WO2021166984A1 - Method for manufacturing nerve cell device including myelinated nerve cells - Google Patents

Method for manufacturing nerve cell device including myelinated nerve cells Download PDF

Info

Publication number
WO2021166984A1
WO2021166984A1 PCT/JP2021/006037 JP2021006037W WO2021166984A1 WO 2021166984 A1 WO2021166984 A1 WO 2021166984A1 JP 2021006037 W JP2021006037 W JP 2021006037W WO 2021166984 A1 WO2021166984 A1 WO 2021166984A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
nerve
schwann
culture
Prior art date
Application number
PCT/JP2021/006037
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 須藤
耕史 木下
純輝 宇田
Original Assignee
株式会社幹細胞&デバイス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社幹細胞&デバイス研究所 filed Critical 株式会社幹細胞&デバイス研究所
Priority to JP2022501954A priority Critical patent/JPWO2021166984A1/ja
Publication of WO2021166984A1 publication Critical patent/WO2021166984A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/22Petri dishes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for producing a nerve cell device containing a nerve cell having myelinated axons by co-culturing Schwann cells and a nerve cell on a fiber sheet, and a nerve cell device produced by the method. ..
  • the axons of nerve cells are covered with a myelin sheath in which the cell membranes of glial cells are spirally stacked in multiple layers.
  • Schwann cells in the peripheral nerves and oligodendrocytes in the central nerves are involved in the formation of myelin sheaths. Since nerve axons are electrically insulated by this myelin sheath, electrical signals generated by firing of nerve cells (generation of action potentials) are transmitted very quickly along the axons by saltatory conduction. ..
  • the myelin sheath also has a protective effect on nerve axons.
  • Demyelination means that the myelin sheath is damaged or shed by some mechanism, or the myelin sheath is dysplasia and the maintenance / regeneration disorder of the myelin sheath is dysplastic. It is a condition that collapses. When demyelination occurs, the transmission of nerve stimuli is extremely slow, and smooth nerve function is not maintained, resulting in various nerve dysfunctions.
  • Demyelinating diseases in which demyelinating is the basis of lesions include peripheral neuropathy such as neurosheath disease, Charcot-Marie-Tooth disease, Gillan Valley syndrome and diabetic peripheral neuropathy, as well as multiple sclerosis and neuromyelitis optica. Includes central neuropathy such as inflammation, acute disseminated neuromyelitis and Periceus-Merzbacher's disease.
  • Patent Document 1 Non-Patent.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • Patent Documents 1 to 3 myelin formation can be induced by co-culturing Schwann cells and nerve cells.
  • Schwann cells derived from human stem cells are used, long-term culture is required before myelination is observed, and the efficiency of myelination cannot be said to be high.
  • Non-Patent Document 7 a method of culturing human Schwan cells together with carbon fibers suspended in a culture solution away from the culture well surface has been reported (Non-Patent Document 7).
  • Schwann cells have been shown to wrap around carbon fiber and express myelin basic protein (MBP) and myelin-related glycoprotein (MAG).
  • MBP myelin basic protein
  • MAG myelin-related glycoprotein
  • An object of the present invention is to stably culture human-derived nerve cells and Schwann cells, to mature the cells at an early stage, and to obtain a culture method having high myelin formation efficiency and the method. To provide an in vitro disease model.
  • the present inventors have found that co-culturing human-derived Schwann cells and nerve cells on a fiber sheet promotes the maturation of Schwann cells and nerve cells and improves the efficiency of myelin formation.
  • the invention was completed.
  • the object of the present invention is achieved by the following invention.
  • [1] The process of inducing the differentiation of Schwann progenitor cells into Schwann cells, and The step of co-culturing the Schwann cells with nerve cells or nerve cell spheroids on a cell scaffold, A method for manufacturing a nerve cell device, including.
  • [2] The method according to [1], wherein the step of inducing differentiation is performed on the cell scaffold.
  • the cell scaffold is a fiber sheet made of a polymer material.
  • [4] The method according to [3], wherein the fiber sheet has an oriented structure.
  • the Schwann cell derived from the pluripotent stem cell is a Schwann cell derived from a mammal.
  • the nerve cell is a primary cultured cell or a nerve cell derived from a pluripotent stem cell.
  • the primary cultured cell or a nerve cell derived from a pluripotent stem cell is a nerve cell derived from a mammal.
  • the co-culture is started by seeding the nerve cells at a density of 1 to 10 ⁇ 10 4 cells / 0.07 cm 2 with respect to the cell scaffold, according to any one of [1] to [12]. the method of. [14]
  • the nerve cell spheroid is a nerve cell spheroid prepared from 0.5 to 5 ⁇ 10 4 nerve cells, and the co-culture seeds the nerve cell spheroid at a density of 1 to 10 cells / 0.07 cm 2.
  • the culture medium used for the co-culture is a culture medium containing 5 to 20% (v / v) of the culture supernatant of IFRS1 which is a rat Schwann cell line and 0.000001 to 0.001% (w / v) of lipids [1]. ] To [14].
  • the nerve cell device according to [16] further comprising a frame that holds the periphery of the nerve cell device.
  • co-culturing human-derived neurons and Schwann cells on an oriented fiber sheet enables stable culture with less cell detachment during culture and promotes maturation of neurons. be able to. Further, according to the present invention, it is possible to prepare an in vitro disease model in which myelination is advanced in axons extending from nerve cells or nerve cell spheroids. By using the nerve cell device of the present invention, an in vitro drug screening system can be rapidly constructed, so that efficient drug evaluation becomes possible.
  • Human Schwann progenitor cells seeded on the cell scaffold were induced to differentiate into Schwann cells, and immunostaining with anti-SOX10 antibody and anti-S100B antibody was performed 16 days after the start of differentiation induction. It is a phase difference optical micrograph showing the result of co-culturing human iPS cell-derived motor neurons and Schwann cells. Rat immortalized Schwann cells or human iPS cell-derived Schwann cells were seeded into the motor nerves on the Petri dish and co-cultured. The day after seeding Schwann cells, the cells were observed with a retardation optical microscope. As a result, it was observed that Schwann cells adhered along the nerve cell axons.
  • FIG. 1 It is a photograph which shows the result of culturing the human iPS cell-derived motor neuron spheroid on the fiber sheet which is a cell scaffold.
  • the figure on the left is an optical micrograph with transmitted light.
  • the figure on the right shows the results of immunostaining with anti- ⁇ III-Tubulin antibody and nuclear staining with DAPI. From this figure, it is shown that axons extend along the fibers from the human iPS cell-derived motor nerve spheroids seeded on the fiber sheet.
  • a cell scaffold is a substrate on which cells seeded on a cell scaffold can adhere and proliferate or grow.
  • the cell scaffold preferably used in the present invention is composed of fibers made of a polymer material.
  • the cell scaffold is preferably a fiber sheet having the shape of a sheet in which fibers are accumulated.
  • the fiber sheet has an oriented structure.
  • the oriented structure means that the fibers constituting the fiber sheet are arranged along one direction, and when the angle of the one direction (orientation axis) is 0 °, 80% or more of the fibers are preferably 95%.
  • the structure is such that the above number of fibers are arranged along an angle within a range of ⁇ 5 °, preferably within a range of ⁇ 1 °.
  • the polymer material constituting the fiber may be any material that does not exhibit cytotoxicity when the cells are cultured in contact with the cells, depending on the purpose of use of the cells grown on the fiber sheet.
  • Biodegradable or non-biodegradable polymeric materials can be used.
  • the biodegradable polymer material include a copolymer of polylactic acid and polyglycolic acid (PLGA), polyglycolic acid (PGA), polybutyric acid (PLA), polyvinyl alcohol (PVA), and polyethylene glycol (PEG).
  • PLGA polylactic acid and polyglycolic acid
  • PGA polyglycolic acid
  • PLA polybutyric acid
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • PEVA Polyethylene vinyl acetate
  • PEO polyethylene oxide
  • non-biodegradable polymer material examples include polystyrene (PS), polysulfone (PSU), polytetrafluoroethylene (PTFE), polycarbonate (PC), polymethylmethacrylate (PMMA), polyvinyl chloride (PVC), and the like.
  • PS polystyrene
  • PSU polysulfone
  • PTFE polytetrafluoroethylene
  • PC polycarbonate
  • PMMA polymethylmethacrylate
  • PVC polyvinyl chloride
  • examples include, but are not limited to, polyethylene terephthalate (PET), polyamide (PA) and polymethylglutalimide (PMGI).
  • the fiber sheet can be produced, for example, from a solution containing a polymer material by an electrospinning method.
  • the fiber sheet having an oriented structure is not particularly limited, but for example, a rotating drum is used, and a solution containing a polymer material is sprayed from a nozzle onto the rotating surface of the drum while rotating the drum. Then, the fiber sheet can be manufactured by winding the fiber formed on the rotating drum.
  • a PTFE sheet for example, commercially available Poaflon (registered trademark, Sumitomo Electric Industries, Ltd.) can be used.
  • the solution of the polymer material may be an organic solvent that dissolves the polymer material to be used at a concentration of 10 to 30% (w / v) at room temperature, for example, 1,1,1,3,3,3.
  • HFIP -Hexafluoro-2-propanol
  • DMF N, N-dimethylformamide
  • the average diameter of the orthogonal cross sections of the fibers constituting the fiber sheet is not particularly limited, but is, for example, 1 to 7 ⁇ m, preferably 2 to 6 ⁇ m, and more preferably 3 to 5 ⁇ m.
  • the distance between the core wires of adjacent fibers is the pitch. If the pitch is too large, the cells may not be retained and may fall out when seeded. On the other hand, if the pitch is too small, the cells cannot extend into the fiber sheet, and it becomes difficult to form a three-dimensional structure.
  • the pitch of the fiber sheet used in the present invention is 6 ⁇ m to 60 ⁇ m, preferably 6 ⁇ m to 50 ⁇ m, and more preferably 6 ⁇ m to 30 ⁇ m.
  • the porosity of the fibers constituting the fiber sheet may vary depending on the polymer material used.
  • the porosity is not particularly limited, but is, for example, 10 to 60%, preferably 15 to 50%, more preferably 20 to 40%, and even more preferably 30% to 40%.
  • the porosity is the ratio of the area where fibers do not exist to a certain area of the fiber sheet plane in the fiber sheet which is one layer in the direction perpendicular to the fiber sheet plane.
  • the fiber sheet used in the present invention is composed of two or more fiber sheet layers (laminated or multilayer) even if it is composed of one fiber sheet layer (single layer) in the direction perpendicular to the fiber sheet plane. , For example, 2 layers, 3 layers, 4 layers, 5 layers, 6 layers, etc.).
  • the upper and lower fiber sheets are in contact with each other.
  • the orientation axes of the upper and lower fiber sheets intersect at 5 ° to 25 °, preferably 10 ° to 20 °, and more preferably 13 ° to 17 °.
  • the thickness of the fiber sheet (single layer) is, for example, 1 to 40 ⁇ m, preferably 5 to 35 ⁇ m, and more preferably 10 to 30 ⁇ m.
  • the fiber sheet used in the present invention is an extracellular matrix such as polylysine, polyornithine, laminin, fibronectin, Matrigel® or Geltrex® to promote adhesion, elongation and proliferation of seeded cells. It may be coated with protein or polyethyleneimine, which is a cationic water-soluble polymer. The coating can be performed by immersing the fiber sheet in a solution in which the extracellular matrix protein or polyethyleneimine is dissolved in physiological saline, phosphate buffered saline, cell culture solution or the like.
  • Nerve cells also called neurons
  • glial cells that differentiate from each progenitor cell of the nervous system form functional nervous tissue through the interaction of nerve cells with glial cells.
  • Schwann cells are the major glial cells in the peripheral nerves.
  • Schwann cells support the metabolic activity of nerve cells and play a role as myelin-forming cells.
  • Schwann cells are cells that differentiate from stem cells through Schwann progenitor cells and then immature Schwann cells.
  • the method of the present invention is a step of seeding and culturing Schwann precursor cells on a cell culture vessel such as Petridish or a multi-well plate or a cell scaffold in which fibers produced by using the polymer material are accumulated, and the above-mentioned.
  • the step of inducing the differentiation of Schwann precursor cells into Schwann cells is included. Since Schwann progenitor cells have the ability to differentiate into mature Schwann cells, they can be differentiated into Schwann cells by adherent culture on a cell culture vessel or the cell scaffold.
  • the Schwann progenitor cells are positive for the transcription factor SOX10, which is an undifferentiated Schwann cell marker, and OCT6, which is a mature Schwann cell marker, is positive for the subsequent induction of differentiation. Becomes positive. These markers can be used to identify Schwann progenitor cells, mature Schwann cells, or Schwann cell populations involved in myelination.
  • the Schwann progenitor cells are preferably cells induced to differentiate from pluripotent stem cells.
  • the pluripotent stem cells for example, ES cells and iPS cells can be used, but iPS cells are more preferable.
  • the cells for reprogramming into iPS cells cells derived from mammals such as mice or rats which are rodents, or monkeys or humans which are primates are preferable, and cells derived from humans are particularly preferable.
  • Patient-derived cells can also be used. By using patient-derived cells, it becomes possible to manufacture a nerve cell device that reflects the disease state.
  • Patient diseases include CMT subtypes such as Charcot-Marie-Tooth disease (CMT) or CMT type 1. Since Schwann progenitor cells can be cryopreserved, the cryopreserved Schwann cells can be thawed and used when producing the nerve cell device of the present invention.
  • CMT Charcot-Marie-Tooth disease
  • Examples of the culture medium used in the step of inducing the differentiation of Schwann progenitor cells into Schwann cells include DMEM (Dulbecco's Modified Eagle Medium) and MEM / Ham F-12, and the induction of differentiation of Schwann progenitor cells into Schwann cells. Is not limited as long as is possible. It is preferable that serum and / or cell growth factor is added to the culture medium. Examples of serum include fetal bovine serum (FBS), neonatal bovine serum, bovine serum albumin, goat serum, rabbit serum, mouse serum, monkey serum, human serum, etc., and the induction of differentiation of Schwann precursor cells into Schwann cells is performed. It is not limited as long as it is possible.
  • FBS fetal bovine serum
  • bovine serum albumin goat serum
  • rabbit serum rabbit serum
  • mouse serum monkey serum
  • human serum etc.
  • the induction of differentiation of Schwann precursor cells into Schwann cells is performed. It is not limited as long as it is possible.
  • cell growth factors examples include PDGF (platelet-derived growth factor), EGF (Epidermal Growth Factor), and FGF (Fibroblast growth factor). It is not limited as long as it is possible to induce the differentiation of Schwan precursor cells into Schwan cells. In addition, other well-known substances or antibiotics, or combinations thereof, may be added to the culture medium in order to maintain the cultured cells and promote the induction of differentiation.
  • the method of the present invention includes a step of inducing differentiation of the Schwann progenitor cells into Schwann cells, then seeding nerve cells or nerve cell spheroids on the cell scaffold and co-culturing with the Schwann cells.
