WO2021166948A1 - Terminal device, base station device, and communication method - Google Patents

Terminal device, base station device, and communication method Download PDF

Info

Publication number
WO2021166948A1
WO2021166948A1 PCT/JP2021/005891 JP2021005891W WO2021166948A1 WO 2021166948 A1 WO2021166948 A1 WO 2021166948A1 JP 2021005891 W JP2021005891 W JP 2021005891W WO 2021166948 A1 WO2021166948 A1 WO 2021166948A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
terminal device
base station
pdsch
Prior art date
Application number
PCT/JP2021/005891
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋 大一郎
友樹 吉村
会発 林
翔一 鈴木
智造 野上
渉 大内
李 泰雨
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022501930A priority Critical patent/JPWO2021166948A1/ja
Publication of WO2021166948A1 publication Critical patent/WO2021166948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to terminal equipment, base station equipment and communication methods.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-25106 filed in Japan on February 18, 2020, the contents of which are incorporated herein by reference.
  • LTE Long Term Evolution
  • the base station device is also called an eNodeB (evolved NodeB)
  • the terminal device is also called a UE (User Equipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape.
  • a single base station device may manage multiple serving cells.
  • next-generation standards (NR: New Radio) are being studied and standardized as 5G communication methods.
  • NR is assumed to satisfy three scenarios: eMBB (enhanced Mobile Broadband), mMTC (massive Machine Type Communication), and URLLC (Ultra Reliable and Low Latency Communication). There is.
  • Non-Patent Document 2 a method using a plurality of frequency spectra is being studied. It is being studied that a plurality of base station devices communicate with terminal devices using different frequency spectra. One base station device uses the downlink frequency spectrum and the uplink frequency spectrum, and the other base station device uses the downlink frequency spectrum to communicate with the terminal device 1.
  • the data transmitting side retransmits the data that was not properly received by the receiving side based on the information fed back from the data receiving side.
  • the data transmitting side is a base station device
  • the data receiving side is a terminal device
  • the data is a transport block (transport block transmitted / received by PDSCH)
  • the data error detection result and reception result are HARQ-ACK.
  • Efficient communication is achieved by realizing appropriate retransmission control.
  • One aspect of the present invention provides a terminal device, a base station device, a communication method used for the terminal device, and a communication method used for the base station device for efficient communication.
  • the first aspect of the present invention is a terminal device including a processor and a memory for storing a computer program code, which is a periodic resource in an uplink cell managed by the first base station device.
  • the operation including setting the HARQ-ACK codebook including the HARQ-ACK for the PDSCH of the downlink cell managed by the second base station apparatus is executed by the periodic resource.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • the uplink cell managed by the second base station device is not configured for the terminal device.
  • a second aspect of the present invention is a base station device including a processor and a memory for storing a computer program code, and sets periodic resources in an uplink cell with respect to the terminal device. That, the HARQ-ACK codebook including the HARQ-ACK for the PDSCH of the downlink cell managed by the different base station device is received from the terminal device with the periodic resource, and the received HARQ-ACK is received from the different base station. Perform actions, including transferring to the device.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • a third aspect of the present invention is a communication method used for a terminal device, in which a step of setting a periodic resource in an uplink cell managed by the first base station device and a second step. It includes a step of transmitting a HARQ-ACK codebook including HARQ-ACK for PDSCH of a downlink cell managed by a base station apparatus with the periodic resource.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • the uplink cell managed by the second base station device is not configured for the terminal device.
  • a fourth aspect of the present invention is a communication method used for a base station device, in which a step of setting a periodic resource in an uplink cell for a terminal device and a step managed by a different base station device are managed.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • the terminal device can efficiently communicate.
  • the base station device can efficiently communicate.
  • This is an example showing the relationship between the N slot symb , the setting ⁇ of the subcarrier interval, the slot setting, and the CP setting according to one aspect of the present embodiment.
  • This is an example showing the configuration of a radio frame, a subframe, and a slot according to one aspect of the present embodiment.
  • It is a schematic diagram which shows an example of the resource grid in the subframe which concerns on one aspect of this Embodiment.
  • It is a figure which shows an example of the structure of one REG which concerns on one aspect of this Embodiment.
  • It is a figure which shows the structural example of CCE which concerns on one aspect of this Embodiment.
  • a and / or B may be a term including "A”, “B”, or "A and B”.
  • the parameter or information may include at least a parameter or information indicating the one or more values.
  • the upper layer parameter may be a single upper layer parameter.
  • the upper layer parameter may be an information element (IE: Information Element) including a plurality of parameters.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment.
  • the wireless communication system includes terminal devices 1A to 1C and base station devices 3A to 3B.
  • the terminal devices 1A to 1C are also referred to as a terminal device 1 (UE).
  • the base station devices 3A to 3B are also referred to as base station devices 3 (gNB).
  • the base station device 3 may be configured to include one or both of MCG (Master Cell Group) and SCG (Secondary Cell Group).
  • MCG is a group of serving cells composed of at least PCell (Primary Cell).
  • An SCG is a group of serving cells composed of at least PSCell (Primary Secondary Cell).
  • the PCell may be a serving cell given based on the initial connection.
  • the MCG may be configured to include one or more SCells (Secondary Cells).
  • the SCG may be configured to include one or more SCells.
  • a serving cell identifier is a short identifier for identifying a serving cell. The serving cell identifier may be given by a higher layer parameter.
  • the terminal device 1 communicates with the base station device 3A (first base station device) and the base station device 3B (second base station device) at the same time.
  • the base station device 3A and the base station device 3B communicate with the terminal device 1 using different frequency spectra (carrier frequencies). This operation may be referred to as carrier aggregation, or dual connectivity.
  • the communication between the terminal device 1 and the base station device 3A and the communication between the terminal device 1 and the base station device 3B are each composed of different cells (serving cells).
  • the base station apparatus 3A uses the downlink frequency spectrum and the uplink frequency spectrum.
  • the base station apparatus 3B uses only the downlink frequency spectrum.
  • the base station device 3A and the base station device 3B are connected by wire or wirelessly, and control information, data, and the like are exchanged.
  • the control information is HARQ-ACK.
  • the terminal device 1 makes an initial connection with the base station device 3A. After the connection with the base station device 3A is established, the terminal device 1 is added with the connection with the base station device 3B. The terminal device 1 is added with a frequency spectrum used for communication. A cell (serving cell) used for communication is added to the terminal device 1.
  • At least OFDM Orthogonal Frequency Division Multiplex
  • An OFDM symbol is a unit of the OFDM time domain.
  • the OFDM symbol comprises at least one or more subcarriers.
  • the OFDM symbol may be converted into a time-continuous signal in the baseband signal generation.
  • the subcarrier spacing configuration ⁇ may be set to any of 0, 1, 2, 3, 4, and / or 5.
  • the subcarrier spacing setting ⁇ may be given by the upper layer parameters.
  • a time unit (time unit) T c is used to express the length of the time domain.
  • ⁇ f max may be the maximum value of the subcarrier spacing supported in the wireless communication system according to one aspect of the present embodiment.
  • ⁇ f ref may be 15 kHz.
  • N f and ref may be 2048.
  • the constant ⁇ may be a value indicating the relationship between the reference subcarrier interval and T c.
  • the constant ⁇ may be used for the length of the subframe.
  • the number of slots contained in the subframe may be given, at least based on the constant ⁇ .
  • ⁇ f ref is the reference subcarrier interval
  • N f and ref are values corresponding to the reference subcarrier interval.
  • Transmission on the downlink and / or transmission on the uplink consists of 10 ms frames.
  • the frame is composed of 10 subframes.
  • the length of the subframe is 1 ms.
  • the frame length may be given regardless of the subcarrier spacing ⁇ f. That is, the frame setting may be given regardless of ⁇ .
  • the length of the subframe may be given regardless of the subcarrier spacing ⁇ f. That is, the subframe setting may be given regardless of ⁇ .
  • the number and index of slots contained in a subframe may be given for a given subcarrier spacing setting ⁇ .
  • the first slot number n ⁇ s may be given in ascending order in the range of 0 to N subframe, ⁇ slot -1 within the subframe.
  • the number and index of slots contained in the frame may be given for the setting ⁇ of the subcarrier spacing.
  • the second slot numbers n ⁇ s, f may be given in ascending order in the range of 0 to N frame, ⁇ slot -1 in the frame.
  • One slot may contain consecutive N slot symbs of OFDM symbols.
  • N slot symbs may be given at least based on some or all of the slot configuration and / or CP (Cyclo Prefix) settings.
  • the slot setting may be given by at least the upper layer parameter tdd-UL-DL-ConfigurationCommon.
  • CP settings may be given at least based on higher layer parameters.
  • CP settings may be given at least based on dedicated RRC signaling.
  • the first slot number and the second slot number are also referred to as slot numbers (slot indexes).
  • FIG. 2 is an example showing the relationship between the N slot symb , the setting ⁇ of the subcarrier interval, the slot setting, and the CP setting according to one aspect of the present embodiment.
  • the subcarrier interval setting ⁇ 2
  • the CP setting is normal CP (normal cyclic prefix)
  • the subcarrier interval setting ⁇ 2
  • the CP setting is extended CP (extended cyclic prefix)
  • N slot symb 12
  • the N slot symb at slot setting 0 may correspond to twice the N slot symb at slot setting 1.
  • a common subcarrier interval setting, slot setting, and CP setting may be performed for each cell, or a different subcarrier interval setting, slot setting, and CP setting may be performed for each cell. ..
  • a common subcarrier interval setting, a slot setting, and a CP setting may be performed, or a different subcarrier interval setting, a slot setting, and a CP setting may be performed. good.
  • FIG. 3 is an example showing the configuration of the radio frame, the subframe, and the slot according to one aspect of the present embodiment.
  • the slot length is 0.5 ms
  • the subframe length is 1 ms
  • the radio frame length is 10 ms.
  • a slot may be a unit of resource allocation in the time domain.
  • a slot may be a unit to which one transport block is mapped.
  • the transport block may be mapped to one slot.
  • the transport block is transmitted within a predetermined interval (for example, transmission time interval (TTI: Transition Time Interval)) defined by an upper layer (for example, MAC: Media Access Control, RRC: Radio Response Control). It may be a unit of data.
  • TTI Transmission Time Interval
  • RRC Radio Response Control
  • the slot length may be given by the number of OFDM symbols.
  • the number of OFDM symbols may be 7 or 14.
  • the slot length may be given at least based on the length of the OFDM symbol.
  • the length of the OFDM symbols may vary, at least based on the subcarrier spacing.
  • the length of the OFDM symbol may be given at least based on the number of points of the Fast Fourier Transform (FFT) used to generate the OFDM symbol.
  • the length of the OFDM symbol may include the length of the cyclic prefix (CP) added to the OFDM symbol.
  • the OFDM symbol may be referred to as a symbol.
  • OFDM when a communication method other than OFDM is used in the communication between the terminal device 1 and the base station device 3 (for example, when SC-FDMA or DFT-s-OFDM is used), the SC generated is generated.
  • -FDMA symbols and / or DFT-s-OFDM symbols are also referred to as OFDM symbols.
  • OFDM includes SC-FDMA or DFT-s-OFDM.
  • the slot length may be 0.125 ms, 0.25 ms, 0.5 ms, 1 ms.
  • the slot length may be 0.125 ms, 0.25 ms, 0.5 ms, 1 ms.
  • the slot length may be 1 ms.
  • the slot length may be 0.5 ms.
  • the slot length may be 0.125 ms.
  • the slot length may be 1 ms.
  • one subframe may consist of eight slots.
  • the slot length is 0.25 ms
  • one subframe may consist of four slots.
  • the slot length is 0.5 ms
  • one subframe may be composed of two slots.
  • the slot length is 1 ms
  • one subframe may be composed of one slot.
  • OFDM includes a multi-carrier communication method to which waveform shaping (Pulse Shape), PAPR reduction, out-of-band radiation reduction, or filtering, and / or phase processing (for example, phase rotation, etc.) are applied.
  • the multi-carrier communication method may be a communication method in which a plurality of subcarriers generate / transmit a multiplexed signal.
  • the wireless frame may be given by the number of subframes.
  • the number of subframes for the radio frame may be, for example, 10.
  • the radio frame may be given by the number of slots.
  • a common wireless frame configuration, a subframe configuration, and a slot configuration may be set for each cell, or a different wireless frame configuration, a subframe configuration, and a slot may be set for each cell.
  • Configuration may be set.
  • a common radio frame configuration, a subframe configuration, and a slot configuration may be set in the base station device 3A and the base station device 3B, or different radio frame configurations, subframe configurations, and The slot configuration may be set.
  • An antenna port is defined by the fact that the channel through which a symbol is transmitted in one antenna port can be estimated from the channel in which another symbol is transmitted in the same antenna port. If the large scale property of the channel on which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port, the two antenna ports are QCL (Quantum Co-Located). ) Is called.
  • Large scale characteristics may include at least the long interval characteristics of the channel. Large-scale characteristics include delay spread, Doppler spread, Doppler shift, average gain, average delay, average delay, and beam parameters (spray). It may include at least some or all.
  • the fact that the first antenna port and the second antenna port are QCL with respect to the beam parameters means that the receiving beam assumed by the receiving side with respect to the first antenna port and the receiving beam assumed by the receiving side with respect to the second antenna port. May be the same.
  • the fact that the first antenna port and the second antenna port are QCL with respect to the beam parameters means that the transmitting beam assumed by the receiving side with respect to the first antenna port and the transmitting beam assumed by the receiving side with respect to the second antenna port. May be the same.
  • the terminal device 1 assumes that the two antenna ports are QCLs when the large-scale characteristics of the channel through which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port. May be done.
  • the fact that the two antenna ports are QCLs may mean that the two antenna ports are QCLs.
  • N mu RB, x may indicate the number of resource blocks are provided for setting mu subcarrier spacing for the carrier x.
  • N ⁇ RB, x may be the maximum number of resource blocks given for setting the subcarrier spacing ⁇ for carrier x.
  • the carrier x indicates either a downlink carrier or an uplink carrier. That is, x is "DL" or "UL".
  • N ⁇ RB is a name that includes N ⁇ RB, DL , and / or N ⁇ RB, UL.
  • NRB sc may indicate the number of subcarriers contained in one resource block.
  • At least one resource grid may be provided for each antenna port p and / or for each subcarrier spacing setting ⁇ and / or for each Transmission direction setting.
  • the transmission direction includes at least a downlink (DL: DownLink) and an uplink (UL: UpLink).
  • DL: DownLink downlink
  • UL: UpLink uplink
  • a set of parameters including at least a part or all of the antenna port p, the subcarrier interval setting ⁇ , and the transmission direction setting is also referred to as a first radio parameter set. That is, one resource grid may be given for each first set of radio parameters.
  • the carrier included in the serving cell is referred to as a downlink carrier (or downlink component carrier).
  • the carrier included in the serving cell is referred to as an uplink carrier (uplink component carrier).
  • the downlink component carrier and the uplink component carrier are collectively referred to as a component carrier (or carrier).
  • Each element in the resource grid given for each first set of radio parameters is referred to as a resource element.
  • the resource element is specified by the frequency domain index k sc and the time domain index l sym.
  • resource elements are identified by a frequency domain index k sc and a time domain index l sym.
  • the resource element specified by the frequency domain index k sc and the time domain index l sym is also referred to as a resource element (k sc , l sym).
  • the frequency domain index k sc indicates any value from 0 to N ⁇ RB N RB sc -1.
  • N ⁇ RB may be the number of resource blocks given for setting the subcarrier spacing ⁇ .
  • the frequency domain index k sc may correspond to the subcarrier index k sc.
  • the time domain index l sym may correspond to the OFDM symbol index l sym.
  • FIG. 4 is a schematic view showing an example of a resource grid in the subframe according to one aspect of the present embodiment.
  • the horizontal axis is the time domain index l sym
  • the vertical axis is the frequency domain index k sc .
  • the frequency domain of the resource grid contains N ⁇ RB N RB sc subcarriers.
  • the time domain of the resource grid may contain 14.2 ⁇ OFDM symbols.
  • One resource block is configured to include N RB sc subcarriers.
  • the time domain of the resource block may correspond to a 1 OFDM symbol.
  • the time domain of the resource block may correspond to 14 OFDM symbols.
  • the time domain of the resource block may correspond to one or more slots.
  • the time domain of the resource block may correspond to one subframe.
  • FIG. 4 shows an example of a resource grid in one cell.
  • the terminal device 1 may be instructed to perform transmission / reception using only a subset of the resource grid.
  • a subset of the resource grid also referred to as BWP
  • BWP may be given based on at least some or all of the upper layer parameters and / or DCI.
  • BWP is also referred to as a band part (BP: Bandwidth Part). That is, the terminal device 1 may not be instructed to perform transmission / reception using all sets of resource grids. That is, the terminal device 1 may be instructed to perform transmission / reception using a part of the frequency resources in the resource grid.
  • One BWP may be composed of a plurality of resource blocks in the frequency domain.
  • One BWP may be composed of a plurality of continuous resource blocks in the frequency domain.
  • the BWP set for the downlink carrier is also referred to as the downlink BWP.
  • the BWP set for the uplink carrier is also referred to as an uplink BWP.
  • One or more downlink BWPs may be set for the terminal device 1.
  • the terminal device 1 may attempt to receive a physical channel (eg, PDCCH, PDSCH, SS / PBCH, etc.) on one downlink BWP of one or more downlink BWPs.
  • the one downlink BWP is also referred to as an activated downlink BWP.
  • One or more uplink BWPs may be set for the terminal device 1.
  • the terminal device 1 may attempt to transmit a physical channel (eg, PUCCH, PUSCH, PRACH, etc.) in one of the uplink BWPs of one or more uplinks BWP.
  • the one uplink BWP is also referred to as an activated uplink BWP.
  • a set of downlink BWP may be set for each of the serving cells.
  • a set of downlink BWPs may include one or more downlink BWPs.
  • a set of uplink BWPs may be set for each of the serving cells.
  • a set of uplink BWPs may include one or more uplink BWPs.
  • the upper layer parameter is a parameter included in the upper layer signal.
  • the signal of the upper layer may be RRC (Radio Access Control) signaling or MAC CE (Medium Access Control Control Element).
  • the signal of the upper layer may be a signal of the RRC layer or a signal of the MAC layer.
  • the upper layer signal may be common RRC signaling.
  • the common RRC signaling may include at least some or all of the following features C1 to C3. Feature C1) Mapped to BCCH logical channel or CCCH logical channel Feature C2) Mapped to feature C3) PBCH containing at least a radioRelocationConfigCommon information element
  • the radioResourceConfigCommon information element may include information indicating a setting commonly used in the serving cell.
  • the settings commonly used in the serving cell may include at least the PRACH setting.
  • the PRACH setting may indicate at least one or more random access preamble indexes.
  • the PRACH setting may indicate at least the PRACH time / frequency resource.
  • the upper layer signal may be dedicated RRC signaling.
  • Dedicated RRC signaling may include at least some or all of the following features D1 to D2.
  • Feature D1) Map to DCCH logical channel Feature D2) Includes at least a radioResourceControlDedicated information element
  • the radioResourceControlDedicated information element may include at least information indicating a setting unique to the terminal device 1.
  • the radioResourceControlDedicated information element may include at least information indicating the setting of the BWP.
  • the BWP settings may at least indicate the frequency resources of the BWP.
  • the MIB, the first system information, and the second system information may be included in the common RRC signaling.
  • messages in the upper layer that are mapped to the DCCH logical channel and include at least the radioResourceConfigCommon may be included in the common RRC signaling.
  • the message of the upper layer which is mapped to the DCCH logical channel and does not include the radioResourceConfigCommon information element may be included in the dedicated RRC signaling.
  • the upper layer messages that are mapped to the DCCH logical channel and include at least the radioResourceControlDedicated information element may be included in the dedicated RRC signaling.
  • the first system information may at least indicate the time index of the SS (Synchronization Signal) block.
  • the SS block (SS block) is also referred to as an SS / PBCH block (SS / PBCH block).
  • the SS / PBCH block is also referred to as SS / PBCH.
  • the first system information may include at least information related to the PRACH resource.
  • the first system information may include at least information related to the initial connection settings.
  • the second system information may be system information other than the first system information.
  • the radioResourceControlDedicated information element may include at least information related to the PRACH resource.
  • the radioResourceConfigDedicated information element may include at least information related to the initial connection settings.
  • the uplink physical channel may correspond to a set of resource elements that carry information that occurs in the upper layers.
  • the uplink physical channel is a physical channel used in the uplink carrier. In the wireless communication system according to one aspect of the present embodiment, at least some or all of the following uplink physical channels are used.
  • ⁇ PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • Uplink control information may be used to transmit uplink control information (UCI: Uplink Control Information).
  • Uplink control information includes channel state information (CSI: Channel State Information), scheduling request (SR: Scheduling Request), transport block (TB: Transport block, MAC PDU: Medium Access Control, Digital Protocol DataU).
  • CSI Channel State Information
  • SR Scheduling Request
  • transport block TB
  • MAC PDU Medium Access Control
  • Digital Protocol DataU Digital Protocol DataU
  • -In includes a part or all of HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement) corresponding to Sharp Channel
  • PDSCH Physical Downlink Shared Channel.
  • the uplink control information may include information not described above.
  • HARQ-ACK may include at least the HARQ-ACK bit (HARQ-ACK information) corresponding to one transport block.
  • the HARQ-ACK bit may indicate ACK (acknowledgment) or NACK (negative-acknowledgment) corresponding to one or more transport blocks.
  • the HARQ-ACK may include at least a HARQ-ACK codebook containing one or more HARQ-ACK bits.
  • the fact that the HARQ-ACK bit corresponds to one or more transport blocks may mean that the HARQ-ACK bit corresponds to a PDSCH containing the one or more transport blocks.
  • the HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in the transport block.
  • CBG Code Block Group
  • Scheduling Request may be at least used to request PUSCH resources for initial transmission.
  • the scheduling request bit may be used to indicate either a positive SR (positive SR) or a negative SR (negative SR).
  • the fact that the scheduling request bit indicates a positive SR is also referred to as "a positive SR is transmitted".
  • a positive SR may indicate that terminal device 1 requires PUSCH resources for initial transmission.
  • a positive SR may indicate that the scheduling request is Triggered by the upper layer.
  • a positive SR may be sent when the higher layer instructs it to send a scheduling request.
  • the fact that the scheduling request bit indicates a negative SR is also referred to as "a negative SR is transmitted”.
  • a negative SR may indicate that terminal device 1 does not require PUSCH resources for initial transmission.
  • a negative SR may indicate that the scheduling request is not triggered by the upper layer. Negative SRs may be sent if the higher layer does not instruct them to send scheduling requests.
  • the channel state information may include at least a part or all of a channel quality index (CQI: Channel Quality Indicator), a precoder matrix index (PMI: Precoder Matrix Indicator), and a rank index (RI: Rank Indicator).
  • CQI is an index related to the quality of the channel (for example, propagation intensity)
  • PMI is an index indicating the precoder.
  • RI is an index that indicates the transmission rank (or the number of transmission layers).
  • PUCCH may support one or more PUCCH formats (PUCCH format 0 to PUCCH format 4).
  • the PUCCH format may be mapped to the PUCCH and transmitted.
  • the PUCCH format may be transmitted in PUCCH.
  • the transmission of the PUCCH format may mean that the PUCCH is transmitted.
  • PUSCH is at least used to transmit transport blocks (TB, MAC PDU, UL-SCH, PUSCH). PUSCH may be used to transmit at least some or all of the transport block, HARQ-ACK, channel state information, and scheduling requests. PUSCH is at least used to send the random access message 3. PUSCH may be used to transmit information not described above.
  • PRACH is at least used to send a random access preamble (random access message 1).
  • the PRACH is part or all of the initial connection establishment procedure, the handover procedure, the connection re-station procedure, the synchronization for the transmission of the PUSCH (timing adjustment), and the request for resources for the PUSCH. May be used at least to indicate.
  • the random access preamble may be used to notify the base station device 3 of an index (random access preamble index) given by the upper layer of the terminal device 1.
  • the following uplink physical signals are used in uplink wireless communication.
  • the uplink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
  • -UL DMRS UpLink Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • -UL PTRS UpLink Phase Tracking Reference Signal
  • UL DMRS is associated with PUSCH and / or PUCCH transmission.
  • UL DMRS is multiplexed with PUSCH or PUCCH.
  • the base station apparatus 3 may use UL DMRS to correct the propagation path of PUSCH or PUCCH.
  • transmitting both the PUSCH and the UL DMRS related to the PUSCH is referred to simply as transmitting the PUSCH.
  • transmitting PUCCH and UL DMRS related to the PUCCH together is referred to simply as transmitting PUCCH.
  • UL DMRS related to PUSCH is also referred to as UL DMRS for PUSCH.
  • UL DMRS related to PUCCH is also referred to as UL DMRS for PUCCH.
  • the base station apparatus 3 may use SRS for measuring the channel state.
  • the SRS may be transmitted at the end of the subframe in the uplink slot, or at a predetermined number of OFDM symbols from the end.
  • the UL PTRS may be at least a reference signal used for phase tracking.
  • the UL PTRS may be associated with a UL DMRS group that includes at least the antenna ports used for one or more UL DMRSs.
  • the association between the UL PTRS and the UL DMRS group may be that the antenna port of the UL PTRS and a part or all of the antenna ports included in the UL DMRS group are at least QCL.
  • the UL DMRS group may be identified at least based on the antenna port with the smallest index in the UL DMRS included in the UL DMRS group.
  • UL PTRS may be mapped to the antenna port with the smallest index in one or more antenna ports to which one codeword is mapped.
  • UL PTRS may be mapped to the first layer if one codeword is at least mapped to the first layer and the second layer. UL PTRS does not have to be mapped to the second layer.
  • the index of the antenna port to which the UL PTRS is mapped may be given at least based on the downlink control information.
  • uplink physical signals not described above may be used.
  • the following downlink physical channels are used in the downlink wireless communication from the base station device 3 to the terminal device 1.
  • the downlink physical channel is used by the physical layer to transmit the information output from the upper layer.
  • ⁇ PBCH Physical Broadcast Channel
  • -PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH is at least used to transmit a master information block (MIB: Master Information Block, BCH, Broadcast Channel).
  • MIB Master Information Block, BCH, Broadcast Channel
  • PBCH may be transmitted based on a predetermined transmission interval.
  • PBCH may be transmitted at intervals of 80 ms.
  • PBCH may be transmitted at intervals of 160 ms.
  • the content of the information contained in the PBCH may be updated every 80 ms. Some or all of the information contained in the PBCH may be updated every 160 ms.
  • the PBCH may be composed of 288 subcarriers.
  • the PBCH may be configured to include 2, 3, or 4 OFDM symbols.
  • the MIB may include information related to the identifier (index) of the synchronization signal.
  • the MIB may include information indicating at least a portion of the slot number, subframe number, and / or radio frame number through which the PBCH is transmitted.
  • the PDCCH is at least used for transmitting downlink control information (DCI: Downlink Control Information).
  • the PDCCH may be transmitted including at least downlink control information.
  • the PDCCH may include downlink control information.
  • the downlink control information is also referred to as DCI format.
  • the downlink control information may include at least one of a downlink grant (DL grant) and an uplink grant (UL grant).
  • the DCI format used for PDSCH scheduling is also referred to as the downlink DCI format.
  • the DCI format used for PUSCH scheduling is also referred to as the uplink DCI format.
  • the downlink grant is also referred to as a downlink assignment (DL assignment) or a downlink assignment (DL allocation).
  • the uplink DCI format includes at least one or both of DCI format 0_0 and DCI format 0_1.
  • DCI format 0_0 is configured to include at least part or all of 1A to 1F.
  • CSI request field CSI request field
  • the DCI format specific field may be at least used to indicate whether the DCI format including the DCI format specific field corresponds to one or more DCI formats.
  • the one or more DCI formats may be given at least on the basis of DCI format 1_1, DCI format 1-11, DCI format 0_0, and / or part or all of DCI format 0_1.
  • the frequency domain resource allocation field may at least be used to indicate the allocation of frequency resources for the PUSCH scheduled by the DCI format that includes the frequency domain resource allocation field.
  • the frequency domain resource allocation field is also referred to as an FDRA (Frequency Domain Resource Allocation) field.
  • the time domain resource allocation field may at least be used to indicate the allocation of time resources for the PUSCH scheduled by the DCI format that includes the time domain resource allocation field.
  • the frequency hopping flag field may at least be used to indicate whether frequency hopping is applied to the PUSCH scheduled by the DCI format including the frequency hopping flag field.
  • the MCS field may be used at least to indicate the modulation scheme for PUSCH scheduled by the DCI format containing the MCS field and / or part or all of the target code rate.
  • the target code rate may be the target code rate for the transport block of the PUSCH.
  • the size of the transport block (TBS: Transport Block Size) may be given at least based on the target code rate.
  • the CSI request field is at least used to direct CSI reporting.
  • the size of the CSI request field may be a predetermined value.
  • the size of the CSI request field may be 0, 1 or 2 or 3.
  • DCI format 0-1 is configured to include at least part or all of 2A to 2H.
  • DCI format specific field 2B Frequency domain resource allocation field 2C) Time domain resource allocation field 2D) Frequency hopping flag field 2E) MCS field 2F) CSI request field (CSI request field) 2G) BWP field (BWP field) 2H) UL DAI field (downlink assignment index)
  • the UL DAI field is at least used to indicate the PDSCH transmission status.
  • the size of the UL DAI field may be 2 bits.
  • the UL DAI field indicates the size of the HARQ-ACK codebook transmitted by PUSCH.
  • the UL DAI field indicates the number of HARQ-ACKs included in the HARQ-ACK codebook transmitted by PUSCH.
  • the UL DAI field indicates the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by PUSCH.
  • the UL DAI field indicates the number of PDSCHs and SPS releases that include the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH.
  • the UL DAI field may indicate a value to which a modulo operation is applied. An example in which the UL DAI field has 2 bits will be described.
  • the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 0, "00" is displayed as the UL DAI field.
  • the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 1, "01" is indicated as the UL DAI field.
  • the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by PUSCH is 2, "10" is indicated as the UL DAI field.
  • the terminal device 1 interprets the UL DAI field in consideration of the total number of PDSCHs received. For example, the terminal device 1 has received four PDSCHs and receives a UL DAI field indicating "00". In this case, the terminal device 1 interprets that the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by the PUSCH indicated by the UL DAI field is four. For example, the terminal device 1 has received three PDSCHs and receives a UL DAI field indicating "00".
  • the terminal device 1 interprets that the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by the PUSCH indicated by the UL DAI field is four, and the terminal device 1 interprets that the number of PDSCHs is four. Judge that the reception was missed.
  • the BWP field may be used to indicate the uplink BWP to which the PUSCH scheduled in DCI format 0_1 is mapped.
  • the CSI request field is at least used to direct CSI reporting.
  • the size of the CSI request field may be given at least based on the upper layer parameter ReportTriggerSize.
  • the downlink DCI format includes at least one or both of DCI format 1_0 and DCI format 1_1.
  • DCI format 1_0 is configured to include at least part or all of 3A to 3H.
  • MCS field Modulation and Coding Scene field
  • the timing instruction field from PDSCH to HARQ feedback may be a field indicating timing K1.
  • the index of the slot containing the last OFDM symbol of the PDSCH is slot n
  • the index of the PUCCH containing at least HARQ-ACK corresponding to the transport block contained in the PDSCH or the slot containing the PUSCH is n + K1. May be good.
  • the index of the slot containing the last OFDM symbol of the PDSCH is slot n
  • the index of the included slot may be n + K1.
  • the PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ_feedback timing indicator field) may be referred to as a HARQ instruction field.
  • the PUCCH resource instruction field may be a field indicating an index of one or more PUCCH resources included in the PUCCH resource set.
  • the DCI format 1-11 is configured to include at least a part or all of 4A to 4J.
  • the BWP field may be used to indicate the downlink BWP to which the PDSCH scheduled in DCI format 1-11 is mapped.
  • DCI format 2_0 may be configured to include at least one or more slot format indicators (SFI: Slot Format Indicator).
  • SFI Slot Format Indicator
  • the downlink control information may include a slot format index (SFI: Slot Form Indicator).
  • SFI Slot Form Indicator
  • the terminal device 1 may determine that the received subframe (slot) not indicated by the SFI is a flexible subframe (slot). When the transmission of PUSCH is scheduled by UL grant to the flexible subframe (slot), the terminal device 1 processes the flexible subframe (slot) as an uplink subframe (slot).
  • the terminal device 1 monitors the PDCCH candidate in the flexible subframe (slot) and performs a process of detecting DL association. ..
  • the terminal device 1 processes the flexible subframe (slot) as a downlink subframe (slot).
  • downlink control information including downlink grant or uplink grant is transmitted / received by PDCCH including C-RNTI (Cell-Radio Network Temporary Identifier).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the number of resource blocks indicates the number of resource blocks in the frequency domain.
  • the downlink grant is at least used for scheduling one PDSCH in one serving cell.
  • the downlink grant is at least used for scheduling PDSCH in the same slot in which the downlink grant was transmitted.
  • the downlink grant may be used for scheduling PDSCH in a slot different from the slot in which the downlink grant was transmitted.
  • Uplink grants are used at least for scheduling one PUSCH in one serving cell.
  • the various DCI formats may further include fields different from the above-mentioned fields.
  • a field NFI: New Feedback Indicator field
  • a field NFI field
  • a field indicating whether or not to erase (flash) the HARQ-ACK bit stored in a recording medium such as a memory
  • a field indicating whether or not to include the retransmission of the transmitted HARQ-ACK codebook may be included.
  • a field (PGI: PDSCH Group ID field) indicating the PDSCH group to which the PDSCH scheduled by the DCI format belongs (associates) may be included.
  • a field (RPGI: Request PDSCH Group ID field) indicating a PDSCH group instructed to transmit HARQ-ACK information may be included.
  • a field (C-DAI: Counter Downlink Assignment Index field) indicating the cumulative number of transmitted PDCCHs may be included.
  • a field (T-DAI: Total Downlink Assignment Index field) indicating the total number of PDCCHs to be transmitted may be included.
  • the terminal device 1 may be associated with a PDSCH group identifier (PGI: PDSCHGroupID) for each PDSCH.
  • PGI PDSCH group identifier
  • the PGI of a PDSCH may be indicated at least based on the DCI format used to schedule the PDSCH.
  • a field indicating PGI may be included in the DCI format.
  • the PDSCH group may be a set of PDSCHs having the same PGI (PDSCH group identifier).
  • the PDSCH group may be one PDSCH or a set of one or more PDSCHs associated with the same PGI.
  • the number of PDSCH groups set for the terminal device 1 may be 1, 2, 3, 3, 4, or any other PDSCH group. It may be an integer greater than or equal to 0.
  • the requested PDSCH group may be a PDSCH group corresponding to the HARQ-ACK information transmitted (reported) via the next PUCCH or PUSCH.
  • the RPG (request PDSCH group) may include one PDSCH group or may include a plurality of PDSCH groups.
  • the RPG instructions may be given corresponding to each PDSCH group in the form of a bitmap, at least based on the DCI format.
  • the RPG may be indicated at least based on the RPGI field contained in the DCI format.
  • the terminal device 1 may generate a HARQ-ACK codebook for the instructed RPG and transmit (report) it via PUCCH or PUSCH.
  • the value of K1 (information or parameter indicated by the timing indicator field from PDSCH to HARQ feedback) indicated by the DCI format included in the PDCCH may be numerical or non-numerical. ) May be.
  • the numerical value means a value represented by a numerical value, for example, ⁇ 0, 1, 2, ... .. .. , 15 ⁇ .
  • a non-numeric value may mean a non-numeric value or may mean no numerical value.
  • the operation of the numerical value of K1 and the non-numerical value of K1 will be described.
  • the PDSCH scheduled in the DCI format is transmitted in the base station apparatus 3 in slot n and received in the terminal apparatus 1.
  • the terminal device 1 may transmit (report) HARQ-ACK information corresponding to the PDSCH in slot n + K1 via PUCCH or PUSCH. If the value of K1 indicated by the DCI format is non-numeric, the terminal device 1 may postpone reporting the HARQ-ACK information corresponding to the PDSCH. If the DCI format containing the PDSCH scheduling information indicates a non-numeric value of K1, the terminal device 1 may postpone reporting the HARQ-ACK information corresponding to the PDSCH.
  • the terminal device 1 stores the HARQ-ACK information in a recording medium such as a memory, does not transmit (report) the HARQ-ACK information via the next PUCCH or PUSCH, and does not transmit (report) the HARQ-ACK information other than the above-mentioned DCI format.
  • the transmission of the HARQ-ACK information may be triggered to transmit (report) the HARQ-ACK information based on at least the DCI format.
  • the non-numeric value of K1 may be included in the series of upper layer parameters.
  • the upper layer parameter may be the upper layer parameter dl-DataToUL-ACK.
  • the upper layer parameter may be an upper layer parameter different from the upper layer parameter dl-DataToUL-ACK.
  • the value of K1 may be a value indicated by a timing instruction field from PDSCH to HARQ feedback included in the DCI format in the series of upper layer parameters. For example, it is assumed that the sequence of upper layer parameters is set to ⁇ 0,1,2,3,4,5,15, non-numeric value ⁇ , and the number of bits of the timing instruction field from PDSCH to HARQ feedback is 3.
  • the code point “000” in the timing instruction field from PDSCH to HARQ feedback may indicate that the value of K1 is 0, and the code point “001” indicates that the value of K1 is 1.
  • the code point “111” may indicate that the value of K1 is a non-numeric value.
  • the sequence of upper layer parameters is set to ⁇ non-numeric value, 0,1,2,3,4,5,15 ⁇ and the number of bits of the timing instruction field from PDSCH to HARQ feedback is 3. If so, the code point “000” in the timing instruction field from PDSCH to HARQ feedback may indicate that the value of K1 is a non-numeric value, and the code point “001” may indicate that the value of K1 is 0. This may be indicated, or the code point “111” may indicate that the value of K1 is 15.
  • the HARQ-ACK bits (HARQ-ACK information) corresponding to the transport blocks transmitted and received in the downlink frequency band (frequency spectrum, carrier, component carrier) of the base station apparatus 3A are included in the DCI format in the above-mentioned various fields.
  • PDSCH-to-HARQ feedback timing indicator field, HARQ indicator field, PUCCH resource indicator field, NFI field, PGI field, RPGI field, C-DAI field, T-DAI field, UL DAI field It is transmitted and received in the uplink frequency band (frequency spectrum, carrier, component carrier) of the base station apparatus 3A by the above method.
  • the HARQ-ACK bit (HARQ-ACK information) corresponding to the transport block transmitted / received in the downlink frequency band (frequency spectrum, carrier, component carrier) of the base station device 3B is the uplink frequency band of the base station device 3A. It is transmitted and received using preset periodic resources in (frequency spectrum, carrier, component carrier).
  • the timing (time resource) for transmitting and receiving the HARQ-ACK bit (HARQ-ACK information) is not specified by the DCI format.
  • the resources (resource block, code) in the frequency domain in which the HARQ-ACK bit (HARQ-ACK information) is transmitted / received are not indicated by the DCI format.
  • the PDSCH group to which the transmitted / received HARQ-ACK bit (HARQ-ACK information) belongs is not indicated by the DCI format, and the HARQ-ACK bit (HARQ-ACK information) for each HARQ passage of the downlink of the base station device 3B.
  • the HARQ-ACK bit (HARQ-ACK information) corresponding to the transport block transmitted and received in the downlink frequency band of the base station device 3B is a HARQ-ACK codebook composed of HARQ-ACK bits corresponding to a plurality of HARQ processes. Is transmitted and received using. Each time this HARQ-ACK codebook is transmitted, the HARQ-ACK bit (HARQ-ACK information) held in the terminal device 1 for each HARQ-process is reset or flushed.
  • One physical channel may be mapped to one serving cell.
  • One physical channel may be mapped to one BWP set for one carrier contained in one serving cell.
  • the terminal device 1 may be set with one or more control resource sets (CORESET: Control REsource SET).
  • the terminal device 1 monitors the PDCCH in one or more control resource sets.
  • monitoring PDCCH in one or more control resource sets may include monitoring one or more PDCCHs corresponding to each of one or more control resource sets.
  • the PDCCH may include one or more sets of PDCCH candidates and / or PDCCH candidates. Monitoring the PDCCH may also include monitoring and detecting the PDCCH and / or the DCI format transmitted via the PDCCH.
  • the control resource set may be a time-frequency region in which one or more PDCCHs can be mapped.
  • the control resource set may be an area in which the terminal device 1 monitors the PDCCH.
  • the control resource set may be composed of continuous resources (Located resources).
  • the control resource set may be composed of discontinuous resources.
  • the unit of mapping of the control resource set may be a resource block.
  • the unit of mapping of the control resource set may be 6 resource blocks.
  • the control resource set mapping unit may be an OFDM symbol.
  • the unit of mapping of the control resource set may be 1 OFDM symbol.
  • the mapping of the control resource set to the resource block may be given at least based on the upper layer parameters.
  • the upper layer parameter may include a bitmap for a group of resource blocks (RBG: Resource Block Group).
  • the group of resource blocks may be given by six consecutive resource blocks.
  • the number of OFDM symbols that make up the control resource set may be given at least based on the upper layer parameters. For example, the start position of the OFDM symbols constituting the control resource set is notified from the base station apparatus 3 to the terminal apparatus 1 by using the signaling of the upper layer. For example, the end position of the OFDM symbols constituting the control resource set is notified from the base station apparatus 3 to the terminal apparatus 1 by using the signaling of the upper layer.
  • a certain control resource set may be a common control resource set (Common control resource set).
  • the common control resource set may be a control resource set that is commonly set for a plurality of terminal devices 1.
  • the common control resource set may be given at least based on the MIB, the first system information, the second system information, the common RRC signaling, and some or all of the cell IDs.
  • the time resources and / or frequency resources of the control resource set set to monitor the PDCCH used for scheduling the first system information may be given at least based on the MIB.
  • the control resource set set in the MIB is also called CORESET # 0.
  • CORESET # 0 may be the control resource set of index # 0.
  • a certain control resource set may be a dedicated control resource set (Dedicated control resource set).
  • the dedicated control resource set may be a control resource set that is set to be used exclusively for the terminal device 1.
  • the dedicated control resource set may be given based on at least some or all of the dedicated RRC signaling and C-RNTI values.
  • a plurality of control resource sets may be configured in the terminal device 1, and an index (control resource set index) may be assigned to each control resource set.
  • One or more control channel elements (CCEs) may be configured in the control resource set, and each CCE may be given an index (CCE index).
  • CCE may be configured to include one or more groups of REGs.
  • the REG group is also referred to as the REG bundle.
  • the number of REGs that make up one REG group is called the Bundle size.
  • the REG Bundle size may be any of 1, 2, 3, and 6.
  • an interleaver may be applied in units of REG bundles.
  • the terminal device 1 may assume that the precoders applied to the REs in the REG group are the same.
  • the terminal device 1 can perform channel estimation on the assumption that the precoders applied to REs in the REG group are the same.
  • the terminal device 1 may assume that the precoders applied to the REs between the REG groups are not the same.
  • the terminal device 1 does not have to assume that the precoders applied to REs between groups of REGs are the same.
  • "Between REG groups” may be paraphrased as "between two different REG groups”.
  • the terminal device 1 can perform channel estimation on the assumption that the precoders applied to REs between groups of REGs are not the same.
  • the set of PDCCH candidates (PDCCH candidate) monitored by the terminal device 1 is defined from the viewpoint of the search area (Search space). That is, the set of PDCCH candidates monitored by the terminal device 1 is given by the search area.
  • the search area may be configured to include one or more PDCCH candidates at one or more aggregation levels.
  • the aggregation level of PDCCH candidates may indicate the number of CCEs constituting the PDCCH.
  • PDDCH candidates may be mapped to one or more CCEs.
  • the number of CCEs that make up the PDCCH candidate is also referred to as the aggregation level (AL).
  • A aggregation level
  • one PDCCH candidate is composed of agglomeration of a plurality of CCEs
  • one PDCCH candidate is composed of a plurality of CCEs having consecutive CCE numbers.
  • Aggregation level set of PDCCH candidates of AL X is referred to as the search area of the aggregation level AL X. That is, the search area of the aggregation level AL X is aggregation level may be configured to include one or more PDCCH candidates of AL X.
  • the search region may also include multiple aggregation level PDCCH candidates.
  • CSS may include multiple aggregation level PDCCH candidates.
  • the USS may include multiple aggregation level PDCCH candidates.
  • a set of aggregation levels of PDCCH candidates included in CSS and a set of aggregation levels of PDCCH candidates included in USS may be specified /
  • the terminal device 1 may monitor at least one or a plurality of search areas in a slot in which DRX (Discontinuity reception) is not set. DRX may be given at least based on the upper layer parameters.
  • the terminal device 1 may monitor at least one or a plurality of search area sets (Search paceset) in a slot in which DRX is not set.
  • a plurality of search area sets may be configured in the terminal device 1.
  • An index search area set index
  • the search area set may be configured to include at least one or a plurality of search areas.
  • An index search area index
  • search area index may be assigned to each search area.
  • Each of the search area sets may be associated with at least one control resource set. Each of the search area sets may be included in one control resource set. For each of the search area sets, an index of the control resource set associated with the search area set may be given.
  • the search area may have two types, CSS (Common Search Space, common search area) and USS (UE-specific Search Space).
  • the CSS may be a search area that is commonly set for a plurality of terminal devices 1.
  • the USS may be a search area that includes settings that are used exclusively for the individual terminal device 1.
  • the CSS may be given at least based on the synchronization signal, MIB, first system information, second system information, common RRC signaling, dedicated RRC signaling, cell ID, and the like. USS may be given at least based on dedicated RRC signaling and / or C-RNTI values.
  • the CSS may be a search area set as a common resource (control resource element) for a plurality of terminal devices 1.
  • the USS may be a search area set in a resource (control resource element) for each individual terminal device 1.
  • the CSS is for type 0PDCCH CSS for SI-RNTI scrambled DCI format used to transmit system information in the primary cell, and for RA-RNTI, TC-RNTI scrambled DCI format used for initial access.
  • Type 1 PDCCH CSS may be used.
  • a PDCCH CSS of the type for the DCI format scrambled by CC-RNTI used for Accessed Access may be used.
  • the terminal device 1 can monitor PDCCH candidates in those search areas.
  • the DCI format scrambled by a predetermined RNTI may be a DCI format to which a CRC (Cyclic Redundancy Check) scrambled by a predetermined RNTI is added.
  • CRC Cyclic Redundancy Check
  • the information related to the reception of the PDCCH may include the information related to the ID indicating the destination of the PDCCH.
  • the ID indicating the destination of the PDCCH may be an ID used for scrambling the CRC bit added to the PDCCH.
  • the ID that indicates the destination of the PDCCH is also referred to as RNTI (Radio Network Temporary Identifier).
  • the information related to the reception of the PDCCH may include the information related to the ID used for scrambling the CRC bit added to the PDCCH.
  • the terminal device 1 can attempt to receive the PDCCH based on at least the information related to the ID contained in the PBCH.
  • RNTI is SI-RNTI (System Information-RNTI), P-RNTI (Paging-RNTI), C-RNTI (Common-RNTI), Temporary C-RNTI (TC-RNTI), RA-RNTI (Random) , CC-RNTI (Common Control-RNTI), INT-RNTI (Interruption-RNTI) may be included.
  • SI-RNTI is at least used for scheduling PDSCHs transmitted containing system information.
  • P-RNTI is at least used for scheduling PDSCHs transmitted containing information such as paging information and / or system information change notifications.
  • C-RNTI is at least used to schedule user data for RRC-connected terminal equipment 1.
  • Temporary C-RNTI is at least used for scheduling the random access message 4.
  • Temporary C-RNTI is at least used to schedule a PDSCH containing data that maps to CCCH in a logical channel.
  • RA-RNTI is at least used for scheduling random access message 2.
  • CC-RNTI is at least used for transmitting and receiving control information of Enhanced access.
  • INT-RNTI is at least used to indicate pre-emption on the downlink.
  • the PDCCH and / or DCI included in the CSS does not include a CIF (Carrier Indicator Field) indicating which serving cell (or which component carrier) the PDCCH / DCI schedules the PDSCH or PUSCH. You may.
  • CIF Carrier Indicator Field
  • carrier aggregation carrier aggregation
  • carrier aggregation carrier aggregation
  • the PDCCH and / or DCI contained in the USS for a serving cell includes a CIF indicating which serving cell and / or which component carrier the PDCCH / DCI is scheduling a PDSCH or PUSCH for. May be good.
  • the PDCCH / / or DCI included in the USS includes which serving cell and / or the PDCCH / DCI.
  • a CIF indicating which component carrier the PDSCH or PUSCH is scheduled for may not be included.
  • the common control resource set may include CSS.
  • the common control resource set may include both CSS and USS.
  • the dedicated control resource set may include USS.
  • the dedicated control resource set may include CSS.
  • the physical resources in the search area are composed of control channel configuration units (CCE: Control Channel Elements).
  • CCE is composed of a predetermined number of resource element groups (REG: Resource Element Group).
  • REG Resource Element Group
  • CCE may consist of 6 REGs.
  • the REG may be composed of one PRB (Physical Resource Block) 1 OFDM symbol. That is, the REG may be configured to include 12 resource elements (RE: Resource Element).
  • PRB is also simply referred to as RB (Resource Block).
  • the terminal device 1 can detect the PDCCH and / or DCI for the terminal device 1 by blindly detecting the PDCCH candidate included in the search area in the control resource set.
  • the number of blind detections for one control resource set in one serving cell and / or one component carrier is determined based on the type of search area for PDCCH included in the control resource set, the type of aggregation level, and the number of PDCCH candidates. May be done.
  • the type of search region may include at least one of CSS and / or USS and / or UGSS (UE Group SS) and / or GCSS (Group CSS).
  • the type of aggregation level indicates the maximum aggregation level supported for the CCE constituting the search area, and is at least one of ⁇ 1, 2, 4, 8, ..., X ⁇ (X is a predetermined value). It may be specified / set from the beginning.
  • the number of PDCCH candidates may indicate the number of PDCCH candidates for a certain aggregation level. That is, the number of PDCCH candidates may be defined / set for each of the plurality of aggregation levels.
  • the UGSS may be a search area commonly assigned to one or a plurality of terminal devices 1.
  • the GCSS may be a search region in which a DCI containing parameters related to CSS is mapped to one or more terminal devices 1.
  • the aggregation level indicates the aggregation level of a predetermined number of CCEs, and is related to the total number of CCEs constituting one PDCCH and / or the search area.
  • the size of the aggregation level may be associated with the coverage corresponding to the PDCCH and / or the search area or the size of the DCI included in the PDCCH and / or the search area (DCI format size, payload size).
  • start position (start symbol) of the PDCCH symbol When the start position (start symbol) of the PDCCH symbol is set for one control resource set, and more than one PDCCH in the control resource set can be detected in a predetermined period. May be set for the time domain corresponding to each start symbol, the type of search area for PDCCH included in the control resource set, the type of aggregation level, and the number of PDCCH candidates.
  • the type of search area, the type of aggregation level, and the number of PDCCH candidates for the PDCCH included in the control resource set may be set for each control resource set, and the DCI and / or upper layer signal (RRC signaling) may be set.
  • RRC signaling DCI and / or upper layer signal
  • the number of PDCCH candidates may be the number of PDCCH candidates for a predetermined period.
  • the predetermined period may be 1 millisecond.
  • the predetermined period may be 1 microsecond.
  • the predetermined period may be a period of one slot.
  • the predetermined period may be the period of one OFDM symbol.
  • start symbol When there are more than one start position (start symbol) of the PDCCH symbol for one control resource set, that is, when there are a plurality of timings for blind detection (monitoring) of the PDCCH in a predetermined period,
  • the type of search area for PDCCH included in the control resource set For the time domain corresponding to each start symbol, the type of search area for PDCCH included in the control resource set, the type of aggregation level, and the number of PDCCH candidates may be set respectively.
  • the type of search area, the type of aggregation level, and the number of PDCCH candidates for the PDCCH included in the control resource set may be set for each control resource set, and may be set via the DCI and / or the signal of the upper layer. It may be provided / set, or it may be specified / set in advance by the specifications.
  • the number to be reduced from the predetermined number of PDCCH candidates may be defined / set for each aggregation level.
  • the terminal device 1 may transmit / notify the base station device 3 of the capability information related to the blind detection.
  • the terminal device 1 may transmit / notify the base station device 3 of the number of PDCCH candidates that can be processed in one subframe as capability information related to the PDCCH.
  • the terminal device 1 may transmit / notify the base station device 3 of the capability information related to blind detection when more control resource sets than a predetermined number can be set for one or more serving cells / component carriers. good.
