient between the reference detection value and other detection values in the same manner as in FIG. 5, and FIG. 7 shows the maximum correlation coefficient.
  • An example of the correspondence between the values Ra_max, Rb_max, Rc_max, Rd_max and Re_max and the delay time is shown.
  • the Mahalanobis distance calculation unit 23 is based on the unit space information 32, and the corrected detection times of the detected values stored as the detected value time series information (for evaluation) 34 are a plurality of detected values corresponding to each other. Calculate the Mahalanobis distance of the set.
  • the unit space information 32 is information representing a unit space created based on a plurality of sets of time series of a plurality of detection values in which each detection time corrected based on the correction information 31 corresponds to each other.
  • the reference data group (normal data group) constituting the unit space is represented by a plurality of detected values xij (here, i represents n time series detection times from 1 to n, and j represents 1 to k).
  • the average value Mj of each detected value xij is expressed by the following equation (representing k types of detected values up to). Note that i corresponds to a value corrected for each detected value by the detection time correction unit 22.
  • the correlation coefficient of all combinations for extracting 2 from k detected values is calculated by the following formula.
  • the correlation coefficient matrix R is represented by the following equation, which is a matrix of k ⁇ k in which the diagonal element is 1 and the other elements in the p row and q column are rpq in the above equation.
  • the squared value of the Mahalanobis distance D of a set of detected values (normalized values) Xm1, Xm2, ..., Xmk at the detection time tm is expressed by the following equation.
  • m corresponds to the value corrected for each detection value by the detection time correction unit 22.
  • the unit space information 32 can be information representing the inverse matrix R-1 of the correlation coefficient matrix R.
  • the determination unit 24 compares the Mahalanobis distance D with a predetermined threshold value, and a set of a plurality of detection values (a set of detection values (normalized values) Xm1, Xm2, ..., Xmk) is in a normal state. Determine if it exists.
  • correction information creation unit 25 creates correction information 31 based on a plurality of sets of time series of a plurality of detected values acquired in advance stored as detection value time series information (for unit space creation) 33. It is stored in the storage unit 3.
  • the correlation coefficient calculation unit 251 changes each correlation coefficient with the reference detection value when each time difference between the detection time of the reference detection value and each detection time of the other plurality of detection values is changed. calculate.
  • the delay time definition unit 252 defines each time difference in which the absolute value of each correlation coefficient becomes the maximum value as each delay time.
  • the unit space information creation unit 26 corrects each detection time of the plurality of detected values based on a plurality of sets of the plurality of detected values stored as the detected value time series information (for unit space creation) 33. Based on a plurality of sets of time series of a plurality of detection values whose detection times are corrected based on the above, unit space information 32 representing the unit space is created and stored in the storage unit 3.
  • the unit space information creation unit 26 acquires the past detection value for unit space creation from the detected value time series information (for unit space creation) 33 (step S11).
  • the correlation coefficient calculation unit 251 calculates the correlation coefficient of another detected value with respect to the reference detected value (step S12).
  • the delay time definition unit 252 defines the time of the maximum correlation coefficient as the delay time (step S13).
  • the unit space information creation unit 26 corrects the time of other detected values by the delay time and creates the unit space (step S14).
  • the detection value acquisition unit 21 acquires the evaluation detection value from the monitoring device 5 (or the detection value time series information (for evaluation) 34) (step S15).
  • the detection time correction unit 22 corrects the time of another detected value for evaluation by the delay time (step S16).
  • the Mahalanobis distance calculation unit 23 calculates the Mahalanobis distance (MD) of the corrected evaluation detection value from the corrected unit space (step S17).
  • the determination unit 24 determines whether or not the Mahalanobis distance (MD) is equal to or less than a predetermined threshold value (step S18).
  • the determination unit 24 determines that it is normal (step S19) and outputs the determination result (step S21).
  • the determination unit 24 determines that it is abnormal (step S20) and outputs the determination result (step S21).
  • processing related to the Mahalanobis distance such as creation of a unit space and calculation of the Mahalanobis distance, can be performed more appropriately.
  • the correlation coefficient of another detected value with respect to the reference detected value is calculated.
  • a bundle of past detected values for creating a unit space is acquired, and the correlation coefficient of other detected values with respect to a preset reference detected value (for example, fuel flow rate) is set, for example, the time of the detected value. It is corrected and calculated every minute.
  • the time of the maximum correlation coefficient is defined as the delay time. For example, the time when the correlation coefficient of the detected value obtained by correcting the time every minute is maximized is defined as the delay time of the detected value.
  • the time of other detected values is corrected by the delay time to create a unit space.
  • the time of the time stamp of each past detection value (other than the reference detection value) for creating the unit space is corrected by the delay time of each detection value.
  • a unit space is created by using the reference detection value and the time-corrected detection value.
  • the time of other detected values for evaluation is corrected by the delay time.
  • the time of the time stamp of each detection value (other than the reference detection value) for evaluation is corrected by the delay time of each detection value.
  • the Mahalanobis distance of the corrected evaluation detection value is calculated from the corrected unit space. For example, the Mahalanobis distance of the time-corrected evaluation detection value is calculated with respect to the time-corrected unit space.
  • MD Mahalanobis distance
  • the region occupied by the iso-Mahalanobis distance curve 51 when the correlation is high is smaller than the region occupied by the iso-Mahalanobis distance curve 52 when the correlation is low.
  • the regions where the Mahalanobis distance D is equal are represented by curves 51 and 52.
  • the Mahalanobis distance D (xa1, xb1) when the detection values for evaluation are xa1 and xb1 is outside the curve for the curve 51 and inside the curve for the curve 52, so that the judgment for the same distance can be made. It can be seen that the accuracy differs depending on the magnitude of the correlation.
  • the correlation between each detected value becomes accurate, so that the collection period of the bundle of detected values created in the unit space can be shortened.
  • the surplus data storage capacity can be used to cover and monitor a wide range of operation patterns.
  • the output range is 100 MW to 200 MW ⁇ 0 MW to 200 MW and the like.
  • the information processing device 1a of the second embodiment is shown in FIG. Compared with the information processing device 1 shown in FIG. 1, the information processing device 1a shown in FIG. 9 has a processing unit 2a in which the correction information creation unit 25 and the unit space information creation unit 26 are omitted, and the detected value time series information (unit). It is composed of a storage unit 3a in which the space creation) 33 is omitted. According to the information processing apparatus 1a of the second embodiment, the Mahalanobis distance can be calculated based on the detected value corrected for the time delay by using the correction information 31 and the unit space information 32 prepared in advance.
  • the information processing device 1b of the third embodiment is shown in FIG.
  • the information processing device 1b shown in FIG. 10 includes a detection time correction unit 22, a Mahalanobis distance calculation unit 23, a processing unit 2b in which the determination unit 24 is omitted, and a detection value. It is composed of a storage unit 3b in which the time-series information (for evaluation) 34 is omitted.
  • the correction information 31 can be created, and the unit space information 32 can be created based on the detected value corrected for the time delay.
  • FIG. 11 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
  • the information processing devices 1, 1a and 1b described above are mounted on the computer 90.
  • the operation of each processing unit described above is stored in the storage 93 in the form of a program.
  • the processor 91 reads a program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
  • the program may be for realizing a part of the functions exerted on the computer 90.
  • the program may exert its function in combination with another program already stored in the storage or in combination with another program mounted on another device.
  • the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLDs Programmable Integrated Circuit
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like.
  • the storage 93 may be internal media directly connected to the bus of the computer 90, or external media connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 via a communication line, the distributed computer 90 may expand the program in the main memory 92 and execute the above processing.
  • the storage 93 is a non-temporary tangible storage medium.
  • the information processing devices 1 and 1a have correction information for correcting each detection time of the other plurality of detection values by using one of the plurality of detection values in one set as a reference detection value.
  • unit space information 32 representing a unit space created based on a plurality of sets of time series of the plurality of detection values in which each detection time corrected based on the correction information 31 corresponds to each other is stored.
  • the storage unit 3 the detection value acquisition unit 21 that acquires a plurality of sets of the plurality of detection values in a time series, and the detection time that corrects each detection time of the acquired plurality of detection values based on the correction information 31.
  • a correction unit 22 and a Mahalanobis distance calculation unit 23 for calculating a Mahalanobis distance of a plurality of sets of the detection values whose corrected detection times correspond to each other based on the unit space information 32 are provided.
  • the information processing device 1 is the information processing device 1 of (1), and obtains the correction information 31 based on a plurality of sets of time series of the plurality of detected values acquired in advance.
  • the correction information creation unit 25 that is created and stored in the storage unit 3 and the plurality of detection values in which each detection time obtained by correcting each detection time of the plurality of detection values acquired in advance based on the correction information 31 correspond to each other.
  • a unit space information creating unit 26 that creates the unit space information 32 representing the unit space and stores the unit space information 32 in the storage unit 3 based on a plurality of sets of the time series of the above is further provided.