  • Nerve cells are also called neurons and can be classified according to the difference in neurotransmitters produced by nerve cells.
  • Neurotransmitters produced by nerve cells used in the method of the present invention include monoamines such as dopamine, noradrenaline, adrenaline, serotonin and histamine, non-peptide neurotransmitters such as acetylcholine, ⁇ -aminobutyric acid and glutamate, and , Adrenocorticotropic hormone (ACTH), ⁇ -endorphin, ⁇ -endorphin, ⁇ -endorphin and vasopressin and other peptide neurotransmitters.
  • monoamines such as dopamine, noradrenaline, adrenaline, serotonin and histamine
  • non-peptide neurotransmitters such as acetylcholine, ⁇ -aminobutyric acid and glutamate
  • Adrenocorticotropic hormone (ACTH) Adrenocorticotropic hormone
  • ⁇ -endorphin, ⁇ -endorphin, ⁇ -endorphin and vasopressin and other peptide neurotransmitters.
  • neurons using glutamate, acetylcholine, ⁇ -aminobutyric acid, dopamine and histamine as neurotransmitters are classified into glutamate-operated neurons, cholinergic neurons, ⁇ -aminobutyric acid-operated neurons, dopaminergic neurons and histamine-actuated neurons, respectively. It is called a sex neuron.
  • nerve cells used in the present invention include primary cultured cells. Since primary cultured cells retain many cell functions that are inherent in the living body, they are important as a system for evaluating the effects of drugs and the like in the living body.
  • the primary cultured cells neurons of a mammal such as a rodent mouse or rat, or a primate monkey or human central nervous system and peripheral nervous system can be used.
  • the animal dissection method, tissue collection method, nerve separation / isolation method, nerve cell culture medium, culture conditions, etc. are known depending on the type of cells to be cultured. You can choose from the methods.
  • primary cultured divine cell products for example, rat brain nerve cells manufactured by Lonza (Switzerland) and human brain nerve cells manufactured by ScienCell Research Laboratories (USA) can be used.
  • a nerve cell induced to differentiate from a pluripotent stem cell can be mentioned.
  • the pluripotent stem cells for example, embryonic stem cells (ES cells) and iPS cells can be used, but iPS cells are preferable.
  • the cells for reprogramming into iPS cells cells derived from mammals such as rodent mice or rats, or primates monkeys or humans can be used, but human-derived cells can be used. Is preferred, and patient-derived cells are particularly preferred. By using patient-derived cells, it becomes possible to manufacture a nerve cell device that reflects the disease state.
  • Patient diseases include CMT subtypes such as Charcot-Marie-Tooth disease (CMT) or CMT type 1.
  • Pluripotent stem cells can obtain various types of nerve cells by inducing differentiation using a known method for inducing nerve differentiation.
  • nerve cells can be obtained by a differentiation induction method using a small molecule compound described in the literature (Honda M, et al. Biochem Biophys Res Communi. 2016; 469: 587-592).
  • commercially available pluripotent stem cell-derived neural cell products such as iCell neurons from Cellular Dynamics International (USA), various neural stem cells from Axol Bioscience (UK), and various neural cell precursors from BrainXell (USA). Cells and XCL-1 neurons from XCell Science (USA) can also be used. These commercially available nerve cells can be cultured using the attached culture medium.
  • nerve cell spheroids can be used.
  • a nerve cell spheroid is a three-dimensional structure (cell mass) formed by adhesion and aggregation of nerve cells.
  • a method for producing a nerve cell spheroid for example, a certain number of nerve cells are added to each well of a microwell having a cell non-adhesive surface and cultured to adhere the nerve cells to each other in the microwell. The method of producing is exemplified.
  • the number of nerve cells added to each well of the microwell is preferably 0.5 to 5 ⁇ 10 4.
  • a method of rotating a cell culture chamber containing nerve cells and a culture solution and bringing suspended nerve cells into contact with each other in the chamber is exemplified.
  • the method is not limited to these methods as long as the number and size of the obtained neuronal spheroids are relatively uniform.
  • peripheral blood-derived mononuclear cells are preferable as a source of cells for reprogramming into iPS cells because of their low invasiveness. Not limited to.
  • Other preferable sources of collection include body tissues such as skin containing fibroblasts.
  • a nerve cell or a nerve cell spheroid is further seeded on the cell scaffold on which the Schwann cell differentiated from the Schwann progenitor cell grows, and co-cultured with the Schwann cell.
  • the nerve cells or nerve cell spheroids seeded on the cell scaffold are cultured for a certain period of time, axons are extended from the respective cells and spheroids, and then the Schwann cells are seeded and co-cultured.
  • the cells or the cell scaffold on which the nerve cell spheroids grow at a density of 0.5 to 3 ⁇ 10 4 cells / 0.07 cm 2. These cell seeding densities may be seeded at a density lower than the seeding density or higher than the seeding density, depending on the growth situation of each cell.
  • the cell scaffold on which Schwann cells grow at a density of 1 to 10 spheroids / 0.07 cm 2. The number of spheroids added on the cell scaffold can be adjusted so that all of the added spheroids are in contact with the grown and extended Schwann cells on the cell scaffold.
  • the culture medium used in the step of co-culturing the Schwann cell and the nerve cell or the nerve cell spheroid is DMEM culture solution, DMEM / Ham F-12 equal volume mixed culture solution, 1 ⁇ Neurobasal (registered trademark, Gibco) and the like.
  • DMEM culture solution DMEM / Ham F-12 equal volume mixed culture solution
  • 1 ⁇ Neurobasal registered trademark, Gibco
  • serum and / or cell growth factor is added to the culture medium.
  • serum include fetal bovine serum (FBS), neonatal bovine serum, bovine serum albumin, goat serum, rabbit serum, mouse serum, monkey serum, human serum, etc., and axonal formation and myelin formation of nerve cells are possible. If so, there is no limit.
  • Cell growth factors include NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), GDNF (glial cell-derived neurotrophic factor), and NT.
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • GDNF glial cell-derived neurotrophic factor
  • NT neurotrophic factor
  • Examples thereof include -3 (neurotrophin-3; neurotrophin-3), NRG-1 (neuregulin-1; neurotrophin-1), PDGF, EGF, FGF, etc. Unrestricted if possible.
  • other well-known substances or antibiotics, or combinations thereof may be added to the culture medium to promote axonal formation and myelination of nerve cells.
  • the culture solution (IFRS1 culture supernatant) after culturing IFRS1 which is a rat Schwann cell line may be added to the culture solution used in the co-culture step at a concentration of 1 to 20% (v / v).
  • IFRS1 is an immortalized cell line established from the dorsal root ganglion and peripheral nerve tissue of mature Fisher344 rats.
  • IFRS1 can be purchased from Cosmo Bio, and can be cultured using a culture medium for IFRS1 (Cosmo Bio) using DMEM as a basal medium. It is preferable that lipid is further added to the culture solution used in the co-culturing step.
  • the lipid examples include, but are not limited to, linolenic acid, oleic acid, palmitic acid, cholesterol, phosphatidylcholine, etc., as long as they can form axons and myelin in nerve cells.
  • the lipid may be added alone or as a lipid concentrate consisting of a mixture of the lipids.
  • examples of the lipid concentrate include, but are not limited to, a lipid concentrate (Gibco).
  • the concentration of the lipid to be added is preferably 0.000001 to 0.001% (w / v), more preferably 0.000003 to 0.0003% (w / v).
  • the nerve cell By co-culturing the Schwann cell with a nerve cell or a nerve cell spheroid, the nerve cell in which the cell forms a three-dimensional structure on the fiber sheet which is a cell scaffold or laminated and / or in the fiber sheet. You get the device.
  • Forming a three-dimensional structure means a state in which Schwann cells and nerve cells adhere along the fibers constituting the fiber sheet and grow on one or both sides of the fiber sheet and in the fiber sheet.
  • the nerve cell device produced by the method of the present invention has a neural network in which myelinated nerve cells form a three-dimensional structure on and / or in the fiber sheet. Such neuronal devices are preferably stored in contact with cell culture medium in order to keep the cells alive.
  • a Petri dish or plate comprising the neuronal device of the invention is provided.
  • the nerve cell device of the present invention can form a fiber sheet by fixing or holding the periphery of the fiber sheet constituting the device with a frame.
  • a commercially available biocompatible adhesive such as silicone one-component condensation type RVT rubber (Shin-Etsu Chemical Co., Ltd., Catalog No. KE-45) can be used, but cells can be used.
  • the adhesive is not particularly limited as long as it does not affect the culture.
  • the material of the frame examples include polydimethylsiloxane (PDMS), polystyrene (PS), polycarbonate (PC), stainless steel, and the like, but the material is not limited to these as long as it does not affect cell culture.
  • the thickness of the frame is not particularly limited, but is 0.1 to 4 mm, preferably 0.25 to 3 mm, and more preferably 0.5 to 2 mm.
  • the shape of the frame can be changed depending on the purpose of use, but it is circular or polygonal, and it is preferable that the length and width are 2 mm ⁇ 2 mm to 15 mm ⁇ 15 mm, respectively.
  • the nerve cell device of the present invention is a petri dish for cell culture having a diameter of 35 mm, 60 mm, 100 mm, etc., or a mulch having a plurality of wells such as 6 wells, 12 wells, 24 wells, 48 wells, and 96 wells. It can be directly attached or placed in at least one of the wells contained in the well plate. The same applies to a nerve cell device having a fiber sheet in which the periphery of the fiber sheet is fixed or held by the frame.
  • PLGA (SIGMA P1941) was dissolved in HFIP (Wako Pure Chemical Industries, Ltd. 089-04233) at room temperature to prepare a 20% (w / v) solution. This solution was filled in a syringe (Norm-Ject Syringes 5 mL volume, Osaka Chemical) and then placed in a nanofiber electrospinning device NANON-03 (Mech Co., Ltd.) equipped with a 22 G flat-edged needle. Next, a PLGA fiber sheet was prepared on the drum collector under the conditions of a voltage of 20 kV, an injection flow rate of 1 mL / h, and a drum rotation speed of 750 rpm.
  • PS Frequency Division Multiple Access (Fluka) was dissolved in DMF (Wako Pure Chemical Industries, Ltd.) at room temperature to prepare a 30% (w / v) solution.
  • This solution was filled in a syringe (Norm-Ject Syringes 5 mL volume, Osaka Chemical) and then placed in a nanofiber electrospinning device NANON-03 (Mech Co., Ltd.) equipped with a needle with a flat cutting edge of 25 G.
  • a PS fiber sheet was prepared on the drum collector under the conditions of a voltage of 10 kV, an injection flow rate of 1.5 mL / h, and a drum rotation speed of 2000 rpm.
  • Schwann progenitor cells were prepared by inducing differentiation of human-derived iPS cells according to known conditions.
  • SOX10 which is a Schwann cell-specific transcription factor, was expressed in 86% or more of the cells (Fig. 1).
  • These Schwann progenitor cells were seeded on an oriented PS fiber sheet and cultured in a 5% CO 2 environment at 37 ° C. for about 10 days using a differentiation-inducing culture medium to differentiate into Schwann cells.
  • low glucose DMEM (Sigma, D5546) was used as the basal culture medium, and 1% FBS and 2 mM L-glutamine were added to the culture medium.
  • 200 ng / mL NRG1 (Peprotec, 100-03) and 100 nM all-trans retinoic acid (Peprotec, 100-03) and 100 nM all transretinoic acid (200 ng / mL NRG1 (Peprotec, 100-03)) Sigma, R2625)
  • 10 ng / mL PDGF-BB Gibco, PHG0044
  • 4 ⁇ M forskolin (Sigma, F6886) were added and 200 ng / mL NRG1 and 10 ng / mL PDGF were added on days 5-6.
  • -BB was added, and after the 7th day, the cells were cultured using a culture solution containing 200 ng / mL NRG1. On days 10 and 13, half of the culture was replaced with fresh culture. On the 16th day, immunostaining of Schwann cell markers SOX10 and S100B was performed, and almost all cells were positive (Fig. 2).
  • the culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 ⁇ M forskolin, 1% penicillin-streptomycin and 0.3% growth factor reduced Matrigel (Corning) were added. The day after seeding the rat or human Schwann cells, observation with a phase-difference optical microscope confirmed that each Schwann cell was engrafted along the nerve cell axon (Fig. 3).
  • Rat immortalized Schwann cells (IFRS1) were seeded at a density of 0.5 to 5 ⁇ 10 4 cells / 0.07 cm 2 into human-derived motor neurons cultured on an oriented PS fiber sheet, and a co-culture medium was used. The cells were cultured at 37 ° C in a 5% CO 2 environment.
  • the culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, and is 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /.
  • GDNF 0.1 mM mercaptoethanol, 0.5 ⁇ M forskolin, 1% penicillin-streptomycin were added.
  • 50 ⁇ g / mL ascorbic acid is added to the co-culture solution after the 6th day, with the sowing date of nerve cells (co-culture start date) as the 0th day, and myelinated culture is performed. Used as a liquid. From the 6th day onward, half of the culture broth was replaced with fresh culture broth every 2 to 3 days.
  • immunostaining of the obtained nerve cell device was performed 4 to 6 weeks after the start date of co-culture, expression of myelin formation-related proteins MBP and CASPR was observed at multiple sites (Fig. 4). In addition, almost no cell detachment from the cell scaffold was observed. Therefore, it is shown that the nerve cell device produced by the method of the present invention is useful as an in vitro neural tissue model.
  • Human-derived Schwann cells differentiated on an oriented PS fiber sheet, and primary cultured neurons derived from the rat spinal posterior ganglion, which are peripheral sensory neurons, or neurons derived from human motor / sensory neurons, 1 to 5
  • the cells were seeded at a density of ⁇ 10 4 cells / 0.07 cm 2 , and cultured at 37 ° C. in a 5% CO 2 environment using a co-cultivation culture medium.
  • the culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, and is 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 ⁇ M forskolin, 1% penicillin-streptomycin, culture supernatant of 5-10% (v / v) rat Schwann cell line IFRS1 and 0.00001% (w / v) lipid concentrate
  • the culture solution was prepared by adding (Gibco).
  • nerve cell device produced by the method of the present invention 50 ⁇ g / mL ascorbic acid was added to the co-culture solution on the 0th day after the seeding date of nerve cells (co-culture start date) to promote myelin formation. It is shown that in the nerve cell device produced by the method of the present invention, aggregation and cell detachment of nerve cell axons did not occur even one month after the start of co-culture (Fig. 5). Therefore, it is shown that the nerve cell device produced by the method of the present invention is useful as an in vitro neural tissue model.
  • Nerve cell spheroids were prepared by adding 2 ⁇ 10 4 motile / sensory nerve cells induced to differentiate from human iPS cells to each well of the microwell and culturing them.
  • the nerve cell spheroids were seeded on a cell scaffold, which is a PS fiber sheet coated with polylysine and laminin, at a density of 1 to 2 cells / 0.07 cm 2 , and a co-culture medium was used in a 5% CO 2 environment. , 37 ° C.
  • the culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, and is 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 ⁇ M forskolin, 1% penicillin-streptomycin, culture supernatant of 5-10% (v / v) rat Schwann cell line IFRS1 and 0.00001% (w / v) lipid concentrate
  • the culture solution was prepared by adding (Gibco).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides: a method for manufacturing a nerve cell device, which includes nerve cells having highly myelinated axons, by co-culturing Schwann cells and nerve cells on a fiber sheet; and a nerve cell device manufactured by said method.