  • the terminal device 1 transmits capacity information related to blind detection to the base station device 3 when a predetermined number of control resource sets can be set for a predetermined period of one or more serving cells / component carriers. You may notify.
  • the ability information related to the blind detection may include information indicating the maximum number of blind detections in a predetermined period.
  • the ability information related to the blind detection may include information indicating that the PDCCH candidates can be reduced.
  • the capability information related to the blind detection may include information indicating the maximum number of control resource sets that can be blind detected in a predetermined period.
  • the maximum number of control resource sets and the maximum number of serving cells and / or component carriers capable of monitoring PDCCH may be set as individual parameters or as common parameters, respectively.
  • the capability information related to the blind detection may include information indicating the maximum number of control resource sets capable of simultaneously performing blind detection in a predetermined period.
  • the terminal device 1 If the terminal device 1 does not support the ability to detect more control resource sets (blind detection) than the predetermined number in a predetermined period, the terminal device 1 transmits / notifies the ability information related to the blind detection. It does not have to be.
  • the base station apparatus 3 may make settings related to the control resource set and transmit the PDCCH so as not to exceed a predetermined number for the blind detection. ..
  • the settings related to the control resource set include a parameter indicating an index (ControlResourceSetId) that identifies the control resource set. Further, the setting related to the control resource set may include a parameter indicating the frequency resource area (the number of resource blocks constituting the control resource set) of the control resource set. In addition, the settings related to the control resource set may include a parameter indicating the type of mapping from CCE to REG. In addition, the settings related to the control resource set may include the REG bundle size.
  • RRC signaling may be used to send and receive messages indicating settings for the control resource set.
  • SIBs may be used to send and receive messages indicating settings related to control resource sets.
  • the MIB may be used to send and receive messages indicating settings related to the control resource set.
  • the settings related to the search area include a parameter indicating an index that identifies the search area (search area index).
  • the settings related to the search area include a parameter indicating the index of the control resource set in which the search area is located.
  • the settings related to the search area may include parameters indicating the period and offset of the slot in which the search area is arranged.
  • the settings related to the search area may include a parameter indicating the number of slots in which the search area is continuously arranged.
  • the settings related to the search area may include a parameter indicating an OFDM symbol in the slot in which the PDCCH candidate is monitored.
  • the settings related to the search area may include a parameter indicating the number of PDCCH candidates to be monitored for each CCE aggregation level.
  • the settings related to the search area may include a parameter indicating the DCI format to be monitored.
  • the settings for the search area may include parameters indicating the type of search area (CSS or USS).
  • RRC signaling may be used to send and receive messages indicating settings relating to the search area.
  • SIBs may be used to send and receive messages indicating settings related to the search area.
  • a MIB may be used to send and receive messages indicating settings related to the search area.
  • the PDSCH is at least used to send / receive transport blocks.
  • the PDSCH may at least be used to send / receive a random access message 2 (random access response).
  • the PDSCH may at least be used to transmit / receive system information, including parameters used for initial access.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
  • SS Synchronization signal
  • DL DMRS DownLink Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DL PTRS DownLink Phase Tracking Reference Signal
  • the synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and / or the time domain.
  • the synchronization signal includes PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
  • the SS block (SS / PBCH block) is composed of PSS, SSS, and at least a part or all of PBCH.
  • DL DMRS is associated with the transmission of PBCH, PDCCH, and / or PDSCH.
  • DL DMRS is multiplexed on PBCH, PDCCH, and / or PDSCH.
  • the terminal device 1 may use the PBCH, the PDCCH, or the DL DMRS corresponding to the PDSCH in order to correct the propagation path of the PBCH, PDCCH, or PDSCH.
  • the terminal device 1 may determine that the base station device 3 is transmitting a signal based on the detection of DL DMRS.
  • CSI-RS may be at least a signal used to calculate channel state information.
  • the pattern of CSI-RS assumed by the terminal device 1 may be given by at least the upper layer parameters.
  • the PTRS may be at least a signal used to compensate for phase noise.
  • the pattern of PTRS assumed by the terminal device 1 may be given at least based on the upper layer parameters and / or DCI.
  • the DL PTRS may be associated with a DL DMRS group that includes at least the antenna ports used for one or more DL DMRSs.
  • the downlink physical channel and the downlink physical signal are also referred to as a downlink physical signal.
  • Uplink physical channels and uplink physical signals are also referred to as uplink signals.
  • the downlink signal and the uplink signal are also collectively referred to as a physical signal.
  • the downlink signal and the uplink signal are also collectively referred to as a signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH Broadcast Channel
  • UL-SCH Uplink-Shared Channel
  • DL-SCH Downlink-Shared Channel
  • the channel used in the medium access control (MAC) layer is called a transport channel.
  • the unit of the transport channel used in the MAC layer is also called a transport block (TB) or MAC PDU.
  • HARQ Hybrid Automatic Repeat Request
  • a transport block is a unit of data that the MAC layer passes to the physical layer (deliver). In the physical layer, the transport block is mapped to codewords, and modulation processing is performed for each codeword.
  • the base station device 3 and the terminal device 1 exchange (transmit / receive) signals of the upper layer in the upper layer (higher layer).
  • the base station device 3 and the terminal device 1 may perform RRC signaling (RRC message: Radio Response Control message; RRC information: Radio Response Control) layer in the radio resource control (RRC: Radio Resource Control) layer. ..
  • RRC Radio Resource Control
  • the base station device 3 and the terminal device 1 may transmit and receive MAC CE (Control Element) in the MAC layer.
  • RRC signaling and / or MAC CE is also referred to as a higher layer signal (higher layer signaling).
  • the PUSCH and PDSCH may at least be used to transmit RRC signaling and / or MAC CE.
  • the RRC signaling transmitted from the base station device 3 by PDSCH may be a signal common to a plurality of terminal devices 1 in the serving cell. Signaling common to a plurality of terminal devices 1 in a serving cell is also referred to as common RRC signaling.
  • the RRC signaling transmitted from the base station apparatus 3 by PDSCH may be a dedicated signaling (also referred to as dedicated signaling or UE specific signaling) for a certain terminal apparatus 1. Signaling dedicated to the terminal device 1 is also referred to as dedicated RRC signaling.
  • the upper layer parameters unique to the serving cell may be transmitted / received using common signaling to a plurality of terminal devices 1 in the serving cell or dedicated signaling to a certain terminal device 1.
  • UE-specific upper layer parameters may be transmitted / received to a terminal device 1 using dedicated signaling.
  • BCCH Broadcast Control Channel
  • CCCH Control Control Channel
  • DCCH Dedicated Control Channel
  • BCCH is a higher layer channel used to transmit / receive MIBs.
  • CCCH Common Control Channel
  • CCCH Common Control Channel
  • the DCCH is at least an upper layer channel used for transmitting / receiving dedicated control information (dedicated control information) to the terminal device 1.
  • the DCCH may be used, for example, for the terminal device 1 connected by RRC.
  • BCCH in the logical channel may be mapped to BCH, DL-SCH, or UL-SCH in the transport channel.
  • CCCH on the logical channel may be mapped to DL-SCH or UL-SCH on the transport channel.
  • DCCH on the logical channel may be mapped to DL-SCH or UL-SCH on the transport channel.
  • the UL-SCH in the transport channel may be mapped to the PUSCH in the physical channel.
  • the DL-SCH in the transport channel may be mapped to the PDSCH in the physical channel.
  • BCH in the transport channel may be mapped to PBCH in the physical channel.
  • FIG. 5 is a diagram showing an example of the configuration of one REG according to one aspect of the present embodiment.
  • the REG may be composed of one OFDM symbol of one PRB. That is, the REG may be composed of 12 consecutive REs in the frequency domain. A part of the plurality of REs constituting the REG may be a RE to which the downlink control information is not mapped.
  • the REG may be configured to include a RE to which the downlink control information is not mapped, or may be configured to include a RE to which the downlink control information is not mapped.
  • the RE to which the downlink control information is not mapped may be a RE to which the reference signal is mapped, a RE to which a channel other than the control channel is mapped, or a terminal device in which the control channel is not mapped. It may be the RE assumed by 1.
  • FIG. 6 is a diagram showing a configuration example of CCE according to one aspect of the present embodiment.
  • the CCE may be composed of 6 REGs.
  • CCE CCE # 0
  • CCE CCE # 0
  • CCE may be composed of continuously mapped REGs (such mappings may be referred to as localized mapping) (such mappings).
  • not all REGs constituting the CCE are necessarily continuous in the frequency domain.
  • each resource block constituting each REG having consecutive numbers is Not continuous in the frequency domain.
  • the CCE CCE is as shown in FIG. 6 (b).
  • # 1) may be composed of a group of REGs that are continuously mapped.
  • CCE (CCE # 2) may be composed of discontinuously mapped REGs (such mappings may be referred to as Distrived mapping) (such.
  • the mapping may be referred to as interleaved CCE-to-REG mapping) (such mapping may be referred to as interleaved mapping).
  • the REGs that make up the CCE using interleavers may be discontinuously mapped to resources in the time frequency domain.
  • a control resource set is composed of a plurality of OFDM symbols and a plurality of REGs constituting one CCE are arranged over a plurality of time intervals (OFDM symbols)
  • the CCE (CCE) is as shown in FIG. 6 (d).
  • the CCE (CCE # 3) may be composed of REGs in which REGs of different time intervals (OFDM symbols) are mixed and mapped discontinuously.
  • the CCE (CCE # 4) may be composed of REGs that are distributed and mapped in groups of a plurality of REGs.
  • the CCE (CCE # 5) may be composed of REGs that are distributed and mapped in groups of a plurality of REGs.
  • FIG. 7 is a diagram showing an example of the number of REGs constituting the PDCCH candidate and the REGs constituting the group of REGs according to one aspect of the present embodiment.
  • the PDCCH candidate is mapped to one OFDM symbol, and three REG groups (REG group) including two REGs are configured. That is, in the example shown in FIG. 7A, one REG group is composed of two REGs.
  • the number of REGs that make up a group of REGs in the frequency domain may include a divisor of the number of PRBs mapped in the frequency direction.
  • the number of REGs constituting the group of REGs in the frequency domain may be 1, 2, 3, or 6.
  • PDCCH candidates are mapped to two OFDM symbols, and three REG groups including two REGs are configured.
  • the number of REGs constituting the group of REGs in the frequency domain may be either 1 or 3.
  • FIG. 8 is a schematic block diagram showing the configuration of the terminal device 1 according to one aspect of the present embodiment.
  • the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the radio transmission / reception unit 10 includes at least a part or all of an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 includes at least a part or all of the medium access control layer processing unit 15 and the radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the physical layer processing unit includes a decoding unit.
  • the receiving unit (also referred to as the receiving processing unit) of the terminal device 1 receives the PDCCH.
  • the decoding unit of the terminal device 1 decodes the received PDCCH. More specifically, the decoding unit of the terminal device 1 performs blind decoding processing on the received signal of the resource corresponding to the USS PDCCH candidate.
  • the decoding unit of the terminal device 1 performs brand decoding processing on the received signal of the resource corresponding to the PDCCH candidate of CSS.
  • the reception processing unit of the terminal device 1 monitors PDCCH candidates in the control resource set.
  • the reception processing unit of the terminal device 1 monitors PDCCH candidates in the control resource set.
  • the reception processing unit of the terminal device 1 monitors PDCCH candidates in the control resource set of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A.
  • the reception processing unit of the terminal device 1 monitors PDCCH candidates within the control resource set of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3B.
  • the receiving unit of the terminal device 1 receives the PDSCH.
  • the reception processing unit of the terminal device 1 performs a process of receiving the PDSCH in the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A.
  • the reception processing unit of the terminal device 1 performs a process of receiving the PDSCH in the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3B.
  • the reception processing unit of the terminal device 1 performs processing such as demodulation and decoding on the PDSCH.
  • the transmission unit (also referred to as the transmission processing unit) of the terminal device 1 transmits HARQ-ACK.
  • the transmission processing unit of the terminal device 1 transmits HARQ-ACK to the PDSCH.
  • the transmission processing unit of the terminal device 1 transmits HARQ-ACK in the uplink frequency band (cell, component carrier, carrier) managed by the base station device 3A.
  • the transmission processing unit of the terminal device 1 includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band (downlink frequency band) managed by the base station device 3B.
  • HARQ-ACK for PDSCH of cell, component carrier, carrier) is transmitted.
  • the transmission processing unit of the terminal device 1 includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band (downlink frequency band) managed by the base station device 3B.
  • HARQ-ACK for the PDSCH of the cell, component carrier, carrier) is transmitted in the uplink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3A.
  • the transmission processing unit of the terminal device 1 transmits HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A by the first method, and manages it by the base station device 3B.
  • the HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) to be performed is transmitted by the second method.
  • the upper layer processing unit 14 outputs the uplink data (transport block) generated by the user's operation or the like to the wireless transmission / reception unit 10.
  • the upper layer processing unit 14 processes the MAC layer, the packet data integration protocol (PDCP: Packet Data Communication Protocol) layer, the wireless link control (RLC: Radio Link Control) layer, and the RRC layer.
  • PDCP Packet Data Communication Protocol
  • RLC Radio Link Control
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 processes the MAC layer.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 processes the RRC layer.
  • the wireless resource control layer processing unit 16 manages various setting information / parameters of its own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the signal of the upper layer received from the base station apparatus 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on the information indicating various setting information / parameters received from the base station apparatus 3.
  • the setting information may include information related to processing or setting of a physical channel, a physical signal (that is, a physical layer), a MAC layer, a PDCP layer, an RLC layer, and an RRC layer.
  • the parameter may be an upper layer parameter.
  • the radio resource control layer processing unit 16 sets the control resource set based on the RRC signaling received from the base station device 3.
  • the radio resource control layer processing unit 16 sets a search area in the control resource set.
  • the radio resource control layer processing unit 16 sets PDCCH candidates to be monitored in the control resource set.
  • the radio resource control layer processing unit 16 sets the number of PDCCH candidates monitored in the control resource set.
  • the radio resource control layer processing unit 16 sets the Aggression level of the PDCCH candidate monitored in the control resource set.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, coding, and decoding.
  • the wireless transmission / reception unit 10 separates, demodulates, and decodes the received physical signal, and outputs the decoded information to the upper layer processing unit 14.
  • the wireless transmission / reception unit 10 generates a physical signal by modulating, encoding, and generating a baseband signal (converting it into a time continuous signal), and transmits the physical signal to the base station device 3.
  • the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down conversion: down cover), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs a fast Fourier transform (FFT: Fast Fourier Transform) on the signal from which the CP has been removed, and outputs a signal in the frequency domain. Extract.
  • FFT Fast Fourier Transform
  • the baseband unit 13 performs inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds CP to the generated OFDM symbol, generates a baseband digital signal, and basebands the data. Converts a band digital signal into an analog signal.
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT inverse fast Fourier transform
  • the RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, upconverts the analog signal to the carrier frequency, and transmits the analog signal via the antenna unit 11. do. Further, the RF unit 12 amplifies the electric power. Further, the RF unit 12 may have a function of controlling the transmission power.
  • the RF unit 12 is also referred to as a transmission power control unit.
  • the terminal device 1 receives the PDCCH.
  • the terminal device 1 receives the PDSCH.
  • the radio resource control layer processing unit 16 sets the control resource set.
  • the radio resource control layer processing unit 16 sets the search area.
  • the radio resource control layer processing unit 16 sets a control resource set based on RRC signaling.
  • the radio resource control layer processing unit 16 sets a search area based on RRC signaling.
  • the receiving unit of the terminal device 1 monitors a plurality of PDCCH candidates within the search area of the set control resource set.
  • the receiving unit of the terminal device 1 monitors a plurality of PDCCH candidates within the search area of the control resource set in a certain slot.
  • the decoding unit of the terminal device 1 decodes the monitored PDCCH candidate.
  • the decoding unit of the terminal device 1 decodes the received PDSCH.
  • the receiving unit of the terminal device 1 monitors a set number of PDCCH candidates based on RRC signaling in the search area of the control resource set in a certain slot.
  • the receiving unit of the terminal device 1 monitors a PDCCH candidate composed of one or more OFDM symbols set based on RRC signaling in the search area of the control resource set in a certain slot.
  • the receiver of the terminal device 1 is a search area for the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first, second, and third OFDM symbols) in a certain slot. Monitor PDCCH candidates with.
  • the receiver of the terminal device 1 is a search area for the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first, second, and third OFDM symbols) in a certain slot.
  • Monitor PDCCH candidates with and search for PDCCH candidates in the search area of the second half of the slot eg, the 8th OFDM symbol, or the 8th and 9th OFDM symbols, or the 8th, 9th, and 10th OFDM symbols).
  • Monitor The receiving unit of the terminal device 1 is a search area for different OFDM symbols in a certain slot, and even if three or more search areas are set and further dispersed in the slot to monitor PDCCH candidates. good.
  • FIG. 5 is a schematic block diagram showing the configuration of the base station device 3 according to one aspect of the present embodiment.
  • the base station apparatus 3 includes a wireless transmission / reception unit 30 and an upper layer processing unit 34.
  • the radio transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 34 processes the MAC layer, PDCP layer, RLC layer, and RRC layer.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 processes the MAC layer.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 processes the RRC layer.
  • the wireless resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC CE, etc. arranged in the PDSCH, or acquires them from a higher-level node and outputs them to the wireless transmission / reception unit 30. .. Further, the wireless resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the wireless resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via a signal of the upper layer. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
  • the setting information may include information related to processing or setting of a physical channel, a physical signal (that is, a physical layer), a MAC layer, a PDCP layer, an RLC layer, and an RRC layer.
  • the parameter may be an upper layer parameter.
  • the wireless resource control layer processing unit 36 sets a control resource set for the terminal device 1.
  • a plurality of PDCCH candidates are configured (set) within the set control resource set.
  • the radio resource control layer processing unit 36 sets a search area for the terminal device 1.
  • the wireless resource control layer processing unit 36 sets a resource for transmitting HARQ-ACK to the terminal device 1.
  • the radio resource control layer processing unit 36 of the base station apparatus 3A sets a resource for transmitting HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3B.
  • the radio resource control layer processing unit 36 of the base station device 3A supplies resources for transmitting HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3B to the base station device.
  • the wireless transmission / reception unit 30 grasps the SS (Search space: search area) configured in the terminal device 1.
  • the wireless transmission / reception unit 30 grasps the search area in the control resource set configured in the terminal device 1.
  • the wireless transmission / reception unit 30 grasps the PDCCH candidate monitored by the terminal device 1 and grasps the search area.
  • the wireless transmission / reception unit 30 grasps which control channel element each PDCCH candidate monitored by the terminal device 1 is composed of (the number of the control channel element in which the PDCCH candidate is composed is grasped).
  • the wireless transmission / reception unit 30 includes an SS grasping unit, and the SS grasping unit grasps the SS configured in the terminal device 1.
  • the SS grasping unit grasps one or more PDCCH candidates in the control resource set configured as the search space of the terminal device.
  • the SS grasping unit grasps PDCCH candidates (the number of PDCCH candidates, the number of PDCCH candidates) configured in the search area of the control resource set of the terminal device 1.
  • the SS grasping unit grasps the configuration of the search area in the control resource set (the number of PDCCH candidates, the OFDM symbol of the PDCCH candidate, the Aggression level of the PDCCH candidate).
  • the transmission unit of the wireless transmission / reception unit 30 transmits the PDCCH to the terminal device 1 using the PDCCH candidates in the search area of the control resource set.
  • one or more PDCCH candidates are configured in the search area of a certain slot in the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first and second OFDM symbols. And the third OFDM symbol) may be understood to be composed of the OFDM symbols.
  • one or more PDCCH candidates are configured in the search area of a certain slot in the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first and second OFDM symbols.
  • the OFDM symbol of the third OFDM symbol), and one or more PDCCH candidates are the second half of the slot (eg, the eighth OFDM symbol, or the eighth and ninth OFDM symbols, or the eighth and ninth.
  • the 10th OFDM symbol may be understood to be composed of the OFDM symbols.
  • the SS grasping unit may grasp that each slot is a search area for different OFDM symbols, and three or more search areas are configured.
  • the receiving unit (also referred to as the receiving processing unit) of the base station device 3 receives HARQ-ACK.
  • the reception processing unit of the base station apparatus 3 receives HARQ-ACK for the PDSCH.
  • the reception processing unit of the base station device 3 (base station device 3A) receives HARQ-ACK in the uplink frequency band (cell, component carrier, carrier).
  • the reception processing unit of the base station device 3A includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band managed by the base station device 3B. Receives HARQ-ACK for PDSCH of (cell, component carrier, carrier).
  • the reception processing unit of the base station device 3A includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band managed by the base station device 3B.
  • HARQ-ACK for PDSCH of (cell, component carrier, carrier) is received in the uplink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3A.
  • the reception processing unit of the base station device 3A receives HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A by the first method, and the base station device 3B receives the HARQ-ACK.
  • the HARQ-ACK for the PDSCH of the managed downlink frequency band (cell, component carrier, carrier) is received by the second method.
  • Each part of the terminal device 1 with reference numerals 10 to 16 may be configured as a circuit.
  • Each of the portions of the base station apparatus 3 with reference numerals 30 to 36 may be configured as a circuit.
  • the terminal device 1 transmits uplink control information (UCI) to the base station device 3.
  • the terminal device 1 may multiplex the UCI to the PUCCH and transmit it.
  • the terminal device 1 may multiplex the UCI to the PUSCH and transmit it.
  • UCI uses downlink channel state information (Channel State Information: CSI), scheduling request indicating a PUSCH resource request (Scheduling Request: SR), and downlink data (Transport block, Medium Access PDU PDU Data It may include at least one of HARQ-ACK (Hybrid Automatic Repeat ACKnowledgement) for Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH.
  • CSI Channel State Information
  • SR scheduling Request indicating a PUSCH resource request
  • SR scheduling request indicating a PUSCH resource request
  • downlink data Transport block, Medium Access PDU PDU Data It may include at least one of HARQ-ACK (Hybrid Automatic Repeat ACKnowledgement) for Shared Channel: DL-SCH, Physical
  • HARQ-ACK may also be referred to as ACK / NACK, HARQ feedback, HARQ-ACK feedback, HARQ response, HARQ-ACK response, HARQ information, HARQ-ACK information, HARQ control information, and HARQ-ACK control information. ..
  • the HARQ-ACK may include at least the HARQ-ACK bits corresponding to one transport block.
  • the HARQ-ACK bit may indicate ACK (ACKnowledgment) or NACK (Negative-ACKnowledgment) corresponding to one or more transport blocks.
  • the HARQ-ACK may include at least a HARQ-ACK codebook containing one or more HARQ-ACK bits. The fact that the HARQ-ACK bit corresponds to one or more transport blocks may mean that the HARQ-ACK bit corresponds to a PDSCH containing the one or more transport blocks.
  • HARQ control for one transport block may be called a HARQ process.
  • One HARQ process identifier may be given for each HARQ process.
  • the DCI format contains a field indicating the HARQ process identifier.
  • NDI New Data Indicator
  • the NDI field is included in the DCI format (DL association) containing the PDSCH scheduling information.
  • the NDI field is 1 bit.
  • the terminal device 1 stores (stores) the value of NDI for each HARQ process.
  • the base station device 3 stores (stores) the NDI value for each HARQ process for each terminal device 1.
  • the terminal device 1 updates the stored NDI value using the detected DCI format NDI field.
  • the base station apparatus 3 sets the updated NDI value or the non-updated NDI value in the NDI field of the DCI format and transmits the updated NDI value to the terminal apparatus 1.
  • the terminal device 1 updates the value of the NDI stored by using the detected DCI format NDI field for the detected HARQ process corresponding to the value of the detected DCI format HARQ process identifier field.
  • the terminal device 1 determines whether the received transport block is a new transmission or a retransmission based on the value of the NDI field of the DCI format (DL assignment). The terminal device 1 compares the previously received NDI value to the transport block of a HARQ process, and if the detected DCI format NDI field value is toggled, the received transport block Judge that it is a new transmission. When the base station apparatus 3 transmits a transport block for new transmission in a certain HARQ process, the base station apparatus 3 toggles the value of the NDI stored for the HARQ process and transmits the toggled NDI to the terminal apparatus 1.
  • the base station apparatus 3 When the base station apparatus 3 transmits a transport block for retransmission in a certain HARQ process, the base station apparatus 3 does not toggle the value of the NDI stored for the HARQ process, and transmits the non-toggled NDI to the terminal apparatus 1.
  • Terminal 1 receives the detected DCI format NDI field value if it is not toggled (if it is the same) compared to the previously received NDI value for the transport block of a HARQ process. It is determined that the transport block is retransmitted.
  • toggling means switching to a different value.
  • the terminal device 1 displays HARQ-ACK information in the slot indicated by the value of the HARQ instruction field included in the DCI format 1_0 corresponding to PDSCH reception or the DCI format 1-11, and the HARQ-ACK codebook. ) May be reported to the base station apparatus 3.
  • the terminal device 1 obtains HARQ-ACK information in the slot indicated by the value of the HARQ instruction field included in the DCI format 1_0 or the DCI format 1-11 corresponding to the PDSCH reception of the base station device 3A, and the HARQ-ACK codebook. (HARQ-ACK codebook) may be used to report to the base station apparatus 3A.
  • the value of the HARQ indicator field may be mapped to a set of slots (1,2,3,4,5,6,7,8).
  • the value of the HARQ indicator field may be mapped to the set of slots given by the upper layer parameter dl-DataToUL-ACK.
  • the number of slots indicated at least based on the value of the HARQ indicator field may also be referred to as HARQ-ACK timing or K1.
  • HARQ-ACK indicating the decoding state of PDSCH (downlink data) transmitted in slot n may be reported (transmitted) in slot n + K1.
  • Dl-DataToUL-ACK shows a list of HARQ-ACK timings for PDSCH.
  • Timing is the number of slots between the slot on which the PDSCH was received (or the slot containing the last OFDM symbol to which the PDSCH is mapped) and the slot on which HARQ-ACK is transmitted for the received PDSCH.
  • dl-DataToUL-ACK is a list of one, two, or three, four, five, six, seven, or eight timings. If dl-DataToUL-ACK is a list of timings, the HARQ indicator field is 0 bits. If dl-DataToUL-ACK is a list of two timings, the HARQ indicator field is 1 bit.
  • the HARQ indicator field is 2 bits. If the dl-DataToUL-ACK is a list of 5, 6, or 7, or 8 timings, the HARQ indicator field is 3 bits. For example, dl-DataToUL-ACK consists of a list of timings with any value in the range 0-31. For example, dl-DataToUL-ACK consists of a list of timings with any value in the range 0-63.
  • the size of dl-DataToUL-ACK is defined as the number of elements contained in dl-DataToUL-ACK.
  • the size of dl-DataToUL-ACK may be referred to as L para.
  • the index of dl-DataToUL-ACK may be given, indicated, or indicated by the value indicated by the HARQ indicator field.
  • the terminal device 1 may set the size of the HARQ-ACK codebook according to the size of the dl-DataToUL-ACK. For example, if the dl-DataToUL-ACK consists of eight elements, the size of the HARQ-ACK codebook is eight. For example, if dl-DataToUL-ACK consists of two elements, HARQ-ACK The size of the codebook is 2.
  • Each HARQ-ACK information constituting the HARQ-ACK codebook is HARQ-ACK information for PDSCH reception at each slot timing of dl-DataToUL-ACK. This type of HARQ-ACK codebook is also referred to as a Semi-static HARQ-ACK codebook.
  • the dl-DataToUL-ACK consists of a list of eight timings 0, 7, 15, 23, 31, 39, 47, 55, and the HARQ indicator field consists of 3 bits.
  • the HARQ instruction field "000" corresponds to the first 0 in the list of dl-DataToUL-ACK as the corresponding timing. That is, the HARQ instruction field "000” corresponds to the value 0 indicated by the index 1 of dl-DataToUL-ACK.
  • the HARQ instruction field "001" corresponds to the second 7 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the HARQ instruction field "010" corresponds to the third 15 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the HARQ instruction field "011” corresponds to the fourth 23 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the HARQ indicator field "100” corresponds to the fifth 31 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the HARQ instruction field "101” corresponds to the sixth 39 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the HARQ instruction field "110” corresponds to the seventh 47 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the HARQ instruction field "111" corresponds to the eighth 55 in the list of dl-DataToUL-ACK as the corresponding timing.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 0th slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 7th slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 15th slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 23rd slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 31st slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 39th slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 47th slot from the received PDSCH slot.
  • the terminal device 1 transmits the corresponding HARQ-ACK in the 55th slot from the received PDSCH slot.
  • the N PDSCH repeat may be the value of the pdsch-AggressionFactor.
  • the N PDSCH repeat may be 1.
  • the terminal device 1 may report HARQ-ACK information for PDSCH reception from slot n—N PDSCH repeat +1 to slot n using PUCCH transmission and / or PUSCH transmission in slot n + k.
  • k may be the number of slots indicated by the HARQ indicator field included in the DCI format corresponding to the PDSCH reception. Further, if the HARQ instruction field is not included in the DCI format, k may be given by the upper layer parameter dl-DataToUL-ACK.
  • the HARQ-ACK timing value K1 is (1, 2, 3, It may be a part or all of 4, 5, 6, 7, 8).
  • the HARQ-ACK timing value K1 may be given by the upper layer parameter dl-DataToUL-ACK.
  • the terminal device 1 determines a set of a plurality of opportunities for receiving one or more candidate PDSCHs to transmit the corresponding HARQ-ACK information on the PUCCH of a certain slot.
  • the terminal device 1 determines that the plurality of slots of the slot timing K1 included in the dl-DataToUL-ACK are a plurality of opportunities for receiving the candidate PDSCH.
  • K1 may be a set of k. For example, when dl-DataToUL-ACK is (1, 2, 3, 4, 5, 6, 7, 8), the PUCCH in slot n receives PDSCH in slot n-1 and PDSCH in slot n-2.
  • Receive, receive PDSCH in slot n-3, receive PDSCH in slot n-4, receive PDSCH in slot n-5, receive PDSCH in slot n-6, receive PDSCH in slot n-7, receive n-8 HARQ-ACK information for PDSCH reception of the slot of is transmitted.
  • the terminal device 1 sets ACK or NACK as HARQ-ACK information based on the transport block included in the PDSCH, and corresponds to the candidate PDSCH reception. If PDSCH is not received in the slot to be used, NACK is set as HARQ-ACK information.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the slot n-1 indicates 1.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the n-2 slot indicates 2.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the n-3 slot indicates 3.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the slot n-4 indicates 4.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the n-5 slot indicates 5.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the slot n-6 indicates 6.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the slot n-7 indicates 7.
  • the HARQ instruction field included in the DCI format received by the PDCCH of the n-8 slot indicates 8.
  • the terminal device 1 receives a slot for receiving PDCCH, a slot for transmitting HARQ-ACK information based on the value of the HARQ instruction field included in the received DCI format, and a plurality of candidate PDSCHs corresponding to the HARQ-ACK information. Determine the set of slots. For example, when dl-DataToUL-ACK is (1, 2, 3, 4, 5, 6, 7, 8), the terminal device 1 receives the PDCCH in the slot m, and the HARQ instruction field included in the DCI format is 4. Is shown. The terminal device 1 determines that the HARQ-ACK information is transmitted in the slot (m + 4).
  • other HARQ-ACK information transmitted in the slot (m + 4) is the HARQ-ACK information for PDSCH reception in the slot (m + (1-4)) and the HARQ-ACK information in the slot (m + (2-4)).
  • HARQ-ACK information for PDSCH reception in (6-4) HARQ-ACK information for PDSCH reception in slot (m + (7-4)), and HARQ- for PDSCH reception in slot (m + (8-4)).
  • the dl-DataToUL-ACK can be configured not only as a value indicating the number of slots as the timing of HARQ-ACK, but also as a value (information) indicating that HARQ-ACK is held.
  • the terminal device 1 receives a HARQ instruction field indicating a value indicating that HARQ-ACK is held in the PDCCH
  • the terminal device 1 holds the HARQ-ACK (HARQ-ACK information) for the PDSCH scheduled in the PDCCH, and holds the HARQ-ACK. Waits for the transmission of ACK (HARQ-ACK information).
  • the Semi-static HARQ-ACK codebook has been described as the type of the HARQ-ACK codebook, but a different type of HARQ-ACK codebook may be used.
  • a type of HARQ-ACK codebook called Dynamic HARQ-ACK codebook will be described.
  • An HARQ-ACK codebook corresponding to a PDSCH group is one or more HARQ-corresponding to any one or more transport blocks contained in any one or more PDSCHs contained in the PDSCH group. Given based on the ACK bit.
  • the HARQ-ACK codebook is given based on at least a set of PDCCH monitoring opportunities (Monitoringoccasion for PDCCH), some or all of the values in the counter DAI field.
  • the HARQ-ACK codebook may be given further based on the value of the UL DAI field.
  • HARQ-ACK codebook may be given further based on the value of the DAI field.
  • the HARQ-ACK codebook may be given further based on the value of the total DAI field.
  • the HARQ-ACK codebook size of the Dynamic HARQ-ACK codebook is based on the DCI format field.
  • the size of the HARQ-ACK codebook may be set based on the value of the last received DCI format counter DAI field.
  • the counter DAI field indicates the cumulative number of PDSCHs or transport blocks scheduled to receive the corresponding DCI format.
  • the size of the HARQ-ACK codebook may be set based on the value of the total DAI field in DCI format.
  • the total DAI field indicates the total number of PDSCHs or transport blocks scheduled before the transmission of the HARQ-ACK codebook.
  • the terminal device 1 sets the PDCCH monitoring opportunity set for the HARQ-ACK information transmitted in the PUCCH arranged in the slot (slot # n) of the index n as the value of the timing K1 and the value of the slot offset K0. It may be decided based on at least a part or all of.
  • the set of PDCCH monitoring opportunities for HARQ-ACK information transmitted in the PUCCH placed in the slot of index n is also the set of PDCCH monitoring opportunities (monitoring occupation for PDCCH for slot # n) for slot n. It is called.
  • the set of monitoring opportunities for PDCCH includes monitoring opportunities for M PDCCH.
  • slot offset K0 may be indicated at least based on the value of the time domain resource allocation field contained in the downlink DCI format.
  • the slot offset K0 is from the slot containing the last OFDM symbol in which the PDCCH containing the DCI format including the time region resource allocation field indicating the slot offset K0 is placed to the first OFDM symbol of the PDSCH scheduled by the DCI format. It is a value indicating the number of slots (slot difference) of.
  • the terminal device. 1 may determine the monitoring opportunity of the PDCCH as the PDCCH monitoring opportunity for slot n. Further, if the DCI format detected in the monitoring opportunity of the search area set corresponding to the monitoring opportunity of a certain PDCCH does not trigger the transmission of HARQ-ACK information in slot n (does not include the triggering information), the terminal device. 1 does not have to determine the monitoring opportunity of the PDCCH as the PDCCH monitoring opportunity for slot n.
  • the terminal device 1 does not have to determine the monitoring opportunity of the PDCCH as the PDCCH monitoring opportunity for the slot n. ..
  • the PUCCH resource used to transmit HARQ-ACK information in slot n is the PUCCH resource included in the last DCI format of the one or more DCI formats detected in the set of PDCCH monitoring opportunities for slot n. It may be specified at least based on the indicated field.
  • each of the one or more DCI formats triggers transmission of HARQ-ACK information in slot n.
  • the last DCI format may be the DCI format corresponding to the last index (largest index) of the DCI formats detected in the set of PDCCH monitoring opportunities for the slot n.
  • the DCI format index in the set of PDCCH monitoring opportunities for the slot n is given in ascending order to the index of the serving cell in which the DCI format is detected, and then the PDCCH monitoring opportunity in which the DCI format is detected. Given in ascending order to the index of.
  • the PDCCH monitoring opportunity index is given in ascending order on the time axis.
  • the counter DAI is the cumulative number (or cumulative) of PDCCH detected up to the monitoring opportunity of the PDCCH in the serving cell for the monitoring opportunity of the PDCCH in the serving cell in the monitoring opportunity of M PDCCH. It may be at least a value related to the number).
  • the counter DAI may also be referred to as C-DAI.
  • the C-DAI corresponding to the PDSCH may be indicated by a field contained in the DCI format used for scheduling the PDSCH.
  • the total DAI may indicate the cumulative number (or at least a value related to the cumulative number) of PDCCH detected by the monitoring opportunity m of PDCCH in the monitoring opportunity of M PDCCH.
  • the total DAI may be referred to as a T-DAI (Total Downlink Assignment Index).
  • Semi-static HARQ-ACK codebook (type 1 HARQ-ACK codebook) or Dynamic HARQ-ACK codebook (type 2 HARQ-ACK codebook) is instructed (triggered, requested) to be transmitted based on DL assert.
  • ACK codebook The DCI format including the HARQ indicator field is DL association (Downlink association).
  • DL association is a DCI format used for PDSCH scheduling.
  • DL association is a DCI format used for PDSCH allocation.
  • the Semi-static HARQ-ACK codebook is constructed based on the dl-DataToUL-ACK and the HARQ instruction field.
  • the size of the Semi-static HARQ-ACK codebook is based on the size included in the dl-DataToUL-ACK.
  • the timing of the slots included in the Semi-static HARQ-ACK codebook or the Dynamic HARQ-ACK codebook is based on the value of the HARQ instruction field and the slot in which the DCI including the HARQ instruction field is received
  • Dynamic HARQ-ACK codebook or Semi-static HARQ-ACK codebook is the first method of transmitting and receiving HARQ-ACK.
  • the first method is used for transmitting and receiving HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3A.
  • a second method is used for transmitting and receiving HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3B.
  • the HARQ-ACK codebook of the second method includes HARQ-ACK information for a plurality or all HARQ processes.
  • HARQ process means HARQ process used for PDSCH.
  • all HARQ processes mean all of the HARQ processes that can be used in at least one Serving cell (downlink cell managed in the base station apparatus 3B).
  • the number of HARQ processes that can be used in one Serving cell is 16.
  • a plurality of HARQ processes means a plurality of HARQ processes configured by RRC signing.
  • the number of a plurality of HARQ processes is eight.
  • the number of a plurality of HARQ processes is 10.
  • HARQ-ACK codebook of the second method An example of HARQ-ACK codebook of the second method will be described. 8 HARQ processes (HARQ process 0, HARQ process 1, HARQ process 2, HARQ process 3, HARQ process 4, HARQ process 5, HARQ process 6, HARQ ACK 7) Explanation for HARQ process ..
  • 1-bit HARQ-ACK is used for each HARQ process.
  • 1-bit HARQ-ACK for HARQ process 0, 1-bit HARQ-ACK for HARQ process 1, 1-bit HARQ-ACK for HARQ process 2, 1-bit HARQ-ACK for HARQ process 3, and 1 bit for HARQ process 4.
  • HARQ-ACK 1-bit HARQ-ACK for HARQ process 5
  • 1-bit HARQ-ACK for HARQ process 6 1-bit HARQ-ACK for HARQ process 7 make up one HARQ-ACK codebook with a total of 8 bits. Will be done.
  • 2-bit HARQ-ACK is used for each HARQ process.
  • 2-bit HARQ-ACK for HARQ process 0 2-bit HARQ-ACK for HARQ process 1
  • 2-bit HARQ-ACK for HARQ process 2 2-bit HARQ-ACK for HARQ process 3
  • 2-bit for HARQ process 4 2-bit HARQ-ACK for HARQ process 4
  • HARQ-ACK 2-bit HARQ-ACK for HARQ process 5
  • 2-bit HARQ-ACK for HARQ process 6 and 2-bit HARQ-ACK for HARQ process 7 make up one HARQ-ACK codebook with a total of 16 bits. Will be done.
  • the configured HARQ-ACK codebook is transmitted from the terminal device 1 in the uplink cell of the base station device 3A.
  • the first method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is dynamically notified by DCI format.
  • the second method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is quasi-statically notified by RRC signing.
  • the first method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is aperiodic.
  • the second method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is periodic.
  • the time resource (slot) used for transmitting HARQ-ACK may be static.
  • the first method can be said to be a method in which the frequency resource (physical channel) used for the transmission of HARQ-ACK is dynamically notified by DCI format.
  • the second method can be said to be a method in which the frequency resource (physical channel) used for the transmission of HARQ-ACK is quasi-statically notified by RRC signing.
  • the first method can be said to be a HARQ-ACK codebook in which the relationship between the slot to which the HARQ-ACK codebook is transmitted and received and the slot of the PDSCH corresponding to the HARQ-ACK included in the HARQ-ACK codebook is defined.
  • the HARQ process used for the PDSCH corresponding to the HARQ-ACK included in the HARQ-ACK codebook of the first method is not limited in advance, and is set by the scheduling of the base station apparatus 3.
  • the HARQ-ACK codebook of the second method can be said to be a HARQ-ACK codebook in which the HARQ process of the PDSCH corresponding to the HARQ-ACK included in the HARQ-ACK codebook is defined.
  • the frequency resource used for transmitting and receiving the HARQ-ACK codebook of the second method the frequency resource for every 8 slots is notified from the base station device 3 to the terminal device 1 by RRC signing.
  • the period and the offset are notified from the base station device 3 to the terminal device 1.
  • the cycle for example, 8 is notified.
  • the offset any of 0, 1, 2, 3, 4, 5, 6, and 7 is notified.
  • the offset indicates how much the slot is deviated from the slot at a certain reference timing, and the resource is allocated periodically.
  • the period may be equal to the total number of HARQ processes used in the downlink cell.
  • the period of the frequency resource used for transmitting and receiving the HARQ-ACK codebook of the second method may be eight.
  • the period of the frequency resource used for transmitting and receiving the HARQ-ACK codebook of the second method may be 16.
  • the offset candidate may be equal to the period value.
  • the period may be equal to the total number of HARQ processes used in the plurality of downlink cells.
  • the terminal device 1 transmits the HARQ-ACK codebook of the second method in a cycle of slots 0 to 8.
  • the base station apparatus 3A receives the HARQ-ACK codebook of the second method in a cycle of slots 0 to 8.
  • the terminal device 1 transmits a HARQ-ACK codebook composed of eight HARQ-ACKs to eight HARQ processes in slot 0.
  • the base station apparatus 3A receives the HARQ-ACK codebook composed of eight HARQ-ACKs for the eight HARQ processes in slot 0.
  • the terminal device 1 transmits a HARQ-ACK codebook composed of eight HARQ-ACKs to eight HARQ processes in the slot 8.
  • the base station apparatus 3A receives the HARQ-ACK codebook composed of eight HARQ-ACKs for the eight HARQ processes in the slot 8.
  • the terminal device 1 transmits a HARQ-ACK codebook composed of eight HARQ-ACKs to eight HARQ processes in the slot 16.
  • the base station apparatus 3A receives the HARQ-ACK codebook composed of eight HARQ-ACKs for the eight HARQ processes in the slot 16.
  • the terminal device 1 transmits a HARQ-ACK codebook including HARQ-ACK for the PDSCH of the downlink cell of the base station device 3B in the uplink cell of the base station device 3A.
  • the base station apparatus 3A receives and receives a HARQ-ACK codebook including HARQ-ACK for the PDSCH received by the terminal apparatus 1 in the downlink cell of the base station apparatus 3B in the uplink cell managed by the base station apparatus 3A. Notify (transfer) the completed HARQ-ACK to the base station device 3B.
  • the terminal device 1 resets (flashes) the held (stored) HARQ-ACK for each HARQ process every time the HARQ-ACK codebook is transmitted. NACK is set as the default value for the reset (flushed) HARQ-ACK.
  • the base station device 3B recognizes that the PDSCH has been properly received by the terminal device 1 without any data error, and does not retransmit the data.
  • the HARQ-ACK for the HARQ process used for transmitting the PDSCH is NACK
  • the base station device 3B recognizes that the PDSCH was not properly received in the terminal device 1 without any data error, and retransmits the data.
  • the base station apparatus 3B ignores HARQ-ACK for the HARQ process that is not used for PDSCH transmission.
  • the UL grant includes the UL DAI field.
  • the UL grant may include a UL DAI field for each PDSCH group.
  • the number of PDSCH groups used may be configured from base station device 3 to terminal device 1 using RRC signaling.
  • the base station apparatus 3 transmits the UL grant including the UL DAI field for each PDSCH group to the terminal apparatus 1, and receives the PUSCH including the HARQ-ACK information for each PDSCH group.
  • the terminal device 1 receives the UL grant including the UL DAI field for each PDSCH group from the base station device 3, and transmits the PUSCH including the HARQ-ACK information for each PDSCH group.
  • the terminal device 1 receives the UL grant including the UL DAI field for each PDSCH group from the base station device 3, and transmits the PUSCH including the HARQ-ACK information of all the preconfigured PDSCH groups.
  • the UL DAI field for PDSCH group 1 and the UL DAI field for PDSCH group 2 are included in the UL grant.
  • the terminal device 1 determines the HARQ-ACK information for the PDSCH group 1 using the UL DAI field for the PDSCH group 1, and determines the HARQ-ACK information for the PDSCH group 2 using the UL DAI field for the PDSCH group 2.
  • the UL DAI field indicates the number of PDSCHs that include the HARQ-ACK corresponding to the HARQ-ACK codebook transmitted on the PUSCH.
  • the terminal device 1 determines that there is a PDCCH that has missed detection, and sets a bit indicating NACK in the corresponding HARQ-ACK bit. ..
  • the terminal device 1 transmits HARQ-ACK information for PDSCH group 1 and HARQ-ACK information for PDSCH group 2 by PUSCH.
  • the base station apparatus 3 determines from the HARQ-ACK information for the PDSCH group 1 received by the PUSCH whether or not a PDCCH detection error in the PDSCH group 1 has occurred in the terminal apparatus 1, and determines whether the HARQ- From the ACK information, it is determined whether or not a PDCCH detection error in the PDSCH group 2 has occurred in the terminal device 1. In this way, by including the UL DAI field for each PDSCH group in the UL grant, the terminal device 1 determines the PDCCH detection error for each PDSCH group, and the base station device 3 appropriately determines the determination result in the terminal device 1. Can be recognized.
  • the UL grant may contain one UL DAI field for all PDSCH groups.
  • the base station device 3 transmits a UL grant including a UL DAI field for all PDSCH groups to the terminal device 1, and receives a PUSCH including HARQ-ACK information of all PDSCH groups.
  • the terminal device 1 receives the UL grant including the UL DAI field for all PDSCH groups from the base station device 3, and transmits the PUSCH including the HARQ-ACK information of all PDSCH groups.
  • the UL DAI field for all PDSCH groups may indicate the size of the HARQ-ACK codebook containing the HARQ-ACK information for all PDSCH groups.
  • the UL DAI field for all PDSCH groups may indicate the number of HARQ-ACKs of all PDSCH groups included in the HARQ-ACK codebook transmitted by PUSCH.
  • the UL DAI field for all PDSCH groups may indicate the number of PDSCHs in all PDSCH groups in which the HARQ-ACK codebook transmitted on the PUSCH includes the corresponding HARQ-ACK.
  • the UL DAI field for the PDSCH group that combines the PDSCH group 1 and the PDSCH group 2 is included in the UL grant.
  • the terminal device 1 determines the HARQ-ACK information for the PDSCH group 1 and the PDSCH group 2 using the UL DAI field.
  • the UL DAI field indicates the number of PDSCHs in all PDSCH groups, including the HARQ-ACK corresponding to the HARQ-ACK codebook transmitted on the PUSCH.
  • the terminal device 1 determines that there is a PDCCH that has missed detection, and sets a bit indicating NACK in the corresponding HARQ-ACK bit. ..
  • the terminal device 1 transmits HARQ-ACK information for PDSCH group 1 and PDSCH group 2 by PUSCH.
  • FIG. 10 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment.
  • the symbol is the OFDM symbol of the first half of the slot.
  • FIG. 11 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment.
  • the symbol is the OFDM symbol of the first half of the slot.
  • the 1st (l 0)
  • FIG. 12 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment.
  • the symbol is the OFDM symbol in the first half of the slot.
  • the 1st (l 0)
  • FIG. 13 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment.
  • the symbol is the OFDM symbol of the first half of the slot.
  • one aspect of the present invention can appropriately exchange HARQ-ACK between the terminal device 1 and the base station device 3.
  • the base station apparatus 3 can appropriately control the retransmission of data. Efficient communication is achieved by realizing appropriate retransmission control.
  • the first aspect of the present invention is a terminal device including a processor and a memory for storing a computer program code, which provides periodic resources in an uplink cell managed by the first base station device.
  • An operation including setting and transmitting a HARQ-ACK codebook including HARQ-ACK to the PDSCH of the downlink cell managed by the second base station apparatus with the periodic resource is executed.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • the uplink cell managed by the second base station device is not configured for the terminal device.
  • a second aspect of the present invention is a base station device including a processor and a memory for storing a computer program code, and sets periodic resources in an uplink cell with respect to the terminal device. That, the HARQ-ACK codebook including the HARQ-ACK for the PDSCH of the downlink cell managed by the different base station device is received from the terminal device with the periodic resource, and the received HARQ-ACK is received from the different base station. Perform actions, including transferring to the device.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • a third aspect of the present invention is a communication method used for a terminal device, in which a step of setting a periodic resource in an uplink cell managed by the first base station device and a second step. It includes a step of transmitting a HARQ-ACK codebook including HARQ-ACK for PDSCH of a downlink cell managed by a base station apparatus with the periodic resource.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • the uplink cell managed by the second base station device is not configured for the terminal device.
  • a fourth aspect of the present invention is a communication method used for a base station device, in which a step of setting a periodic resource in an uplink cell for a terminal device and a step managed by a different base station device are managed.
  • the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  • the program operating on the base station device 3 and the terminal device 1 controls a CPU (Central Processing Unit) and the like so as to realize the functions of the above embodiment related to one aspect of the present invention. It may be a program (a program that makes a computer function). Then, the information handled by these devices is temporarily stored in RAM (Random Access Memory) at the time of processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). The CPU reads, corrects, and writes as necessary.
  • RAM Random Access Memory
  • ROMs Read Only Memory
  • HDD Hard Disk Drive
  • the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer.
  • the program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the "computer system” referred to here is a computer system built in the terminal device 1 or the base station device 3, and includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
  • the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • the terminal device 1 may consist of at least one processor and at least one memory including a computer program instruction (computer program).
  • the memory and the computer program instruction (computer program) may be configured such that the terminal device 1 performs the operations and processes described in the above-described embodiment by using a processor.
  • the base station apparatus 3 may consist of at least one processor and at least one memory including computer program instructions (computer programs).
  • the memory and the computer program instruction (computer program) may be configured such that the base station apparatus 3 performs the operations and processes described in the above-described embodiment by using a processor.
  • the base station device 3 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station device 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network) and / or NG-RAN (NextGen RAN, NR RAN). Further, the base station apparatus 3 in the above-described embodiment may have a part or all of the functions of the upper node with respect to the eNodeB and / or the gNB.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • NG-RAN NextGen RAN, NR RAN
  • the base station apparatus 3 in the above-described embodiment may have a part or all of the functions of the upper node with respect to the eNodeB and / or the gNB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI which is typically an integrated circuit, or may be realized as a chipset.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of making an integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • the terminal device is described as an example of the communication device, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors.
  • terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and includes design changes and the like within a range that does not deviate from the gist of the present invention.
  • one aspect of the present invention can be variously modified within the scope of the claims, and the technical aspects of the present invention can also be obtained by appropriately combining the technical means disclosed in the different embodiments. Included in the range.
  • the elements described in each of the above embodiments include a configuration in which elements having the same effect are replaced with each other.
  • One aspect of the present invention is used, for example, in a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • Terminal equipment 3
  • Base station equipment 10 30
  • Wireless transmission / reception unit 11 31
  • Antenna unit 12 32
  • RF unit 13 33
  • Baseband unit 14 34
  • Upper layer Processing unit 15 35
  • Medium access control layer Processing unit 16 36

