WO2021166313A1 - Electric current sensor, adjustment method therefor, transformer having said electric current sensor mounted thereon, measurement system for analyzing output of electric current sensor of transformer - Google Patents

Electric current sensor, adjustment method therefor, transformer having said electric current sensor mounted thereon, measurement system for analyzing output of electric current sensor of transformer Download PDF

Info

Publication number
WO2021166313A1
WO2021166313A1 PCT/JP2020/036680 JP2020036680W WO2021166313A1 WO 2021166313 A1 WO2021166313 A1 WO 2021166313A1 JP 2020036680 W JP2020036680 W JP 2020036680W WO 2021166313 A1 WO2021166313 A1 WO 2021166313A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding coil
current sensor
main winding
auxiliary
auxiliary winding
Prior art date
Application number
PCT/JP2020/036680
Other languages
French (fr)
Japanese (ja)
Inventor
城杉 孝敏
舘村 誠
今川 尊雄
佐藤 孝平
賢治 中ノ上
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2021166313A1 publication Critical patent/WO2021166313A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present invention relates to a current sensor that measures a current, a transformer to which the current sensor is attached, and a measurement system that analyzes current measurement data that is the output of the current sensor of the transformer, and particularly specifies the measurement accuracy of the current sensor. Regarding the technology to keep it within the value.
  • Current sensors include Rogoski coil type and current transformer type. Since the Rogoski coil type does not have a core, it is not necessary to consider magnetic saturation when considering large current measurement, and since the coil can be opened and closed flexibly, it can be retrofitted and has a large diameter. Can be dealt with. However, since the coil structure is a little complicated and an integrator is required, the cost tends to be high. On the other hand, the current transformer type has a simple coil structure and is relatively inexpensive, but a magnetic saturation design of the core is required for large current measurement, and the shape is fixed when an electromagnetic steel plate or the like is used for the core. Therefore, in order to be able to be retrofitted, it is necessary to have a structure in which cores with a fixed shape are combined.
  • Patent Document 1 a plurality of flexible magnetic sheets are arranged on both sides of a flexible fluxgate magnetic field sensor on a flat plate, and the fluxgate magnetic field sensor is integrated with the flexible fluxgate magnetic field sensor. A current sensor is shown.
  • the detection circuit to which the current sensor is connected is a fixed circuit having detection linearity in advance, it is necessary to keep the accuracy of the detection voltage within the specification value on the current sensor side in order to retrofit the current sensor. There is.
  • the present invention provides a current transformer type current sensor which has a magnetic circuit correction means capable of keeping the accuracy of the detection voltage of current measurement within a specification value, can be retrofitted, and can be mounted with a large diameter. With the goal.
  • a current transformer type current sensor having a substantially annular magnetic core having a gap and a main winding coil for measuring the current wound around the magnetic core, and having a configuration that can be opened and closed at the gap.
  • An auxiliary winding coil wound around a magnetic core is provided, and the auxiliary winding coil is connected to the main winding coil so as to have the same winding direction as the main winding coil. It is possible to select either the second connection that connects to the main winding coil so that it is in the winding direction, or the third connection that connects to the magnetic flux adjustment resistor including 0 ⁇ without connecting to the main winding coil. It is characterized by.
  • a current transformer type current sensor that includes a substantially annular magnetic core having a gap, a main winding coil that measures the current wound around the magnetic core, and an auxiliary winding coil, and can be opened and closed at the gap.
  • a transformer including an iron core, a primary winding and a secondary winding wound around the iron core, a primary electrode connected to the primary winding, and a secondary electrode connected to the secondary winding.
  • the current sensor is provided with a current sensor attached to the insulating portion of the primary electrode and / or the insulating portion of the secondary electrode, and the current sensor is wound around a substantially annular magnetic core having a gap and the magnetic core.
  • a current transformer type current sensor having a main winding coil for measuring the generated current and an auxiliary winding coil, which can be opened and closed at the gap, and the auxiliary winding coil has the same winding direction as the main winding coil.
  • the first connection connected to the main winding coil so as to be, the second connection connected to the main winding coil so as to be in the opposite winding direction to the main winding coil, and 0 ⁇ is included without connecting to the main winding coil. It is characterized in that any one of the third connection connected to the magnetic flux adjusting resistor can be selected.
  • a current transformer type current sensor which has a magnetic circuit correction means capable of keeping the accuracy of the detection voltage of current measurement within a specification value, can be retrofitted, and can be mounted with a large diameter. can do. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
  • FIG. 1 It is a block diagram of the current sensor which is Example 1 of this invention. It is a wiring diagram of the current sensor which is Example 1 of this invention. It is a figure which shows the relationship between the measured current and the detection voltage of the current sensor which is Example 1.
  • FIG. It is operation explanatory drawing of the adjustment by the auxiliary winding coil.
  • It is a wiring diagram of the current sensor which is Example 2 of this invention. It is a wiring diagram of the current sensor which is Example 3 of this invention.
  • connection diagram of the adjustment of the current sensor which is Example 6 of this invention It is a flow chart of adjustment of the current sensor which is Example 6 of this invention. It is a figure which shows the connection terminal of the current sensor which is Example 7 of this invention. It is a figure which shows the connection terminal of the current sensor which is Example 8 of this invention. It is a component diagram which comprises the current sensor which is Example 9 of this invention. It is a block diagram of the current sensor which is Example 9 of this invention. It is a block diagram of the transformer which is Example 10 of this invention. It is a block diagram of the measurement system which is Example 11 of this invention. It is a block diagram of the measurement system which is Example 12 of this invention.
  • FIG. 1 is a configuration diagram of a current transformer type current sensor according to a first embodiment of the present invention.
  • FIG. 1A is a schematic external view of the current sensor 100
  • FIG. 1B is a single amorphous strip 103 constituting the magnetic core 101 of the current transformer
  • FIG. 1C is FIG.
  • FIG. 1 (d) is a current sensor 100 before being rolled into a circle as shown in FIG. 1 (a).
  • the magnetic core 101 is formed by laminating one amorphous strip piece 103 having a width W, a thickness D, and a length L.
  • the thickness D is, for example, about 25 ⁇ m and the width is about 20 mm
  • the length L is calculated from 131, which is the inner diameter ⁇ of the current sensor 100, and 132, which is the thickness d of the magnetic core 101.
  • the main winding coil 110 for current detection is wound N1 turns
  • the auxiliary winding coil 120 for accuracy adjustment is wound N2 turns on the magnetic core 101 in which the strip pieces 103 are laminated
  • both ends of the main winding coil 110 are connected to the terminals 111 and 112.