Description

ミエリン化神経細胞を含む神経細胞デバイスの製造方法Methods for Manufacturing Nerve Cell Devices Containing Myelinated Nerve Cells
 本発明は、ファイバーシート上でシュワン細胞および神経細胞を共培養することにより、ミエリン化された軸索を有する神経細胞を含む神経細胞デバイスを製造する方法および該方法により製造された神経細胞デバイスに関する。 The present invention relates to a method for producing a nerve cell device containing a nerve cell having myelinated axons by co-culturing Schwann cells and a nerve cell on a fiber sheet, and a nerve cell device produced by the method. ..
 神経細胞の軸索は,グリア細胞の細胞膜が何層にも渦巻き状に重なった髄鞘(ミエリン鞘)で被覆されている。末梢神経ではシュワン細胞が、また中枢神経ではオリゴデンドロサイトがミエリン鞘の形成に関与している。神経軸索は、この髄鞘により電気的に絶縁状態となっているため、神経細胞の発火(活動電位の発生)により生じた電気信号は、跳躍伝導により軸索に沿って非常に速く伝えられる。またミエリン鞘は、神経軸索の保護作用も有する。脱髄とは、このミエリン鞘が何らかの機序により損傷もしくは脱落または髄鞘の形成不全および髄鞘の維持・再生障害形成不全が生じ、軸索が保たれているにもかかわらず、髄鞘が崩壊する病態である。脱髄が生じると、神経刺激の伝達が極めて遅くなり、また円滑な神経機能が維持されないため、様々な神経機能障害が引き起こされる。脱髄が病変の基本を成す脱髄疾患には、神経鞘腫症、シャルコー・マリー・トゥース病、ギラン・バレー症候群および糖尿病性末梢神経障害等の末梢神経障害、また多発性硬化症、視神経脊髄炎、急性散在性脳脊髄炎およびペリツェウス・メルツバッハー病等の中枢神経障害が含まれる。 The axons of nerve cells are covered with a myelin sheath in which the cell membranes of glial cells are spirally stacked in multiple layers. Schwann cells in the peripheral nerves and oligodendrocytes in the central nerves are involved in the formation of myelin sheaths. Since nerve axons are electrically insulated by this myelin sheath, electrical signals generated by firing of nerve cells (generation of action potentials) are transmitted very quickly along the axons by saltatory conduction. .. The myelin sheath also has a protective effect on nerve axons. Demyelination means that the myelin sheath is damaged or shed by some mechanism, or the myelin sheath is dysplasia and the maintenance / regeneration disorder of the myelin sheath is dysplastic. It is a condition that collapses. When demyelination occurs, the transmission of nerve stimuli is extremely slow, and smooth nerve function is not maintained, resulting in various nerve dysfunctions. Demyelinating diseases in which demyelinating is the basis of lesions include peripheral neuropathy such as neurosheath disease, Charcot-Marie-Tooth disease, Gillan Valley syndrome and diabetic peripheral neuropathy, as well as multiple sclerosis and neuromyelitis optica. Includes central neuropathy such as inflammation, acute disseminated neuromyelitis and Periceus-Merzbacher's disease.
 脱髄疾患に対する治療薬を開発するためには、脱髄の病態を再現する適切な薬物スクリーニング系が必要である。一般に、動物を使用するin vivo薬物スクリーニングは、疾患モデルの作製および薬物評価の過程が煩雑であり、また時間を要する。このため、培養細胞により作製した疾患モデルを使用する、スループットの高い簡便なin vitro薬物スクリーニング系の開発が求められる。このようなin vitro脱髄疾患モデルを構築するためには、ミエリン鞘の形成に関与する細胞の作製が必要となる。そのために、例えば、胚性幹細胞(ES細胞)または人工多能性幹細胞(iPS細胞)の分化を誘導し、シュワン細胞前駆体およびシュワン細胞を得る方法が報告されている(特許文献1、非特許文献1~3)。また、シュワン細胞と神経細胞とを共培養することにより、ミエリン形成を誘導できることが報告されている(特許文献1、非特許文献2~4)。しかしながら、ヒト幹細胞から誘導されたシュワン細胞を用いる場合、ミエリン形成が観察されるまでには長期間の培養が必要であり、またミエリン形成効率も高いとは言えない。 In order to develop a therapeutic drug for demyelinating disease, an appropriate drug screening system that reproduces the pathophysiology of demyelinating disease is required. In general, in vivo drug screening using animals is complicated and time-consuming in the process of creating a disease model and evaluating a drug. Therefore, it is required to develop a simple in vitro drug screening system with high throughput using a disease model prepared from cultured cells. In order to construct such an in vitro demyelinating disease model, it is necessary to prepare cells involved in the formation of myelin sheath. For that purpose, for example, a method of inducing differentiation of embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells) to obtain Schwann cell precursors and Schwann cells has been reported (Patent Document 1, Non-Patent). Documents 1 to 3). Further, it has been reported that myelin formation can be induced by co-culturing Schwann cells and nerve cells (Patent Document 1, Non-Patent Documents 2 to 4). However, when Schwann cells derived from human stem cells are used, long-term culture is required before myelination is observed, and the efficiency of myelination cannot be said to be high.
 シュワン細胞の成熟を促進する方法として、ファイバー性の細胞足場上でシュワン細胞を培養する方法が報告されている。例えば、配向性の電界紡糸ポリ-ε-カプロラクトンファイバーシート上またはポリ乳酸-グリコール酸共重合体(PLGA)ファイバーシート上で、ヒトまたはげっ歯類のシュワン細胞を培養すると、ファイバー軸に沿って細胞が伸展し、早期ミエリン化マーカーであるミエリン関連糖タンパク質(MAG)および末梢神経ミエリンに特徴的な細胞接着分子であるミエリンタンパク質P0の発現が亢進することが報告されている(非特許文献5および6)。また、培養ウェル面より離して培養液に懸濁した炭素ファイバーと共にヒトシュワン細胞を培養する方法が報告されている(非特許文献7)。この方法では、シュワン細胞が炭素ファイバーに巻き付き、ミエリン塩基性タンパク質(MBP)およびミエリン関連糖タンパク質(MAG)を発現することが示されている。これらの方法でシュワン細胞を培養すると、細胞はミエリン化マーカーを発現するが、神経細胞と共培養しないため、ミエリン鞘で被覆された軸索を再現することができない。 As a method of promoting the maturation of Schwann cells, a method of culturing Schwann cells on a fibrous cell scaffold has been reported. For example, when human or rodent Schwann cells are cultured on oriented electrospun poly-ε-caprolactone fibersheets or polylactic-glycolic acid copolymer (PLGA) fibersheets, the cells are along the fiber axis. It has been reported that the expression of myelin-related glycoprotein (MAG), which is an early myelination marker, and myelin protein P0, which is a cell adhesion molecule characteristic of peripheral myelin, is enhanced (Non-Patent Document 5 and Non-Patent Document 5). 6). Further, a method of culturing human Schwan cells together with carbon fibers suspended in a culture solution away from the culture well surface has been reported (Non-Patent Document 7). In this method, Schwann cells have been shown to wrap around carbon fiber and express myelin basic protein (MBP) and myelin-related glycoprotein (MAG). When Schwann cells are cultured by these methods, the cells express myelination markers, but since they are not co-cultured with nerve cells, axons covered with a myelin sheath cannot be reproduced.
WO2018/090002WO2018 / 090002
 ヒトにおける脱髄による末梢神経障害の病態を再現するためには、ヒト由来の神経細胞およびシュワン細胞を用いて構築した疾患モデルが望ましい。しかしながら、従来の培養法では、ヒト由来神経細胞およびシュワン細胞が機能的に成熟するまでに数カ月以上を要すること、および培養中に細胞剥離が生じやすいことが実用化する上での課題となっている。また、疾患モデルを用いて脱髄の過程を詳細に観察するためには、ミエリン鞘が十分に形成された疾患モデルを用いることが重要である。本発明の目的は、ヒト由来神経細胞およびシュワン細胞を安定的に培養することができ、かつ早期に細胞を成熟化させることができ、さらにはミエリン形成効率の高い培養方法および該方法により作製されたin vitro疾患モデルを提供することである。 In order to reproduce the pathophysiology of peripheral neuropathy due to demyelination in humans, a disease model constructed using human-derived neurons and Schwann cells is desirable. However, in the conventional culture method, it takes several months or more for human-derived nerve cells and Schwann cells to functionally mature, and cell detachment is likely to occur during culture, which are problems in practical use. There is. In addition, in order to observe the demyelination process in detail using a disease model, it is important to use a disease model in which the myelin sheath is sufficiently formed. An object of the present invention is to stably culture human-derived nerve cells and Schwann cells, to mature the cells at an early stage, and to obtain a culture method having high myelin formation efficiency and the method. To provide an in vitro disease model.
 本発明者らは、ヒト由来シュワン細胞および神経細胞をファイバーシート上で共培養することにより、シュワン細胞および神経細胞の成熟化が促進されること、およびミエリン形成効率が向上することを見出し、本発明を完成するに至った。 The present inventors have found that co-culturing human-derived Schwann cells and nerve cells on a fiber sheet promotes the maturation of Schwann cells and nerve cells and improves the efficiency of myelin formation. The invention was completed.
 すなわち、本発明の目的は、以下の発明により達成される。
〔1〕
シュワン前駆細胞をシュワン細胞に分化誘導する工程、および、
前記シュワン細胞を、細胞足場上で神経細胞または神経細胞スフェロイドと共培養する工程、
を含む、神経細胞デバイスの製造方法。
〔2〕
前記分化誘導する工程が、前記細胞足場上で行われる、〔1〕に記載の方法。
〔3〕
前記細胞足場が、高分子材料で形成されたファイバーシートである、〔1〕または〔2〕に記載の方法。
〔4〕
前記ファイバーシートが、配向性構造を有する、〔3〕に記載の方法。
〔5〕
前記ファイバーシートが、ポリリジン、ポリオルニチン、ラミニン、フィブロネクチン、マトリゲル(登録商標)およびゲルトレックス(登録商標)から選ばれる細胞外マトリックスタンパク質でコーティングされた、〔3〕または〔4〕に記載の方法。
〔6〕
前記ファイバーシートが、ポリエチレンイミンでコーティングされた、〔3〕または〔4〕に記載の方法。
〔7〕
前記シュワン細胞および前記神経細胞が、前記細胞足場上および/または前記細胞足場内で3次元構造を形成する、〔1〕~〔6〕のいずれかに記載の方法。
〔8〕
前記シュワン細胞が、多能性幹細胞由来のシュワン細胞である、〔1〕~〔7〕のいずれかに記載の方法。
〔9〕
前記多能性幹細胞由来のシュワン細胞が、哺乳動物由来のシュワン細胞である、〔8〕に記載の方法。
〔10〕
前記神経細胞が、初代培養細胞または多能性幹細胞由来の神経細胞である、〔1〕~〔9〕のいずれかに記載の方法。
〔11〕
前記初代培養細胞または多能性幹細胞由来の神経細胞が、哺乳動物由来の神経細胞である、〔10〕に記載の方法。
〔12〕
前記神経細胞が、グルタミン酸作動性、コリン作動性、γ-アミノ酪酸作動性、ドーパミン作動性またはヒスタミン作動性の神経細胞を含む、〔1〕~〔11〕のいずれかに記載の方法。
〔13〕
前記共培養が、前記神経細胞を、前記細胞足場に対して1~10×104細胞/0.07 cm2の密度で播種することにより開始される、〔1〕~〔12〕のいずれかに記載の方法。
〔14〕
前記神経細胞スフェロイドが、0.5~5×104個の神経細胞から作製された神経細胞スフェロイドであって、前記共培養が、前記神経細胞スフェロイドを、1~10個/0.07 cm2の密度で播種することにより開始される、〔1〕~〔12〕のいずれかに記載の方法。
〔15〕
前記共培養に用いる培養液が、ラットシュワン細胞株であるIFRS1の培養上清を5~20%(v/v)および脂質を0.000001~0.001%(w/v)含む培養液である、〔1〕~〔14〕のいずれかに記載の方法。
〔16〕
〔1〕~〔15〕のいずれかに記載の方法により製造される、神経細胞デバイス。
〔17〕
前記神経細胞デバイスの周囲を保持するフレームをさらに有する、〔16〕に記載の神経細胞デバイス。
〔18〕
前記フレームの縦長×横長が、それぞれ2 mm×2 mm~15 mm×15 mmであって、前記フレームが円形または多角形である、〔17〕に記載の神経細胞デバイス。
〔19〕
〔16〕~〔18〕のいずれかに記載の神経細胞デバイスを有する、神経細胞デバイス装着ペトリディッシュ。
〔20〕
複数のウェルを有するマルチウェルプレートにおいて、該プレートに含まれるウェルの少なくとも一つに、〔16〕~〔18〕のいずれかに記載の神経細胞デバイスを備える、神経細胞デバイス装着プレート。
That is, the object of the present invention is achieved by the following invention.
[1]
The process of inducing the differentiation of Schwann progenitor cells into Schwann cells, and
The step of co-culturing the Schwann cells with nerve cells or nerve cell spheroids on a cell scaffold,
A method for manufacturing a nerve cell device, including.
[2]
The method according to [1], wherein the step of inducing differentiation is performed on the cell scaffold.
[3]
The method according to [1] or [2], wherein the cell scaffold is a fiber sheet made of a polymer material.
[4]
The method according to [3], wherein the fiber sheet has an oriented structure.
[5]
The method according to [3] or [4], wherein the fiber sheet is coated with an extracellular matrix protein selected from polylysine, polyornithine, laminin, fibronectin, Matrigel® and Geltrex®.
[6]
The method according to [3] or [4], wherein the fiber sheet is coated with polyethyleneimine.
[7]
The method according to any one of [1] to [6], wherein the Schwann cell and the nerve cell form a three-dimensional structure on the cell scaffold and / or in the cell scaffold.
[8]
The method according to any one of [1] to [7], wherein the Schwann cell is a Schwann cell derived from a pluripotent stem cell.
[9]
The method according to [8], wherein the Schwann cell derived from the pluripotent stem cell is a Schwann cell derived from a mammal.
[10]
The method according to any one of [1] to [9], wherein the nerve cell is a primary cultured cell or a nerve cell derived from a pluripotent stem cell.
[11]
The method according to [10], wherein the primary cultured cell or a nerve cell derived from a pluripotent stem cell is a nerve cell derived from a mammal.
[12]
The method according to any one of [1] to [11], wherein the nerve cell comprises a glutamatergic, cholinergic, γ-aminobutyric acid, dopaminergic or histaminergic nerve cell.
[13]
The co-culture is started by seeding the nerve cells at a density of 1 to 10 × 10 4 cells / 0.07 cm 2 with respect to the cell scaffold, according to any one of [1] to [12]. the method of.
[14]
The nerve cell spheroid is a nerve cell spheroid prepared from 0.5 to 5 × 10 4 nerve cells, and the co-culture seeds the nerve cell spheroid at a density of 1 to 10 cells / 0.07 cm 2. The method according to any one of [1] to [12], which is started by the above-mentioned method.
[15]