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention sets a cyclical resource in an uplink cell managed by a first base station device and transmits, with the set cyclical resource, a HARQ-ACK codebook that includes a HARQ-ACK for the PDSCH of a downlink cell managed by a second base station device.

Description

端末装置、基地局装置および通信方法Terminal equipment, base station equipment and communication methods
 本発明は、端末装置、基地局装置および通信方法に関する。
 本願は、2020年2月18日に日本に出願された特願2020-25106号について優先権を主張し、その内容をここに援用する。
The present invention relates to terminal equipment, base station equipment and communication methods.
The present application claims priority with respect to Japanese Patent Application No. 2020-25106 filed in Japan on February 18, 2020, the contents of which are incorporated herein by reference.
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、または、「EUTRA:Evolved Universal Terrestrial Radio Access」と称する。)が、第三世代パートナーシッププロジェクト(3GPP:3rd Generation Partnership Project)において検討されている。LTEにおいて、基地局装置はeNodeB(evolved NodeB)、端末装置はUE(User Equipment)とも呼称される。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のサービングセルを管理してもよい。 A third-generation partnership project (3GPP: 3rdPerge It is being examined in Project). In LTE, the base station device is also called an eNodeB (evolved NodeB), and the terminal device is also called a UE (User Equipment). LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape. A single base station device may manage multiple serving cells.
 3GPPでは、5Gの通信方式として、次世代規格(NR:New Radio)の検討と標準化が行われている。NRは、単一の技術の枠組みにおいて、eMBB(enhanced Mobile BroadBand)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communication)の3つのシナリオを想定した要求を満たすことが求められている。 In 3GPP, next-generation standards (NR: New Radio) are being studied and standardized as 5G communication methods. In a single technical framework, NR is assumed to satisfy three scenarios: eMBB (enhanced Mobile Broadband), mMTC (massive Machine Type Communication), and URLLC (Ultra Reliable and Low Latency Communication). There is.
 また、複数の周波数スペクトラムを用いた方法の検討が行われている(非特許文献2)。複数の基地局装置がそれぞれ異なる周波数スペクトラムを用いた端末装置と通信を行なうことが検討されている。一方の基地局装置は下りリンクと上りリンクのそれぞれの周波数スペクトラムを用い、もう一方の基地局装置は下りリンクの周波数スペクトラムを用いて、端末装置1と通信を行なう。 In addition, a method using a plurality of frequency spectra is being studied (Non-Patent Document 2). It is being studied that a plurality of base station devices communicate with terminal devices using different frequency spectra. One base station device uses the downlink frequency spectrum and the uplink frequency spectrum, and the other base station device uses the downlink frequency spectrum to communicate with the terminal device 1.
 データの再送を適切に制御できるようにするために、データの受信側からデータの送信側に対してデータの誤り検出結果、データの受信結果(受信されたデータが誤っていなかった、受信されたデータが誤っていた、データが受信されなかった)等を適切にフィードバックする必要がある。データの送信側は、データの受信側からフィードバックされた情報に基づき受信側で適切に受信されなかったデータの再送を行う。例えば、データの送信側は基地局装置であり、データの受信側は端末装置であり、データはトランスポートブロック(PDSCHで送受信されるトランスポートブロック)であり、データの誤り検出結果や受信結果はHARQ-ACKである。適切な再送制御の実現により、効率的な通信が達成される。本発明の一態様は、効率的に通信を行う端末装置、基地局装置、該端末装置に用いられる通信方法、該基地局装置に用いられる通信方法を提供する。 Data error detection result, data reception result (received data was not wrong, received) from the data receiving side to the data transmitting side so that the data retransmission can be controlled appropriately. It is necessary to give appropriate feedback such as (the data was incorrect, the data was not received), etc. The data transmitting side retransmits the data that was not properly received by the receiving side based on the information fed back from the data receiving side. For example, the data transmitting side is a base station device, the data receiving side is a terminal device, the data is a transport block (transport block transmitted / received by PDSCH), and the data error detection result and reception result are HARQ-ACK. Efficient communication is achieved by realizing appropriate retransmission control. One aspect of the present invention provides a terminal device, a base station device, a communication method used for the terminal device, and a communication method used for the base station device for efficient communication.
 (1)本発明の第1の態様は、プロセッサと、 コンピュータプログラムコードを格納するメモリと、を備える端末装置であって、第一の基地局装置が管理する上りリンクのセルにおいて周期的なリソースを設定すること、第二の基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで送信すること、を含む動作を実行する。 (1) The first aspect of the present invention is a terminal device including a processor and a memory for storing a computer program code, which is a periodic resource in an uplink cell managed by the first base station device. The operation including setting the HARQ-ACK codebook including the HARQ-ACK for the PDSCH of the downlink cell managed by the second base station apparatus is executed by the periodic resource.
 (2)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (2) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 (3)更に、前記HARQ-ACK codebookが送信されると、記憶された各HARQ process毎の前記HARQ-ACKをリセットする。 (3) Further, when the HARQ-ACK codebook is transmitted, the HARQ-ACK for each stored HARQ process is reset.
 (4)更に、前記第二の基地局装置が管理する上りリンクのセルは前記端末装置に対して構成されない。 (4) Further, the uplink cell managed by the second base station device is not configured for the terminal device.
 (5)本発明の第2の態様は、プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える基地局装置であって、端末装置に対して上りリンクのセルにおいて周期的なリソースを設定すること、異なる基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで前記端末装置から受信すること、受信したHARQ-ACKを前記異なる基地局装置に転送すること、を含む動作を実行する。 (5) A second aspect of the present invention is a base station device including a processor and a memory for storing a computer program code, and sets periodic resources in an uplink cell with respect to the terminal device. That, the HARQ-ACK codebook including the HARQ-ACK for the PDSCH of the downlink cell managed by the different base station device is received from the terminal device with the periodic resource, and the received HARQ-ACK is received from the different base station. Perform actions, including transferring to the device.
 (6)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (6) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 (7)本発明の第3の態様は、端末装置に用いられる通信方法であって、第一の基地局装置が管理する上りリンクのセルにおいて周期的なリソースを設定するステップと、第二の基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで送信するステップと、を含む。 (7) A third aspect of the present invention is a communication method used for a terminal device, in which a step of setting a periodic resource in an uplink cell managed by the first base station device and a second step. It includes a step of transmitting a HARQ-ACK codebook including HARQ-ACK for PDSCH of a downlink cell managed by a base station apparatus with the periodic resource.
 (8)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (8) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 (9)更に、前記HARQ-ACK codebookが送信されると、記憶された各HARQ process毎の前記HARQ-ACKをリセットするステップと、を含む。 (9) Further, when the HARQ-ACK codebook is transmitted, the step of resetting the HARQ-ACK for each stored HARQ process is included.
 (10)更に、前記第二の基地局装置が管理する上りリンクのセルは前記端末装置に対して構成されない。 (10) Further, the uplink cell managed by the second base station device is not configured for the terminal device.
 (11)本発明の第4の態様は、基地局装置に用いられる通信方法であって、端末装置に対して上りリンクのセルにおいて周期的なリソースを設定するステップと、異なる基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで前記端末装置から受信するステップと、受信したHARQ-ACKを前記異なる基地局装置に転送するステップと、を含む。 (11) A fourth aspect of the present invention is a communication method used for a base station device, in which a step of setting a periodic resource in an uplink cell for a terminal device and a step managed by a different base station device are managed. A step of receiving a HARQ-ACK codebook including HARQ-ACK for PDSCH of a downlink cell from the terminal device with the periodic resource, a step of transferring the received HARQ-ACK to the different base station device, and a step of transferring the received HARQ-ACK to the different base station device. including.
 (12)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (12) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 この発明の一態様によれば、端末装置は効率的に通信を行うことができる。また、基地局装置は効率的に通信を行うことができる。 According to one aspect of the present invention, the terminal device can efficiently communicate. In addition, the base station device can efficiently communicate.
本実施形態の一態様に係る無線通信システムの概念図である。It is a conceptual diagram of the wireless communication system which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るNslot symb、サブキャリア間隔の設定μ、スロット設定、および、CP設定の関係を示す一例である。 This is an example showing the relationship between the N slot symb , the setting μ of the subcarrier interval, the slot setting, and the CP setting according to one aspect of the present embodiment. 本実施形態の一態様に係る無線フレーム、サブフレーム、および、スロットの構成を示す一例である。This is an example showing the configuration of a radio frame, a subframe, and a slot according to one aspect of the present embodiment. 本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。It is a schematic diagram which shows an example of the resource grid in the subframe which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る1つのREGの構成の一例を示す図である。It is a figure which shows an example of the structure of one REG which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るCCEの構成例を示す図である。It is a figure which shows the structural example of CCE which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るREGのグループを構成するREG数とPDCCH候補のマッピング方法の関連の一例を示す図である。It is a figure which shows an example of the relation between the number of REGs constituting the group of REGs which concerns on one aspect of this Embodiment, and the mapping method of a PDCCH candidate. 本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal apparatus 1 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 3 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。It is a figure which shows an example of the search area set in the terminal apparatus 1 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。It is a figure which shows an example of the search area set in the terminal apparatus 1 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。It is a figure which shows an example of the search area set in the terminal apparatus 1 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。It is a figure which shows an example of the search area set in the terminal apparatus 1 which concerns on one aspect of this Embodiment.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 “A、および/または、B”は、“A”、“B”、または“AおよびB”を含む用語であってもよい。 "A and / or B" may be a term including "A", "B", or "A and B".
 パラメータまたは情報が1または複数の値を示すことは、該パラメータまたは該情報が該1または複数の値を示すパラメータまたは情報を少なくとも含むことであってもよい。上位層パラメータは、単一の上位層パラメータであってもよい。上位層パラメータは、複数のパラメータを含む情報要素(IE: Information Element)であってもよい。 When a parameter or information indicates one or more values, the parameter or information may include at least a parameter or information indicating the one or more values. The upper layer parameter may be a single upper layer parameter. The upper layer parameter may be an information element (IE: Information Element) including a plurality of parameters.
 図1は、本実施形態の一態様に係る無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3A~3Bを具備する。以下、端末装置1A~1Cを端末装置1(UE)とも呼称する。以下、基地局装置3A~3Bを基地局装置3(gNB)とも呼称する。 FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment. In FIG. 1, the wireless communication system includes terminal devices 1A to 1C and base station devices 3A to 3B. Hereinafter, the terminal devices 1A to 1C are also referred to as a terminal device 1 (UE). Hereinafter, the base station devices 3A to 3B are also referred to as base station devices 3 (gNB).
 基地局装置3は、MCG(Master Cell Group)、および、SCG(Secondary Cell Group)の一方または両方を含んで構成されてもよい。MCGは、少なくともPCell(Primary Cell)を含んで構成されるサービングセルのグループである。SCGは、少なくともPSCell(Primary Secondary Cell)を含んで構成されるサービングセルのグループである。PCellは、初期接続に基づき与えられるサービングセルであってもよい。MCGは、1または複数のSCell(Secondary Cell)を含んで構成されてもよい。SCGは、1または複数のSCellを含んで構成されてもよい。サービングセル識別子(serving cell identity)は、サービングセルを識別するための短い識別子である。サービングセル識別子は、上位層パラメータにより与えられてもよい。 The base station device 3 may be configured to include one or both of MCG (Master Cell Group) and SCG (Secondary Cell Group). MCG is a group of serving cells composed of at least PCell (Primary Cell). An SCG is a group of serving cells composed of at least PSCell (Primary Secondary Cell). The PCell may be a serving cell given based on the initial connection. The MCG may be configured to include one or more SCells (Secondary Cells). The SCG may be configured to include one or more SCells. A serving cell identifier is a short identifier for identifying a serving cell. The serving cell identifier may be given by a higher layer parameter.
 端末装置1は、基地局装置3A(第一の基地局装置)と基地局装置3B(第二の基地局装置)と同時に通信を行なう。基地局装置3Aと基地局装置3Bは異なる周波数スペクトラム(キャリア周波数)を用いて端末装置1と通信を行なう。このオペレーションは、キャリアアグリゲーション、またはデュアルコネクティビティと呼称されてもよい。端末装置1と基地局装置3Aとの通信、端末装置1と基地局装置3Bとの通信のそれぞれは、異なるセル(サービングセル)により構成される。基地局装置3Aは、下りリンクの周波数スペクトラムと上りリンクの周波数スペクトラムを用いる。基地局装置3Bは、下りリンクの周波数スペクトラムのみを用いる。基地局装置3Aと基地局装置3Bとは、有線、または無線で接続され、制御情報、データなどのやり取りが行われる。例えば、制御情報は、HARQ-ACKである。端末装置1は、基地局装置3Aと初期接続を行なう。基地局装置3Aとの接続が確立された後、端末装置1は、基地局装置3Bとの接続が追加される。端末装置1は、通信に用いる周波数スペクトラムが追加される。端末装置1は、通信に用いるセル(サービングセル)が追加される。 The terminal device 1 communicates with the base station device 3A (first base station device) and the base station device 3B (second base station device) at the same time. The base station device 3A and the base station device 3B communicate with the terminal device 1 using different frequency spectra (carrier frequencies). This operation may be referred to as carrier aggregation, or dual connectivity. The communication between the terminal device 1 and the base station device 3A and the communication between the terminal device 1 and the base station device 3B are each composed of different cells (serving cells). The base station apparatus 3A uses the downlink frequency spectrum and the uplink frequency spectrum. The base station apparatus 3B uses only the downlink frequency spectrum. The base station device 3A and the base station device 3B are connected by wire or wirelessly, and control information, data, and the like are exchanged. For example, the control information is HARQ-ACK. The terminal device 1 makes an initial connection with the base station device 3A. After the connection with the base station device 3A is established, the terminal device 1 is added with the connection with the base station device 3B. The terminal device 1 is added with a frequency spectrum used for communication. A cell (serving cell) used for communication is added to the terminal device 1.
 以下、フレーム構成について説明する。 The frame configuration will be described below.
 本実施形態の一態様に係る無線通信システムにおいて、OFDM(Orthogonal Frequency Division Multiplex)が少なくとも用いられる。OFDMシンボルは、OFDMの時間領域の単位である。OFDMシンボルは、少なくとも1または複数のサブキャリア(subcarrier)を含む。OFDMシンボルは、ベースバンド信号生成において時間連続信号(time-continuous signal)に変換されもよい。 At least OFDM (Orthogonal Frequency Division Multiplex) is used in the wireless communication system according to one aspect of the present embodiment. An OFDM symbol is a unit of the OFDM time domain. The OFDM symbol comprises at least one or more subcarriers. The OFDM symbol may be converted into a time-continuous signal in the baseband signal generation.
 サブキャリア間隔(SCS: SubCarrier Spacing)は、サブキャリア間隔Δf=2μ・15kHzにより与えられてもよい。例えば、サブキャリア間隔の設定(subcarrier spacing configuration)μは0、1、2、3、4、および/または、5の何れかに設定されてもよい。あるBWP(BandWidth Part)のために、サブキャリア間隔の設定μが上位層パラメータにより与えられてもよい。 The subcarrier spacing (SCS: SubCarrier Spacing) may be given by the subcarrier spacing Δf = 2 μ · 15 kHz. For example, the subcarrier spacing configuration μ may be set to any of 0, 1, 2, 3, 4, and / or 5. For a BWP (BandWidth Part), the subcarrier spacing setting μ may be given by the upper layer parameters.
 本実施形態の一態様に係る無線通信システムにおいて、時間領域の長さの表現のために時間単位(タイムユニット)Tが用いられる。時間単位Tは、T=1/(Δfmax・N)で与えられてもよい。Δfmaxは、本実施形態の一態様に係る無線通信システムにおいてサポートされるサブキャリア間隔の最大値であってもよい。Δfmaxは、Δfmax=480kHzであってもよい。Nは、N=4096であってもよい。定数κは、κ=Δfmax・N/(Δfreff,ref)=64である。Δfrefは、15kHzであってもよい。Nf,refは、2048であってもよい。 In the wireless communication system according to one aspect of the present embodiment, a time unit (time unit) T c is used to express the length of the time domain. The time unit T c may be given by T c = 1 / (Δf max · N f). Δf max may be the maximum value of the subcarrier spacing supported in the wireless communication system according to one aspect of the present embodiment. Δf max may be Δf max = 480 kHz. N f may be N f = 4096. The constant κ is κ = Δf max · N f / (Δf ref N f, ref ) = 64. Δf ref may be 15 kHz. N f and ref may be 2048.
 定数κは、参照サブキャリア間隔とTの関係を示す値であってもよい。定数κはサブフレームの長さのために用いられてもよい。定数κに少なくとも基づき、サブフレームに含まれるスロットの数が与えられてもよい。Δfrefは、参照サブキャリア間隔であり、Nf,refは、参照サブキャリア間隔に対応する値である。 The constant κ may be a value indicating the relationship between the reference subcarrier interval and T c. The constant κ may be used for the length of the subframe. The number of slots contained in the subframe may be given, at least based on the constant κ. Δf ref is the reference subcarrier interval, and N f and ref are values corresponding to the reference subcarrier interval.
 下りリンクにおける送信、および/または、上りリンクにおける送信は、10msのフレームにより構成される。フレームは、10個のサブフレームを含んで構成される。サブフレームの長さは1msである。フレームの長さは、サブキャリア間隔Δfに関わらず与えられてもよい。つまり、フレームの設定はμに関わらず与えられてもよい。サブフレームの長さは、サブキャリア間隔Δfに関わらず与えられてもよい。つまり、サブフレームの設定はμに関わらず与えられてもよい。 Transmission on the downlink and / or transmission on the uplink consists of 10 ms frames. The frame is composed of 10 subframes. The length of the subframe is 1 ms. The frame length may be given regardless of the subcarrier spacing Δf. That is, the frame setting may be given regardless of μ. The length of the subframe may be given regardless of the subcarrier spacing Δf. That is, the subframe setting may be given regardless of μ.
 あるサブキャリア間隔の設定μのために、サブフレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、第1のスロット番号nμ は、サブフレーム内において0からNsubframe,μ slot-1の範囲で昇順に与えられてもよい。サブキャリア間隔の設定μのために、フレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、第2のスロット番号nμ s,fは、フレーム内において0からNframe,μ slot-1の範囲で昇順に与えられてもよい。連続するNslot symb個のOFDMシンボルが1つのスロットに含まれてもよい。Nslot symbは、スロット設定(slot configuration)、および/または、CP(Cyclic Prefix)設定の一部または全部に少なくとも基づき与えられてもよい。スロット設定は、少なくとも上位層パラメータtdd-UL-DL-ConfigurationCommonにより与えられてもよい。CP設定は、上位層パラメータに少なくとも基づき与えられてもよい。CP設定は、専用RRCシグナリングに少なくとも基づき与えられてもよい。第1のスロット番号および第2のスロット番号は、スロット番号(スロットインデックス)とも呼称される。 The number and index of slots contained in a subframe may be given for a given subcarrier spacing setting μ. For example, the first slot number n μ s may be given in ascending order in the range of 0 to N subframe, μ slot -1 within the subframe. The number and index of slots contained in the frame may be given for the setting μ of the subcarrier spacing. For example, the second slot numbers n μ s, f may be given in ascending order in the range of 0 to N frame, μ slot -1 in the frame. One slot may contain consecutive N slot symbs of OFDM symbols. N slot symbs may be given at least based on some or all of the slot configuration and / or CP (Cyclo Prefix) settings. The slot setting may be given by at least the upper layer parameter tdd-UL-DL-ConfigurationCommon. CP settings may be given at least based on higher layer parameters. CP settings may be given at least based on dedicated RRC signaling. The first slot number and the second slot number are also referred to as slot numbers (slot indexes).
 図2は、本実施形態の一態様に係るNslot symb、サブキャリア間隔の設定μ、スロット設定、および、CP設定の関係を示す一例である。図2Aにおいて、スロット設定が0であり、サブキャリア間隔の設定μが2であり、CP設定がノーマルCP(normal cyclic prefix)である場合、Nslot symb=14、Nframe,μ slot=40、Nsubframe,μ slot=4である。また、図2Bにおいて、スロット設定が0であり、サブキャリア間隔の設定μが2であり、CP設定が拡張CP(extended cyclic prefix)である場合、Nslot symb=12、Nframe,μ slot=40、Nsubframe,μ slot=4である。スロット設定0におけるNslot symbは、スロット設定1におけるNslot symbの2倍に対応してもよい。 FIG. 2 is an example showing the relationship between the N slot symb , the setting μ of the subcarrier interval, the slot setting, and the CP setting according to one aspect of the present embodiment. In FIG. 2A, when the slot setting is 0, the subcarrier interval setting μ is 2, and the CP setting is normal CP (normal cyclic prefix), N slot symb = 14, N frame, μ slot = 40, N subframe, μ slot = 4. Further, in FIG. 2B, when the slot setting is 0, the subcarrier interval setting μ is 2, and the CP setting is extended CP (extended cyclic prefix), N slot symb = 12, N frame, μ slot = 40, N subframe, μ slot = 4. The N slot symb at slot setting 0 may correspond to twice the N slot symb at slot setting 1.
 端末装置1において、セル毎に共通のサブキャリア間隔の設定、スロット設定、CP設定が行なわれてもよいし、セル毎に異なるサブキャリア間隔の設定、スロット設定、CP設定が行われてもよい。基地局装置3Aと基地局装置3Bとにおいて、共通のサブキャリア間隔の設定、スロット設定、CP設定が行なわれてもよいし、異なるサブキャリア間隔の設定、スロット設定、CP設定が行われてもよい。 In the terminal device 1, a common subcarrier interval setting, slot setting, and CP setting may be performed for each cell, or a different subcarrier interval setting, slot setting, and CP setting may be performed for each cell. .. In the base station device 3A and the base station device 3B, a common subcarrier interval setting, a slot setting, and a CP setting may be performed, or a different subcarrier interval setting, a slot setting, and a CP setting may be performed. good.
 図3は、本実施形態の一態様に係る無線フレーム、サブフレーム、および、スロットの構成を示す一例である。図3に示す一例では、スロットの長さは0.5msであり、サブフレームの長さは1msであり、無線フレームの長さは10msである。スロットは、時間領域におけるリソース割り当ての単位であってもよい。例えば、スロットは、1つのトランスポートブロックがマップされる単位であってもよい。例えば、トランスポートブロックは、1つのスロットにマップされてもよい。ここで、トランスポートブロックは、上位層(例えば、MAC:Mediam Access Control、RRC:Radio Resource Control)で規定される所定の間隔(例えば、送信時間間隔(TTI:Transmission Time Interval))内に送信されるデータの単位であってもよい。 FIG. 3 is an example showing the configuration of the radio frame, the subframe, and the slot according to one aspect of the present embodiment. In the example shown in FIG. 3, the slot length is 0.5 ms, the subframe length is 1 ms, and the radio frame length is 10 ms. A slot may be a unit of resource allocation in the time domain. For example, a slot may be a unit to which one transport block is mapped. For example, the transport block may be mapped to one slot. Here, the transport block is transmitted within a predetermined interval (for example, transmission time interval (TTI: Transition Time Interval)) defined by an upper layer (for example, MAC: Media Access Control, RRC: Radio Response Control). It may be a unit of data.
 例えば、スロットの長さは、OFDMシンボルの数によって与えられてもよい。例えば、OFDMシンボルの数は、7、または、14であってもよい。スロットの長さは、少なくともOFDMシンボルの長さに基づき与えられてもよい。OFDMシンボルの長さは、サブキャリア間隔に少なくとも基づき異なってもよい。また、OFDMシンボルの長さは、OFDMシンボルの生成に用いられる高速フーリエ変換(FFT:Fast Fourier Transform)のポイント数に少なくとも基づき与えられてもよい。また、OFDMシンボルの長さは、該OFDMシンボルに付加されるサイクリックプレフィックス(CP:Cyclic Prefix)の長さを含んでもよい。ここで、OFDMシンボルは、シンボルと呼称されてもよい。また、端末装置1と基地局装置3の間の通信において、OFDM以外の通信方式が使用される場合(例えば、SC-FDMAやDFT-s-OFDMが使用される場合等)、生成されるSC-FDMAシンボル、および/または、DFT-s-OFDMシンボルはOFDMシンボルとも呼称される。また、特に記載のない限り、OFDMはSC-FDMA、または、DFT-s-OFDMを含む。 For example, the slot length may be given by the number of OFDM symbols. For example, the number of OFDM symbols may be 7 or 14. The slot length may be given at least based on the length of the OFDM symbol. The length of the OFDM symbols may vary, at least based on the subcarrier spacing. Further, the length of the OFDM symbol may be given at least based on the number of points of the Fast Fourier Transform (FFT) used to generate the OFDM symbol. Further, the length of the OFDM symbol may include the length of the cyclic prefix (CP) added to the OFDM symbol. Here, the OFDM symbol may be referred to as a symbol. Further, when a communication method other than OFDM is used in the communication between the terminal device 1 and the base station device 3 (for example, when SC-FDMA or DFT-s-OFDM is used), the SC generated is generated. -FDMA symbols and / or DFT-s-OFDM symbols are also referred to as OFDM symbols. Further, unless otherwise specified, OFDM includes SC-FDMA or DFT-s-OFDM.
 例えば、スロットの長さは、0.125ms、0.25ms、0.5ms、1msであってもよい。例えば、サブキャリア間隔が15kHzの場合、スロットの長さは1msであってもよい。例えば、サブキャリア間隔が30kHzの場合、スロットの長さは0.5msであってもよい。例えば、サブキャリア間隔が120kHzの場合、スロットの長さは0.125msであってもよい。例えば、サブキャリア間隔が15kHzの場合、スロットの長さは1msであってもよい。例えば、スロットの長さが0.125msの場合、1サブフレームは8個のスロットから構成されてもよい。例えば、スロットの長さが0.25msの場合、1サブフレームは4個のスロットから構成されてもよい。例えば、スロットの長さが0.5msの場合、1サブフレームは2個のスロットから構成されてもよい。例えば、スロットの長さが1msの場合、1サブフレームは1個のスロットから構成されてもよい。 For example, the slot length may be 0.125 ms, 0.25 ms, 0.5 ms, 1 ms. For example, if the subcarrier spacing is 15 kHz, the slot length may be 1 ms. For example, if the subcarrier spacing is 30 kHz, the slot length may be 0.5 ms. For example, if the subcarrier spacing is 120 kHz, the slot length may be 0.125 ms. For example, if the subcarrier spacing is 15 kHz, the slot length may be 1 ms. For example, if the slot length is 0.125 ms, one subframe may consist of eight slots. For example, if the slot length is 0.25 ms, one subframe may consist of four slots. For example, when the slot length is 0.5 ms, one subframe may be composed of two slots. For example, when the slot length is 1 ms, one subframe may be composed of one slot.
 ここで、OFDMは、波形整形(Pulse Shape)、PAPR低減、帯域外輻射低減、または、フィルタリング、および/または、位相処理(例えば、位相回転等)が適用されたマルチキャリアの通信方式を含む。マルチキャリアの通信方式は、複数のサブキャリアが多重された信号を生成/送信する通信方式であってもよい。 Here, OFDM includes a multi-carrier communication method to which waveform shaping (Pulse Shape), PAPR reduction, out-of-band radiation reduction, or filtering, and / or phase processing (for example, phase rotation, etc.) are applied. The multi-carrier communication method may be a communication method in which a plurality of subcarriers generate / transmit a multiplexed signal.
 無線フレームは、サブフレームの数によって与えられてもよい。無線フレームのためのサブフレームの数は、例えば、10であってもよい。無線フレームは、スロットの数によって与えられてもよい。 The wireless frame may be given by the number of subframes. The number of subframes for the radio frame may be, for example, 10. The radio frame may be given by the number of slots.
 端末装置1において、セル毎に共通の無線フレームの構成、サブフレームの構成、および、スロットの構成が設定されてもよいし、セル毎に異なる無線フレームの構成、サブフレームの構成、および、スロットの構成が設定されてもよい。基地局装置3Aと基地局装置3Bとにおいて、共通の無線フレームの構成、サブフレームの構成、および、スロットの構成が設定されてもよいし、異なる無線フレームの構成、サブフレームの構成、および、スロットの構成が設定されてもよい。 In the terminal device 1, a common wireless frame configuration, a subframe configuration, and a slot configuration may be set for each cell, or a different wireless frame configuration, a subframe configuration, and a slot may be set for each cell. Configuration may be set. A common radio frame configuration, a subframe configuration, and a slot configuration may be set in the base station device 3A and the base station device 3B, or different radio frame configurations, subframe configurations, and The slot configuration may be set.
 以下、物理リソースについて説明を行う。 The physical resources will be explained below.
 アンテナポートは、1つのアンテナポートにおいてシンボルが伝達されるチャネルが、同一のアンテナポートにおいてその他のシンボルが伝達されるチャネルから推定できることによって定義される。1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性(large scale property)が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCL(Quasi Co-Located)であると呼称される。大規模特性は、チャネルの長区間特性を少なくとも含んでもよい。大規模特性は、遅延拡がり(delay spread)、ドップラー拡がり(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(average gain)、平均遅延(average delay)、および、ビームパラメータ(spatial Rx parameters)の一部または全部を少なくとも含んでもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する受信ビームと第2のアンテナポートに対して受信側が想定する受信ビームとが同一であることであってもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する送信ビームと第2のアンテナポートに対して受信側が想定する送信ビームとが同一であることであってもよい。端末装置1は、1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCLであることが想定されてもよい。2つのアンテナポートがQCLであることは、2つのアンテナポートがQCLであることが想定されることであってもよい。 An antenna port is defined by the fact that the channel through which a symbol is transmitted in one antenna port can be estimated from the channel in which another symbol is transmitted in the same antenna port. If the large scale property of the channel on which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port, the two antenna ports are QCL (Quantum Co-Located). ) Is called. Large scale characteristics may include at least the long interval characteristics of the channel. Large-scale characteristics include delay spread, Doppler spread, Doppler shift, average gain, average delay, average delay, and beam parameters (spray). It may include at least some or all. The fact that the first antenna port and the second antenna port are QCL with respect to the beam parameters means that the receiving beam assumed by the receiving side with respect to the first antenna port and the receiving beam assumed by the receiving side with respect to the second antenna port. May be the same. The fact that the first antenna port and the second antenna port are QCL with respect to the beam parameters means that the transmitting beam assumed by the receiving side with respect to the first antenna port and the transmitting beam assumed by the receiving side with respect to the second antenna port. May be the same. The terminal device 1 assumes that the two antenna ports are QCLs when the large-scale characteristics of the channel through which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port. May be done. The fact that the two antenna ports are QCLs may mean that the two antenna ports are QCLs.
 サブキャリア間隔の設定とキャリアのセットのそれぞれのために、Nμ RB,xRB sc個のサブキャリアとN(μ) symbsubframe,μ symb個のOFDMシンボルのリソースグリッドが与えられる。Nμ RB,xは、キャリアxのためのサブキャリア間隔の設定μのために与えられるリソースブロック数を示してもよい。Nμ RB,xは、キャリアxのためのサブキャリア間隔の設定μのために与えられるリソースブロックの最大数であってもよい。キャリアxは下りリンクキャリアまたは上りリンクキャリアの何れかを示す。つまり、xは“DL”、または、“UL”である。Nμ RBは、Nμ RB,DL、および/または、Nμ RB,ULを含んだ呼称である。NRB scは、1つのリソースブロックに含まれるサブキャリア数を示してもよい。アンテナポートpごとに、および/または、サブキャリア間隔の設定μごとに、および/または、送信方向(Transmission direction)の設定ごとに少なくとも1つのリソースグリッドが与えられてもよい。送信方向は、少なくとも下りリンク(DL:DownLink)および上りリンク(UL:UpLink)を含む。以下、アンテナポートp、サブキャリア間隔の設定μ、および、送信方向の設定の一部または全部を少なくとも含むパラメータのセットは、第1の無線パラメータセットとも呼称される。つまり、リソースグリッドは、第1の無線パラメータセットごとに1つ与えられてもよい。 A resource grid of N μ RB, x N RB sc subcarriers and N (μ) simb N subframe, μ symb OFDM symbols is provided for each of the subcarrier spacing settings and carrier sets. N mu RB, x may indicate the number of resource blocks are provided for setting mu subcarrier spacing for the carrier x. N μ RB, x may be the maximum number of resource blocks given for setting the subcarrier spacing μ for carrier x. The carrier x indicates either a downlink carrier or an uplink carrier. That is, x is "DL" or "UL". N μ RB is a name that includes N μ RB, DL , and / or N μ RB, UL. NRB sc may indicate the number of subcarriers contained in one resource block. At least one resource grid may be provided for each antenna port p and / or for each subcarrier spacing setting μ and / or for each Transmission direction setting. The transmission direction includes at least a downlink (DL: DownLink) and an uplink (UL: UpLink). Hereinafter, a set of parameters including at least a part or all of the antenna port p, the subcarrier interval setting μ, and the transmission direction setting is also referred to as a first radio parameter set. That is, one resource grid may be given for each first set of radio parameters.
 下りリンクにおいて、サービングセルに含まれるキャリアを下りリンクキャリア(または、下りリンクコンポーネントキャリア)と称する。上りリンクにおいて、サービングセルに含まれるキャリアを上りリンクキャリア(上りリンクコンポーネントキャリア)と称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリア(または、キャリア)と称する。 In the downlink, the carrier included in the serving cell is referred to as a downlink carrier (or downlink component carrier). In the uplink, the carrier included in the serving cell is referred to as an uplink carrier (uplink component carrier). The downlink component carrier and the uplink component carrier are collectively referred to as a component carrier (or carrier).
 第1の無線パラメータセットごとに与えられるリソースグリッドの中の各要素は、リソースエレメントと呼称される。リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。ある第1の無線パラメータセットのために、リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。周波数領域のインデックスkscと時間領域のインデックスlsymにより特定されるリソースエレメントは、リソースエレメント(ksc、lsym)とも呼称される。周波数領域のインデックスkscは、0からNμ RBRB sc-1の何れかの値を示す。Nμ RBはサブキャリア間隔の設定μのために与えられるリソースブロック数であってもよい。NRB scは、リソースブロックに含まれるサブキャリア数であり、NRB sc=12である。周波数領域のインデックスkscは、サブキャリアインデックスkscに対応してもよい。時間領域のインデックスlsymは、OFDMシンボルインデックスlsymに対応してもよい。 Each element in the resource grid given for each first set of radio parameters is referred to as a resource element. The resource element is specified by the frequency domain index k sc and the time domain index l sym. For a first set of radio parameters, resource elements are identified by a frequency domain index k sc and a time domain index l sym. The resource element specified by the frequency domain index k sc and the time domain index l sym is also referred to as a resource element (k sc , l sym). The frequency domain index k sc indicates any value from 0 to N μ RB N RB sc -1. N μ RB may be the number of resource blocks given for setting the subcarrier spacing μ. N RB sc is the number of subcarriers contained in the resource block, and N RB sc = 12. The frequency domain index k sc may correspond to the subcarrier index k sc. The time domain index l sym may correspond to the OFDM symbol index l sym.
 図4は、本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。図4のリソースグリッドにおいて、横軸は時間領域のインデックスlsymであり、縦軸は周波数領域のインデックスkscである。1つのサブフレームにおいて、リソースグリッドの周波数領域はNμ RBRB sc個のサブキャリアを含む。1つのサブフレームにおいて、リソースグリッドの時間領域は14・2μ個のOFDMシンボルを含んでもよい。1つのリソースブロックは、NRB sc個のサブキャリアを含んで構成される。リソースブロックの時間領域は、1OFDMシンボルに対応してもよい。リソースブロックの時間領域は、14OFDMシンボルに対応してもよい。リソースブロックの時間領域は、1または複数のスロットに対応してもよい。リソースブロックの時間領域は、1つのサブフレームに対応してもよい。 FIG. 4 is a schematic view showing an example of a resource grid in the subframe according to one aspect of the present embodiment. In the resource grid of FIG. 4, the horizontal axis is the time domain index l sym , and the vertical axis is the frequency domain index k sc . In one subframe, the frequency domain of the resource grid contains N μ RB N RB sc subcarriers. In one subframe, the time domain of the resource grid may contain 14.2 μ OFDM symbols. One resource block is configured to include N RB sc subcarriers. The time domain of the resource block may correspond to a 1 OFDM symbol. The time domain of the resource block may correspond to 14 OFDM symbols. The time domain of the resource block may correspond to one or more slots. The time domain of the resource block may correspond to one subframe.
 図4は、1つのセルにおけるリソースグリッドの一例を示している。 FIG. 4 shows an example of a resource grid in one cell.
 端末装置1は、リソースグリッドのサブセットのみを用いて送受信を行うことが指示されてもよい。リソースグリッドのサブセットは、BWPとも呼称され、BWPは上位層パラメータ、および/または、DCIの一部または全部に少なくとも基づき与えられてもよい。BWPをバンドパートとも称する(BP:Bandwidth Part)。つまり、端末装置1は、リソースグリッドのすべてのセットを用いて送受信を行なうことが指示されなくてもよい。つまり、端末装置1は、リソースグリッド内の一部の周波数リソースを用いて送受信を行なうことが指示されてもよい。1つのBWPは、周波数領域における複数のリソースブロックから構成されてもよい。1つのBWPは、周波数領域において連続する複数のリソースブロックから構成されてもよい。下りリンクキャリアに対して設定されるBWPは、下りリンクBWPとも呼称される。上りリンクキャリアに対して設定されるBWPは、上りリンクBWPとも呼称される。 The terminal device 1 may be instructed to perform transmission / reception using only a subset of the resource grid. A subset of the resource grid, also referred to as BWP, may be given based on at least some or all of the upper layer parameters and / or DCI. BWP is also referred to as a band part (BP: Bandwidth Part). That is, the terminal device 1 may not be instructed to perform transmission / reception using all sets of resource grids. That is, the terminal device 1 may be instructed to perform transmission / reception using a part of the frequency resources in the resource grid. One BWP may be composed of a plurality of resource blocks in the frequency domain. One BWP may be composed of a plurality of continuous resource blocks in the frequency domain. The BWP set for the downlink carrier is also referred to as the downlink BWP. The BWP set for the uplink carrier is also referred to as an uplink BWP.
 端末装置1に対して、1または複数の下りリンクBWPが設定されてもよい。端末装置1は、1または複数の下りリンクBWPのうちの1つの下りリンクBWPにおいて物理チャネル(例えば、PDCCH、PDSCH、SS/PBCH等)の受信を試みてもよい。該1つの下りリンクBWPは、活性化下りリンクBWPとも呼称される。 One or more downlink BWPs may be set for the terminal device 1. The terminal device 1 may attempt to receive a physical channel (eg, PDCCH, PDSCH, SS / PBCH, etc.) on one downlink BWP of one or more downlink BWPs. The one downlink BWP is also referred to as an activated downlink BWP.
 端末装置1に対して、1または複数の上りリンクBWPが設定されてもよい。端末装置1は、1または複数の上りリンクBWPのうちの1つの上りリンクBWPにおいて物理チャネル(例えば、PUCCH、PUSCH、PRACH等)の送信を試みてもよい。該1つの上りリンクBWPは、活性化上りリンクBWPとも呼称される。 One or more uplink BWPs may be set for the terminal device 1. The terminal device 1 may attempt to transmit a physical channel (eg, PUCCH, PUSCH, PRACH, etc.) in one of the uplink BWPs of one or more uplinks BWP. The one uplink BWP is also referred to as an activated uplink BWP.
 サービングセルのそれぞれに対して下りリンクBWPのセットが設定されてもよい。下りリンクBWPのセットは1または複数の下りリンクBWPを含んでもよい。サービングセルのそれぞれに対して上りリンクBWPのセットが設定されてもよい。上りリンクBWPのセットは1または複数の上りリンクBWPを含んでもよい。 A set of downlink BWP may be set for each of the serving cells. A set of downlink BWPs may include one or more downlink BWPs. A set of uplink BWPs may be set for each of the serving cells. A set of uplink BWPs may include one or more uplink BWPs.
 上位層パラメータは、上位層の信号に含まれるパラメータである。上位層の信号は、RRC(Radio Resource Control)シグナリングであってもよいし、MAC CE(Medium Access Control Control Element)であってもよい。ここで、上位層の信号は、RRC層の信号であってもよいし、MAC層の信号であってもよい。 The upper layer parameter is a parameter included in the upper layer signal. The signal of the upper layer may be RRC (Radio Access Control) signaling or MAC CE (Medium Access Control Control Element). Here, the signal of the upper layer may be a signal of the RRC layer or a signal of the MAC layer.
 上位層の信号は、共通RRCシグナリング(common RRC signaling)であってもよい。共通RRCシグナリングは、以下の特徴C1から特徴C3の一部または全部を少なくとも備えてもよい。
特徴C1)BCCHロジカルチャネル、または、CCCHロジカルチャネルにマップされる
特徴C2)radioResourceConfigCommon情報要素を少なくとも含む
特徴C3)PBCHにマップされる
The upper layer signal may be common RRC signaling. The common RRC signaling may include at least some or all of the following features C1 to C3.
Feature C1) Mapped to BCCH logical channel or CCCH logical channel Feature C2) Mapped to feature C3) PBCH containing at least a radioRelocationConfigCommon information element
 radioResourceConfigCommon情報要素は、サービングセルにおいて共通に用いられる設定を示す情報を含んでもよい。サービングセルにおいて共通に用いられる設定は、PRACHの設定を少なくとも含んでもよい。該PRACHの設定は、1または複数のランダムアクセスプリアンブルインデックスを少なくとも示してもよい。該PRACHの設定は、PRACHの時間/周波数リソースを少なくとも示してもよい。 The radioResourceConfigCommon information element may include information indicating a setting commonly used in the serving cell. The settings commonly used in the serving cell may include at least the PRACH setting. The PRACH setting may indicate at least one or more random access preamble indexes. The PRACH setting may indicate at least the PRACH time / frequency resource.
 上位層の信号は、専用RRCシグナリング(dedicated RRC signaling)であってもよい。専用RRCシグナリングは、以下の特徴D1からD2の一部または全部を少なくとも備えてもよい。
特徴D1)DCCHロジカルチャネルにマップされる
特徴D2)radioResourceConfigDedicated情報要素を少なくとも含む
The upper layer signal may be dedicated RRC signaling. Dedicated RRC signaling may include at least some or all of the following features D1 to D2.
Feature D1) Map to DCCH logical channel Feature D2) Includes at least a radioResourceControlDedicated information element
 radioResourceConfigDedicated情報要素は、端末装置1に固有の設定を示す情報を少なくとも含んでもよい。radioResourceConfigDedicated情報要素は、BWPの設定を示す情報を少なくとも含んでもよい。該BWPの設定は、該BWPの周波数リソースを少なくとも示してもよい。 The radioResourceControlDedicated information element may include at least information indicating a setting unique to the terminal device 1. The radioResourceControlDedicated information element may include at least information indicating the setting of the BWP. The BWP settings may at least indicate the frequency resources of the BWP.
 例えば、MIB、第1のシステム情報、および、第2のシステム情報は共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、且つ、radioResourceConfigCommonを少なくとも含む上位層のメッセージは、共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、且つ、radioResourceConfigCommon情報要素を含まない上位層のメッセージは、専用RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、且つ、radioResourceConfigDedicated情報要素を少なくとも含む上位層のメッセージは、専用RRCシグナリングに含まれてもよい。 For example, the MIB, the first system information, and the second system information may be included in the common RRC signaling. In addition, messages in the upper layer that are mapped to the DCCH logical channel and include at least the radioResourceConfigCommon may be included in the common RRC signaling. Further, the message of the upper layer which is mapped to the DCCH logical channel and does not include the radioResourceConfigCommon information element may be included in the dedicated RRC signaling. Further, the upper layer messages that are mapped to the DCCH logical channel and include at least the radioResourceControlDedicated information element may be included in the dedicated RRC signaling.
 第1のシステム情報は、SS(Synchronization Signal)ブロックの時間インデックスを少なくとも示してもよい。SSブロック(SS block)は、SS/PBCHブロック(SS/PBCH block)とも呼称される。SS/PBCHブロックは、SS/PBCHとも呼称される。第1のシステム情報は、PRACHリソースに関連する情報を少なくとも含んでもよい。第1のシステム情報は、初期接続の設定に関連する情報を少なくとも含んでもよい。第2のシステム情報は、第1のシステム情報以外のシステム情報であってもよい。 The first system information may at least indicate the time index of the SS (Synchronization Signal) block. The SS block (SS block) is also referred to as an SS / PBCH block (SS / PBCH block). The SS / PBCH block is also referred to as SS / PBCH. The first system information may include at least information related to the PRACH resource. The first system information may include at least information related to the initial connection settings. The second system information may be system information other than the first system information.
 radioResourceConfigDedicated情報要素は、PRACHリソースに関連する情報を少なくとも含んでもよい。radioResourceConfigDedicated情報要素は、初期接続の設定に関連する情報を少なくとも含んでもよい。 The radioResourceControlDedicated information element may include at least information related to the PRACH resource. The radioResourceConfigDedicated information element may include at least information related to the initial connection settings.
 以下、本実施形態の種々の態様に係る物理チャネルおよび物理シグナルを説明する。 Hereinafter, physical channels and physical signals according to various aspects of the present embodiment will be described.
 上りリンク物理チャネルは、上位層において発生する情報を運ぶリソースエレメントのセットに対応してもよい。上りリンク物理チャネルは、上りリンクキャリアにおいて用いられる物理チャネルである。本実施形態の一態様に係る無線通信システムにおいて、少なくとも下記の一部または全部の上りリンク物理チャネルが用いられる。
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
The uplink physical channel may correspond to a set of resource elements that carry information that occurs in the upper layers. The uplink physical channel is a physical channel used in the uplink carrier. In the wireless communication system according to one aspect of the present embodiment, at least some or all of the following uplink physical channels are used.
・ PUCCH (Physical Uplink Control Channel)
・ PUSCH (Physical Uplink Shared Channel)
・ PRACH (Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(UCI:Uplink Control Information)を送信するために用いられてもよい。上りリンク制御情報は、チャネル状態情報(CSI:Channel State Information)、スケジューリングリクエスト(SR:Scheduling Request)、トランスポートブロック(TB:Transport block, MAC PDU:Medium Access Control Protocol Data Unit, DL-SCH:Downlink-Shared Channel, PDSCH:Physical Downlink Shared Channel)に対応するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)の一部または全部を含む。なお、上りリンク制御情報が、上記に記載されない情報を含んでもよい。 PUCCH may be used to transmit uplink control information (UCI: Uplink Control Information). Uplink control information includes channel state information (CSI: Channel State Information), scheduling request (SR: Scheduling Request), transport block (TB: Transport block, MAC PDU: Medium Access Control, Digital Protocol DataU). -Includes a part or all of HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement) corresponding to Sharp Channel, PDSCH: Physical Downlink Shared Channel. The uplink control information may include information not described above.
