WO2021166468A1 - Elevator control device and elevator control method - Google Patents

Elevator control device and elevator control method Download PDF

Info

Publication number
WO2021166468A1
WO2021166468A1 PCT/JP2021/000062 JP2021000062W WO2021166468A1 WO 2021166468 A1 WO2021166468 A1 WO 2021166468A1 JP 2021000062 W JP2021000062 W JP 2021000062W WO 2021166468 A1 WO2021166468 A1 WO 2021166468A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sub
communication
controller
controllers
Prior art date
Application number
PCT/JP2021/000062
Other languages
French (fr)
Japanese (ja)
Inventor
豊和 高木
達志 藪内
智昭 峰尾
高志 三枝
輝宣 船津
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202180008194.8A priority Critical patent/CN114929608B/en
Publication of WO2021166468A1 publication Critical patent/WO2021166468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • the present invention relates to an elevator control device and an elevator control method.
  • Control devices used in industrial machines in recent years may take the form of connecting controlled objects with a 1: 1 communication path.
  • the control targets since there is always one device connected to the communication path, the amount of wiring between the control targets is reduced and communication noise is also reduced. , Communication speed can be expected to improve.
  • the elevator is a main controller for each unit that controls the operation of the riding basket, a hoisting controller that raises and lowers the basket, a basket controller that controls the inside of the basket, and an elevator. It consists of a sub-controller that controls the equipment installed in the hall.
  • Equipment installed in the elevator hall includes a hall button for calling a basket, a display for displaying the arrival of the basket, and the like.
  • the sub-controllers installed in the elevator hall are installed on each floor of the building, so the sub-controllers are connected in a string. ..
  • control targets are expanded by connecting them in a string of beads.
  • the control targets are expanded by connecting them in a string of beads.
  • one control target fails or the communication path is cut off, subsequent communication will not be possible, affecting the entire system.
  • the sub-controller that controls the hall button on a specific floor cannot communicate, the sub-controller on another floor that communicates via that sub-controller cannot communicate. It is essential to ensure the reliability of industrial machines such as elevators, and it is also necessary to ensure the reliability of the communication functions of each device provided in the elevator system.
  • Patent Document 1 describes a technique for ensuring reliability by duplicating a communication path between a control device and a communication partner.
  • An object of the present invention is to provide an elevator control device and an elevator control method that can ensure reliability without complicating the configuration for communication.
  • the present application includes a plurality of means for solving the above problems.
  • the main controller that controls the unit of the own system, the basket that carries the user or luggage, and the control of the main controller.
  • It is an elevator control device including a hoisting controller that moves the car up and down and a plurality of sub controllers installed on each floor where the car moves up and down, and is a plurality of communication paths for connecting the main controller and the plurality of sub controllers. It has a loop-shaped communication path in which the sub-controllers of the above are connected in order.
  • the main controller and the sub-controller on each floor are connected by substantially multiple routes, and even if a communication abnormality occurs, the sub-controller is maintained in a state where it can communicate as much as possible, and the user is unable to do so.
  • the reduction in pleasure and vehicle allocation efficiency can be minimized. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
  • FIG. 1 shows a schematic configuration of the entire elevator system in which the elevator control device of the first embodiment is installed.
  • the elevator system shown in FIG. 1 includes two elevators, a first unit and a second unit.
  • the components of the elevator of Unit 1 are assigned a code of "a”
  • the components of the elevator of Unit 2 are assigned a code of "b" to distinguish them.
  • the configuration of the elevator of Unit 1 and the configuration of the elevator of Unit 2 are basically the same.
  • the first unit will be explained, and the explanation of the configuration of the elevator of Unit 2 will be one. The part is omitted.
  • each unit is shown as an elevator that goes up and down from the first floor to the fourth floor, but the number of floors that the elevator goes up and down is an example.
  • the elevators of Unit 1 are the main controller 101a of Unit 1, the hoisting controller 102a, the basket 103a, the rope 104a, the sub-controllers 105a-1 to 105a-4 on each floor, and the hall buttons 106a-1 to 106a on each floor. -4 and.
  • the elevators of Unit 2 include the Unit 2 main controller 101b, the hoisting controller 102b, the basket 103b, the rope 104b, the sub-controllers 105b-1 to 105b-4 on each floor, and the hall buttons 106b- on each floor. 1 to 106b-4 are provided. In FIG.
  • the units and floors are shown in parentheses on the sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4 on each floor.
  • the sub-controller 105a-1 on the first floor of Unit 1 is shown as (1-1F) in FIG.
  • the first main controller 101a allocates the car 103a based on the information from the car 103a and the information of the sub-controllers 105a-1 to 105a-4, and outputs an operation command to the car dispatch floor to the winding controller 102a. Control to do.
  • the winding controller 102a is a control device that raises and lowers the basket 103a in accordance with the command of the first main controller 101a.
  • the basket 103a performs a process of transmitting data of devices such as a destination floor button and an open / close button installed in the basket on which the user or luggage is loaded to the first main controller 101a. Further, the basket 103a performs a process of transmitting the data transmitted from the Unit 1 main controller 101a to a device installed in the basket such as a floor display unit.
  • the rope 104a connects the winding controller 102a and the basket 103a. By winding the rope 104a with the winding controller 102a, the basket 103a moves up and down.
  • the sub-controllers 105a-1 to 105a-4 which are terminals installed on each floor, perform a process of transmitting the data of the hall buttons 106a-1 to 106a-4 installed in the hall to the main controller 101. Further, the sub-controllers 105a-1 to 105a-4 perform a process of transmitting the data transmitted from the first main controller 105a to a display (not shown) or the like installed in the hall.
  • the hall buttons 106a-1 to 106a-4 are installed in the halls that are the elevator landings on each floor, and are up and down buttons that the user presses to call the basket 103a from the elevator hall.
  • the sub-controllers 105a-1 to 105a-4 on each floor are sequentially connected to the first main controller 101a by using communication paths 107a and 108a so as to be able to communicate in both directions. That is, the Unit 1 main controller 101a is communicably connected to the sub-controller 105a-4 on the 4th floor of the Unit 1 by the communication path 107a. Further, the four sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 of the first unit are connected in order by the communication path 108a, respectively.
  • the second unit main controller 101b is communicably connected to the sub-controller 105b-4 on the fourth floor of the second unit by a communication path 107b. Further, the four sub-controllers 105b-1, 105b-2, 105b-3, 105b-4 of the second unit are connected in order by the communication path 108b, respectively.
  • the communication paths 107a, 107b, 108a, 108b in this way, assuming that the main controllers 101a and 101b of each unit are upstream and the sub-controllers 105a-1 and 105b-1 at the ends are downstream, transmission is performed from the upstream.
  • a communication path is constructed in which data is transmitted downstream and data transmitted from the downstream is transmitted upstream.
  • a communication path 109 is provided to connect the sub-controller 105a-1 at the end of the first machine and the sub-controller 105b-1 at the end of the second machine.
  • the communication path 109 is a communication path provided to realize duplication of communication.
  • a method of duplicating the communication path 108a between the sub-controllers 105a-1 to 105a-4 can be considered as a conventional general method.
  • devices having a short physical distance such as between the terminal sub-controllers 105a-1 and 105b-1, are connected by a communication path 109 and duplicated.
  • the amount of wiring can be reduced for the entire system.
  • duplicating between the sub-controllers 105a-1 and 105b-1 installed on the first floor it is easy for the wiring operator to access, so that the workability can be improved.
  • the communication path 109 connects the sub-controller 105a-1 at the end of Unit 1 and the sub-controller 105b-1 at the end of Unit 2, and other parts. You may connect with. That is, the communication path 109 includes any one of the sub-controllers 105a-1 to 105a-4 of the first unit and any one of the sub-controllers 105b-1 to 105b-4 of the second unit. , Just connect.
  • the communication path 110a is a communication path between the Unit 1 main controller 101a and the basket 103a.
  • the communication path 111a is a communication path between the first unit main controller 101a and the winding controller 102a.
  • the communication path 112 is a communication path between the Unit 1 main controller 101a and the Unit 2 main controller 101b.
  • the sub-controller 105a-1 of the first unit is controlled by the second main controller 101b, which is a separate system, using the communication path 109.
  • the communication path is duplicated.
  • the communication path can be bypassed and controlled.
  • the car can be dispatched even when a communication abnormality occurs.
  • the failure range can be specified even when two or more failures occur. 8 to 11 will be described later as an example of a method for identifying a failure location and a range.
  • FIG. 2 shows a configuration viewed from the function of the Unit 1 main controller 101a.
  • the configuration of the Unit 1 main controller 101a will be described, but the Unit 2 main controller 101b has the same configuration as the Unit 1 main controller 101a, and description and illustration thereof will be omitted.
  • the first unit main controller 101a includes an inter-hole transmission / reception unit 201, an inter-basket transmission / reception unit 202, a hoisting machine transmission / reception unit 203, an inter-machine transmission / reception unit 204, a terminal communication state storage unit 205, and a call information storage unit 206. , And a basket information storage unit 207. Further, the first main controller 101a includes a communication state / route generation unit 208, a hall control command generation unit 209, a car allocation command generation unit 210, a communication map creation unit 211, a mode setting unit 212, and a display unit. It has 213 and.
  • the inter-hole transmission / reception unit 201 is a processing unit that transmits / receives to / from the sub-controllers 105a-1 to 105a-4, and transmits terminal communication status packets, terminal route setting packets, and various hall control information. Further, the inter-hall transmission / reception unit 201 receives a reply of the terminal communication status packet and control information (such as call information of the hall button).
  • the inter-basket transmission / reception unit 202 is a processing unit that transmits / receives to / from the basket 103a, transmits a control command of the device in the basket to the basket 103a, and receives information on the device in the basket from the basket 103a.
  • the hoisting machine transmission / reception unit 203 is a processing unit that transmits / receives to / from the hoisting controller 102a, transmits a hoisting command to the vehicle allocation floor to the hoisting controller 102a, and receives hoisting information from the hoisting controller 102a.
  • the Unit 1 main controller 101a uses this hoisting information to detect an abnormality in the hoisting portion and the like.
  • the inter-unit transmission / reception unit 204 is a processing unit that transmits / receives to / from the unit main controller 101b of another system, and transmits / receives information of each sub-controller 105b-1 to 105b-4 controlled by the unit main controller 101b of another system. ..
  • the terminal communication status storage unit 205 stores the terminal communication status packets returned from the sub-controllers 105a-1 to 105a-4.
  • the call information storage unit 206 stores the call information of each of the sub-controllers 105a-1 to 105a-4.
  • the basket information storage unit 207 stores device information, destination floor command information, and the like in the basket 103.
  • the communication status / route generation unit 208 generates terminal communication status packets in order to check the communication status of each of the sub-controllers 105a-1 to 105a-4.
  • the first main controller 101a broadcasts the terminal communication status packet to each of the sub-controllers 105a-1 to 105a-4, and each of the sub-controllers 105a-1 to 105a-4 adds a value to the received packet and returns it.
  • the communication state / route generation unit 208 generates a terminal route setting packet that enables / disables the communication path of each of the sub-controllers 105a-1 to 105a-4.
  • the first main controller 101a broadcasts this terminal route setting packet to each sub-controller 105a-1 to 105a-4, refers to the terminal route setting packet by each sub-controller 105a-1 to 105a-4, and each sub-controller.
  • the second transmission / reception unit 302 (FIG. 4) of 105a-1 to 105a-4 is enabled or disabled.
  • the hall control command generation unit 209 generates a hall control command from the information of the sub-controllers 105a-1 to 105a-4 stored in the call information storage unit 206 and the basket information stored in the basket information storage unit 207. It is a control device. For example, the hall control command generation unit 209 performs processing such as lighting the button when the hall button is pressed and lighting the lantern installed in the hall when the basket 103 arrives.
  • the car dispatch command generation unit 210 optimally dispatches the car 103a from the information of the sub-controllers 105a-1 to 105a-4 stored in the call information storage unit 206 and the car 103a stored in the car information storage unit 207.
  • This is a processing unit that generates commands.
  • the communication map creation unit 211 performs a process of generating a communication map of the sub controller from the terminal communication status packet stored in the terminal communication status storage unit 205.
  • the mode setting unit 212 is a processing unit that switches the mode of the car dispatch command based on the communication map generated by the communication map creation unit 211.
  • the modes are roughly classified into a normal mode and a degenerate mode.
  • the normal mode is a mode when communication is normal.
  • the degenerate mode is a mode in which communication between the first main controller 101a and each of the sub-controllers 105a-1 to 105a-4 is abnormal at one or more locations.
  • the user in the degenerate mode, can change the operation method of the elevator by using the communication abnormality range created by the communication map and the vehicle allocation command which is the basket information and the call information. Take measures to minimize the discomfort and reduction of vehicle allocation efficiency. Details of the specific operation method will be described later.
  • the display unit 213 displays the mode information switched by the mode setting unit 212 and the communication abnormality range created by the communication map creation unit 211. By presenting this information to building managers and maintenance personnel, it is possible to quickly deal with abnormalities and improve maintainability. In the case of a configuration in which a plurality of units are installed as shown in FIG. 1, the display unit 213 may be shared by the plurality of units.
  • the main controllers 101a and 101b of each unit are composed of, for example, a computer device and its peripheral devices.
  • FIG. 3 shows an example of hardware configuration when the first main controller 101a is configured by a computer device.
  • the computer device that functions as the first main controller 101a includes a CPU (Central Processing Unit) 221 connected to the bus, a ROM (Read Only Memory) 222, and a RAM (Random Access Memory) 223, respectively. .. Further, the computer device includes a non-volatile storage 224, a network interface 225, an input device 226, and a display unit 213.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 221 is an arithmetic processing unit that reads a program code of software that executes arithmetic processing and authentication processing for controlling an elevator from ROM 222 and executes it. Variables, parameters, etc. generated during the arithmetic processing are temporarily written in the RAM 223.
  • non-volatile storage 224 for example, a large-capacity information storage unit such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) is used.
  • the non-volatile storage 224 functions as each storage unit 205, 206, 207, and stores information stored in each storage unit 205, 206, 207.
  • the non-volatile storage 224 is used as each storage unit 205, 206, 207, and even if a part or all of each storage unit 205, 206, 207 is used by another storage medium such as RAM 223. good.
  • a NIC Network Interface Card
  • This network interface 225 functions as each transmission / reception unit 201, 202, 203, 204.
  • the input device 226 is composed of a keyboard, a mouse, and the like for input operations by the building manager and maintenance personnel.
  • the display unit 213 displays various states of the elevator including the mode information and the communication abnormality range described in the configuration of FIG.
  • FIG. 3 shows an example in which the Unit 1 main controller 101a is configured by a computer device.
  • the Unit 2 main controller 101b, the hoisting controller 102a, and the sub-controllers 105a-1 to 105a-4 can also be configured by a computer device.
  • each controller may be configured by a device other than a computer device that performs arithmetic processing.
  • some or all of the functions performed by the main controllers 101a and 101b of each unit may be realized by hardware such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
  • FIG. 4 shows the configuration of the sub-controllers 105a-1 to 105a-4.
  • the sub-controllers 105a-1 to 105a-4 installed on each floor have the same configuration.
  • Each of the sub-controllers 105a-1 to 105a-4 includes a first transmission / reception unit 301, a second transmission / reception unit 302, a communication state addition unit 303, a communication route setting unit 304, a hall information transmission / reception unit 305, and an ID analysis unit. It is composed of 306.
  • the first transmission / reception unit 301 is a processing unit that transmits / receives data from the upstream portion, assuming that the main controllers 101a and 101b of each unit are the upstream portion and the opposite direction of the path is the downstream portion.
  • the second transmission / reception unit 302 is a processing unit that transmits / receives data from the downstream unit.
  • the data transmitted and received by the first transmission / reception unit 301 and the second transmission / reception unit 302 includes terminal communication status packets transmitted from the main controllers 101a and 101b of each unit, terminal route setting packets, and sub-controllers 105a-1 to 105a.
  • the control information received in -4 is included.
  • upstream data is transmitted downstream, and downstream data is transmitted upstream to broadcast data to the entire system. It is a method.
  • the ID analysis unit 306 analyzes the ID of the data received by the first transmission / reception unit 301, and distributes the received data to each processing unit.
  • the communication state addition unit 303 adds the communication state data of its own sub-controller to the terminal communication state packet transmitted from the first unit main controller 101a, and broadcasts it in the upstream direction and the downstream direction.
  • the communication route setting unit 304 refers to the terminal route setting packet received from the first unit main controller 101a, and performs a process of enabling or disabling the second transmission / reception unit 302. By making this setting, when the communication path is duplicated, if the communication is normal, the control signal does not have to be transmitted to the duplicated path, so that the processing load of the entire system can be reduced.
  • disabling you don't have to send and receive unnecessary packets.
  • at the time of setting to enable or disable for example, by enabling or disabling each packet, necessary packets are broadcast and unnecessary packets are not transmitted, so that the processing load can be reduced and the processing can be simplified.
  • FIG. 5 shows a terminal communication status packet 410 transmitted from each of the main controllers 101a and 101b, a terminal route setting packet 420, and control information 430 required to control each of the sub-controllers 105 and the basket 103.
  • the terminal communication status packet 410 is composed of, for example, an area 411 indicating the terminal communication status packet (ID1) and areas 412 to 419 for storing the communication status of each terminal.
  • ID1 terminal communication status packet
  • FIG. 1 when each unit has four sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4, the areas 412 to 419 for storing the communication status of each terminal. Is the total number of sub-controllers in eight areas.
  • the terminal communication state packet 410 When the terminal communication state packet 410 is generated by the main controllers 101a and 101b of each unit, for example, the areas 412 to 419 corresponding to each sub-controller 105 are all transmitted as 0.
  • Each of the sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4 returns, for example, the area allocated to the own terminal of the received terminal communication status packet as "1". In this way, the sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4 return the status of the own terminal, and the main controllers 101a and 101b of each unit check 1 of the communication status of each terminal. You can check the communication status between your own unit and the terminals of other units.
  • the terminal route setting packet 420 is a packet that enables / disables the second transmission / reception unit 302 of the sub controller 105.
  • the terminal route setting packet 420 is composed of an area 421 indicating a terminal communication status packet (ID2) and areas 422 to 429 for storing the route setting of each terminal.
  • ID2 terminal communication status packet
  • the valid / invalid settings of the sub-controllers 105a-1 to 105a-4 are stored in the areas 422 to 429 of each terminal of the terminal route setting packet 420, and in the case of "1", the corresponding terminal
  • the second transmission / reception unit 302 of is enabled, and if it is "0", it is disabled.
  • the control information 430 is a control packet of each of the sub-controller 105, the basket 103, and the hoisting controller 102 required to control the elevator.
  • the control information 430 is composed of a region 431 indicating the control information (ID2) and a control information 432 instructing the control content.
  • FIG. 6 shows an example in which the display unit 213 (FIG. 2) displays the mode.
  • the mode display screen 510 has a communication mode 511 and a terminal communication state 512, and the mode display screen 510 displays the communication mode of each unit main controller 101 and the communication state of the terminal.
  • the communication mode 511 the distinction between the normal mode and the degraded mode of each unit is displayed.
  • the terminal communication status 512 indicates whether the communication status with the terminal of each unit is normal or abnormal. When the terminal communication status 512 displays an abnormality, the terminal on any floor is also displayed as abnormal. For example, in the example of FIG.
  • the second unit is in the degenerate mode
  • the terminal communication state 512 is set, and "an abnormality has occurred in the abnormal terminal 2" is displayed, and the sub controller 105b-2 of the second unit has a communication abnormality. Displays that it is in the degraded mode.
  • FIG. 7 shows a list display screen 520 of the status of the sub-controller 105 of each unit for displaying the mode and the communication status shown in FIG.
  • the sub-controllers of the first unit are normal, and in the second unit, the sub-controllers on the second floor indicate a communication abnormality.
  • N is an arbitrary number of 3 or more
  • N indicates that the sub-controllers at a plurality of locations have communication abnormalities.
  • the status of the sub-controllers 105 sandwiched between the two or more communication abnormal locations cannot be confirmed, and therefore, it is displayed as unknown on the list display screen 520.
  • each sub controller 105 has a communication path for communicating with the main controller 101 of the corresponding unit and is duplicated. It is also possible to do it.
  • the abnormal range can be quickly confirmed, which makes it possible to improve efficiency in the event of failure or maintenance.
  • the abnormal range of communication can be determined.
  • FIG. 8 shows an example of generating a terminal communication state packet 410 during normal communication.
  • the terminal communication state packet 410 is shown as packets 601, 602, 603, 604 in which the values "1" or "0" of the four terminal states of the two units are set.
  • the first stage of packets 601, 602, 603, and 604 shows the four terminal states of the first machine, and the second stage shows the four terminal states of the second machine.
  • the terminal communication status packet 410 is generated by the communication status / route generation unit 208 of the main controllers 101a and 101b of each unit, and is transmitted in the downstream direction.
  • the terminal communication status is set to "0". That is, as shown in FIG. 8, the terminal communication status packet 601 transmitted for the first time by the Unit 1 main controller 101a is set to "0" in all terminal communication statuses.
  • the terminal communication status is set to "0".
  • each sub-controller 105 When each sub-controller 105 receives the terminal communication status packets 601, 602, only the area of its own main controller 105 is set to "1", and it is broadcast in the upstream direction and the downstream direction.
  • the terminal communication status packet 601 transmitted from the first main controller 101a is finally received by the sub-controller 105b-4 on the fourth floor of the second unit, and the sub-controller 105b-4 sets the area of the communication status. When it is set to "1", it is broadcast in the upstream direction and the downstream direction.
  • the communication status can be confirmed by receiving the finally broadcast packets 603 and 604 in the main controllers 101a and 101b of each unit and analyzing them by the communication map creation unit 211.
  • all the sub-controllers 105 are in normal communication, and in the finally received packets 603 and 604, the values of the sub-controllers on all floors of all the units are "1".
  • FIG. 9 shows a case where the sub-controller 105a-3 on the third floor of the first unit fails and a communication abnormality occurs.
  • the terminal communication status packet 601 transmitted by the first main controller 101a for the first time and the terminal communication status packet 602 transmitted by the second main controller 101b for the first time are all 0 in the terminal communication status. It is the same as the example of 8.
  • the main controller 101a of the first unit finally receives the terminal communication status packet 603 shown in FIG.
  • this terminal communication status packet 603 only the sub-controller 105a-4 on the 4th floor of the 1st unit between the main controller 101a of the 1st unit and the sub-controller 105a-3 on the 3rd floor of the 1st unit can communicate normally. Yes, the state is "1", and the states of all other terminals remain "0".
  • the terminal communication status packet 604 is finally received by the Unit 2 main controller 101b.
  • this terminal communication status packet 604 all the sub-controllers 105b-1 to 105b-4 of the second machine and the two sub-controllers 105a-1 and 105a-2 of the first machine can communicate normally, and the state is changed. It is "1", and the state of the other two sub-controllers 105a-3 and 105a-4 of Unit 1 is "0".
  • the main controllers 101a and 101b of each unit transmit the respective terminal communication status packets 603 and 604, and the communication map creation unit 211 combines terminals whose status is "1", so-called OR condition. Then, one terminal communication state packet 605 is generated. That is, in the case of FIG. 9, as the terminal communication state packet 605, only the sub-controller 105a-3 on the third floor of the first unit indicating an abnormality has a value “0” indicating an abnormality, and the other sub-controllers 105a-1, 105a- 2,105a-4, 105b-1, 105b-2, 105b-3, 105b-4 all have a value "1" indicating normality. From the terminal communication status packet 605 created by the communication map creation unit 211, it can be seen that the main controllers 101a and 101b of each unit have a communication abnormality in the sub-controller 105a-3 on the third floor of the first unit.
  • FIG. 10 shows an example in which a communication abnormality occurs at two locations. That is, the case where the sub-controller 105a-3 on the third floor of the first unit and the sub-controller 105b-2 on the second floor of the second unit fail and a communication abnormality occurs is shown.
  • the first main controller 101a finally receives the terminal communication state packet 603 shown in FIG.
  • this terminal communication status packet 603 only the sub-controller 105a-4 on the 4th floor of the first unit can communicate normally, the status is "1", and the status of all other terminals remains "0". ..
  • the Unit 2 main controller 101b finally receives the terminal communication state packet 604 shown in FIG.
  • the terminal communication status packet 605 finally created by the communication map creation unit 211 is the sub-controller 105a-4 on the 4th floor of the first unit and the sub-controllers 105b-3 on the 3rd and 4th floors of the second unit.
  • 105b-4 is the value "1" indicating normality.
  • any of the sub-controllers 105a-2, 105a-1, 105b-1 between the sub-controller 105a-3 on the third floor of Unit 1 and the sub-controller 105b-2 on the second floor of Unit 2 Communication is not possible even on the route, the state is unknown, and the value indicating the state remains "0".
  • the communication status can be confirmed by bypassing the communication, and the communication abnormality can be confirmed. Range can be specified.
  • FIG. 11 shows an example in which a communication abnormality occurs at two locations of one unit (Unit 2). That is, the case where the sub-controller 105b-1 on the first floor of the second unit and the sub-controller 105b-3 on the third floor of the second unit fail and a communication abnormality occurs is shown. Even in the state shown in FIG. 11, in the terminal communication state packet 604 that is finally generated, these two sub-controllers 105b-1 and 105b-3 and the sub-controller 105b-2 in between are set to the value ". It is "0", and the other states are "1".
  • FIG. 12 is a flowchart showing processing by the main controllers 101a and 101b of each unit.
  • the operation of the Unit 1 main controller 101a will be described as an example.
  • the Unit 1 main controller 101a transmits the control information received by the transmission / reception units 201, 202, 204 to the storage units 205, 206, 207.
  • the communication state / route generation unit 208 generates a terminal communication state packet, and the inter-hole transmission / reception unit 201 transmits it to each sub-controller 105 (step S1003).
  • the communication state / route generation unit 208 generates a terminal route setting packet, and the inter-hole transmission / reception unit 201 transmits it to the sub controller 105 (step S1004).
  • the hall control command generation unit 209 generates a hall control command and transmits it to the sub controller 105 by the inter-hole transmission / reception unit 201 (step S1005).
  • the communication map creation unit 211 reads the terminal communication status packet from the terminal communication status storage unit 205 and creates a communication status map (step S1006).
  • the Unit 1 main controller 101a determines the communication status from the created communication map, and determines whether it is normal or abnormal (step S1007).
  • step S1007 if a communication error occurs (No in step S1007), the inter-machine transmission / reception unit 204 reads the terminal communication status packet of the unit main controller 101b of another system (unit 2) (step S1008). Then, in the main controller 101a of the own unit, a communication map is created and a mode is set by taking an OR condition in which the terminal communication status packet of the main controller 101a of the own unit and the terminal communication status packet of the main controller 101b of the other unit are combined. The generated communication map is transmitted to unit 212 (step S1009).
  • step S1007 if the communication is normal (Yes in step S1007), the communication map generated by the main controller 101a of the own unit is transmitted to the mode setting unit 212 (step S1010).
  • the mode setting unit 212 transmits the vehicle allocation mode of the car allocation command generation unit 210 according to the communication map, and transmits the mode information to the display unit 213 (step S1011).
  • the display unit 213 displays the received mode information (step S1012).
  • the car dispatch command generation unit 210 determines the mode received from the mode setting unit 212 (step S1013).
  • the car dispatch command generation unit 210 performs normal operation (step S1014).
  • step S1013 If it is determined in step S1013 that the mode is not the normal mode (No in step S1013), the car dispatch command generation unit 210 sets the degenerate mode and performs the degenerate operation (step S1015). Finally, the Unit 1 main controller 101a determines whether the process is completed (step S1016), returns to step S1003 when continuing the process (No in step S1016), and returns to step S1003 when the process is completed (step S1016). Yes), the process end process is performed (step S1017). Although the processing by the Unit 1 main controller 101a has been described so far, the processing is also performed in the Unit 2 main controller 101b according to the flowchart of FIG.
  • FIG. 13 is a flowchart showing a process during operation in the normal mode in step S1014.
  • the car dispatch command generation unit 210 reads out the information of the car call by the hole button from the call information storage unit 206, and the destination to the button operation in the car from the car information storage unit 207. Read the floor registration information (step S1102). Then, the car dispatch command generation unit 210 determines whether or not there is a vehicle dispatch command from the read information (step S1103).
  • step S1103 When it is determined in step S1103 that there is a vehicle allocation command (Yes in step S1103), vehicle allocation is assigned based on the information and the current car position, and the vehicle allocation command is transmitted to the hoisting machine transmission / reception unit 203 (step S1104).
  • step S1103 When it is determined in step S1103 that there is no vehicle allocation command (No in step S1103), and after issuing the vehicle allocation command in step S1104, the car dispatch command generation unit 210 ends the normal operation process (step S1105), and step S1101 Return to the start processing of.
  • step S1105 when there is a hall button operation on each floor, a process of moving the baskets 103a and 103b to that floor is performed.
  • FIG. 14 is a flowchart showing a process during operation in the degenerate mode in step S1015.
  • the car dispatch command generation unit 210 reads the information of the car call by the hole button from the call information storage unit 206, and the information of the button operation in the car from the car information storage unit 207. Is read (step S1107).
  • the car call information stored in the call information storage unit 206 during the degenerate operation is the information from the sub controller 105 that can communicate normally, and the car call information from the sub controller 105 on the floor where the abnormality has occurred is the information from the sub controller 105. Not registered.
  • the car dispatch command generation unit 210 determines whether or not there is a vehicle dispatch command from the read information (step S1108).
  • vehicle allocation is assigned based on the information and the current basket position, and the vehicle allocation command is transmitted to the hoisting machine transmission / reception unit 203 (step S1111).
  • step S1108 when it is determined in step S1108 that there is no vehicle allocation command (No in step S1108), the car dispatch command generation unit 210 refers to the communication map (step S1109).
  • the state in which there is no vehicle allocation command to be No in step S1108 is a state in which there is no car call information from each sub-controller 105 capable of normally communicating, and there is no button operation in the car 103.
  • the car dispatch command generation unit 210 assigns the vehicle dispatch command to the floor of the sub-controller 105 of the communication abnormality from the referenced communication map (step S1110).
  • the car dispatch command generation unit 210 issues a vehicle allocation command to sequentially stop the car 103 on a plurality of floors on which the sub-controllers 105 with communication abnormalities are installed.
  • step S1111 After issuing the vehicle allocation command in step S1111 and assigning to the communication abnormal floor in step S1110, the car dispatch command generation unit 210 ends the degenerate operation process (step S1112), and starts the process of step S1106. Return to.
  • the car dispatch command generation unit 210 of the Unit 1 main controller 101a dispatches the vehicle to the third floor where the communication is abnormal in the vehicle allocation in step S1111. Further, in the case of the example of FIG. 10, the car dispatch command generation unit 210 of the Unit 1 main controller 101a dispatches the vehicle in step S1111 to stop the vehicle in order on the first floor, the second floor, and the third floor where the communication is abnormal. .. In addition, the car dispatch command generation unit 210 of the Unit 2 main controller 101b dispatches the vehicle to the first floor and the second floor, which have communication abnormalities, in order in the vehicle allocation in step S1111. Further, in the case of the example of FIG. 11, the car dispatch command generation unit 210 of the Unit 2 main controller 101b dispatches the vehicle in step S1111 to stop the vehicle in order on the first floor, the second floor, and the third floor where the communication is abnormal. ..
  • the degenerate operation is performed only in the communication abnormal range created by the communication map, and the frequency and range of the degenerate operation can be minimized.
  • FIG. 15 is a flowchart showing processing in each sub-controller 105.
  • the first transmission / reception unit 301 receives information from the upstream (step S1202).
  • the ID analysis unit 306 analyzes the received data (step S1203).
  • the ID analysis unit 306 determines whether or not the received data is a terminal route setting packet based on the analysis result of the received data (step S1204). Further, in step S1204, if it is not a terminal route setting packet (No in step S1204), the ID analysis unit 306 determines whether or not the received data is a terminal communication state packet (step S1205).
  • step S1204 when it is determined in step S1204 that the packet is a terminal route setting packet (Yes in step S1204), the first transmission / reception unit 301 transmits the received data to the communication route setting unit 304 (step S1206). Then, the communication route setting unit 304 sets the communication route of the second transmission / reception unit 302 based on the received data (step S1206). Further, when it is determined in step S1205 that the packet is a terminal communication state packet (Yes in step S1205), the first transmission / reception unit 301 transmits the received data to the communication state addition unit 303 (step S1208). Then, the data to which the communication state is added by the communication state addition unit 303 is transmitted to the first transmission / reception unit 301 and the second transmission / reception unit 302 (step S1209).
  • step S1205 when it is determined in step S1205 that the packet is not a terminal communication state packet (No in step S1205), it is control information, and the first transmission / reception unit 301 transmits data to the hall information transmission / reception unit 305 (step S1210). Then, the hall information transmission / reception unit 305 transmits information to a device such as the hall button 106 (step S1211).
  • the packet in which the first transmission / reception unit 301 is set is broadcast to the upstream communication path, and the packet in which the second transmission / reception unit 302 is set is sent to the downstream communication path. It is transmitted by broadcast (step S1212).
  • the sub-controller 105 determines whether or not the processing is completed (step S1216). If the process is not completed in step S1216 (No in step S1216), the sub-controller 105 returns to the process in step S1202. Further, when it is determined in step S1216 that the process is completed (Yes in step S1216), the sub controller 105 performs the end process (step S1217). By performing such processing in the sub controller 105, the main controller 101 of each unit can collect the data of the communication state described with reference to FIGS. 5 to 11.
  • the elevator control device of the present embodiment includes communication paths 107, 108, 109, so that the main controller 101 of each unit provides information on whether communication with each sub controller 105 is normal or abnormal. Can be properly collected, and appropriate operation control can be performed based on the collected information. Further, as an operation based on the communication state with each sub-controller 105, even if an abnormality occurs in which communication with some sub-controllers 105 cannot be performed, the normal operation is performed within the range in which normal use is possible, and during the normal operation. By not performing degenerate operation, the discomfort of the user can be minimized.
  • the degenerate operation is performed only in the communication abnormal range created by the communication map, and the frequency and range of the degenerate operation can be minimized. Since the range of this communication abnormality is determined by connecting the sub-controllers 105 in a loop on the communication routes 107, 108, 109, it is possible to perform the same good abnormality determination as when the communication routes are duplicated.
  • An example of the second embodiment of the present invention is the case of an elevator composed of one unit. That is, in the example of the present embodiment, as shown in FIG. 16, as the elevator control device, the first main controller 101a and the sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 on each floor are used. Be prepared. FIG. 16 shows an example of four floors, but the number of floors is an example. The configurations shown in FIGS. 2 and 4 are applied to the first main controller 101a and the sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 on each floor.
  • the sub-controllers 105a-1 to 105a-4 on each floor are sequentially connected to the first main controller 101a by communication paths 107a and 108a so as to be able to communicate in both directions. That is, the Unit 1 main controller 101a is communicably connected to the sub-controller 105a-4 on the fourth floor by the communication path 107a. Further, the four sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 are connected in order by the communication path 108a, respectively. The sub-controllers 105a-1 to 105a-4 on each floor are connected to the hall buttons 106a-1 to 106a-4 on each floor.
  • each sub-controller 105 is connected to the first main controller 101a in a loop by communication paths 107a, 108a, 107x.
  • the Unit 1 main controller 101a can transmit packets to each sub-controller 105 in order from the upstream side via the communication path 107a, and also transmit packets in order from the downstream side to each sub-controller 105 via the communication path 107x. can do. Therefore, for example, as shown in FIG. 16, when the sub-controller 105a-3 on the third floor has a communication abnormality, the sub-controller on the fourth floor is set as the terminal communication state packet 601 by the communication from the upstream side via the communication path 107a. Only the controller 105a-4 has a normal value of "1". Further, in the communication from the downstream side via the communication path 107x, the sub-controllers 105a-1 and 105a-24 on the first floor and the second floor have normal values "1".
  • the Unit 1 main controller 101a combines the packet from the communication from the upstream side and the packet from the communication from the downstream side so that only the sub-controller 105a-3 on the third floor of the communication abnormality location can be determined to be abnormal. become. That is, as a communication map, the range in which normal communication can be performed by packets from the upstream side and the range in which normal communication can be performed by packets from the downstream side are registered. You will be able to properly identify the location.
  • the Unit 1 main controller 101a sets the degenerate mode.
  • the operation process when the degenerate mode is set is the same as the process described in the first embodiment. In this way, even if only one elevator is installed, the effect is the same as that of the two elevators described in the first embodiment. Can be done.
  • An example of the third embodiment of the present invention is the case of an elevator composed of three or more units. That is, in the embodiment of the present embodiment, in addition to the first main controller 101a and the second main controller 101b described with reference to FIG. 1, the third main controller 101c is provided, and the respective main controllers 101a, 101b, 101c are provided. Is connected by the communication path 112. In the case of an elevator equipped with four or more elevators, another unit main controller 101 is further connected to the subsequent stage of the third unit main controller 101c via another communication path 112.
  • the communication path 109a shown in FIG. 17 connects the sub-controller 105a-1 on the first floor of Unit 1 and the sub-controller 105b-1 on the first floor of Unit 2, and is the same as the communication path 109 shown in FIG. be.
  • the number of floors is an example.
  • the Unit 3 main controller 101c is connected to the Unit 3 sub-controllers 105c-1 to 105c-4 in order from the upstream side by communication paths 107c and 108c. Then, the downstream side of the sub-controller 105c-1 on the first floor of Unit 3 is connected to the sub-controller 105b-1 on the first floor of Unit 2 by the communication path 109b.
  • the second transmission / reception unit 302 (FIG. 4) of the sub-controller 105b-1 on the first floor of Unit 2 is configured to include two communication ports to which a plurality of communication paths 109a and 109b can be connected.
  • the sub-controller 105b-1 on the first floor may be configured to include a third transmission / reception unit in addition to the second transmission / reception unit 302.
  • the sub-controller 105c-1 on the first floor of Unit 3 is further connected to the sub-controller 105 on the first floor of another unit. In this way, even when three or more elevators are installed, the effect is the same as that of the two elevators described in the first embodiment. Can be done.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the main controllers 101a and 101b of each unit are connected to the sub-controllers 105a-4 and 105b-4 on the top floor by communication paths 107a and 107b, and the sub-controllers 105a-1 and 105b on the first floor are connected.
  • -1 was connected by the communication path 109.
  • the main controllers 101a and 101b of each unit are connected to the sub-controllers 105a-1 and 105b-1 on the lowest floor by communication paths 107a and 107b, and the sub-controllers 105a-4 and 105b-4 on the top floor are communicated. It may have a different connection order, such as a configuration in which the connection is made by the route 109.
  • each of the above-described embodiments will be described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • the apparatus or system configuration may be changed, and some processing procedures may be omitted or replaced within a range that does not change the gist of the present invention.
  • information such as programs for performing normal operation and degenerate operation can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or an optical disk.
  • FIGS. 1 to 4 only the control lines and information lines considered necessary for explanation are shown, and not all the control lines and information lines are necessarily shown in the product. .. In practice, it can be considered that almost all configurations are interconnected. Further, in the flowcharts shown in FIGS. 12 to 15, a plurality of processes may be executed at the same time or the processing order may be changed as long as the processing results are not affected.
  • Inter-hole transmitter / receiver 202 ... Basket transmitter / receiver, 203 ... Winder transmitter / receiver, 204 ... Inter-machine transmitter / receiver, 205 ... Terminal communication status storage unit, 206 ... Call information storage unit, 207 ... Basket information storage unit, 208 ... Communication status / route generation unit, 209 ... Hall control command generation unit, 210 ... Cart dispatch command generation unit, 211 ... Communication Map creation unit, 212 ... Mode setting unit, 213 ... Display unit, 221 ... Central processing unit (CPU), 222 ... ROM, 223 ... RAM, 224 ... Non-volatile storage, 225 ... Network interface, 226 ... Input device, 301 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