  • Both ends of the auxiliary winding coil 120 are connected to terminals 121 and 122.
  • FIG. 1 (d) Since the magnetic core 101 is only a stack of strip pieces 103 and the strip pieces 103 are flexible, the shape of FIG. 1 (d) is changed to the circular shape of FIG. 1 (a) (substantially annular).
  • the magnetic core 101 can be fixed by opening both ends 104 and 105 by a gap 102.
  • substantially annular means that a closed-loop magnetic circuit is configured, and not only the magnetic core 101 is physically closed-loop, but also physically like a Randold ring or a C-shape. Even if the magnetic core has a gap (gap 102), the magnetic circuit may form a closed loop.
  • FIG. 2 is a wiring diagram of the current sensor according to the first embodiment of the present invention. This is an example of measuring the current flowing through the wire rod 200 with the current sensor 100.
  • the positions of the black circles on the main winding coil 110 and the auxiliary winding coil 120 represent the winding direction with respect to the main winding coil, and are wound in the same direction in FIG.
  • FIG. 2A shows a main winding coil 110 and an auxiliary winding coil 120 connected with a positive electrode property
  • FIG. 2B shows a main winding coil 110 and an auxiliary winding coil 120 connected with a negative electrode property.
  • the magnetic flux adjusting resistor 204 is connected to the auxiliary winding coil 120.
  • the detection circuit 201 detects the sensor signal of the current from the current sensor 100 as a detection voltage across the detection resistor 202 indicated by Rin, amplifies it by the amplifier 203 having a large input resistance, and outputs it as an amplification detection voltage.
  • FIG. 3A is a diagram showing the relationship between the measured current flowing through the wire rod 200 and the detected voltage across the detection resistor 202, with the gap length of the gap 102 of the current sensor 100 as a parameter.
  • the inductance measured from the terminal 111 and the terminal 112 becomes large, but the linearity deteriorates, and the specified value of the maximum measured current cannot be used for accurate measurement.
  • the characteristic 302 when the gap length is small the inductance measured from the terminal 111 and the terminal 112 is small, but the linearity is improved, and the maximum measured current can be accurately measured.
  • the measured current flowing through the wire 200 is theoretically detected as a detection current of 1 / N1, but there is actually a loss, the degree of which changes depending on the above-mentioned inductance, and the larger the inductance, the better. The smaller the loss, the larger the loss.
  • the gap length can generally be adjusted only in units of a certain fixed value, and it is difficult to make fine adjustments. As a result, the value of the loss changes stepwise.
  • the detection voltage may be larger as in the characteristic 304 or smaller as in the characteristic 305 with respect to the target performance 303. This is adjusted to the target accuracy range of 306 by the auxiliary winding coil.
  • FIG. 4 is an operation explanatory view of adjustment by the auxiliary winding coil, and the characteristics (a), (b), and (c) of FIG. 4 correspond to the connections (a), (b), and (c) of FIG. 2, respectively.
  • FIG. 4A shows the case where the characteristic of the main winding coil is the characteristic 304 of FIG. 3B.
  • the winding direction and the current direction are the same for the main winding coil and the auxiliary winding coil, and the number of turns is increased to N1 + N2. Therefore, the theoretical detection current is reduced from 1 / N1 to 1 / (N1 + N2), and the resulting detection voltage is also reduced to obtain the characteristic 401.
  • FIG. 4 (b) shows the case where the characteristic of the main winding coil is the characteristic 305 of FIG. 3 (b).
  • the winding direction is the same for the main winding coil and the auxiliary winding coil, but the current direction is opposite, and the number of turns is reduced to N1-N2. Therefore, the theoretical detection current increases from 1 / N1 to 1 / (N1-N2), and the resulting detection voltage also increases to obtain the characteristic 402.
  • the winding direction may be reversed between the main winding coil and the auxiliary winding coil, and the current direction may be the same.
  • FIG. 4 (c) shows the case where the characteristic of the main winding coil is the characteristic 304 of FIG. 3 (b).
  • an electromotive force acts on the auxiliary winding coil 120 and a current flows through the resistor 204.
  • the detection current is suppressed and the detection voltage is also reduced.
  • the resistance value of the resistor 204 is increased, the characteristic approaches the characteristic 400. That is, by adjusting the resistance value, it can be adjusted between the characteristic 403 and the characteristic 400.
  • the electromotive force is reversed and the current flows in the opposite direction, but the effect is the same as in FIG. 4 (c).
  • the number of turns of the auxiliary winding coil 120 is the same, in FIGS. 4 (a) and 4 (c), the effect of the detection voltage being smaller is higher in FIG. 4 (a).
  • the number of turns of the auxiliary winding coil may be adjusted in advance from the error caused by the gap.
  • FIGS. 2 (a) and 2 (b) have the effect that the detection voltage can be increased or decreased simply by using the same auxiliary winding coil and changing the connection with the main winding coil.
  • an auxiliary winding coil is provided in the magnetic core in addition to the main winding coil, and the auxiliary winding coil is connected to the main winding coil in a positive or negative manner, or Since the magnetic flux adjusting resistor is connected to the auxiliary winding coil, the accuracy of the detection voltage of the current measurement can be kept within the specified value, and it can be connected to the detection circuit having the detection linearity. Further, since the current sensor does not have an electric circuit system, it is possible to have durability. In addition, since the magnetic core is formed by laminating flexible amorphous strips to form a substantially annular shape with a gap, it can be retrofitted to the terminals of a transformer, etc., and can be attached to a large diameter.
  • FIG. 5 is a wiring diagram of the current sensor according to the second embodiment of the present invention.
  • a second auxiliary winding coil 500 is provided in addition to the first auxiliary winding coil 120.
  • the first auxiliary winding coil 120 is positively connected to the main winding coil 110, and the magnetic flux adjusting resistor 520 is connected to the second auxiliary winding coil 500.
  • the first auxiliary winding coil 120 is negatively connected to the main winding coil 110, and the magnetic flux adjusting resistor 520 is connected to the second auxiliary winding coil 500.
  • the first auxiliary winding coil 120 operates as shown in FIGS. 2 (a) and 2 (b), and the second auxiliary winding coil 500 is provided with a magnetic flux adjusting resistor 520 between terminals 511 and 512, and FIG. 2 (c). ) Works.
  • both the characteristics of the characteristic 304 and the characteristic 305 of FIG. 3 can be obtained.