 HARQ-ACKは、1つのトランスポートブロックに少なくとも対応するHARQ-ACKビット(HARQ-ACK情報)を少なくとも含んでもよい。HARQ-ACKビットは、1または複数のトランスポートブロックに対応するACK(acknowledgement)またはNACK(negative-acknowledgement)を示してもよい。HARQ-ACKは、1または複数のHARQ-ACKビットを含むHARQ-ACKコードブック(HARQ-ACK codebook)を少なくとも含んでもよい。HARQ-ACKビットが1または複数のトランスポートブロックに対応することは、HARQ-ACKビットが該1または複数のトランスポートブロックを含むPDSCHに対応することであってもよい。HARQ-ACKビットは、トランスポートブロックに含まれる1つのCBG(Code Block Group)に対応するACKまたはNACKを示してもよい。 HARQ-ACK may include at least the HARQ-ACK bit (HARQ-ACK information) corresponding to one transport block. The HARQ-ACK bit may indicate ACK (acknowledgment) or NACK (negative-acknowledgment) corresponding to one or more transport blocks. The HARQ-ACK may include at least a HARQ-ACK codebook containing one or more HARQ-ACK bits. The fact that the HARQ-ACK bit corresponds to one or more transport blocks may mean that the HARQ-ACK bit corresponds to a PDSCH containing the one or more transport blocks. The HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in the transport block.
 スケジューリングリクエスト(SR:Scheduling Request)は、初期送信のためのPUSCHのリソースを要求するために少なくとも用いられてもよい。スケジューリングリクエストビットは、正のSR(positive SR)または、負のSR(negative SR)の何れかを示すために用いられてもよい。スケジューリングリクエストビットが正のSRを示すことは、“正のSRが送信される”とも呼称される。正のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されることを示してもよい。正のSRは、上位層によりスケジューリングリクエストがトリガ(Trigger)されることを示してもよい。正のSRは、上位層によりスケジューリングリクエストを送信することが指示された場合に、送信されてもよい。スケジューリングリクエストビットが負のSRを示すことは、“負のSRが送信される”とも呼称される。負のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストがトリガされないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストを送信することが指示されない場合に、送信されてもよい。 Scheduling Request (SR) may be at least used to request PUSCH resources for initial transmission. The scheduling request bit may be used to indicate either a positive SR (positive SR) or a negative SR (negative SR). The fact that the scheduling request bit indicates a positive SR is also referred to as "a positive SR is transmitted". A positive SR may indicate that terminal device 1 requires PUSCH resources for initial transmission. A positive SR may indicate that the scheduling request is Triggered by the upper layer. A positive SR may be sent when the higher layer instructs it to send a scheduling request. The fact that the scheduling request bit indicates a negative SR is also referred to as "a negative SR is transmitted". A negative SR may indicate that terminal device 1 does not require PUSCH resources for initial transmission. A negative SR may indicate that the scheduling request is not triggered by the upper layer. Negative SRs may be sent if the higher layer does not instruct them to send scheduling requests.
 チャネル状態情報は、チャネル品質指標(CQI:Channel Quality Indicator)、プレコーダ行列指標(PMI:Precoder Matrix Indicator)、および、ランク指標(RI:Rank Indicator)の一部または全部を少なくとも含んでもよい。CQIは、チャネルの品質(例えば、伝搬強度)に関連する指標であり、PMIは、プレコーダを指示する指標である。RIは、送信ランク(または、送信レイヤ数)を指示する指標である。 The channel state information may include at least a part or all of a channel quality index (CQI: Channel Quality Indicator), a precoder matrix index (PMI: Precoder Matrix Indicator), and a rank index (RI: Rank Indicator). CQI is an index related to the quality of the channel (for example, propagation intensity), and PMI is an index indicating the precoder. RI is an index that indicates the transmission rank (or the number of transmission layers).
 PUCCHは、1つ以上のPUCCHフォーマット(PUCCHフォーマット0からPUCCHフォーマット4)がサポートされてもよい。PUCCHフォーマットは、PUCCHにマップされて送信されてもよい。PUCCHフォーマットは、PUCCHで送信されてもよい。PUCCHフォーマットが送信されることは、PUCCHが送信されることであってもよい。 PUCCH may support one or more PUCCH formats (PUCCH format 0 to PUCCH format 4). The PUCCH format may be mapped to the PUCCH and transmitted. The PUCCH format may be transmitted in PUCCH. The transmission of the PUCCH format may mean that the PUCCH is transmitted.
 PUSCHは、トランスポートブロック(TB, MAC PDU, UL-SCH, PUSCH)を送信するために少なくとも用いられる。PUSCHは、トランスポートブロック、HARQ-ACK、チャネル状態情報、および、スケジューリングリクエストの一部または全部を少なくとも送信するために用いられてもよい。PUSCHは、ランダムアクセスメッセージ3を送信するために少なくとも用いられる。PUSCHは、上記に記載されない情報を送信するために用いられてもよい。 PUSCH is at least used to transmit transport blocks (TB, MAC PDU, UL-SCH, PUSCH). PUSCH may be used to transmit at least some or all of the transport block, HARQ-ACK, channel state information, and scheduling requests. PUSCH is at least used to send the random access message 3. PUSCH may be used to transmit information not described above.
 PRACHは、ランダムアクセスプリアンブル(ランダムアクセスメッセージ1)を送信するために少なくとも用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、PUSCHの送信に対する同期(タイミング調整)、およびPUSCHのためのリソースの要求の一部または全部を示すために少なくとも用いられてもよい。ランダムアクセスプリアンブルは、端末装置1の上位層より与えられるインデックス(ランダムアクセスプリアンブルインデックス)を基地局装置3に通知するために用いられてもよい。 PRACH is at least used to send a random access preamble (random access message 1). The PRACH is part or all of the initial connection establishment procedure, the handover procedure, the connection re-station procedure, the synchronization for the transmission of the PUSCH (timing adjustment), and the request for resources for the PUSCH. May be used at least to indicate. The random access preamble may be used to notify the base station device 3 of an index (random access preamble index) given by the upper layer of the terminal device 1.
 図1において、上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられる。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・UL DMRS(UpLink Demodulation Reference Signal)
・SRS(Sounding Reference Signal)
・UL PTRS(UpLink Phase Tracking Reference Signal)
In FIG. 1, the following uplink physical signals are used in uplink wireless communication. The uplink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
-UL DMRS (UpLink Demodulation Reference Signal)
・ SRS (Sounding Reference Signal)
-UL PTRS (UpLink Phase Tracking Reference Signal)
 UL DMRSは、PUSCH、および/または、PUCCHの送信に関連する。UL DMRSは、PUSCHまたはPUCCHと多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにUL DMRSを使用してよい。以下、PUSCHと、該PUSCHに関連するUL DMRSを共に送信することを、単に、PUSCHを送信する、と称する。以下、PUCCHと該PUCCHに関連するUL DMRSを共に送信することを、単に、PUCCHを送信する、と称する。PUSCHに関連するUL DMRSは、PUSCH用UL DMRSとも称される。PUCCHに関連するUL DMRSは、PUCCH用UL DMRSとも称される。 UL DMRS is associated with PUSCH and / or PUCCH transmission. UL DMRS is multiplexed with PUSCH or PUCCH. The base station apparatus 3 may use UL DMRS to correct the propagation path of PUSCH or PUCCH. Hereinafter, transmitting both the PUSCH and the UL DMRS related to the PUSCH is referred to simply as transmitting the PUSCH. Hereinafter, transmitting PUCCH and UL DMRS related to the PUCCH together is referred to simply as transmitting PUCCH. UL DMRS related to PUSCH is also referred to as UL DMRS for PUSCH. UL DMRS related to PUCCH is also referred to as UL DMRS for PUCCH.
 SRSは、PUSCHまたはPUCCHの送信に関連しなくてもよい。基地局装置3は、チャネル状態の測定のためにSRSを用いてもよい。SRSは、上りリンクスロットにおけるサブフレームの最後、または、最後から所定数のOFDMシンボルにおいて送信されてもよい。 SRS does not have to be related to PUSCH or PUCCH transmission. The base station apparatus 3 may use SRS for measuring the channel state. The SRS may be transmitted at the end of the subframe in the uplink slot, or at a predetermined number of OFDM symbols from the end.
 UL PTRSは、位相トラッキングのために少なくとも用いられる参照信号であってもよい。UL PTRSは、1または複数のUL DMRSに用いられるアンテナポートを少なくとも含むUL DMRSグループに関連してもよい。UL PTRSとUL DMRSグループが関連することは、UL PTRSのアンテナポートとUL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。UL DMRSグループは、UL DMRSグループに含まれるUL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。UL PTRSは、1つのコードワードがマップされる1または複数のアンテナポートにおいて、最もインデックスの小さいアンテナポートにマップされてもよい。UL PTRSは、1つのコードワードが第1のレイヤ及び第2のレイヤに少なくともマップされる場合に、該第1のレイヤにマップされてもよい。UL PTRSは、該第2のレイヤにマップされなくてもよい。UL PTRSがマップされるアンテナポートのインデックスは、下りリンク制御情報に少なくとも基づき与えられてもよい。 UL PTRS may be at least a reference signal used for phase tracking. The UL PTRS may be associated with a UL DMRS group that includes at least the antenna ports used for one or more UL DMRSs. The association between the UL PTRS and the UL DMRS group may be that the antenna port of the UL PTRS and a part or all of the antenna ports included in the UL DMRS group are at least QCL. The UL DMRS group may be identified at least based on the antenna port with the smallest index in the UL DMRS included in the UL DMRS group. UL PTRS may be mapped to the antenna port with the smallest index in one or more antenna ports to which one codeword is mapped. UL PTRS may be mapped to the first layer if one codeword is at least mapped to the first layer and the second layer. UL PTRS does not have to be mapped to the second layer. The index of the antenna port to which the UL PTRS is mapped may be given at least based on the downlink control information.
 なお、上述に記載されない上りリンク物理シグナルが用いられてもよい。 Note that uplink physical signals not described above may be used.
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために、物理層によって使用される。
・PBCH(Physical Broadcast Channel)
・PDCCH(Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
In FIG. 1, the following downlink physical channels are used in the downlink wireless communication from the base station device 3 to the terminal device 1. The downlink physical channel is used by the physical layer to transmit the information output from the upper layer.
・ PBCH (Physical Broadcast Channel)
-PDCCH (Physical Downlink Control Channel)
・ PDSCH (Physical Downlink Shared Channel)
 PBCHは、マスターインフォメーションブロック(MIB:Master Information Block, BCH, Broadcast Channel)を送信するために少なくとも用いられる。PBCHは、所定の送信間隔に基づき送信されてもよい。PBCHは、80msの間隔で送信されてもよい。PBCHは、160msの間隔で送信されてもよい。PBCHに含まれる情報の中身は、80msごとに更新されてもよい。PBCHに含まれる情報の一部または全部は、160msごとに更新されてもよい。PBCHは、288サブキャリアにより構成されてもよい。PBCHは、2、3、または、4つのOFDMシンボルを含んで構成されてもよい。MIBは、同期信号の識別子(インデックス)に関連する情報を含んでもよい。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および/または、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。 PBCH is at least used to transmit a master information block (MIB: Master Information Block, BCH, Broadcast Channel). PBCH may be transmitted based on a predetermined transmission interval. PBCH may be transmitted at intervals of 80 ms. PBCH may be transmitted at intervals of 160 ms. The content of the information contained in the PBCH may be updated every 80 ms. Some or all of the information contained in the PBCH may be updated every 160 ms. The PBCH may be composed of 288 subcarriers. The PBCH may be configured to include 2, 3, or 4 OFDM symbols. The MIB may include information related to the identifier (index) of the synchronization signal. The MIB may include information indicating at least a portion of the slot number, subframe number, and / or radio frame number through which the PBCH is transmitted.
 PDCCHは、下りリンク制御情報(DCI:Downlink Control Information)の送信のために少なくとも用いられる。PDCCHは、下りリンク制御情報を少なくとも含んで送信されてもよい。PDCCHは下りリンク制御情報を含んでもよい。下りリンク制御情報は、DCIフォーマットとも呼称される。下りリンク制御情報は、下りリンクグラント(downlink grant)(DL grant)または上りリンクグラント(uplink grant)(UL grant)の何れかを少なくとも含んでもよい。PDSCHのスケジューリングのために用いられるDCIフォーマットは、下りリンクDCIフォーマットとも呼称される。PUSCHのスケジューリングのために用いられるDCIフォーマットは、上りリンクDCIフォーマットとも呼称される。下りリンクグラントは、下りリンクアサインメント(downlink assignment)(DL assignment)または下りリンク割り当て(downlink allocation)(DL allocation)とも呼称される。上りリンクDCIフォーマットは、DCIフォーマット0_0およびDCIフォーマット0_1の一方または両方を少なくとも含む。 PDCCH is at least used for transmitting downlink control information (DCI: Downlink Control Information). The PDCCH may be transmitted including at least downlink control information. The PDCCH may include downlink control information. The downlink control information is also referred to as DCI format. The downlink control information may include at least one of a downlink grant (DL grant) and an uplink grant (UL grant). The DCI format used for PDSCH scheduling is also referred to as the downlink DCI format. The DCI format used for PUSCH scheduling is also referred to as the uplink DCI format. The downlink grant is also referred to as a downlink assignment (DL assignment) or a downlink assignment (DL allocation). The uplink DCI format includes at least one or both of DCI format 0_0 and DCI format 0_1.
 DCIフォーマット0_0は、1Aから1Fの一部または全部を少なくとも含んで構成される。
1A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
1B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
1C)時間領域リソース割り当てフィールド(Time domain resourceassignment field)
1D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
1E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
1F)CSIリスエストフィールド(CSI request field)
DCI format 0_0 is configured to include at least part or all of 1A to 1F.
1A) DCI format specific field (Identifier for DCI forms field)
1B) Frequency domain resource allocation field (Frequency domain resource field)
1C) Time domain resource allocation field (Time domain resource allocation field)
1D) Frequency hopping flag field
1E) MCS field (MCS field: Modulation and Coding Scene field)
1F) CSI request field (CSI request field)
 DCIフォーマット特定フィールドは、該DCIフォーマット特定フィールドを含むDCIフォーマットが1または複数のDCIフォーマットの何れに対応するかを示すために少なくとも用いられてもよい。該1または複数のDCIフォーマットは、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット0_0、および/または、DCIフォーマット0_1の一部または全部に少なくとも基づき与えられてもよい。 The DCI format specific field may be at least used to indicate whether the DCI format including the DCI format specific field corresponds to one or more DCI formats. The one or more DCI formats may be given at least on the basis of DCI format 1_1, DCI format 1-11, DCI format 0_0, and / or part or all of DCI format 0_1.
 周波数領域リソース割り当てフィールドは、該周波数領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための周波数リソースの割り当てを示すために少なくとも用いられてもよい。周波数領域リソース割り当てフィールドは、FDRA(Frequency Domain Resource Allocation)フィールドとも呼称される。 The frequency domain resource allocation field may at least be used to indicate the allocation of frequency resources for the PUSCH scheduled by the DCI format that includes the frequency domain resource allocation field. The frequency domain resource allocation field is also referred to as an FDRA (Frequency Domain Resource Allocation) field.
 時間領域リソース割り当てフィールドは、該時間領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための時間リソースの割り当てを示すために少なくとも用いられてもよい。 The time domain resource allocation field may at least be used to indicate the allocation of time resources for the PUSCH scheduled by the DCI format that includes the time domain resource allocation field.
 周波数ホッピングフラグフィールドは、該周波数ホッピングフラグフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHに対して周波数ホッピングが適用されるか否かを示すために少なくとも用いられてもよい。 The frequency hopping flag field may at least be used to indicate whether frequency hopping is applied to the PUSCH scheduled by the DCI format including the frequency hopping flag field.
 MCSフィールドは、該MCSフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための変調方式、および/または、ターゲット符号化率の一部または全部を示すために少なくとも用いられてもよい。該ターゲット符号化率は、該PUSCHのトランスポートブロックのためのターゲット符号化率であってもよい。該トランスポートブロックのサイズ(TBS:Transport Block Size)は、該ターゲット符号化率に少なくとも基づき与えられてもよい。 The MCS field may be used at least to indicate the modulation scheme for PUSCH scheduled by the DCI format containing the MCS field and / or part or all of the target code rate. The target code rate may be the target code rate for the transport block of the PUSCH. The size of the transport block (TBS: Transport Block Size) may be given at least based on the target code rate.
 CSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。CSIリクエストフィールドのサイズは、所定の値であってもよい。CSIリクエストフィールドのサイズは、0であってもよいし、1であってもよいし、2であってもよいし、3であってもよい。 The CSI request field is at least used to direct CSI reporting. The size of the CSI request field may be a predetermined value. The size of the CSI request field may be 0, 1 or 2 or 3.
 DCIフォーマット0_1は、2Aから2Hの一部または全部を少なくとも含んで構成される。
2A)DCIフォーマット特定フィールド
2B)周波数領域リソース割り当てフィールド
2C)時間領域リソース割り当てフィールド
2D)周波数ホッピングフラグフィールド2E)MCSフィールド
2F)CSIリクエストフィールド(CSI request field)
2G)BWPフィールド(BWP field)
2H)UL DAIフィールド(downlink assignment index)
DCI format 0-1 is configured to include at least part or all of 2A to 2H.
2A) DCI format specific field 2B) Frequency domain resource allocation field 2C) Time domain resource allocation field 2D) Frequency hopping flag field 2E) MCS field 2F) CSI request field (CSI request field)
2G) BWP field (BWP field)
2H) UL DAI field (downlink assignment index)
 UL DAIフィールドは、PDSCHの送信状況を示すために少なくとも用いられる。動的HARQ-ACKコードブック(Dynamic HARQ-ACK codebook)が用いられる場合、UL DAIフィールドのサイズは2ビットであってもよい。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookのサイズを示す。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookに含められるHARQ-ACKの数を示す。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookにおいて、対応するHARQ-ACKが含められるPDSCHの数を示す。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookにおいて、対応するHARQ-ACKが含められるPDSCHとSPS releaseの数を示す。 The UL DAI field is at least used to indicate the PDSCH transmission status. When a dynamic HARQ-ACK codebook is used, the size of the UL DAI field may be 2 bits. The UL DAI field indicates the size of the HARQ-ACK codebook transmitted by PUSCH. The UL DAI field indicates the number of HARQ-ACKs included in the HARQ-ACK codebook transmitted by PUSCH. The UL DAI field indicates the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by PUSCH. The UL DAI field indicates the number of PDSCHs and SPS releases that include the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH.
 UL DAIフィールドは、モジュロ演算が適用された値が示されてもよい。UL DAIフィールドが2ビットの例について説明する。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が0個の場合、UL DAIフィールドとして“00”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が1個の場合、UL DAIフィールドとして“01”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が2個の場合、UL DAIフィールドとして“10”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が3個の場合、UL DAIフィールドとして“11”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が4個の場合、UL DAIフィールドとして“00”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が5個の場合、UL DAIフィールドとして“01”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が6個の場合、UL DAIフィールドとして“10”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が7個の場合、UL DAIフィールドとして“11”が示される。この例では、PUSCHで送信されるHARQ-ACK codebookにおいて、対応するHARQ-ACKが含められるPDSCHの数に対して、数値‘4’を用いたモジュロ演算が行われる。 The UL DAI field may indicate a value to which a modulo operation is applied. An example in which the UL DAI field has 2 bits will be described. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 0, "00" is displayed as the UL DAI field. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 1, "01" is indicated as the UL DAI field. When the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by PUSCH is 2, "10" is indicated as the UL DAI field. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 3, "11" is indicated as the UL DAI field. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 4, "00" is indicated as the UL DAI field. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 5, "01" is indicated as the UL DAI field. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 6, "10" is indicated as the UL DAI field. When the number of PDSCHs including the corresponding HARQ-ACK in the HARQ-ACK codebook transmitted by PUSCH is 7, "11" is indicated as the UL DAI field. In this example, in the HARQ-ACK codebook transmitted by PUSCH, a modulo operation using the numerical value '4' is performed on the number of PDSCHs including the corresponding HARQ-ACK.
 端末装置1は、受信されたPDSCHの総数を考慮してUL DAIフィールドを解釈する。例えば、端末装置1は、4個のPDSCHを受信しており、“00”を示すUL DAIフィールドを受信する。この場合、端末装置1は、UL DAIフィールドで示される、PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が4個であると解釈する。例えば、端末装置1は、3個のPDSCHを受信しており、“00”を示すUL DAIフィールドを受信する。この場合、端末装置1は、UL DAIフィールドで示される、PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が4個であると解釈し、1つのPDSCHの受信をミスしたと判断する。 The terminal device 1 interprets the UL DAI field in consideration of the total number of PDSCHs received. For example, the terminal device 1 has received four PDSCHs and receives a UL DAI field indicating "00". In this case, the terminal device 1 interprets that the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by the PUSCH indicated by the UL DAI field is four. For example, the terminal device 1 has received three PDSCHs and receives a UL DAI field indicating "00". In this case, the terminal device 1 interprets that the number of PDSCHs in which the corresponding HARQ-ACK is included in the HARQ-ACK codebook transmitted by the PUSCH indicated by the UL DAI field is four, and the terminal device 1 interprets that the number of PDSCHs is four. Judge that the reception was missed.
 BWPフィールドは、DCIフォーマット0_1によりスケジューリングされるPUSCHがマップされる上りリンクBWPを指示するために用いられてもよい。 The BWP field may be used to indicate the uplink BWP to which the PUSCH scheduled in DCI format 0_1 is mapped.
 CSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。CSIリクエストフィールドのサイズは、上位層のパラメータReportTriggerSizeに少なくとも基づき与えられてもよい。 The CSI request field is at least used to direct CSI reporting. The size of the CSI request field may be given at least based on the upper layer parameter ReportTriggerSize.
 下りリンクDCIフォーマットは、DCIフォーマット1_0、および、DCIフォーマット1_1の一方または両方を少なくとも含む。 The downlink DCI format includes at least one or both of DCI format 1_0 and DCI format 1_1.
 DCIフォーマット1_0は、3Aから3Hの一部または全部を少なくとも含んで構成される。
3A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
3B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
3C)時間領域リソース割り当てフィールド(Time domain resourceassignment field)
3D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
3E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
3F)第1のCSIリスエストフィールド(First CSI request field)
3G)PDSCH-to-HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ feedback timing indicator field)
3H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
DCI format 1_0 is configured to include at least part or all of 3A to 3H.
3A) DCI format specific field (Identifier for DCI forms field)
3B) Frequency domain resource allocation field (Frequency domain resource field)
3C) Time domain resource allocation field (Time domain resource allocation field)
3D) Frequency hopping flag field
3E) MCS field (MCS field: Modulation and Coding Scene field)
3F) First CSI request field (First CSI request field)
3G) PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ feedback timing indicator field)
3H) PUCCH resource indicator field
 PDSCHからHARQフィードバックへのタイミング指示フィールドは、タイミングK1を示すフィールドであってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHまたはPUSCHが含まれるスロットのインデックスはn+K1であってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHの先頭のOFDMシンボルまたはPUSCHの先頭のOFDMシンボルが含まれるスロットのインデックスはn+K1であってもよい。 The timing instruction field from PDSCH to HARQ feedback may be a field indicating timing K1. When the index of the slot containing the last OFDM symbol of the PDSCH is slot n, the index of the PUCCH containing at least HARQ-ACK corresponding to the transport block contained in the PDSCH or the slot containing the PUSCH is n + K1. May be good. When the index of the slot containing the last OFDM symbol of the PDSCH is slot n, the first OFDM symbol of the PUCCH containing at least HARQ-ACK corresponding to the transport block contained in the PDSCH or the first OFDM symbol of the PUSCH The index of the included slot may be n + K1.
 以下、PDSCH-to-HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ_feedback timing indicator field)は、HARQ指示フィールドと呼称されてもよい。 Hereinafter, the PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ_feedback timing indicator field) may be referred to as a HARQ instruction field.
 PUCCHリソース指示フィールドは、PUCCHリソースセットに含まれる1または複数のPUCCHリソースのインデックスを示すフィールドであってもよい。 The PUCCH resource instruction field may be a field indicating an index of one or more PUCCH resources included in the PUCCH resource set.
 DCIフォーマット1_1は、4Aから4Jの一部または全部を少なくとも含んで構成される。
4A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
4B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
4C)時間領域リソース割り当てフィールド(Time domain resourceassignment field)
4D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
4E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
4F)第1のCSIリスエストフィールド(First CSI request field)
4G)PDSCH-to-HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ feedback timing indicator field)
4H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
4J)BWPフィールド(BWP field)
The DCI format 1-11 is configured to include at least a part or all of 4A to 4J.
4A) DCI format specific field (Identifier for DCI forms field)
4B) Frequency domain resource allocation field (Frequency domain resource field)
4C) Time domain resource allocation field (Time domain resource allocation field)
4D) Frequency hopping flag field
4E) MCS field (MCS field: Modulation and Coding Scene field)
4F) First CSI request field (First CSI request field)
4G) PDSCH-to-HARQ feedback timing indicator field (PDSCH-to-HARQ feedback timing indicator field)
4H) PUCCH resource indicator field
4J) BWP field (BWP field)
 BWPフィールドは、DCIフォーマット1_1によりスケジューリングされるPDSCHがマップされる下りリンクBWPを指示するために用いられてもよい。 The BWP field may be used to indicate the downlink BWP to which the PDSCH scheduled in DCI format 1-11 is mapped.
 DCIフォーマット2_0は、1または複数のスロットフォーマットインディケータ(SFI:Slot Format Indicator)を少なくとも含んで構成されてもよい。 DCI format 2_0 may be configured to include at least one or more slot format indicators (SFI: Slot Format Indicator).
 下りリンク制御情報は、スロットフォーマット指標(SFI:Slot Format Indicator)を含んでもよい。複数のサブフレーム(スロット)における各サブフレーム(スロット)が上りリンクのサブフレーム(スロット)なのか、下りリンクのサブフレーム(スロット)なのか、フレキシブルサブフレーム(スロット)なのかを示すパターンが、下りリンク制御情報を用いて送受信されてもよい。端末装置1は、受信したSFIにより示されないサブフレーム(スロット)は、フレキシブルサブフレーム(スロット)と判断してもよい。端末装置1は、フレキシブルサブフレーム(スロット)に対してUL grantによりPUSCHの送信がスケジュールされた場合、フレキシブルサブフレーム(スロット)を上りリンクサブフレーム(スロット)として処理を行なう。端末装置1は、フレキシブルサブフレーム(スロット)に対してUL grantによりPUSCHの送信がスケジュールされていなかった場合、フレキシブルサブフレーム(スロット)においてPDCCH候補のモニタリングを行い、DL assignmentを検出する処理を行なう。端末装置1は、フレキシブルサブフレーム(スロット)においてDL assignmentによりPDSCHの受信がスケジュールされた場合、フレキシブルサブフレーム(スロット)を下りリンクサブフレーム(スロット)として処理を行なう。 The downlink control information may include a slot format index (SFI: Slot Form Indicator). A pattern indicating whether each subframe (slot) in a plurality of subframes (slots) is an uplink subframe (slot), a downlink subframe (slot), or a flexible subframe (slot) is It may be transmitted and received using the downlink control information. The terminal device 1 may determine that the received subframe (slot) not indicated by the SFI is a flexible subframe (slot). When the transmission of PUSCH is scheduled by UL grant to the flexible subframe (slot), the terminal device 1 processes the flexible subframe (slot) as an uplink subframe (slot). When the transmission of PUSCH to the flexible subframe (slot) is not scheduled by UL grant, the terminal device 1 monitors the PDCCH candidate in the flexible subframe (slot) and performs a process of detecting DL association. .. When the reception of PDSCH is scheduled by DL assert in the flexible subframe (slot), the terminal device 1 processes the flexible subframe (slot) as a downlink subframe (slot).
 例えば、下りリンクグラントまたは上りリンクグラントを含む下りリンク制御情報は、C-RNTI(Cell-Radio Network Temporary Identifier)を含めてPDCCHで送受信される。 For example, downlink control information including downlink grant or uplink grant is transmitted / received by PDCCH including C-RNTI (Cell-Radio Network Temporary Identifier).
 本実施形態の種々の態様において、特別な記載のない限り、リソースブロックの数は周波数領域におけるリソースブロックの数を示す。 In various aspects of this embodiment, unless otherwise specified, the number of resource blocks indicates the number of resource blocks in the frequency domain.
 下りリンクグラントは、1つのサービングセル内の1つのPDSCHのスケジューリングのために少なくとも用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと同じスロット内のPDSCHのスケジューリングのために少なくとも用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと異なるスロット内のPDSCHのスケジューリングのために用いられてもよい。上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングのために少なくとも用いられる。 The downlink grant is at least used for scheduling one PDSCH in one serving cell. The downlink grant is at least used for scheduling PDSCH in the same slot in which the downlink grant was transmitted. The downlink grant may be used for scheduling PDSCH in a slot different from the slot in which the downlink grant was transmitted. Uplink grants are used at least for scheduling one PUSCH in one serving cell.
 なお、各種DCIフォーマットは、上述のフィールドとは異なるフィールドが更に含まれてもよい。例えば、PDSCHのHARQ-ACK情報が正しく検出されたか否かを示すフィールド(NFI:New Feedback Indicator フィールド)が含まれてもよい。メモリなどの記録媒体に保存されたHARQ-ACKビットを消去(フラッシュ)するか否かを示すフィールド(NFIフィールド)が含まれてもよい。送信されたHARQ-ACK codebookの再送を含めるか否かを示すフィールド(NFIフィールド)が含まれてもよい。DCIフォーマットによりスケジュールされるPDSCHが属する(紐づけられる)PDSCHグループを示すフィールド(PGI:PDSCH Group ID フィールド)が含まれてもよい。HARQ-ACK情報の送信が指示されるPDSCHグループを示すフィールド(RPGI:Request PDSCH Group ID フィールド)が含まれてもよい。送信されたPDCCHの累積数を示すフィールド(C-DAI:Counter Downlink Assignment Index フィールド)が含まれてもよい。送信されるPDCCHの総数を示すフィールド(T-DAI:Total Downlink Assignment Index フィールド)が含まれてもよい。 Note that the various DCI formats may further include fields different from the above-mentioned fields. For example, a field (NFI: New Feedback Indicator field) indicating whether or not the HARQ-ACK information of PDSCH is correctly detected may be included. A field (NFI field) indicating whether or not to erase (flash) the HARQ-ACK bit stored in a recording medium such as a memory may be included. A field (NFI field) indicating whether or not to include the retransmission of the transmitted HARQ-ACK codebook may be included. A field (PGI: PDSCH Group ID field) indicating the PDSCH group to which the PDSCH scheduled by the DCI format belongs (associates) may be included. A field (RPGI: Request PDSCH Group ID field) indicating a PDSCH group instructed to transmit HARQ-ACK information may be included. A field (C-DAI: Counter Downlink Assignment Index field) indicating the cumulative number of transmitted PDCCHs may be included. A field (T-DAI: Total Downlink Assignment Index field) indicating the total number of PDCCHs to be transmitted may be included.
 端末装置1は、各PDSCHに対してPDSCHグループ識別子(PGI: PDSCH Group ID)を紐付けられてもよい。あるPDSCHのPGIは、該PDSCHのスケジューリングに用いられるDCIフォーマットに少なくとも基づき指示されてもよい。例えば、PGIを示すフィールド(PGIフィールド)がDCIフォーマットに含まれてもよい。例えば、PDSCHグループは、同じPGI(PDSCHグループ識別子)を有するPDSCHの集合であってもよい。PDSCHグループは、1つのPDSCH、または、同じPGIを紐づけられた、1つ以上のPDSCHの集合であってもよい。端末装置1に対して設定されるPDSCHグループの数は、1であってもよいし、2であってもよいし、3であってもよいし、4であってもよいし、それ以外の0以上の整数であってもよい。 The terminal device 1 may be associated with a PDSCH group identifier (PGI: PDSCHGroupID) for each PDSCH. The PGI of a PDSCH may be indicated at least based on the DCI format used to schedule the PDSCH. For example, a field indicating PGI (PGI field) may be included in the DCI format. For example, the PDSCH group may be a set of PDSCHs having the same PGI (PDSCH group identifier). The PDSCH group may be one PDSCH or a set of one or more PDSCHs associated with the same PGI. The number of PDSCH groups set for the terminal device 1 may be 1, 2, 3, 3, 4, or any other PDSCH group. It may be an integer greater than or equal to 0.
 リクエストPDSCHグループ(RPG: Requested PDSCH Group)は、次のPUCCHまたはPUSCHを介して送信(報告)されるHARQ-ACK情報に対応するPDSCHグループであってもよい。RPG(リクエストPDSCHグループ)は、1つのPDSCHグループを含めてもよいし、複数のPDSCHグループを含めてもよい。RPGの指示は、DCIフォーマットに少なくとも基づき、ビットマップ(bitmap)の形式で各PDSCHグループに対応して示してもよい。RPGは、DCIフォーマットに含まれるRPGIフィールドに少なくとも基づき示されてもよい。端末装置1は、指示されたRPGに対して、HARQ-ACKコードブックを生成し、PUCCHまたはPUSCHを介して送信(報告)してもよい。 The requested PDSCH group (RPG: Requested PDSCH Group) may be a PDSCH group corresponding to the HARQ-ACK information transmitted (reported) via the next PUCCH or PUSCH. The RPG (request PDSCH group) may include one PDSCH group or may include a plurality of PDSCH groups. The RPG instructions may be given corresponding to each PDSCH group in the form of a bitmap, at least based on the DCI format. The RPG may be indicated at least based on the RPGI field contained in the DCI format. The terminal device 1 may generate a HARQ-ACK codebook for the instructed RPG and transmit (report) it via PUCCH or PUSCH.
 PDCCHに含まれるDCIフォーマットにより指示されるK1(PDSCHからHARQフィードバックへのタイミング指示フィールドにより示される情報、またはパラメータ)の値は、数値(numerical)であってもよいし、非数値(non-numerical)であってもよい。ここで、数値の値は、数字で表す値を意味し、例えば、{0,1,2,...,15}のうちの値であってもよい。非数値の値は、数字以外の値を意味してもよいし、数値を示さないことを意味してもよい。以下、数値のK1の値、および、非数値のK1の値の運用を説明する。例えば、該DCIフォーマットによりスケジュールされるPDSCHは、スロットnにおいて基地局装置3において送信され、端末装置1において受信される。該DCIフォーマットにより示されるK1の値が数値である場合、端末装置1は、該PDSCHに対応するHARQ-ACK情報をスロットn+K1において、PUCCHまたはPUSCHを介して送信(報告)してもよい。該DCIフォーマットにより示されるK1の値が非数値である場合、端末装置1は、該PDSCHに対応するHARQ-ACK情報の報告を延期してもよい。PDSCHのスケジューリング情報を含むDCIフォーマットにより非数値のK1の値が示される場合、端末装置1は、該PDSCHに対応するHARQ-ACK情報の報告を延期してもよい。例えば、端末装置1は、該HARQ-ACK情報をメモリなどの記録媒体に保存して、次のPUCCHまたはPUSCHを介して該HARQ-ACK情報を送信(報告)せず、前述のDCIフォーマット以外のDCIフォーマットに少なくとも基づき該HARQ-ACK情報の送信がトリガされて該HARQ-ACK情報を送信(報告)してもよい。 The value of K1 (information or parameter indicated by the timing indicator field from PDSCH to HARQ feedback) indicated by the DCI format included in the PDCCH may be numerical or non-numerical. ) May be. Here, the numerical value means a value represented by a numerical value, for example, {0, 1, 2, ... .. .. , 15}. A non-numeric value may mean a non-numeric value or may mean no numerical value. Hereinafter, the operation of the numerical value of K1 and the non-numerical value of K1 will be described. For example, the PDSCH scheduled in the DCI format is transmitted in the base station apparatus 3 in slot n and received in the terminal apparatus 1. When the value of K1 indicated by the DCI format is a numerical value, the terminal device 1 may transmit (report) HARQ-ACK information corresponding to the PDSCH in slot n + K1 via PUCCH or PUSCH. If the value of K1 indicated by the DCI format is non-numeric, the terminal device 1 may postpone reporting the HARQ-ACK information corresponding to the PDSCH. If the DCI format containing the PDSCH scheduling information indicates a non-numeric value of K1, the terminal device 1 may postpone reporting the HARQ-ACK information corresponding to the PDSCH. For example, the terminal device 1 stores the HARQ-ACK information in a recording medium such as a memory, does not transmit (report) the HARQ-ACK information via the next PUCCH or PUSCH, and does not transmit (report) the HARQ-ACK information other than the above-mentioned DCI format. The transmission of the HARQ-ACK information may be triggered to transmit (report) the HARQ-ACK information based on at least the DCI format.
 非数値のK1の値は、上位層パラメータの系列に含まれてもよい。上位層パラメータは、上位層パラメータdl-DataToUL-ACKであってもよい。上位層パラメータは、上位層パラメータdl-DataToUL-ACKと異なる上位層パラメータであってもよい。K1の値は、上位層パラメータの系列のうち、DCIフォーマットに含まれるPDSCHからHARQフィードバックへのタイミング指示フィールドによって示される値であってもよい。例えば、上位層パラメータの系列は{0,1,2,3,4,5,15,非数値の値}にセットされ、PDSCHからHARQフィードバックへのタイミング指示フィールドのビット数は3であると想定する場合、PDSCHからHARQフィードバックへのタイミング指示フィールドのコードポイント“000”はK1の値が0であることを示してもよいし、コードポイント“001”はK1の値が1であることを示してもよいし、コードポイント“111”はK1の値が非数値の値であることを示してもよい。例えば、上位層パラメータの系列は{非数値の値,0,1,2,3,4,5,15}にセットされ、PDSCHからHARQフィードバックへのタイミング指示フィールドのビット数は3であると想定する場合、PDSCHからHARQフィードバックへのタイミング指示フィールドのコードポイント“000”はK1の値が非数値の値であることを示してもよいし、コードポイント“001”はK1の値が0であることを示してもよいし、コードポイント“111”はK1の値が15であることを示してもよい。 The non-numeric value of K1 may be included in the series of upper layer parameters. The upper layer parameter may be the upper layer parameter dl-DataToUL-ACK. The upper layer parameter may be an upper layer parameter different from the upper layer parameter dl-DataToUL-ACK. The value of K1 may be a value indicated by a timing instruction field from PDSCH to HARQ feedback included in the DCI format in the series of upper layer parameters. For example, it is assumed that the sequence of upper layer parameters is set to {0,1,2,3,4,5,15, non-numeric value}, and the number of bits of the timing instruction field from PDSCH to HARQ feedback is 3. If so, the code point “000” in the timing instruction field from PDSCH to HARQ feedback may indicate that the value of K1 is 0, and the code point “001” indicates that the value of K1 is 1. Alternatively, the code point "111" may indicate that the value of K1 is a non-numeric value. For example, it is assumed that the sequence of upper layer parameters is set to {non-numeric value, 0,1,2,3,4,5,15} and the number of bits of the timing instruction field from PDSCH to HARQ feedback is 3. If so, the code point “000” in the timing instruction field from PDSCH to HARQ feedback may indicate that the value of K1 is a non-numeric value, and the code point “001” may indicate that the value of K1 is 0. This may be indicated, or the code point “111” may indicate that the value of K1 is 15.
 基地局装置3Aの下りリンクの周波数帯域(周波数スペクトラム、キャリア、コンポーネントキャリア)で送受信されるトランスポートブロックに対応するHARQ-ACKビット(HARQ-ACK情報)は、DCI formatに含まれる上述の各種フィールド(PDSCH-to-HARQフィードバックタイミングインジケーターフィールド、HARQ指示フィールド、PUCCHリソース指示フィールド、NFIフィールド、PGIフィールド、RPGIフィールド、C-DAIフィールド、T-DAIフィールド、UL DAIフィールド)の少なくとも1つに基づき上述のような方法で、基地局装置3Aの上りリンクの周波数帯域(周波数スペクトラム、キャリア、コンポーネントキャリア)で送受信される。 The HARQ-ACK bits (HARQ-ACK information) corresponding to the transport blocks transmitted and received in the downlink frequency band (frequency spectrum, carrier, component carrier) of the base station apparatus 3A are included in the DCI format in the above-mentioned various fields. (PDSCH-to-HARQ feedback timing indicator field, HARQ indicator field, PUCCH resource indicator field, NFI field, PGI field, RPGI field, C-DAI field, T-DAI field, UL DAI field) It is transmitted and received in the uplink frequency band (frequency spectrum, carrier, component carrier) of the base station apparatus 3A by the above method.
 基地局装置3Bの下りリンク周波数帯域(周波数スペクトラム、キャリア、コンポーネントキャリア)で送受信されるトランスポートブロックに対応するHARQ-ACKビット(HARQ-ACK情報)は、基地局装置3Aの上りリンクの周波数帯域(周波数スペクトラム、キャリア、コンポーネントキャリア)において予め設定された周期的なリソースを用いて送受信される。ここで、HARQ-ACKビット(HARQ-ACK情報)が送受信されるタイミング(時間リソース)はDCI formatで指示されない。ここで、HARQ-ACKビット(HARQ-ACK情報)が送受信される周波数領域のリソース(リソースブロック、符号)はDCI formatで指示されない。ここで、送受信されるHARQ-ACKビット(HARQ-ACK情報)が属するPDSCHグループはDCI formatで指示されず、基地局装置3Bの下りリンクの各HARQ processに対するHARQ-ACKビット(HARQ-ACK情報)が基地局装置3Aの上りリンクの周波数帯域で送受信される。基地局装置3Bの下りリンク周波数帯域で送受信されるトランスポートブロックに対応するHARQ-ACKビット(HARQ-ACK情報)は、複数のHARQ processに対応するHARQ-ACKビットから構成されるHARQ-ACK codebookを用いて送受信される。このHARQ-ACK codebookが送信される毎に、端末装置1において保持された、各HARQ-processに対するHARQ-ACKビット(HARQ-ACK情報)はリセット、またはフラッシュされる。 The HARQ-ACK bit (HARQ-ACK information) corresponding to the transport block transmitted / received in the downlink frequency band (frequency spectrum, carrier, component carrier) of the base station device 3B is the uplink frequency band of the base station device 3A. It is transmitted and received using preset periodic resources in (frequency spectrum, carrier, component carrier). Here, the timing (time resource) for transmitting and receiving the HARQ-ACK bit (HARQ-ACK information) is not specified by the DCI format. Here, the resources (resource block, code) in the frequency domain in which the HARQ-ACK bit (HARQ-ACK information) is transmitted / received are not indicated by the DCI format. Here, the PDSCH group to which the transmitted / received HARQ-ACK bit (HARQ-ACK information) belongs is not indicated by the DCI format, and the HARQ-ACK bit (HARQ-ACK information) for each HARQ passage of the downlink of the base station device 3B. Is transmitted and received in the uplink frequency band of the base station device 3A. The HARQ-ACK bit (HARQ-ACK information) corresponding to the transport block transmitted and received in the downlink frequency band of the base station device 3B is a HARQ-ACK codebook composed of HARQ-ACK bits corresponding to a plurality of HARQ processes. Is transmitted and received using. Each time this HARQ-ACK codebook is transmitted, the HARQ-ACK bit (HARQ-ACK information) held in the terminal device 1 for each HARQ-process is reset or flushed.
 1つの物理チャネルは、1つのサービングセルにマップされてもよい。1つの物理チャネルは、1つのサービングセルに含まれる1つのキャリアに設定される1つのBWPにマップされてもよい。 One physical channel may be mapped to one serving cell. One physical channel may be mapped to one BWP set for one carrier contained in one serving cell.
 端末装置1は、1または複数の制御リソースセット(CORESET:COntrolREsource SET)が設定されてもよい。端末装置1は、1または複数の制御リソースセットにおいてPDCCHを監視する(monitor)。ここで、1または複数の制御リソースセットにおいてPDCCHを監視することは、1または複数の制御リソースセットのそれぞれに対応する1または複数のPDCCHを監視することを含んでもよい。なお、PDCCHは、1または複数のPDCCH候補および/またはPDCCH候補のセットを含んでもよい。また、PDCCHを監視することは、PDCCH、および/または、PDCCHを介して送信されるDCIフォーマットを監視し、検出することを含んでもよい。 The terminal device 1 may be set with one or more control resource sets (CORESET: Control REsource SET). The terminal device 1 monitors the PDCCH in one or more control resource sets. Here, monitoring PDCCH in one or more control resource sets may include monitoring one or more PDCCHs corresponding to each of one or more control resource sets. The PDCCH may include one or more sets of PDCCH candidates and / or PDCCH candidates. Monitoring the PDCCH may also include monitoring and detecting the PDCCH and / or the DCI format transmitted via the PDCCH.
 制御リソースセットは、1または複数のPDCCHがマップされうる時間周波数領域であってもよい。制御リソースセットは、端末装置1がPDCCHを監視する領域であってもよい。制御リソースセットは、連続的なリソース(Localized resource)により構成されてもよい。制御リソースセットは、非連続的なリソース(distributed resource)により構成されてもよい。 The control resource set may be a time-frequency region in which one or more PDCCHs can be mapped. The control resource set may be an area in which the terminal device 1 monitors the PDCCH. The control resource set may be composed of continuous resources (Located resources). The control resource set may be composed of discontinuous resources.
 周波数領域において、制御リソースセットのマッピングの単位はリソースブロックであってもよい。例えば、周波数領域において、制御リソースセットのマッピングの単位は6リソースブロックであってもよい。時間領域において、制御リソースセットのマッピングの単位はOFDMシンボルであってもよい。例えば、時間領域において、制御リソースセットのマッピングの単位は1OFDMシンボルであってもよい。 In the frequency domain, the unit of mapping of the control resource set may be a resource block. For example, in the frequency domain, the unit of mapping of the control resource set may be 6 resource blocks. In the time domain, the control resource set mapping unit may be an OFDM symbol. For example, in the time domain, the unit of mapping of the control resource set may be 1 OFDM symbol.
 制御リソースセットのリソースブロックへのマッピングは、上位層パラメータに少なくとも基づき与えられてもよい。該上位層パラメータは、リソースブロックのグループ(RBG:Resource Block Group)に対するビットマップを含んでもよい。該リソースブロックのグループは、6つの連続するリソースブロックにより与えられてもよい。 The mapping of the control resource set to the resource block may be given at least based on the upper layer parameters. The upper layer parameter may include a bitmap for a group of resource blocks (RBG: Resource Block Group). The group of resource blocks may be given by six consecutive resource blocks.
 制御リソースセットを構成するOFDMシンボルの数は、上位層パラメータに少なくとも基づき与えられてもよい。例えば、制御リソースセットを構成するOFDMシンボルの開始位置が上位層のシグナリングを用いて基地局装置3から端末装置1に通知される。例えば、制御リソースセットを構成するOFDMシンボルの終了位置が上位層のシグナリングを用いて基地局装置3から端末装置1に通知される。 The number of OFDM symbols that make up the control resource set may be given at least based on the upper layer parameters. For example, the start position of the OFDM symbols constituting the control resource set is notified from the base station apparatus 3 to the terminal apparatus 1 by using the signaling of the upper layer. For example, the end position of the OFDM symbols constituting the control resource set is notified from the base station apparatus 3 to the terminal apparatus 1 by using the signaling of the upper layer.