  • the information processing device 1 is the information processing device 1 of (2), and the correction information 31 is a plurality of other detected values based on the detection time of the reference detected value.
  • the correction information creation unit 25 changes each time difference between the detection time of the reference detection value and each detection time of a plurality of other detection values, including information representing each delay time of each detection time of the above.
  • the correlation coefficient calculation unit 251 that calculates the change of each correlation coefficient with the reference detection value, and the delay time that defines each time difference at which the absolute value of each correlation coefficient becomes the maximum value as each delay time.
  • the definition unit 252 and the like are included.
  • the information processing device 1 according to the fourth aspect is the information processing device 1 of (1) to (3), in which the Mahalanobis distance is compared with a predetermined threshold value, and a plurality of the detected values are in a normal state.
  • a determination unit 24 for determining whether or not the information is specified is further provided.
  • the information processing devices 1 and 1b include a storage unit 3 that stores a plurality of sets of a plurality of detection values acquired in advance in time series, and a plurality of the detection values of the plurality of sets. Based on the above, correction information 31 for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as a reference detection value is created and stored in the storage unit 3.
  • the information creation unit 25 and the plurality of detection values in which the detection times of the plurality of detection values are corrected based on the correction information 31 based on the plurality of detection values of the plurality of sets correspond to each other.
  • a unit space information creating unit 26 that creates the unit space information 32 representing the unit space and stores the unit space information 32 in the storage unit 3 based on a plurality of sets of time series is provided.
  • the processing related to the Mahalanobis distance can be performed more appropriately.

Abstract

This information processing device is provided with: a storage unit which, having as reference detection values at least one of multiple detection values in one set, stores correction information for correcting detection times of multiple other detection values, and which stores unit space information indicating unit spaces created on the basis of multiple sets of time series of multiple detection values to which the detection times corrected on the basis of the correction information respectively correspond; a detection value acquisition unit which acquires multiple sets of time series of multiple detection values; a detection time correction unit which, on the basis of the correction information, corrects the detection times of the acquired multiple detection values; and a Mahalanobis distance calculation unit which calculates the Mahalanobis distance of the set of multiple detection values to which the corrected detection times respectively correspond.

Description

情報処理装置、情報処理方法およびプログラムInformation processing equipment, information processing methods and programs
 本開示は、情報処理装置、情報処理方法およびプログラムに関する。本願は、2020年2月21日に、日本に出願された特願2020-028266号に基づき優先権を主張し、その内容をここに援用する。 This disclosure relates to information processing devices, information processing methods and programs. The present application claims priority based on Japanese Patent Application No. 2020-022866 filed in Japan on February 21, 2020, the contents of which are incorporated herein by reference.
 特許文献1には、MT法(Maharanobis Taguchi System)を用いたプラント状態監視装置が開示されている。ここで、MT法は、単位空間を構成する基準データ群(正常データ群)からの距離を表すマハラノビス距離に基づき正常か否かを判断する手法である。特許文献1に記載されているプラント状態監視装置では、マハラノビス距離を算出する際に基準となる単位空間が、例えば、状態を監視する日からm日間過去に遡った時点からさらにn日間遡った時点までの期間に取得された時系列の複数組の多次元の状態量に基づいて作成される。 Patent Document 1 discloses a plant condition monitoring device using the MT method (Maharanobis Taguchi System). Here, the MT method is a method of determining whether or not the unit space is normal based on the Mahalanobis distance, which represents the distance from the reference data group (normal data group) constituting the unit space. In the plant condition monitoring device described in Patent Document 1, the unit space used as a reference when calculating the Mahalanobis distance is, for example, a time when it goes back n days from the time when it goes back m days from the day when the state is monitored. It is created based on multiple sets of multidimensional state quantities in the time series acquired during the period up to.
 なお、プラント等の制御においては、操作量の変化と制御量の変化との間に一定の時間遅れが発生することがある(例えば、特許文献2)。 In the control of a plant or the like, a certain time delay may occur between the change in the manipulated variable and the change in the controlled variable (for example, Patent Document 2).
特開2012-67757号公報Japanese Unexamined Patent Publication No. 2012-67757 特開2019-28824号公報Japanese Unexamined Patent Publication No. 2019-28824
 マハラノビス距離は、多次元の状態量間の相関を考慮した値である。単位空間を構成する各状態量間の相関係数の絶対値が大きくなると、単位空間は小さくなり、マハラノビス距離は大きくなる。単位空間を小さくし、マハラノビス距離を大きくすることができれば、異常状態を検知する精度や感度を向上させたり、単位空間を作成する際のデータ量を削減したりしやすくなる。しかしながら、例えば特許文献2に記載されているように、状態量間に時間遅れが発生する場合、遅れがない状態量と遅れがある状態量との相関係数の絶対値は低下してしまう。この場合、単位空間を小さくすることが難しくなるので、単位空間を小さくすることが容易にできる場合と比べて、マハラノビス距離を用いた正常か否かの判断処理や単位空間の作成処理等のマハラノビス距離に係る処理を適切に行うことが難しくなるという課題がある。 Mahalanobis distance is a value that takes into account the correlation between multidimensional state quantities. As the absolute value of the correlation coefficient between each state quantity constituting the unit space increases, the unit space decreases and the Mahalanobis distance increases. If the unit space can be reduced and the Mahalanobis distance can be increased, it becomes easier to improve the accuracy and sensitivity of detecting an abnormal state and reduce the amount of data when creating a unit space. However, as described in Patent Document 2, for example, when a time delay occurs between the state quantities, the absolute value of the correlation coefficient between the state quantity without delay and the state quantity with delay decreases. In this case, it becomes difficult to reduce the unit space. Therefore, compared to the case where the unit space can be easily reduced, the Mahalanobis distance is used to determine whether the unit space is normal or not, and the unit space is created. There is a problem that it becomes difficult to properly perform the processing related to the distance.
 本開示は、上記事情に鑑みてなされたものであり、マハラノビス距離に係る処理をより適切に行うことができる情報処理装置、情報処理方法およびプログラムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an information processing device, an information processing method, and a program capable of more appropriately performing processing related to Mahalanobis distance.
 上記課題を解決するために、本開示に係る情報処理装置は、1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を記憶するとともに、前記補正情報に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報を記憶する記憶部と、前記複数の検出値の時系列の複数の組を取得する検出値取得部と、取得された前記複数の検出値の各検出時刻を前記補正情報に基づき補正する検出時刻補正部と、前記単位空間情報に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するマハラノビス距離算出部と、を備える。 In order to solve the above problems, the information processing apparatus according to the present disclosure uses one of a plurality of detection values in a set as a reference detection value, and corrects information for correcting each detection time of the other plurality of detection values. And a storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of the plurality of detection values in which each detection time corrected based on the correction information corresponds to each other. , A detection value acquisition unit that acquires a plurality of sets of the plurality of detection values in a time series, a detection time correction unit that corrects each detection time of the acquired plurality of detection values based on the correction information, and the unit. A Mahalanobis distance calculation unit for calculating a Mahalanobis distance of a plurality of sets of the detected values whose corrected detection times correspond to each other based on spatial information is provided.
 また、本開示に係る情報処理装置は、予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部と、前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を作成して前記記憶部に記憶する補正情報作成部と、前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶する単位空間情報作成部と、を備える。 Further, the information processing apparatus according to the present disclosure is a storage unit that stores a plurality of sets of a plurality of detection values acquired in advance in chronological order, and a plurality of sets based on the plurality of the plurality of sets of the detection values. A correction information creation unit that creates correction information for correcting each detection time of each of the other plurality of detection values using one of the detection values as a reference detection value and stores the correction information in the storage unit, and the plurality of sets. Based on the plurality of sets of the time series of the plurality of the detected values in which the respective detection times of the plurality of the detected values are corrected based on the correction information, and the respective detection times correspond to each other based on the plurality of the detected values of the unit. It includes a unit space information creating unit that creates the unit space information representing a space and stores it in the storage unit.
 本開示に係る情報処理方法は、1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を記憶するとともに、前記補正情報に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報を記憶する記憶部を用いて、前記複数の検出値の時系列の複数の組を取得するステップと、取得された前記複数の検出値の各検出時刻を前記補正情報に基づき補正するステップと、前記単位空間情報に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するステップと、を有する。 The information processing method according to the present disclosure stores correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as a reference detection value, and the correction information. Using a storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of the plurality of detection values whose detection times are corrected based on the above, the plurality of detection values A step of acquiring a plurality of sets of the time series of the above, a step of correcting each detection time of the acquired plurality of detection values based on the correction information, and each of the corrected detection times based on the unit space information. Has a step of calculating the Mahalanobis distance of a plurality of sets of the detected values corresponding to each other.