  • the resistance 520 it is possible to make fine adjustments within the target accuracy of 306.
  • the first auxiliary winding coil 120 can be used in the same manner as shown in FIG. 2 (c) in FIG. Further, by setting the number of turns N2 of the first auxiliary winding coil 120 and the number of turns N3 of the second auxiliary winding coil 500 to be different, the second auxiliary winding coil 500 is shown in FIGS. 2 (a) and 2 (b).
  • the first auxiliary winding coil 120 can also be used as shown in FIG. 2 (c), which has the effect of increasing the types of adjustment values to the target accuracy.
  • FIG. 6 is a wiring diagram of the current sensor according to the third embodiment of the present invention.
  • a flow dividing resistor 600 is provided in parallel with the detection resistor 202.
  • the auxiliary winding coil 120 is positively connected in series to the main winding coil 110, and the flow dividing resistor 600 is connected between the terminal of the main winding coil 110 and the terminal of the auxiliary winding coil 120.
  • the auxiliary winding coil 120 is connected in series with the main winding coil 110 in a negative electrode manner, and the flow dividing resistor 600 is connected between the terminal of the main winding coil 110 and the terminal of the auxiliary winding coil 120.
  • the detection current escape to the diversion resistor 600, the current flowing through the detection resistor 202 can be reduced, and as a result, the detection voltage can be reduced.
  • the detection voltage can be finely adjusted by changing the resistance value r2 of the diversion resistor 600.
  • auxiliary winding coil 120 can be used in the same manner as shown in FIG. 2 (c) in FIG.
  • FIG. 7 is a wiring diagram of the current sensor according to the fourth embodiment of the present invention.
  • a third auxiliary winding coil 700 is provided in addition to the first auxiliary winding coil 120 and the second auxiliary winding coil 500.
  • FIGS. 2A and 2B By setting the turns N2, N3, and N4 of the first auxiliary winding coil 120, the second auxiliary winding coil 500, and the third auxiliary winding coil 700 to different values, FIGS. 2A and 2B ) Can be used at the same time to use the value of the difference in the number of turns, which enables fine adjustment.
  • the number of turns can be N1 + N2-N4, and further fine adjustment can be made with the second auxiliary winding coil 500.
  • the first auxiliary winding coil 120, the second auxiliary winding coil 500, and the third auxiliary winding coil 700 are not limited to the examples shown in FIG. 7, and are shown in FIGS. 2 (a), 2 (b), and 2 respectively.
  • the method of use (c) is possible.
  • the configuration of FIG. 7 has the effect of being able to increase the types of adjustment values to the target accuracy even more than the configuration of FIG.
  • FIG. 8 is a wiring diagram of the current sensor according to the fifth embodiment of the present invention.
  • a third auxiliary winding coil 700 is provided, and the number of turns is N1 + N2-N4.
  • a flow dividing resistor 600 is connected between the terminal of the main winding coil 110 and the terminal of the third auxiliary winding coil 700.
  • FIG. 8 also has the effect of being able to increase the types of adjustment values to the target accuracy more than the configuration of the third embodiment of FIG.
  • FIG. 9 shows the relationship between the connection state and the magnitude of the detected voltage when the auxiliary winding coil is provided.
  • FIG. 9A shows a case where there is one auxiliary winding coil.
  • the number of auxiliary turns is N2.
  • the resistor R2 When the resistor R2 is connected to the auxiliary winding coil, the resistance value is set to a certain level or higher so that the detection voltage is the same as that of the main winding coil (number of turns N1) without the auxiliary winding coil.
  • the resistor R2 When the resistor R2 is connected, that is, when the detection voltage of only the main winding coil is used as a reference, the number of turns is less than N1-N2 and N1 and the detection voltage is larger than that of the main winding coil in the negative electrode connection state (FIG. 4 (b)).
  • the auxiliary winding coil When the auxiliary winding coil is shorted (0), the detected voltage is smaller than that of the reference main winding coil (see FIG. 4C).
  • the number of turns In the positive connection state, the number of turns is larger than N1 + N2 and N1, the detected voltage is smaller than that of the main winding coil, and generally, the auxiliary winding coil is further smaller than that of the short state (FIGS. 4 (a) and 4 (c)). )reference). That is, No. 1 shown in FIG. 9 (a).
  • the detection voltage increases in the order of 1, 2, 3, and 4. By setting the resistance value between short and R2, No. 2 and No. The detection voltage between 3 can be set more
  • FIG. 9B shows a combination when there are two auxiliary winding coils. It is assumed that the number of turns of the auxiliary winding coil is N2 and N3, and N2 is larger than N3. There are four states for each of N2 and N3: positive electrode connection, negative electrode connection, resistance connection to the auxiliary winding coil, and short circuit of the auxiliary winding coil.
  • the resistance value is set to a certain level or higher so that the detection voltage is the same as that of the main winding coil (number of turns N1) without the auxiliary winding coil.
  • the state in which the resistor R3 is connected to the auxiliary winding coil N3 is set to a resistance value of a certain level or higher so that the detection voltage is the same as that of the main winding coil (number of turns N1) without the auxiliary winding coil.
  • N2 short circuit and N3: negative electrode connection of 8
  • N2 short and the detection voltage is small
  • N3 negative electrode connection is large and the detection voltage is large.
  • the magnitude effect changes depending on the number of turns of N2 and N3.
  • the detection voltage can be corrected very finely by combining the methods shown in FIG.
  • Example 6 of the present invention relates to the adjustment of the current sensor.
  • the adjustment method described with reference to FIG. 3 is shown in the connection diagram of FIG. 10 and the adjustment flow of FIG.
  • a main winding coil 110 and an auxiliary winding coil 120 are wound around a substantially annular magnetic core having a gap 102, and inductances are provided at both ends 111 and 112 of the main winding coil. Connect the measuring instrument 901.
  • the adjustment flow shown in FIG. 11 is as follows.
  • S1001 Adjustment is started.
  • S1002 An inductance measuring device 901 is used to measure the inductance between both ends 111 and 112 of the main winding coil 110 when the gap 102 is set to the initial value gap length. At this time, both ends 121 and 122 of the auxiliary winding coil 120 are left open.
  • S1003 It is determined whether or not it is within the region of the optimum inductance (setting range).
  • S1004 If it is not within the optimum inductance region (setting range), the gap length is adjusted. If the inductance is small, the gap length is narrowed, and if the inductance is large, the gap length is widened.