 ある制御リソースセットは、共通制御リソースセット(Common control resource set)であってもよい。共通制御リソースセットは、複数の端末装置1に対して共通に設定される制御リソースセットであってもよい。共通制御リソースセットは、MIB、第1のシステム情報、第2のシステム情報、共通RRCシグナリング、および、セルIDの一部または全部に少なくとも基づき与えられてもよい。例えば、第1のシステム情報のスケジューリングのために用いられるPDCCHを監視することが設定される制御リソースセットの時間リソース、および/または、周波数リソースは、MIBに少なくとも基づき与えられてもよい。 A certain control resource set may be a common control resource set (Common control resource set). The common control resource set may be a control resource set that is commonly set for a plurality of terminal devices 1. The common control resource set may be given at least based on the MIB, the first system information, the second system information, the common RRC signaling, and some or all of the cell IDs. For example, the time resources and / or frequency resources of the control resource set set to monitor the PDCCH used for scheduling the first system information may be given at least based on the MIB.
 MIBで設定される制御リソースセットは、CORESET#0とも呼称される。CORESET#0は、インデックス#0の制御リソースセットであってもよい。 The control resource set set in the MIB is also called CORESET # 0. CORESET # 0 may be the control resource set of index # 0.
 ある制御リソースセットは、専用制御リソースセット(Dedicated control resource set)であってもよい。専用制御リソースセットは、端末装置1のために専用に用いられるように設定される制御リソースセットであってもよい。専用制御リソースセットは、専用RRCシグナリング、および、C-RNTIの値の一部または全部に少なくとも基づき与えられてもよい。端末装置1に複数の制御リソースセットが構成され、それぞれの制御リソースセットにインデックス(制御リソースセットインデックス)が付与されてもよい。制御リソースセット内に1つ以上の制御チャネル要素(CCE)が構成され、それぞれのCCEにインデックス(CCEインデックス)が付与されてもよい。 A certain control resource set may be a dedicated control resource set (Dedicated control resource set). The dedicated control resource set may be a control resource set that is set to be used exclusively for the terminal device 1. The dedicated control resource set may be given based on at least some or all of the dedicated RRC signaling and C-RNTI values. A plurality of control resource sets may be configured in the terminal device 1, and an index (control resource set index) may be assigned to each control resource set. One or more control channel elements (CCEs) may be configured in the control resource set, and each CCE may be given an index (CCE index).
 CCEは、1または複数のREGのグループを含んで構成されてもよい。REGのグループは、REGバンドル(bundle)とも呼称される。1つのREGのグループを構成するREGの数は、Bundle sizeと呼称される。例えば、REGのBundle sizeは、1、2、3、6の何れかであってもよい。interleaved mappingにおいて、REGバンドル単位でインタリーバが適用されてもよい。端末装置1は、REGのグループ内のREに適用されるプレコーダが同一であると想定してもよい。端末装置1は、REGのグループ内のREに適用されるプレコーダが同一であると想定して、チャネル推定を行うことができる。一方、端末装置1は、REGのグループ間のREに適用されるプレコーダが同一ではないと想定してもよい。言い換えれば、端末装置1は、REGのグループ間のREに適用されるプレコーダが同一であると想定しなくてもよい。「REGのグループ間」は、「異なる2つのREGのグループの間」と言い換えられてもよい。端末装置1は、REGのグループ間のREに適用されるプレコーダが同一ではないと想定してチャネル推定を行うことができる。 CCE may be configured to include one or more groups of REGs. The REG group is also referred to as the REG bundle. The number of REGs that make up one REG group is called the Bundle size. For example, the REG Bundle size may be any of 1, 2, 3, and 6. In interleaved mapping, an interleaver may be applied in units of REG bundles. The terminal device 1 may assume that the precoders applied to the REs in the REG group are the same. The terminal device 1 can perform channel estimation on the assumption that the precoders applied to REs in the REG group are the same. On the other hand, the terminal device 1 may assume that the precoders applied to the REs between the REG groups are not the same. In other words, the terminal device 1 does not have to assume that the precoders applied to REs between groups of REGs are the same. "Between REG groups" may be paraphrased as "between two different REG groups". The terminal device 1 can perform channel estimation on the assumption that the precoders applied to REs between groups of REGs are not the same.
 端末装置1によって監視されるPDCCHの候補(PDCCH candidate)のセットは、探索領域(Search space)の観点から定義される。つまり、端末装置1によって監視されるPDCCH候補のセットは、探索領域によって与えられる。 The set of PDCCH candidates (PDCCH candidate) monitored by the terminal device 1 is defined from the viewpoint of the search area (Search space). That is, the set of PDCCH candidates monitored by the terminal device 1 is given by the search area.
 探索領域は、1または複数の集約レベル(Aggregation level)のPDCCH候補を1または複数含んで構成されてもよい。PDCCH候補の集約レベルは、該PDCCHを構成するCCEの個数を示してもよい。PDDCH候補は、1または複数のCCEにマップされてもよい。 The search area may be configured to include one or more PDCCH candidates at one or more aggregation levels. The aggregation level of PDCCH candidates may indicate the number of CCEs constituting the PDCCH. PDDCH candidates may be mapped to one or more CCEs.
 PDCCH候補を構成するCCEの数は、集約レベル(AL:Aggregation Level)とも呼称される。1つのPDCCH候補が複数のCCEの集約で構成される場合、1つのPDCCH候補はCCEの番号が連続する複数のCCEから構成される。集約レベルがALXのPDCCH候補の集合は、集約レベルALXの探索領域とも呼称される。つまり、集約レベルALXの探索領域は、集約レベルがALの1つまたは複数のPDCCH候補を含んで構成されてもよい。また、探索領域は、複数の集約レベルのPDCCH候補を含んでもよい。例えば、CSSは、複数の集約レベルのPDCCH候補を含んでもよい。例えば、USSは、複数の集約レベルのPDCCH候補を含んでもよい。CSSに含まれるPDCCH候補の集約レベルのセットと、USSに含まれるPDCCH候補の集約レベルのセットはそれぞれ規定/設定されてもよい。 The number of CCEs that make up the PDCCH candidate is also referred to as the aggregation level (AL). When one PDCCH candidate is composed of agglomeration of a plurality of CCEs, one PDCCH candidate is composed of a plurality of CCEs having consecutive CCE numbers. Aggregation level set of PDCCH candidates of AL X is referred to as the search area of the aggregation level AL X. That is, the search area of the aggregation level AL X is aggregation level may be configured to include one or more PDCCH candidates of AL X. The search region may also include multiple aggregation level PDCCH candidates. For example, CSS may include multiple aggregation level PDCCH candidates. For example, the USS may include multiple aggregation level PDCCH candidates. A set of aggregation levels of PDCCH candidates included in CSS and a set of aggregation levels of PDCCH candidates included in USS may be specified / set respectively.
 端末装置1は、DRX(Discontinuous reception)が設定されないスロットにおいて少なくとも1または複数の探索領域を監視してもよい。DRXは、上位層パラメータに少なくとも基づき与えられてもよい。端末装置1は、DRXが設定されないスロットにおいて少なくとも1または複数の探索領域セット(Search space set)を監視してもよい。端末装置1に複数の探索領域セットが構成されてもよい。それぞれの探索領域セットにインデックス(探索領域セットインデックス)が付与されてもよい。 The terminal device 1 may monitor at least one or a plurality of search areas in a slot in which DRX (Discontinuity reception) is not set. DRX may be given at least based on the upper layer parameters. The terminal device 1 may monitor at least one or a plurality of search area sets (Search paceset) in a slot in which DRX is not set. A plurality of search area sets may be configured in the terminal device 1. An index (search area set index) may be assigned to each search area set.
 探索領域セットは、1または複数の探索領域を少なくとも含んで構成されてもよい。それぞれの探索領域にインデックス(探索領域インデックス)が付与されてもよい。 The search area set may be configured to include at least one or a plurality of search areas. An index (search area index) may be assigned to each search area.
 探索領域セットのそれぞれは、1つの制御リソースセットに少なくとも関連してもよい。探索領域セットのそれぞれは、1つの制御リソースセットに含まれてもよい。探索領域セットのそれぞれに対して、該探索領域セットに関連する制御リソースセットのインデックスが与えられてもよい。 Each of the search area sets may be associated with at least one control resource set. Each of the search area sets may be included in one control resource set. For each of the search area sets, an index of the control resource set associated with the search area set may be given.
 探索領域は、CSS(Common Search Space、共通探索領域)とUSS(UE-specific Search Space)の2つのタイプを持ってもよい。CSSは、複数の端末装置1に対して共通に設定される探索領域であってもよい。USSは、個別の端末装置1のために専用的に用いられる設定を含む探索領域であってもよい。CSSは、同期信号、MIB、第1のシステム情報、第2のシステム情報、共通RRCシグナリング、専用RRCシグナリング、セルID、等に少なくとも基づき与えられてもよい。USSは、専用RRCシグナリング、および/または、C-RNTIの値に少なくとも基づき与えられてもよい。CSSは、複数の端末装置1に対して共通のリソース(制御リソースエレメント)に設定される探索領域であってもよい。USSは、個別の端末装置1毎のリソース(制御リソースエレメント)に設定される探索領域であってもよい。 The search area may have two types, CSS (Common Search Space, common search area) and USS (UE-specific Search Space). The CSS may be a search area that is commonly set for a plurality of terminal devices 1. The USS may be a search area that includes settings that are used exclusively for the individual terminal device 1. The CSS may be given at least based on the synchronization signal, MIB, first system information, second system information, common RRC signaling, dedicated RRC signaling, cell ID, and the like. USS may be given at least based on dedicated RRC signaling and / or C-RNTI values. The CSS may be a search area set as a common resource (control resource element) for a plurality of terminal devices 1. The USS may be a search area set in a resource (control resource element) for each individual terminal device 1.
 CSSは、プライマリセルにおいてシステム情報を送信するために用いられるSI-RNTIによってスクランブルされたDCIフォーマットに対するタイプ0PDCCH CSS、および、初期アクセスに用いられるRA-RNTI、TC-RNTIによってスクランブルされたDCIフォーマットに対するタイプ1PDCCH CSSが用いられてもよい。CSSは、Unlicensed accessに用いられるCC-RNTIによってスクランブルされたDCIフォーマットに対するタイプのPDCCH CSSが用いられてもよい。端末装置1は、それらの探索領域におけるPDCCH候補をモニタすることができる。所定のRNTIによってスクランブルされたDCIフォーマットとは、所定のRNTIによってスクランブルされたCRC(Cyclic Redundancy Check)が付加されたDCIフォーマットであってもよい。 CSS is for type 0PDCCH CSS for SI-RNTI scrambled DCI format used to transmit system information in the primary cell, and for RA-RNTI, TC-RNTI scrambled DCI format used for initial access. Type 1 PDCCH CSS may be used. As the CSS, a PDCCH CSS of the type for the DCI format scrambled by CC-RNTI used for Accessed Access may be used. The terminal device 1 can monitor PDCCH candidates in those search areas. The DCI format scrambled by a predetermined RNTI may be a DCI format to which a CRC (Cyclic Redundancy Check) scrambled by a predetermined RNTI is added.
 PDCCHの受信に関連する情報は、PDCCHの宛先を指示するIDに関連する情報を含んでもよい。PDCCHの宛先を指示するIDは、PDCCHに付加されるCRCビットのスクランブリングに用いられるIDであってもよい。PDCCHの宛先を指示するIDは、RNTI(Radio Network Temporary Identifier)とも呼称される。PDCCHの受信に関連する情報は、PDCCHに付加されるCRCビットのスクランブリングに用いられるIDに関連する情報を含んでもよい。端末装置1は、PBCHに含まれる該IDに関連する情報に少なくとも基づき、PDCCHの受信を試みることができる。 The information related to the reception of the PDCCH may include the information related to the ID indicating the destination of the PDCCH. The ID indicating the destination of the PDCCH may be an ID used for scrambling the CRC bit added to the PDCCH. The ID that indicates the destination of the PDCCH is also referred to as RNTI (Radio Network Temporary Identifier). The information related to the reception of the PDCCH may include the information related to the ID used for scrambling the CRC bit added to the PDCCH. The terminal device 1 can attempt to receive the PDCCH based on at least the information related to the ID contained in the PBCH.
 RNTIは、SI-RNTI(System Information - RNTI)、P-RNTI(Paging - RNTI)、C-RNTI(Common - RNTI)、Temporary C-RNTI(TC-RNTI)、RA-RNTI(Random Access - RNTI)、CC-RNTI(Common Control - RNTI)、INT-RNTI(Interruption - RNTI)を含んでもよい。SI-RNTIは、システム情報を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられる。P-RNTIは、ページング情報、および/または、システム情報の変更通知等の情報を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられる。C-RNTIは、RRC接続された端末装置1に対して、ユーザーデータをスケジューリングするために少なくとも用いられる。Temporary C-RNTIは、ランダムアクセスメッセージ4のスケジューリングのために少なくとも用いられる。Temporary C-RNTIは、ロジカルチャネルにおけるCCCHにマップされるデータを含むPDSCHをスケジューリングするために少なくとも用いられる。RA-RNTIは、ランダムアクセスメッセージ2のスケジューリングのために少なくとも用いられる。CC-RNTIは、Unlicensed accessの制御情報の送受信のために少なくとも用いられる。INT-RNTIは、下りリンクでのPre-emptionを示すために少なくとも用いられる。 RNTI is SI-RNTI (System Information-RNTI), P-RNTI (Paging-RNTI), C-RNTI (Common-RNTI), Temporary C-RNTI (TC-RNTI), RA-RNTI (Random) , CC-RNTI (Common Control-RNTI), INT-RNTI (Interruption-RNTI) may be included. SI-RNTI is at least used for scheduling PDSCHs transmitted containing system information. P-RNTI is at least used for scheduling PDSCHs transmitted containing information such as paging information and / or system information change notifications. C-RNTI is at least used to schedule user data for RRC-connected terminal equipment 1. Temporary C-RNTI is at least used for scheduling the random access message 4. Temporary C-RNTI is at least used to schedule a PDSCH containing data that maps to CCCH in a logical channel. RA-RNTI is at least used for scheduling random access message 2. CC-RNTI is at least used for transmitting and receiving control information of Enhanced access. INT-RNTI is at least used to indicate pre-emption on the downlink.
 なお、CSSに含まれるPDCCHおよび/またはDCIには、該PDCCH/DCIが、どのサービングセル(または、どのコンポーネントキャリア)に対するPDSCHまたはPUSCHをスケジュールしているかを示すCIF(Carrier Indicator Field)が含まれなくてもよい。 The PDCCH and / or DCI included in the CSS does not include a CIF (Carrier Indicator Field) indicating which serving cell (or which component carrier) the PDCCH / DCI schedules the PDSCH or PUSCH. You may.
 なお、端末装置1に対して複数のサービングセルおよび/または複数のコンポーネントキャリアを集約して通信(送信および/または受信)を行なうキャリア集約(CA:キャリアアグリゲーション)が設定される場合には、所定のサービングセル(所定のコンポーネントキャリア)に対するUSSに含まれるPDCCHおよび/またはDCIには、該PDCCH/DCIが、どのサービングセルおよび/またはどのコンポーネントキャリアに対するPDSCHまたはPUSCHをスケジュールしているかを示すCIFが含まれてもよい。 When carrier aggregation (CA: carrier aggregation) is set for the terminal device 1 to aggregate a plurality of serving cells and / or a plurality of component carriers for communication (transmission and / or reception), a predetermined value is provided. The PDCCH and / or DCI contained in the USS for a serving cell (predetermined component carrier) includes a CIF indicating which serving cell and / or which component carrier the PDCCH / DCI is scheduling a PDSCH or PUSCH for. May be good.
 なお、端末装置1に対して1つのサービングセルおよび/または1つのコンポーネントキャリアを用いて通信を行なう場合には、USSに含まれるPDCCHおよび/またはDCIには、該PDCCH/DCIが、どのサービングセルおよび/またはどのコンポーネントキャリアに対するPDSCHまたはPUSCHをスケジュールしているかを示すCIFが含まれなくてもよい。 When communicating with the terminal device 1 using one serving cell and / or one component carrier, the PDCCH / / or DCI included in the USS includes which serving cell and / or the PDCCH / DCI. Alternatively, a CIF indicating which component carrier the PDSCH or PUSCH is scheduled for may not be included.
 共通制御リソースセットは、CSSを含んでもよい。共通制御リソースセットは、CSSおよびUSSの両方を含んでもよい。専用制御リソースセットは、USSを含んでもよい。専用制御リソースセットは、CSSを含んでもよい。 The common control resource set may include CSS. The common control resource set may include both CSS and USS. The dedicated control resource set may include USS. The dedicated control resource set may include CSS.
 探索領域の物理リソースは制御チャネルの構成単位(CCE:Control Channel Element)により構成される。CCEは所定の数のリソース要素グループ(REG:Resource Element Group)により構成される。例えば、CCEは6個のREGにより構成されてもよい。REGは1つのPRB(Physical Resource Block)の1OFDMシンボルにより構成されてもよい。つまり、REGは12個のリソースエレメント(RE:Resource Element)を含んで構成されてもよい。PRBは、単にRB(Resource Block:リソースブロック)とも呼称される。 The physical resources in the search area are composed of control channel configuration units (CCE: Control Channel Elements). CCE is composed of a predetermined number of resource element groups (REG: Resource Element Group). For example, CCE may consist of 6 REGs. The REG may be composed of one PRB (Physical Resource Block) 1 OFDM symbol. That is, the REG may be configured to include 12 resource elements (RE: Resource Element). PRB is also simply referred to as RB (Resource Block).
 つまり、端末装置1は、制御リソースセット内の探索領域に含まれるPDCCH候補をブラインド検出することによって、該端末装置1に対するPDCCHおよび/またはDCIを検出することができる。 That is, the terminal device 1 can detect the PDCCH and / or DCI for the terminal device 1 by blindly detecting the PDCCH candidate included in the search area in the control resource set.
 1つのサービングセルおよび/または1つのコンポーネントキャリアにおける1つの制御リソースセットに対するブラインド検出の回数は、該制御リソースセットに含まれるPDCCHに対する探索領域の種類、集約レベルの種類、PDCCH候補の数に基づいて決定されてもよい。ここで、探索領域の種類とは、CSSおよび/またはUSSおよび/またはUGSS(UE Group SS)および/またはGCSS(Group CSS)のうち、少なくとも1つが含まれてもよい。集約レベルの種類とは、探索領域を構成するCCEに対してサポートされる最大集約レベルを示し、{1,2,4,8,…,X}(Xは所定の値)のうち、少なくとも1つから規定/設定されてもよい。PDCCH候補の数とは、ある集約レベルに対するPDCCH候補の数を示してもよい。つまり、複数の集約レベルに対してそれぞれ、PDCCH候補の数が規定/設定されてもよい。なお、UGSSは、1つまたは複数の端末装置1に対して共通して割り当てられる探索領域であってもよい。GCSSは、1つまたは複数の端末装置1に対してCSSに関連するパラメータを含むDCIがマップされた探索領域であってもよい。なお、集約レベルは、所定のCCE数の集約レベルを示し、1つのPDCCHおよび/または探索領域を構成するCCEの総数に関連する。 The number of blind detections for one control resource set in one serving cell and / or one component carrier is determined based on the type of search area for PDCCH included in the control resource set, the type of aggregation level, and the number of PDCCH candidates. May be done. Here, the type of search region may include at least one of CSS and / or USS and / or UGSS (UE Group SS) and / or GCSS (Group CSS). The type of aggregation level indicates the maximum aggregation level supported for the CCE constituting the search area, and is at least one of {1, 2, 4, 8, ..., X} (X is a predetermined value). It may be specified / set from the beginning. The number of PDCCH candidates may indicate the number of PDCCH candidates for a certain aggregation level. That is, the number of PDCCH candidates may be defined / set for each of the plurality of aggregation levels. The UGSS may be a search area commonly assigned to one or a plurality of terminal devices 1. The GCSS may be a search region in which a DCI containing parameters related to CSS is mapped to one or more terminal devices 1. The aggregation level indicates the aggregation level of a predetermined number of CCEs, and is related to the total number of CCEs constituting one PDCCH and / or the search area.
 なお、集約レベルの大きさが、PDCCHおよび/または探索領域に対応するカバレッジまたはPDCCHおよび/または探索領域に含まれるDCIのサイズ(DCIフォーマットサイズ、ペイロードサイズ)に関連付けられてもよい。 Note that the size of the aggregation level may be associated with the coverage corresponding to the PDCCH and / or the search area or the size of the DCI included in the PDCCH and / or the search area (DCI format size, payload size).
 なお、1つの制御リソースセットに対して、PDCCHシンボルの開始位置(スタートシンボル)が設定される場合、且つ、所定の期間において、1つよりも多く制御リソースセット内のPDCCHを検出可能である場合には、各スタートシンボルに対応する時間領域に対して、該制御リソースセットに含まれるPDCCHに対する探索領域の種類、集約レベルの種類、PDCCH候補の数がそれぞれ設定されてもよい。該制御リソースセットに含まれるPDCCHに対する、探索領域の種類、集約レベルの種類、PDCCH候補の数はそれぞれ、制御リソースセット毎に設定されてもよいし、DCIおよび/または上位層の信号(RRCシグナリング)を介して提供/設定されてもよいし、仕様書によって予め規定/設定されてもよい。なお、PDCCH候補の数は、所定の期間のPDCCH候補の数であってもよい。なお、所定の期間は、1ミリ秒であってもよい。所定の期間は、1マイクロ秒であってもよい。また、所定の期間は、1スロットの期間であってもよい。また、所定の期間は、1つのOFDMシンボルの期間であってもよい。 When the start position (start symbol) of the PDCCH symbol is set for one control resource set, and more than one PDCCH in the control resource set can be detected in a predetermined period. May be set for the time domain corresponding to each start symbol, the type of search area for PDCCH included in the control resource set, the type of aggregation level, and the number of PDCCH candidates. The type of search area, the type of aggregation level, and the number of PDCCH candidates for the PDCCH included in the control resource set may be set for each control resource set, and the DCI and / or upper layer signal (RRC signaling) may be set. ) May be provided / set, or may be specified / set in advance by the specifications. The number of PDCCH candidates may be the number of PDCCH candidates for a predetermined period. The predetermined period may be 1 millisecond. The predetermined period may be 1 microsecond. Further, the predetermined period may be a period of one slot. Further, the predetermined period may be the period of one OFDM symbol.
 なお、1つの制御リソースセットに対してPDCCHシンボルの開始位置(スタートシンボル)が1つよりも多い場合、つまり、所定の期間において、PDCCHをブラインド検出(モニタ)するタイミングが複数ある場合には、各スタートシンボルに対応する時間領域に対して、該制御リソースセットに含まれるPDCCHに対する探索領域の種類、集約レベルの種類、PDCCH候補の数がそれぞれ設定されてもよい。該制御リソースセットに含まれるPDCCHに対する、探索領域の種類、集約レベルの種類、PDCCH候補の数はそれぞれ、制御リソースセット毎に設定されてもよいし、DCIおよび/または上位層の信号を介して提供/設定されてもよいし、仕様書によって予め規定/設定されてもよい。 When there are more than one start position (start symbol) of the PDCCH symbol for one control resource set, that is, when there are a plurality of timings for blind detection (monitoring) of the PDCCH in a predetermined period, For the time domain corresponding to each start symbol, the type of search area for PDCCH included in the control resource set, the type of aggregation level, and the number of PDCCH candidates may be set respectively. The type of search area, the type of aggregation level, and the number of PDCCH candidates for the PDCCH included in the control resource set may be set for each control resource set, and may be set via the DCI and / or the signal of the upper layer. It may be provided / set, or it may be specified / set in advance by the specifications.
 なお、PDCCH候補の数の示し方として、PDCCH候補の所定の数から削減する個数を、集約レベル毎に規定/設定されるような構成でもよい。 As a method of indicating the number of PDCCH candidates, the number to be reduced from the predetermined number of PDCCH candidates may be defined / set for each aggregation level.
 端末装置1は、ブラインド検出に関連する能力情報を基地局装置3に送信/通知してもよい。端末装置1は、1つのサブフレームにおいて処理可能なPDCCH候補の数をPDCCHに関する能力情報として基地局装置3に送信/通知してもよい。端末装置1は、1つまたは複数のサービングセル/コンポーネントキャリアに対して所定の数よりも多い制御リソースセットが設定できる場合、ブラインド検出に関連する能力情報を基地局装置3に送信/通知してもよい。 The terminal device 1 may transmit / notify the base station device 3 of the capability information related to the blind detection. The terminal device 1 may transmit / notify the base station device 3 of the number of PDCCH candidates that can be processed in one subframe as capability information related to the PDCCH. The terminal device 1 may transmit / notify the base station device 3 of the capability information related to blind detection when more control resource sets than a predetermined number can be set for one or more serving cells / component carriers. good.
 端末装置1は、1つまたは複数のサービングセル/コンポーネントキャリアの所定の期間に対して所定の数よりも多い制御リソースセットが設定できる場合、ブラインド検出に関連する能力情報を基地局装置3に送信/通知してもよい。 The terminal device 1 transmits capacity information related to blind detection to the base station device 3 when a predetermined number of control resource sets can be set for a predetermined period of one or more serving cells / component carriers. You may notify.
 なお、該ブラインド検出に関連する能力情報には、所定の期間におけるブラインド検出の最大回数を示す情報が含まれてもよい。また、該ブラインド検出に関連する能力情報には、PDCCH候補を削減することができることを示す情報が含まれてもよい。また、該ブラインド検出に関連する能力情報には、所定の期間においてブラインド検出可能な制御リソースセットの最大数を示す情報が含まれてもよい。該制御リソースセットの最大数とPDCCHのモニタリングが可能なサービングセルおよび/またはコンポーネントキャリアの最大数はそれぞれ、個別のパラメータとして設定されてもよいし、共通のパラメータとして設定されてもよい。また、該ブラインド検出に関連する能力情報には、所定の期間において、同時にブラインド検出を行なうことのできる制御リソースセットの最大数を示す情報が含まれてもよい。 Note that the ability information related to the blind detection may include information indicating the maximum number of blind detections in a predetermined period. In addition, the ability information related to the blind detection may include information indicating that the PDCCH candidates can be reduced. In addition, the capability information related to the blind detection may include information indicating the maximum number of control resource sets that can be blind detected in a predetermined period. The maximum number of control resource sets and the maximum number of serving cells and / or component carriers capable of monitoring PDCCH may be set as individual parameters or as common parameters, respectively. In addition, the capability information related to the blind detection may include information indicating the maximum number of control resource sets capable of simultaneously performing blind detection in a predetermined period.
 端末装置1は、所定の期間において、所定の数よりも多い制御リソースセットの検出(ブラインド検出)を行なう能力をサポートしていない場合には、該ブラインド検出に関連する能力情報を送信/通知しなくてもよい。基地局装置3は、該ブラインド検出に関連する能力情報を受信しなかった場合には、ブラインド検出に対する所定の数を超えないように、制御リソースセットに関する設定を行ない、PDCCHを送信してもよい。 If the terminal device 1 does not support the ability to detect more control resource sets (blind detection) than the predetermined number in a predetermined period, the terminal device 1 transmits / notifies the ability information related to the blind detection. It does not have to be. When the base station apparatus 3 does not receive the capability information related to the blind detection, the base station apparatus 3 may make settings related to the control resource set and transmit the PDCCH so as not to exceed a predetermined number for the blind detection. ..
 制御リソースセットに関する設定には、制御リソースセットを識別するインデックス(ControlResourceSetId)を示すパラメータが含まれる。また、制御リソースセットに関する設定には、該制御リソースセットの周波数リソース領域(該制御リソースセットを構成するリソースブロック数)を示すパラメータが含まれてもよい。また、制御リソースセットに関する設定には、CCEからREGへのマッピングの種類を示すパラメータが含まれてもよい。また、制御リソースセットに関する設定には、REGバンドルサイズが含まれてもよい。制御リソースセットに関する設定を示すメッセージの送受信にRRCシグナリングが用いられてもよい。制御リソースセットに関する設定を示すメッセージの送受信にSIBが用いられてもよい。制御リソースセットに関する設定を示すメッセージの送受信にMIBが用いられてもよい。 The settings related to the control resource set include a parameter indicating an index (ControlResourceSetId) that identifies the control resource set. Further, the setting related to the control resource set may include a parameter indicating the frequency resource area (the number of resource blocks constituting the control resource set) of the control resource set. In addition, the settings related to the control resource set may include a parameter indicating the type of mapping from CCE to REG. In addition, the settings related to the control resource set may include the REG bundle size. RRC signaling may be used to send and receive messages indicating settings for the control resource set. SIBs may be used to send and receive messages indicating settings related to control resource sets. The MIB may be used to send and receive messages indicating settings related to the control resource set.
 探索領域に関する設定には、探索領域を識別するインデックス(探索領域インデックス)を示すパラメータが含まれる。探索領域に関する設定には、探索領域が配置される制御リソースセットのインデックスを示すパラメータが含まれる。探索領域に関する設定には、探索領域が配置されるスロットの周期、オフセットを示すパラメータが含まれてもよい。探索領域に関する設定には、探索領域が連続して配置されるスロットの個数を示すパラメータが含まれてもよい。探索領域に関する設定には、PDCCH候補のモニタリングが行なわれる、スロット内のOFDMシンボルを示すパラメータが含まれてもよい。探索領域に関する設定には、CCE集約レベル毎のモニタリングが行われるPDCCH候補の数を示すパラメータが含まれてもよい。探索領域に関する設定には、モニタリングが行われるDCI formatを示すパラメータが含まれてもよい。探索領域に関する設定には、探索領域のタイプ(CSSまたはUSS)を示すパラメータが含まれてもよい。探索領域に関する設定を示すメッセージの送受信にRRCシグナリングが用いられてもよい。探索領域に関する設定を示すメッセージの送受信にSIBが用いられてもよい。探索領域に関する設定を示すメッセージの送受信にMIBが用いられてもよい。 The settings related to the search area include a parameter indicating an index that identifies the search area (search area index). The settings related to the search area include a parameter indicating the index of the control resource set in which the search area is located. The settings related to the search area may include parameters indicating the period and offset of the slot in which the search area is arranged. The settings related to the search area may include a parameter indicating the number of slots in which the search area is continuously arranged. The settings related to the search area may include a parameter indicating an OFDM symbol in the slot in which the PDCCH candidate is monitored. The settings related to the search area may include a parameter indicating the number of PDCCH candidates to be monitored for each CCE aggregation level. The settings related to the search area may include a parameter indicating the DCI format to be monitored. The settings for the search area may include parameters indicating the type of search area (CSS or USS). RRC signaling may be used to send and receive messages indicating settings relating to the search area. SIBs may be used to send and receive messages indicating settings related to the search area. A MIB may be used to send and receive messages indicating settings related to the search area.
 PDSCHは、トランスポートブロックを送信/受信するために少なくとも用いられる。PDSCHは、ランダムアクセスメッセージ2(ランダムアクセスレスポンス)を送信/受信するために少なくとも用いられてもよい。PDSCHは、初期アクセスのために用いられるパラメータを含むシステム情報を送信/受信するために少なくとも用いられてもよい。 PDSCH is at least used to send / receive transport blocks. The PDSCH may at least be used to send / receive a random access message 2 (random access response). The PDSCH may at least be used to transmit / receive system information, including parameters used for initial access.
 図1において、下りリンクの無線通信では、以下の下りリンク物理シグナルが用いられる。下りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・同期信号(SS:Synchronization signal)
・DL DMRS(DownLink DeModulation Reference Signal)
・CSI-RS(Channel State Information-Reference Signal)
・DL PTRS(DownLink Phase Tracking Reference Signal)
In FIG. 1, the following downlink physical signals are used in downlink wireless communication. The downlink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
-Synchronization signal (SS: Synchronization signal)
-DL DMRS (DownLink Demodulation Reference Signal)
-CSI-RS (Channel State Information-Reference Signal)
-DL PTRS (DownLink Phase Tracking Reference Signal)
 同期信号は、端末装置1が下りリンクの周波数領域、および/または、時間領域の同期をとるために用いられる。同期信号は、PSS(Primary Synchronization Signal)、および、SSS(Secondary Synchronization Signal)を含む。 The synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and / or the time domain. The synchronization signal includes PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
 SSブロック(SS/PBCHブロック)は、PSS、SSS、および、PBCHの一部または全部を少なくとも含んで構成される。 The SS block (SS / PBCH block) is composed of PSS, SSS, and at least a part or all of PBCH.
 DL DMRSは、PBCH、PDCCH、および/または、PDSCHの送信に関連する。DL DMRSは、PBCH、PDCCH、および/または、PDSCHに多重される。端末装置1は、PBCH、PDCCH、または、PDSCHの伝搬路補正を行なうために該PBCH、該PDCCH、または、該PDSCHと対応するDL DMRSを使用してよい。端末装置1は、基地局装置3が信号の送信を行っていることをDL DMRSの検出に基づき判断してもよい。 DL DMRS is associated with the transmission of PBCH, PDCCH, and / or PDSCH. DL DMRS is multiplexed on PBCH, PDCCH, and / or PDSCH. The terminal device 1 may use the PBCH, the PDCCH, or the DL DMRS corresponding to the PDSCH in order to correct the propagation path of the PBCH, PDCCH, or PDSCH. The terminal device 1 may determine that the base station device 3 is transmitting a signal based on the detection of DL DMRS.
 CSI-RSは、チャネル状態情報を算出するために少なくとも用いられる信号であってもよい。端末装置1によって想定されるCSI-RSのパターンは、少なくとも上位層パラメータにより与えられてもよい。 CSI-RS may be at least a signal used to calculate channel state information. The pattern of CSI-RS assumed by the terminal device 1 may be given by at least the upper layer parameters.
 PTRSは、位相雑音の補償のために少なくとも用いられる信号であってもよい。端末装置1によって想定されるPTRSのパターンは、上位層パラメータ、および/または、DCIに少なくとも基づき与えられてもよい。 The PTRS may be at least a signal used to compensate for phase noise. The pattern of PTRS assumed by the terminal device 1 may be given at least based on the upper layer parameters and / or DCI.
 DL PTRSは、1または複数のDL DMRSに用いられるアンテナポートを少なくとも含むDL DMRSグループに関連してもよい。 The DL PTRS may be associated with a DL DMRS group that includes at least the antenna ports used for one or more DL DMRSs.
 なお、上述に記載されない下りリンク物理シグナルが用いられてもよい。 Note that downlink physical signals not described above may be used.
 下りリンク物理チャネルおよび下りリンク物理シグナルは、下りリンク信号とも呼称される。上りリンク物理チャネルおよび上りリンク物理シグナルは、上りリンク信号とも呼称される。下りリンク信号および上りリンク信号はまとめて物理信号とも呼称される。下りリンク信号および上りリンク信号はまとめて信号とも呼称される。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび上りリンク物理シグナルを総称して、物理シグナルと称する。 The downlink physical channel and the downlink physical signal are also referred to as a downlink physical signal. Uplink physical channels and uplink physical signals are also referred to as uplink signals. The downlink signal and the uplink signal are also collectively referred to as a physical signal. The downlink signal and the uplink signal are also collectively referred to as a signal. The downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. The downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 BCH(Broadcast CHannel)、UL-SCH(Uplink-Shared CHannel)およびDL-SCH(Downlink-Shared CHannel)は、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルはトランスポートチャネルと呼称される。MAC層で用いられるトランスポートチャネルの単位は、トランスポートブロック(TB)またはMAC PDUとも呼称される。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に変調処理が行なわれる。 BCH (Broadcast Channel), UL-SCH (Uplink-Shared Channel) and DL-SCH (Downlink-Shared Channel) are transport channels. The channel used in the medium access control (MAC) layer is called a transport channel. The unit of the transport channel used in the MAC layer is also called a transport block (TB) or MAC PDU. HARQ (Hybrid Automatic Repeat Request) is controlled for each transport block in the MAC layer. A transport block is a unit of data that the MAC layer passes to the physical layer (deliver). In the physical layer, the transport block is mapped to codewords, and modulation processing is performed for each codeword.
 基地局装置3と端末装置1は、上位層(higher layer)において上位層の信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC:Radio Resource Control)層において、RRCシグナリング(RRC message:Radio Resource Control message; RRC information:Radio Resource Control information)を送受信してもよい。また、基地局装置3と端末装置1は、MAC層において、MAC CE(Control Element)を送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。 The base station device 3 and the terminal device 1 exchange (transmit / receive) signals of the upper layer in the upper layer (higher layer). For example, the base station device 3 and the terminal device 1 may perform RRC signaling (RRC message: Radio Response Control message; RRC information: Radio Response Control) layer in the radio resource control (RRC: Radio Resource Control) layer. .. Further, the base station device 3 and the terminal device 1 may transmit and receive MAC CE (Control Element) in the MAC layer. Here, RRC signaling and / or MAC CE is also referred to as a higher layer signal (higher layer signaling).
 PUSCHおよびPDSCHは、RRCシグナリング、および/または、MAC CEを送信するために少なくとも用いられてよい。ここで、基地局装置3よりPDSCHで送信されるRRCシグナリングは、サービングセル内における複数の端末装置1に対して共通のシグナリングであってもよい。サービングセル内における複数の端末装置1に対して共通のシグナリングは、共通RRCシグナリングとも呼称される。基地局装置3からPDSCHで送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingまたはUE specific signalingとも呼称される)であってもよい。端末装置1に対して専用のシグナリングは、専用RRCシグナリングとも呼称される。サービングセルにおいて固有な上位層パラメータは、サービングセル内における複数の端末装置1に対して共通のシグナリング、または、ある端末装置1に対して専用のシグナリングを用いて送信/受信されてもよい。UE固有な上位層パラメータは、ある端末装置1に対して専用のシグナリングを用いて送信/受信されてもよい。 PUSCH and PDSCH may at least be used to transmit RRC signaling and / or MAC CE. Here, the RRC signaling transmitted from the base station device 3 by PDSCH may be a signal common to a plurality of terminal devices 1 in the serving cell. Signaling common to a plurality of terminal devices 1 in a serving cell is also referred to as common RRC signaling. The RRC signaling transmitted from the base station apparatus 3 by PDSCH may be a dedicated signaling (also referred to as dedicated signaling or UE specific signaling) for a certain terminal apparatus 1. Signaling dedicated to the terminal device 1 is also referred to as dedicated RRC signaling. The upper layer parameters unique to the serving cell may be transmitted / received using common signaling to a plurality of terminal devices 1 in the serving cell or dedicated signaling to a certain terminal device 1. UE-specific upper layer parameters may be transmitted / received to a terminal device 1 using dedicated signaling.
 BCCH(Broadcast Control CHannel)、CCCH(Common Control CHannel)、および、DCCH(Dedicated Control CHannel)は、ロジカルチャネルである。例えば、BCCHは、MIBを送信/受信するために用いられる上位層のチャネルである。また、CCCH(Common Control CHannel)は、複数の端末装置1において共通な情報を送信/受信するために用いられる上位層のチャネルである。ここで、CCCHは、例えば、RRC接続されていない端末装置1のために用いられてもよい。また、DCCH(Dedicated Control CHannel)は、端末装置1に専用の制御情報(dedicated control information)を送信/受信するために少なくとも用いられる上位層のチャネルである。ここで、DCCHは、例えば、RRC接続されている端末装置1のために用いられてもよい。 BCCH (Broadcast Control Channel), CCCH (Control Control Channel), and DCCH (Dedicated Control Channel) are logical channels. For example, BCCH is a higher layer channel used to transmit / receive MIBs. Further, CCCH (Common Control Channel) is an upper layer channel used for transmitting / receiving common information in a plurality of terminal devices 1. Here, CCCH may be used, for example, for a terminal device 1 that is not RRC-connected. Further, the DCCH (Dedicated Control Channel) is at least an upper layer channel used for transmitting / receiving dedicated control information (dedicated control information) to the terminal device 1. Here, the DCCH may be used, for example, for the terminal device 1 connected by RRC.
 ロジカルチャネルにおけるBCCHは、トランスポートチャネルにおいてBCH、DL-SCH、または、UL-SCHにマップされてもよい。ロジカルチャネルにおけるCCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。ロジカルチャネルにおけるDCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。 BCCH in the logical channel may be mapped to BCH, DL-SCH, or UL-SCH in the transport channel. CCCH on the logical channel may be mapped to DL-SCH or UL-SCH on the transport channel. DCCH on the logical channel may be mapped to DL-SCH or UL-SCH on the transport channel.
 トランスポートチャネルにおけるUL-SCHは、物理チャネルにおいてPUSCHにマップされてもよい。トランスポートチャネルにおけるDL-SCHは、物理チャネルにおいてPDSCHにマップされてもよい。トランスポートチャネルにおけるBCHは、物理チャネルにおいてPBCHにマップされてもよい。 The UL-SCH in the transport channel may be mapped to the PUSCH in the physical channel. The DL-SCH in the transport channel may be mapped to the PDSCH in the physical channel. BCH in the transport channel may be mapped to PBCH in the physical channel.
 図5は、本実施形態の一態様に係る1つのREGの構成の一例を示す図である。REGは、1つのPRBの1つのOFDMシンボルにより構成されてもよい。つまり、REGは周波数領域において連続する12個のREにより構成されてもよい。REGを構成する複数のREのうちの一部は、下りリンク制御情報がマップされないREであってもよい。REGは、下りリンク制御情報がマップされないREを含んで構成されてもよいし、下りリンク制御情報がマップされないREを含まずに構成されてもよい。下りリンク制御情報がマップされないREは、参照信号がマップされるREであってもよいし、制御チャネル以外のチャネルがマップされるREであってもよいし、制御チャネルがマップされないことが端末装置1によって想定されるREであってもよい。 FIG. 5 is a diagram showing an example of the configuration of one REG according to one aspect of the present embodiment. The REG may be composed of one OFDM symbol of one PRB. That is, the REG may be composed of 12 consecutive REs in the frequency domain. A part of the plurality of REs constituting the REG may be a RE to which the downlink control information is not mapped. The REG may be configured to include a RE to which the downlink control information is not mapped, or may be configured to include a RE to which the downlink control information is not mapped. The RE to which the downlink control information is not mapped may be a RE to which the reference signal is mapped, a RE to which a channel other than the control channel is mapped, or a terminal device in which the control channel is not mapped. It may be the RE assumed by 1.
 図6は、本実施形態の一態様に係るCCEの構成例を示す図である。CCEは、6個のREGにより構成されてもよい。図6(a)に示されるように、CCE(CCE#0)は連続的にマップされるREGにより構成されてもよい(このようなマッピングをLocalized mappingと称してもよい)(このようなマッピングをnon-interleaved CCE-to-REG mappingと称してもよい)(このようなマッピングをnon-interleaved mappingと称してもよい)。なお、必ずしもCCEを構成する全てのREGが周波数領域で連続していなくてもよい。例えば、制御リソースセットを構成する複数のリソースブロックの全てが周波数領域で連続ではない場合、REGに割り振られた番号が連続していたとしても、連続する番号の各REGを構成する各リソースブロックは周波数領域で連続ではない。制御リソースセットが複数のOFDMシンボルから構成され、1つのCCEを構成する複数のREGが複数の時間区間(OFDMシンボル)にわたって配置される場合、図6(b)に示されるように、CCE(CCE#1)は連続的にマップされるREGのグループにより構成されてもよい。 FIG. 6 is a diagram showing a configuration example of CCE according to one aspect of the present embodiment. The CCE may be composed of 6 REGs. As shown in FIG. 6A, CCE (CCE # 0) may be composed of continuously mapped REGs (such mappings may be referred to as localized mapping) (such mappings). May be referred to as non-interleaved CCE-to-REG mapping) (such mapping may be referred to as non-interleaved mapping). It should be noted that not all REGs constituting the CCE are necessarily continuous in the frequency domain. For example, if all of the plurality of resource blocks constituting the control resource set are not continuous in the frequency domain, even if the numbers assigned to the REGs are continuous, each resource block constituting each REG having consecutive numbers is Not continuous in the frequency domain. When a control resource set is composed of a plurality of OFDM symbols and a plurality of REGs constituting one CCE are arranged over a plurality of time intervals (OFDM symbols), the CCE (CCE) is as shown in FIG. 6 (b). # 1) may be composed of a group of REGs that are continuously mapped.
 図6(c)に示されるように、CCE(CCE#2)は非連続的にマップされるREGにより構成されてもよい(このようなマッピングをDistributed mappingと称してもよい)(このようなマッピングをinterleaved CCE-to-REG mappingと称してもよい)(このようなマッピングをinterleaved mappingと称してもよい)。インタリーバを用いてCCEを構成するREGが時間周波数領域のリソースに非連続的にマップされてもよい。制御リソースセットが複数のOFDMシンボルから構成され、1つのCCEを構成する複数のREGが複数の時間区間(OFDMシンボル)にわたって配置される場合、図6(d)に示されるように、CCE(CCE#3)は、異なる時間区間(OFDMシンボル)のREGがミックスされて、非連続的にマップされるREGにより構成されてもよい。図6(e)に示されるように、CCE(CCE#4)は、複数のREGのグループ単位で分散してマップされるREGにより構成されてもよい。図6(f)に示されるように、CCE(CCE#5)は、複数のREGのグループ単位で分散してマップされるREGにより構成されてもよい。 As shown in FIG. 6 (c), CCE (CCE # 2) may be composed of discontinuously mapped REGs (such mappings may be referred to as Distrived mapping) (such. The mapping may be referred to as interleaved CCE-to-REG mapping) (such mapping may be referred to as interleaved mapping). The REGs that make up the CCE using interleavers may be discontinuously mapped to resources in the time frequency domain. When a control resource set is composed of a plurality of OFDM symbols and a plurality of REGs constituting one CCE are arranged over a plurality of time intervals (OFDM symbols), the CCE (CCE) is as shown in FIG. 6 (d). # 3) may be composed of REGs in which REGs of different time intervals (OFDM symbols) are mixed and mapped discontinuously. As shown in FIG. 6 (e), the CCE (CCE # 4) may be composed of REGs that are distributed and mapped in groups of a plurality of REGs. As shown in FIG. 6 (f), the CCE (CCE # 5) may be composed of REGs that are distributed and mapped in groups of a plurality of REGs.
 図7は、本実施形態の一態様に係るPDCCH候補を構成するREGと、REGのグループを構成するREGの数についての一例を示す図である。図7(a)に示される一例では、PDCCH候補が1つのOFDMシンボルにマップされており、2つのREGを含むREGのグループ(REG group)が3つ構成されている。つまり、図7(a)に示される一例では、1つのREGのグループは2つのREGにより構成される。周波数領域においてREGのグループを構成するREGの数は、周波数方向にマップされるPRBの個数の約数を含んでもよい。図7(a)に示される一例では、周波数領域のREGのグループを構成するREGの数は1、2、3、または、6であってもよい。 FIG. 7 is a diagram showing an example of the number of REGs constituting the PDCCH candidate and the REGs constituting the group of REGs according to one aspect of the present embodiment. In the example shown in FIG. 7A, the PDCCH candidate is mapped to one OFDM symbol, and three REG groups (REG group) including two REGs are configured. That is, in the example shown in FIG. 7A, one REG group is composed of two REGs. The number of REGs that make up a group of REGs in the frequency domain may include a divisor of the number of PRBs mapped in the frequency direction. In the example shown in FIG. 7A, the number of REGs constituting the group of REGs in the frequency domain may be 1, 2, 3, or 6.
 図7(b)に示される一例では、PDCCH候補が2つのOFDMシンボルにマップされており、2つのREGを含むREGのグループが3つ構成されている。図7(b)に示される一例では、周波数領域のREGのグループを構成するREGの数は、1と3のいずれかであってもよい。 In the example shown in FIG. 7B, PDCCH candidates are mapped to two OFDM symbols, and three REG groups including two REGs are configured. In the example shown in FIG. 7B, the number of REGs constituting the group of REGs in the frequency domain may be either 1 or 3.
 以下、本実施形態の一態様に係る端末装置1の構成例を説明する。 Hereinafter, a configuration example of the terminal device 1 according to one aspect of the present embodiment will be described.
 図8は、本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13の一部または全部を少なくとも含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16の一部または全部を少なくとも含んで構成される。無線送受信部10を送信部、受信部、または、物理層処理部とも称する。 FIG. 8 is a schematic block diagram showing the configuration of the terminal device 1 according to one aspect of the present embodiment. As shown in the figure, the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14. The radio transmission / reception unit 10 includes at least a part or all of an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13. The upper layer processing unit 14 includes at least a part or all of the medium access control layer processing unit 15 and the radio resource control layer processing unit 16. The wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