 また、本開示に係る情報処理方法は、予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部を用いて、前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を作成して前記記憶部に記憶するステップと、前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶するステップと、を有する。 In addition, the information processing method according to the present disclosure uses a storage unit that stores a plurality of sets of a plurality of detected values acquired in advance in chronological order, and one set is based on the plurality of the detected values of the plurality of sets. A step of creating correction information for correcting each detection time of each of the other plurality of detection values using one of the plurality of detection values as a reference detection value and storing the correction information in the storage unit, and the plurality of sets. The unit space is based on a plurality of sets of time series of the plurality of detection values in which the detection times of the plurality of detection values are corrected based on the correction information based on the plurality of detection values. It has a step of creating the unit space information representing the above and storing the unit space information in the storage unit.
 本開示に係るプログラムは、1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を記憶するとともに、前記補正情報に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報を記憶する記憶部を用いて、前記複数の検出値の時系列の複数の組を取得するステップと、取得された前記複数の検出値の各検出時刻を前記補正情報に基づき補正するステップと、前記単位空間情報に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するステップと、をコンピュータに実行させる。 The program according to the present disclosure stores correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as a reference detection value, and is based on the correction information. When the plurality of detected values are detected using a storage unit that stores unit space information representing the unit space created based on a plurality of sets of time series of the plurality of detected values whose corrected detection times correspond to each other. A step of acquiring a plurality of sets of a series, a step of correcting each detection time of the acquired plurality of detection values based on the correction information, and a step of correcting each of the corrected detection times based on the unit space information are mutually exclusive. Have the computer perform a step of calculating the Mahalanobis distance of the corresponding set of the plurality of detection values.
 また、本開示に係るプログラムは、予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部を用いて、前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を作成して前記記憶部に記憶するステップと、前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶するステップと、をコンピュータに実行させる。 Further, the program according to the present disclosure uses a storage unit that stores a plurality of sets of a plurality of detection values acquired in advance in chronological order, and based on the plurality of the plurality of detection values of the plurality of sets, a plurality of sets. A step of creating correction information for correcting each detection time of a plurality of other detection values using one of the detection values of the above as a reference detection value and storing the correction information in the storage unit, and a plurality of the plurality of sets. Based on the detection value, each detection time of the plurality of detection values is corrected based on the correction information, and each detection time represents the unit space based on a plurality of sets of time series of the plurality of detection values corresponding to each other. The computer is made to execute the step of creating the unit space information and storing it in the storage unit.
 本開示の情報処理装置、情報処理方法およびプログラムによれば、マハラノビス距離に係る処理をより適切に行うことができる。 According to the information processing apparatus, information processing method and program of the present disclosure, the processing related to the Mahalanobis distance can be performed more appropriately.
本開示の第1実施形態に係る情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus which concerns on 1st Embodiment of this disclosure. 図1に示す情報処理装置1の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the information processing apparatus 1 shown in FIG. 図1に示す監視装置5の監視対象の一例を示す模式図である。It is a schematic diagram which shows an example of the monitoring target of the monitoring device 5 shown in FIG. 図1に示す情報処理装置1の動作例を説明するための模式図である。It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. 図1に示す情報処理装置1の動作例を説明するための模式図である。It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. 図1に示す情報処理装置1の動作例を説明するための模式図である。It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. 図1に示す情報処理装置1の動作例を説明するための模式図である。It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. 図1に示す情報処理装置1の動作例を説明するための模式図である。It is a schematic diagram for demonstrating the operation example of the information processing apparatus 1 shown in FIG. 本開示の第2実施形態に係る情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus which concerns on 2nd Embodiment of this disclosure. 本開示の第3実施形態に係る情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus which concerns on 3rd Embodiment of this disclosure. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least one Embodiment.
<第1実施形態>
(情報処理装置の構成)
 以下、本開示の実施形態に係る情報処理装置について、図1~図8を参照して説明する。図1は、本開示の第1実施形態に係る情報処理装置の構成例を示すブロック図である。図2は、図1に示す情報処理装置1の動作例を示すフローチャートである。図3は、図1に示す監視装置5の監視対象の一例を示す模式図である。図4~図8は、図1に示す情報処理装置1の動作例を説明するための模式図である。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。
<First Embodiment>
(Configuration of information processing device)
Hereinafter, the information processing apparatus according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 8. FIG. 1 is a block diagram showing a configuration example of an information processing device according to the first embodiment of the present disclosure. FIG. 2 is a flowchart showing an operation example of the information processing apparatus 1 shown in FIG. FIG. 3 is a schematic diagram showing an example of a monitoring target of the monitoring device 5 shown in FIG. 4 to 8 are schematic views for explaining an operation example of the information processing apparatus 1 shown in FIG. In each figure, the same reference numerals are used for the same or corresponding configurations, and the description thereof will be omitted as appropriate.
 図1に示す情報処理装置1は、サーバ、パーソナルコンピュータ等のコンピュータまたはコンピュータとその周辺装置とを用いて構成することができ、コンピュータ等のハードウェアと、コンピュータが実行するプログラム等のソフトウェアとの組み合わせから構成される機能的構成として、処理部2と、記憶部3を備える。また、処理部2は、検出値取得部21と、検出時刻補正部22と、マハラノビス距離算出部23と、判断部24と、補正情報作成部25と、単位空間情報作成部26を有する。また、補正情報作成部25は、相関係数算出部251と、遅れ時間定義部252を有する。また、記憶部3は、補正情報31と、単位空間情報32と、検出値時系列情報(単位空間作成用)33と、検出値時系列情報(評価用)34を記憶する。 The information processing device 1 shown in FIG. 1 can be configured by using a computer such as a server or a personal computer or a computer and its peripheral devices, and includes hardware such as a computer and software such as a program executed by the computer. A processing unit 2 and a storage unit 3 are provided as a functional configuration composed of combinations. Further, the processing unit 2 includes a detection value acquisition unit 21, a detection time correction unit 22, a Mahalanobis distance calculation unit 23, a determination unit 24, a correction information creation unit 25, and a unit space information creation unit 26. Further, the correction information creation unit 25 has a correlation coefficient calculation unit 251 and a delay time definition unit 252. Further, the storage unit 3 stores the correction information 31, the unit space information 32, the detected value time series information (for creating the unit space) 33, and the detected value time series information (for evaluation) 34.
 図1に示す処理部2は、マハラノビス距離を用いた正常か否かの判断処理や単位空間の作成処理等のマハラノビス距離に係る処理を行う。 The processing unit 2 shown in FIG. 1 performs processing related to the Mahalanobis distance, such as a processing for determining whether or not it is normal using the Mahalanobis distance and a processing for creating a unit space.
 検出値取得部21は、監視装置5から複数種類の検出値を表す時系列のデータ(時系列の組)を所定の周期で受信し、記憶部3に、検出値時系列情報(単位空間作成用)33として記憶したり、検出値時系列情報(評価用)34として記憶したりする。ここで、監視装置5について図3を参照して説明する。なお、時系列の組とは、検出時刻が同一の複数種類の検出値のまとまりを1組として、検出時刻が異なる複数組の時系列のデータを意味する。 The detection value acquisition unit 21 receives time-series data (time-series set) representing a plurality of types of detection values from the monitoring device 5 at a predetermined cycle, and stores the detection value time-series information (unit space creation) in the storage unit 3. (For) 33, or as detected value time series information (for evaluation) 34. Here, the monitoring device 5 will be described with reference to FIG. The time-series set means a plurality of sets of time-series data having different detection times, with a set of multiple types of detection values having the same detection time as one set.
 監視装置5は、例えば図3に示すように発電プラント40等のプラントにおいて、プラント内の各部に設けたセンサ等を用いて、温度、圧力、体積、出力、回転数等の複数種類の所定の物理量の時系列を取得し、所定の周期で情報処理装置1に対して検出値として送信する。なお、以下では、複数の検出値(k種類の検出値)をx1、x2、…、xkで表す。また、時系列のn個の検出値x1をx11、x21、…、xn1、時系列のn個の検出値x2をx12、x22、…、xn2、時系列のn個の検出値xkをx1k、x2k、…、xnkと表す。ここで、検出値x11、x12、…、x1kは、検出時刻が同一(時刻t1)の1組の検出値であり、検出値x21、x22、…、x2kは、検出時刻が同一(時刻t2)の1組の検出値であり、検出値xn1、xn2、…、xnkは、検出時刻が同一(時刻tn)の1組の検出値である。 As shown in FIG. 3, for example, in a plant such as a power plant 40, the monitoring device 5 uses sensors or the like provided in each part of the plant to determine a plurality of types of predetermined temperature, pressure, volume, output, rotation speed, and the like. The time series of physical quantities is acquired and transmitted as a detection value to the information processing apparatus 1 at a predetermined cycle. In the following, a plurality of detected values (k types of detected values) are represented by x1, x2, ..., Xk. Further, the n detection values x1 in the time series are x11, x21, ..., Xn1, the n detection values x2 in the time series are x12, x22, ..., Xn2, and the n detection values xk in the time series are x1k. It is expressed as x2k, ..., Xnk. Here, the detection values x11, x12, ..., X1k are a set of detection values having the same detection time (time t1), and the detection values x21, x22, ..., X2k have the same detection time (time t2). The detection values xn1, xn2, ..., Xnk are a set of detection values having the same detection time (time tun).