The culture medium used for the co-culture is a culture medium containing 5 to 20% (v / v) of the culture supernatant of IFRS1 which is a rat Schwann cell line and 0.000001 to 0.001% (w / v) of lipids [1]. ] To [14].
[16]
A nerve cell device produced by the method according to any one of [1] to [15].
[17]
The nerve cell device according to [16], further comprising a frame that holds the periphery of the nerve cell device.
[18]
The nerve cell device according to [17], wherein the frame is 2 mm × 2 mm to 15 mm × 15 mm, respectively, and the frame is circular or polygonal.
[19]
A neuron device-mounted Petri dish having the neuron device according to any one of [16] to [18].
[20]
In a multi-well plate having a plurality of wells, a nerve cell device mounting plate comprising the nerve cell device according to any one of [16] to [18] in at least one of the wells included in the plate.
 本発明の方法によれば、配向性ファイバーシート上でヒト由来神経細胞およびシュワン細胞を共培養することにより、培養中における細胞剥離の少ない安定した培養が可能となり、神経細胞の成熟化を促進することができる。また本発明により、神経細胞または神経細胞スフェロイドから伸びる軸索において、ミエリン形成が進んだin vitro疾患モデルを作製することができる。本発明の神経細胞デバイスを用いることにより、迅速にin vitro薬物スクリーニング系を構築することができるため、効率的な薬物評価が可能となる。 According to the method of the present invention, co-culturing human-derived neurons and Schwann cells on an oriented fiber sheet enables stable culture with less cell detachment during culture and promotes maturation of neurons. be able to. Further, according to the present invention, it is possible to prepare an in vitro disease model in which myelination is advanced in axons extending from nerve cells or nerve cell spheroids. By using the nerve cell device of the present invention, an in vitro drug screening system can be rapidly constructed, so that efficient drug evaluation becomes possible.
ヒトiPS細胞由来シュワン前駆細胞に含まれるSOX10陽性細胞数をフローサイトメーターにより計測した結果である。2%パラホルムアルデヒドで固定したシュワン前駆細胞を、FITC標識抗SOX10抗体(Sample1-Posi)またはFITC標識抗IgG抗体(Sample1-N)と反応させ、後者をネガティブコントロールとした。ネガティブコントロールサンプルの主要な細胞集団に含まれるFITCポジティブとなる約1%の領域を設定し、SOX10陽性細胞数をカウントした。This is the result of measuring the number of SOX10-positive cells contained in human iPS cell-derived Schwann progenitor cells with a flow cytometer. Schwan progenitor cells fixed with 2% paraformaldehyde were reacted with FITC-labeled anti-SOX10 antibody (Sample1-Posi) or FITC-labeled anti-IgG antibody (Sample1-N), and the latter was used as a negative control. Approximately 1% of the FITC-positive region contained in the main cell population of the negative control sample was set, and the number of SOX10-positive cells was counted. 細胞足場上で分化誘導したヒトiPS細胞由来シュワン細胞の免疫染色写真である。細胞足場上に播種したヒトシュワン前駆細胞をシュワン細胞へと分化誘導し、分化誘導開始後16日目に抗SOX10抗体および抗S100B抗体による免疫染色を実施した。It is an immunostaining photograph of the human iPS cell-derived Schwann cell which induced the differentiation on the cell scaffold. Human Schwann progenitor cells seeded on the cell scaffold were induced to differentiate into Schwann cells, and immunostaining with anti-SOX10 antibody and anti-S100B antibody was performed 16 days after the start of differentiation induction. ヒトiPS細胞由来運動神経細胞とシュワン細胞とを共培養した結果を示す位相差光学顕微鏡写真である。ペトリディッシュ上の前記運動神経に、ラット不死化シュワン細胞またはヒトiPS細胞由来シュワン細胞を播種し、共培養を行った。シュワン細胞を播種した翌日に、位相差光学顕微鏡により観察した。その結果、神経細胞軸索に沿ってシュワン細胞が接着していることが観察された。It is a phase difference optical micrograph showing the result of co-culturing human iPS cell-derived motor neurons and Schwann cells. Rat immortalized Schwann cells or human iPS cell-derived Schwann cells were seeded into the motor nerves on the Petri dish and co-cultured. The day after seeding Schwann cells, the cells were observed with a retardation optical microscope. As a result, it was observed that Schwann cells adhered along the nerve cell axons. ラット不死化シュワン細胞とヒトiPS細胞由来運動神経細胞との共培養によるミエリン化を示す写真である。共培養により得られた神経細胞デバイスを、抗MBP抗体および抗CASPR抗体により免疫染色した。It is a photograph showing myelination by co-culture of rat immortalized Schwann cells and human iPS cell-derived motor neurons. The neuronal device obtained by co-culture was immunostained with anti-MBP antibody and anti-CASPR antibody. ヒトiPS細胞由来シュワン細胞とヒトiPS細胞由来運動神経細胞とを共培養した結果を示す免疫染色写真である。共培養開始後3週間で抗βIII-Tubulin抗体により免疫染色した。その結果、神経細胞軸索がファイバーシート上に生着していることが示された。It is an immunostaining photograph which shows the result of co-culturing a human iPS cell-derived Schwann cell and a human iPS cell-derived motor neuron. Three weeks after the start of co-culture, immunostaining was performed with an anti-βIII-Tubulin antibody. As a result, it was shown that nerve cell axons were engrafted on the fiber sheet. 細胞足場であるファイバーシート上で、ヒトiPS細胞由来運動神経細胞スフェロイドを培養した結果を示す写真である。左図は透過光による光学顕微鏡写真である。右図は、抗βIII-Tubulin抗体による免疫染色およびDAPIによる核染色の結果を示す。本図より、ファイバーシート上に播種したヒトiPS細胞由来運動神経スフェロイドより、軸索がファイバーに沿って伸長することが示される。It is a photograph which shows the result of culturing the human iPS cell-derived motor neuron spheroid on the fiber sheet which is a cell scaffold. The figure on the left is an optical micrograph with transmitted light. The figure on the right shows the results of immunostaining with anti-βIII-Tubulin antibody and nuclear staining with DAPI. From this figure, it is shown that axons extend along the fibers from the human iPS cell-derived motor nerve spheroids seeded on the fiber sheet.
〔細胞足場〕
 細胞足場とは、細胞足場上に播種された細胞が接着し、増殖または生育することのできる基質である。本発明において好ましく使用される細胞足場は、高分子材料で生成されたファイバーで構成される。細胞足場は、好ましくは、ファイバーを集積したシートの形状を有するファイバーシートである。該ファイバーシートは配向性構造を有する。配向性構造とは、ファイバーシートを構成するファイバーが一方向に沿って配置され、前記一方向(配向軸)の角度を0°とした場合、80%以上の本数のファイバーが、好ましくは95%以上の本数のファイバーが、±5°の範囲内、好ましくは±1°の範囲内の角度に沿って配置された構造である。
[Cell scaffolding]
A cell scaffold is a substrate on which cells seeded on a cell scaffold can adhere and proliferate or grow. The cell scaffold preferably used in the present invention is composed of fibers made of a polymer material. The cell scaffold is preferably a fiber sheet having the shape of a sheet in which fibers are accumulated. The fiber sheet has an oriented structure. The oriented structure means that the fibers constituting the fiber sheet are arranged along one direction, and when the angle of the one direction (orientation axis) is 0 °, 80% or more of the fibers are preferably 95%. The structure is such that the above number of fibers are arranged along an angle within a range of ± 5 °, preferably within a range of ± 1 °.
 前記ファイバーを構成する高分子材料としては、細胞と接触させた状態で細胞を培養する際に細胞障害性を示さないものであればよく、前記ファイバーシート上で生育した細胞の使用目的に応じて、生分解性または非生分解性の高分子材料を用いることができる。生分解性の高分子材料としては、例えば、ポリ乳酸とポリグリコール酸の共重合体(PLGA)、ポリグリコール酸(PGA)、ポリ酪酸(PLA)、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、ポリエチレン酢酸ビニル(PEVA)およびポリエチレンオキサイド(PEO)等が挙げられるが、これらに限定されない。非生分解性の高分子材料としては、例えば、ポリスチレン(PS)、ポリスルホン(PSU)、ポリテトラフルオロエチレン(PTFE)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)およびポリメチルグルタルイミド(PMGI)等が挙げられるが、これらに限定されない。 The polymer material constituting the fiber may be any material that does not exhibit cytotoxicity when the cells are cultured in contact with the cells, depending on the purpose of use of the cells grown on the fiber sheet. , Biodegradable or non-biodegradable polymeric materials can be used. Examples of the biodegradable polymer material include a copolymer of polylactic acid and polyglycolic acid (PLGA), polyglycolic acid (PGA), polybutyric acid (PLA), polyvinyl alcohol (PVA), and polyethylene glycol (PEG). , Polyethylene vinyl acetate (PEVA), polyethylene oxide (PEO) and the like, but are not limited thereto. Examples of the non-biodegradable polymer material include polystyrene (PS), polysulfone (PSU), polytetrafluoroethylene (PTFE), polycarbonate (PC), polymethylmethacrylate (PMMA), polyvinyl chloride (PVC), and the like. Examples include, but are not limited to, polyethylene terephthalate (PET), polyamide (PA) and polymethylglutalimide (PMGI).
 前記ファイバーシートは、例えば、高分子材料を含む溶液からエレクトロスピニング法によって製造することができる。配向性構造を有するファイバーシートを製造するためには、特に限定されないが、例えば回転ドラムを用い、該ドラムを回転させながら、ノズルから該ドラムの回転面に対して高分子材料を含む溶液を噴霧し、回転ドラム上で形成されたファイバーを巻き取ることにより、ファイバーシートを製造することができる。PTFEシートであれば、例えば、市販されているポアフロン(登録商標、住友電工株式会社)を使用することができる。高分子材料の溶液としては、使用する高分子材料を、室温で10~30%(w/v)の濃度で溶解する有機溶媒であればよく、例えば1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)、N,N-ジメチルホルムアミド(DMF)等が挙げられる。 The fiber sheet can be produced, for example, from a solution containing a polymer material by an electrospinning method. The fiber sheet having an oriented structure is not particularly limited, but for example, a rotating drum is used, and a solution containing a polymer material is sprayed from a nozzle onto the rotating surface of the drum while rotating the drum. Then, the fiber sheet can be manufactured by winding the fiber formed on the rotating drum. As long as it is a PTFE sheet, for example, commercially available Poaflon (registered trademark, Sumitomo Electric Industries, Ltd.) can be used. The solution of the polymer material may be an organic solvent that dissolves the polymer material to be used at a concentration of 10 to 30% (w / v) at room temperature, for example, 1,1,1,3,3,3. -Hexafluoro-2-propanol (HFIP), N, N-dimethylformamide (DMF) and the like can be mentioned.
 前記ファイバーシートを構成するファイバーの直交断面の平均直径は、特に限定されないが、例えば1~7μmであり、好ましくは2~6μmであり、より好ましくは3~5μmである。 The average diameter of the orthogonal cross sections of the fibers constituting the fiber sheet is not particularly limited, but is, for example, 1 to 7 μm, preferably 2 to 6 μm, and more preferably 3 to 5 μm.
 ファイバーシートを構成するファイバーのうち、隣接するファイバーの芯線間の距離がピッチである。ピッチが大き過ぎると、細胞を播種した場合に、細胞が保持されず、抜け落ちる可能性がある。また、ピッチが小さ過ぎると、細胞がファイバーシート内に伸展することができず、3次元構造の形成が困難となる。本発明において使用されるファイバーシートのピッチは、6μm~60μmであり、好ましくは6μm~50μmであり、より好ましくは、6μm~30μmである。 Of the fibers that make up the fiber sheet, the distance between the core wires of adjacent fibers is the pitch. If the pitch is too large, the cells may not be retained and may fall out when seeded. On the other hand, if the pitch is too small, the cells cannot extend into the fiber sheet, and it becomes difficult to form a three-dimensional structure. The pitch of the fiber sheet used in the present invention is 6 μm to 60 μm, preferably 6 μm to 50 μm, and more preferably 6 μm to 30 μm.
 前記ファイバーシートを構成するファイバーの空隙率は、用いる高分子材料によって変動し得る。該空隙率は特に限定されないが、例えば10~60%であり、好ましくは15~50%であり、より好ましくは20~40%であり、さらに好ましくは30%~40%である。ここで空隙率とは、ファイバーシート平面に対する垂直方向に一層であるファイバーシートにおいて、ファイバーシート平面の一定面積に対する、ファイバーが存在していない面積の比率のことである。 The porosity of the fibers constituting the fiber sheet may vary depending on the polymer material used. The porosity is not particularly limited, but is, for example, 10 to 60%, preferably 15 to 50%, more preferably 20 to 40%, and even more preferably 30% to 40%. Here, the porosity is the ratio of the area where fibers do not exist to a certain area of the fiber sheet plane in the fiber sheet which is one layer in the direction perpendicular to the fiber sheet plane.
 本発明において使用されるファイバーシートは、ファイバーシート平面に対する垂直方向に、ファイバーシート一層で構成されるもの(単層)であっても、2以上のファイバーシート層から構成されるもの(積層または多層、例えば、2層、3層、4層、5層、6層等)であってもよい。ファイバーシートを積層する場合、上下の各ファイバーシートは、お互いに接触している。また、上下のファイバーシートの配向軸は、5°~25°で、好ましくは10°~20°で、より好ましくは13°~17°で交差する。ファイバーシート(単層)の厚さは、例えば1~40μmであり、好ましくは5~35μmであり、より好ましくは10~30μmである。 The fiber sheet used in the present invention is composed of two or more fiber sheet layers (laminated or multilayer) even if it is composed of one fiber sheet layer (single layer) in the direction perpendicular to the fiber sheet plane. , For example, 2 layers, 3 layers, 4 layers, 5 layers, 6 layers, etc.). When laminating fiber sheets, the upper and lower fiber sheets are in contact with each other. The orientation axes of the upper and lower fiber sheets intersect at 5 ° to 25 °, preferably 10 ° to 20 °, and more preferably 13 ° to 17 °. The thickness of the fiber sheet (single layer) is, for example, 1 to 40 μm, preferably 5 to 35 μm, and more preferably 10 to 30 μm.