The present invention comprises: a main controller that controls units in a host system; a car for carrying users or luggage; a hoisting controller that moves the car up and down on the basis of the control of the main controller; and a plurality of sub-controllers that are installed on each floor to which the car moves up and down. The communication path connecting the main controller and the plurality of sub-controllers is a looped communication path in which the plurality of sub-controllers are connected in sequence. This configuration ensures the reliability of the communication path.

Description

エレベーター制御装置及びエレベーター制御方法Elevator control device and elevator control method
 本発明は、エレベーター制御装置及びエレベーター制御方法に関する。 The present invention relates to an elevator control device and an elevator control method.
 近年の産業機械に用いられる制御装置は、制御対象間を1:1の通信経路で接続する形態をとることがある。これにより制御対象間を1:Nの通信経路で接続する形態と比べて、通信経路に接続される機器が必ず1つであるため、制御対象間の配線量の低減や通信のノイズも少なくなり、通信速度の向上が期待できる。 Control devices used in industrial machines in recent years may take the form of connecting controlled objects with a 1: 1 communication path. As a result, compared to the form in which the control targets are connected by a 1: N communication path, since there is always one device connected to the communication path, the amount of wiring between the control targets is reduced and communication noise is also reduced. , Communication speed can be expected to improve.
 産業機械の一つであるエレベーターを例にとると、エレベーターは、乗りカゴの運行を制御する号機(ユニット)ごとのメインコントローラ、カゴを上下させる巻き上げコントローラ、カゴ内の制御を行うカゴコントローラ、エレベーターホールに設置される機器を制御するサブコントローラで構成される。エレベーターホールに設置される機器としては、カゴを呼び出す操作を行うホールボタンや、カゴの到着を表示する表示器等がある。
 これらのエレベーターを構成する各機器を1:1の通信経路で接続する場合、エレベーターホールに設置されるサブコントローラは、ビルの各階床毎に設置されるため、サブコントローラは数珠つなぎに接続される。
Taking an elevator, which is one of the industrial machines, as an example, the elevator is a main controller for each unit that controls the operation of the riding basket, a hoisting controller that raises and lowers the basket, a basket controller that controls the inside of the basket, and an elevator. It consists of a sub-controller that controls the equipment installed in the hall. Equipment installed in the elevator hall includes a hall button for calling a basket, a display for displaying the arrival of the basket, and the like.
When each device constituting these elevators is connected by a 1: 1 communication path, the sub-controllers installed in the elevator hall are installed on each floor of the building, so the sub-controllers are connected in a string. ..
 このように制御対象を1:1の通信経路で接続する形態は、数珠つなぎに接続することで制御対象を拡張していくことになる。数珠つなぎに複数の機器を接続した場合、一つの制御対象の故障、もしくは通信経路が遮断された際には、それ以降の通信が出来なくなり、システム全体に影響を及ぼす。例えばエレベーターの場合、特定の階のホールボタンを制御するサブコントローラが通信できない状況になると、そのサブコントローラを経由して通信を行う、別の階のサブコントローラでも通信ができない状況になってしまう。
 エレベーターなどに代表される産業機械は、信頼性を確保することが必須であり、エレベーターシステムが備える各機器の通信機能についても信頼性を確保する必要がある。
In the form of connecting the control targets with a 1: 1 communication path in this way, the control targets are expanded by connecting them in a string of beads. When multiple devices are connected in a string, if one control target fails or the communication path is cut off, subsequent communication will not be possible, affecting the entire system. For example, in the case of an elevator, if the sub-controller that controls the hall button on a specific floor cannot communicate, the sub-controller on another floor that communicates via that sub-controller cannot communicate.
It is essential to ensure the reliability of industrial machines such as elevators, and it is also necessary to ensure the reliability of the communication functions of each device provided in the elevator system.
 特許文献1には、制御装置と通信相手との間の通信経路を二重化して、信頼性を確保する技術が記載されている。 Patent Document 1 describes a technique for ensuring reliability by duplicating a communication path between a control device and a communication partner.
特開平10-198618号公報Japanese Unexamined Patent Publication No. 10-198618
 通信機器の分野では、特許文献1に記載されるように、信頼性を確保するために、通信経路を二重化することは、従来から知られている。
 しかしながら、通信経路を二重化する技術をエレベーターに適用した場合、設置する建物の階数が多いと、各階に設置されるサブコントローラの数が多く必要であり、二重化する通信経路が非常に多くなって、システム構成が複雑化する問題がある。
 エレベーターにおいては、各階に設置されたサブコントローラの通信経路が複雑化するのを防ぎつつ、信頼性が確保できるようにすることが望まれている。
In the field of communication equipment, as described in Patent Document 1, it has been conventionally known to duplicate communication paths in order to ensure reliability.
However, when the technology for duplicating communication paths is applied to elevators, if the number of floors of the building to be installed is large, a large number of sub-controllers are required to be installed on each floor, and the number of duplicating communication paths becomes very large. There is a problem that the system configuration becomes complicated.
In elevators, it is desired to ensure reliability while preventing the communication path of the sub-controllers installed on each floor from becoming complicated.
 本発明は、通信のための構成を複雑化することなく、信頼性が確保できるエレベーター制御装置及びエレベーター制御方法を提供することを目的とする。 An object of the present invention is to provide an elevator control device and an elevator control method that can ensure reliability without complicating the configuration for communication.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、自系統の号機の制御を行うメインコントローラと、利用者または荷物を乗せるカゴと、メインコントローラの制御に基づいてカゴを上下移動させる巻き上げコントローラと、カゴが上下移動する各階に設置される複数のサブコントローラとを備えるエレベーター制御装置であって、メインコントローラと複数のサブコントローラとを接続する通信経路として、複数のサブコントローラを順に接続したループ状の通信経路を有する。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above problems. For example, based on the control of the main controller that controls the unit of the own system, the basket that carries the user or luggage, and the control of the main controller. It is an elevator control device including a hoisting controller that moves the car up and down and a plurality of sub controllers installed on each floor where the car moves up and down, and is a plurality of communication paths for connecting the main controller and the plurality of sub controllers. It has a loop-shaped communication path in which the sub-controllers of the above are connected in order.
 これにより、メインコントローラと各階のサブコントローラとが実質的に複数の経路で接続されることになり、通信異常が発生した際にも、極力、サブコントローラが通信できる状態に維持され、ユーザの不快感と配車効率の低減を最小限に抑えることができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
As a result, the main controller and the sub-controller on each floor are connected by substantially multiple routes, and even if a communication abnormality occurs, the sub-controller is maintained in a state where it can communicate as much as possible, and the user is unable to do so. The reduction in pleasure and vehicle allocation efficiency can be minimized.
Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本発明の第1の実施の形態例によるエレベーター制御装置が設置されたエレベーター全体の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the whole elevator which installed the elevator control device by 1st Embodiment of this invention. 本発明の第1の実施の形態例によるメインコントローラの構成例を示すブロック図である。It is a block diagram which shows the structural example of the main controller according to the 1st Embodiment of this invention. 本発明の第1の実施の形態例によるメインコントローラのハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware configuration example of the main controller according to the 1st Embodiment example of this invention. 本発明の第1の実施の形態例によるサブコントローラの構成例を示すブロック図である。It is a block diagram which shows the structural example of the sub-controller according to the 1st Embodiment of this invention. 本発明の第1の実施の形態例による通信パケットの例を示す図である。It is a figure which shows the example of the communication packet by the 1st Embodiment example of this invention. 本発明の第1の実施の形態例による表示状態の例を示す図である。It is a figure which shows the example of the display state by the 1st Embodiment example of this invention. 本発明の第1の実施の形態例による各号機の正常・異常の詳細の表示状態の例を示す図である。It is a figure which shows the example of the display state of the detail of the normal | normal | abnormality of each unit by the example of 1st Embodiment of this invention. 本発明の第1の実施の形態例による端末通信状態パケットの生成処理を説明する図である。It is a figure explaining the generation process of the terminal communication state packet by the 1st Embodiment example of this invention. 本発明の第1の実施の形態例による端末通信状態パケットの生成処理を説明する図(1台が異常時の例)である。It is a figure explaining the generation process of the terminal communication state packet by the 1st Embodiment example of this invention (an example when one unit is abnormal). 本発明の第1の実施の形態例による端末通信状態パケットの生成処理を説明する図(2台が異常時の例1)である。It is a figure explaining the generation process of the terminal communication state packet by the 1st Embodiment example of this invention (example 1 when two units are abnormal). 本発明の第1の実施の形態例による端末通信状態パケットの生成処理を説明する図(2台が異常時の例2)である。It is a figure explaining the generation processing of the terminal communication state packet by the 1st Embodiment example of this invention (example 2 when two units are abnormal). 本発明の第1の実施の形態例による運転モード設定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the operation mode setting process by the 1st Embodiment example of this invention. 本発明の第1の実施の形態例による通常運転時の処理を示すフローチャートである。It is a flowchart which shows the process at the time of a normal operation by the 1st Embodiment example of this invention. 本発明の第1の実施の形態例による縮退運転時の処理を示すフローチャートである。It is a flowchart which shows the process at the time of the degenerate operation by the example of 1st Embodiment of this invention. 本発明の第1の実施の形態例によるサブコントローラの処理を示すフローチャートである。It is a flowchart which shows the processing of the sub-controller according to the 1st Embodiment example of this invention. 本発明の第2の実施の形態例によるエレベーター制御装置が設置されたエレベーター全体の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the whole elevator which installed the elevator control device by the 2nd Embodiment of this invention. 本発明の第3の実施の形態例によるエレベーター制御装置が設置されたエレベーター全体の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the whole elevator which installed the elevator control device by the 3rd Embodiment example of this invention.
<第1の実施の形態例>
 以下、本発明の第1の実施の形態例を、図1~図15を参照して説明する。
<Example of the first embodiment>
Hereinafter, examples of the first embodiment of the present invention will be described with reference to FIGS. 1 to 15.
[全体構成]
 図1は、第1の実施の形態例のエレベーター制御装置が設置されたエレベーターシステム全体の概略構成を示す。
 図1に示すエレベーターシステムは、第1号機と第2号機の2台のエレベーターを備える。図1では、第1号機のエレベーターの構成要素には、符号に「a」を付与し、第2号機のエレベーターの構成要素には、符号に「b」を付与して区別する。但し、以下の説明では、号機を特定しない場合には、「a」、「b」を付けない符号で説明する。
 第1号機のエレベーターの構成と第2号機のエレベーターの構成は基本的には同じであり、構成を説明する際には第1号機を説明し、第2号機のエレベーターの構成についての説明は一部を省略する。
 また、図1では、各号機は1階から4階までを昇降するエレベーターとして示すが、エレベーターが昇降する階数は一例である。
[overall structure]
FIG. 1 shows a schematic configuration of the entire elevator system in which the elevator control device of the first embodiment is installed.
The elevator system shown in FIG. 1 includes two elevators, a first unit and a second unit. In FIG. 1, the components of the elevator of Unit 1 are assigned a code of "a", and the components of the elevator of Unit 2 are assigned a code of "b" to distinguish them. However, in the following description, when the unit is not specified, it will be described with reference numerals without "a" and "b".
The configuration of the elevator of Unit 1 and the configuration of the elevator of Unit 2 are basically the same. When explaining the configuration, the first unit will be explained, and the explanation of the configuration of the elevator of Unit 2 will be one. The part is omitted.
Further, in FIG. 1, each unit is shown as an elevator that goes up and down from the first floor to the fourth floor, but the number of floors that the elevator goes up and down is an example.
 第1号機のエレベーターは、第1号機メインコントローラ101aと、巻き上げコントローラ102aと、カゴ103aと、ロープ104aと、各階のサブコントローラ105a-1~105a-4と、各階のホールボタン106a-1~106a-4とを備える。
 同様に、第2号機のエレベーターは、第2号機メインコントローラ101bと、巻き上げコントローラ102bと、カゴ103bと、ロープ104bと、各階のサブコントローラ105b-1~105b-4と、各階のホールボタン106b-1~106b-4とを備える。
 なお、図1において、各階のサブコントローラ105a-1~105a-4,105b-1~105b-4にカッコ書きで、号機と階を示す。例えば、第1号機の1階のサブコントローラ105a-1は、図1に(1-1F)と示す。
The elevators of Unit 1 are the main controller 101a of Unit 1, the hoisting controller 102a, the basket 103a, the rope 104a, the sub-controllers 105a-1 to 105a-4 on each floor, and the hall buttons 106a-1 to 106a on each floor. -4 and.
Similarly, the elevators of Unit 2 include the Unit 2 main controller 101b, the hoisting controller 102b, the basket 103b, the rope 104b, the sub-controllers 105b-1 to 105b-4 on each floor, and the hall buttons 106b- on each floor. 1 to 106b-4 are provided.
In FIG. 1, the units and floors are shown in parentheses on the sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4 on each floor. For example, the sub-controller 105a-1 on the first floor of Unit 1 is shown as (1-1F) in FIG.
 第1号機メインコントローラ101aは、カゴ103aからの情報やサブコントローラ105a-1~105a-4の情報に基づいて、カゴ103aの配車割り当てを行い、巻き上げコントローラ102aにカゴ配車階までの動作指令を出力する制御を行う。 The first main controller 101a allocates the car 103a based on the information from the car 103a and the information of the sub-controllers 105a-1 to 105a-4, and outputs an operation command to the car dispatch floor to the winding controller 102a. Control to do.
 巻き上げコントローラ102aは、第1号機メインコントローラ101aの指令に従い、カゴ103aを上下させる制御装置である。
 カゴ103aは、利用者または荷物を搭載するカゴ内に設置された行先階ボタンや開閉ボタンなどの機器のデータを、第1号機メインコントローラ101aへ送信する処理を行う。また、カゴ103aは、第1号機メインコントローラ101aから送信されたデータを、階床表示部等のカゴ内に設置された機器に送信する処理を行う。
The winding controller 102a is a control device that raises and lowers the basket 103a in accordance with the command of the first main controller 101a.
The basket 103a performs a process of transmitting data of devices such as a destination floor button and an open / close button installed in the basket on which the user or luggage is loaded to the first main controller 101a. Further, the basket 103a performs a process of transmitting the data transmitted from the Unit 1 main controller 101a to a device installed in the basket such as a floor display unit.
 ロープ104aは、巻き上げコントローラ102aとカゴ103aを接続する。このロープ104aを巻き上げコントローラ102aで巻き上げることで、カゴ103aが上下移動する。 The rope 104a connects the winding controller 102a and the basket 103a. By winding the rope 104a with the winding controller 102a, the basket 103a moves up and down.
 各階に設置された端末であるサブコントローラ105a-1~105a-4は、ホールに設置されたホールボタン106a-1~106a-4のデータを、メインコントローラ101へ送信する処理を行う。また、サブコントローラ105a-1~105a-4は、第1号機メインコントローラ105aから送信されたデータをホールに設置された表示器(不図示)等へ送信する処理を行う。
 ホールボタン106a-1~106a-4は、各階のエレベーター乗場であるホールに設置され、エレベーターホールからカゴ103aを呼び出すためにユーザが押す上下のボタンである。
The sub-controllers 105a-1 to 105a-4, which are terminals installed on each floor, perform a process of transmitting the data of the hall buttons 106a-1 to 106a-4 installed in the hall to the main controller 101. Further, the sub-controllers 105a-1 to 105a-4 perform a process of transmitting the data transmitted from the first main controller 105a to a display (not shown) or the like installed in the hall.
The hall buttons 106a-1 to 106a-4 are installed in the halls that are the elevator landings on each floor, and are up and down buttons that the user presses to call the basket 103a from the elevator hall.
 各階のサブコントローラ105a-1~105a-4は、通信経路107a,108aを使用して、第1号メインコントローラ101aと双方向に通信可能に順に接続されている。
 すなわち、第1号機メインコントローラ101aは、通信経路107aにより、第1号機の4階のサブコントローラ105a-4と通信可能に接続されている。
 また、第1号機の4台のサブコントローラ105a-1,105a-2,105a-3,105a-4は、それぞれ通信経路108aにより順に接続されている。
The sub-controllers 105a-1 to 105a-4 on each floor are sequentially connected to the first main controller 101a by using communication paths 107a and 108a so as to be able to communicate in both directions.
That is, the Unit 1 main controller 101a is communicably connected to the sub-controller 105a-4 on the 4th floor of the Unit 1 by the communication path 107a.
Further, the four sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 of the first unit are connected in order by the communication path 108a, respectively.
 第2号機についても説明すると、第2号機メインコントローラ101bは、通信経路107bにより、第2号機の4階のサブコントローラ105b-4と通信可能に接続されている。
 また、第2号機の4台のサブコントローラ105b-1,105b-2,105b-3,105b-4は、それぞれ通信経路108bにより順に接続されている。
 このように通信経路107a,107b,108a,108bを設けたことで、各号機メインコントローラ101a,101bを上流とし、末端のサブコントローラ105a-1,105b-1を下流とすると、上流から送信されたデータを下流に送信し、下流から送信されたデータを上流に送信する通信経路が構成される。
Explaining the second unit as well, the second unit main controller 101b is communicably connected to the sub-controller 105b-4 on the fourth floor of the second unit by a communication path 107b.
Further, the four sub-controllers 105b-1, 105b-2, 105b-3, 105b-4 of the second unit are connected in order by the communication path 108b, respectively.
By providing the communication paths 107a, 107b, 108a, 108b in this way, assuming that the main controllers 101a and 101b of each unit are upstream and the sub-controllers 105a-1 and 105b-1 at the ends are downstream, transmission is performed from the upstream. A communication path is constructed in which data is transmitted downstream and data transmitted from the downstream is transmitted upstream.
 そして、本実施の形態例の場合には、第1号機の末端のサブコントローラ105a-1と、第2号機の末端のサブコントローラ105b-1とを接続する通信経路109を設けている。この通信経路109は、通信の二重化を実現するために設けた通信経路である。 Then, in the case of the present embodiment, a communication path 109 is provided to connect the sub-controller 105a-1 at the end of the first machine and the sub-controller 105b-1 at the end of the second machine. The communication path 109 is a communication path provided to realize duplication of communication.
 通信を二重化する際には、従来から知られた一般的な方法では、サブコントローラ105a-1~105a-4間の通信経路108aを二重化する方法が考えられる。これに対して、本実施の形態例では、図1に示すように、末端のサブコントローラ105a-1,105b-1間という、物理的な距離が近い機器を通信経路109で接続して二重化することで、システム全体として配線量の低減が可能となる。
 また、1階に設置されたサブコントローラ105a-1,105b-1間で二重化することで、配線作業者がアクセスしやすいため、作業性の向上も可能になる。