 物理層処理部は復号部を含む。端末装置1の受信部(受信処理部とも呼称する)は、PDCCHを受信する。端末装置1の復号部は、受信したPDCCHを復号する。より詳細には、端末装置1の復号部は、USSのPDCCH候補が対応するリソースの受信信号に対してブラインド復号処理を行う。端末装置1の復号部は、CSSのPDCCH候補が対応するリソースの受信信号に対してブランド復号処理を行う。端末装置1の受信処理部は、制御リソースセット内でPDCCH候補をモニタする。端末装置1の受信処理部は、制御リソースセット内でPDCCH候補をモニタする。 The physical layer processing unit includes a decoding unit. The receiving unit (also referred to as the receiving processing unit) of the terminal device 1 receives the PDCCH. The decoding unit of the terminal device 1 decodes the received PDCCH. More specifically, the decoding unit of the terminal device 1 performs blind decoding processing on the received signal of the resource corresponding to the USS PDCCH candidate. The decoding unit of the terminal device 1 performs brand decoding processing on the received signal of the resource corresponding to the PDCCH candidate of CSS. The reception processing unit of the terminal device 1 monitors PDCCH candidates in the control resource set. The reception processing unit of the terminal device 1 monitors PDCCH candidates in the control resource set.
 端末装置1の受信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)の制御リソースセット内でPDCCH候補をモニタする。端末装置1の受信処理部は、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)の制御リソースセット内でPDCCH候補をモニタする。端末装置1の受信部は、PDSCHを受信する。端末装置1の受信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でPDSCHを受信する処理を行なう。端末装置1の受信処理部は、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でPDSCHを受信する処理を行なう。端末装置1の受信処理部は、PDSCHに対して復調、復号等の処理を行なう。 The reception processing unit of the terminal device 1 monitors PDCCH candidates in the control resource set of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A. The reception processing unit of the terminal device 1 monitors PDCCH candidates within the control resource set of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3B. The receiving unit of the terminal device 1 receives the PDSCH. The reception processing unit of the terminal device 1 performs a process of receiving the PDSCH in the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A. The reception processing unit of the terminal device 1 performs a process of receiving the PDSCH in the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3B. The reception processing unit of the terminal device 1 performs processing such as demodulation and decoding on the PDSCH.
 端末装置1の送信部(送信処理部とも呼称する)は、HARQ-ACKを送信する。端末装置1の送信処理部は、PDSCHに対するHARQ-ACKを送信する。端末装置1の送信処理部は、基地局装置3Aにおいて管理される上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でHARQ-ACKを送信する。端末装置1の送信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、を送信する。端末装置1の送信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、を基地局装置3Aにおいて管理される上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)で送信する。端末装置1の送信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを第一の方法で送信し、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを第二の方法で送信する。 The transmission unit (also referred to as the transmission processing unit) of the terminal device 1 transmits HARQ-ACK. The transmission processing unit of the terminal device 1 transmits HARQ-ACK to the PDSCH. The transmission processing unit of the terminal device 1 transmits HARQ-ACK in the uplink frequency band (cell, component carrier, carrier) managed by the base station device 3A. The transmission processing unit of the terminal device 1 includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band (downlink frequency band) managed by the base station device 3B. HARQ-ACK for PDSCH of cell, component carrier, carrier) is transmitted. The transmission processing unit of the terminal device 1 includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band (downlink frequency band) managed by the base station device 3B. HARQ-ACK for the PDSCH of the cell, component carrier, carrier) is transmitted in the uplink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3A. The transmission processing unit of the terminal device 1 transmits HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A by the first method, and manages it by the base station device 3B. The HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) to be performed is transmitted by the second method.
 上位層処理部14は、ユーザーの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部10に出力する。上位層処理部14は、MAC層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、RRC層の処理を行なう。 The upper layer processing unit 14 outputs the uplink data (transport block) generated by the user's operation or the like to the wireless transmission / reception unit 10. The upper layer processing unit 14 processes the MAC layer, the packet data integration protocol (PDCP: Packet Data Communication Protocol) layer, the wireless link control (RLC: Radio Link Control) layer, and the RRC layer.
 上位層処理部14が備える媒体アクセス制御層処理部15は、MAC層の処理を行う。 The medium access control layer processing unit 15 included in the upper layer processing unit 14 processes the MAC layer.
 上位層処理部14が備える無線リソース制御層処理部16は、RRC層の処理を行う。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。尚、該設定情報は、物理チャネルや物理シグナル(つまり、物理層)、MAC層、PDCP層、RLC層、RRC層の処理または設定に関連する情報を含んでもよい。該パラメータは上位層パラメータであってもよい。 The radio resource control layer processing unit 16 included in the upper layer processing unit 14 processes the RRC layer. The wireless resource control layer processing unit 16 manages various setting information / parameters of its own device. The radio resource control layer processing unit 16 sets various setting information / parameters based on the signal of the upper layer received from the base station apparatus 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on the information indicating various setting information / parameters received from the base station apparatus 3. The setting information may include information related to processing or setting of a physical channel, a physical signal (that is, a physical layer), a MAC layer, a PDCP layer, an RLC layer, and an RRC layer. The parameter may be an upper layer parameter.
 無線リソース制御層処理部16は、基地局装置3から受信したRRCシグナリングに基づいて制御リソースセットを設定する。無線リソース制御層処理部16は、制御リソースセット内の探索領域を設定する。無線リソース制御層処理部16は、制御リソースセット内でモニタされるPDCCH候補を設定する。無線リソース制御層処理部16は、制御リソースセット内でモニタされるPDCCH候補の数を設定する。無線リソース制御層処理部16は、制御リソースセット内でモニタされるPDCCH候補のAggregation levelを設定する。 The radio resource control layer processing unit 16 sets the control resource set based on the RRC signaling received from the base station device 3. The radio resource control layer processing unit 16 sets a search area in the control resource set. The radio resource control layer processing unit 16 sets PDCCH candidates to be monitored in the control resource set. The radio resource control layer processing unit 16 sets the number of PDCCH candidates monitored in the control resource set. The radio resource control layer processing unit 16 sets the Aggression level of the PDCCH candidate monitored in the control resource set.
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、受信した物理信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化、ベースバンド信号生成(時間連続信号への変換)することによって物理信号を生成し、基地局装置3に送信する。 The wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, coding, and decoding. The wireless transmission / reception unit 10 separates, demodulates, and decodes the received physical signal, and outputs the decoded information to the upper layer processing unit 14. The wireless transmission / reception unit 10 generates a physical signal by modulating, encoding, and generating a baseband signal (converting it into a time continuous signal), and transmits the physical signal to the base station device 3.
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート:down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。 The RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down conversion: down cover), and removes unnecessary frequency components. The RF unit 12 outputs the processed analog signal to the baseband unit.
 ベースバンド部13は、RF部12から入力されたアナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(FFT:Fast Fourier Transform)を行い、周波数領域の信号を抽出する。 The baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal. The baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs a fast Fourier transform (FFT: Fast Fourier Transform) on the signal from which the CP has been removed, and outputs a signal in the frequency domain. Extract.
 ベースバンド部13は、データを逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。 The baseband unit 13 performs inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds CP to the generated OFDM symbol, generates a baseband digital signal, and basebands the data. Converts a band digital signal into an analog signal. The baseband unit 13 outputs the converted analog signal to the RF unit 12.
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。 The RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, upconverts the analog signal to the carrier frequency, and transmits the analog signal via the antenna unit 11. do. Further, the RF unit 12 amplifies the electric power. Further, the RF unit 12 may have a function of controlling the transmission power. The RF unit 12 is also referred to as a transmission power control unit.
 端末装置1は、PDCCHを受信する。端末装置1は、PDSCHを受信する。無線リソース制御層処理部16は、制御リソースセットを設定する。無線リソース制御層処理部16は、探索領域を設定する。無線リソース制御層処理部16は、RRCシグナリングに基づき制御リソースセットを設定する。無線リソース制御層処理部16は、RRCシグナリングに基づき探索領域を設定する。端末装置1の受信部は、設定された制御リソースセットの探索領域内で複数のPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいて設定された制御リソースセットの探索領域内で複数のPDCCH候補をモニタする。端末装置1の復号部は、モニタされたPDCCH候補を復号する。端末装置1の復号部は、受信されたPDSCHを復号する。 The terminal device 1 receives the PDCCH. The terminal device 1 receives the PDSCH. The radio resource control layer processing unit 16 sets the control resource set. The radio resource control layer processing unit 16 sets the search area. The radio resource control layer processing unit 16 sets a control resource set based on RRC signaling. The radio resource control layer processing unit 16 sets a search area based on RRC signaling. The receiving unit of the terminal device 1 monitors a plurality of PDCCH candidates within the search area of the set control resource set. The receiving unit of the terminal device 1 monitors a plurality of PDCCH candidates within the search area of the control resource set set in a certain slot. The decoding unit of the terminal device 1 decodes the monitored PDCCH candidate. The decoding unit of the terminal device 1 decodes the received PDSCH.
 端末装置1の受信部は、あるスロットにおいて制御リソースセットの探索領域内でRRCシグナリングに基づいて設定された数のPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいて制御リソースセットの探索領域内でRRCシグナリングに基づいて設定された1つ以上のOFDMシンボルから構成されるPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいてスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)の探索領域でPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいてスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)の探索領域でPDCCH候補をモニタし、スロットの後半部分(例えば、8番目のOFDMシンボル、または8番目と9番目のOFDMシンボル、または8番目と9番目と10番目のOFDMシンボル)の探索領域でPDCCH候補をモニタする。なお、端末装置1の受信部は、あるスロットにおいてそれぞれが異なるOFDMシンボルの探索領域であって、3個以上の探索領域を設定して、更にスロット内に分散してPDCCH候補をモニタしてもよい。 The receiving unit of the terminal device 1 monitors a set number of PDCCH candidates based on RRC signaling in the search area of the control resource set in a certain slot. The receiving unit of the terminal device 1 monitors a PDCCH candidate composed of one or more OFDM symbols set based on RRC signaling in the search area of the control resource set in a certain slot. The receiver of the terminal device 1 is a search area for the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first, second, and third OFDM symbols) in a certain slot. Monitor PDCCH candidates with. The receiver of the terminal device 1 is a search area for the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first, second, and third OFDM symbols) in a certain slot. Monitor PDCCH candidates with and search for PDCCH candidates in the search area of the second half of the slot (eg, the 8th OFDM symbol, or the 8th and 9th OFDM symbols, or the 8th, 9th, and 10th OFDM symbols). Monitor. The receiving unit of the terminal device 1 is a search area for different OFDM symbols in a certain slot, and even if three or more search areas are set and further dispersed in the slot to monitor PDCCH candidates. good.
 以下、本実施形態の一態様に係る基地局装置3の構成例を説明する。 Hereinafter, a configuration example of the base station device 3 according to one aspect of the present embodiment will be described.
 図5は、本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。 FIG. 5 is a schematic block diagram showing the configuration of the base station device 3 according to one aspect of the present embodiment. As shown in the figure, the base station apparatus 3 includes a wireless transmission / reception unit 30 and an upper layer processing unit 34. The radio transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33. The upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36. The wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
 上位層処理部34は、MAC層、PDCP層、RLC層、RRC層の処理を行なう。 The upper layer processing unit 34 processes the MAC layer, PDCP layer, RLC layer, and RRC layer.
 上位層処理部34が備える媒体アクセス制御層処理部35は、MAC層の処理を行う。 The medium access control layer processing unit 35 included in the upper layer processing unit 34 processes the MAC layer.
 上位層処理部34が備える無線リソース制御層処理部36は、RRC層の処理を行う。無線リソース制御層処理部36は、PDSCHに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CEなどを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。尚、該設定情報は、物理チャネルや物理シグナル(つまり、物理層)、MAC層、PDCP層、RLC層、RRC層の処理または設定に関連する情報を含んでもよい。該パラメータは上位層パラメータであってもよい。 The radio resource control layer processing unit 36 included in the upper layer processing unit 34 processes the RRC layer. The wireless resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC CE, etc. arranged in the PDSCH, or acquires them from a higher-level node and outputs them to the wireless transmission / reception unit 30. .. Further, the wireless resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1. The wireless resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via a signal of the upper layer. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters. The setting information may include information related to processing or setting of a physical channel, a physical signal (that is, a physical layer), a MAC layer, a PDCP layer, an RLC layer, and an RRC layer. The parameter may be an upper layer parameter.
 無線リソース制御層処理部36は、端末装置1に対して制御リソースセットを設定する。設定された制御リソースセット内で複数のPDCCH候補が構成(設定)される。無線リソース制御層処理部36は、端末装置1に対して探索領域を設定する。 The wireless resource control layer processing unit 36 sets a control resource set for the terminal device 1. A plurality of PDCCH candidates are configured (set) within the set control resource set. The radio resource control layer processing unit 36 sets a search area for the terminal device 1.
 無線リソース制御層処理部36は、端末装置1に対してHARQ-ACKの送信用のリソースを設定する。基地局装置3Aの無線リソース制御層処理部36は、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKの送信用のリソースを設定する。基地局装置3Aの無線リソース制御層処理部36は、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKの送信用のリソースを、基地局装置3Aにおいて管理される上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)に設定する。 The wireless resource control layer processing unit 36 sets a resource for transmitting HARQ-ACK to the terminal device 1. The radio resource control layer processing unit 36 of the base station apparatus 3A sets a resource for transmitting HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3B. The radio resource control layer processing unit 36 of the base station device 3A supplies resources for transmitting HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3B to the base station device. Set to the uplink frequency band (cell, component carrier, carrier) managed in 3A.
 無線送受信部30の機能は、無線送受信部10と同様であるため説明を適宜省略する。また、無線送受信部30は、端末装置1に構成されるSS(Search space:探索領域)を把握する。無線送受信部30は、端末装置1に構成される制御リソースセット内の探索領域を把握する。無線送受信部30は、端末装置1においてモニタされるPDCCH候補を把握して、探索領域を把握する。無線送受信部30は、端末装置1においてモニタされる各PDCCH候補がいずれの制御チャネルエレメントから構成されるかを把握する(PDCCH候補が構成される制御チャネルエレメントの番号を把握する)。無線送受信部30はSS把握部を含み、SS把握部が端末装置1に構成されるSSを把握する。SS把握部は、端末装置のSearch spaceとして構成される、制御リソースセット内の1つ以上のPDCCH候補を把握する。SS把握部は、端末装置1の制御リソースセットの探索領域に構成されるPDCCH候補(PDCCH候補の数、PDCCH候補の番号)を把握する。 Since the function of the wireless transmission / reception unit 30 is the same as that of the wireless transmission / reception unit 10, the description thereof will be omitted as appropriate. Further, the wireless transmission / reception unit 30 grasps the SS (Search space: search area) configured in the terminal device 1. The wireless transmission / reception unit 30 grasps the search area in the control resource set configured in the terminal device 1. The wireless transmission / reception unit 30 grasps the PDCCH candidate monitored by the terminal device 1 and grasps the search area. The wireless transmission / reception unit 30 grasps which control channel element each PDCCH candidate monitored by the terminal device 1 is composed of (the number of the control channel element in which the PDCCH candidate is composed is grasped). The wireless transmission / reception unit 30 includes an SS grasping unit, and the SS grasping unit grasps the SS configured in the terminal device 1. The SS grasping unit grasps one or more PDCCH candidates in the control resource set configured as the search space of the terminal device. The SS grasping unit grasps PDCCH candidates (the number of PDCCH candidates, the number of PDCCH candidates) configured in the search area of the control resource set of the terminal device 1.
 SS把握部は、制御リソースセット内の探索領域の構成(PDCCH候補の個数、PDCCH候補のOFDMシンボル、PDCCH候補のAggregation level)を把握する。無線送受信部30の送信部は、端末装置1に対して制御リソースセットの探索領域内のPDCCH候補を用いてPDCCHを送信する。 The SS grasping unit grasps the configuration of the search area in the control resource set (the number of PDCCH candidates, the OFDM symbol of the PDCCH candidate, the Aggression level of the PDCCH candidate). The transmission unit of the wireless transmission / reception unit 30 transmits the PDCCH to the terminal device 1 using the PDCCH candidates in the search area of the control resource set.
 SS把握部は、あるスロットの探索領域の構成として、1つ以上のPDCCH候補がスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)のOFDMシンボルから構成されると把握してもよい。SS把握部は、あるスロットの探索領域の構成として、1つ以上のPDCCH候補がスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)のOFDMシンボルから構成され、1つ以上のPDCCH候補がスロットの後半部分(例えば、8番目のOFDMシンボル、または8番目と9番目のOFDMシンボル、または8番目と9番目と10番目のOFDMシンボル)のOFDMシンボルから構成されると把握してもよい。なお、SS把握部は、あるスロットにおいてそれぞれが異なるOFDMシンボルの探索領域であって、3個以上の探索領域が構成されると把握してもよい。 In the SS grasping unit, one or more PDCCH candidates are configured in the search area of a certain slot in the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first and second OFDM symbols. And the third OFDM symbol) may be understood to be composed of the OFDM symbols. In the SS grasping unit, one or more PDCCH candidates are configured in the search area of a certain slot in the first half of the slot (for example, the first OFDM symbol, or the first and second OFDM symbols, or the first and second OFDM symbols. And the OFDM symbol of the third OFDM symbol), and one or more PDCCH candidates are the second half of the slot (eg, the eighth OFDM symbol, or the eighth and ninth OFDM symbols, or the eighth and ninth. And the 10th OFDM symbol) may be understood to be composed of the OFDM symbols. The SS grasping unit may grasp that each slot is a search area for different OFDM symbols, and three or more search areas are configured.
 基地局装置3の受信部(受信処理部とも呼称する)は、HARQ-ACKを受信する。基地局装置3の受信処理部は、PDSCHに対するHARQ-ACKを受信する。基地局装置3(基地局装置3A)の受信処理部は、上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でHARQ-ACKを受信する。基地局装置3Aの受信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、を受信する。基地局装置3Aの受信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKと、を基地局装置3Aにおいて管理される上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)で受信する。基地局装置3Aの受信処理部は、基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを第一の方法で受信し、基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを第二の方法で受信する。 The receiving unit (also referred to as the receiving processing unit) of the base station device 3 receives HARQ-ACK. The reception processing unit of the base station apparatus 3 receives HARQ-ACK for the PDSCH. The reception processing unit of the base station device 3 (base station device 3A) receives HARQ-ACK in the uplink frequency band (cell, component carrier, carrier). The reception processing unit of the base station device 3A includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band managed by the base station device 3B. Receives HARQ-ACK for PDSCH of (cell, component carrier, carrier). The reception processing unit of the base station device 3A includes HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A, and the downlink frequency band managed by the base station device 3B. HARQ-ACK for PDSCH of (cell, component carrier, carrier) is received in the uplink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3A. The reception processing unit of the base station device 3A receives HARQ-ACK for the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station device 3A by the first method, and the base station device 3B receives the HARQ-ACK. The HARQ-ACK for the PDSCH of the managed downlink frequency band (cell, component carrier, carrier) is received by the second method.
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。 Each part of the terminal device 1 with reference numerals 10 to 16 may be configured as a circuit. Each of the portions of the base station apparatus 3 with reference numerals 30 to 36 may be configured as a circuit.
 端末装置1は、上りリンク制御情報(UCI)を基地局装置3に送信する。端末装置1は、UCIをPUCCHに多重して送信してもよい。端末装置1は、UCIをPUSCHに多重して送信してもよい。UCIは、下りリンクのチャネル状態情報(ChannelState Information: CSI)、PUSCHリソースの要求を示すスケジューリング要求(Scheduling Request: SR)、下りリンクデータ(Transport block,Medium Access Control Protocol Data Unit: MAC PDU,Downlink-Shared Channel: DL-SCH,Physical Downlink Shared Channel:PDSCH)に対するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)のうち、少なくとも1つを含んでもよい。 The terminal device 1 transmits uplink control information (UCI) to the base station device 3. The terminal device 1 may multiplex the UCI to the PUCCH and transmit it. The terminal device 1 may multiplex the UCI to the PUSCH and transmit it. UCI uses downlink channel state information (Channel State Information: CSI), scheduling request indicating a PUSCH resource request (Scheduling Request: SR), and downlink data (Transport block, Medium Access PDU PDU Data It may include at least one of HARQ-ACK (Hybrid Automatic Repeat ACKnowledgement) for Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH.
 HARQ-ACKを、ACK/NACK、HARQフィードバック、HARQ-ACKフィードバック、HARQ応答、HARQ-ACK応答、HARQ情報、HARQ-ACK情報、HARQ制御情報、および、HARQ-ACK制御情報とも呼称されてもよい。 HARQ-ACK may also be referred to as ACK / NACK, HARQ feedback, HARQ-ACK feedback, HARQ response, HARQ-ACK response, HARQ information, HARQ-ACK information, HARQ control information, and HARQ-ACK control information. ..
 下りリンクデータが成功裏に復号された場合、該下りリンクデータに対するACKが生成される。下りリンクデータが成功裏に復号されなかった場合、該下りリンクデータに対するNACKが生成される。HARQ-ACKは、1つのトランスポートブロックに少なくとも対応するHARQ-ACKビットを少なくとも含んでもよい。HARQ-ACKビットは、1つ、または、複数のトランスポートブロックに対応するACK(ACKnowledgement)または、NACK(Negative-ACKnowledgement)を示してもよい。HARQ-ACKは、1つまたは複数のHARQ-ACKビットを含むHARQ-ACKコードブック(HARQ-ACK codebook)を少なくとも含んでもよい。HARQ-ACKビットが1つ、または、複数のトランスポートブロックに対応することは、HARQ-ACKビットが該1または複数のトランスポートブロックを含むPDSCHに対応することであってもよい。 If the downlink data is successfully decrypted, an ACK for the downlink data is generated. If the downlink data is not successfully decrypted, a NACK is generated for the downlink data. The HARQ-ACK may include at least the HARQ-ACK bits corresponding to one transport block. The HARQ-ACK bit may indicate ACK (ACKnowledgment) or NACK (Negative-ACKnowledgment) corresponding to one or more transport blocks. The HARQ-ACK may include at least a HARQ-ACK codebook containing one or more HARQ-ACK bits. The fact that the HARQ-ACK bit corresponds to one or more transport blocks may mean that the HARQ-ACK bit corresponds to a PDSCH containing the one or more transport blocks.
 1つのトランスポートブロックに対するHARQ制御をHARQプロセスと呼んでもよい。HARQプロセス毎に一つのHARQプロセス識別子が与えられてもよい。DCIフォーマットにHARQプロセス識別子を示すフィールドが含まれる。 HARQ control for one transport block may be called a HARQ process. One HARQ process identifier may be given for each HARQ process. The DCI format contains a field indicating the HARQ process identifier.
 HARQプロセス毎にNDI(New Data Indicator)がDCIフォーマットで示される。例えば、PDSCHのスケジューリング情報を含むDCIフォーマット(DL assignment)にNDIフィールドが含まれる。NDIフィールドは1ビットである。端末装置1は、HARQプロセス毎にNDIの値を格納する(記憶する)。基地局装置3は、端末装置1毎に対して、HARQプロセス毎にNDIの値を格納する(記憶する)。端末装置1は、検出されたDCIフォーマットのNDIフィールドを用いて格納しているNDIの値を更新する。基地局装置3は、更新されたNDIの値、または更新されないNDIの値をDCIフォーマットのNDIフィールドに設定して端末装置1に送信する。端末装置1は、検出されたDCIフォーマットのHARQプロセス識別子フィールドの値と対応するHARQプロセスに対して、検出されたDCIフォーマットのNDIフィールドを用いて格納しているNDIの値を更新する。 NDI (New Data Indicator) is shown in DCI format for each HARQ process. For example, the NDI field is included in the DCI format (DL association) containing the PDSCH scheduling information. The NDI field is 1 bit. The terminal device 1 stores (stores) the value of NDI for each HARQ process. The base station device 3 stores (stores) the NDI value for each HARQ process for each terminal device 1. The terminal device 1 updates the stored NDI value using the detected DCI format NDI field. The base station apparatus 3 sets the updated NDI value or the non-updated NDI value in the NDI field of the DCI format and transmits the updated NDI value to the terminal apparatus 1. The terminal device 1 updates the value of the NDI stored by using the detected DCI format NDI field for the detected HARQ process corresponding to the value of the detected DCI format HARQ process identifier field.
 端末装置1は、DCIフォーマット(DL assignment)のNDIフィールドの値に基づき、受信されたトランスポートブロックが新規送信であるか、再送信であるかを判断する。端末装置1は、あるHARQプロセスのトランスポートブロックに対して以前受信されたNDIの値と比較して、検出されたDCIフォーマットのNDIフィールドの値がトグルされていたら、受信されたトランスポートブロックが新規送信であると判断する。基地局装置3は、あるHARQプロセスにおいて新規送信のトランスポートブロックを送信する場合、該HARQプロセスに対して格納されたNDIの値をトグルして、トグルされたNDIを端末装置1に送信する。基地局装置3は、あるHARQプロセスにおいて再送信のトランスポートブロックを送信する場合、該HARQプロセスに対して格納されたNDIの値をトグルせず、トグルされないNDIを端末装置1に送信する。端末装置1は、あるHARQプロセスのトランスポートブロックに対して以前受信されたNDIの値と比較して、検出されたDCIフォーマットのNDIフィールドの値がトグルされていなかったら(同じなら)、受信されたトランスポートブロックが再送信であると判断する。なお、ここで、トグルするとは、異なる値に切り替えることを意味する。 The terminal device 1 determines whether the received transport block is a new transmission or a retransmission based on the value of the NDI field of the DCI format (DL assignment). The terminal device 1 compares the previously received NDI value to the transport block of a HARQ process, and if the detected DCI format NDI field value is toggled, the received transport block Judge that it is a new transmission. When the base station apparatus 3 transmits a transport block for new transmission in a certain HARQ process, the base station apparatus 3 toggles the value of the NDI stored for the HARQ process and transmits the toggled NDI to the terminal apparatus 1. When the base station apparatus 3 transmits a transport block for retransmission in a certain HARQ process, the base station apparatus 3 does not toggle the value of the NDI stored for the HARQ process, and transmits the non-toggled NDI to the terminal apparatus 1. Terminal 1 receives the detected DCI format NDI field value if it is not toggled (if it is the same) compared to the previously received NDI value for the transport block of a HARQ process. It is determined that the transport block is retransmitted. Here, toggling means switching to a different value.
 端末装置1は、PDSCH受信に対応するDCIフォーマット1_0、または、DCIフォーマット1_1に含まれるHARQ指示フィールドの値により指示されるスロットにおいて、HARQ-ACK情報を、HARQ-ACKコードブック(HARQ-ACK codebook)を用いて基地局装置3に報告してもよい。端末装置1は、基地局装置3AのPDSCH受信に対応するDCIフォーマット1_0、または、DCIフォーマット1_1に含まれるHARQ指示フィールドの値により指示されるスロットにおいて、HARQ-ACK情報を、HARQ-ACKコードブック(HARQ-ACK codebook)を用いて基地局装置3Aに報告してもよい。 The terminal device 1 displays HARQ-ACK information in the slot indicated by the value of the HARQ instruction field included in the DCI format 1_0 corresponding to PDSCH reception or the DCI format 1-11, and the HARQ-ACK codebook. ) May be reported to the base station apparatus 3. The terminal device 1 obtains HARQ-ACK information in the slot indicated by the value of the HARQ instruction field included in the DCI format 1_0 or the DCI format 1-11 corresponding to the PDSCH reception of the base station device 3A, and the HARQ-ACK codebook. (HARQ-ACK codebook) may be used to report to the base station apparatus 3A.
 DCIフォーマット1_0に対して、HARQ指示フィールドの値はスロット数のセット(1,2,3,4,5,6,7,8)にマップされてもよい。DCIフォーマット1_1に対して、HARQ指示フィールドの値は、上位層パラメータdl-DataToUL-ACKによって与えられるスロット数のセットにマップされてもよい。HARQ指示フィールドの値に少なくとも基づき指示されるスロット数は、HARQ-ACKタイミング、または、K1とも呼称されてもよい。例えば、スロットnにおいて送信されるPDSCH(下りリンクデータ)の復号状態を表すHARQ-ACKは、スロットn+K1において報告(送信)されてもよい。 For DCI format 1_0, the value of the HARQ indicator field may be mapped to a set of slots (1,2,3,4,5,6,7,8). For DCI format 1-1-1, the value of the HARQ indicator field may be mapped to the set of slots given by the upper layer parameter dl-DataToUL-ACK. The number of slots indicated at least based on the value of the HARQ indicator field may also be referred to as HARQ-ACK timing or K1. For example, HARQ-ACK indicating the decoding state of PDSCH (downlink data) transmitted in slot n may be reported (transmitted) in slot n + K1.
 dl-DataToUL-ACKは、PDSCHに対するHARQ-ACKのタイミングのリストを示す。タイミングとは、PDSCHが受信されたスロット(または、PDSCHがマップされる最後のOFDMシンボルを含むスロット)を基準として、受信されたPDSCHに対するHARQ-ACKが送信されるスロットとの間のスロット数である。例えば、dl-DataToUL-ACKは、1個、または2個、または3個、または4個、または5個、または6個、または7個、または8個のタイミングのリストである。dl-DataToUL-ACKが1個のタイミングのリストの場合、HARQ指示フィールドは0ビットである。dl-DataToUL-ACKが2個のタイミングのリストの場合、HARQ指示フィールドは1ビットである。dl-DataToUL-ACKが3個、または4個のタイミングのリストの場合、HARQ指示フィールドは2ビットである。dl-DataToUL-ACKが5個、または6個、または7個、または8個のタイミングのリストの場合、HARQ指示フィールドは3ビットである。例えば、dl-DataToUL-ACKは、0から31の範囲の何れかの値のタイミングのリストから構成される。例えば、dl-DataToUL-ACKは、0から63の範囲の何れかの値のタイミングのリストから構成される。 Dl-DataToUL-ACK shows a list of HARQ-ACK timings for PDSCH. Timing is the number of slots between the slot on which the PDSCH was received (or the slot containing the last OFDM symbol to which the PDSCH is mapped) and the slot on which HARQ-ACK is transmitted for the received PDSCH. be. For example, dl-DataToUL-ACK is a list of one, two, or three, four, five, six, seven, or eight timings. If dl-DataToUL-ACK is a list of timings, the HARQ indicator field is 0 bits. If dl-DataToUL-ACK is a list of two timings, the HARQ indicator field is 1 bit. If the dl-DataToUL-ACK is a list of 3 or 4 timings, the HARQ indicator field is 2 bits. If the dl-DataToUL-ACK is a list of 5, 6, or 7, or 8 timings, the HARQ indicator field is 3 bits. For example, dl-DataToUL-ACK consists of a list of timings with any value in the range 0-31. For example, dl-DataToUL-ACK consists of a list of timings with any value in the range 0-63.
 dl-DataToUL-ACKのサイズは、dl-DataToUL-ACKが含める要素の数と定義される。dl-DataToUL-ACKのサイズは、Lparaと呼称されてもよい。dl-DataToUL-ACKのインデックスは、dl-DataToUL-ACKの要素の順番(番号)を示す。例えば、dl-DataToUL-ACKのサイズが8である(Lpara=8)場合、dl-DataToUL-ACKのインデックスは1、2、3、4、5、6、7、または、8の何れかの値である。dl-DataToUL-ACKのインデックスは、HARQ指示フィールドが示す値により与えられてもよい、または示されてもよい、または指示されてもよい。 The size of dl-DataToUL-ACK is defined as the number of elements contained in dl-DataToUL-ACK. The size of dl-DataToUL-ACK may be referred to as L para. The index of dl-DataToUL-ACK indicates the order (number) of the elements of dl-DataToUL-ACK. For example, when the size of dl-DataToUL-ACK is 8 (L para = 8), the index of dl-DataToUL-ACK is any of 1, 2, 3, 4, 5, 6, 7, or 8. The value. The index of dl-DataToUL-ACK may be given, indicated, or indicated by the value indicated by the HARQ indicator field.
 端末装置1は、dl-DataToUL-ACKのサイズに応じてHARQ-ACK codebookのサイズを設定してもよい。例えば、dl-DataToUL-ACKが8個の要素からなる場合、HARQ-ACK codebookのサイズは8である。例えば、dl-DataToUL-ACKが2個の要素からなる場合、HARQ-ACK
 codebookのサイズは2である。HARQ-ACK codebookを構成するそれぞれのHARQ-ACK情報は、dl-DataToUL-ACKの各スロットタイミングのPDSCH受信に対するHARQ-ACK情報である。このタイプのHARQ-ACK codebookは、Semi-static HARQ-ACK codebookとも称する。
The terminal device 1 may set the size of the HARQ-ACK codebook according to the size of the dl-DataToUL-ACK. For example, if the dl-DataToUL-ACK consists of eight elements, the size of the HARQ-ACK codebook is eight. For example, if dl-DataToUL-ACK consists of two elements, HARQ-ACK
The size of the codebook is 2. Each HARQ-ACK information constituting the HARQ-ACK codebook is HARQ-ACK information for PDSCH reception at each slot timing of dl-DataToUL-ACK. This type of HARQ-ACK codebook is also referred to as a Semi-static HARQ-ACK codebook.
 HARQ指示フィールドの設定の一例を説明する。例えば、dl-DataToUL-ACKは、0、7、15、23、31、39、47、55の8個のタイミングのリストから構成され、HARQ指示フィールドは3ビットから構成される。HARQ指示フィールドが“000”は、対応するタイミングとしてdl-DataToUL-ACKのリストの1番目の0と対応する。すなわち、HARQ指示フィールドが“000”は、dl-DataToUL-ACKのインデックス 1が示す値0と対応する。HARQ指示フィールドが“001”は、対応するタイミングとしてdl-DataToUL-ACKのリストの2番目の7と対応する。HARQ指示フィールドが“010”は、対応するタイミングとしてdl-DataToUL-ACKのリストの3番目の15と対応する。HARQ指示フィールドが“011”は、対応するタイミングとしてdl-DataToUL-ACKのリストの4番目の23と対応する。HARQ指示フィールドが“100”は、対応するタイミングとしてdl-DataToUL-ACKのリストの5番目の31と対応する。HARQ指示フィールドが“101”は、対応するタイミングとしてdl-DataToUL-ACKのリストの6番目の39と対応する。HARQ指示フィールドが“110”は、対応するタイミングとしてdl-DataToUL-ACKのリストの7番目の47と対応する。HARQ指示フィールドが“111”は、対応するタイミングとしてdl-DataToUL-ACKのリストの8番目の55と対応する。端末装置1は、受信されたHARQ指示フィールドが“000”を示す場合、受信されたPDSCHのスロットから0番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“001”を示す場合、受信されたPDSCHのスロットから7番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“010”を示す場合、受信されたPDSCHのスロットから15番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“011”を示す場合、受信されたPDSCHのスロットから23番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“100”を示す場合、受信されたPDSCHのスロットから31番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“101”を示す場合、受信されたPDSCHのスロットから39番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“110”を示す場合、受信されたPDSCHのスロットから47番目のスロットで対応するHARQ-ACKを送信する。端末装置1は、受信されたHARQ指示フィールドが“111”を示す場合、受信されたPDSCHのスロットから55番目のスロットで対応するHARQ-ACKを送信する。 An example of setting the HARQ instruction field will be described. For example, the dl-DataToUL-ACK consists of a list of eight timings 0, 7, 15, 23, 31, 39, 47, 55, and the HARQ indicator field consists of 3 bits. The HARQ instruction field "000" corresponds to the first 0 in the list of dl-DataToUL-ACK as the corresponding timing. That is, the HARQ instruction field "000" corresponds to the value 0 indicated by the index 1 of dl-DataToUL-ACK. The HARQ instruction field "001" corresponds to the second 7 in the list of dl-DataToUL-ACK as the corresponding timing. The HARQ instruction field "010" corresponds to the third 15 in the list of dl-DataToUL-ACK as the corresponding timing. The HARQ instruction field "011" corresponds to the fourth 23 in the list of dl-DataToUL-ACK as the corresponding timing. The HARQ indicator field "100" corresponds to the fifth 31 in the list of dl-DataToUL-ACK as the corresponding timing. The HARQ instruction field "101" corresponds to the sixth 39 in the list of dl-DataToUL-ACK as the corresponding timing. The HARQ instruction field "110" corresponds to the seventh 47 in the list of dl-DataToUL-ACK as the corresponding timing. The HARQ instruction field "111" corresponds to the eighth 55 in the list of dl-DataToUL-ACK as the corresponding timing. When the received HARQ instruction field indicates "000", the terminal device 1 transmits the corresponding HARQ-ACK in the 0th slot from the received PDSCH slot. When the received HARQ instruction field indicates "001", the terminal device 1 transmits the corresponding HARQ-ACK in the 7th slot from the received PDSCH slot. When the received HARQ instruction field indicates "010", the terminal device 1 transmits the corresponding HARQ-ACK in the 15th slot from the received PDSCH slot. When the received HARQ instruction field indicates "011", the terminal device 1 transmits the corresponding HARQ-ACK in the 23rd slot from the received PDSCH slot. When the received HARQ instruction field indicates "100", the terminal device 1 transmits the corresponding HARQ-ACK in the 31st slot from the received PDSCH slot. When the received HARQ instruction field indicates "101", the terminal device 1 transmits the corresponding HARQ-ACK in the 39th slot from the received PDSCH slot. When the received HARQ instruction field indicates "110", the terminal device 1 transmits the corresponding HARQ-ACK in the 47th slot from the received PDSCH slot. When the received HARQ instruction field indicates "111", the terminal device 1 transmits the corresponding HARQ-ACK in the 55th slot from the received PDSCH slot.
 端末装置1に上位層パラメータpdsch-AggregationFactorが与えられた場合、NPDSCH repeatはpdsch-AggregationFactorの値であってもよい。端末装置1に上位層パラメータpdsch-AggregationFactorが与えられなかった場合、NPDSCH repeatは1であってもよい。端末装置1はスロットn-NPDSCH repeat+1からスロットnまでのPDSCH受信のためのHARQ-ACK情報をスロットn+kにおけるPUCCH送信、および/または、PUSCH送信を用いて報告してもよい。ここで、kは該PDSCH受信に対応するDCIフォーマットに含まれるHARQ指示フィールドによって指示されたスロットの数であってもよい。また、HARQ指示フィールドがDCIフォーマットに含まれない場合、kは上位層パラメータdl-DataToUL-ACKによって与えられてもよい。 When the upper layer parameter pdsch-AggressionFactor is given to the terminal device 1, the N PDSCH repeat may be the value of the pdsch-AggressionFactor. When the upper layer parameter pdsch-AggressionFactor is not given to the terminal device 1, the N PDSCH repeat may be 1. The terminal device 1 may report HARQ-ACK information for PDSCH reception from slot n—N PDSCH repeat +1 to slot n using PUCCH transmission and / or PUSCH transmission in slot n + k. Here, k may be the number of slots indicated by the HARQ indicator field included in the DCI format corresponding to the PDSCH reception. Further, if the HARQ instruction field is not included in the DCI format, k may be given by the upper layer parameter dl-DataToUL-ACK.
 端末装置1がDCIフォーマット1_0を含むPDCCHをモニタリングするように構成され、且つ、DCIフォーマット1_1を含むPDCCHをモニタリングしないように構成される場合、HARQ-ACKタイミング値K1は(1、2、3、4、5、6、7、8)の一部または全部であってもよい。端末装置1がDCIフォーマット1_1を含むPDCCHをモニタリングするように構成される場合、該HARQ-ACKタイミング値K1は上位層パラメータdl-DataToUL-ACKによって与えられてもよい。 If the terminal device 1 is configured to monitor the PDCCH containing DCI format 1_1 and is configured not to monitor the PDCCH containing DCI format 1-11, the HARQ-ACK timing value K1 is (1, 2, 3, It may be a part or all of 4, 5, 6, 7, 8). When the terminal device 1 is configured to monitor PDCCH including DCI format 1-11, the HARQ-ACK timing value K1 may be given by the upper layer parameter dl-DataToUL-ACK.
 端末装置1は、あるスロットのPUCCHで対応するHARQ-ACK情報を送信する、1つ以上の候補PDSCH受信に対する複数の機会のセットを判断する。端末装置1は、dl-DataToUL-ACKに含まれるスロットタイミングK1の複数のスロットを候補PDSCH受信に対する複数の機会と判断する。K1は、kの集合であってもよい。例えば、dl-DataToUL-ACKが(1、2、3、4、5、6、7、8)の場合、スロットnのPUCCHでは、n-1のスロットのPDSCH受信、n-2のスロットのPDSCH受信、n-3のスロットのPDSCH受信、n-4のスロットのPDSCH受信、n-5のスロットのPDSCH受信、n-6のスロットのPDSCH受信、n-7のスロットのPDSCH受信、n-8のスロットのPDSCH受信に対するHARQ-ACK情報が送信される。端末装置1は、候補PDSCH受信に該当するスロットにおいて実際にPDSCHを受信した場合はそのPDSCHに含まれるトランスポートブロックに基づいてACK、またはNACKをHARQ-ACK情報として設定し、候補PDSCH受信に該当するスロットにおいてPDSCHを受信しなかった場合はNACKをHARQ-ACK情報として設定する。 The terminal device 1 determines a set of a plurality of opportunities for receiving one or more candidate PDSCHs to transmit the corresponding HARQ-ACK information on the PUCCH of a certain slot. The terminal device 1 determines that the plurality of slots of the slot timing K1 included in the dl-DataToUL-ACK are a plurality of opportunities for receiving the candidate PDSCH. K1 may be a set of k. For example, when dl-DataToUL-ACK is (1, 2, 3, 4, 5, 6, 7, 8), the PUCCH in slot n receives PDSCH in slot n-1 and PDSCH in slot n-2. Receive, receive PDSCH in slot n-3, receive PDSCH in slot n-4, receive PDSCH in slot n-5, receive PDSCH in slot n-6, receive PDSCH in slot n-7, receive n-8 HARQ-ACK information for PDSCH reception of the slot of is transmitted. When the terminal device 1 actually receives the PDSCH in the slot corresponding to the candidate PDSCH reception, the terminal device 1 sets ACK or NACK as HARQ-ACK information based on the transport block included in the PDSCH, and corresponds to the candidate PDSCH reception. If PDSCH is not received in the slot to be used, NACK is set as HARQ-ACK information.
 n-1のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、1を示す。n-2のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、2を示す。n-3のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、3を示す。n-4のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、4を示す。n-5のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、5を示す。n-6のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、6を示す。n-7のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、7を示す。n-8のスロットのPDCCHで受信されるDCI formatに含まれるHARQ指示フィールドは、8を示す。 The HARQ instruction field included in the DCI format received by the PDCCH of the slot n-1 indicates 1. The HARQ instruction field included in the DCI format received by the PDCCH of the n-2 slot indicates 2. The HARQ instruction field included in the DCI format received by the PDCCH of the n-3 slot indicates 3. The HARQ instruction field included in the DCI format received by the PDCCH of the slot n-4 indicates 4. The HARQ instruction field included in the DCI format received by the PDCCH of the n-5 slot indicates 5. The HARQ instruction field included in the DCI format received by the PDCCH of the slot n-6 indicates 6. The HARQ instruction field included in the DCI format received by the PDCCH of the slot n-7 indicates 7. The HARQ instruction field included in the DCI format received by the PDCCH of the n-8 slot indicates 8.
 端末装置1は、PDCCHを受信したスロットと、受信したDCI formatに含まれるHARQ指示フィールドの値に基づき、HARQ-ACK情報を送信するスロット、そのHARQ-ACK情報に対応する複数の候補PDSCH受信のスロットのセットを判断する。例えば、dl-DataToUL-ACKが(1、2、3、4、5、6、7、8)の場合、端末装置1はスロットmでPDCCHを受信し、DCI formatに含まれるHARQ指示フィールドが4を示すとする。端末装置1は、スロット(m+4)でHARQ-ACK情報を送信すると判断する。端末装置1は、スロット(m+4)で送信される他のHARQ-ACK情報が、スロット(m+(1-4))のPDSCH受信に対するHARQ-ACK情報と、スロット(m+(2-4))のPDSCH受信に対するHARQ-ACK情報と、スロット(m+(3-4))のPDSCH受信に対するHARQ-ACK情報と、スロット(m+(5-4))のPDSCH受信に対するHARQ-ACK情報と、スロット(m+(6-4))のPDSCH受信に対するHARQ-ACK情報と、スロット(m+(7-4))のPDSCH受信に対するHARQ-ACK情報と、スロット(m+(8-4))のPDSCH受信に対するHARQ-ACK情報とであると判断する。 The terminal device 1 receives a slot for receiving PDCCH, a slot for transmitting HARQ-ACK information based on the value of the HARQ instruction field included in the received DCI format, and a plurality of candidate PDSCHs corresponding to the HARQ-ACK information. Determine the set of slots. For example, when dl-DataToUL-ACK is (1, 2, 3, 4, 5, 6, 7, 8), the terminal device 1 receives the PDCCH in the slot m, and the HARQ instruction field included in the DCI format is 4. Is shown. The terminal device 1 determines that the HARQ-ACK information is transmitted in the slot (m + 4). In the terminal device 1, other HARQ-ACK information transmitted in the slot (m + 4) is the HARQ-ACK information for PDSCH reception in the slot (m + (1-4)) and the HARQ-ACK information in the slot (m + (2-4)). HARQ-ACK information for PDSCH reception, HARQ-ACK information for PDSCH reception in slot (m + (3-4)), HARQ-ACK information for PDSCH reception in slot (m + (5-4)), and slot (m +). HARQ-ACK information for PDSCH reception in (6-4)), HARQ-ACK information for PDSCH reception in slot (m + (7-4)), and HARQ- for PDSCH reception in slot (m + (8-4)). Judge that it is ACK information.
 dl-DataToUL-ACKは、HARQ-ACKのタイミングとしてスロットの数を示す値だけではなく、HARQ-ACKを保持することを示す値(情報)も構成されうる。端末装置1は、PDCCHでHARQ-ACKを保持することを示す値を示すHARQ指示フィールドを受信した場合、そのPDCCHでスケジュールされるPDSCHに対するHARQ-ACK(HARQ-ACK情報)を保持し、HARQ-ACK(HARQ-ACK情報)の送信を待機する。 The dl-DataToUL-ACK can be configured not only as a value indicating the number of slots as the timing of HARQ-ACK, but also as a value (information) indicating that HARQ-ACK is held. When the terminal device 1 receives a HARQ instruction field indicating a value indicating that HARQ-ACK is held in the PDCCH, the terminal device 1 holds the HARQ-ACK (HARQ-ACK information) for the PDSCH scheduled in the PDCCH, and holds the HARQ-ACK. Waits for the transmission of ACK (HARQ-ACK information).