  • step S1003 when the inductance falls within the region of the optimum inductance (setting range), the adjustment of the gap length is completed.
  • S1005 The current sensor 100 is arranged so as to surround the wire rod 200, a measurement current is passed through the wire rod, and the detection voltage shown in FIG. 3 is measured.
  • S1006 As shown in FIG. 2A or FIG. 2B, the auxiliary winding coil is positively or negatively connected to the main winding coil, or as shown in FIG. 2C, the auxiliary winding coil is connected. The magnetic flux adjustment resistor is connected and adjusted so that the detected voltage falls within the target accuracy of 306.
  • S1007 The adjustment is completed.
  • the detection voltage of the current sensor can be within the target accuracy.
  • FIG. 12 is a diagram showing connection terminals of the current sensor according to the seventh embodiment of the present invention.
  • the positive electrode connection, the negative electrode connection, and the magnetic flux adjusting connection of FIG. 12 correspond to the connections of (a), (b), and (c) of FIG. 2, respectively.
  • the terminals 111 and 112 of the main winding coil 110 are arranged on the first terminal plate 1101, and the terminals 121 and 122 of the auxiliary winding coil are arranged on the second terminal plate 1102.
  • the first terminal plate 1101 and the second terminal plate 1102 are arranged in parallel, and one terminal 111 of the main winding coil and the other terminal 121 of the auxiliary winding coil, and the other terminal 112 of the main winding coil and the auxiliary winding are arranged in parallel.
  • One terminal 122 of the coil is on the same side and faces each other.
  • One terminal 111 of the main winding coil is arranged on the side closer to the detection unit 201.
  • the other terminal 112 of the main winding coil and the one terminal 121 of the auxiliary winding coil are diagonally connected by a connecting wire 1103. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and the other terminal 122 of the auxiliary winding coil.
  • connection wire 1104 connects straight between the other terminal 112 of the main winding coil and the other terminal 122 of the auxiliary winding coil. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and one terminal 121 of the auxiliary winding coil.
  • the magnetic flux adjusting resistor 204 When connecting the magnetic flux adjusting resistor shown in FIG. 12 (c), the magnetic flux adjusting resistor 204 is connected between the two terminals 121 and 122 of the auxiliary winding coil. Then, the detection unit 201 is connected to the two terminals of the main winding coil.
  • the two terminals of the first terminal plate in which the two terminals for connecting the main winding coil are arranged and the two terminals of the second terminal plate in which the two terminals for connecting the auxiliary winding coil are arranged are placed on the same side. By arranging them facing each other, the connection shown in FIG. 12 can be made.
  • one terminal 111 of the main winding coil can always be connected to the detection unit 201 closest to the detection unit 201. Further, it can be configured with only two terminal plates having two terminals, and the connections (a), (b) and (c) of FIG. 2 can be easily performed.
  • FIG. 13 is a diagram showing connection terminals of the current sensor according to the eighth embodiment of the present invention.
  • the positive electrode connection, the negative electrode connection, and the magnetic flux adjusting connection of FIG. 13 correspond to the connections of (a), (b), and (c) of FIG. 2, respectively.
  • the third terminal plate 1201 has three terminals, the two terminals 111 and 112 of the main winding coil 110 are arranged on the third terminal plate 1201, and one terminal 111 of the main winding coil is on one end side close to the detection unit 201. Place in. Then, the other terminal 112 of the main winding coil is connected to the central terminal 112a, and the central terminal 112a and the other end terminal 112b are connected.
  • the two terminals 121 and 122 of the auxiliary winding coil are arranged on the fourth terminal plate 1202.
  • the central terminal 112a and one terminal 121 of the auxiliary winding coil, and the terminal 112b at the other end and the other terminal 122 of the auxiliary winding coil face each other.
  • the central terminal 112a and one terminal 121 of the auxiliary winding coil are connected straight with a connection line 1203. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and the other terminal 122 of the auxiliary winding coil.
  • the terminal 112b at the other end and the other terminal 122 of the auxiliary winding coil are connected straight with a connecting wire 1203. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and one terminal 121 of the auxiliary winding coil.
  • one terminal 111 of the main winding coil can always be connected to the detection unit 201 closest to the detection unit 201. Further, the terminals of the main winding coil and the terminals of the auxiliary winding coil can be connected by a connecting wire 1203 having the same length.
  • FIG. 14 is a component diagram constituting the current sensor according to the ninth embodiment of the present invention
  • FIG. 15 is a current sensor according to the ninth embodiment of the present invention configured by using the component of FIG.
  • FIG. 14A is a partial main winding coil 1300 having terminals 1301 and 1302 at both ends, which constitutes a part of the main winding coil 110.
  • a plurality of partial main winding coils 1300 are used to form the main winding coil 110.
  • FIG. 14B shows an auxiliary positive winding coil 1310 having terminals 1311 and 1312 at both ends, which has the same winding direction as the partial main winding coil 1300.
  • FIG. 14C shows an auxiliary negative winding coil 1320 having terminals 1321 and 1322 at both ends, and the winding direction is opposite to that of the partial main winding coil 1300.
  • the (a) positive electrode connection, (b) negative electrode connection, and (c) magnetic flux adjustment resistor connection in FIG. 15 correspond to the connections in FIGS. 2 (a), (b), and (c), respectively.
  • a plurality of partial main winding coils 1300a, 1300b, 1300c, ... are passed through the magnetic core 101, and the auxiliary negative winding coil 1320 is passed in series to form the current sensor 100. do.
  • the magnetic core 101 When connecting the magnetic flux adjusting resistor shown in FIG. 15 (c), the magnetic core 101 is connected in series through a plurality of partial main winding coils 1300a, 1300b, 1300c, .... Then, the magnetic flux adjusting resistor 204 is connected through the auxiliary positive winding coil 1310 or the auxiliary negative winding coil 1320 to form the current sensor 100.
  • the main winding coil 110 is divided into a plurality of partial main winding coils 1300, bending from the straight state of FIG. 15 to the circular state of FIG. 1 (a) can be performed in FIG. 1 (a). There is an effect that can be easily performed as compared with the case where the main winding coil 110 of d) is integrated. Further, since the coil is divided into a plurality of partial main winding coils 1300, there is an effect that the number of turns N1 of the main winding coil can be easily changed by adjusting the number of the partial main winding coils 1300. Furthermore, since the number of the auxiliary positive winding coil 1310 and the auxiliary negative winding coil 1320 can be adjusted, there is an effect that the adjustment can be easily performed within the target accuracy 306 of FIG. 3 (b).