 なお、図3に示す発電プラント40、発電機41と、発電機42と、ガスタービン43と、蒸気タービン44と、ボイラ45と、復水器46とを備える。発電機41は、ガスタービン43によって駆動され、電力(GTMW)を発生する。ガスタービン43は、圧縮機と燃焼器とタービンとを備え、圧縮機へ吸入された空気は圧縮機で高温高圧の空気となって燃焼器へ導かれる。燃焼器では、高温高圧の空気に燃料ガスが供給され燃焼する。燃焼器で燃焼した燃料ガスは高温高圧の燃焼ガスとなってタービンへ供給されタービンを駆動する。また、燃焼ガスはタービンを経てボイラ45へ排ガスとして供給される。ボイラ45は、復水器46から供給された温水を加熱して蒸気へと変換し、蒸気タービン44を回転させる。蒸気タービン44は発電機42を駆動し、駆動された発電機42は電力(STMW)を発生する。また、蒸気タービン44を回転させた蒸気は復水器46で海水によって冷却され温水に変換される。 The power plant 40, the generator 41, the generator 42, the gas turbine 43, the steam turbine 44, the boiler 45, and the condenser 46 shown in FIG. 3 are provided. The generator 41 is driven by a gas turbine 43 to generate electric power (GTMW). The gas turbine 43 includes a compressor, a combustor, and a turbine, and the air sucked into the compressor becomes high-temperature and high-pressure air by the compressor and is guided to the combustor. In the combustor, fuel gas is supplied to high-temperature and high-pressure air and burned. The fuel gas burned in the combustor becomes high-temperature and high-pressure combustion gas and is supplied to the turbine to drive the turbine. Further, the combustion gas is supplied as exhaust gas to the boiler 45 via the turbine. The boiler 45 heats the hot water supplied from the condenser 46 and converts it into steam to rotate the steam turbine 44. The steam turbine 44 drives a generator 42, and the driven generator 42 generates electric power (STMW). Further, the steam obtained by rotating the steam turbine 44 is cooled by seawater in the condenser 46 and converted into hot water.
 図4は、燃料ガスの流量(kg/s)と、発電機41の出力GTMW(MW)と、発電機42の出力STMW(MW)の時間変化を模式的に示す。燃料ガスの流量と、発電機41の出力GTMWと、発電機42の出力STMWは、例えば、上述した複数の検出値x1、x2、…、xkのいずれかに対応する。図4に示すように、ガスタービン43は、応答が早いので、発電機41の出力GTMWは、燃焼ガスの挙動にほぼ遅れなく追従して変化する。一方、蒸気タービン44は、ガスタービン43の排ガスでボイラ45を温めることで発生させた蒸気で回転されるので、発電機42の出力STMWは発電機41の出力GTMW(および燃料ガス流量)に対して応答が遅れ、時間遅れ(ΔT)が発生する。 FIG. 4 schematically shows the time change of the flow rate of the fuel gas (kg / s), the output GTMW (MW) of the generator 41, and the output STMW (MW) of the generator 42. The flow rate of the fuel gas, the output GTMW of the generator 41, and the output STMW of the generator 42 correspond to, for example, any of the plurality of detected values x1, x2, ..., Xk described above. As shown in FIG. 4, since the gas turbine 43 responds quickly, the output GTMW of the generator 41 changes following the behavior of the combustion gas with almost no delay. On the other hand, since the steam turbine 44 is rotated by the steam generated by heating the boiler 45 with the exhaust gas of the gas turbine 43, the output STMW of the generator 42 is relative to the output GTMW (and fuel gas flow rate) of the generator 41. Therefore, the response is delayed and a time delay (ΔT) occurs.
 一方、検出時刻補正部22は、取得された複数の検出値の各検出時刻を補正情報31に基づき補正する。補正情報31は、1組の複数の検出値のうちの1つを基準検出値として他の複数の検出値の各検出時刻を補正するための情報である。補正情報31は、例えば、基準検出値の検出時刻を基準として他の複数の検出値の各検出時刻の各遅れ時間を表す情報を含む。例えば、図4に示す例において、燃料ガス流量を基準検出値とする場合、補正情報31において、燃料ガス流量の遅れ時間と電機41の出力GTMWの遅れ時間は零に設定され、発電機42の出力STMWの遅れ時間はΔTに設定される。基準検出値は、補正情報31を定義する際に基準となる検出値であり、その他の検出値(基準検出値以外の検出値)の多くの挙動に影響を与える検出値であることが望ましい。例えば、図4に示す例では、燃料ガス流量のほか、電機41の出力GTMW等とすることができる。一方、例えば、大気温度、海水温度等の発電出力と直接的な影響が小さい(相関が小さい)検出値は避けることが望ましい。 On the other hand, the detection time correction unit 22 corrects each detection time of the acquired plurality of detected values based on the correction information 31. The correction information 31 is information for correcting each detection time of the other plurality of detection values by using one of the plurality of detection values in one set as the reference detection value. The correction information 31 includes, for example, information representing each delay time of each detection time of a plurality of other detection values with reference to the detection time of the reference detection value. For example, in the example shown in FIG. 4, when the fuel gas flow rate is used as the reference detection value, the delay time of the fuel gas flow rate and the delay time of the output GTMW of the electric machine 41 are set to zero in the correction information 31, and the generator 42 The delay time of the output STMW is set to ΔT. The reference detection value is a detection value that serves as a reference when defining the correction information 31, and is preferably a detection value that affects many behaviors of other detection values (detection values other than the reference detection value). For example, in the example shown in FIG. 4, in addition to the fuel gas flow rate, the output GTMW of the electric machine 41 and the like can be used. On the other hand, for example, it is desirable to avoid detected values such as atmospheric temperature and seawater temperature that have a small direct effect (small correlation) with the power generation output.
 なお、時間遅れの値は、例えば、基準検出値の検出時刻と他の検出値の検出時刻との時間差を変化させた場合に、基準検出値と他の検出値の相関係数の絶対値が最大値となる時間差を遅れ時間として定義することができる。図5は、横軸に基準検出値の検出時刻と他の検出値の検出時刻との時間差を表し、縦軸に基準検出値と他の検出値の相関係数を表す。図5は、ある検出時刻から所定時間分の基準検出値の時系列と、その検出時刻から時間差分ずらした検出時刻から所定時間分の他の検出値の時系列との相関係数との対応関係を示す。時間差が零の場合は、同一の検出時刻から所定時間分の基準検出値の時系列と他の検出値の時系列との相関係数に対応する。この場合、ある検出時刻から所定時間分の基準検出値の時系列とその検出時刻に遅れ時間を加えた時刻から所定時間分の他の検出値の時系列との相関係数の絶対値が最大となっている。相関係数が最大となった時間が相関が強いので検出時間を補正する遅れ時間と定義することができる。なお、時間差は例えば1分単位でずらすことができる。 The time delay value is, for example, the absolute value of the correlation coefficient between the reference detection value and the other detection value when the time difference between the detection time of the reference detection value and the detection time of the other detection value is changed. The time difference that becomes the maximum value can be defined as the delay time. In FIG. 5, the horizontal axis represents the time difference between the detection time of the reference detection value and the detection time of other detection values, and the vertical axis represents the correlation coefficient between the reference detection value and the other detection values. FIG. 5 shows the correspondence between the time series of the reference detection values for a predetermined time from a certain detection time and the correlation coefficient with the time series of other detection values for a predetermined time from the detection time shifted by the time difference from the detection time. Show the relationship. When the time difference is zero, it corresponds to the correlation coefficient between the time series of the reference detection values for a predetermined time from the same detection time and the time series of other detection values. In this case, the absolute value of the correlation coefficient between the time series of the reference detection values for a predetermined time from a certain detection time and the time series of other detection values for a predetermined time from the time obtained by adding the delay time to the detection time is the maximum. It has become. Since the time when the correlation coefficient is maximized has a strong correlation, it can be defined as the delay time for correcting the detection time. The time difference can be shifted in units of 1 minute, for example.
 また、相関係数は、2つの確率変数の間にある線形な関係の強弱を測る指標であり、正の分散を持つ確率変数XおよびYが与えられたとき、共分散をσXY、標準偏差をσXおよびσYとして、確率変数Xと確率変数Yの相関係数ρは、ρ=σXY/(σX・σY)で求められる。 The correlation coefficient is an index that measures the strength of the linear relationship between two random variables. Given the random variables X and Y with positive variance, the covariance is σXY and the standard deviation is the standard deviation. As σX and σY, the correlation coefficient ρ of the random variable X and the random variable Y is obtained by ρ = σXY / (σX · σY).