 上述では、HARQ-ACK codebookのタイプとして、Semi-static HARQ-ACK codebookについて説明したが、異なるタイプのHARQ-ACK codebookが用いられてもよい。Dynamic HARQ-ACK codebookと称するタイプのHARQ-ACK codebookについて説明する。 In the above description, the Semi-static HARQ-ACK codebook has been described as the type of the HARQ-ACK codebook, but a different type of HARQ-ACK codebook may be used. A type of HARQ-ACK codebook called Dynamic HARQ-ACK codebook will be described.
 あるPDSCHグループに対応するHARQ-ACKコードブックは、該あるPDSCHグループに含まれる1または複数のPDSCHのいずれかに含まれる1または複数のトランスポートブロックのいずれかに対応する1または複数のHARQ-ACKビットに基づき与えられる。HARQ-ACKコードブックは、PDCCHの監視機会(Monitoringoccasion for PDCCH)のセット、カウンターDAIフィールドの値の一部または全部に少なくとも基づき与えられる。HARQ-ACKコードブックは、UL DAIフィールドの値に更に基づき与えられてもよい。、HARQ-ACKコードブックは、DAIフィールドの値に更に基づき与えられてもよい。HARQ-ACKコードブックは、トータルDAIフィールドの値に更に基づき与えられてもよい。 An HARQ-ACK codebook corresponding to a PDSCH group is one or more HARQ-corresponding to any one or more transport blocks contained in any one or more PDSCHs contained in the PDSCH group. Given based on the ACK bit. The HARQ-ACK codebook is given based on at least a set of PDCCH monitoring opportunities (Monitoringoccasion for PDCCH), some or all of the values in the counter DAI field. The HARQ-ACK codebook may be given further based on the value of the UL DAI field. , HARQ-ACK codebook may be given further based on the value of the DAI field. The HARQ-ACK codebook may be given further based on the value of the total DAI field.
 Dynamic HARQ-ACK codebookのHARQ-ACK codebookサイズは、DCIフォーマットのフィールドに基づく。HARQ-ACK codebookのサイズは、最後に受信されたDCIフォーマットのカウンターDAIフィールドの値に基づいて設定されてもよい。カウンターDAIフィールドは、対応するDCIフォーマットの受信までにスケジュールされたPDSCH、またはトランスポートブロックの累積数を示す。HARQ-ACK codebookのサイズは、DCIフォーマットのトータルDAIフィールドの値に基づいて設定されてもよい。トータルDAIフィールドは、HARQ-ACK codebookの送信までにスケジュールされるPDSCH、またはトランスポートブロックの総数を示す。 The HARQ-ACK codebook size of the Dynamic HARQ-ACK codebook is based on the DCI format field. The size of the HARQ-ACK codebook may be set based on the value of the last received DCI format counter DAI field. The counter DAI field indicates the cumulative number of PDSCHs or transport blocks scheduled to receive the corresponding DCI format. The size of the HARQ-ACK codebook may be set based on the value of the total DAI field in DCI format. The total DAI field indicates the total number of PDSCHs or transport blocks scheduled before the transmission of the HARQ-ACK codebook.
 端末装置1は、インデックスnのスロット(slot#n)に配置されるPUCCHにおいて送信されるHARQ-ACK情報のためのPDCCHの監視機会のセットを、タイミングK1の値、および、スロットオフセットK0の値の一部または全部に少なくとも基づき決定してもよい。インデックスnのスロットに配置されるPUCCHにおいて送信されるHARQ-ACK情報のためのPDCCHの監視機会のセットは、スロットnのためのPDCCHの監視機会(monitoring occasion for PDCCH for slot#n)のセットとも呼称される。ここで、該PDCCHの監視機会のセットは、M個のPDCCHの監視機会を含む。例えば、スロットオフセットK0は、下りリンクDCIフォーマットに含まれる時間領域リソース割り当てフィールドの値に少なくとも基づき示されてもよい。スロットオフセットK0は、該スロットオフセットK0を示す時間領域リソース割り当てフィールドを含むDCIフォーマットを含むPDCCHが配置される最後のOFDMシンボルを含むスロットから、該DCIフォーマットによりスケジューリングされるPDSCHの先頭のOFDMシンボルまでのスロット数(スロット差)を示す値である。 The terminal device 1 sets the PDCCH monitoring opportunity set for the HARQ-ACK information transmitted in the PUCCH arranged in the slot (slot # n) of the index n as the value of the timing K1 and the value of the slot offset K0. It may be decided based on at least a part or all of. The set of PDCCH monitoring opportunities for HARQ-ACK information transmitted in the PUCCH placed in the slot of index n is also the set of PDCCH monitoring opportunities (monitoring occupation for PDCCH for slot # n) for slot n. It is called. Here, the set of monitoring opportunities for PDCCH includes monitoring opportunities for M PDCCH. For example, slot offset K0 may be indicated at least based on the value of the time domain resource allocation field contained in the downlink DCI format. The slot offset K0 is from the slot containing the last OFDM symbol in which the PDCCH containing the DCI format including the time region resource allocation field indicating the slot offset K0 is placed to the first OFDM symbol of the PDSCH scheduled by the DCI format. It is a value indicating the number of slots (slot difference) of.
 あるPDCCHの監視機会に対応するいずれかの探索領域セットの監視機会において検出されるDCIフォーマットが、HARQ-ACK情報をスロットnにおいて送信することをトリガする(トリガする情報を含む)場合、端末装置1は、該PDCCHの監視機会をスロットnのためのPDCCH監視機会と決定してもよい。また、あるPDCCHの監視機会に対応する探索領域セットの監視機会において検出されるDCIフォーマットが、HARQ-ACK情報をスロットnにおいて送信することをトリガしない(トリガする情報を含まない)場合、端末装置1は、該PDCCHの監視機会をスロットnのためのPDCCH監視機会と決定しなくてもよい。また、あるPDCCHの監視機会に対応する探索領域セットの監視機会においてDCIフォーマットが検出されない場合、端末装置1は、該PDCCHの監視機会をスロットnのためのPDCCH監視機会と決定しなくてもよい。 If the DCI format detected in the monitoring opportunity of any search region set corresponding to the monitoring opportunity of a PDCCH triggers the transmission of HARQ-ACK information in slot n (including the triggering information), the terminal device. 1 may determine the monitoring opportunity of the PDCCH as the PDCCH monitoring opportunity for slot n. Further, if the DCI format detected in the monitoring opportunity of the search area set corresponding to the monitoring opportunity of a certain PDCCH does not trigger the transmission of HARQ-ACK information in slot n (does not include the triggering information), the terminal device. 1 does not have to determine the monitoring opportunity of the PDCCH as the PDCCH monitoring opportunity for slot n. Further, when the DCI format is not detected in the monitoring opportunity of the search area set corresponding to the monitoring opportunity of a certain PDCCH, the terminal device 1 does not have to determine the monitoring opportunity of the PDCCH as the PDCCH monitoring opportunity for the slot n. ..
 スロットnにおいてHARQ-ACK情報の送信に用いられるPUCCHリソースは、該スロットnのためのPDCCHの監視機会のセットにおいて検出される1または複数のDCIフォーマットのうち、最後のDCIフォーマットに含まれるPUCCHリソース指示フィールドに少なくとも基づき特定されてもよい。ここで、該1または複数のDCIフォーマットのそれぞれは、HARQ-ACK情報をスロットnにおいて送信することをトリガしている。最後のDCIフォーマットは、該スロットnのためのPDCCHの監視機会のセットにおいて検出されたDCIフォーマットのうちの最後のインデックス(最も大きいインデックス)に対応するDCIフォーマットであってもよい。該スロットnのためのPDCCHの監視機会のセットにおけるDCIフォーマットのインデックスは、該DCIフォーマットが検出されるサービングセルのインデックスに対して昇順に与えられ、次いで、該DCIフォーマットが検出されるPDCCHの監視機会のインデックスに対して昇順に与えられる。PDCCHの監視機会のインデックスは、時間軸上で昇順に与えられる。 The PUCCH resource used to transmit HARQ-ACK information in slot n is the PUCCH resource included in the last DCI format of the one or more DCI formats detected in the set of PDCCH monitoring opportunities for slot n. It may be specified at least based on the indicated field. Here, each of the one or more DCI formats triggers transmission of HARQ-ACK information in slot n. The last DCI format may be the DCI format corresponding to the last index (largest index) of the DCI formats detected in the set of PDCCH monitoring opportunities for the slot n. The DCI format index in the set of PDCCH monitoring opportunities for the slot n is given in ascending order to the index of the serving cell in which the DCI format is detected, and then the PDCCH monitoring opportunity in which the DCI format is detected. Given in ascending order to the index of. The PDCCH monitoring opportunity index is given in ascending order on the time axis.
 カウンターDAI(Counter DAI)は、M個のPDCCHの監視機会において、あるサービングセルにおけるあるPDCCHの監視機会に対して、該サービングセルにおける該PDCCHの監視機会までに検出されるPDCCHの累積数(または、累積数に少なくとも関連する値であってもよい)を示す。カウンターDAIは、C-DAIとも呼称されてもよい。PDSCHに対応するC-DAIは、該PDSCHのスケジューリングに用いられるDCIフォーマットに含まれるフィールドによって示されてもよい。トータルDAIは、M個のPDCCHの監視機会において、PDCCHの監視機会mまでに検出されるPDCCHの累積数(または、累積数に少なくとも関連する値であってもよい)を示してもよい。トータルDAIは、T-DAI(Total Downlink Assignment Index)と呼称されてもよい。 The counter DAI (Counter DAI) is the cumulative number (or cumulative) of PDCCH detected up to the monitoring opportunity of the PDCCH in the serving cell for the monitoring opportunity of the PDCCH in the serving cell in the monitoring opportunity of M PDCCH. It may be at least a value related to the number). The counter DAI may also be referred to as C-DAI. The C-DAI corresponding to the PDSCH may be indicated by a field contained in the DCI format used for scheduling the PDSCH. The total DAI may indicate the cumulative number (or at least a value related to the cumulative number) of PDCCH detected by the monitoring opportunity m of PDCCH in the monitoring opportunity of M PDCCH. The total DAI may be referred to as a T-DAI (Total Downlink Assignment Index).
 Semi-static HARQ-ACK codebook(タイプ1HARQ-ACK codebook)、またはDynamic HARQ-ACK codebook(タイプ2HARQ-ACK codebook)は、DL assignmentに基づき送信が指示される(トリガされる、要求される)HARQ-ACK codebookである。HARQ指示フィールドを含むDCI formatは、DL assignment(Downlink assignment)である。DL assignmentは、PDSCHのスケジューリングに用いられるDCI formatである。DL assignmentは、PDSCHの割り当てに用いられるDCI formatである。Semi-static HARQ-ACK codebookは、dl-DataToUL-ACKとHARQ指示フィールドに基づき構成される。Semi-static HARQ-ACK codebookのサイズは、dl-DataToUL-ACKに含まれるサイズに基づく。Semi-static HARQ-ACK codebook、またはDynamic HARQ-ACK codebookに含まれるスロットのタイミングは、HARQ指示フィールドの値と、HARQ指示フィールドを含むDCIが受信されたスロットに基づく。 Semi-static HARQ-ACK codebook (type 1 HARQ-ACK codebook) or Dynamic HARQ-ACK codebook (type 2 HARQ-ACK codebook) is instructed (triggered, requested) to be transmitted based on DL assert. ACK codebook. The DCI format including the HARQ indicator field is DL association (Downlink association). DL association is a DCI format used for PDSCH scheduling. DL association is a DCI format used for PDSCH allocation. The Semi-static HARQ-ACK codebook is constructed based on the dl-DataToUL-ACK and the HARQ instruction field. The size of the Semi-static HARQ-ACK codebook is based on the size included in the dl-DataToUL-ACK. The timing of the slots included in the Semi-static HARQ-ACK codebook or the Dynamic HARQ-ACK codebook is based on the value of the HARQ instruction field and the slot in which the DCI including the HARQ instruction field is received.
 Dynamic HARQ-ACK codebook、またはSemi-static HARQ-ACK codebookは、HARQ-ACKの送受信の第一の方法である。基地局装置3Aにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKの送受信には、第一の方法が用いられる。基地局装置3Bにおいて管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKの送受信には、第二の方法が用いられる。 Dynamic HARQ-ACK codebook or Semi-static HARQ-ACK codebook is the first method of transmitting and receiving HARQ-ACK. The first method is used for transmitting and receiving HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3A. A second method is used for transmitting and receiving HARQ-ACK to the PDSCH of the downlink frequency band (cell, component carrier, carrier) managed by the base station apparatus 3B.
 第二の方法のHARQ-ACK codebookは、複数、または全てのHARQ processに対するHARQ-ACK情報を含む。例えば、HARQ processとは、PDSCHに用いられるHARQ processを意味する。例えば、全てのHARQ processとは、少なくとも1つのServing cell(基地局装置3Bにおいて管理される下りリンクのセル)で使用されうるHARQ processの全てを意味する。例えば、1つのServing cellで使用されうるHARQ processの数は、16個である。例えば、複数のHARQ processとは、RRC signalingにより構成された複数のHARQ processを意味する。例えば、複数のHARQ processの数は、8個である。例えば、複数のHARQ processの数は、10個である。 The HARQ-ACK codebook of the second method includes HARQ-ACK information for a plurality or all HARQ processes. For example, HARQ process means HARQ process used for PDSCH. For example, all HARQ processes mean all of the HARQ processes that can be used in at least one Serving cell (downlink cell managed in the base station apparatus 3B). For example, the number of HARQ processes that can be used in one Serving cell is 16. For example, a plurality of HARQ processes means a plurality of HARQ processes configured by RRC signing. For example, the number of a plurality of HARQ processes is eight. For example, the number of a plurality of HARQ processes is 10.
 第二の方法のHARQ-ACK codebookの一例について説明する。8個のHARQ process(HARQ process 0、HARQ process 1、HARQ process 2、HARQ process 3、HARQ process 4、HARQ process 5、HARQ process 6、HARQ process 7)に対するHARQ-ACKが構成される場合について説明する。基地局装置3Bの下りリンクのセルにおいてHARQ process毎に1つのトランスポートブロックが送受信される場合、HARQ process毎に対して1ビットのHARQ-ACKが用いられる。HARQ process 0に対する1ビットのHARQ-ACK、HARQ process 1に対する1ビットのHARQ-ACK、HARQ process 2に対する1ビットのHARQ-ACK、HARQ process 3に対する1ビットのHARQ-ACK、HARQ process 4に対する1ビットのHARQ-ACK、HARQ process 5に対する1ビットのHARQ-ACK、HARQ process 6に対する1ビットのHARQ-ACK、HARQ process 7に対する1ビットのHARQ-ACKの合計8ビットにより1つのHARQ-ACK codebookが構成される。基地局装置3Bの下りリンクのセルにおいてHARQ process毎に2つのトランスポートブロックが送受信される場合、HARQ process毎に対して2ビットのHARQ-ACKが用いられる。HARQ process 0に対する2ビットのHARQ-ACK、HARQ process 1に対する2ビットのHARQ-ACK、HARQ process 2に対する2ビットのHARQ-ACK、HARQ process 3に対する2ビットのHARQ-ACK、HARQ process 4に対する2ビットのHARQ-ACK、HARQ process 5に対する2ビットのHARQ-ACK、HARQ process 6に対する2ビットのHARQ-ACK、HARQ process 7に対する2ビットのHARQ-ACKの合計16ビットにより1つのHARQ-ACK codebookが構成される。構成されたHARQ-ACK codebookが基地局装置3Aの上りリンクのセルにおいて端末装置1から送信される。 An example of HARQ-ACK codebook of the second method will be described. 8 HARQ processes (HARQ process 0, HARQ process 1, HARQ process 2, HARQ process 3, HARQ process 4, HARQ process 5, HARQ process 6, HARQ ACK 7) Explanation for HARQ process .. When one transport block is transmitted / received for each HARQ process in the downlink cell of the base station apparatus 3B, 1-bit HARQ-ACK is used for each HARQ process. 1-bit HARQ-ACK for HARQ process 0, 1-bit HARQ-ACK for HARQ process 1, 1-bit HARQ-ACK for HARQ process 2, 1-bit HARQ-ACK for HARQ process 3, and 1 bit for HARQ process 4. HARQ-ACK, 1-bit HARQ-ACK for HARQ process 5, 1-bit HARQ-ACK for HARQ process 6, and 1-bit HARQ-ACK for HARQ process 7 make up one HARQ-ACK codebook with a total of 8 bits. Will be done. When two transport blocks are transmitted and received for each HARQ process in the downlink cell of the base station device 3B, 2-bit HARQ-ACK is used for each HARQ process. 2-bit HARQ-ACK for HARQ process 0, 2-bit HARQ-ACK for HARQ process 1, 2-bit HARQ-ACK for HARQ process 2, 2-bit HARQ-ACK for HARQ process 3, and 2-bit for HARQ process 4. HARQ-ACK, 2-bit HARQ-ACK for HARQ process 5, 2-bit HARQ-ACK for HARQ process 6, and 2-bit HARQ-ACK for HARQ process 7 make up one HARQ-ACK codebook with a total of 16 bits. Will be done. The configured HARQ-ACK codebook is transmitted from the terminal device 1 in the uplink cell of the base station device 3A.
 第一の方法は、HARQ-ACKの送信に用いられる時間リソース(スロット)がDCI formatにより動的に通知される方法と言える。第二の方法は、HARQ-ACKの送信に用いられる時間リソース(スロット)がRRC signalingにより準静的に通知される方法と言える。第一の方法は、HARQ-ACKの送信に用いられる時間リソース(スロット)が非周期的である方法と言える。第二の方法は、HARQ-ACKの送信に用いられる時間リソース(スロット)が周期的である方法と言える。第二の方法は、HARQ-ACKの送信に用いられる時間リソース(スロット)が静的であってもよい。 The first method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is dynamically notified by DCI format. The second method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is quasi-statically notified by RRC signing. The first method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is aperiodic. The second method can be said to be a method in which the time resource (slot) used for transmitting HARQ-ACK is periodic. In the second method, the time resource (slot) used for transmitting HARQ-ACK may be static.
 第一の方法は、HARQ-ACKの送信に用いられる周波数リソース(物理チャネル)がDCI formatにより動的に通知される方法と言える。第二の方法は、HARQ-ACKの送信に用いられる周波数リソース(物理チャネル)がRRC signalingにより準静的に通知される方法と言える。 The first method can be said to be a method in which the frequency resource (physical channel) used for the transmission of HARQ-ACK is dynamically notified by DCI format. The second method can be said to be a method in which the frequency resource (physical channel) used for the transmission of HARQ-ACK is quasi-statically notified by RRC signing.
 第一の方法は、HARQ-ACK codebookが送受信されるスロットと、HARQ-ACK codebookに含まれるHARQ-ACKが対応するPDSCHのスロットとの関係が定義されるHARQ-ACK codebookと言える。第一の方法のHARQ-ACK codebookに含まれるHARQ-ACKが対応するPDSCHに用いられるHARQ processは予め限定されず、基地局装置3のスケジューリングにより設定される。第二の方法のHARQ-ACK codebookは、HARQ-ACK codebookに含まれるHARQ-ACKが対応するPDSCHのHARQ processが定義されるHARQ-ACK codebookと言える。 The first method can be said to be a HARQ-ACK codebook in which the relationship between the slot to which the HARQ-ACK codebook is transmitted and received and the slot of the PDSCH corresponding to the HARQ-ACK included in the HARQ-ACK codebook is defined. The HARQ process used for the PDSCH corresponding to the HARQ-ACK included in the HARQ-ACK codebook of the first method is not limited in advance, and is set by the scheduling of the base station apparatus 3. The HARQ-ACK codebook of the second method can be said to be a HARQ-ACK codebook in which the HARQ process of the PDSCH corresponding to the HARQ-ACK included in the HARQ-ACK codebook is defined.
 例えば、第二の方法のHARQ-ACK codebookの送受信に用いられる周波数リソースとして、8スロット毎の周波数リソースがRRC signalingにより基地局装置3から端末装置1に通知される。例えば、周期とオフセットが基地局装置3から端末装置1に通知される。周期としては、例えば、8が通知される。オフセットとしては、0、1、2、3、4、5、6、7のいずれかが通知される。ここで、オフセットとは、ある基準となるタイミングのスロットに対して、どれだけずれたスロットで周期的なリソースの割り当てが行われるかを示す。ここで、周期は、下りリンクのセルで用いられるHARQ processの総数と等しくてもよい。例えば、下りリンクのセルで用いられるHARQ processの総数が8個の場合、第二の方法のHARQ-ACK codebookの送受信に用いられる周波数リソースの周期は8でもよい。例えば、下りリンクのセルで用いられるHARQ processの総数が16個の場合、第二の方法のHARQ-ACK codebookの送受信に用いられる周波数リソースの周期は16でもよい。ここで、オフセットの候補は、周期の値と等しくてもよい。ここで、周期は、複数の下りリンクのセルで用いられるHARQ processの総数と等しくてもよい。 For example, as the frequency resource used for transmitting and receiving the HARQ-ACK codebook of the second method, the frequency resource for every 8 slots is notified from the base station device 3 to the terminal device 1 by RRC signing. For example, the period and the offset are notified from the base station device 3 to the terminal device 1. As the cycle, for example, 8 is notified. As the offset, any of 0, 1, 2, 3, 4, 5, 6, and 7 is notified. Here, the offset indicates how much the slot is deviated from the slot at a certain reference timing, and the resource is allocated periodically. Here, the period may be equal to the total number of HARQ processes used in the downlink cell. For example, when the total number of HARQ processes used in the downlink cell is eight, the period of the frequency resource used for transmitting and receiving the HARQ-ACK codebook of the second method may be eight. For example, when the total number of HARQ processes used in the downlink cell is 16, the period of the frequency resource used for transmitting and receiving the HARQ-ACK codebook of the second method may be 16. Here, the offset candidate may be equal to the period value. Here, the period may be equal to the total number of HARQ processes used in the plurality of downlink cells.
 例えば、端末装置1は、スロット0から8スロットの周期で、第二の方法のHARQ-ACK codebookの送信を行う。例えば、基地局装置3Aは、スロット0から8スロットの周期で、第二の方法のHARQ-ACK codebookの受信を行う。端末装置1は、スロット0で、8個のHARQ processに対する8個のHARQ-ACKから構成されるHARQ-ACK codebookの送信を行う。基地局装置3Aは、スロット0で、8個のHARQ processに対する8個のHARQ-ACKから構成されるHARQ-ACK codebookの受信を行う。次に、端末装置1は、スロット8で、8個のHARQ processに対する8個のHARQ-ACKから構成されるHARQ-ACK codebookの送信を行う。基地局装置3Aは、スロット8で、8個のHARQ processに対する8個のHARQ-ACKから構成されるHARQ-ACK codebookの受信を行う。次に、端末装置1は、スロット16で、8個のHARQ processに対する8個のHARQ-ACKから構成されるHARQ-ACK codebookの送信を行う。基地局装置3Aは、スロット16で、8個のHARQ processに対する8個のHARQ-ACKから構成されるHARQ-ACK codebookの受信を行う。端末装置1は、基地局装置3Bの下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを基地局装置3Aの上りリンクのセルで送信する。基地局装置3Aは、端末装置1が基地局装置3Bの下りリンクのセルで受信したPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを基地局装置3Aが管理する上りリンクのセルで受信し、受信したHARQ-ACKを基地局装置3Bに通知する(転送する)。 For example, the terminal device 1 transmits the HARQ-ACK codebook of the second method in a cycle of slots 0 to 8. For example, the base station apparatus 3A receives the HARQ-ACK codebook of the second method in a cycle of slots 0 to 8. The terminal device 1 transmits a HARQ-ACK codebook composed of eight HARQ-ACKs to eight HARQ processes in slot 0. The base station apparatus 3A receives the HARQ-ACK codebook composed of eight HARQ-ACKs for the eight HARQ processes in slot 0. Next, the terminal device 1 transmits a HARQ-ACK codebook composed of eight HARQ-ACKs to eight HARQ processes in the slot 8. The base station apparatus 3A receives the HARQ-ACK codebook composed of eight HARQ-ACKs for the eight HARQ processes in the slot 8. Next, the terminal device 1 transmits a HARQ-ACK codebook composed of eight HARQ-ACKs to eight HARQ processes in the slot 16. The base station apparatus 3A receives the HARQ-ACK codebook composed of eight HARQ-ACKs for the eight HARQ processes in the slot 16. The terminal device 1 transmits a HARQ-ACK codebook including HARQ-ACK for the PDSCH of the downlink cell of the base station device 3B in the uplink cell of the base station device 3A. The base station apparatus 3A receives and receives a HARQ-ACK codebook including HARQ-ACK for the PDSCH received by the terminal apparatus 1 in the downlink cell of the base station apparatus 3B in the uplink cell managed by the base station apparatus 3A. Notify (transfer) the completed HARQ-ACK to the base station device 3B.
 端末装置1は、HARQ-ACK codebookの送信毎に、HARQ process毎に保持された(記憶された)HARQ-ACKをリセットする(フラッシュする)。リセットされた(フラッシュされた)HARQ-ACKは、デフォルト値としてNACKが設定される。基地局装置3Bは、PDSCHの送信に用いたHARQ processに対するHARQ-ACKがACKの場合、端末装置1においてデータの誤りなくPDSCHが適切に受信されたと認識し、データの再送を行わない。基地局装置3Bは、PDSCHの送信に用いたHARQ processに対するHARQ-ACKがNACKの場合、端末装置1においてデータの誤りなくPDSCHが適切に受信されなかったと認識し、データの再送を行う。基地局装置3Bは、PDSCHの送信に用いていないHARQ processに対するHARQ-ACKは無視する。 The terminal device 1 resets (flashes) the held (stored) HARQ-ACK for each HARQ process every time the HARQ-ACK codebook is transmitted. NACK is set as the default value for the reset (flushed) HARQ-ACK. When the HARQ-ACK for the HARQ process used for transmitting the PDSCH is ACK, the base station device 3B recognizes that the PDSCH has been properly received by the terminal device 1 without any data error, and does not retransmit the data. When the HARQ-ACK for the HARQ process used for transmitting the PDSCH is NACK, the base station device 3B recognizes that the PDSCH was not properly received in the terminal device 1 without any data error, and retransmits the data. The base station apparatus 3B ignores HARQ-ACK for the HARQ process that is not used for PDSCH transmission.
 第一の方法のHARQ-ACK codebookとして、Dynamic HARQ-ACK codebook(タイプ2HARQ-ACK codebook)が用いられる場合、UL grantにUL DAIフィールドが含まれる。UL grantにPDSCHグループ毎のUL DAIフィールドが含まれてもよい。使用されるPDSCHグループの数は、RRCシグナリングを用いて基地局装置3から端末装置1に対して構成されてもよい。基地局装置3は、PDSCHグループ毎のUL DAIフィールドを含むUL grantを端末装置1に送信し、PDSCHグループ毎のHARQ-ACK情報を含むPUSCHを受信する。端末装置1は、PDSCHグループ毎のUL DAIフィールドを含むUL grantを基地局装置3から受信し、PDSCHグループ毎のHARQ-ACK情報を含むPUSCHを送信する。端末装置1は、PDSCHグループ毎のUL DAIフィールドを含むUL grantを基地局装置3から受信し、予め構成された全てのPDSCHグループのHARQ-ACK情報を含むPUSCHを送信する。 When a Dynamic HARQ-ACK codebook (type 2 HARQ-ACK codebook) is used as the HARQ-ACK codebook of the first method, the UL grant includes the UL DAI field. The UL grant may include a UL DAI field for each PDSCH group. The number of PDSCH groups used may be configured from base station device 3 to terminal device 1 using RRC signaling. The base station apparatus 3 transmits the UL grant including the UL DAI field for each PDSCH group to the terminal apparatus 1, and receives the PUSCH including the HARQ-ACK information for each PDSCH group. The terminal device 1 receives the UL grant including the UL DAI field for each PDSCH group from the base station device 3, and transmits the PUSCH including the HARQ-ACK information for each PDSCH group. The terminal device 1 receives the UL grant including the UL DAI field for each PDSCH group from the base station device 3, and transmits the PUSCH including the HARQ-ACK information of all the preconfigured PDSCH groups.
 例えば、PDSCHグループがPDSCHグループ1、PDSCHグループ2の2つの場合、PDSCHグループ1に対するUL DAIフィールドと、PDSCHグループ2に対するUL DAIフィールドとがUL grantに含まれる。端末装置1は、PDSCHグループ1に対するUL DAIフィールドを用いてPDSCHグループ1に対するHARQ-ACK情報を判断し、PDSCHグループ2に対するUL DAIフィールドを用いてPDSCHグループ2に対するHARQ-ACK情報を判断する。UL DAIフィールドにより、PUSCHで送信されるHARQ-ACK codebookに対応するHARQ-ACKが含められるPDSCHの数が示される。端末装置1は、UL DAIフィールドにより示されるPDSCHの数よりも受信したPDSCHの数が少ない場合、検出をミスしたPDCCHがあると判断し、対応するHARQ-ACKビットにNACKを示すビットを設定する。端末装置1は、PDSCHグループ1に対するHARQ-ACK情報とPDSCHグループ2に対するHARQ-ACK情報をPUSCHで送信する。基地局装置3は、PUSCHで受信したPDSCHグループ1に対するHARQ-ACK情報からPDSCHグループ1におけるPDCCHの検出ミスが端末装置1において発生していないか判断し、PUSCHで受信したPDSCHグループ2に対するHARQ-ACK情報からPDSCHグループ2におけるPDCCHの検出ミスが端末装置1において発生していないか判断する。このように、UL grantにPDSCHグループ毎のUL DAIフィールドを含めることより、PDSCHグループ毎のPDCCHの検出ミスを端末装置1において判断し、端末装置1での判断結果を基地局装置3が適切に認識することができる。 For example, when there are two PDSCH groups, PDSCH group 1 and PDSCH group 2, the UL DAI field for PDSCH group 1 and the UL DAI field for PDSCH group 2 are included in the UL grant. The terminal device 1 determines the HARQ-ACK information for the PDSCH group 1 using the UL DAI field for the PDSCH group 1, and determines the HARQ-ACK information for the PDSCH group 2 using the UL DAI field for the PDSCH group 2. The UL DAI field indicates the number of PDSCHs that include the HARQ-ACK corresponding to the HARQ-ACK codebook transmitted on the PUSCH. When the number of received PDSCHs is smaller than the number of PDSCHs indicated by the UL DAI field, the terminal device 1 determines that there is a PDCCH that has missed detection, and sets a bit indicating NACK in the corresponding HARQ-ACK bit. .. The terminal device 1 transmits HARQ-ACK information for PDSCH group 1 and HARQ-ACK information for PDSCH group 2 by PUSCH. The base station apparatus 3 determines from the HARQ-ACK information for the PDSCH group 1 received by the PUSCH whether or not a PDCCH detection error in the PDSCH group 1 has occurred in the terminal apparatus 1, and determines whether the HARQ- From the ACK information, it is determined whether or not a PDCCH detection error in the PDSCH group 2 has occurred in the terminal device 1. In this way, by including the UL DAI field for each PDSCH group in the UL grant, the terminal device 1 determines the PDCCH detection error for each PDSCH group, and the base station device 3 appropriately determines the determination result in the terminal device 1. Can be recognized.
 UL grantに全てのPDSCHグループに対する1つのUL DAIフィールドが含まれてもよい。基地局装置3は、全てのPDSCHグループに対するUL DAIフィールドを含むUL grantを端末装置1に送信し、全てのPDSCHグループのHARQ-ACK情報を含むPUSCHを受信する。端末装置1は、全てのPDSCHグループに対するUL DAIフィールドを含むUL grantを基地局装置3から受信し、全てのPDSCHグループのHARQ-ACK情報を含むPUSCHを送信する。全てのPDSCHグループに対するUL DAIフィールドは、全てのPDSCHグループのHARQ-ACK情報を含むHARQ-ACK codebookのサイズを示してもよい。全てのPDSCHグループに対するUL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookに含められる、全てのPDSCHグループのHARQ-ACKの数を示してもよい。全てのPDSCHグループに対するUL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められる全てのPDSCHグループのPDSCHの数を示してもよい。 The UL grant may contain one UL DAI field for all PDSCH groups. The base station device 3 transmits a UL grant including a UL DAI field for all PDSCH groups to the terminal device 1, and receives a PUSCH including HARQ-ACK information of all PDSCH groups. The terminal device 1 receives the UL grant including the UL DAI field for all PDSCH groups from the base station device 3, and transmits the PUSCH including the HARQ-ACK information of all PDSCH groups. The UL DAI field for all PDSCH groups may indicate the size of the HARQ-ACK codebook containing the HARQ-ACK information for all PDSCH groups. The UL DAI field for all PDSCH groups may indicate the number of HARQ-ACKs of all PDSCH groups included in the HARQ-ACK codebook transmitted by PUSCH. The UL DAI field for all PDSCH groups may indicate the number of PDSCHs in all PDSCH groups in which the HARQ-ACK codebook transmitted on the PUSCH includes the corresponding HARQ-ACK.
 例えば、PDSCHグループがPDSCHグループ1、PDSCHグループ2の2つの場合、PDSCHグループ1とPDSCHグループ2を合わせたPDSCHグループに対するUL DAIフィールドがUL grantに含まれる。端末装置1は、UL DAIフィールドを用いてPDSCHグループ1とPDSCHグループ2に対するHARQ-ACK情報を判断する。UL DAIフィールドにより、PUSCHで送信されるHARQ-ACK codebookに対応するHARQ-ACKが含められる全てのPDSCHグループのPDSCHの数が示される。端末装置1は、UL DAIフィールドにより示されるPDSCHの数よりも受信したPDSCHの数が少ない場合、検出をミスしたPDCCHがあると判断し、対応するHARQ-ACKビットにNACKを示すビットを設定する。端末装置1は、PDSCHグループ1とPDSCHグループ2に対するHARQ-ACK情報をPUSCHで送信する。 For example, when there are two PDSCH groups, PDSCH group 1 and PDSCH group 2, the UL DAI field for the PDSCH group that combines the PDSCH group 1 and the PDSCH group 2 is included in the UL grant. The terminal device 1 determines the HARQ-ACK information for the PDSCH group 1 and the PDSCH group 2 using the UL DAI field. The UL DAI field indicates the number of PDSCHs in all PDSCH groups, including the HARQ-ACK corresponding to the HARQ-ACK codebook transmitted on the PUSCH. When the number of received PDSCHs is smaller than the number of PDSCHs indicated by the UL DAI field, the terminal device 1 determines that there is a PDCCH that has missed detection, and sets a bit indicating NACK in the corresponding HARQ-ACK bit. .. The terminal device 1 transmits HARQ-ACK information for PDSCH group 1 and PDSCH group 2 by PUSCH.
 図10は、本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。図10では、1スロットに14個のOFDMシンボル(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)が構成される。図10では、1番目(l=0)から7番目(l=6)のOFDMシンボルがスロットの前半部分のOFDMシンボルであり、8番目(l=7)から14番目(l=13)のOFDMシンボルがスロットの前半部分のOFDMシンボルである。図10では、第一の探索領域はスロットの1番目(l=0)のOFDMシンボルに設定される。 FIG. 10 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment. In FIG. 10, 14 OFDM symbols (l = 0, l = 1, l = 2, l = 3, l = 4, l = 5, l = 6, l = 7, l = 8, l) in one slot. = 9, l = 10, l = 11, l = 12, l = 13). In FIG. 10, the 1st (l = 0) to 7th (l = 6) OFDM symbols are the OFDM symbols of the first half of the slot, and the 8th (l = 7) to 14th (l = 13) OFDM symbols. The symbol is the OFDM symbol of the first half of the slot. In FIG. 10, the first search area is set to the first (l = 0) OFDM symbol of the slot.
 図11は、本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。図11では、1スロットに14個のOFDMシンボル(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)が構成される。図11では、1番目(l=0)から7番目(l=6)のOFDMシンボルがスロットの前半部分のOFDMシンボルであり、8番目(l=7)から14番目(l=13)のOFDMシンボルがスロットの前半部分のOFDMシンボルである。図11では、第二の探索領域はスロットの1番目(l=0)のOFDMシンボルと、スロットの8番目(l=7)のOFDMシンボルに設定される。この場合、1つのPDCCH候補はスロットの1番目(l=0)のOFDMシンボルの1つ以上のCCE、またはスロットの8番目(l=7)のOFDMシンボルの1つ以上のCCEから構成される。なお、スロットの1番目(l=0)のOFDMシンボルに設定される探索領域とスロットの8番目(l=7)のOFDMシンボルに設定される探索領域とが論理的に異なる探索領域であってもよい。図11は、スロットの1番目(l=0)のOFDMシンボルに設定される探索領域と、スロットの8番目(l=7)のOFDMシンボルに設定される探索領域とからなる探索領域セットであってもよい。 FIG. 11 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment. In FIG. 11, 14 OFDM symbols (l = 0, l = 1, l = 2, l = 3, l = 4, l = 5, l = 6, l = 7, l = 8, l) in one slot. = 9, l = 10, l = 11, l = 12, l = 13). In FIG. 11, the 1st (l = 0) to 7th (l = 6) OFDM symbols are the OFDM symbols of the first half of the slot, and the 8th (l = 7) to 14th (l = 13) OFDM symbols. The symbol is the OFDM symbol of the first half of the slot. In FIG. 11, the second search area is set to the first (l = 0) OFDM symbol of the slot and the eighth (l = 7) OFDM symbol of the slot. In this case, one PDCCH candidate is composed of one or more CCEs of the first (l = 0) OFDM symbol of the slot or one or more CCEs of the eighth (l = 7) OFDM symbol of the slot. .. The search area set in the first (l = 0) OFDM symbol of the slot and the search area set in the eighth (l = 7) OFDM symbol of the slot are logically different search areas. May be good. FIG. 11 is a search area set including a search area set in the first (l = 0) OFDM symbol of the slot and a search area set in the eighth (l = 7) OFDM symbol of the slot. You may.
 図12は、本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。図12では、1スロットに14個のOFDMシンボル(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)が構成される。図12では、1番目(l=0)から7番目(l=6)のOFDMシンボルがスロットの前半部分のOFDMシンボルであり、8番目(l=7)から14番目(l=13)のOFDMシンボルがスロットの前半部分のOFDMシンボルである。図12では、第三の探索領域はスロットの1番目(l=0)から2番目(l=1)のOFDMシンボルに設定される。この場合、1つのPDCCH候補はスロットの1番目(l=0)と2番目(l=1)のOFDMシンボルの1つ以上のCCEから構成される。 FIG. 12 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment. In FIG. 12, 14 OFDM symbols (l = 0, l = 1, l = 2, l = 3, l = 4, l = 5, l = 6, l = 7, l = 8, l) in one slot. = 9, l = 10, l = 11, l = 12, l = 13). In FIG. 12, the 1st (l = 0) to 7th (l = 6) OFDM symbols are the OFDM symbols of the first half of the slot, and the 8th (l = 7) to 14th (l = 13) OFDM symbols. The symbol is the OFDM symbol in the first half of the slot. In FIG. 12, the third search region is set to the first (l = 0) to second (l = 1) OFDM symbols of the slot. In this case, one PDCCH candidate is composed of one or more CCEs of the first (l = 0) and second (l = 1) OFDM symbols of the slot.
 図13は、本実施形態の一態様に係る端末装置1に設定される探索領域の一例を示す図である。図13では、1スロットに14個のOFDMシンボル(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)が構成される。図13では、1番目(l=0)から7番目(l=6)のOFDMシンボルがスロットの前半部分のOFDMシンボルであり、8番目(l=7)から14番目(l=13)のOFDMシンボルがスロットの前半部分のOFDMシンボルである。図13では、第四の探索領域はスロットの1番目(l=0)のOFDMシンボルと、スロットの4番目(l=3)のOFDMシンボルと、スロットの8番目(l=7)のOFDMシンボルと、スロットの12番目(l=11)のOFDMシンボルに設定される。この場合、1つのPDCCH候補はスロットの1番目(l=0)のOFDMシンボルの1つ以上のCCE、またはスロットの4番目(l=3)のOFDMシンボルの1つ以上のCCE、またはスロットの8番目(l=7)のOFDMシンボルの1つ以上のCCE、またはスロットの12番目(l=11)のOFDMシンボルの1つ以上のCCEから構成される。 FIG. 13 is a diagram showing an example of a search area set in the terminal device 1 according to one aspect of the present embodiment. In FIG. 13, 14 OFDM symbols (l = 0, l = 1, l = 2, l = 3, l = 4, l = 5, l = 6, l = 7, l = 8, l) in one slot. = 9, l = 10, l = 11, l = 12, l = 13). In FIG. 13, the 1st (l = 0) to 7th (l = 6) OFDM symbols are the OFDM symbols of the first half of the slot, and the 8th (l = 7) to 14th (l = 13) OFDM symbols. The symbol is the OFDM symbol of the first half of the slot. In FIG. 13, the fourth search area is the first (l = 0) OFDM symbol of the slot, the fourth (l = 3) OFDM symbol of the slot, and the eighth (l = 7) OFDM symbol of the slot. Is set to the 12th (l = 11) OFDM symbol of the slot. In this case, one PDCCH candidate is one or more CCEs of the first (l = 0) OFDM symbol of the slot, or one or more CCEs of the fourth (l = 3) OFDM symbol of the slot, or the slot. It consists of one or more CCEs of the 8th (l = 7) OFDM symbol or one or more CCEs of the 12th (l = 11) OFDM symbol of the slot.
 以上の説明のように、本発明の一態様は、端末装置1と基地局装置3間でHARQ-ACKを適切にやり取りすることができる。その結果、基地局装置3は、データの再送を適切に制御できる。適切な再送制御の実現により、効率的な通信が達成される。 As described above, one aspect of the present invention can appropriately exchange HARQ-ACK between the terminal device 1 and the base station device 3. As a result, the base station apparatus 3 can appropriately control the retransmission of data. Efficient communication is achieved by realizing appropriate retransmission control.
 以下、本実施形態の一態様に係る種々の装置の態様を説明する。 Hereinafter, aspects of various devices according to one aspect of the present embodiment will be described.
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、プロセッサと、 コンピュータプログラムコードを格納するメモリと、を備える端末装置であって、第一の基地局装置が管理する上りリンクのセルにおいて周期的なリソースを設定すること、第二の基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで送信すること、を含む動作を実行する。 (1) In order to achieve the above object, the aspects of the present invention have taken the following measures. That is, the first aspect of the present invention is a terminal device including a processor and a memory for storing a computer program code, which provides periodic resources in an uplink cell managed by the first base station device. An operation including setting and transmitting a HARQ-ACK codebook including HARQ-ACK to the PDSCH of the downlink cell managed by the second base station apparatus with the periodic resource is executed.
 (2)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (2) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 (3)更に、前記HARQ-ACK codebookが送信されると、記憶された各HARQ process毎の前記HARQ-ACKをリセットする。 (3) Further, when the HARQ-ACK codebook is transmitted, the HARQ-ACK for each stored HARQ process is reset.
 (4)更に、前記第二の基地局装置が管理する上りリンクのセルは前記端末装置に対して構成されない。 (4) Further, the uplink cell managed by the second base station device is not configured for the terminal device.
 (5)本発明の第2の態様は、プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える基地局装置であって、端末装置に対して上りリンクのセルにおいて周期的なリソースを設定すること、異なる基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで前記端末装置から受信すること、受信したHARQ-ACKを前記異なる基地局装置に転送すること、を含む動作を実行する。 (5) A second aspect of the present invention is a base station device including a processor and a memory for storing a computer program code, and sets periodic resources in an uplink cell with respect to the terminal device. That, the HARQ-ACK codebook including the HARQ-ACK for the PDSCH of the downlink cell managed by the different base station device is received from the terminal device with the periodic resource, and the received HARQ-ACK is received from the different base station. Perform actions, including transferring to the device.
 (6)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (6) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 (7)本発明の第3の態様は、端末装置に用いられる通信方法であって、第一の基地局装置が管理する上りリンクのセルにおいて周期的なリソースを設定するステップと、第二の基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで送信するステップと、を含む。 (7) A third aspect of the present invention is a communication method used for a terminal device, in which a step of setting a periodic resource in an uplink cell managed by the first base station device and a second step. It includes a step of transmitting a HARQ-ACK codebook including HARQ-ACK for PDSCH of a downlink cell managed by a base station apparatus with the periodic resource.
 (8)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (8) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 (9)更に、前記HARQ-ACK codebookが送信されると、記憶された各HARQ process毎の前記HARQ-ACKをリセットするステップと、を含む。 (9) Further, when the HARQ-ACK codebook is transmitted, the step of resetting the HARQ-ACK for each stored HARQ process is included.
 (10)更に、前記第二の基地局装置が管理する上りリンクのセルは前記端末装置に対して構成されない。 (10) Further, the uplink cell managed by the second base station device is not configured for the terminal device.
 (11)本発明の第4の態様は、基地局装置に用いられる通信方法であって、端末装置に対して上りリンクのセルにおいて周期的なリソースを設定するステップと、異なる基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで前記端末装置から受信するステップと、受信したHARQ-ACKを前記異なる基地局装置に転送するステップと、を含む。 (11) A fourth aspect of the present invention is a communication method used for a base station device, in which a step of setting a periodic resource in an uplink cell for a terminal device and a step managed by a different base station device are managed. A step of receiving a HARQ-ACK codebook including HARQ-ACK for PDSCH of a downlink cell from the terminal device with the periodic resource, a step of transferring the received HARQ-ACK to the different base station device, and a step of transferring the received HARQ-ACK to the different base station device. including.
 (12)更に、前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する。 (12) Further, the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
 本発明の一態様に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であってもよい。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。 The program operating on the base station device 3 and the terminal device 1 according to one aspect of the present invention controls a CPU (Central Processing Unit) and the like so as to realize the functions of the above embodiment related to one aspect of the present invention. It may be a program (a program that makes a computer function). Then, the information handled by these devices is temporarily stored in RAM (Random Access Memory) at the time of processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). The CPU reads, corrects, and writes as necessary.
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。 Note that the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer. In that case, the program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 The "computer system" referred to here is a computer system built in the terminal device 1 or the base station device 3, and includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, a "computer-readable recording medium" is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In that case, a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client. Further, the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
 端末装置1は、少なくとも1つのプロセッサと、コンピュータプログラムインストラクション(コンピュータプログラム)を含む少なくとも1つのメモリからなってもよい。メモリとコンピュータプログラムインストラクション(コンピュータプログラム)はプロセッサを用いて、上記の実施形態に記載の動作、処理を端末装置1に行わせるような構成でもよい。基地局装置3は、少なくとも1つのプロセッサと、コンピュータプログラムインストラクション(コンピュータプログラム)を含む少なくとも1つのメモリからなってもよい。メモリとコンピュータプログラムインストラクション(コンピュータプログラム)はプロセッサを用いて、上記の実施形態に記載の動作、処理を基地局装置3に行わせるような構成でもよい。 The terminal device 1 may consist of at least one processor and at least one memory including a computer program instruction (computer program). The memory and the computer program instruction (computer program) may be configured such that the terminal device 1 performs the operations and processes described in the above-described embodiment by using a processor. The base station apparatus 3 may consist of at least one processor and at least one memory including computer program instructions (computer programs). The memory and the computer program instruction (computer program) may be configured such that the base station apparatus 3 performs the operations and processes described in the above-described embodiment by using a processor.
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。 Further, the base station device 3 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices. Each of the devices constituting the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment. As the device group, it suffices to have each function or each function block of the base station device 3. Further, the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)および/またはNG-RAN(NextGen RAN,NR RAN)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBおよび/またはgNBに対する上位ノードの機能の一部または全部を有してもよい。 Further, the base station device 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network) and / or NG-RAN (NextGen RAN, NR RAN). Further, the base station apparatus 3 in the above-described embodiment may have a part or all of the functions of the upper node with respect to the eNodeB and / or the gNB.
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI which is typically an integrated circuit, or may be realized as a chipset. Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip. Further, the method of making an integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。 Further, in the above-described embodiment, the terminal device is described as an example of the communication device, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors. For example, it can be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and includes design changes and the like within a range that does not deviate from the gist of the present invention. In addition, one aspect of the present invention can be variously modified within the scope of the claims, and the technical aspects of the present invention can also be obtained by appropriately combining the technical means disclosed in the different embodiments. Included in the range. In addition, the elements described in each of the above embodiments include a configuration in which elements having the same effect are replaced with each other.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention is used, for example, in a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
1(1A、1B、1C) 端末装置
3 基地局装置
10、30 無線送受信部
11、31 アンテナ部
12、32 RF部
13、33 ベースバンド部
14、34 上位層処理部
15、35 媒体アクセス制御層処理部
16、36 無線リソース制御層処理部
1 (1A, 1B, 1C) Terminal equipment 3 Base station equipment 10, 30 Wireless transmission / reception unit 11, 31 Antenna unit 12, 32 RF unit 13, 33 Baseband unit 14, 34 Upper layer Processing unit 15, 35 Medium access control layer Processing unit 16, 36 Radio resource control layer processing unit