When duplicating communication, a method of duplicating the communication path 108a between the sub-controllers 105a-1 to 105a-4 can be considered as a conventional general method. On the other hand, in the example of the present embodiment, as shown in FIG. 1, devices having a short physical distance, such as between the terminal sub-controllers 105a-1 and 105b-1, are connected by a communication path 109 and duplicated. As a result, the amount of wiring can be reduced for the entire system.
Further, by duplicating between the sub-controllers 105a-1 and 105b-1 installed on the first floor, it is easy for the wiring operator to access, so that the workability can be improved.
 なお、図1に示すように通信経路109が、第1号機の末端のサブコントローラ105a-1と、第2号機の末端のサブコントローラ105b-1とを接続するのは一例であり、その他の箇所で接続してもよい。すなわち、通信経路109は、第1号機のサブコントローラ105a-1~105a-4の任意のいずれか1台と、第2号機のサブコントローラ105b-1~105b-4の任意のいずれか1台とを、接続すればよい。 As shown in FIG. 1, it is an example that the communication path 109 connects the sub-controller 105a-1 at the end of Unit 1 and the sub-controller 105b-1 at the end of Unit 2, and other parts. You may connect with. That is, the communication path 109 includes any one of the sub-controllers 105a-1 to 105a-4 of the first unit and any one of the sub-controllers 105b-1 to 105b-4 of the second unit. , Just connect.
 図1に示すその他の通信経路についても説明すると、通信経路110aは、第1号機メインコントローラ101aとカゴ103aとの間の通信経路である。通信経路111aは、第1号機メインコントローラ101aと巻き上げコントローラ102aの通信経路である。
 通信経路112は、第1号機メインコントローラ101aと第2号機メインコントローラ101bとの間の通信経路である。この通信経路112を使って、各サブコントローラ105a-1~105a-4,105b-1~105b-4の情報や、通信状況の情報等を送受信することで、配車の効率化や保守性の向上が可能となる。
Explaining the other communication paths shown in FIG. 1, the communication path 110a is a communication path between the Unit 1 main controller 101a and the basket 103a. The communication path 111a is a communication path between the first unit main controller 101a and the winding controller 102a.
The communication path 112 is a communication path between the Unit 1 main controller 101a and the Unit 2 main controller 101b. By using this communication path 112 to send and receive information on each sub-controller 105a-1 to 105a-4, 105b-1 to 105b-4, communication status information, etc., the efficiency of vehicle allocation and maintainability are improved. Is possible.
 以上説明したように、本実施の形態例では、通信経路109を用いて、第1号機のサブコントローラ105a-1を、別系統である第2号機メインコントローラ101bで制御されるサブコントローラ105b-1に接続して、通信経路をリング状にすることで、通信経路が二重化される。例えば、サブコントローラ105a-1~105a-4のいずれか一か所に故障が発生した際にも、通信経路を迂回して制御できる。これにより、通信異常が発生した際にもカゴの配車が可能となる。また、二か所以上の故障の際にも、故障範囲は特定可能である。故障個所や範囲の特定方法の例は、図8~図11を後述する。 As described above, in the embodiment of the present embodiment, the sub-controller 105a-1 of the first unit is controlled by the second main controller 101b, which is a separate system, using the communication path 109. By connecting to and making the communication path ring-shaped, the communication path is duplicated. For example, even when a failure occurs in any one of the sub-controllers 105a-1 to 105a-4, the communication path can be bypassed and controlled. As a result, the car can be dispatched even when a communication abnormality occurs. In addition, the failure range can be specified even when two or more failures occur. 8 to 11 will be described later as an example of a method for identifying a failure location and a range.
[メインコントローラの構成]
 図2は、第1号機メインコントローラ101aの機能から見た構成を示す。以下の説明では、第1号機メインコントローラ101aの構成を説明するが、第2号機メインコントローラ101bについても、第1号機メインコントローラ101aと同様の構成であり、説明と図示を省略する。
[Main controller configuration]
FIG. 2 shows a configuration viewed from the function of the Unit 1 main controller 101a. In the following description, the configuration of the Unit 1 main controller 101a will be described, but the Unit 2 main controller 101b has the same configuration as the Unit 1 main controller 101a, and description and illustration thereof will be omitted.
 第1号機メインコントローラ101aは、ホール間送受信部201と、カゴ間送受信部202と、巻き上げ機送受信部203と、号機間送受信部204と、端末通信状態格納部205と、呼び情報格納部206と、カゴ情報格納部207とを有する。また、第1号機メインコントローラ101aは、通信状態/ルート生成部208と、ホール制御指令生成部209と、カゴ配車指令生成部210と、通信マップ作成部211と、モード設定部212と、表示部213とを有する。 The first unit main controller 101a includes an inter-hole transmission / reception unit 201, an inter-basket transmission / reception unit 202, a hoisting machine transmission / reception unit 203, an inter-machine transmission / reception unit 204, a terminal communication state storage unit 205, and a call information storage unit 206. , And a basket information storage unit 207. Further, the first main controller 101a includes a communication state / route generation unit 208, a hall control command generation unit 209, a car allocation command generation unit 210, a communication map creation unit 211, a mode setting unit 212, and a display unit. It has 213 and.
 ホール間送受信部201は、サブコントローラ105a-1~105a-4との送受信を行う処理部であり、端末通信状態パケット、端末ルート設定パケット、及び各種ホール制御情報が送信される。また、ホール間送受信部201は、端末通信状態パケットの返信や制御情報(ホールボタンの呼び情報等)を受信する。 The inter-hole transmission / reception unit 201 is a processing unit that transmits / receives to / from the sub-controllers 105a-1 to 105a-4, and transmits terminal communication status packets, terminal route setting packets, and various hall control information. Further, the inter-hall transmission / reception unit 201 receives a reply of the terminal communication status packet and control information (such as call information of the hall button).
 カゴ間送受信部202は、カゴ103aとの送受信を行う処理部であり、カゴ内機器の制御指令をカゴ103aに送信し、カゴ103aからカゴ内機器の情報を受信する。
 巻き上げ機送受信部203は、巻き上げコントローラ102aとの送受信を行う処理部であり、巻き上げコントローラ102aに配車階への巻き上げ指令を送信し、巻き上げコントローラ102aからの巻き上げ情報を受信する。第1号機メインコントローラ101aは、この巻き上げ情報を用いて巻き上げ部の異常検知等を行う。
The inter-basket transmission / reception unit 202 is a processing unit that transmits / receives to / from the basket 103a, transmits a control command of the device in the basket to the basket 103a, and receives information on the device in the basket from the basket 103a.
The hoisting machine transmission / reception unit 203 is a processing unit that transmits / receives to / from the hoisting controller 102a, transmits a hoisting command to the vehicle allocation floor to the hoisting controller 102a, and receives hoisting information from the hoisting controller 102a. The Unit 1 main controller 101a uses this hoisting information to detect an abnormality in the hoisting portion and the like.
 号機間送受信部204は、別系統の号機メインコントローラ101bとの送受信を行う処理部であり、別系統の号機メインコントローラ101bで制御される各サブコントローラ105b-1~105b-4の情報を送受信する。
 端末通信状態格納部205は、各サブコントローラ105a-1~105a-4から返信された端末通信状態パケットを格納する。
 呼び情報格納部206は、各サブコントローラ105a-1~105a-4の呼び情報を格納する。
 カゴ情報格納部207は、カゴ103内の機器情報や行先階指令情報等を格納する。
The inter-unit transmission / reception unit 204 is a processing unit that transmits / receives to / from the unit main controller 101b of another system, and transmits / receives information of each sub-controller 105b-1 to 105b-4 controlled by the unit main controller 101b of another system. ..
The terminal communication status storage unit 205 stores the terminal communication status packets returned from the sub-controllers 105a-1 to 105a-4.
The call information storage unit 206 stores the call information of each of the sub-controllers 105a-1 to 105a-4.
The basket information storage unit 207 stores device information, destination floor command information, and the like in the basket 103.
 通信状態/ルート生成部208は、各サブコントローラ105a-1~105a-4の通信状態をチェックするために、端末通信状態パケットを生成する。第1号機メインコントローラ101aは、端末通信状態パケットを各サブコントローラ105a-1~105a-4にブロードキャストし、各サブコントローラ105a-1~105a-4で受信パケットに値を付加し返信することで、各サブコントローラ105a-1~105a-4の通信状態を確認する。
 また、通信状態/ルート生成部208は、各サブコントローラ105a-1~105a-4の通信経路を有効/無効にする端末ルート設定パケットを生成する。第1号機メインコントローラ101aは、この端末ルート設定パケットを各サブコントローラ105a-1~105a-4にブロードキャストし、各サブコントローラ105a-1~105a-4で端末ルート設定パケットを参照し、各サブコントローラ105a-1~105a-4の第2送受信部302(図4)を有効もしくは無効にする。
The communication status / route generation unit 208 generates terminal communication status packets in order to check the communication status of each of the sub-controllers 105a-1 to 105a-4. The first main controller 101a broadcasts the terminal communication status packet to each of the sub-controllers 105a-1 to 105a-4, and each of the sub-controllers 105a-1 to 105a-4 adds a value to the received packet and returns it. Check the communication status of each sub-controller 105a-1 to 105a-4.
Further, the communication state / route generation unit 208 generates a terminal route setting packet that enables / disables the communication path of each of the sub-controllers 105a-1 to 105a-4. The first main controller 101a broadcasts this terminal route setting packet to each sub-controller 105a-1 to 105a-4, refers to the terminal route setting packet by each sub-controller 105a-1 to 105a-4, and each sub-controller. The second transmission / reception unit 302 (FIG. 4) of 105a-1 to 105a-4 is enabled or disabled.
 ホール制御指令生成部209は、呼び情報格納部206に格納された各サブコントローラ105a-1~105a-4の情報や、カゴ情報格納部207に格納されたカゴの情報から、ホール制御指令を生成する制御装置である。例えば、ホール制御指令生成部209は、ホールボタンが押された際にボタンを光らせたり、カゴ103が到着した際にホールに設置されたランタンを光らせたりする等の処理を行う。 The hall control command generation unit 209 generates a hall control command from the information of the sub-controllers 105a-1 to 105a-4 stored in the call information storage unit 206 and the basket information stored in the basket information storage unit 207. It is a control device. For example, the hall control command generation unit 209 performs processing such as lighting the button when the hall button is pressed and lighting the lantern installed in the hall when the basket 103 arrives.
 カゴ配車指令生成部210は、呼び情報格納部206に格納された各サブコントローラ105a-1~105a-4や、カゴ情報格納部207に格納されたカゴ103aの情報から、カゴ103aの最適な配車指令を生成する処理部である。
 通信マップ作成部211は、端末通信状態格納部205に格納された端末通信状態パケットから、サブコントローラの通信マップを生成する処理を行う。
The car dispatch command generation unit 210 optimally dispatches the car 103a from the information of the sub-controllers 105a-1 to 105a-4 stored in the call information storage unit 206 and the car 103a stored in the car information storage unit 207. This is a processing unit that generates commands.
The communication map creation unit 211 performs a process of generating a communication map of the sub controller from the terminal communication status packet stored in the terminal communication status storage unit 205.
 モード設定部212は、通信マップ作成部211で生成された通信マップに基づいて、カゴ配車指令のモードを切り替える処理部である。モードは大きく分けて、通常モードと、縮退モードとに分類される。通常モードは、通信が正常時のモードである。縮退モードは、第1号機メインコントローラ101aと各サブコントローラ105a-1~105a-4との通信が、1箇所以上異常な場合のモードである。 The mode setting unit 212 is a processing unit that switches the mode of the car dispatch command based on the communication map generated by the communication map creation unit 211. The modes are roughly classified into a normal mode and a degenerate mode. The normal mode is a mode when communication is normal. The degenerate mode is a mode in which communication between the first main controller 101a and each of the sub-controllers 105a-1 to 105a-4 is abnormal at one or more locations.
 本実施の形態例では、縮退モードの際には、通信マップで作成した通信異常範囲と、カゴ情報、呼び情報である配車指令を用いてエレベーターの運転方法を変えることで、縮退運転時でもユーザの不快感と配車効率の低減を最小限に抑える処理を行う。具体的な運転方法の詳細は後述する。 In the example of the present embodiment, in the degenerate mode, the user can change the operation method of the elevator by using the communication abnormality range created by the communication map and the vehicle allocation command which is the basket information and the call information. Take measures to minimize the discomfort and reduction of vehicle allocation efficiency. Details of the specific operation method will be described later.
 表示部213は、モード設定部212で切り替えられたモード情報や、通信マップ作成部211で作成された通信異常範囲を表示する。この情報をビル管理者や保守員に提示することで、素早く異常に対して対処可能となり保守性が向上する。
 なお、図1に示すように複数の号機が設置された構成の場合、表示部213は、複数の号機で共用化してもよい。
The display unit 213 displays the mode information switched by the mode setting unit 212 and the communication abnormality range created by the communication map creation unit 211. By presenting this information to building managers and maintenance personnel, it is possible to quickly deal with abnormalities and improve maintainability.
In the case of a configuration in which a plurality of units are installed as shown in FIG. 1, the display unit 213 may be shared by the plurality of units.
[コントローラのハードウェア構成例]
 各号機メインコントローラ101a,101bは、例えばコンピュータ装置とその周辺機器で構成される。
 図3は、第1号機メインコントローラ101aをコンピュータ装置で構成した場合のハードウェア構成例を示す。
 第1号機メインコントローラ101aとして機能するコンピュータ装置は、バスにそれぞれ接続されたCPU(Central Processing Unit:中央処理ユニット)221と、ROM(Read Only Memory)222と、RAM(Random Access Memory)223を備える。さらに、コンピュータ装置は、不揮発性ストレージ224と、ネットワークインタフェース225と、入力装置226と、表示部213を備える。
[Controller hardware configuration example]
The main controllers 101a and 101b of each unit are composed of, for example, a computer device and its peripheral devices.
FIG. 3 shows an example of hardware configuration when the first main controller 101a is configured by a computer device.
The computer device that functions as the first main controller 101a includes a CPU (Central Processing Unit) 221 connected to the bus, a ROM (Read Only Memory) 222, and a RAM (Random Access Memory) 223, respectively. .. Further, the computer device includes a non-volatile storage 224, a network interface 225, an input device 226, and a display unit 213.
 CPU221は、エレベーターを制御するための演算処理や認証処理を実行するソフトウェアのプログラムコードをROM222から読み出して実行する演算処理部である。RAM223には、演算処理の途中に発生した変数やパラメータ等が一時的に書き込まれる。 The CPU 221 is an arithmetic processing unit that reads a program code of software that executes arithmetic processing and authentication processing for controlling an elevator from ROM 222 and executes it. Variables, parameters, etc. generated during the arithmetic processing are temporarily written in the RAM 223.
 不揮発性ストレージ224には、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)などの大容量の情報記憶部が用いられる。不揮発性ストレージ224は、各格納部205,206,207として機能し、各格納部205,206,207が格納する情報が記憶される。但し、各格納部205,206,207として不揮発性ストレージ224を使うのは一例であり、各格納部205,206,207の一部または全てを、RAM223などのその他の記憶媒体を使用してもよい。 For the non-volatile storage 224, for example, a large-capacity information storage unit such as an HDD (Hard Disk Drive) or SSD (Solid State Drive) is used. The non-volatile storage 224 functions as each storage unit 205, 206, 207, and stores information stored in each storage unit 205, 206, 207. However, it is an example that the non-volatile storage 224 is used as each storage unit 205, 206, 207, and even if a part or all of each storage unit 205, 206, 207 is used by another storage medium such as RAM 223. good.
 ネットワークインタフェース225には、例えば、NIC(Network Interface Card)などが用いられる。このネットワークインタフェース225が、各送受信部201,202,203,204として機能する。
 入力装置226は、ビル管理者や保守員が入力操作するキーボードやマウスなどで構成される。
 表示部213は、図2の構成で説明したモード情報や通信異常範囲を含むエレベーターの各種状態を表示する。
For the network interface 225, for example, a NIC (Network Interface Card) or the like is used. This network interface 225 functions as each transmission / reception unit 201, 202, 203, 204.
The input device 226 is composed of a keyboard, a mouse, and the like for input operations by the building manager and maintenance personnel.
The display unit 213 displays various states of the elevator including the mode information and the communication abnormality range described in the configuration of FIG.
 なお、図3では、第1号機メインコントローラ101aをコンピュータ装置で構成した例を示す。同様に、第2号機メインコントローラ101b、巻き上げコントローラ102a、及び各サブコントローラ105a-1~105a-4も、コンピュータ装置で構成することができる。
 あるいは、各コントローラは、コンピュータ装置以外のその他の演算処理を行う装置で構成してもよい。例えば、各号機メインコントローラ101a,101bが行う機能の一部又は全部を、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェアによって実現してもよい。
Note that FIG. 3 shows an example in which the Unit 1 main controller 101a is configured by a computer device. Similarly, the Unit 2 main controller 101b, the hoisting controller 102a, and the sub-controllers 105a-1 to 105a-4 can also be configured by a computer device.
Alternatively, each controller may be configured by a device other than a computer device that performs arithmetic processing. For example, some or all of the functions performed by the main controllers 101a and 101b of each unit may be realized by hardware such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
[サブコントローラの構成]
 図4は、サブコントローラ105a-1~105a-4の構成を示す。各階に設置されるサブコントローラ105a-1~105a-4は、同一の構成である。
 各サブコントローラ105a-1~105a-4は、第1送受信部301と、第2送受信部302と、通信状態付加部303と、通信ルート設定部304と、ホール情報送受信部305と、ID解析部306とから構成される。
[Subcontroller configuration]
FIG. 4 shows the configuration of the sub-controllers 105a-1 to 105a-4. The sub-controllers 105a-1 to 105a-4 installed on each floor have the same configuration.
Each of the sub-controllers 105a-1 to 105a-4 includes a first transmission / reception unit 301, a second transmission / reception unit 302, a communication state addition unit 303, a communication route setting unit 304, a hall information transmission / reception unit 305, and an ID analysis unit. It is composed of 306.
 第1送受信部301は、各号機メインコントローラ101a,101b側を上流部とし、その経路の逆方向を下流部とすると、上流部からのデータを送受信する処理部である。第2送受信部302は、下流部からのデータを送受信する処理部である。
 第1送受信部301及び第2送受信部302で送受信されるデータには、各号機メインコントローラ101a,101bから送信された端末通信状態パケットと、端末ルート設定パケットと、各サブコントローラ105a-1~105a-4で受信された制御情報等が含まれる。
The first transmission / reception unit 301 is a processing unit that transmits / receives data from the upstream portion, assuming that the main controllers 101a and 101b of each unit are the upstream portion and the opposite direction of the path is the downstream portion. The second transmission / reception unit 302 is a processing unit that transmits / receives data from the downstream unit.
The data transmitted and received by the first transmission / reception unit 301 and the second transmission / reception unit 302 includes terminal communication status packets transmitted from the main controllers 101a and 101b of each unit, terminal route setting packets, and sub-controllers 105a-1 to 105a. The control information received in -4 is included.