 図4に示す例では、検出時刻補正部22は、例えば、燃料ガスの流量を表す検出値の検出時刻と、発電機42の出力STMWを表す検出値の時間遅れ(ΔT)の分だけ遅れた検出時刻が対応づけられるように、発電機42の出力STMWを表す検出値の検出時刻(タイムスタンプ)を修正する。 In the example shown in FIG. 4, the detection time correction unit 22 is delayed by, for example, the detection time of the detection value representing the flow rate of the fuel gas and the time delay (ΔT) of the detection value representing the output STMW of the generator 42. The detection time (time stamp) of the detection value representing the output STMW of the generator 42 is modified so that the detection time can be associated with each other.
 なお、図6および図7に示すように、基準検出値と他の検出値との相関係数を表す曲線が例えば曲線Reのように所定の閾値(1)を上回ることが無いような場合、その検出値に対しては、相関係数が最大(Re_max)となる時間を遅れ時間と定義せず、例えば遅れ時間を零と定義してもよい。なお、図6は、図5と同様にして基準検出値と他の検出値との相関係数の曲線Ra、Rb、Rc、RdおよびReの例を表し、図7は、相関係数の最大値Ra_max、Rb_max、Rc_max、Rd_maxおよびRe_maxと遅れ時間との対応関係の例を表す。 As shown in FIGS. 6 and 7, when the curve representing the correlation coefficient between the reference detection value and the other detection value does not exceed the predetermined threshold value (1) as in the case of curve Re, for example. For the detected value, the time at which the correlation coefficient becomes maximum (Re_max) is not defined as the delay time, and for example, the delay time may be defined as zero. Note that FIG. 6 shows an example of curves Ra, Rb, Rc, Rd and Re of the correlation coefficient between the reference detection value and other detection values in the same manner as in FIG. 5, and FIG. 7 shows the maximum correlation coefficient. An example of the correspondence between the values Ra_max, Rb_max, Rc_max, Rd_max and Re_max and the delay time is shown.
 また、マハラノビス距離算出部23は、単位空間情報32に基づき、検出値時系列情報(評価用)34として記憶されている各検出値の補正された各検出時刻が互いに対応する複数の検出値の組のマハラノビス距離を算出する。ここで、単位空間情報32は、補正情報31に基づき補正された各検出時刻が互いに対応する複数の検出値の時系列の複数の組に基づき作成された単位空間を表す情報である。 Further, the Mahalanobis distance calculation unit 23 is based on the unit space information 32, and the corrected detection times of the detected values stored as the detected value time series information (for evaluation) 34 are a plurality of detected values corresponding to each other. Calculate the Mahalanobis distance of the set. Here, the unit space information 32 is information representing a unit space created based on a plurality of sets of time series of a plurality of detection values in which each detection time corrected based on the correction information 31 corresponds to each other.
 ここで、マハラノビス距離の算出の仕方について数式を参照して説明する。 Here, how to calculate the Mahalanobis distance will be explained with reference to mathematical formulas.
 単位空間を構成する基準データ群(正常データ群)を、複数の検出値xijで表すとすると(ここでiは1~nまでのn個の時系列の検出時刻を表し、jは1~kまでの検出値のk個の種類を表す)、各検出値xijの平均値Mjは下式で表される。なお、iは検出時刻補正部22によって検出値毎に補正された値に対応する。 Assuming that the reference data group (normal data group) constituting the unit space is represented by a plurality of detected values xij (here, i represents n time series detection times from 1 to n, and j represents 1 to k). The average value Mj of each detected value xij is expressed by the following equation (representing k types of detected values up to). Note that i corresponds to a value corrected for each detected value by the detection time correction unit 22.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、各検出値xijの標準偏差σjは下式で表される。 The standard deviation σj of each detected value xij is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、各検出値xijを正規化した値Xijは下式で表される。 Further, the value Xij obtained by normalizing each detected value xij is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、k個の検出値から2個を取り出すすべての組み合わせの相関係数は下式で求められる。 Then, the correlation coefficient of all combinations for extracting 2 from k detected values is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、相関係数行列Rは、対角要素を1、その他のp行q列の要素を上式のrpqとしたk×kの行列である次式で表される。 Further, the correlation coefficient matrix R is represented by the following equation, which is a matrix of k × k in which the diagonal element is 1 and the other elements in the p row and q column are rpq in the above equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、相関係数行列Rの逆行列R-1は次式で表される。 Further, the inverse matrix R-1 of the correlation coefficient matrix R is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 そして、検出時刻tmにおける1組の検出値(を正規化した値)Xm1、Xm2、…、Xmkのマハラノビス距離Dの2乗値は、次式で表される。なお、mは検出時刻補正部22によって検出値毎に補正された値に対応する。 Then, the squared value of the Mahalanobis distance D of a set of detected values (normalized values) Xm1, Xm2, ..., Xmk at the detection time tm is expressed by the following equation. In addition, m corresponds to the value corrected for each detection value by the detection time correction unit 22.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 以上の数式において、単位空間情報32は相関係数行列Rの逆行列R-1を表す情報とすることができる。 In the above formula, the unit space information 32 can be information representing the inverse matrix R-1 of the correlation coefficient matrix R.
 また、判断部24は、マハラノビス距離Dと所定の閾値を比較し、1組の複数の検出値(1組の検出値(を正規化した値)Xm1、Xm2、…、Xmk)が正常状態であるか否かを判断する。 Further, the determination unit 24 compares the Mahalanobis distance D with a predetermined threshold value, and a set of a plurality of detection values (a set of detection values (normalized values) Xm1, Xm2, ..., Xmk) is in a normal state. Determine if it exists.
 また、補正情報作成部25は、検出値時系列情報(単位空間作成用)33として記憶されている予め取得した複数の検出値の時系列の複数の組に基づき、補正情報31を作成して記憶部3に記憶する。その際、相関係数算出部251が、基準検出値の検出時刻と他の複数の検出値の各検出時刻との各時間差を変化させた場合の基準検出値との各相関係数の変化を算出する。また、遅れ時間定義部252が、各相関係数の絶対値が最大値となる各時間差を各遅れ時間として定義する。 Further, the correction information creation unit 25 creates correction information 31 based on a plurality of sets of time series of a plurality of detected values acquired in advance stored as detection value time series information (for unit space creation) 33. It is stored in the storage unit 3. At that time, the correlation coefficient calculation unit 251 changes each correlation coefficient with the reference detection value when each time difference between the detection time of the reference detection value and each detection time of the other plurality of detection values is changed. calculate. Further, the delay time definition unit 252 defines each time difference in which the absolute value of each correlation coefficient becomes the maximum value as each delay time.
 また、単位空間情報作成部26は、検出値時系列情報(単位空間作成用)33として記憶されている複数の組の複数の検出値に基づき、複数の検出値の各検出時刻を補正情報31に基づき補正した各検出時刻が互いに対応する複数の検出値の時系列の複数の組に基づき、単位空間を表す単位空間情報32を作成して記憶部3に記憶する。 Further, the unit space information creation unit 26 corrects each detection time of the plurality of detected values based on a plurality of sets of the plurality of detected values stored as the detected value time series information (for unit space creation) 33. Based on a plurality of sets of time series of a plurality of detection values whose detection times are corrected based on the above, unit space information 32 representing the unit space is created and stored in the storage unit 3.
(情報処理装置の動作例)
 次に、図2を参照して、図1に示す情報処理装置1の動作例について説明する。図2に示す処理では、まず、単位空間情報作成部26が、検出値時系列情報(単位空間作成用)33から単位空間作成用の過去の検出値を取得する(ステップS11)。次に、相関係数算出部251が、基準検出値に対する他の検出値の相関係数を算出する(ステップS12)。次に、遅れ時間定義部252が、最大相関係数の時間を遅れ時間と定義する(ステップS13)。次に、単位空間情報作成部26が、他の検出値の時刻を遅れ時間だけ補正し単位空間を作成する(ステップS14)。次に、検出値取得部21(あるいは検出時刻補正部22)が、監視装置5から(あるいは検出値時系列情報(評価用)34)から評価用検出値を取得する(ステップS15)。次に、検出時刻補正部22が、評価用の他の検出値の時刻を遅れ時間だけ補正する(ステップS16)。次に、マハラノビス距離算出部23が、補正した単位空間から補正した評価用検出値のマハラノビス距離(MD)を算出する(ステップS17)。次に、判断部24が、マハラノビス距離(MD)が所定の閾値以下であるか否かを判断する(ステップS18)。マハラノビス距離(MD)が所定の閾値以下である場合(ステップS18で「YES」の場合)、判断部24は、正常と判断して(ステップS19)、判断結果を出力する(ステップS21)。他方、マハラノビス距離(MD)が所定の閾値以下でない場合(ステップS18で「NO」の場合)、判断部24は、異常と判断して(ステップS20)、判断結果を出力する(ステップS21)。
(Example of operation of information processing device)
Next, an operation example of the information processing apparatus 1 shown in FIG. 1 will be described with reference to FIG. In the process shown in FIG. 2, first, the unit space information creation unit 26 acquires the past detection value for unit space creation from the detected value time series information (for unit space creation) 33 (step S11). Next, the correlation coefficient calculation unit 251 calculates the correlation coefficient of another detected value with respect to the reference detected value (step S12). Next, the delay time definition unit 252 defines the time of the maximum correlation coefficient as the delay time (step S13). Next, the unit space information creation unit 26 corrects the time of other detected values by the delay time and creates the unit space (step S14). Next, the detection value acquisition unit 21 (or the detection time correction unit 22) acquires the evaluation detection value from the monitoring device 5 (or the detection value time series information (for evaluation) 34) (step S15). Next, the detection time correction unit 22 corrects the time of another detected value for evaluation by the delay time (step S16). Next, the Mahalanobis distance calculation unit 23 calculates the Mahalanobis distance (MD) of the corrected evaluation detection value from the corrected unit space (step S17). Next, the determination unit 24 determines whether or not the Mahalanobis distance (MD) is equal to or less than a predetermined threshold value (step S18). When the Mahalanobis distance (MD) is equal to or less than a predetermined threshold value (when “YES” in step S18), the determination unit 24 determines that it is normal (step S19) and outputs the determination result (step S21). On the other hand, when the Mahalanobis distance (MD) is not equal to or less than a predetermined threshold value (when "NO" in step S18), the determination unit 24 determines that it is abnormal (step S20) and outputs the determination result (step S21).