 本発明において使用されるファイバーシートは、播種した細胞の接着、伸展および増殖を促進するため、ポリリジン、ポリオルニチン、ラミニン、フィブロネクチン、マトリゲル(登録商標)もしくはゲルトレックス(登録商標)等の細胞外マトリックスタンパク質、またはカチオン性の水溶性ポリマーであるポリエチレンイミンでコーティングしてもよい。コーティングは、上記細胞外マトリックスタンパク質またはポリエチレンイミンを生理食塩水、リン酸緩衝生理食塩水、細胞培養液等に溶解した溶液に、前記ファイバーシートを浸漬することにより行うことができる。 The fiber sheet used in the present invention is an extracellular matrix such as polylysine, polyornithine, laminin, fibronectin, Matrigel® or Geltrex® to promote adhesion, elongation and proliferation of seeded cells. It may be coated with protein or polyethyleneimine, which is a cationic water-soluble polymer. The coating can be performed by immersing the fiber sheet in a solution in which the extracellular matrix protein or polyethyleneimine is dissolved in physiological saline, phosphate buffered saline, cell culture solution or the like.
〔細胞〕
 神経系の各前駆細胞から分化した神経細胞(ニューロンとも呼ばれる)およびグリア細胞は、神経細胞とグリア細胞との相互作用を介して機能を有する神経組織を形成する。末梢神経ではシュワン細胞が主要なグリア細胞である。シュワン細胞は神経細胞の代謝活動を支えると共に,ミエリン形成細胞としての役割を果たす。シュワン細胞は、幹細胞からシュワン前駆細胞、次に未成熟シュワン細胞を経て分化した細胞である。
〔cell〕
Nerve cells (also called neurons) and glial cells that differentiate from each progenitor cell of the nervous system form functional nervous tissue through the interaction of nerve cells with glial cells. Schwann cells are the major glial cells in the peripheral nerves. Schwann cells support the metabolic activity of nerve cells and play a role as myelin-forming cells. Schwann cells are cells that differentiate from stem cells through Schwann progenitor cells and then immature Schwann cells.
 本発明の方法は、シュワン前駆細胞を、ペトリディッシュ、マルチウェルプレート等の細胞培養容器または前記高分子材料を用いて生成されたファイバーを集積した細胞足場上に播種して培養する工程、および前記シュワン前駆細胞をシュワン細胞に分化誘導する工程を含む。シュワン前駆細胞は、成熟シュワン細胞への分化能を有しているので、細胞培養容器または前記細胞足場上で接着培養することにより、シュワン細胞に分化させることができる。シュワン前駆細胞は、未分化シュワン細胞マーカーである転写因子SOX10が陽性であり、その後の分化誘導により成熟シュワン細胞マーカーであるOCT6が陽性となり、さらに神経細胞との共培養により、ミエリン化マーカーのKrox20が陽性となる。これらのマーカーを用いて、シュワン前駆細胞、成熟シュワン細胞、またはミエリン化に関与するシュワン細胞群の識別が可能である。 The method of the present invention is a step of seeding and culturing Schwann precursor cells on a cell culture vessel such as Petridish or a multi-well plate or a cell scaffold in which fibers produced by using the polymer material are accumulated, and the above-mentioned. The step of inducing the differentiation of Schwann precursor cells into Schwann cells is included. Since Schwann progenitor cells have the ability to differentiate into mature Schwann cells, they can be differentiated into Schwann cells by adherent culture on a cell culture vessel or the cell scaffold. The Schwann progenitor cells are positive for the transcription factor SOX10, which is an undifferentiated Schwann cell marker, and OCT6, which is a mature Schwann cell marker, is positive for the subsequent induction of differentiation. Becomes positive. These markers can be used to identify Schwann progenitor cells, mature Schwann cells, or Schwann cell populations involved in myelination.
 シュワン前駆細胞は、多能性幹細胞から分化誘導させた細胞が好ましい。多能性幹細胞としては、例えばES細胞およびiPS細胞を用いることができるが、iPS細胞がより好ましい。iPS細胞へと初期化するための細胞は、哺乳動物、例えばげっ歯類であるマウスもしくはラット、または霊長類であるサルもしくはヒト由来の細胞が好ましく、特にヒト由来の細胞が好ましい。患者由来の細胞を用いることもできる。患者由来の細胞を用いることにより、疾患状態を反映した神経細胞デバイスの製造が可能となる。患者の疾患としては、シャルコー・マリー・トゥース病(CMT)またはCMT1型などのCMTサブタイプ等が挙げられる。シュワン前駆細胞は、凍結保存が可能であるため、本発明の神経細胞デバイスを製造する際に、凍結保存したシュワン細胞を融解して使用することができる。 The Schwann progenitor cells are preferably cells induced to differentiate from pluripotent stem cells. As the pluripotent stem cells, for example, ES cells and iPS cells can be used, but iPS cells are more preferable. As the cells for reprogramming into iPS cells, cells derived from mammals such as mice or rats which are rodents, or monkeys or humans which are primates are preferable, and cells derived from humans are particularly preferable. Patient-derived cells can also be used. By using patient-derived cells, it becomes possible to manufacture a nerve cell device that reflects the disease state. Patient diseases include CMT subtypes such as Charcot-Marie-Tooth disease (CMT) or CMT type 1. Since Schwann progenitor cells can be cryopreserved, the cryopreserved Schwann cells can be thawed and used when producing the nerve cell device of the present invention.
 前記シュワン前駆細胞をシュワン細胞に分化誘導する工程において使用する培養液は、DMEM(Dulbecco’s Modified Eagle Medium)およびMEM/ハムF-12等が例示されるが、シュワン前駆細胞のシュワン細胞への分化誘導が可能な範囲であれば制限されない。培養液には、血清および/または細胞増殖因子が添加されていることが好ましい。血清は、ウシ胎児血清(FBS)、ウシ新生児血清、ウシ血清アルブミン、ヤギ血清、ウサギ血清、マウス血清、サル血清、ヒト血清等が例示されるが、シュワン前駆細胞のシュワン細胞への分化誘導が可能な範囲であれば制限されない。細胞増殖因子は、PDGF(platelet-derived growth factor;血小板由来増殖因子)、EGF(Epidermal Growth Factor;上皮細胞増殖因子)、FGF(Fibroblast growth factor;線維芽細胞増殖因子)等が例示されるが、シュワン前駆細胞のシュワン細胞への分化誘導が可能な範囲であれば制限されない。さらに、培養細胞の維持および分化誘導の促進のために、その他の周知物質もしくは抗生物質、またはこれらの組み合わせを培養液に添加してもよい。 Examples of the culture medium used in the step of inducing the differentiation of Schwann progenitor cells into Schwann cells include DMEM (Dulbecco's Modified Eagle Medium) and MEM / Ham F-12, and the induction of differentiation of Schwann progenitor cells into Schwann cells. Is not limited as long as is possible. It is preferable that serum and / or cell growth factor is added to the culture medium. Examples of serum include fetal bovine serum (FBS), neonatal bovine serum, bovine serum albumin, goat serum, rabbit serum, mouse serum, monkey serum, human serum, etc., and the induction of differentiation of Schwann precursor cells into Schwann cells is performed. It is not limited as long as it is possible. Examples of cell growth factors include PDGF (platelet-derived growth factor), EGF (Epidermal Growth Factor), and FGF (Fibroblast growth factor). It is not limited as long as it is possible to induce the differentiation of Schwan precursor cells into Schwan cells. In addition, other well-known substances or antibiotics, or combinations thereof, may be added to the culture medium in order to maintain the cultured cells and promote the induction of differentiation.
 本発明の方法は、前記シュワン前駆細胞をシュワン細胞に分化誘導した後、前記細胞足場上に神経細胞または神経細胞スフェロイドを播種し、前記シュワン細胞と共培養する工程を含む。神経細胞は、ニューロンとも呼ばれ、神経細胞が産生する神経伝達物質の違いにより分類することができる。本発明の方法において使用される神経細胞が産生する神経伝達物質としては、ドーパミン、ノルアドレナリン、アドレナリン、セロトニンおよびヒスタミン等のモノアミン、アセチルコリン、γ-アミノ酪酸およびグルタミン酸等の非ペプチド性神経伝達物質、また、副腎皮質刺激ホルモン(ACTH)、α-エンドルフィン、β-エンドルフィン、γ-エンドルフィンおよびバソプレッシン等のペプチド性神経伝達物質が挙げられる。例えば、グルタミン酸、アセチルコリン、γ-アミノ酪酸、ドーパミンおよびヒスタミンを神経伝達物質とする神経細胞を、それぞれグルタミン酸作動性ニューロン、コリン作動性ニューロン、γ-アミノ酪酸作動性ニューロン、ドーパミン作動性ニューロンおよびヒスタミン作動性ニューロンという。 The method of the present invention includes a step of inducing differentiation of the Schwann progenitor cells into Schwann cells, then seeding nerve cells or nerve cell spheroids on the cell scaffold and co-culturing with the Schwann cells. Nerve cells are also called neurons and can be classified according to the difference in neurotransmitters produced by nerve cells. Neurotransmitters produced by nerve cells used in the method of the present invention include monoamines such as dopamine, noradrenaline, adrenaline, serotonin and histamine, non-peptide neurotransmitters such as acetylcholine, γ-aminobutyric acid and glutamate, and , Adrenocorticotropic hormone (ACTH), α-endorphin, β-endorphin, γ-endorphin and vasopressin and other peptide neurotransmitters. For example, neurons using glutamate, acetylcholine, γ-aminobutyric acid, dopamine and histamine as neurotransmitters are classified into glutamate-operated neurons, cholinergic neurons, γ-aminobutyric acid-operated neurons, dopaminergic neurons and histamine-actuated neurons, respectively. It is called a sex neuron.
 本発明において使用される神経細胞としては、初代培養細胞を挙げることができる。初代培養細胞は、生体内において本来有する細胞機能を多く保持しているため、生体内における薬物などの影響を評価する系として重要である。初代培養細胞としては、哺乳動物、例えばげっ歯類であるマウスもしくはラット、または霊長類であるサルもしくはヒトの中枢神経系および末梢神経系の神経細胞を使用することができる。これらの神経細胞を調製および培養するに際し、動物の解剖方法、組織採取方法、神経分離・単離方法、神経細胞培養用培養液、培養条件等は、培養する細胞の種類に応じて、公知の方法より選択することができる。市販の初代培養神細胞製品としては、例えばロンザ社(スイス)のラット脳神経細胞およびScienCell Research Laboratories社(米国)のヒト脳神経細胞を用いることができる。 Examples of nerve cells used in the present invention include primary cultured cells. Since primary cultured cells retain many cell functions that are inherent in the living body, they are important as a system for evaluating the effects of drugs and the like in the living body. As the primary cultured cells, neurons of a mammal such as a rodent mouse or rat, or a primate monkey or human central nervous system and peripheral nervous system can be used. When preparing and culturing these nerve cells, the animal dissection method, tissue collection method, nerve separation / isolation method, nerve cell culture medium, culture conditions, etc. are known depending on the type of cells to be cultured. You can choose from the methods. As commercially available primary cultured divine cell products, for example, rat brain nerve cells manufactured by Lonza (Switzerland) and human brain nerve cells manufactured by ScienCell Research Laboratories (USA) can be used.
 本発明において使用される神経細胞としては、さらに、多能性幹細胞から分化誘導させた神経細胞を挙げることができる。多能性幹細胞としては、例えば胚性幹細胞(ES細胞)およびiPS細胞を用いることができるが、iPS細胞が好ましい。iPS細胞へと初期化するための細胞としては、哺乳動物、例えばげっ歯類であるマウスもしくはラット、または霊長類であるサルもしくはヒトに由来する細胞を使用することができるが、ヒト由来の細胞が好ましく、患者由来の細胞が特に好ましい。患者由来の細胞を用いることにより、疾患状態を反映した神経細胞デバイスの製造が可能となる。患者の疾患としては、シャルコー・マリー・トゥース病(CMT)またはCMT1型などのCMTサブタイプ等が挙げられる。 Further, as the nerve cell used in the present invention, a nerve cell induced to differentiate from a pluripotent stem cell can be mentioned. As the pluripotent stem cells, for example, embryonic stem cells (ES cells) and iPS cells can be used, but iPS cells are preferable. As the cells for reprogramming into iPS cells, cells derived from mammals such as rodent mice or rats, or primates monkeys or humans can be used, but human-derived cells can be used. Is preferred, and patient-derived cells are particularly preferred. By using patient-derived cells, it becomes possible to manufacture a nerve cell device that reflects the disease state. Patient diseases include CMT subtypes such as Charcot-Marie-Tooth disease (CMT) or CMT type 1.
 多能性幹細胞は、公知の神経分化誘導方法を用いて分化誘導することにより、様々なタイプの神経細胞を得ることができる。例えば、文献(Honda M, et al. Biochem Biophys Res Commun. 2016; 469:587-592)に記載の低分子化合物を用いた分化誘導方法によって神経細胞を得ることができる。また、市販の多能性幹細胞由来の神経細胞製品、例えば、セルラーダイナミックスインターナショナル社(米国)のiCellニューロン、Axol Bioscience社(英国)の各種神経幹細胞、BrainXell社(米国)の各種神経細胞の前駆細胞およびXCell Science社(米国)のXCL-1ニューロンを用いることもできる。これら市販の神経細胞は、付属の培養液を使用して培養することができる。 Pluripotent stem cells can obtain various types of nerve cells by inducing differentiation using a known method for inducing nerve differentiation. For example, nerve cells can be obtained by a differentiation induction method using a small molecule compound described in the literature (Honda M, et al. Biochem Biophys Res Communi. 2016; 469: 587-592). In addition, commercially available pluripotent stem cell-derived neural cell products, such as iCell neurons from Cellular Dynamics International (USA), various neural stem cells from Axol Bioscience (UK), and various neural cell precursors from BrainXell (USA). Cells and XCL-1 neurons from XCell Science (USA) can also be used. These commercially available nerve cells can be cultured using the attached culture medium.