 第1送受信部301と第2送受信部302を使った基本的な通信の流れとしては、上流のデータを下流に送信し、下流のデータを上流に送信することで、システム全体にデータをブロードキャストする方式としている。このとき、ID解析部306は、第1送受信部301で受信したデータのIDを解析し、各処理部に受信データを振り分ける。 As a basic communication flow using the first transmission / reception unit 301 and the second transmission / reception unit 302, upstream data is transmitted downstream, and downstream data is transmitted upstream to broadcast data to the entire system. It is a method. At this time, the ID analysis unit 306 analyzes the ID of the data received by the first transmission / reception unit 301, and distributes the received data to each processing unit.
 通信状態付加部303は、第1号機メインコントローラ101aから送信された端末通信状態パケットに、自らのサブコントローラでの通信状態のデータを付加し、上流方向、下流方向にブロードキャストする。
 通信ルート設定部304は、第1号機メインコントローラ101aから受信した端末ルート設定パケットを参照し、第2送受信部302を有効または無効にする処理を行う。この設定を行うことで、通信経路を二重化した際に、通信正常の場合は二重化経路に制御信号を送信しなくてよいため、システム全体の処理負荷を減らすことが可能となる。
 例えば、通信正常の場合は、サブコントローラ105a-1(第1号機の1階:1-1F)と、サブコントローラ105b-1(第2号機の1階:2-1F)の第2送受信部302を無効にすることで、不必要なパケットを送受信する必要がなくなる。また、有効、無効にする設定時には、例えば、パケット毎に有効無効にすることで、必要なパケットはブロードキャストし、不必要なパケットは送信されないため、処理負荷低減や処理簡易化が可能となる。
The communication state addition unit 303 adds the communication state data of its own sub-controller to the terminal communication state packet transmitted from the first unit main controller 101a, and broadcasts it in the upstream direction and the downstream direction.
The communication route setting unit 304 refers to the terminal route setting packet received from the first unit main controller 101a, and performs a process of enabling or disabling the second transmission / reception unit 302. By making this setting, when the communication path is duplicated, if the communication is normal, the control signal does not have to be transmitted to the duplicated path, so that the processing load of the entire system can be reduced.
For example, when communication is normal, the second transmitter / receiver 302 of the sub-controller 105a-1 (1st floor of Unit 1: 1-1F) and the sub-controller 105b-1 (1st floor of Unit 2: 2-1F). By disabling, you don't have to send and receive unnecessary packets. Further, at the time of setting to enable or disable, for example, by enabling or disabling each packet, necessary packets are broadcast and unnecessary packets are not transmitted, so that the processing load can be reduced and the processing can be simplified.
[通信パケットの構成]
 図5は、各メインコントローラ101a,101bから送信される端末通信状態パケット410と、端末ルート設定パケット420と、各サブコントローラ105、カゴ103を制御するために必要な制御情報430を示す。
 端末通信状態パケット410は、例えば、端末通信状態パケット(ID1)を示す領域411と、各端末の通信状態を格納する領域412~419とで構成される。図1に示すように各号機が4台(4つの階床)のサブコントローラ105a-1~105a-4,105b-1~105b-4の場合、各端末の通信状態を格納する領域412~419は、各サブコントローラの数を合計した8つの領域になる。
[Communication packet configuration]
FIG. 5 shows a terminal communication status packet 410 transmitted from each of the main controllers 101a and 101b, a terminal route setting packet 420, and control information 430 required to control each of the sub-controllers 105 and the basket 103.
The terminal communication status packet 410 is composed of, for example, an area 411 indicating the terminal communication status packet (ID1) and areas 412 to 419 for storing the communication status of each terminal. As shown in FIG. 1, when each unit has four sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4, the areas 412 to 419 for storing the communication status of each terminal. Is the total number of sub-controllers in eight areas.
 この端末通信状態パケット410を各号機メインコントローラ101a,101bで生成する際に、例えば、各サブコントローラ105に対応した領域412~419を全て0として送信する。
 各サブコントローラ105a-1~105a-4,105b-1~105b-4は、例えば、受信した端末通信状態パケットの自端末に割り当てられた領域を「1」として返信する。
 このように各サブコントローラ105a-1~105a-4,105b-1~105b-4で自端末の状態を返信し、各号機メインコントローラ101a,101bで各端末通信状態の1をチェックすることで、自号機と他号機の端末の通信状態を確認することができる。
When the terminal communication state packet 410 is generated by the main controllers 101a and 101b of each unit, for example, the areas 412 to 419 corresponding to each sub-controller 105 are all transmitted as 0.
Each of the sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4 returns, for example, the area allocated to the own terminal of the received terminal communication status packet as "1".
In this way, the sub-controllers 105a-1 to 105a-4 and 105b-1 to 105b-4 return the status of the own terminal, and the main controllers 101a and 101b of each unit check 1 of the communication status of each terminal. You can check the communication status between your own unit and the terminals of other units.
 端末ルート設定パケット420は、サブコントローラ105の第二の送受信部302を有効/無効設定を行うパケットである。端末ルート設定パケット420は、端末通信状態パケット(ID2)を示す領域421と、各端末のルート設定を格納する領域422~429とで構成される。
 具体的には、端末ルート設定パケット420の各端末の領域422~429に、各サブコントローラ105a-1~105a-4の有効/無効設定が格納されており、「1」の場合は該当する端末の第2送受信部302を有効にし、「0」の場合は無効にする。
 なお、この設定方法の場合、数値の「0」,「1」で単純に第2送受信部302を有効/無効にするだけでなく、他の数値、例えば「2」以降の数値を使用し、パケット単位で有効/無効を設定してもよい。
The terminal route setting packet 420 is a packet that enables / disables the second transmission / reception unit 302 of the sub controller 105. The terminal route setting packet 420 is composed of an area 421 indicating a terminal communication status packet (ID2) and areas 422 to 429 for storing the route setting of each terminal.
Specifically, the valid / invalid settings of the sub-controllers 105a-1 to 105a-4 are stored in the areas 422 to 429 of each terminal of the terminal route setting packet 420, and in the case of "1", the corresponding terminal The second transmission / reception unit 302 of is enabled, and if it is "0", it is disabled.
In the case of this setting method, not only the second transmission / reception unit 302 is simply enabled / disabled by the numerical values "0" and "1", but also other numerical values, for example, numerical values after "2" are used. You may set enable / disable for each packet.
 制御情報430は、エレベーターを制御するために必要な各サブコントローラ105、カゴ103、巻き上げコントローラ102の制御パケットである。
 制御情報430は、制御情報(ID2)を示す領域431と、制御内容を指示する制御情報432とで構成される。
The control information 430 is a control packet of each of the sub-controller 105, the basket 103, and the hoisting controller 102 required to control the elevator.
The control information 430 is composed of a region 431 indicating the control information (ID2) and a control information 432 instructing the control content.
[モードの表示例]
 図6は、表示部213(図2)がモードについての表示を行う例を示す。
 モード表示画面510は、通信モード511と、端末通信状態512とを有し、モード表示画面510には、各号機メインコントローラ101の通信モードと端末の通信状態を表示する。
 通信モード511は、各号機が、通常モードか縮退モードかの区別が表示される。
 端末通信状態512は、各号機の端末との通信状態が正常か異常かを表示する。端末通信状態512が異常を表示する際には、いずれの階の端末が異常かも併せて表示される。
 例えば、図6の例では、第2号機が縮退モードであることを示し、端末通信状態512として、「異常 端末2で異常発生」と表示し、第2号機のサブコントローラ105b-2が通信異常で、縮退モードであることを表示する。
[Mode display example]
FIG. 6 shows an example in which the display unit 213 (FIG. 2) displays the mode.
The mode display screen 510 has a communication mode 511 and a terminal communication state 512, and the mode display screen 510 displays the communication mode of each unit main controller 101 and the communication state of the terminal.
In the communication mode 511, the distinction between the normal mode and the degraded mode of each unit is displayed.
The terminal communication status 512 indicates whether the communication status with the terminal of each unit is normal or abnormal. When the terminal communication status 512 displays an abnormality, the terminal on any floor is also displayed as abnormal.
For example, in the example of FIG. 6, it is shown that the second unit is in the degenerate mode, the terminal communication state 512 is set, and "an abnormality has occurred in the abnormal terminal 2" is displayed, and the sub controller 105b-2 of the second unit has a communication abnormality. Displays that it is in the degraded mode.
 図7は、図6に示すモードと通信状態の表示を行うための各号機のサブコントローラ105の状態の一覧表示画面520を示す。
 図7に示す一覧表示画面520では、第1号機はすべてのサブコントローラが正常であり、第2号機は、2階のサブコントローラが通信異常を示している。また、第N号機(Nは3以上の任意の数)については、複数箇所のサブコントローラが通信異常であることを示している。
 複数箇所のサブコントローラが通信異常の場合、二か所以上の通信異常個所で挟まれたサブコントローラ105の状態に関しては、状態の確認ができないため、一覧表示画面520では不明と表示されている。
 なお、いかなるサブコントローラ105の故障パターンにおいても各号機メインコントローラ101でサブコントローラ105の状態を確認するために、サブコントローラ105毎に、該当する号機のメインコントローラ101と通信を行う通信経路を持ち二重化することも考えられる。
FIG. 7 shows a list display screen 520 of the status of the sub-controller 105 of each unit for displaying the mode and the communication status shown in FIG.
In the list display screen 520 shown in FIG. 7, all the sub-controllers of the first unit are normal, and in the second unit, the sub-controllers on the second floor indicate a communication abnormality. Further, for the Nth machine (N is an arbitrary number of 3 or more), it indicates that the sub-controllers at a plurality of locations have communication abnormalities.
When the sub-controllers at a plurality of locations have communication abnormalities, the status of the sub-controllers 105 sandwiched between the two or more communication abnormal locations cannot be confirmed, and therefore, it is displayed as unknown on the list display screen 520.
In addition, in order to confirm the state of the sub controller 105 in each unit main controller 101 in any failure pattern of the sub controller 105, each sub controller 105 has a communication path for communicating with the main controller 101 of the corresponding unit and is duplicated. It is also possible to do it.
 図6及び図7に示すようなモードと通信状態の表示を行うことで、異常範囲が素早く確認できることから故障や保守の際の効率化が可能となる。また、二か所以上の通信経路の異常の際も、通信の異常範囲が判別可能になる。 By displaying the mode and communication status as shown in FIGS. 6 and 7, the abnormal range can be quickly confirmed, which makes it possible to improve efficiency in the event of failure or maintenance. In addition, even when there is an abnormality in two or more communication paths, the abnormal range of communication can be determined.
[端末通信状態パケットの生成処理例]
 図8は、正常通信の際の端末通信状態パケット410の生成の例を示す。図8では、端末通信状態パケット410を、2台の号機の4つの端末状態の値「1」または「0」が設定されたパケット601、602、603、604として示す。パケット601、602、603、604の1段目は、第1号機の4つの端末状態を示し、2段目は、第2号機の4つの端末状態を示す。
[Example of terminal communication status packet generation processing]
FIG. 8 shows an example of generating a terminal communication state packet 410 during normal communication. In FIG. 8, the terminal communication state packet 410 is shown as packets 601, 602, 603, 604 in which the values "1" or "0" of the four terminal states of the two units are set. The first stage of packets 601, 602, 603, and 604 shows the four terminal states of the first machine, and the second stage shows the four terminal states of the second machine.
 端末通信状態パケット410は、各号機メインコントローラ101a,101bの通信状態/ルート生成部208で生成され、下流方向に送信される。ここで、各号機メインコントローラ101a,101bから送信する際には、端末通信状態は全て「0」とする。すなわち、図8に示すように第1号機メインコントローラ101aが初回に送信する端末通信状態パケット601は、端末通信状態は全て「0」とする。
 同様に、第2号機メインコントローラ101bが初回に送信する端末通信状態パケット602についても、端末通信状態は全て「0」とする。
The terminal communication status packet 410 is generated by the communication status / route generation unit 208 of the main controllers 101a and 101b of each unit, and is transmitted in the downstream direction. Here, when transmitting from the main controllers 101a and 101b of each unit, the terminal communication status is set to "0". That is, as shown in FIG. 8, the terminal communication status packet 601 transmitted for the first time by the Unit 1 main controller 101a is set to "0" in all terminal communication statuses.
Similarly, for the terminal communication status packet 602 transmitted by the Unit 2 main controller 101b for the first time, the terminal communication status is set to "0".
 この端末通信状態パケット601,602を各サブコントローラ105が受信すると、自らのメインコントローラ105の領域のみを「1」とし、上流方向、下流方向にブロードキャストする。 When each sub-controller 105 receives the terminal communication status packets 601, 602, only the area of its own main controller 105 is set to "1", and it is broadcast in the upstream direction and the downstream direction.
 例えば、第1号機メインコントローラ101aから送信された端末通信状態パケット601は、最終的に第2号機の4階のサブコントローラ105b-4で受信され、このサブコントローラ105b-4で通信状態の領域を「1」にすると、上流方向、下流方向にブロードキャストされる。各号機メインコントローラ101a,101bでは、最終的にブロードキャストされたパケット603,604を受信し、通信マップ作成部211で解析することで、通信状態が確認できる。
 図8の例の場合、全てのサブコントローラ105が正常通信であり、最終的に受信したパケット603,604は、全号機の全ての階のサブコントローラの値が「1」になっている。
For example, the terminal communication status packet 601 transmitted from the first main controller 101a is finally received by the sub-controller 105b-4 on the fourth floor of the second unit, and the sub-controller 105b-4 sets the area of the communication status. When it is set to "1", it is broadcast in the upstream direction and the downstream direction. The communication status can be confirmed by receiving the finally broadcast packets 603 and 604 in the main controllers 101a and 101b of each unit and analyzing them by the communication map creation unit 211.
In the case of the example of FIG. 8, all the sub-controllers 105 are in normal communication, and in the finally received packets 603 and 604, the values of the sub-controllers on all floors of all the units are "1".
 図9は、第1号機の3階のサブコントローラ105a-3が故障して通信異常になった場合を示している。
 まず、第1号機メインコントローラ101aが初回に送信する端末通信状態パケット601と、第2号機メインコントローラ101bが初回に送信する端末通信状態パケット602は、端末通信状態が全て0である点は、図8の例と同じである。
FIG. 9 shows a case where the sub-controller 105a-3 on the third floor of the first unit fails and a communication abnormality occurs.
First, the terminal communication status packet 601 transmitted by the first main controller 101a for the first time and the terminal communication status packet 602 transmitted by the second main controller 101b for the first time are all 0 in the terminal communication status. It is the same as the example of 8.
 ここで、第1号機の3階のサブコントローラ105a-3が故障のため、第1号機メインコントローラ101aでは、最終的に図9に示す端末通信状態パケット603が受信される。この端末通信状態パケット603では、第1号機メインコントローラ101aと第1号機の3階のサブコントローラ105a-3との間の、第1号機の4階のサブコントローラ105a-4のみが正常に通信ができ、状態が「1」であり、他の端末の状態は全て「0」のままである。 Here, because the sub-controller 105a-3 on the third floor of the first unit is out of order, the main controller 101a of the first unit finally receives the terminal communication status packet 603 shown in FIG. In this terminal communication status packet 603, only the sub-controller 105a-4 on the 4th floor of the 1st unit between the main controller 101a of the 1st unit and the sub-controller 105a-3 on the 3rd floor of the 1st unit can communicate normally. Yes, the state is "1", and the states of all other terminals remain "0".
 また、第2号機メインコントローラ101bでは、最終的に端末通信状態パケット604が受信される。この端末通信状態パケット604では、第2号機の全てのサブコントローラ105b-1~105b-4と、第1号機の2つのサブコントローラ105a-1,105a-2が、正常に通信ができ、状態が「1」であり、第1号機の他の2つのサブコントローラ105a-3,105a-4の状態が「0」である。 In addition, the terminal communication status packet 604 is finally received by the Unit 2 main controller 101b. In this terminal communication status packet 604, all the sub-controllers 105b-1 to 105b-4 of the second machine and the two sub-controllers 105a-1 and 105a-2 of the first machine can communicate normally, and the state is changed. It is "1", and the state of the other two sub-controllers 105a-3 and 105a-4 of Unit 1 is "0".
 このような場合、各号機メインコントローラ101a,101bでは、それぞれの端末通信状態パケット603、604を送信し、通信マップ作成部211で、2つのパケットの状態が「1」の端末を組み合わせるいわゆるOR条件で、1つの端末通信状態パケット605を生成する。すなわち、図9の場合、端末通信状態パケット605として、異常を示す第1号機の3階のサブコントローラ105a-3のみが異常を示す値「0」となり、他のサブコントローラ105a-1,105a-2,105a-4,105b-1,105b-2,105b-3,105b-4は全て正常を示す値「1」になる。
 この通信マップ作成部211が作成した端末通信状態パケット605から、各号機メインコントローラ101a,101bは、第1号機の3階のサブコントローラ105a-3で通信異常が発生していることが分かる。
In such a case, the main controllers 101a and 101b of each unit transmit the respective terminal communication status packets 603 and 604, and the communication map creation unit 211 combines terminals whose status is "1", so-called OR condition. Then, one terminal communication state packet 605 is generated. That is, in the case of FIG. 9, as the terminal communication state packet 605, only the sub-controller 105a-3 on the third floor of the first unit indicating an abnormality has a value “0” indicating an abnormality, and the other sub-controllers 105a-1, 105a- 2,105a-4, 105b-1, 105b-2, 105b-3, 105b-4 all have a value "1" indicating normality.
From the terminal communication status packet 605 created by the communication map creation unit 211, it can be seen that the main controllers 101a and 101b of each unit have a communication abnormality in the sub-controller 105a-3 on the third floor of the first unit.
 図10は、2箇所の通信異常が発生した場合の例である。すなわち、第1号機の3階のサブコントローラ105a-3と、第2号機の2階のサブコントローラ105b-2が故障して通信異常になった場合を示す。
 この図10に示す状態のとき、第1号機メインコントローラ101aでは、最終的に図10に示す端末通信状態パケット603が受信される。この端末通信状態パケット603では、第1号機の4階のサブコントローラ105a-4のみが正常に通信ができ、状態が「1」であり、他の端末の状態は全て「0」のままである。
 また、第2号機メインコントローラ101bでは、最終的に図10に示す端末通信状態パケット604が受信される。この端末通信状態パケット604では、第2号機の3階のサブコントローラ105b-3と、第2号機の4階のサブコントローラ105b-4のみが正常に通信でき、状態が「1」であり、他の端末の状態は全て「0」のままである。
FIG. 10 shows an example in which a communication abnormality occurs at two locations. That is, the case where the sub-controller 105a-3 on the third floor of the first unit and the sub-controller 105b-2 on the second floor of the second unit fail and a communication abnormality occurs is shown.
In the state shown in FIG. 10, the first main controller 101a finally receives the terminal communication state packet 603 shown in FIG. In this terminal communication status packet 603, only the sub-controller 105a-4 on the 4th floor of the first unit can communicate normally, the status is "1", and the status of all other terminals remains "0". ..
Further, the Unit 2 main controller 101b finally receives the terminal communication state packet 604 shown in FIG. In this terminal communication status packet 604, only the sub-controller 105b-3 on the 3rd floor of Unit 2 and the sub-controller 105b-4 on the 4th floor of Unit 2 can communicate normally, and the status is "1". The status of all terminals remains "0".
 したがって、最終的に通信マップ作成部211で作成される端末通信状態パケット605は、第1号機の4階のサブコントローラ105a-4と、第2号機の3階及び4階のサブコントローラ105b-3,105b-4のみが正常を示す値「1」になる。ここで、第1号機の3階のサブコントローラ105a-3と、第2号機の2階のサブコントローラ105b-2との間のサブコントローラ105a-2,105a-1,105b-1は、いずれの経路でも通信ができず、状態が不明であり、状態を示す値は「0」のままである。