(情報処理装置の実施例および作用効果)
 以上のように本実施形態によれば、単位空間の作成、マハラノビス距離の算出等の、マハラノビス距離に係る処理をより適切に行うことができる。
(Examples of information processing equipment and effects)
As described above, according to the present embodiment, processing related to the Mahalanobis distance, such as creation of a unit space and calculation of the Mahalanobis distance, can be performed more appropriately.
 なお、本実施形態の実施例においては、例えば、(1)基準検出値に対する他の検出値の相関係数を算出する。その際、単位空間作成用の過去の検出値の束を取得し、予め設定した基準検出値(例えば燃料流量)に対する、その他の検出値の相関係数を、それぞれ、例えば、検出値の時刻を1分毎に補正し、算出する。次に、(2)最大相関係数の時間を遅れ時間と定義する。例えば、時刻を1分毎に補正した検出値の相関係数が、最大となった時間を、その検出値の遅れ時間と定義する。次に、(3)他の検出値の時刻を遅れ時間だけ補正し、単位空間を作成する。例えば、単位空間作成用の過去の(基準検出値以外の)各検出値のタイムスタンプの時刻を、それぞれの検出値の遅れ時間だけ補正する。そして、基準検出値と時刻を補正した検出値を用いて、単位空間を作成する。次に、(4)評価用の他の検出値の時刻を遅れ時間だけ補正する。例えば、評価用の(基準検出値以外の)各検出値のタイムスタンプの時刻を、それぞれの検出値の遅れ時間だけ補正する。次に、(5)補正した単位空間から補正した評価用検出値のマハラノビス距離を算出する。例えば、時刻を補正した単位空間に対する、時刻を補正した評価検出値のマハラノビス距離を算出する。 In the embodiment of the present embodiment, for example, (1) the correlation coefficient of another detected value with respect to the reference detected value is calculated. At that time, a bundle of past detected values for creating a unit space is acquired, and the correlation coefficient of other detected values with respect to a preset reference detected value (for example, fuel flow rate) is set, for example, the time of the detected value. It is corrected and calculated every minute. Next, (2) the time of the maximum correlation coefficient is defined as the delay time. For example, the time when the correlation coefficient of the detected value obtained by correcting the time every minute is maximized is defined as the delay time of the detected value. Next, (3) the time of other detected values is corrected by the delay time to create a unit space. For example, the time of the time stamp of each past detection value (other than the reference detection value) for creating the unit space is corrected by the delay time of each detection value. Then, a unit space is created by using the reference detection value and the time-corrected detection value. Next, (4) the time of other detected values for evaluation is corrected by the delay time. For example, the time of the time stamp of each detection value (other than the reference detection value) for evaluation is corrected by the delay time of each detection value. Next, (5) the Mahalanobis distance of the corrected evaluation detection value is calculated from the corrected unit space. For example, the Mahalanobis distance of the time-corrected evaluation detection value is calculated with respect to the time-corrected unit space.
 本実施形態によれば、a)動的遅れの考慮により、各検出値間の相関が正確になり(バラツキが小さくなり)、単位空間が小さくなるので、単位空間から算出される評価検出値のマハラノビス距離(MD)の精度が向上する。例えば、図8に示すように、相関が高い場合の等マハラノビス距離曲線51が占める領域は、相関が低い場合の等マハラノビス距離曲線52が占める領域より小さくなる。図8は、2つの検出値をxaおよびxbとした場合に、マハラノビス距離Dが等しくなる領域を曲線51と曲線52で表す。例えば、評価用検出値がxa1およびxb1の場合のマハラノビス距離D(xa1、xb1)については、曲線51に対しては曲線外となり、曲線52に対しては曲線内となり、同一の距離に対する判断の精度が相関の大小によって異なることが分かる。 According to the present embodiment, a) due to the consideration of the dynamic delay, the correlation between the detected values becomes accurate (the variation becomes small) and the unit space becomes small, so that the evaluation detected value calculated from the unit space becomes The accuracy of Mahalanobis distance (MD) is improved. For example, as shown in FIG. 8, the region occupied by the iso-Mahalanobis distance curve 51 when the correlation is high is smaller than the region occupied by the iso-Mahalanobis distance curve 52 when the correlation is low. In FIG. 8, when the two detected values are xa and xb, the regions where the Mahalanobis distance D is equal are represented by curves 51 and 52. For example, the Mahalanobis distance D (xa1, xb1) when the detection values for evaluation are xa1 and xb1 is outside the curve for the curve 51 and inside the curve for the curve 52, so that the judgment for the same distance can be made. It can be seen that the accuracy differs depending on the magnitude of the correlation.
 また、本実施形態によれば、b)各検出値間の相関が正確になるので、単位空間作成の検出値の束の収集期間が短くできる。また、c)単位空間作成の検出値の束の収集期間が短くできるので、余った分のデータ保管容量を用いて、広い範囲の運転パターンをカバーして監視できる。例えば、出力範囲が100MW~200MW⇒0MW~200MW等。 Further, according to the present embodiment, b) the correlation between each detected value becomes accurate, so that the collection period of the bundle of detected values created in the unit space can be shortened. Further, c) Since the collection period of the bundle of detected values created in the unit space can be shortened, the surplus data storage capacity can be used to cover and monitor a wide range of operation patterns. For example, the output range is 100 MW to 200 MW ⇒ 0 MW to 200 MW and the like.
<第2実施形態>
 第2実施形態の情報処理装置1aを図9に示す。図1に示す情報処理装置1と比較して、図9に示す情報処理装置1aは、補正情報作成部25と単位空間情報作成部26を省略した処理部2aと、検出値時系列情報(単位空間作成用)33を省略した記憶部3aとから構成されている。第2実施形態の情報処理装置1aによれば、予め用意された補正情報31と単位空間情報32を用いて、時間遅れを補正した検出値に基づきマハラノビス距離を算出することができる。
<Second Embodiment>
The information processing device 1a of the second embodiment is shown in FIG. Compared with the information processing device 1 shown in FIG. 1, the information processing device 1a shown in FIG. 9 has a processing unit 2a in which the correction information creation unit 25 and the unit space information creation unit 26 are omitted, and the detected value time series information (unit). It is composed of a storage unit 3a in which the space creation) 33 is omitted. According to the information processing apparatus 1a of the second embodiment, the Mahalanobis distance can be calculated based on the detected value corrected for the time delay by using the correction information 31 and the unit space information 32 prepared in advance.
<第3実施形態>
 第3実施形態の情報処理装置1bを図10に示す。図1に示す情報処理装置1と比較して、図10に示す情報処理装置1bは、検出時刻補正部22と、マハラノビス距離算出部23と、判断部24を省略した処理部2bと、検出値時系列情報(評価用用)34を省略した記憶部3bとから構成されている。第3実施形態の情報処理装置1bによれば、補正情報31を作成するとともに、時間遅れを補正した検出値に基づき単位空間情報32を作成することができる。
<Third Embodiment>
The information processing device 1b of the third embodiment is shown in FIG. Compared with the information processing device 1 shown in FIG. 1, the information processing device 1b shown in FIG. 10 includes a detection time correction unit 22, a Mahalanobis distance calculation unit 23, a processing unit 2b in which the determination unit 24 is omitted, and a detection value. It is composed of a storage unit 3b in which the time-series information (for evaluation) 34 is omitted. According to the information processing apparatus 1b of the third embodiment, the correction information 31 can be created, and the unit space information 32 can be created based on the detected value corrected for the time delay.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
(Other embodiments)
Although the embodiments of the present disclosure have been described in detail with reference to the drawings, the specific configuration is not limited to the embodiments, and includes design changes and the like within a range that does not deviate from the gist of the present disclosure. ..