 本発明の方法では、神経細胞スフェロイドを使用することができる。神経細胞スフェロイドとは、神経細胞同士が接着し、凝集して形成される三次元の構造体(細胞塊)である。神経細胞スフェロイドを作製する方法としては、例えば、細胞非接着性の表面を有するマイクロウェルの各ウェルに一定数の神経細胞を添加し、培養することにより、神経細胞同士をマイクロウェル中で接着させて作製する方法が例示される。マイクロウェルの各ウェルに添加する神経細胞数は、0.5~5×104個が好ましい。また、神経細胞および培養液を入れた細胞培養チャンバーを回転させ、チャンバー内で懸濁状態の神経細胞同士を接触させて作製する方法等が例示される。しかしながら、得られる神経細胞スフェロイドの細胞数および大きさが比較的均一であれば、これらの方法に限定されない。 In the method of the present invention, nerve cell spheroids can be used. A nerve cell spheroid is a three-dimensional structure (cell mass) formed by adhesion and aggregation of nerve cells. As a method for producing a nerve cell spheroid, for example, a certain number of nerve cells are added to each well of a microwell having a cell non-adhesive surface and cultured to adhere the nerve cells to each other in the microwell. The method of producing is exemplified. The number of nerve cells added to each well of the microwell is preferably 0.5 to 5 × 10 4. In addition, a method of rotating a cell culture chamber containing nerve cells and a culture solution and bringing suspended nerve cells into contact with each other in the chamber is exemplified. However, the method is not limited to these methods as long as the number and size of the obtained neuronal spheroids are relatively uniform.
 シュワン前駆細胞および神経細胞を得るためにiPS細胞を使用する場合、iPS細胞へと初期化するための細胞の採取源としては、侵襲性が低いことから末梢血由来単核球が好ましいが、これに限定されない。その他の好ましい採取源として、線維芽細胞を含む皮膚等の体組織等が挙げられる。 When iPS cells are used to obtain Schwann progenitor cells and neurons, peripheral blood-derived mononuclear cells are preferable as a source of cells for reprogramming into iPS cells because of their low invasiveness. Not limited to. Other preferable sources of collection include body tissues such as skin containing fibroblasts.
〔共培養〕
 本発明の方法では、前記シュワン前駆細胞から分化したシュワン細胞が生育する前記細胞足場上に、神経細胞または神経細胞スフェロイドをさらに播種し、前記シュワン細胞と共培養する。または、前記細胞足場上に播種した神経細胞または神経細胞スフェロイドを一定期間培養し、それぞれの細胞およびスフェロイドから軸索を伸長させた後に、前記シュワン細胞を播種し、共培養を行う。前記神経細胞を播種する場合、シュワン細胞が生育する前記細胞足場に対して、1~10×104細胞/0.07 cm2の密度で播種することが好ましい。前記シュワン細胞を播種する場合、神経細胞または神経細胞スフェロイドが生育する前記細胞足場に対して、0.5~3×104細胞/0.07 cm2の密度で播種することが好ましい。これらの細胞播種密度は、各細胞の生育状況に応じて、前記播種密度未満の密度または前記播種密度を超える密度で播種してもよい。前記神経細胞スフェロイドを播種する場合、シュワン細胞が生育する前記細胞足場に対して、スフェロイド1~10個/0.07 cm2の密度で播種することが好ましい。細胞足場上に加えるスフェロイドの個数は、加えたスフェロイドのすべてが、細胞足場上で増殖および伸展したシュワン細胞と接触するように調節することができる。
[Co-culture]
In the method of the present invention, a nerve cell or a nerve cell spheroid is further seeded on the cell scaffold on which the Schwann cell differentiated from the Schwann progenitor cell grows, and co-cultured with the Schwann cell. Alternatively, the nerve cells or nerve cell spheroids seeded on the cell scaffold are cultured for a certain period of time, axons are extended from the respective cells and spheroids, and then the Schwann cells are seeded and co-cultured. When seeding the nerve cells, it is preferable to seed the nerve cells at a density of 1 to 10 × 10 4 cells / 0.07 cm 2 with respect to the cell scaffold on which Schwann cells grow. When seeding the Schwann cells, it is preferable to seed the cells or the cell scaffold on which the nerve cell spheroids grow at a density of 0.5 to 3 × 10 4 cells / 0.07 cm 2. These cell seeding densities may be seeded at a density lower than the seeding density or higher than the seeding density, depending on the growth situation of each cell. When seeding the nerve cell spheroid, it is preferable to seed the cell scaffold on which Schwann cells grow at a density of 1 to 10 spheroids / 0.07 cm 2. The number of spheroids added on the cell scaffold can be adjusted so that all of the added spheroids are in contact with the grown and extended Schwann cells on the cell scaffold.
 前記シュワン細胞と神経細胞または神経細胞スフェロイドとを共培養する工程において使用する培養液は、DMEM培養液およびDMEM/ハムF-12等量混合培養液,1×Neurobasal(登録商標、Gibco)等が例示されるが、神経細胞の軸索形成およびミエリン形成が可能であれば、これらに限定されない。培養液には、血清および/または細胞増殖因子が添加されていることが好ましい。血清は、ウシ胎児血清(FBS)、ウシ新生児血清、ウシ血清アルブミン、ヤギ血清、ウサギ血清、マウス血清、サル血清、ヒト血清等が例示されるが、神経細胞の軸索形成およびミエリン形成が可能であれば制限されない。細胞増殖因子は、NGF(nerve growth factor;神経成長因子)、BDNF(brain-derived neurotrophic factor;脳由来神経栄養因子)、GDNF(glial cell-derived neurotrophic factor;グリア細胞株由来神経栄養因子)、NT-3(neurotrophin-3;ニューロトロフィン-3)、NRG-1(neuregulin-1;ニューレグリン-1)、PDGF、EGF、FGF等が例示されるが、神経細胞の軸索形成およびミエリン形成が可能であれば制限されない。さらに、神経細胞の軸索形成およびミエリン形成の促進のために、その他の周知物質もしくは抗生物質、またはこれらの組み合わせを培養液に添加してもよい。 The culture medium used in the step of co-culturing the Schwann cell and the nerve cell or the nerve cell spheroid is DMEM culture solution, DMEM / Ham F-12 equal volume mixed culture solution, 1 × Neurobasal (registered trademark, Gibco) and the like. By way of example, but not limited to, if neuronal axonal and myelin formation is possible. It is preferable that serum and / or cell growth factor is added to the culture medium. Examples of serum include fetal bovine serum (FBS), neonatal bovine serum, bovine serum albumin, goat serum, rabbit serum, mouse serum, monkey serum, human serum, etc., and axonal formation and myelin formation of nerve cells are possible. If so, there is no limit. Cell growth factors include NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), GDNF (glial cell-derived neurotrophic factor), and NT. Examples thereof include -3 (neurotrophin-3; neurotrophin-3), NRG-1 (neuregulin-1; neurotrophin-1), PDGF, EGF, FGF, etc. Unrestricted if possible. In addition, other well-known substances or antibiotics, or combinations thereof, may be added to the culture medium to promote axonal formation and myelination of nerve cells.
 前記共培養する工程において使用する培養液には、ラットシュワン細胞株であるIFRS1を培養したあとの培養液(IFRS1培養上清)を1~20%(v/v)の濃度で添加することができる。IFRS1は、成熟Fischer344ラットの後根神経節および末梢神経組織より樹立された不死化細胞株である。IFRS1は、コスモ・バイオより購入することができ、DMEMを基礎培地とするIFRS1用培養液(コスモ・バイオ)を用いて培養することができる。前記共培養する工程において使用する培養液には、さらに、脂質が添加されていることが好ましい。前記脂質は、リノレン酸、オレイン酸、パルミチン酸、コレステロール、ホスファチジルコリン等が例示されるが、神経細胞の軸索形成およびミエリン形成が可能であれば、これらに限定されない。前記脂質は、単独で添加してもよく、または前記脂質の混合物から成る脂質濃縮液として添加することもできる。前記脂質濃縮液としては、脂質濃縮液(Gibco)が例示されるが、これに限定されない。添加する前記脂質の濃度は0.000001~0.001%(w/v)が好ましく、0.000003~0.0003%(w/v)がさらに好ましい。 The culture solution (IFRS1 culture supernatant) after culturing IFRS1 which is a rat Schwann cell line may be added to the culture solution used in the co-culture step at a concentration of 1 to 20% (v / v). can. IFRS1 is an immortalized cell line established from the dorsal root ganglion and peripheral nerve tissue of mature Fisher344 rats. IFRS1 can be purchased from Cosmo Bio, and can be cultured using a culture medium for IFRS1 (Cosmo Bio) using DMEM as a basal medium. It is preferable that lipid is further added to the culture solution used in the co-culturing step. Examples of the lipid include, but are not limited to, linolenic acid, oleic acid, palmitic acid, cholesterol, phosphatidylcholine, etc., as long as they can form axons and myelin in nerve cells. The lipid may be added alone or as a lipid concentrate consisting of a mixture of the lipids. Examples of the lipid concentrate include, but are not limited to, a lipid concentrate (Gibco). The concentration of the lipid to be added is preferably 0.000001 to 0.001% (w / v), more preferably 0.000003 to 0.0003% (w / v).
 前記シュワン細胞と神経細胞または神経細胞スフェロイドを共培養することにより、細胞足場である単層または積層された前記ファイバーシート上および/または前記ファイバーシート内で、細胞が3次元構造を形成した神経細胞デバイスが得られる。3次元構造を形成するとは、シュワン細胞および神経細胞が、ファイバーシートを構成するファイバーに沿って接着し、ファイバーシートの片面または両面上およびファイバーシート内に入り込んで生育した状態をいう。 By co-culturing the Schwann cell with a nerve cell or a nerve cell spheroid, the nerve cell in which the cell forms a three-dimensional structure on the fiber sheet which is a cell scaffold or laminated and / or in the fiber sheet. You get the device. Forming a three-dimensional structure means a state in which Schwann cells and nerve cells adhere along the fibers constituting the fiber sheet and grow on one or both sides of the fiber sheet and in the fiber sheet.
〔神経細胞デバイス〕
 本発明の方法により製造される神経細胞デバイスは、前記ファイバーシート上および/または前記ファイバーシート内に、ミエリン化された神経細胞が3次元構造を形成した神経ネットワークを有する。このような神経細胞デバイスは、細胞を生存維持するため、細胞培養液に接触させて保存することが好ましい。本発明の一実施態様において、本発明の神経細胞デバイスを備えるペトリディッシュまたはプレートが提供される。
[Nerve cell device]
The nerve cell device produced by the method of the present invention has a neural network in which myelinated nerve cells form a three-dimensional structure on and / or in the fiber sheet. Such neuronal devices are preferably stored in contact with cell culture medium in order to keep the cells alive. In one embodiment of the invention, a Petri dish or plate comprising the neuronal device of the invention is provided.
 本発明の神経細胞デバイスは、このデバイスを構成する前記ファイバーシートの周囲をフレームで固定または保持することによって、ファイバーシートを成形することができる。前記ファイバーシートをフレームに固定または保持するためには、例えばシリコーン一液縮合型RVTゴム(信越化学、カタログ番号KE-45)等の市販の生体適合性粘着剤を使用することができるが、細胞培養に影響を及ぼさない粘着剤であれば特に限定されない。 The nerve cell device of the present invention can form a fiber sheet by fixing or holding the periphery of the fiber sheet constituting the device with a frame. In order to fix or hold the fiber sheet on the frame, for example, a commercially available biocompatible adhesive such as silicone one-component condensation type RVT rubber (Shin-Etsu Chemical Co., Ltd., Catalog No. KE-45) can be used, but cells can be used. The adhesive is not particularly limited as long as it does not affect the culture.
 前記フレームの素材は、例えば、ポリジメチルシロキサン(PDMS)、ポリスチレン(PS)、ポリカーボネート(PC)、ステンレス等が挙げられるが、細胞培養に影響を及ぼさない素材であればこれらに限定されない。前記フレームの厚さは、特に限定されないが、0.1~4 mm、好ましくは0.25~3 mm、より好ましくは0.5~2 mmである。フレームの形状は、使用目的によって変更することができるが、円形または多角形であり、縦長×横長が、それぞれ2 mm×2 mm~15 mm×15 mmが好ましい。 Examples of the material of the frame include polydimethylsiloxane (PDMS), polystyrene (PS), polycarbonate (PC), stainless steel, and the like, but the material is not limited to these as long as it does not affect cell culture. The thickness of the frame is not particularly limited, but is 0.1 to 4 mm, preferably 0.25 to 3 mm, and more preferably 0.5 to 2 mm. The shape of the frame can be changed depending on the purpose of use, but it is circular or polygonal, and it is preferable that the length and width are 2 mm × 2 mm to 15 mm × 15 mm, respectively.
 本発明の神経細胞デバイスは、直径が35 mm、60 mm、100 mm等の細胞培養用ペトリディッシュ、または、6ウェル、12ウェル、24ウェル、48ウェルおよび96ウェル等の複数のウェルを有するマルチウェルプレートに含まれるウェルの少なくとも一つに、そのまま装着または配置することができる。前記ファイバーシートの周囲を前記フレームで固定または保持したファイバーシートを有する神経細胞デバイスの場合も同様である。 The nerve cell device of the present invention is a petri dish for cell culture having a diameter of 35 mm, 60 mm, 100 mm, etc., or a mulch having a plurality of wells such as 6 wells, 12 wells, 24 wells, 48 wells, and 96 wells. It can be directly attached or placed in at least one of the wells contained in the well plate. The same applies to a nerve cell device having a fiber sheet in which the periphery of the fiber sheet is fixed or held by the frame.
 以下に実施例を示して本発明をさらに詳細かつ具体的に説明するが、実施例は本発明の範囲を限定するものと解してはならない。 The present invention will be described in more detail and concretely by showing examples below, but the examples should not be construed as limiting the scope of the present invention.
〔配向性ファイバーシートの作製〕
 PLGA(SIGMA P1941)を、HFIP(和光純薬089-04233)により室温で溶解し、20%(w/v)溶液とした。この溶液を、シリンジ(Norm-Ject Syringes 5 mL容量、大阪ケミカル)に充填後、22 Gの刃先フラットのニードルを装着したナノファイバー電界紡糸装置NANON-03(株式会社メック)に設置した。次に、ドラムコレクター上に、電圧:20 kV、射出流速:1 mL/h、ドラム回転速度:750 rpmの条件下でPLGAファイバーシートを作製した。PSファイバーシートを作製する場合、PS(Fluka)を、DMF(和光純薬)により室温で溶解し、30%(w/v)溶液とした。この溶液を、シリンジ(Norm-Ject Syringes 5 mL容量、大阪ケミカル)に充填後、25 Gの刃先フラットのニードルを装着したナノファイバー電界紡糸装置NANON-03(株式会社メック)に設置した。次に、ドラムコレクター上に、電圧:10 kV、射出流速:1.5 mL/h、ドラム回転速度:2000 rpmの条件下でPSファイバーシートを作製した。