 このように複数の系統のサブコントローラ105a-1,105b-1間が、図1に示す通信経路109で接続されていることで、通信を迂回して通信状態を確認することができ、通信異常な範囲を特定することができる。
Therefore, the terminal communication status packet 605 finally created by the communication map creation unit 211 is the sub-controller 105a-4 on the 4th floor of the first unit and the sub-controllers 105b-3 on the 3rd and 4th floors of the second unit. , 105b-4 is the value "1" indicating normality. Here, any of the sub-controllers 105a-2, 105a-1, 105b-1 between the sub-controller 105a-3 on the third floor of Unit 1 and the sub-controller 105b-2 on the second floor of Unit 2 Communication is not possible even on the route, the state is unknown, and the value indicating the state remains "0".
By connecting the sub-controllers 105a-1 and 105b-1 of the plurality of systems by the communication path 109 shown in FIG. 1, the communication status can be confirmed by bypassing the communication, and the communication abnormality can be confirmed. Range can be specified.
 図11は、1つの号機(第2号機)の2箇所の通信異常が発生した場合の例である。すなわち、第2号機の1階のサブコントローラ105b-1と、第2号機の3階のサブコントローラ105b-3が故障して通信異常になった場合を示す。
 この図11に示す状態のときにも、最終的に生成される端末通信状態パケット604で、これらの2台のサブコントローラ105b-1,105b-3と、その間のサブコントローラ105b-2が値「0」で、他は状態が「1」である。
FIG. 11 shows an example in which a communication abnormality occurs at two locations of one unit (Unit 2). That is, the case where the sub-controller 105b-1 on the first floor of the second unit and the sub-controller 105b-3 on the third floor of the second unit fail and a communication abnormality occurs is shown.
Even in the state shown in FIG. 11, in the terminal communication state packet 604 that is finally generated, these two sub-controllers 105b-1 and 105b-3 and the sub-controller 105b-2 in between are set to the value ". It is "0", and the other states are "1".
[メインコントローラでの処理例]
 図12は、各号機のメインコントローラ101a,101bでの処理を示すフローチャートである。
 ここでは、第1号機メインコントローラ101aの動作を例に説明する。
 まず、第1号機メインコントローラ101aが起動し処理を開始すると(ステップS1001)、第1号機メインコントローラ101aは、各送受信部201、202、204で受信した制御情報を格納部205、206、207に格納する(ステップS1002)。次に、通信状態/ルート生成部208が、端末通信状態パケットを生成し、ホール間送受信部201で各サブコントローラ105に送信する(ステップS1003)。
[Processing example on the main controller]
FIG. 12 is a flowchart showing processing by the main controllers 101a and 101b of each unit.
Here, the operation of the Unit 1 main controller 101a will be described as an example.
First, when the Unit 1 main controller 101a is activated and the process is started (step S1001), the Unit 1 main controller 101a transmits the control information received by the transmission / reception units 201, 202, 204 to the storage units 205, 206, 207. Store (step S1002). Next, the communication state / route generation unit 208 generates a terminal communication state packet, and the inter-hole transmission / reception unit 201 transmits it to each sub-controller 105 (step S1003).
 さらに、通信状態/ルート生成部208が、端末ルート設定パケットを生成し、ホール間送受信部201でサブコントローラ105へ送信する(ステップS1004)。
 また、ホール制御指令生成部209がホール制御指令を生成し、ホール間送受信部201でサブコントローラ105へ送信する(ステップS1005)。その後、通信マップ作成部211が端末通信状態格納部205から端末通信状態パケットをリードし、通信状態のマップを作成する(ステップS1006)。第1号機メインコントローラ101aは、この作成した通信マップから通信状況の判断を行い、正常か異常があるかを判断する(ステップS1007)。
Further, the communication state / route generation unit 208 generates a terminal route setting packet, and the inter-hole transmission / reception unit 201 transmits it to the sub controller 105 (step S1004).
Further, the hall control command generation unit 209 generates a hall control command and transmits it to the sub controller 105 by the inter-hole transmission / reception unit 201 (step S1005). After that, the communication map creation unit 211 reads the terminal communication status packet from the terminal communication status storage unit 205 and creates a communication status map (step S1006). The Unit 1 main controller 101a determines the communication status from the created communication map, and determines whether it is normal or abnormal (step S1007).
 このステップS1007で、通信異常の場合(ステップS1007のNo)、号機間送受信部204が別系統(第2号機)の号機メインコントローラ101bの端末通信状態パケットをリードする(ステップS1008)。そして、自号機のメインコントローラ101aでは、自号機のメインコントローラ101aの端末通信状態パケットと、他号機メインコントローラ101bの端末通信状態パケットとを組み合わせるOR条件を取って、通信マップを作成し、モード設定部212に生成した通信マップを送信する(ステップS1009)。 In this step S1007, if a communication error occurs (No in step S1007), the inter-machine transmission / reception unit 204 reads the terminal communication status packet of the unit main controller 101b of another system (unit 2) (step S1008). Then, in the main controller 101a of the own unit, a communication map is created and a mode is set by taking an OR condition in which the terminal communication status packet of the main controller 101a of the own unit and the terminal communication status packet of the main controller 101b of the other unit are combined. The generated communication map is transmitted to unit 212 (step S1009).
 また、ステップS1007で、通信正常の場合(ステップS1007のYes)、自号機のメインコントローラ101aで生成した通信マップをモード設定部212に送信する(ステップS1010)。 Further, in step S1007, if the communication is normal (Yes in step S1007), the communication map generated by the main controller 101a of the own unit is transmitted to the mode setting unit 212 (step S1010).
 そして、ステップS1009またはS1010の送信後、モード設定部212で、通信マップに従いカゴ配車指令生成部210の配車モードを送信し、表示部213にモード情報を送信する(ステップS1011)。
 表示部213は、受信したモード情報を表示する(ステップS1012)。
 また、カゴ配車指令生成部210は、モード設定部212から受信したモードを判別する(ステップS1013)。このステップS1013で通常モードと判断した場合(ステップS1013のYes)、カゴ配車指令生成部210は通常運転を行う(ステップS1014)。また、ステップS1013で通常モードでないと判断した場合(ステップS1013のNo)には、カゴ配車指令生成部210は縮退モードを設定して縮退運転を行う(ステップS1015)。最後に、第1号機メインコントローラ101aは、処理終了かの判別を行い(ステップS1016)、引き続き処理を行う場合は(ステップS1016のNo)、ステップS1003へ戻り、処理終了の際には(ステップS1016のYes)、処理終了プロセスを行う(ステップS1017)。
 ここまで第1号機メインコントローラ101aでの処理を説明したが、第2号機メインコントローラ101bについても、この図12のフローチャートに従って処理が行われる。
Then, after the transmission in step S1009 or S1010, the mode setting unit 212 transmits the vehicle allocation mode of the car allocation command generation unit 210 according to the communication map, and transmits the mode information to the display unit 213 (step S1011).
The display unit 213 displays the received mode information (step S1012).
Further, the car dispatch command generation unit 210 determines the mode received from the mode setting unit 212 (step S1013). When the normal mode is determined in step S1013 (Yes in step S1013), the car dispatch command generation unit 210 performs normal operation (step S1014). If it is determined in step S1013 that the mode is not the normal mode (No in step S1013), the car dispatch command generation unit 210 sets the degenerate mode and performs the degenerate operation (step S1015). Finally, the Unit 1 main controller 101a determines whether the process is completed (step S1016), returns to step S1003 when continuing the process (No in step S1016), and returns to step S1003 when the process is completed (step S1016). Yes), the process end process is performed (step S1017).
Although the processing by the Unit 1 main controller 101a has been described so far, the processing is also performed in the Unit 2 main controller 101b according to the flowchart of FIG.
[通常モード及び縮退モードでの処理例]
 次に、図12のフローチャートのステップS1014での通常モードの運転と、ステップS1015での縮退モードでの運転の詳細を説明する。
[Example of processing in normal mode and degenerate mode]
Next, the details of the operation in the normal mode in step S1014 and the operation in the degenerate mode in step S1015 of the flowchart of FIG. 12 will be described.
 図13は、ステップS1014での通常モードでの運転時の処理を示すフローチャートである。
 通常運転が開始されると(ステップS1101)、カゴ配車指令生成部210は、呼び情報格納部206からホールボタンによるカゴ呼びの情報を読み出すと共に、カゴ情報格納部207からカゴ内のボタン操作に行先階登録の情報を読み出す(ステップS1102)。
 そして、カゴ配車指令生成部210は、読み出した情報から、配車指令があるか否かの判断を行う(ステップS1103)。このステップS1103で配車指令があると判断したとき(ステップS1103のYes)、情報と現在のカゴ位置とに基づいて配車割り当てを行い、巻き上げ機送受信部203に配車指令を送信する(ステップS1104)。
FIG. 13 is a flowchart showing a process during operation in the normal mode in step S1014.
When the normal operation is started (step S1101), the car dispatch command generation unit 210 reads out the information of the car call by the hole button from the call information storage unit 206, and the destination to the button operation in the car from the car information storage unit 207. Read the floor registration information (step S1102).
Then, the car dispatch command generation unit 210 determines whether or not there is a vehicle dispatch command from the read information (step S1103). When it is determined in step S1103 that there is a vehicle allocation command (Yes in step S1103), vehicle allocation is assigned based on the information and the current car position, and the vehicle allocation command is transmitted to the hoisting machine transmission / reception unit 203 (step S1104).
 ステップS1103で配車指令がないと判断したとき(ステップS1103のNo)、及びステップS1104で配車指令を行った後、カゴ配車指令生成部210は、通常運転処理を終了し(ステップS1105)、ステップS1101の開始処理に戻る。
 この通常運転時には、各階のホールボタン操作があった際に、その階にカゴ103a,103bを移動させる処理が行われる。
When it is determined in step S1103 that there is no vehicle allocation command (No in step S1103), and after issuing the vehicle allocation command in step S1104, the car dispatch command generation unit 210 ends the normal operation process (step S1105), and step S1101 Return to the start processing of.
During this normal operation, when there is a hall button operation on each floor, a process of moving the baskets 103a and 103b to that floor is performed.
 図14は、ステップS1015での縮退モードでの運転時の処理を示すフローチャートである。
 縮退運転が開始されると(ステップS1106)、カゴ配車指令生成部210は、呼び情報格納部206からホールボタンによるカゴ呼びの情報を読み出すと共に、カゴ情報格納部207からカゴ内のボタン操作の情報を読み出す(ステップS1107)。なお、縮退運転時に呼び情報格納部206に格納されるカゴ呼びの情報は、正常に通信ができるサブコントローラ105からの情報であり、異常が発生した階のサブコントローラ105からのカゴ呼びの情報は登録されない。
 そして、カゴ配車指令生成部210は、読み出した情報から、配車指令があるか否かの判断を行う(ステップS1108)。このステップS1108で配車指令があると判断したとき(ステップS1108のYes)、情報と現在のカゴ位置とに基づいて配車割り当てを行い、巻き上げ機送受信部203に配車指令を送信する(ステップS1111)。
FIG. 14 is a flowchart showing a process during operation in the degenerate mode in step S1015.
When the degenerate operation is started (step S1106), the car dispatch command generation unit 210 reads the information of the car call by the hole button from the call information storage unit 206, and the information of the button operation in the car from the car information storage unit 207. Is read (step S1107). The car call information stored in the call information storage unit 206 during the degenerate operation is the information from the sub controller 105 that can communicate normally, and the car call information from the sub controller 105 on the floor where the abnormality has occurred is the information from the sub controller 105. Not registered.
Then, the car dispatch command generation unit 210 determines whether or not there is a vehicle dispatch command from the read information (step S1108). When it is determined in step S1108 that there is a vehicle allocation command (Yes in step S1108), vehicle allocation is assigned based on the information and the current basket position, and the vehicle allocation command is transmitted to the hoisting machine transmission / reception unit 203 (step S1111).
 一方、ステップS1108で配車指令がないと判断したとき(ステップS1108のNo)、カゴ配車指令生成部210は、通信マップを参照する(ステップS1109)。このステップS1108でNoとなる配車指令がない状態は、正常に通信ができる各サブコントローラ105からかご呼びの情報がなく、かつカゴ103内のボタン操作もない状態である。 On the other hand, when it is determined in step S1108 that there is no vehicle allocation command (No in step S1108), the car dispatch command generation unit 210 refers to the communication map (step S1109). The state in which there is no vehicle allocation command to be No in step S1108 is a state in which there is no car call information from each sub-controller 105 capable of normally communicating, and there is no button operation in the car 103.
 そして、カゴ配車指令生成部210は、参照した通信マップから、通信異常のサブコントローラ105の階に配車指令を割り当てる(ステップS1110)。ここで、通信異常のサブコントローラ105が複数存在する場合、カゴ配車指令生成部210は、その通信異常のサブコントローラ105が設置された複数の階に順次カゴ103を停止させる配車指令を行う。 Then, the car dispatch command generation unit 210 assigns the vehicle dispatch command to the floor of the sub-controller 105 of the communication abnormality from the referenced communication map (step S1110). Here, when there are a plurality of sub-controllers 105 with communication abnormalities, the car dispatch command generation unit 210 issues a vehicle allocation command to sequentially stop the car 103 on a plurality of floors on which the sub-controllers 105 with communication abnormalities are installed.
 ステップS1111で配車指令を行った後、及びステップS1110での通信異常階への割り当てを行った後、カゴ配車指令生成部210は、縮退運転処理を終了し(ステップS1112)、ステップS1106の開始処理に戻る。 After issuing the vehicle allocation command in step S1111 and assigning to the communication abnormal floor in step S1110, the car dispatch command generation unit 210 ends the degenerate operation process (step S1112), and starts the process of step S1106. Return to.
 このように、通信異常のサブコントローラ105が存在する場合、いずれの階からもカゴ呼びがなく、カゴ内のボタン操作で行先階の登録もないときに、通信異常になった階に順に停止させる縮退運転が行われ、通信異常になった階でもエレベーターを利用できるようになる。 In this way, when the sub-controller 105 with communication error exists, when there is no basket call from any floor and there is no registration of the destination floor by button operation in the basket, the elevators are stopped in order to the floor where communication error occurred. Degenerate operation will be performed, and the elevator will be available even on the floor where communication is abnormal.
 例えば、図9の例の場合、第1号機メインコントローラ101aのカゴ配車指令生成部210は、ステップS1111での配車で、通信異常である3階に停止させる配車を行う。
 また、図10の例の場合、第1号機メインコントローラ101aのカゴ配車指令生成部210は、ステップS1111での配車で、通信異常である1階、2階、3階に順に停止させる配車を行う。また、第2号機メインコントローラ101bのカゴ配車指令生成部210は、ステップS1111での配車で、通信異常である1階、2階に順に停止させる配車を行う。
 さらに、図11の例の場合、第2号機メインコントローラ101bのカゴ配車指令生成部210は、ステップS1111での配車で、通信異常である1階、2階、3階に順に停止させる配車を行う。
For example, in the case of the example of FIG. 9, the car dispatch command generation unit 210 of the Unit 1 main controller 101a dispatches the vehicle to the third floor where the communication is abnormal in the vehicle allocation in step S1111.
Further, in the case of the example of FIG. 10, the car dispatch command generation unit 210 of the Unit 1 main controller 101a dispatches the vehicle in step S1111 to stop the vehicle in order on the first floor, the second floor, and the third floor where the communication is abnormal. .. In addition, the car dispatch command generation unit 210 of the Unit 2 main controller 101b dispatches the vehicle to the first floor and the second floor, which have communication abnormalities, in order in the vehicle allocation in step S1111.
Further, in the case of the example of FIG. 11, the car dispatch command generation unit 210 of the Unit 2 main controller 101b dispatches the vehicle in step S1111 to stop the vehicle in order on the first floor, the second floor, and the third floor where the communication is abnormal. ..
 このように本実施の形態例では、各号機メインコントローラ101とサブコントローラ105との通信に異常が発生しても、通常使用が可能な範囲は通常運転を行い、またその通常運転中には縮退運転をしないことで、ユーザの不快感を最小限に抑えることができる。さらに、本実施の形態例では、通信マップで作成した通信異常な範囲のみで縮退運転が行われ、縮退運転が行われる頻度や範囲を最小限にすることができる。 As described above, in the embodiment of the present embodiment, even if an abnormality occurs in the communication between the main controller 101 and the sub controller 105 of each unit, normal operation is performed within the range in which normal use is possible, and degeneration is performed during the normal operation. By not driving, the discomfort of the user can be minimized. Further, in the example of the present embodiment, the degenerate operation is performed only in the communication abnormal range created by the communication map, and the frequency and range of the degenerate operation can be minimized.
[サブコントローラでの処理例]
 図15は、各サブコントローラ105での処理を示すフローチャートである。
 まず、サブコントローラ105が起動し処理を開始すると(ステップS1201)と、第1送受信部301が上流からの情報を受信する(ステップS1202)。そして、ID解析部306が、受信データの解析を行う(ステップS1203)。
 ID解析部306は、この受信データの解析結果で、受信データが端末ルート設定パケットか否かを判別する(ステップS1204)。さらに、ステップS1204で、端末ルート設定パケットでない場合(ステップS1204のNo)、ID解析部306は、受信データが端末通信状態パケットか否かを判別する(ステップS1205)。
[Processing example with sub-controller]
FIG. 15 is a flowchart showing processing in each sub-controller 105.
First, when the sub-controller 105 starts and starts processing (step S1201), the first transmission / reception unit 301 receives information from the upstream (step S1202). Then, the ID analysis unit 306 analyzes the received data (step S1203).
The ID analysis unit 306 determines whether or not the received data is a terminal route setting packet based on the analysis result of the received data (step S1204). Further, in step S1204, if it is not a terminal route setting packet (No in step S1204), the ID analysis unit 306 determines whether or not the received data is a terminal communication state packet (step S1205).
 そして、ステップS1204で、端末ルート設定パケットであると判別したとき(ステップS1204のYes)、第1送受信部301は、通信ルート設定部304に受信データを送信する(ステップS1206)。そして、通信ルート設定部304は、受信データに基づいて、第2送受信部302の通信ルート設定を行う(ステップS1206)。
 また、ステップS1205で、端末通信状態パケットであると判別したとき(ステップS1205のYes)、第1送受信部301は、通信状態付加部303に受信データを送信する(ステップS1208)。
 そして、通信状態付加部303で通信状態が付加されたデータを、第1送受信部301及び第2送受信部302に送信する(ステップS1209)。
Then, when it is determined in step S1204 that the packet is a terminal route setting packet (Yes in step S1204), the first transmission / reception unit 301 transmits the received data to the communication route setting unit 304 (step S1206). Then, the communication route setting unit 304 sets the communication route of the second transmission / reception unit 302 based on the received data (step S1206).
Further, when it is determined in step S1205 that the packet is a terminal communication state packet (Yes in step S1205), the first transmission / reception unit 301 transmits the received data to the communication state addition unit 303 (step S1208).
Then, the data to which the communication state is added by the communication state addition unit 303 is transmitted to the first transmission / reception unit 301 and the second transmission / reception unit 302 (step S1209).