〈コンピュータ構成〉
 図11は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
 上述の情報処理装置1、1aおよび1bは、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。
<Computer configuration>
FIG. 11 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
The computer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
The information processing devices 1, 1a and 1b described above are mounted on the computer 90. The operation of each processing unit described above is stored in the storage 93 in the form of a program. The processor 91 reads a program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータは、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。 The program may be for realizing a part of the functions exerted on the computer 90. For example, the program may exert its function in combination with another program already stored in the storage or in combination with another program mounted on another device. In another embodiment, the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, some or all of the functions realized by the processor may be realized by the integrated circuit.
 ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。  Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like. The storage 93 may be internal media directly connected to the bus of the computer 90, or external media connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 via a communication line, the distributed computer 90 may expand the program in the main memory 92 and execute the above processing. In at least one embodiment, the storage 93 is a non-temporary tangible storage medium.
<付記>
 各実施形態に記載の情報処理装置1、1aおよび1bは、例えば以下のように把握される。
<Additional notes>
The information processing devices 1, 1a and 1b described in each embodiment are grasped as follows, for example.
(1)第1の態様に係る情報処理装置1および1aは、1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報31を記憶するとともに、前記補正情報31に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報32を記憶する記憶部3と、前記複数の検出値の時系列の複数の組を取得する検出値取得部21と、取得された前記複数の検出値の各検出時刻を前記補正情報31に基づき補正する検出時刻補正部22と、前記単位空間情報32に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するマハラノビス距離算出部23と、を備える。 (1) The information processing devices 1 and 1a according to the first aspect have correction information for correcting each detection time of the other plurality of detection values by using one of the plurality of detection values in one set as a reference detection value. In addition to storing 31, unit space information 32 representing a unit space created based on a plurality of sets of time series of the plurality of detection values in which each detection time corrected based on the correction information 31 corresponds to each other is stored. The storage unit 3, the detection value acquisition unit 21 that acquires a plurality of sets of the plurality of detection values in a time series, and the detection time that corrects each detection time of the acquired plurality of detection values based on the correction information 31. A correction unit 22 and a Mahalanobis distance calculation unit 23 for calculating a Mahalanobis distance of a plurality of sets of the detection values whose corrected detection times correspond to each other based on the unit space information 32 are provided.
(2)第2の態様に係る情報処理装置1は、(1)の情報処理装置1であって、予め取得した複数の前記検出値の時系列の複数の組に基づき、前記補正情報31を作成して前記記憶部3に記憶する補正情報作成部25と、予め取得した複数の前記検出値の各検出時刻を前記補正情報31に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報32を作成して前記記憶部3に記憶する単位空間情報作成部26と、をさらに備える。 (2) The information processing device 1 according to the second aspect is the information processing device 1 of (1), and obtains the correction information 31 based on a plurality of sets of time series of the plurality of detected values acquired in advance. The correction information creation unit 25 that is created and stored in the storage unit 3 and the plurality of detection values in which each detection time obtained by correcting each detection time of the plurality of detection values acquired in advance based on the correction information 31 correspond to each other. A unit space information creating unit 26 that creates the unit space information 32 representing the unit space and stores the unit space information 32 in the storage unit 3 based on a plurality of sets of the time series of the above is further provided.
(3)第3の態様に係る情報処理装置1は、(2)の情報処理装置1であって、前記補正情報31は、前記基準検出値の検出時刻を基準として他の複数の前記検出値の各検出時刻の各遅れ時間を表す情報を含み、前記補正情報作成部25が、前記基準検出値の検出時刻と他の複数の前記検出値の各検出時刻との各時間差を変化させた場合の前記基準検出値との各相関係数の変化を算出する相関係数算出部251と、前記各相関係数の絶対値が最大値となる前記各時間差を前記各遅れ時間として定義する遅れ時間定義部252と、を含む。 (3) The information processing device 1 according to the third aspect is the information processing device 1 of (2), and the correction information 31 is a plurality of other detected values based on the detection time of the reference detected value. When the correction information creation unit 25 changes each time difference between the detection time of the reference detection value and each detection time of a plurality of other detection values, including information representing each delay time of each detection time of the above. The correlation coefficient calculation unit 251 that calculates the change of each correlation coefficient with the reference detection value, and the delay time that defines each time difference at which the absolute value of each correlation coefficient becomes the maximum value as each delay time. The definition unit 252 and the like are included.
(4)第4の態様に係る情報処理装置1は、(1)~(3)の情報処理装置1であって、前記マハラノビス距離と所定の閾値を比較し、複数の前記検出値が正常状態であるか否かを判断する判断部24をさらに備える。 (4) The information processing device 1 according to the fourth aspect is the information processing device 1 of (1) to (3), in which the Mahalanobis distance is compared with a predetermined threshold value, and a plurality of the detected values are in a normal state. A determination unit 24 for determining whether or not the information is specified is further provided.
(5)第5の態様に係る情報処理装置1および1bは、予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部3と、前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報31を作成して前記記憶部3に記憶する補正情報作成部25と、前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報31に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報32を作成して前記記憶部3に記憶する単位空間情報作成部26と、を備える。 (5) The information processing devices 1 and 1b according to the fifth aspect include a storage unit 3 that stores a plurality of sets of a plurality of detection values acquired in advance in time series, and a plurality of the detection values of the plurality of sets. Based on the above, correction information 31 for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as a reference detection value is created and stored in the storage unit 3. The information creation unit 25 and the plurality of detection values in which the detection times of the plurality of detection values are corrected based on the correction information 31 based on the plurality of detection values of the plurality of sets correspond to each other. A unit space information creating unit 26 that creates the unit space information 32 representing the unit space and stores the unit space information 32 in the storage unit 3 based on a plurality of sets of time series is provided.
 上述の情報処理装置、情報処理方法およびプログラムによれば、マハラノビス距離に係る処理をより適切に行うことができる。 According to the above-mentioned information processing device, information processing method and program, the processing related to the Mahalanobis distance can be performed more appropriately.
1、1a、1b 情報処理装置
2 処理部
21 検出値取得部
22 検出時刻補正部
23 マハラノビス距離算出部
24 判断部
25 補正情報作成部
26 単位空間情報作成部
251 相関係数算出部
252 遅れ時間定義部
3 記憶部
31 補正情報
32 単位空間情報
33 検出値時系列情報(単位空間作成用)
34 検出値時系列情報(評価用)
1, 1a, 1b Information processing device 2 Processing unit 21 Detection value acquisition unit 22 Detection time correction unit 23 Maharanobis distance calculation unit 24 Judgment unit 25 Correction information creation unit 26 Unit space information creation unit 251 Correlation coefficient calculation unit 252 Delay time definition Part 3 Storage part 31 Correction information 32 Unit space information 33 Detected value Time series information (for creating unit space)
34 Detected value time series information (for evaluation)

Claims (9)

  1.  1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を記憶するとともに、前記補正情報に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報を記憶する記憶部と、
     前記複数の検出値の時系列の複数の組を取得する検出値取得部と、
     取得された前記複数の検出値の各検出時刻を前記補正情報に基づき補正する検出時刻補正部と、
     前記単位空間情報に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するマハラノビス距離算出部と、
     を備える情報処理装置。
    The correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as the reference detection value is stored, and each detection time corrected based on the correction information is stored. A storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of a plurality of the detected values corresponding to each other.
    A detection value acquisition unit that acquires a plurality of sets of the plurality of detection values in a time series,
    A detection time correction unit that corrects each detection time of the acquired plurality of detection values based on the correction information, and a detection time correction unit.
    A Mahalanobis distance calculation unit that calculates the Mahalanobis distance of a plurality of sets of the detection values whose corrected detection times correspond to each other based on the unit space information.
    Information processing device equipped with.
  2.  予め取得した複数の前記検出値の時系列の複数の組に基づき、前記補正情報を作成して前記記憶部に記憶する補正情報作成部と、
     予め取得した複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶する単位空間情報作成部と、
     をさらに備える請求項1に記載の情報処理装置。
    A correction information creation unit that creates the correction information and stores it in the storage unit based on a plurality of sets of the detection values acquired in advance in a time series.
    The unit space representing the unit space based on a plurality of sets of time series of the plurality of detection values in which each detection time of the plurality of detection values acquired in advance is corrected based on the correction information. A unit space information creation unit that creates information and stores it in the storage unit,
    The information processing apparatus according to claim 1.