[Preparation of oriented fiber sheet]
PLGA (SIGMA P1941) was dissolved in HFIP (Wako Pure Chemical Industries, Ltd. 089-04233) at room temperature to prepare a 20% (w / v) solution. This solution was filled in a syringe (Norm-Ject Syringes 5 mL volume, Osaka Chemical) and then placed in a nanofiber electrospinning device NANON-03 (Mech Co., Ltd.) equipped with a 22 G flat-edged needle. Next, a PLGA fiber sheet was prepared on the drum collector under the conditions of a voltage of 20 kV, an injection flow rate of 1 mL / h, and a drum rotation speed of 750 rpm. When preparing a PS fiber sheet, PS (Fluka) was dissolved in DMF (Wako Pure Chemical Industries, Ltd.) at room temperature to prepare a 30% (w / v) solution. This solution was filled in a syringe (Norm-Ject Syringes 5 mL volume, Osaka Chemical) and then placed in a nanofiber electrospinning device NANON-03 (Mech Co., Ltd.) equipped with a needle with a flat cutting edge of 25 G. Next, a PS fiber sheet was prepared on the drum collector under the conditions of a voltage of 10 kV, an injection flow rate of 1.5 mL / h, and a drum rotation speed of 2000 rpm.
〔ファイバーシートへのフレーム接着〕
 作製されたファイバーシートに、シリコーン一液縮合型RVTゴム(信越化学、カタログ番号KE-45)を用いて、ポリカーボネート製のフレーム(15 mm×15 mm)、またはステンレス製の円形フレーム(外径6 mm、内径3 mm)を接着させた。
[Adhesion of frame to fiber sheet]
A polycarbonate frame (15 mm x 15 mm) or a stainless steel circular frame (outer diameter 6) is used for the produced fiber sheet using silicone one-component condensation type RVT rubber (Shin-Etsu Chemical, Catalog No. KE-45). mm, inner diameter 3 mm) was adhered.
〔細胞足場上でのシュワン前駆細胞からシュワン細胞への分化誘導〕
 シュワン前駆細胞は、ヒト由来iPS細胞を、公知の条件に従って分化誘導することにより作製した。得られたシュワン前駆細胞は、シュワン細胞特異的な転写因子であるSOX10が、86%以上の細胞で発現していた(図1)。このシュワン前駆細胞を、配向性PSファイバーシート上に播種し、分化誘導培養液を用いて、5%CO2環境下、37℃で約10日間培養することにより、シュワン細胞へ分化させた。前記分化誘導培養液は、低グルコースDMEM(Sigma, D5546)を基礎培養液とし、1%FBSおよび2 mM L-グルタミンを添加した培養液とした。前記分化誘導培養液には、シュワン前駆細胞の播種日を第0日として、第0日~第4日に、200 ng/mL NRG1(Peprotec, 100-03)、100 nM オール・トランスレチノイン酸(Sigma, R2625)、10 ng/mL PDGF-BB(Gibco, PHG0044)および4μM フォルスコリン(Sigma, F6886)を添加し、第5日~第6日に、200 ng/mL NRG1および10 ng/mL PDGF-BBを添加し、第7日以降には、200 ng/mL NRG1を添加した培養液を用いて培養した。第10日および第13日に、培養液の半量を新鮮な培養液と交換した。第16日に、シュワン細胞マーカーであるSOX10およびS100Bの免疫染色を行ったところ、ほぼすべての細胞が陽性であった(図2)。
[Induction of differentiation of Schwann progenitor cells into Schwann cells on a cell scaffold]
Schwann progenitor cells were prepared by inducing differentiation of human-derived iPS cells according to known conditions. In the obtained Schwann progenitor cells, SOX10, which is a Schwann cell-specific transcription factor, was expressed in 86% or more of the cells (Fig. 1). These Schwann progenitor cells were seeded on an oriented PS fiber sheet and cultured in a 5% CO 2 environment at 37 ° C. for about 10 days using a differentiation-inducing culture medium to differentiate into Schwann cells. As the differentiation-inducing culture medium, low glucose DMEM (Sigma, D5546) was used as the basal culture medium, and 1% FBS and 2 mM L-glutamine were added to the culture medium. In the differentiation-inducing culture medium, 200 ng / mL NRG1 (Peprotec, 100-03) and 100 nM all-trans retinoic acid (Peprotec, 100-03) and 100 nM all transretinoic acid (200 ng / mL NRG1 (Peprotec, 100-03)) Sigma, R2625), 10 ng / mL PDGF-BB (Gibco, PHG0044) and 4 μM forskolin (Sigma, F6886) were added and 200 ng / mL NRG1 and 10 ng / mL PDGF were added on days 5-6. -BB was added, and after the 7th day, the cells were cultured using a culture solution containing 200 ng / mL NRG1. On days 10 and 13, half of the culture was replaced with fresh culture. On the 16th day, immunostaining of Schwann cell markers SOX10 and S100B was performed, and almost all cells were positive (Fig. 2).
〔神経細胞とラットまたはヒト由来シュワン細胞との共培養〕
 培養ペトリディッシュまたはプレート上で培養したヒト由来運動/感覚神経細胞上に、ラット不死化シュワン細胞(IFRS1)または実施例2で分化誘導したヒトシュワン細胞を、0.5~5×104細胞/0.07 cm2の密度で播種し、共培養用培養液を用いて、5%CO2環境下、37℃で培養した。前記共培養用培養液は、Neurobasal(登録商標、Thermo Fisher)を基礎培養液とし、2% B-27(登録商標、Thermo Fisher)、20 ng/mL NRG1、10 ng/mL BDNF、10 ng/mL GDNF、0.1 mM メルカプトエタノール、0.5μM フォルスコリン、1%ペニシリン-ストレプトマイシンおよび0.3%グロースファクターリデュースト(growth factor reduced)マトリゲル(Corning)を添加した。ラットまたはヒトシュワン細胞を播種した翌日に、位相差光学顕微鏡により観察した結果、各シュワン細胞が神経細胞軸索に沿って生着していることが確認された(図3)。
[Co-culture of nerve cells with rat or human-derived Schwann cells]
On human-derived motor / sensory nerve cells cultured on a cultured Petri dish or plate, 0.5 to 5 × 10 4 cells / 0.07 cm 2 of rat immortalized Schwan cells (IFRS1) or human Schwan cells induced to differentiate in Example 2 The cells were sown at the same density as above, and cultured at 37 ° C. in a 5% CO 2 environment using a co-cultivation culture solution. The culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 μM forskolin, 1% penicillin-streptomycin and 0.3% growth factor reduced Matrigel (Corning) were added. The day after seeding the rat or human Schwann cells, observation with a phase-difference optical microscope confirmed that each Schwann cell was engrafted along the nerve cell axon (Fig. 3).
〔細胞足場上でのラット由来シュワン細胞と神経細胞との共培養〕
 配向性PSファイバーシート上で培養したヒト由来運動神経細胞に、ラット不死化シュワン細胞(IFRS1)を、0.5~5×104細胞/0.07 cm2の密度で播種し、共培養用培養液を用いて、5%CO2環境下、37℃で培養した。前記共培養用培養液は、Neurobasal(登録商標、Thermo Fisher)を基礎培養液とし、2% B-27(登録商標、Thermo Fisher)、20 ng/mL NRG1、10 ng/mL BDNF、10 ng/mL GDNF、0.1 mM メルカプトエタノール、0.5μM フォルスコリン、1%ペニシリン-ストレプトマイシンを添加した。前記共培養用培養液には、神経細胞の播種日(共培養開始日)を第0日として、第6日以降に、共培養用培養液に50μg/mL アスコルビン酸を添加し、ミエリン化培養液として用いた。第6日以降は、2~3日毎に、培養液の半量を新鮮な培養液と交換した。共培養開始日から4~6週間経過後に、得られた神経細胞デバイスの免疫染色を行ったところ、ミエリン形成関連タンパク質であるMBPおよびCASPRの発現が複数個所で認められた(図4)。また、細胞足場からの細胞剥離はほとんど認められなかった。したがって、本発明の方法により作製した神経細胞デバイスは、in vitro神経組織モデルとして有用であることが示される。
[Co-culture of rat-derived Schwann cells and nerve cells on a cell scaffold]
Rat immortalized Schwann cells (IFRS1) were seeded at a density of 0.5 to 5 × 10 4 cells / 0.07 cm 2 into human-derived motor neurons cultured on an oriented PS fiber sheet, and a co-culture medium was used. The cells were cultured at 37 ° C in a 5% CO 2 environment. The culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, and is 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 μM forskolin, 1% penicillin-streptomycin were added. To the co-culture solution, 50 μg / mL ascorbic acid is added to the co-culture solution after the 6th day, with the sowing date of nerve cells (co-culture start date) as the 0th day, and myelinated culture is performed. Used as a liquid. From the 6th day onward, half of the culture broth was replaced with fresh culture broth every 2 to 3 days. When immunostaining of the obtained nerve cell device was performed 4 to 6 weeks after the start date of co-culture, expression of myelin formation-related proteins MBP and CASPR was observed at multiple sites (Fig. 4). In addition, almost no cell detachment from the cell scaffold was observed. Therefore, it is shown that the nerve cell device produced by the method of the present invention is useful as an in vitro neural tissue model.
〔細胞足場上でのヒト由来シュワン細胞と神経細胞との共培養〕
 配向性PSファイバーシート上で分化したヒト由来シュワン細胞に、末梢感覚神経細胞であるラット脊髄後根神経節に由来する初代培養神経細胞またはヒト運動/感覚神経に由来する神経細胞を、1~5×104細胞/0.07 cm2の密度で播種し、共培養用培養液を用いて、5%CO2環境下、37℃で培養した。前記共培養用培養液は、Neurobasal(登録商標、Thermo Fisher)を基礎培養液とし、2% B-27(登録商標、Thermo Fisher)、20 ng/mL NRG1、10 ng/mL BDNF、10 ng/mL GDNF、0.1 mM メルカプトエタノール、0.5μM フォルスコリン、1%ペニシリン-ストレプトマイシン、5~10%(v/v)のラットシュワン細胞株IFRS1の培養上清および0.00001%(w/v)の脂質濃縮液(Gibco)を添加した培養液とした。前記共培養用培養液には、神経細胞の播種日(共培養開始日)を第0日として、第6日以降に、50μg/mL アスコルビン酸を添加し、ミエリン形成を促進した。本発明の方法により作製した神経細胞デバイスでは、共培養開始後1カ月経過後であっても神経細胞軸索の凝集や細胞剥離が発生していないことが示される(図5)。したがって、本発明の方法により作製した神経細胞デバイスは、in vitro神経組織モデルとして有用であることが示される。
[Co-culture of human-derived Schwann cells and nerve cells on a cell scaffold]
Human-derived Schwann cells differentiated on an oriented PS fiber sheet, and primary cultured neurons derived from the rat spinal posterior ganglion, which are peripheral sensory neurons, or neurons derived from human motor / sensory neurons, 1 to 5 The cells were seeded at a density of × 10 4 cells / 0.07 cm 2 , and cultured at 37 ° C. in a 5% CO 2 environment using a co-cultivation culture medium. The culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, and is 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 μM forskolin, 1% penicillin-streptomycin, culture supernatant of 5-10% (v / v) rat Schwann cell line IFRS1 and 0.00001% (w / v) lipid concentrate The culture solution was prepared by adding (Gibco). 50 μg / mL ascorbic acid was added to the co-culture solution on the 0th day after the seeding date of nerve cells (co-culture start date) to promote myelin formation. It is shown that in the nerve cell device produced by the method of the present invention, aggregation and cell detachment of nerve cell axons did not occur even one month after the start of co-culture (Fig. 5). Therefore, it is shown that the nerve cell device produced by the method of the present invention is useful as an in vitro neural tissue model.
〔細胞足場上での神経細胞スフェロイドの神経軸索の伸長〕
 ヒトiPS細胞より分化誘導したの運動/感覚神経細胞を、マイクロウェルの各ウェルに2×104個ずつ添加し、培養することにより神経細胞スフェロイドを作製した。ポリリジンおよびラミニンでコートしたPSファイバーシートである細胞足場上に、前記神経細胞スフェロイドを1~2個/0.07 cm2の密度で播種し、共培養用培養液を用いて、5%CO2環境下、37℃で培養した。前記共培養用培養液は、Neurobasal(登録商標、Thermo Fisher)を基礎培養液とし、2% B-27(登録商標、Thermo Fisher)、20 ng/mL NRG1、10 ng/mL BDNF、10 ng/mL GDNF、0.1 mM メルカプトエタノール、0.5μM フォルスコリン、1%ペニシリン-ストレプトマイシン、5~10%(v/v)のラットシュワン細胞株IFRS1の培養上清および0.00001%(w/v)の脂質濃縮液(Gibco)を添加した培養液とした。共培養開始日から1週間経過後に、神経細胞の免疫染色を行った。その結果、神経細胞スフェロイドからの軸索伸長が認められた(図6)。この軸索の伸長は、細胞足場上への神経細胞スフェロイドの播種後3週間維持されることが確認された。
[Elongation of nerve axons of nerve cell spheroids on cell scaffolds]
Nerve cell spheroids were prepared by adding 2 × 10 4 motile / sensory nerve cells induced to differentiate from human iPS cells to each well of the microwell and culturing them. The nerve cell spheroids were seeded on a cell scaffold, which is a PS fiber sheet coated with polylysine and laminin, at a density of 1 to 2 cells / 0.07 cm 2 , and a co-culture medium was used in a 5% CO 2 environment. , 37 ° C. The culture medium for co-culture uses Neurobasal (registered trademark, Thermo Fisher) as the basal culture solution, and is 2% B-27 (registered trademark, Thermo Fisher), 20 ng / mL NRG1, 10 ng / mL BDNF, 10 ng /. mL GDNF, 0.1 mM mercaptoethanol, 0.5 μM forskolin, 1% penicillin-streptomycin, culture supernatant of 5-10% (v / v) rat Schwann cell line IFRS1 and 0.00001% (w / v) lipid concentrate The culture solution was prepared by adding (Gibco). One week after the start date of co-culture, immunostaining of nerve cells was performed. As a result, axon elongation from nerve cell spheroids was observed (Fig. 6). It was confirmed that this axon elongation was maintained for 3 weeks after seeding of nerve cell spheroids on the cell scaffold.
〔細胞足場上での神経細胞スフェロイドとシュワン細胞との共培養〕
 前記の細胞足場上で培養した神経細胞スフェロイドに、ラット不死化シュワン細胞またはヒト由来シュワン細胞を0.5~5×104個/0.07 cm2の密度で播種し、上記の共培養用培養液を用いて、5%CO2環境下、37℃で培養した。神経細胞スフェロイドの播種日(共培養開始日)を第0日として、第6日以降には、50μg/mL アスコルビン酸を前記共培養用培養液に追加し、ミエリン形成を促進した。その結果、シュワン細胞が神経細胞軸索に沿って生着していることが確認された。したがって、本発明の方法により作製した神経細胞デバイスは、in vitro神経組織モデルとして有用であることが示される。
 