 さらに、ステップS1205で、端末通信状態パケットでないと判別したとき(ステップS1205のNo)、制御情報であり、第1送受信部301は、ホール情報送受信部305にデータを送信する(ステップS1210)。そして、ホール情報送受信部305が、ホールボタン106などの機器に情報を送信する(ステップS1211)。 Further, when it is determined in step S1205 that the packet is not a terminal communication state packet (No in step S1205), it is control information, and the first transmission / reception unit 301 transmits data to the hall information transmission / reception unit 305 (step S1210). Then, the hall information transmission / reception unit 305 transmits information to a device such as the hall button 106 (step S1211).
 そして、ステップS1207、S1209、S1211の処理後に、第1送受信部301がセットされたパケットを上流の通信経路にブロードキャストで送信すると共に、第2送受信部302がセットされたパケットを下流の通信経路にブロードキャストで送信する(ステップS1212)。
 その後、サブコントローラ105が処理終了か否かを判断する(ステップS1216)。このステップS1216で処理終了でない場合(ステップS1216のNo)、サブコントローラ105は、ステップS1202の処理に戻る。また、ステップS1216で処理終了と判断したとき(ステップS1216のYes)、サブコントローラ105は、終了処理を行う(ステップS1217)。
 このような処理がサブコントローラ105で行われることで、各号機メインコントローラ101では、図5~図11で説明した通信状態のデータを収集できるようになる。
Then, after the processing of steps S1207, S1209, and S1211, the packet in which the first transmission / reception unit 301 is set is broadcast to the upstream communication path, and the packet in which the second transmission / reception unit 302 is set is sent to the downstream communication path. It is transmitted by broadcast (step S1212).
After that, the sub-controller 105 determines whether or not the processing is completed (step S1216). If the process is not completed in step S1216 (No in step S1216), the sub-controller 105 returns to the process in step S1202. Further, when it is determined in step S1216 that the process is completed (Yes in step S1216), the sub controller 105 performs the end process (step S1217).
By performing such processing in the sub controller 105, the main controller 101 of each unit can collect the data of the communication state described with reference to FIGS. 5 to 11.
 以上説明したように、本実施の形態例のエレベーター制御装置は、通信経路107,108,109を備えることで、各号機メインコントローラ101は、各サブコントローラ105との通信が正常か異常かの情報を適切に収集でき、その収集した情報に基づいた適切な運転制御ができる。
 また、各サブコントローラ105との通信状態に基づいた運転として、一部のサブコントローラ105での通信ができない異常が発生しても、通常使用が可能な範囲は通常運転を行い、通常運転中には縮退運転をしないことで、ユーザの不快感を最小限に抑えることができる。さらに、本実施の形態例では、通信マップで作成した通信異常な範囲のみで縮退運転が行われ、縮退運転が行われる頻度や範囲を最小限にすることができる。この通信異常の範囲は、通信経路107,108,109でループ状に各サブコントローラ105を接続して判断するため、通信経路を二重化した場合と同等の良好な異常判別ができる。
As described above, the elevator control device of the present embodiment includes communication paths 107, 108, 109, so that the main controller 101 of each unit provides information on whether communication with each sub controller 105 is normal or abnormal. Can be properly collected, and appropriate operation control can be performed based on the collected information.
Further, as an operation based on the communication state with each sub-controller 105, even if an abnormality occurs in which communication with some sub-controllers 105 cannot be performed, the normal operation is performed within the range in which normal use is possible, and during the normal operation. By not performing degenerate operation, the discomfort of the user can be minimized. Further, in the example of the present embodiment, the degenerate operation is performed only in the communication abnormal range created by the communication map, and the frequency and range of the degenerate operation can be minimized. Since the range of this communication abnormality is determined by connecting the sub-controllers 105 in a loop on the communication routes 107, 108, 109, it is possible to perform the same good abnormality determination as when the communication routes are duplicated.
<第2の実施の形態例>
 次に、本発明の第2の実施の形態例を、図16を参照して説明する。この図16において、先に説明した第1の実施の形態例の図1~図15と同一箇所には同一符号を付し、重複説明は省略する。
<Example of the second embodiment>
Next, an example of the second embodiment of the present invention will be described with reference to FIG. In FIG. 16, the same parts as those in FIGS. 1 to 15 of the first embodiment described above are designated by the same reference numerals, and duplicate description will be omitted.
 本発明の第2の実施の形態例は、1台の号機で構成されるエレベーターの場合である。
 すなわち、本実施の形態例では、図16に示すように、エレベーター制御装置として、第1号機メインコントローラ101aと、各階のサブコントローラ105a-1,105a-2,105a-3,105a-4とを備える。図16では、4つの階の例を示すが、階数は一例である。
 第1号機メインコントローラ101aと、各階のサブコントローラ105a-1,105a-2,105a-3,105a-4は、図2及び図4に示す構成が適用される。
An example of the second embodiment of the present invention is the case of an elevator composed of one unit.
That is, in the example of the present embodiment, as shown in FIG. 16, as the elevator control device, the first main controller 101a and the sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 on each floor are used. Be prepared. FIG. 16 shows an example of four floors, but the number of floors is an example.
The configurations shown in FIGS. 2 and 4 are applied to the first main controller 101a and the sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 on each floor.
 そして、各階のサブコントローラ105a-1~105a-4は、通信経路107a,108aにより、第1号機メインコントローラ101aと双方向に通信可能に順に接続されている。
 すなわち、第1号機メインコントローラ101aは、通信経路107aにより、4階のサブコントローラ105a-4と通信可能に接続されている。
 また、4台のサブコントローラ105a-1,105a-2,105a-3,105a-4は、それぞれ通信経路108aにより順に接続されている。
 各階のサブコントローラ105a-1~105a-4は、各階のホールボタン106a-1~106a-4と接続されている。
Then, the sub-controllers 105a-1 to 105a-4 on each floor are sequentially connected to the first main controller 101a by communication paths 107a and 108a so as to be able to communicate in both directions.
That is, the Unit 1 main controller 101a is communicably connected to the sub-controller 105a-4 on the fourth floor by the communication path 107a.
Further, the four sub-controllers 105a-1, 105a-2, 105a-3, 105a-4 are connected in order by the communication path 108a, respectively.
The sub-controllers 105a-1 to 105a-4 on each floor are connected to the hall buttons 106a-1 to 106a-4 on each floor.
 ここまでは第1の実施の形態例で説明した図1の構成と同じであるが、本実施の形態例の場合には、1階のサブコントローラ105a-1の下流側が、通信経路107xにより、第1号機メインコントローラ101aと接続されている。
 したがって、図16の構成では、各サブコントローラ105は、通信経路107a,108a,107xにより、第1号機メインコントローラ101aとループ状に接続されている。
Up to this point, the configuration is the same as that of FIG. 1 described in the first embodiment, but in the case of the present embodiment, the downstream side of the sub-controller 105a-1 on the first floor is connected by the communication path 107x. It is connected to the Unit 1 main controller 101a.
Therefore, in the configuration of FIG. 16, each sub-controller 105 is connected to the first main controller 101a in a loop by communication paths 107a, 108a, 107x.
 第1号機メインコントローラ101aは、通信経路107aを介して各サブコントローラ105に上流側から順にパケットを送信することができると共に、通信経路107xを介して下流側から各サブコントローラ105に順にパケットを送信することができる。
 このため、例えば図16に示すように、3階のサブコントローラ105a-3が通信異常であるとき、通信経路107aを介した上流側からの通信で、端末通信状態パケット601として、4階のサブコントローラ105a-4のみが、正常な値「1」になる。
 また、通信経路107xを介した下流側からの通信で、1階と2階のサブコントローラ105a-1,105a-24が、正常な値「1」になる。
The Unit 1 main controller 101a can transmit packets to each sub-controller 105 in order from the upstream side via the communication path 107a, and also transmit packets in order from the downstream side to each sub-controller 105 via the communication path 107x. can do.
Therefore, for example, as shown in FIG. 16, when the sub-controller 105a-3 on the third floor has a communication abnormality, the sub-controller on the fourth floor is set as the terminal communication state packet 601 by the communication from the upstream side via the communication path 107a. Only the controller 105a-4 has a normal value of "1".
Further, in the communication from the downstream side via the communication path 107x, the sub-controllers 105a-1 and 105a-24 on the first floor and the second floor have normal values "1".
 そして、第1号機メインコントローラ101aは、上流側からの通信によるパケットと下流側からの通信によるパケットとを合わせることで、通信異常箇所の3階のサブコントローラ105a-3のみが異常と判別できるようになる。すなわち、通信マップとして、上流側からの通信によるパケットで正常に通信できる範囲の登録と、下流側からの通信によるパケットで正常に通信できる範囲の登録で、第1号機メインコントローラ101aは、通信異常箇所を適切に判別できるようになる。
 このようにして異常箇所の発生を判別したとき、第1号機メインコントローラ101aは、縮退モードを設定する。縮退モード設定時の運転処理は、第1の実施の形態例で説明した処理と同じである。
 このように、1台の号機のエレベーターだけが設置された場合であっても、第1の実施の形態例で説明した2台の号機のエレベーターの場合と同様の効果を持つように構成することができる。
Then, the Unit 1 main controller 101a combines the packet from the communication from the upstream side and the packet from the communication from the downstream side so that only the sub-controller 105a-3 on the third floor of the communication abnormality location can be determined to be abnormal. become. That is, as a communication map, the range in which normal communication can be performed by packets from the upstream side and the range in which normal communication can be performed by packets from the downstream side are registered. You will be able to properly identify the location.
When the occurrence of the abnormal portion is determined in this way, the Unit 1 main controller 101a sets the degenerate mode. The operation process when the degenerate mode is set is the same as the process described in the first embodiment.
In this way, even if only one elevator is installed, the effect is the same as that of the two elevators described in the first embodiment. Can be done.
<第3の実施の形態例>
 次に、本発明の第3の実施の形態例を、図17を参照して説明する。この図17においても、第2の実施の形態例と同様に、先に説明した第1の実施の形態例の図1~図15と同一箇所には同一符号を付し、重複説明は省略する。
<Example of the third embodiment>
Next, an example of the third embodiment of the present invention will be described with reference to FIG. In FIG. 17, as in the second embodiment, the same reference numerals are given to the same parts as those in FIGS. 1 to 15 of the first embodiment described above, and duplicate description is omitted. ..
 本発明の第3の実施の形態例は、3台以上の複数号機で構成されるエレベーターの場合である。
 すなわち、本実施の形態例では、図1で説明した第1号機メインコントローラ101a、第2号機メインコントローラ101bの他に、第3号機メインコントローラ101cを備え、それぞれの号機メインコントローラ101a,101b,101cが通信経路112で接続される。
 4台以上備えるエレベーターの場合には、さらに第3号機メインコントローラ101cの後段に、他の通信経路112を介して他の号機メインコントローラ101が接続される。
An example of the third embodiment of the present invention is the case of an elevator composed of three or more units.
That is, in the embodiment of the present embodiment, in addition to the first main controller 101a and the second main controller 101b described with reference to FIG. 1, the third main controller 101c is provided, and the respective main controllers 101a, 101b, 101c are provided. Is connected by the communication path 112.
In the case of an elevator equipped with four or more elevators, another unit main controller 101 is further connected to the subsequent stage of the third unit main controller 101c via another communication path 112.
 そして、1号機のサブコントローラ105a-1~105a-4と、2号機のサブコントローラ105b-1~105b-4が、通信経路107a,108a,109a,108b,107bによりループ状に接続される点についても、第1の実施の形態例と同じである。図17に示す通信経路109aは、1号機の1階のサブコントローラ105a-1と2号機の1階のサブコントローラ105b-1とを接続するものであり、図1に示す通信経路109と同じである。
 なお、図17の例の場合も、階数は一例である。
Then, regarding the point that the sub-controllers 105a-1 to 105a-4 of the first unit and the sub-controllers 105b-1 to 105b-4 of the second unit are connected in a loop by the communication paths 107a, 108a, 109a, 108b, 107b. Is the same as that of the first embodiment. The communication path 109a shown in FIG. 17 connects the sub-controller 105a-1 on the first floor of Unit 1 and the sub-controller 105b-1 on the first floor of Unit 2, and is the same as the communication path 109 shown in FIG. be.
In the case of the example of FIG. 17, the number of floors is an example.
 ここで、第3号機メインコントローラ101cは、3号機のサブコントローラ105c-1~105c-4と、通信経路107c,108cにより上流側から順に接続される。そして、3号機の1階のサブコントローラ105c-1の下流側は、通信経路109bにより、2号機の1階のサブコントローラ105b-1と接続する。
 なお、2号機の1階のサブコントローラ105b-1の第2送受信部302(図4)は、複数の通信経路109a,109bを接続できる2つの通信ポートを備える構成とする。あるいは、1階のサブコントローラ105b-1は、第2送受信部302とは別に、第3送受信部を備える構成としてもよい。
Here, the Unit 3 main controller 101c is connected to the Unit 3 sub-controllers 105c-1 to 105c-4 in order from the upstream side by communication paths 107c and 108c. Then, the downstream side of the sub-controller 105c-1 on the first floor of Unit 3 is connected to the sub-controller 105b-1 on the first floor of Unit 2 by the communication path 109b.
The second transmission / reception unit 302 (FIG. 4) of the sub-controller 105b-1 on the first floor of Unit 2 is configured to include two communication ports to which a plurality of communication paths 109a and 109b can be connected. Alternatively, the sub-controller 105b-1 on the first floor may be configured to include a third transmission / reception unit in addition to the second transmission / reception unit 302.
 また、4台以上備えるエレベーターの場合には、さらに3号機の1階のサブコントローラ105c-1が、他の号機の1階のサブコントローラ105と接続される。
 このように、3台以上の号機のエレベーターが設置された場合であっても、第1の実施の形態例で説明した2台の号機のエレベーターの場合と同様の効果を持つように構成することができる。
Further, in the case of an elevator equipped with four or more elevators, the sub-controller 105c-1 on the first floor of Unit 3 is further connected to the sub-controller 105 on the first floor of another unit.
In this way, even when three or more elevators are installed, the effect is the same as that of the two elevators described in the first embodiment. Can be done.
<変形例>
 なお、本発明は、上述した各実施の形態例に限定されるものではなく、様々な変形例が含まれる。
 例えば、図1に示す通信経路は、各号機メインコントローラ101a,101bを最上階のサブコントローラ105a-4,105b-4に通信経路107a,107bで接続し、1階のサブコントローラ105a-1,105b-1を通信経路109で接続した。これに対して、各号機メインコントローラ101a,101bを最下階のサブコントローラ105a-1,105b-1に通信経路107a,107bで接続し、最上階のサブコントローラ105a-4,105b-4を通信経路109で接続する構成などの、異なる接続順序としてもよい。
<Modification example>
The present invention is not limited to the above-described embodiments, but includes various modifications.
For example, in the communication path shown in FIG. 1, the main controllers 101a and 101b of each unit are connected to the sub-controllers 105a-4 and 105b-4 on the top floor by communication paths 107a and 107b, and the sub-controllers 105a-1 and 105b on the first floor are connected. -1 was connected by the communication path 109. On the other hand, the main controllers 101a and 101b of each unit are connected to the sub-controllers 105a-1 and 105b-1 on the lowest floor by communication paths 107a and 107b, and the sub-controllers 105a-4 and 105b-4 on the top floor are communicated. It may have a different connection order, such as a configuration in which the connection is made by the route 109.
 また、上述した各実施の形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 さらに、上述した各実施の形態例において、本発明の主旨を変えない範囲内で、装置又はシステム構成の変更や、一部の処理手順の省略や入れ替えを行ってもよい。
 また、通常運転や縮退運転を行うプログラム等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、光ディスク等の記録媒体に置くことができる。
Further, each of the above-described embodiments will be described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
Further, in each of the above-described embodiments, the apparatus or system configuration may be changed, and some processing procedures may be omitted or replaced within a range that does not change the gist of the present invention.
In addition, information such as programs for performing normal operation and degenerate operation can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or an optical disk.
 さらに、図1~図4などのブロック図では、制御線や情報線は説明上必要と考えられるものだけを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。また、図12~図15に示すフローチャートにおいて、処理結果に影響を及ぼさない範囲で、複数の処理を同時に実行するか、あるいは処理順序を変更してもよい。 Further, in the block diagrams such as FIGS. 1 to 4, only the control lines and information lines considered necessary for explanation are shown, and not all the control lines and information lines are necessarily shown in the product. .. In practice, it can be considered that almost all configurations are interconnected. Further, in the flowcharts shown in FIGS. 12 to 15, a plurality of processes may be executed at the same time or the processing order may be changed as long as the processing results are not affected.
101a…第1号機メインコントローラ、101b…第2号機メインコントローラ、101c…第3号機メインコントローラ、102a,102b…巻き上げコントローラ、103a,103b…カゴ、104a,104b…ロープ、105a-1~105a-4,105b-1~105b-4,105c-1~105c-4…サブコントローラ、106a-1~106a-4,106b-1~106b-4…ホールボタン、107a,107b,107c,107x,108a,108b,108c,109,109a,109b,110a,110b,111a,111b,112…通信経路、201…ホール間送受信部、202…カゴ間送受信部、203…巻き上げ機送受信部、204…号機間送受信部、205…端末通信状態格納部、206…呼び情報格納部、207…カゴ情報格納部、208…通信状態/ルート生成部、209…ホール制御指令生成部、210…カゴ配車指令生成部、211…通信マップ作成部、212…モード設定部、213…表示部、221…中央処理ユニット(CPU)、222…ROM、223…RAM、224…不揮発性ストレージ、225…ネットワークインタフェース、226…入力装置、301…第1送受信部、302…第2送受信部、303…通信状態付加部、304…通信ルート設定部、305…ホール情報送受信部、306…ID解析部、410…端末通信状態パケット、420…端末ルート設定パケット、430…制御情報 101a ... Unit 1 main controller, 101b ... Unit 2 main controller, 101c ... Unit 3 main controller, 102a, 102b ... Winding controller, 103a, 103b ... Basket, 104a, 104b ... Rope, 105a-1 to 105a-4 , 105b-1 to 105b-4, 105c-1 to 105c-4 ... Sub-controller, 106a-1 to 106a-4, 106b-1 to 106b-4 ... Hall button, 107a, 107b, 107c, 107x, 108a, 108b , 108c, 109, 109a, 109b, 110a, 110b, 111a, 111b, 112 ... Communication path, 201 ... Inter-hole transmitter / receiver, 202 ... Basket transmitter / receiver, 203 ... Winder transmitter / receiver, 204 ... Inter-machine transmitter / receiver, 205 ... Terminal communication status storage unit, 206 ... Call information storage unit, 207 ... Basket information storage unit, 208 ... Communication status / route generation unit, 209 ... Hall control command generation unit, 210 ... Cart dispatch command generation unit, 211 ... Communication Map creation unit, 212 ... Mode setting unit, 213 ... Display unit, 221 ... Central processing unit (CPU), 222 ... ROM, 223 ... RAM, 224 ... Non-volatile storage, 225 ... Network interface, 226 ... Input device, 301 ... 1st transmission / reception unit, 302 ... 2nd transmission / reception unit, 303 ... Communication state addition unit, 304 ... Communication route setting unit, 305 ... Hall information transmission / reception unit, 306 ... ID analysis unit, 410 ... Terminal communication status packet, 420 ... Terminal route Setting packet, 430 ... Control information