  • FIG. 16 is an example of a transformer to which the current sensor of the tenth embodiment of the present invention is attached.
  • the transformer 1501 is, for example, a three-phase power distribution transformer, which includes an iron core and a primary winding and a secondary winding wound around the iron core.
  • the current sensors 100a, 100b, 100c, 100d, 100e, 100f of the present invention are attached to the respective insulating portions (bush) 1522u, 1522v, 1522w of 1521w.
  • the current sensor can be retrofitted to an existing transformer, measurement accuracy can be obtained even with a large diameter and large current, and since there is no electric circuit system, it can have the same durability as a transformer.
  • the current sensor is attached to all the insulating portions (bush) on the primary side and the secondary side, but only to the primary side or the secondary side, or only a part of the required insulating portion (bush). It may be attached.
  • FIG. 17 is an example of a measurement system according to the eleventh embodiment of the present invention that analyzes the detection output of the current sensor attached to the transformer of FIG.
  • the detection circuits 201a, 201b, 201c, 201d, 201e, 201f constituting the detection unit 1603 Each detects a detection voltage, and outputs each amplification detection voltage to the analysis unit 1601.
  • the analysis unit 1601 manages the time by associating the time information from the clock unit 1602 with each amplification detection voltage.
  • the analysis unit 1601 performs a comparative analysis of each amplification detection voltage with respect to each amplification detection voltage in relation to time.
  • the transformer since the current waveform of the transformer can be obtained, the transformer can be monitored.
  • the load status can be monitored by detecting the current on the secondary side of the transformer.
  • FIG. 18 is an example of a measurement system according to a twelfth embodiment of the present invention that analyzes the detection output of current sensors attached to a plurality of transformers of FIG.
  • transformers are installed in separate locations.
  • the transformer 1501a, the detection unit 1603a, the clock unit 1602a, and the communication unit 1701a are in one place
  • the transformer 1501b, the detection unit 1603b, the clock unit 1602b, and the communication unit 1701b are in another place
  • the transformer 1501c is installed in three different places, that is, another place.
  • the installation location is not limited to three, and may be any number.
  • the analysis unit 1601 and the communication unit 1702 are in one place, for example, the center.
  • the communication unit 1702 of the center receives and collects data information from the communication units 1701a, 1701b, 1702c of each transformer via the communication line, and sends the data information to the analysis unit 1601. Then, the analysis unit 1601 compares and analyzes the data information.
  • the communication line any line such as a dedicated line or an internet line can be used.
  • the time information and the amplified detection voltage are associated with each other at each location for communication. That is, the time information from the clock unit 1602a is associated with the amplified detection voltage by the detection unit 1603a, and the communication unit 1701a communicates as data information. Further, the time information from the clock unit 1602b is associated with the amplified detection voltage by the detection unit 1603b, and the communication unit 1701b communicates as data information. Further, the time information from the clock unit 1602c is associated with the amplified detection voltage by the detection unit 1603c, and the communication unit 1701c communicates as data information.
  • clocks 1602a, 1602b, and 1603c are in different locations, use GPS (Global Positioning System) or other methods to completely match the time information.
  • GPS Global Positioning System
  • comparative analysis of the amplification detection voltage of the current sensor attached to each transformer is performed for a plurality of transformers in a group even if there are transformers and analysis units at remote locations. Can be done in association with.
  • the information used for analysis by the analysis unit 1601 may be not only the data information of the current sensor of the transformer but also any other information.
  • the current sensor of the present invention can be applied to a measuring system that measures the current on the primary side or the secondary side of at least one transformer.
  • Connection line 1300 ... Partial main winding coil, 1310 ... Auxiliary positive winding coil, 1320 ... Auxiliary negative winding coil, 1501 ... Transformer, 1511u, 1511v, 1511w, 1521u , 1521v, 1521w ... Electrodes, 1512u, 1512v, 1512w, 1522u, 1522v, 1522w ... Insulation unit (bush), 1601 ... Analysis unit, 1602 ... Clock unit, 1603 ... Detection unit, 1701, 1702 ... Communication unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Provided is a current transformer type electric current sensor which has a magnetic circuit correction means capable of putting accuracy of voltage detected by electric current measurement in a specification value, and which can be post-fitted to a component and is compatible with mounting to a component having a large diameter. This current transformer type electric current sensor is provided with a substantially annular magnetic core having a gap and a main winding coil that measures an electric current and that is wound around the magnetic core, and is configured to openable/closable at a portion of the gap. The current transformer type electric current sensor is characterized by being provided with an auxiliary winding coil wound around the magnetic core and is characterized in that the auxiliary winding coil can select one of a first connection for connecting the auxiliary winding coil to the main winding coil such that the winding direction of the auxiliary winding coil is the same as that of the main winding coil, a second connection for connecting the auxiliary winding coil to the main winding coil such that the winding direction of the auxiliary winding coil is reverse to that of the main winding coil, and a third connection for connecting the auxiliary winding coil to a magnetic flux adjustment resistor including a 0-Ω resistor instead of connecting the auxiliary winding coil to the main winding coil.

Description

電流センサ、その調整方法、それを取り付けた変圧器、および変圧器の電流センサの出力を分析する測定システムA measuring system that analyzes the output of the current sensor, its adjustment method, the transformer to which it is attached, and the current sensor of the transformer.
 本発明は、電流を測定する電流センサ、およびこの電流センサを取り付けた変圧器、並びにその変圧器の電流センサの出力である電流測定データを分析する測定システムに関し、特に電流センサの測定精度を仕様値内に収めるための技術に関する。 The present invention relates to a current sensor that measures a current, a transformer to which the current sensor is attached, and a measurement system that analyzes current measurement data that is the output of the current sensor of the transformer, and particularly specifies the measurement accuracy of the current sensor. Regarding the technology to keep it within the value.