 
[Co-culture of nerve cell spheroids and Schwann cells on a cell scaffold]
Rat immortalized Schwann cells or human-derived Schwann cells were seeded at a density of 0.5 to 5 × 10 4 cells / 0.07 cm 2 in the nerve cell spheroids cultured on the cell scaffold, and the above-mentioned co-culture medium was used. The cells were cultured at 37 ° C in a 5% CO 2 environment. The seeding date (co-culture start date) of the nerve cell spheroid was set as the 0th day, and after the 6th day, 50 μg / mL ascorbic acid was added to the co-culture culture solution to promote myelin formation. As a result, it was confirmed that Schwann cells were engrafted along the nerve cell axons. Therefore, it is shown that the nerve cell device produced by the method of the present invention is useful as an in vitro neural tissue model.


Claims (20)

  1. シュワン前駆細胞をシュワン細胞に分化誘導する工程、および、
    前記シュワン細胞を、細胞足場上で神経細胞または神経細胞スフェロイドと共培養する工程、
    を含む、神経細胞デバイスの製造方法。
    The process of inducing the differentiation of Schwann progenitor cells into Schwann cells, and
    The step of co-culturing the Schwann cells with nerve cells or nerve cell spheroids on a cell scaffold,
    A method for manufacturing a nerve cell device, including.
  2. 前記分化誘導する工程が、前記細胞足場上で行われる、請求項1に記載の方法。 The method according to claim 1, wherein the step of inducing differentiation is performed on the cell scaffold.
  3. 前記細胞足場が、高分子材料で形成されたファイバーシートである、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the cell scaffold is a fiber sheet made of a polymer material.
  4. 前記ファイバーシートが、配向性構造を有する、請求項3に記載の方法。 The method according to claim 3, wherein the fiber sheet has an oriented structure.
  5. 前記ファイバーシートが、ポリリジン、ポリオルニチン、ラミニン、フィブロネクチン、マトリゲル(登録商標)およびゲルトレックス(登録商標)から選ばれる細胞外マトリックスタンパク質でコーティングされた、請求項3または4に記載の方法。 The method of claim 3 or 4, wherein the fiber sheet is coated with an extracellular matrix protein selected from polylysine, polyornithine, laminin, fibronectin, Matrigel® and Geltrex®.
  6. 前記ファイバーシートが、ポリエチレンイミンでコーティングされた、請求項3または4に記載の方法。 The method according to claim 3 or 4, wherein the fiber sheet is coated with polyethyleneimine.
  7. 前記シュワン細胞および前記神経細胞が、前記細胞足場上および/または前記細胞足場内で3次元構造を形成する、請求項1~6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the Schwann cells and the nerve cells form a three-dimensional structure on and / or in the cell scaffold.
  8. 前記シュワン細胞が、多能性幹細胞由来のシュワン細胞である、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the Schwann cell is a Schwann cell derived from a pluripotent stem cell.
  9. 前記多能性幹細胞由来のシュワン細胞が、哺乳動物由来のシュワン細胞である、請求項8に記載の方法。 The method according to claim 8, wherein the Schwann cell derived from the pluripotent stem cell is a Schwann cell derived from a mammal.
  10. 前記神経細胞が、初代培養細胞または多能性幹細胞由来の神経細胞である、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the nerve cell is a primary cultured cell or a nerve cell derived from a pluripotent stem cell.
  11. 前記初代培養細胞または多能性幹細胞由来の神経細胞が、哺乳動物由来の神経細胞である、請求項10に記載の方法。 The method according to claim 10, wherein the primary cultured cell or a nerve cell derived from a pluripotent stem cell is a nerve cell derived from a mammal.
  12. 前記神経細胞が、グルタミン酸作動性、コリン作動性、γ-アミノ酪酸作動性、ドーパミン作動性またはヒスタミン作動性の神経細胞を含む、請求項1~11のいずれか1項に記載の方法。 The method according to any one of claims 1 to 11, wherein the nerve cell comprises a glutamatergic, cholinergic, γ-aminobutyric acid, dopaminergic or histaminergic nerve cell.
  13. 前記共培養が、前記神経細胞を、前記細胞足場に対して1~10×104細胞/0.07 cm2の密度で播種することにより開始される、請求項1~12のいずれか1項に記載の方法。 The co-culture is started by seeding the nerve cells at a density of 1 to 10 × 10 4 cells / 0.07 cm 2 with respect to the cell scaffold, according to any one of claims 1 to 12. the method of.
  14. 前記神経細胞スフェロイドが、0.5~5×104個の神経細胞から作製された神経細胞スフェロイドであって、前記共培養が、前記神経細胞スフェロイドを、1~10個/0.07 cm2の密度で播種することにより開始される、請求項1~12のいずれか1項に記載の方法。 The nerve cell spheroid is a nerve cell spheroid prepared from 0.5 to 5 × 10 4 nerve cells, and the co-culture seeds the nerve cell spheroid at a density of 1 to 10 cells / 0.07 cm 2. The method according to any one of claims 1 to 12, which is started by the above method.
  15. 前記共培養に用いる培養液が、ラットシュワン細胞株であるIFRS1の培養上清を1~20%(v/v)およびリン脂質を0.000001~0.0001%(w/v)含む培養液である、請求項1~14のいずれか1項に記載の方法。 Claimed that the culture medium used for the co-culture is a culture medium containing 1 to 20% (v / v) of the culture supernatant of IFRS1 which is a rat Schwann cell line and 0.000001 to 0.0001% (w / v) of phospholipids. Item 2. The method according to any one of Items 1 to 14.
  16. 請求項1~15のいずれか1項に記載の方法により製造される、神経細胞デバイス。 A nerve cell device produced by the method according to any one of claims 1 to 15.
  17. 前記神経細胞デバイスの周囲を保持するフレームをさらに有する、請求項16に記載の神経細胞デバイス。 The nerve cell device according to claim 16, further comprising a frame that holds the periphery of the nerve cell device.
  18. 前記フレームの縦長×横長が、それぞれ2 mm×2 mm~15 mm×15 mmであって、前記フレームが円形または多角形である、請求項17に記載の神経細胞デバイス。 The nerve cell device according to claim 17, wherein the vertically long × horizontally long frames are 2 mm × 2 mm to 15 mm × 15 mm, respectively, and the frame is circular or polygonal.
  19. 請求項16~18のいずれか1項に記載の神経細胞デバイスを備える、神経細胞デバイス装着ペトリディッシュ。 A neuron device-mounted Petri dish comprising the neuron device according to any one of claims 16-18.
  20. 複数のウェルを有するマルチウェルプレートにおいて、該プレートに含まれるウェルの少なくとも一つに、請求項16~18のいずれか1項に記載の神経細胞デバイスを備える、神経細胞デバイス装着プレート。
     

     
    A nerve cell device mounting plate comprising the nerve cell device according to any one of claims 16 to 18, in at least one of the wells included in the multi-well plate having a plurality of wells.


PCT/JP2021/006037 2020-02-20 2021-02-18 Method for manufacturing nerve cell device including myelinated nerve cells WO2021166984A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501954A JPWO2021166984A1 (en) 2020-02-20 2021-02-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026698 2020-02-20
JP2020026698 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021166984A1 true WO2021166984A1 (en) 2021-08-26

Family

ID=77392160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006037 WO2021166984A1 (en) 2020-02-20 2021-02-18 Method for manufacturing nerve cell device including myelinated nerve cells

Country Status (2)

Country Link
JP (1) JPWO2021166984A1 (en)
WO (1) WO2021166984A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535265A (en) * 2016-11-14 2019-12-12 メモリアル スローン ケタリング キャンサー センター Stem cell-derived Schwann cells
WO2020013269A1 (en) * 2018-07-12 2020-01-16 学校法人東北工業大学 Method for functional maturation of neurons

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535265A (en) * 2016-11-14 2019-12-12 メモリアル スローン ケタリング キャンサー センター Stem cell-derived Schwann cells
WO2020013269A1 (en) * 2018-07-12 2020-01-16 学校法人東北工業大学 Method for functional maturation of neurons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Notice of started joint research with Kyoto Prefectural University of Medicine -Development of Charcot-Marie-Tooth disease model using patient- derived iPS cells", IPS PRESS RELEASE, 16 December 2019 (2019-12-16), pages 1 - 4, XP055849790, Retrieved from the Internet <URL:https://scad-kyoto.com/PDF/SCAD%20Press%20Release%2020191216%20kpu-m.pdf> [retrieved on 20210421] *

Also Published As

Publication number Publication date
JPWO2021166984A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
Mahairaki et al. Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro
Ylä‐Outinen et al. Three‐dimensional growth matrix for human embryonic stem cell‐derived neuronal cells
Xiang et al. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells
Amores de Sousa et al. Functionalization of electrospun nanofibers and fiber alignment enhance neural stem cell proliferation and neuronal differentiation
Xue et al. Differentiation of bone marrow stem cells into Schwann cells for the promotion of neurite outgrowth on electrospun fibers
Xue et al. Promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular particles in a density gradient
Kabiri et al. Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds
Gerardo-Nava et al. Human neural cell interactions with orientated electrospun nanofibers in vitro
JP2020504625A (en) 3D vascularized human eye tissue for cell therapy and drug discovery
Chen et al. Promoting neurite growth and schwann cell migration by the harnessing decellularized nerve matrix onto nanofibrous guidance
US20070082393A1 (en) Polymer coated nanofibrillar structures and methods for cell maintenance and differentiation
Kabiri et al. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering
JP2007510820A (en) Nanofibril structures and applications including cell and tissue culture
Hejazian et al. The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering
US11543404B2 (en) Nerve cell device and method for evaluating neural activity
US11629321B2 (en) Scaffold for cell culture or tissue engineering
Hodde et al. Characterisation of cell–substrate interactions between Schwann cells and three‐dimensional fibrin hydrogels containing orientated nanofibre topographical cues
Omidinia-Anarkoli et al. Hierarchical fibrous guiding cues at different scales influence linear neurite extension
Morelli et al. Microtube array membrane bioreactor promotes neuronal differentiation and orientation
Yari et al. The role of biodegradable engineered random polycaprolactone nanofiber scaffolds seeded with nestin-positive hair follicle stem cells for tissue engineering
Ortega et al. Characterisation and evaluation of the impact of microfabricated pockets on the performance of limbal epithelial stem cells in biodegradable PLGA membranes for corneal regeneration
Ghoroghi et al. Evaluation of the effect of NT-3 and biodegradable poly-L-lactic acid nanofiber scaffolds on differentiation of rat hair follicle stem cells into neural cells in vitro
US20220364049A1 (en) Composition and methods for culturing retinal progenitor cells
Yang et al. Carbon nanotube polymer scaffolds as a conductive alternative for the construction of retinal sheet tissue
Muzzi et al. Rapid generation of functional engineered 3D human neuronal assemblies: network dynamics evaluated by micro-electrodes arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757159

Country of ref document: EP

Kind code of ref document: A1