Claims (9)

  1.  自系統の号機の制御を行うメインコントローラと、
     利用者または荷物を乗せるカゴと、
     前記メインコントローラの制御に基づいて前記カゴを上下移動させる巻き上げコントローラと、
     前記カゴが上下移動する各階に設置される複数のサブコントローラと、を備えるエレベーター制御装置であって、
     前記メインコントローラと複数の前記サブコントローラとを接続する通信経路として、複数の前記サブコントローラを順に接続したループ状の通信経路を有する
     エレベーター制御装置。
    The main controller that controls the unit of its own system and
    With a basket to carry the user or luggage,
    A winding controller that moves the basket up and down based on the control of the main controller,
    An elevator control device including a plurality of sub-controllers installed on each floor where the basket moves up and down.
    An elevator control device having a loop-shaped communication path in which a plurality of the sub-controllers are sequentially connected as a communication path for connecting the main controller and the plurality of the sub-controllers.
  2.  前記ループ状の通信経路は、他系統の号機のサブコントローラと通信を行う号機間の通信経路を含む
     請求項1に記載のエレベーター制御装置。
    The elevator control device according to claim 1, wherein the loop-shaped communication path includes a communication path between the units that communicate with the sub-controller of the unit of another system.
  3.  前記メインコントローラは、
     複数の前記サブコントローラから受信したパケットに基づいて、前記サブコントローラとの通信が正常でない範囲を示す通信マップを作成する通信マップ作成部と、
     前記通信マップの情報に基づいてモードを設定するモード設定部と、
     前記カゴの配車指令を生成するカゴ配車指令生成部と、を有し、
     前記カゴ配車指令生成部は、前記モード設定部で設定したモードに応じた前記カゴの配車指令を生成する
     請求項2に記載のエレベーター制御装置。
    The main controller
    A communication map creation unit that creates a communication map indicating a range in which communication with the sub-controller is not normal based on packets received from the plurality of the sub-controllers.
    A mode setting unit that sets the mode based on the information in the communication map, and
    It has a car dispatch command generation unit that generates the car dispatch command, and has a car dispatch command generation unit.
    The elevator control device according to claim 2, wherein the car dispatch command generation unit generates a car dispatch command according to a mode set by the mode setting unit.
  4.  それぞれの前記サブコントローラは、前記メインコントローラから送信された端末通信状態パケットの自端末通信状態を更新し、更新した端末通信状態パケットを送信する
     請求項3に記載のエレベーター制御装置。
    The elevator control device according to claim 3, wherein each of the sub-controllers updates the own terminal communication state of the terminal communication status packet transmitted from the main controller, and transmits the updated terminal communication status packet.
  5.  前記モード設定部が設定するモードは、通常モードと縮退モードとを有し、
     前記カゴ配車指令生成部は、前記縮退モードの際に、前記通信マップを参照し、通信が正常でない範囲の階を、所定の順序で順に停止させる縮退運転を行う
     請求項4に記載のエレベーター制御装置。
    The mode set by the mode setting unit has a normal mode and a degenerate mode.
    The elevator control according to claim 4, wherein the car dispatch command generation unit performs a degenerate operation in which the floors in a range in which communication is not normal are stopped in order in a predetermined order with reference to the communication map in the degenerate mode. Device.
  6.  前記縮退モードでの所定の順序で順に停止させる縮退運転は、配車指令が無い場合に行う
     請求項5に記載のエレベーター制御装置。
    The elevator control device according to claim 5, wherein the degenerate operation in which the degenerate operation is stopped in order in a predetermined order in the degenerate mode is performed when there is no vehicle allocation command.
  7.  前記メインコントローラの前記通信マップ作成部は、前記通信マップを作成する際に、他系統の号機のメインコントローラが、前記号機間の通信経路を経由して自系統の号機の前記サブコントローラから受信したパケットを参照する
     請求項3に記載のエレベーター制御装置。
    When the communication map creation unit of the main controller creates the communication map, the main controller of the other system unit receives from the sub controller of the own system unit via the communication path between the units. The elevator controller according to claim 3, which refers to a packet.
  8.  前記メインコントローラは、前記モード設定部が設定したモードについての情報を表示する表示部を備える
     請求項5に記載のエレベーター制御装置。
    The elevator control device according to claim 5, wherein the main controller includes a display unit that displays information about a mode set by the mode setting unit.
  9.  メインコントローラが、カゴが上下移動する各階に設置される複数のサブコントローラと通信を行いながら、自系統の号機のカゴの上下移動を制御するエレベーター制御方法であって、
     前記メインコントローラと、前記複数のサブコントローラとを接続する通信経路として、複数の前記サブコントローラを順に接続したループ状の通信経路とした
     エレベーター制御方法。
    This is an elevator control method in which the main controller controls the vertical movement of the car of its own system while communicating with multiple sub-controllers installed on each floor where the car moves up and down.
    An elevator control method in which a loop-shaped communication path in which a plurality of the sub-controllers are sequentially connected is used as a communication path for connecting the main controller and the plurality of sub-controllers.
PCT/JP2021/000062 2020-02-19 2021-01-05 Elevator control device and elevator control method WO2021166468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180008194.8A CN114929608B (en) 2020-02-19 2021-01-05 Elevator control device and elevator control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-025903 2020-02-19
JP2020025903A JP2021130534A (en) 2020-02-19 2020-02-19 Elevator control device and elevator control method