Claims (12)

  1.  プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える端末装置であって、第一の基地局装置が管理する上りリンクのセルにおいて周期的なリソースを設定すること、第二の基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで送信すること、を含む動作を実行する端末装置。 A terminal device including a processor and a memory for storing a computer program code, in which a periodic resource is set in an uplink cell managed by the first base station device, and a second base station device is used. A terminal device that executes an operation including transmitting a HARQ-ACK codebook including HARQ-ACK to a PDSCH of a downlink cell to be managed by the periodic resource.
  2.  前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する請求項1に記載の端末装置。 The terminal device according to claim 1, wherein the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  3.  前記HARQ-ACK codebookが送信されると、記憶された各HARQ process毎の前記HARQ-ACKをリセットする請求項2に記載の端末装置。 The terminal device according to claim 2, wherein when the HARQ-ACK codebook is transmitted, the HARQ-ACK is reset for each stored HARQ process.
  4.  前記第二の基地局装置が管理する上りリンクのセルは前記端末装置に対して構成されない請求項1に記載の端末装置。 The terminal device according to claim 1, wherein the uplink cell managed by the second base station device is not configured for the terminal device.
  5.  プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える基地局装置であって、端末装置に対して上りリンクのセルにおいて周期的なリソースを設定すること、異なる基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで前記端末装置から受信すること、受信したHARQ-ACKを前記異なる基地局装置に転送すること、を含む動作を実行する基地局装置。 A base station device including a processor and a memory for storing computer program code, in which periodic resources are set in the uplink cell for the terminal device, and a downlink managed by a different base station device. An operation including receiving a HARQ-ACK codebook including HARQ-ACK for the PDSCH of a cell from the terminal device with the periodic resource and transferring the received HARQ-ACK to the different base station device is executed. Base station equipment.
  6.  前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する請求項5に記載の基地局装置。 The base station apparatus according to claim 5, wherein the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  7.  端末装置に用いられる通信方法であって、第一の基地局装置が管理する上りリンクのセルにおいて周期的なリソースを設定するステップと、第二の基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで送信するステップと、を含む通信方法。 A communication method used in a terminal device, in which a step of setting a periodic resource in an uplink cell managed by the first base station device and a PDSCH of a downlink cell managed by the second base station device are used. A communication method including a step of transmitting a HARQ-ACK codebook including HARQ-ACK with the periodic resource.
  8.  前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する請求項7に記載の通信方法。 The communication method according to claim 7, wherein the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
  9.  前記HARQ-ACK codebookが送信されると、記憶された各HARQ process毎の前記HARQ-ACKをリセットするステップと、を含む請求項7に記載の通信方法。 The communication method according to claim 7, further comprising a step of resetting the HARQ-ACK for each stored HARQ process when the HARQ-ACK codebook is transmitted.
  10.  前記第二の基地局装置が管理する上りリンクのセルは前記端末装置に対して構成されない請求項7に記載の通信方法。 The communication method according to claim 7, wherein the uplink cell managed by the second base station device is not configured for the terminal device.
  11.  基地局装置に用いられる通信方法であって、端末装置に対して上りリンクのセルにおいて周期的なリソースを設定するステップと、異なる基地局装置が管理する下りリンクのセルのPDSCHに対するHARQ-ACKを含むHARQ-ACK codebookを前記周期的なリソースで前記端末装置から受信するステップと、受信したHARQ-ACKを前記異なる基地局装置に転送するステップと、を含む通信方法。 A communication method used for a base station device, in which a step of setting a periodic resource in an uplink cell for a terminal device and HARQ-ACK for a PDSCH of a downlink cell managed by a different base station device are performed. A communication method including a step of receiving a HARQ-ACK codebook including from the terminal device with the periodic resource, and a step of transferring the received HARQ-ACK to the different base station device.
  12.  前記HARQ-ACK codebookは、複数のHARQ-ACKから構成され、前記HARQ-ACKのそれぞれは異なるHARQ processと対応する請求項11に記載の通信方法。 The communication method according to claim 11, wherein the HARQ-ACK codebook is composed of a plurality of HARQ-ACKs, and each of the HARQ-ACKs corresponds to a different HARQ process.
PCT/JP2021/005891 2020-02-18 2021-02-17 Terminal device, base station device, and communication method WO2021166948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022501930A JPWO2021166948A1 (en) 2020-02-18 2021-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020025106 2020-02-18
JP2020-025106 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166948A1 true WO2021166948A1 (en) 2021-08-26

Family

ID=77391316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005891 WO2021166948A1 (en) 2020-02-18 2021-02-17 Terminal device, base station device, and communication method

Country Status (2)

Country Link
JP (1) JPWO2021166948A1 (en)
WO (1) WO2021166948A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019186A (en) * 2014-07-09 2016-02-01 株式会社日立製作所 Wireless communication system
US20180359072A1 (en) * 2015-12-08 2018-12-13 Nokia Solutions And Networks Oy Hybrid Automatic Repeat Request Acknowledgment Feedback Using Periodic and Aperiodic Physical Uplink Control Channel Resources
CN110138531A (en) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 The transmission method and its device of hybrid automatic repeat-request response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019186A (en) * 2014-07-09 2016-02-01 株式会社日立製作所 Wireless communication system
US20180359072A1 (en) * 2015-12-08 2018-12-13 Nokia Solutions And Networks Oy Hybrid Automatic Repeat Request Acknowledgment Feedback Using Periodic and Aperiodic Physical Uplink Control Channel Resources
CN110138531A (en) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 The transmission method and its device of hybrid automatic repeat-request response

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "NR-U enhancements for HARQ scheduling and feedback", 3GPP DRAFT; R1-1908685_HARQ, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051765293 *

Also Published As

Publication number Publication date
JPWO2021166948A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP7099835B2 (en) Terminal equipment, base station equipment, and communication methods
WO2021162050A1 (en) Terminal device and communication method
JP6924226B2 (en) Terminal equipment, base station equipment, and communication methods
WO2021153576A1 (en) Terminal device and communication method
WO2020246167A1 (en) Terminal device, base station device, and communication method
JP2020053851A (en) Terminal device, base station device and communication method
WO2022071171A1 (en) Terminal device, base station device, and communication method
WO2021025176A1 (en) Terminal device, base station device, and communication method
WO2020195530A1 (en) Terminal device, and communication method
WO2020129592A1 (en) Terminal device, base station device, and communication method
WO2021192843A1 (en) Terminal device, base station device, and communication method
WO2021060488A1 (en) Terminal device, base station device, and communication method
WO2021006333A1 (en) Terminal device and communication method
WO2020184209A1 (en) Terminal device, base station device, and communication method
WO2020166626A1 (en) Terminal device, base station device, and communication method
WO2020166627A1 (en) Terminal device, base station device, and communication method
WO2021166948A1 (en) Terminal device, base station device, and communication method
WO2021166959A1 (en) Terminal device, base station device, and communication method
WO2022054734A1 (en) Terminal device, base station device, and communication method
WO2022054741A1 (en) Terminal device, base station device, and communication method
WO2021025175A1 (en) Terminal device, base station device, and communication method
WO2021025030A1 (en) Terminal device, base station device, and communication method
WO2022071229A1 (en) Terminal device, base station device, and communication method
WO2022202753A1 (en) Terminal device, base station device, and communication method
WO2022196610A1 (en) Terminal device, base station device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756548

Country of ref document: EP

Kind code of ref document: A1