 電流センサには、ロゴスキーコイルタイプやカレントトランスタイプがある。ロゴスキーコイルタイプはコアを有しない構成のため、大電流測定を考えたとき磁気飽和を考慮する必要がなく、またフレキシブルでコイルを開閉可能な構造にできるため、後付けが可能であり、大口径に対応することができる。ただし、コイル構造がやや複雑であることや積分器が必要なことから、コスト的に高くなる傾向にある。一方、カレントトランスタイプはコイル構造が簡単で比較的安価であるが、大電流測定の場合はコアの磁気飽和設計が必要であり、またコアに電磁鋼板等を使用した場合には形が決まってしまい、後付け可能とするためには形の決まったコアを合わせる構造とする必要がある。 Current sensors include Rogoski coil type and current transformer type. Since the Rogoski coil type does not have a core, it is not necessary to consider magnetic saturation when considering large current measurement, and since the coil can be opened and closed flexibly, it can be retrofitted and has a large diameter. Can be dealt with. However, since the coil structure is a little complicated and an integrator is required, the cost tends to be high. On the other hand, the current transformer type has a simple coil structure and is relatively inexpensive, but a magnetic saturation design of the core is required for large current measurement, and the shape is fixed when an electromagnetic steel plate or the like is used for the core. Therefore, in order to be able to be retrofitted, it is necessary to have a structure in which cores with a fixed shape are combined.
 特許文献1には、可とう性を有する平板上のフラックスゲート磁界センサの両面に可とう性を有する複数の磁性シートが配設されると共に、当該フラックスゲート磁界センサと一体化されて構成された電流センサが示されている。 In Patent Document 1, a plurality of flexible magnetic sheets are arranged on both sides of a flexible fluxgate magnetic field sensor on a flat plate, and the fluxgate magnetic field sensor is integrated with the flexible fluxgate magnetic field sensor. A current sensor is shown.
特開2009-2818号公報JP-A-2009-2818
 電流センサを配電用変圧器に取り付けるには、ブッシュ直径φ90mm以上の径が必要で、且つ、後付けできることが望まれる。電流センサを後付け可能とするためには開閉部分が必要で、そこにコアギャップが生じる。コアギャップを設けることで大電流測定時にコアの磁気飽和を抑制することができるが、ギャップ長(ギャップ間隔)の長さによりインダクタンス値が変化し、この変化が電流測定の検出電圧の精度を劣化させるという課題があった。 In order to attach the current sensor to the distribution transformer, it is necessary to have a bush diameter of φ90 mm or more, and it is desirable that it can be retrofitted. An opening / closing part is required to enable the current sensor to be retrofitted, and a core gap is created there. By providing a core gap, magnetic saturation of the core can be suppressed during large current measurement, but the inductance value changes depending on the length of the gap length (gap interval), and this change deteriorates the accuracy of the detected voltage in current measurement. There was a problem to make it.
 また、電流センサが接続される検出回路は、予め検出直線性を備えた固定の回路であるため、電流センサを後付けするためには、電流センサ側で検出電圧の精度を仕様値内に収める必要がある。 Further, since the detection circuit to which the current sensor is connected is a fixed circuit having detection linearity in advance, it is necessary to keep the accuracy of the detection voltage within the specification value on the current sensor side in order to retrofit the current sensor. There is.
 本発明は、電流測定の検出電圧の精度を仕様値内に収めることのできる磁気回路の補正手段を有し、後付け可能で大口径の取り付けにも対応したカレントトランスタイプの電流センサを提供することを目的とする。 The present invention provides a current transformer type current sensor which has a magnetic circuit correction means capable of keeping the accuracy of the detection voltage of current measurement within a specification value, can be retrofitted, and can be mounted with a large diameter. With the goal.
 上記目的を達成するための、本発明の「電流センサ」の一例を挙げるならば、
ギャップを有する略環状の磁性コアと、前記磁性コアの周囲に巻き回した電流を測定する主巻コイルとを備え、前記ギャップの箇所で開閉できる構成のカレントトランスタイプの電流センサであって、前記磁性コアの周囲に巻き回した、補助巻コイルを備え、前記補助巻コイルは、前記主巻コイルと同じ巻き方向となるように主巻コイルに接続する第1接続、前記主巻コイルと逆の巻き方向となるように主巻コイルに接続する第2接続、前記主巻コイルに接続せずに、0Ωを含む磁束調整抵抗に接続する第3接続、の何れかの接続を選択可能としたことを特徴とするものである。
To give an example of the "current sensor" of the present invention for achieving the above object,
A current transformer type current sensor having a substantially annular magnetic core having a gap and a main winding coil for measuring the current wound around the magnetic core, and having a configuration that can be opened and closed at the gap. An auxiliary winding coil wound around a magnetic core is provided, and the auxiliary winding coil is connected to the main winding coil so as to have the same winding direction as the main winding coil. It is possible to select either the second connection that connects to the main winding coil so that it is in the winding direction, or the third connection that connects to the magnetic flux adjustment resistor including 0Ω without connecting to the main winding coil. It is characterized by.
 また、本発明の「電流センサの調整方法」の一例を挙げるならば、
ギャップを有する略環状の磁性コアと、前記磁性コアの周囲に巻き回した電流を測定する主巻コイルと、補助巻コイルとを備え、前記ギャップの箇所で開閉できる構成のカレントトランスタイプの電流センサの調整方法であって、前記主巻コイルにインダクタンス測定器を接続し、インダクタンスを測定するステップと、インダクタンス値が設定範囲に入るように前記主巻コイルのギャップ長を調整するステップと、前記電流センサを線材を囲むように配置し、線材に測定電流を流して主巻コイルの検出電圧を測定するステップと、前記補助巻コイルを前記主巻コイルに正極性接続または負極性接続して、或いは、前記補助巻コイルに磁束調整抵抗を接続調整して、検出電圧が目標精度内に入るように調整するステップと、を有する電流センサの調整方法である。
Further, to give an example of the "adjustment method of the current sensor" of the present invention,
A current transformer type current sensor that includes a substantially annular magnetic core having a gap, a main winding coil that measures the current wound around the magnetic core, and an auxiliary winding coil, and can be opened and closed at the gap. The step of connecting an inductance measuring device to the main winding coil and measuring the inductance, the step of adjusting the gap length of the main winding coil so that the inductance value falls within the set range, and the current. A step of arranging the sensor so as to surround the wire and passing a measuring current through the wire to measure the detection voltage of the main winding coil, and connecting the auxiliary winding coil to the main winding coil with a positive or negative connection, or This is a method for adjusting a current sensor, which comprises a step of connecting and adjusting a magnetic flux adjusting resistor to the auxiliary winding coil to adjust the detected voltage so as to be within the target accuracy.