Publications (1)

Publication Number Publication Date
WO2021166468A1 true WO2021166468A1 (en) 2021-08-26

Family

ID=77390688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000062 WO2021166468A1 (en) 2020-02-19 2021-01-05 Elevator control device and elevator control method

Country Status (3)

Country Link
JP (1) JP2021130534A (en)
CN (1) CN114929608B (en)
WO (1) WO2021166468A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023127066A (en) * 2022-03-01 2023-09-13 株式会社日立製作所 Elevator system and firmware transmission method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122677A (en) * 1983-12-01 1985-07-01 フジテック株式会社 Signal device for elevator
JPS6181372A (en) * 1984-09-29 1986-04-24 株式会社東芝 Method of controlling group of elevator
JPH0620985B2 (en) * 1987-08-12 1994-03-23 株式会社日立製作所 Elevator signal transmission method and elevator device
JPH09315712A (en) * 1996-02-07 1997-12-09 Lg Ind Syst Co Ltd Synchronous position correcting device of elevator
JP2001335249A (en) * 2000-05-29 2001-12-04 Toshiba Corp Control device for group supervisory elevator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074840A (en) * 1983-09-30 1985-04-27 Mitsubishi Electric Corp Signal transmitter
US4742893A (en) * 1986-05-03 1988-05-10 Elevator Gmbh Signalling procedure for a lift and a signalling system
GB2208731B (en) * 1987-08-12 1991-10-16 Hitachi Ltd Signal transmission method and system in elevator equipment
JP4440598B2 (en) * 2003-10-21 2010-03-24 三菱電機株式会社 Elevator group management system
IN2014DN08263A (en) * 2012-04-03 2015-05-15 Otis Elevator Co
CN103935851B (en) * 2014-03-12 2016-01-20 深圳市海浦蒙特科技有限公司 Multiple lift control system
JP6276099B2 (en) * 2014-04-09 2018-02-07 株式会社日立製作所 Elevator communication method and system
KR20180052203A (en) * 2016-11-10 2018-05-18 현대엘리베이터주식회사 Multi-vehicles elevator communication system
JP6912264B2 (en) * 2017-04-21 2021-08-04 株式会社日立製作所 Distributed control system, distributed control device, terminal device, and communication control method of terminal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122677A (en) * 1983-12-01 1985-07-01 フジテック株式会社 Signal device for elevator
JPS6181372A (en) * 1984-09-29 1986-04-24 株式会社東芝 Method of controlling group of elevator
JPH0620985B2 (en) * 1987-08-12 1994-03-23 株式会社日立製作所 Elevator signal transmission method and elevator device
JPH09315712A (en) * 1996-02-07 1997-12-09 Lg Ind Syst Co Ltd Synchronous position correcting device of elevator
JP2001335249A (en) * 2000-05-29 2001-12-04 Toshiba Corp Control device for group supervisory elevator

Also Published As

Publication number Publication date
JP2021130534A (en) 2021-09-09
CN114929608A (en) 2022-08-19
CN114929608B (en) 2023-11-14

Similar Documents

Publication Publication Date Title
JP2987138B2 (en) Elevator control system
US7036635B2 (en) System and display for providing information to elevator passengers
CN108975109A (en) Elevator for mobile device users is redistributed
JPH0561190B2 (en)
WO2021166468A1 (en) Elevator control device and elevator control method
CN104220353A (en) Elevator system using dual communication channels
CA2139704C (en) Intelligent distributed control for elevators
JP2018182695A (en) System, device and method for distributed control
US6533075B2 (en) Elevator group supervisory control system for processing hall call information
JP2581829B2 (en) Elevator group control device
CN107265212B (en) The function variation of group management elevator device and call register apparatus
CN106516917A (en) Elevator system
JP2006225068A (en) Elevator control system
JP2001206657A (en) Elevator group supervisory operation system
JP2001158578A (en) Group supervisory operation control system for elevator
JP2639265B2 (en) Multi-group control system for elevators
WO2023281833A1 (en) Information processing system, information processing method, server, and information presentation device
JPH0248385A (en) Signal transmitter for elevator
WO2021176690A1 (en) Elevator control system
JP7346628B2 (en) Elevator system, operation control method and program
JP2621926B2 (en) Elevator signal transmission equipment
JPH0474278B2 (en)
KR100558795B1 (en) System and method for performing distributed elevator group management control
JPH03272985A (en) Elevator control system and information transmitting method thereof
JPH05294567A (en) Group control device for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756975

Country of ref document: EP

Kind code of ref document: A1