  3.  前記補正情報は、前記基準検出値の検出時刻を基準として他の複数の前記検出値の各検出時刻の各遅れ時間を表す情報を含み、
     前記補正情報作成部が、
     前記基準検出値の検出時刻と他の複数の前記検出値の各検出時刻との各時間差を変化させた場合の前記基準検出値との各相関係数の変化を算出する相関係数算出部と、
     前記各相関係数の絶対値が最大値となる前記各時間差を前記各遅れ時間として定義する遅れ時間定義部と、
     を含む
     請求項2に記載の情報処理装置。
    The correction information includes information representing each delay time of each detection time of a plurality of other detection values with reference to the detection time of the reference detection value.
    The correction information creation unit
    A correlation coefficient calculation unit that calculates a change in each correlation coefficient with the reference detection value when each time difference between the detection time of the reference detection value and each detection time of a plurality of other detection values is changed. ,
    A delay time definition unit that defines each time difference in which the absolute value of each correlation coefficient becomes the maximum value as each delay time, and a delay time definition unit.
    The information processing apparatus according to claim 2.
  4.  前記マハラノビス距離と所定の閾値を比較し、複数の前記検出値が正常状態であるか否かを判断する判断部を
     さらに備える請求項1~3のいずれか1項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 1 to 3, further comprising a determination unit for comparing the Mahalanobis distance with a predetermined threshold value and determining whether or not the plurality of detected values are in a normal state.
  5.  予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部と、
     前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を作成して前記記憶部に記憶する補正情報作成部と、
     前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶する単位空間情報作成部と、
     を備える情報処理装置。
    A storage unit that stores multiple sets of detected values acquired in advance in chronological order,
    Based on the plurality of the plurality of detection values in the plurality of sets, correction information for correcting each detection time of the other plurality of detection values is created by using one of the plurality of detection values in one set as a reference detection value. The correction information creation unit stored in the storage unit and
    Based on the plurality of detection values of the plurality of sets, each detection time of the plurality of detection values is corrected based on the correction information, and each detection time is corrected to a plurality of sets of time series of the plurality of detection values corresponding to each other. Based on this, a unit space information creation unit that creates the unit space information representing the unit space and stores it in the storage unit, and
    Information processing device equipped with.
  6.  1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を記憶するとともに、前記補正情報に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報を記憶する記憶部を用いて、
     前記複数の検出値の時系列の複数の組を取得するステップと、
     取得された前記複数の検出値の各検出時刻を前記補正情報に基づき補正するステップと、
     前記単位空間情報に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するステップと、
     を有する情報処理方法。
    The correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as the reference detection value is stored, and each detection time corrected based on the correction information is stored. Using a storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of a plurality of the detected values corresponding to each other,
    A step of acquiring a plurality of sets of the plurality of detected values in a time series, and
    A step of correcting each detection time of the acquired plurality of detection values based on the correction information, and
    Based on the unit space information, a step of calculating the Mahalanobis distance of a plurality of sets of the detected values whose corrected detection times correspond to each other, and
    Information processing method having.
  7.  予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部を用いて、
     前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を作成して前記記憶部に記憶するステップと、
     前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶するステップと、
     を有する情報処理方法。
    Using a storage unit that stores multiple sets of detected values acquired in advance in chronological order,
    Based on the plurality of the plurality of detection values in the plurality of sets, correction information for correcting each detection time of the other plurality of detection values is created by using one of the plurality of detection values in one set as a reference detection value. And the step of storing in the storage unit
    Based on the plurality of detection values of the plurality of sets, each detection time of the plurality of detection values is corrected based on the correction information, and each detection time is corrected to a plurality of sets of time series of the plurality of detection values corresponding to each other. Based on the step of creating the unit space information representing the unit space and storing it in the storage unit,
    Information processing method having.
  8.  1組の複数の検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を記憶するとともに、前記補正情報に基づき補正された各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき作成された単位空間を表す単位空間情報を記憶する記憶部を用いて、
     前記複数の検出値の時系列の複数の組を取得するステップと、
     取得された前記複数の検出値の各検出時刻を前記補正情報に基づき補正するステップと、
     前記単位空間情報に基づき、前記補正された各検出時刻が互いに対応する複数の前記検出値の組のマハラノビス距離を算出するステップと、
     をコンピュータに実行させるプログラム。
    The correction information for correcting each detection time of the other plurality of detection values using one of the plurality of detection values in one set as the reference detection value is stored, and each detection time corrected based on the correction information is stored. Using a storage unit that stores unit space information representing a unit space created based on a plurality of sets of time series of a plurality of the detected values corresponding to each other,
    A step of acquiring a plurality of sets of the plurality of detected values in a time series, and
    A step of correcting each detection time of the acquired plurality of detection values based on the correction information, and
    Based on the unit space information, a step of calculating the Mahalanobis distance of a plurality of sets of the detected values whose corrected detection times correspond to each other, and
    A program that causes a computer to run.
  9.  予め取得した複数の検出値の組を時系列で複数組を記憶する記憶部を用いて、
     前記複数の組の複数の前記検出値に基づき、1組の複数の前記検出値のうちの1つを基準検出値として他の複数の前記検出値の各検出時刻を補正する補正情報を作成して前記記憶部に記憶するステップと、
     前記複数の組の複数の前記検出値に基づき、複数の前記検出値の各検出時刻を前記補正情報に基づき補正した各検出時刻が互いに対応する複数の前記検出値の時系列の複数の組に基づき、前記単位空間を表す前記単位空間情報を作成して前記記憶部に記憶するステップと、
     をコンピュータに実行させるプログラム。
    Using a storage unit that stores multiple sets of detected values acquired in advance in chronological order,
    Based on the plurality of the plurality of detection values in the plurality of sets, correction information for correcting each detection time of the other plurality of detection values is created by using one of the plurality of detection values in one set as a reference detection value. And the step of storing in the storage unit
    Based on the plurality of detection values of the plurality of sets, each detection time of the plurality of detection values is corrected based on the correction information, and each detection time is corrected to a plurality of sets of time series of the plurality of detection values corresponding to each other. Based on the step of creating the unit space information representing the unit space and storing it in the storage unit,
    A program that causes a computer to run.
PCT/JP2021/006429 2020-02-21 2021-02-19 Information processing device, information processing method, and program WO2021167082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020028266A JP2021131818A (en) 2020-02-21 2020-02-21 Information processing device, information processing method and program
JP2020-028266 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167082A1 true WO2021167082A1 (en) 2021-08-26

Family

ID=77390877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006429 WO2021167082A1 (en) 2020-02-21 2021-02-19 Information processing device, information processing method, and program

Country Status (2)

Country Link
JP (1) JP2021131818A (en)
WO (1) WO2021167082A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195833A (en) * 1997-07-23 1999-04-09 Toshiba Corp Plant monitoring device
JP2009200208A (en) * 2008-02-21 2009-09-03 Fujifilm Corp Device and method for diagnosing manufacturing equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195833A (en) * 1997-07-23 1999-04-09 Toshiba Corp Plant monitoring device
JP2009200208A (en) * 2008-02-21 2009-09-03 Fujifilm Corp Device and method for diagnosing manufacturing equipment

Also Published As

Publication number Publication date
JP2021131818A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
KR101903283B1 (en) Automatic diagnosis system and automatic diagnosis method
Tsoutsanis et al. A component map tuning method for performance prediction and diagnostics of gas turbine compressors
Palmé et al. Gas turbine sensor validation through classification with artificial neural networks
JP6919997B2 (en) Control devices, control methods, and control programs
JP5260343B2 (en) Plant operating condition monitoring method
TW201000754A (en) Device for monitoring dynamic characteristics of windmill and method thereof
JP2012242159A (en) Method for interpolating sensor data for high availability of system, computer program and system
AU2019296291B2 (en) Wind turbine control method and device, controller, and control system
WO2016195092A1 (en) Anomaly sensing device
CN113469230B (en) Rotor system deep migration fault diagnosis method, system and medium
US20210055706A1 (en) Condition monitoring system
JP5939439B2 (en) Abnormality diagnosis device
CN103198433A (en) System and method for selecting a representative sensor set of a power plant
WO2023123685A1 (en) Method and apparatus for evaluating service life of wind power generator set
WO2021167082A1 (en) Information processing device, information processing method, and program
JPWO2017061028A1 (en) Anomaly detection device
JP6830414B2 (en) Diagnostic device and diagnostic method
JP6129508B2 (en) Anomaly detection pre-processing apparatus and method, program, and anomaly detection apparatus having the same
Uren et al. An integrated approach to sensor FDI and signal reconstruction in HTGRs–Part II: Case studies
EP3385804B1 (en) Failure diagnosis apparatus, failure diagnosis method and recording medium
CN116360566A (en) Fan speed regulating method, device, computer equipment, storage medium and program product
JP5948998B2 (en) Abnormality diagnosis device
WO2018003028A1 (en) Boiler failure determining device, failure determining method, and service method
JP7437163B2 (en) Diagnostic equipment, diagnostic methods and programs
JP7125518B2 (en) Abnormality diagnosis support method and abnormality diagnosis support device for multivariate data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757942

Country of ref document: EP

Kind code of ref document: A1