 また、本発明の「変圧器」の一例を挙げるならば、
鉄心と、前記鉄心に巻き回した1次巻線および2次巻線と、前記1次巻線に接続した1次電極と、前記2次巻線に接続した2次電極とを備える変圧器であって、前記1次電極の絶縁部および/または2次電極の絶縁部に取り付けた電流センサを備え、前記電流センサは、ギャップを有する略環状の磁性コアと、前記磁性コアの周囲に巻き回した電流を測定する主巻コイルと、補助巻コイルとを備え、前記ギャップの箇所で開閉できる構成のカレントトランスタイプの電流センサであって、前記補助巻コイルは、前記主巻コイルと同じ巻き方向となるように主巻コイルに接続する第1接続、前記主巻コイルと逆の巻き方向となるように主巻コイルに接続する第2接続、前記主巻コイルに接続せずに、0Ωを含む磁束調整抵抗に接続する第3接続、の何れかの接続を選択可能としたことを特徴とするものである。
Further, to give an example of the "transformer" of the present invention,
A transformer including an iron core, a primary winding and a secondary winding wound around the iron core, a primary electrode connected to the primary winding, and a secondary electrode connected to the secondary winding. The current sensor is provided with a current sensor attached to the insulating portion of the primary electrode and / or the insulating portion of the secondary electrode, and the current sensor is wound around a substantially annular magnetic core having a gap and the magnetic core. A current transformer type current sensor having a main winding coil for measuring the generated current and an auxiliary winding coil, which can be opened and closed at the gap, and the auxiliary winding coil has the same winding direction as the main winding coil. The first connection connected to the main winding coil so as to be, the second connection connected to the main winding coil so as to be in the opposite winding direction to the main winding coil, and 0Ω is included without connecting to the main winding coil. It is characterized in that any one of the third connection connected to the magnetic flux adjusting resistor can be selected.
 本発明によれば、電流測定の検出電圧の精度を仕様値内に収めることのできる磁気回路の補正手段を有し、後付け可能で大口径の取り付けにも対応したカレントトランスタイプの電流センサを提供することができる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, there is provided a current transformer type current sensor which has a magnetic circuit correction means capable of keeping the accuracy of the detection voltage of current measurement within a specification value, can be retrofitted, and can be mounted with a large diameter. can do.
Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本発明の実施例1である電流センサの構成図である。It is a block diagram of the current sensor which is Example 1 of this invention. 本発明の実施例1である電流センサの配線図である。It is a wiring diagram of the current sensor which is Example 1 of this invention. 実施例1である電流センサの、測定電流と検出電圧の関係を示す図である。It is a figure which shows the relationship between the measured current and the detection voltage of the current sensor which is Example 1. FIG. 補助巻コイルによる調整の動作説明図である。It is operation explanatory drawing of the adjustment by the auxiliary winding coil. 本発明の実施例2である電流センサの配線図である。It is a wiring diagram of the current sensor which is Example 2 of this invention. 本発明の実施例3である電流センサの配線図である。It is a wiring diagram of the current sensor which is Example 3 of this invention. 本発明の実施例4である電流センサの配線図である。It is a wiring diagram of the current sensor which is Example 4 of this invention. 本発明の実施例5である電流センサの配線図である。It is a wiring diagram of the current sensor which is Example 5 of this invention. 補助巻コイルの接続状態と検出電圧の大きさの関係を示す表である。It is a table which shows the relationship between the connection state of an auxiliary winding coil, and the magnitude of a detection voltage. 本発明の実施例6である電流センサの調整の接続図である。It is a connection diagram of the adjustment of the current sensor which is Example 6 of this invention. 本発明の実施例6である電流センサの調整のフロー図である。It is a flow chart of adjustment of the current sensor which is Example 6 of this invention. 本発明の実施例7である電流センサの接続端子を示す図である。It is a figure which shows the connection terminal of the current sensor which is Example 7 of this invention. 本発明の実施例8である電流センサの接続端子を示す図である。It is a figure which shows the connection terminal of the current sensor which is Example 8 of this invention. 本発明の実施例9である電流センサを構成する部品図である。It is a component diagram which comprises the current sensor which is Example 9 of this invention. 本発明の実施例9である電流センサの構成図である。It is a block diagram of the current sensor which is Example 9 of this invention. 本発明の実施例10である変圧器の構成図である。It is a block diagram of the transformer which is Example 10 of this invention. 本発明の実施例11である測定システムの構成図である。It is a block diagram of the measurement system which is Example 11 of this invention. 本発明の実施例12である測定システムの構成図である。It is a block diagram of the measurement system which is Example 12 of this invention.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not construed as being limited to the description of the embodiments shown below. It is easily understood by those skilled in the art that a specific configuration thereof can be changed without departing from the idea or gist of the present invention.
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。 In the configuration of the invention described below, the same reference numerals may be used in common between different drawings for the same parts or parts having similar functions, and duplicate explanations may be omitted.
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。 The notations such as "first", "second", and "third" in the present specification and the like are attached to identify the components, and do not necessarily limit the number or order. Further, the numbers for identifying the components are used for each context, and the numbers used in one context do not always indicate the same composition in the other contexts. Further, it does not prevent the component identified by a certain number from having the function of the component identified by another number.
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each configuration shown in the drawings, etc. may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings and the like.
 図1は、本発明の実施例1であるカレントトランスタイプの電流センサの構成図である。図1において、図1(a)は電流センサ100の外観概略図、図1(b)はカレントトランスの磁性コア101を構成する1枚のアモルファスの短冊片103、図1(c)は図1(b)の短冊片103を積層した磁性コア101、図1(d)は図1(a)のように円形に丸める前の電流センサ100である。 FIG. 1 is a configuration diagram of a current transformer type current sensor according to a first embodiment of the present invention. In FIG. 1, FIG. 1A is a schematic external view of the current sensor 100, FIG. 1B is a single amorphous strip 103 constituting the magnetic core 101 of the current transformer, and FIG. 1C is FIG. The magnetic core 101 in which the strip pieces 103 of (b) are laminated, and FIG. 1 (d) is a current sensor 100 before being rolled into a circle as shown in FIG. 1 (a).
 磁性コア101は、幅W、厚さD、長さLの1枚のアモルファスの短冊片103を積層して構成される。厚さDは例えば25μm、幅は20mm程度のオーダで、長さLは電流センサ100の内径φである131と磁性コア101の厚さdである132から計算される。また、磁性コア101を構成する短冊片103a、103b、103c、…、の積層枚数nは厚さDと磁性コア101の厚さdから計算される(n=d/D)。 The magnetic core 101 is formed by laminating one amorphous strip piece 103 having a width W, a thickness D, and a length L. The thickness D is, for example, about 25 μm and the width is about 20 mm, and the length L is calculated from 131, which is the inner diameter φ of the current sensor 100, and 132, which is the thickness d of the magnetic core 101. Further, the number of stacked strips n of the strip pieces 103a, 103b, 103c, ... Consisting of the magnetic core 101 is calculated from the thickness D and the thickness d of the magnetic core 101 (n = d / D).
 短冊片103を積層した磁性コア101に電流検出用の主巻コイル110をN1ターン、精度調整用の補助巻コイル120をN2ターン巻き、主巻コイル110の両端を端子111、112に接続し、補助巻コイル120の両端を端子121、122に接続する。 The main winding coil 110 for current detection is wound N1 turns, the auxiliary winding coil 120 for accuracy adjustment is wound N2 turns on the magnetic core 101 in which the strip pieces 103 are laminated, and both ends of the main winding coil 110 are connected to the terminals 111 and 112. Both ends of the auxiliary winding coil 120 are connected to terminals 121 and 122.
 磁性コア101は短冊片103を積層しているだけであり、また、短冊片103は可とう性があるため、図1(d)の形状から図1(a)の円形の形状(略環状)にすることができ、磁性コア101の両端104、105をギャップ102だけ開けて固定することができる。 Since the magnetic core 101 is only a stack of strip pieces 103 and the strip pieces 103 are flexible, the shape of FIG. 1 (d) is changed to the circular shape of FIG. 1 (a) (substantially annular). The magnetic core 101 can be fixed by opening both ends 104 and 105 by a gap 102.
 本明細書における“略環状”は閉ループの磁気回路が構成されるものを意味し、磁性コア101が物理的に閉ループになっているもののみならず、ランドルト環やC字のように、物理的に磁気コアに隙間(ギャップ102)が開けられたものであっても、磁気回路が閉ループを構成するものも含まれる。 In the present specification, "substantially annular" means that a closed-loop magnetic circuit is configured, and not only the magnetic core 101 is physically closed-loop, but also physically like a Randold ring or a C-shape. Even if the magnetic core has a gap (gap 102), the magnetic circuit may form a closed loop.
 図2は、本発明の実施例1である電流センサの配線図である。電流センサ100で線材200に流れる電流を測定する例である。主巻コイル110、補助巻コイル120にある黒丸の位置は主巻コイルを基準とした巻き方向を表し、図2では同じ向きに巻いてある。 FIG. 2 is a wiring diagram of the current sensor according to the first embodiment of the present invention. This is an example of measuring the current flowing through the wire rod 200 with the current sensor 100. The positions of the black circles on the main winding coil 110 and the auxiliary winding coil 120 represent the winding direction with respect to the main winding coil, and are wound in the same direction in FIG.
 図2(a)は主巻コイル110と補助巻コイル120とを正極性で接続したもの、図2(b)は主巻コイル110と補助巻コイル120とを負極性で接続したもの、図2(c)は補助巻コイル120に磁束調整抵抗204を接続したものである。 FIG. 2A shows a main winding coil 110 and an auxiliary winding coil 120 connected with a positive electrode property, and FIG. 2B shows a main winding coil 110 and an auxiliary winding coil 120 connected with a negative electrode property. In (c), the magnetic flux adjusting resistor 204 is connected to the auxiliary winding coil 120.
 検出回路201は、電流センサ100からの電流のセンサ信号をRinで示す検出抵抗202の両端に検出電圧として検出し、入力抵抗の大きいアンプ203で増幅して増幅検出電圧として出力する。 The detection circuit 201 detects the sensor signal of the current from the current sensor 100 as a detection voltage across the detection resistor 202 indicated by Rin, amplifies it by the amplifier 203 having a large input resistance, and outputs it as an amplification detection voltage.
 図2の動作を、図3、図4を用いて説明する。
  図3(a)は、電流センサ100のギャップ102のギャップ長をパラメータとした、線材200に流れる測定電流と検出抵抗202の両端の検出電圧の関係を示す図である。ギャップ長の小さい場合の特性301では、端子111と端子112から測定したインダクタンスは大きくなるが直線性が悪くなり、最大測定電流の仕様値では正確に測定できない。これに対して、ギャップ長の小さい場合の特性302では、端子111と端子112から測定したインダクタンスは小さくなるが直線性は良くなり、最大測定電流の仕様値においても正確に測定することができる。
The operation of FIG. 2 will be described with reference to FIGS. 3 and 4.
FIG. 3A is a diagram showing the relationship between the measured current flowing through the wire rod 200 and the detected voltage across the detection resistor 202, with the gap length of the gap 102 of the current sensor 100 as a parameter. In the characteristic 301 when the gap length is small, the inductance measured from the terminal 111 and the terminal 112 becomes large, but the linearity deteriorates, and the specified value of the maximum measured current cannot be used for accurate measurement. On the other hand, in the characteristic 302 when the gap length is small, the inductance measured from the terminal 111 and the terminal 112 is small, but the linearity is improved, and the maximum measured current can be accurately measured.
 線材200に流れる測定電流は、理論的には1/N1の検出電流になって検出されるが、実際には損失があり、その度合いは前記のインダクタンスによっても変化して、インダクタンスが大きい方が損失が少なく小さい方が損失が大きい。 The measured current flowing through the wire 200 is theoretically detected as a detection current of 1 / N1, but there is actually a loss, the degree of which changes depending on the above-mentioned inductance, and the larger the inductance, the better. The smaller the loss, the larger the loss.
 すなわち、直線性を考えればインダクタンスは小さい方がいいが、理論値からの損失を考えるとインダクタンスは大きい方がよく、最適なインダクタンスの領域が存在する。この最適なインダクタンスの領域になるようにギャップ長を調整する。 That is, considering the linearity, it is better that the inductance is small, but considering the loss from the theoretical value, it is better that the inductance is large, and there is an optimum inductance region. Adjust the gap length so that it is in the region of this optimum inductance.
 ギャップ長は一般的にある固定値を単位としてしか調整できず微調整することが困難であり、結果、前記損失の値が段階的に変化する。 The gap length can generally be adjusted only in units of a certain fixed value, and it is difficult to make fine adjustments. As a result, the value of the loss changes stepwise.
 また、図1(c)のように積層した構造では、図1(a)のように円形にした時の磁性コア101の両端104,105を均等なギャップ長のギャップ102にすることが困難で、結果、インダクタンスの個体差が生じ損失の値が変化する。 Further, in the laminated structure as shown in FIG. 1 (c), it is difficult to make the gaps 102 at both ends 104 and 105 of the magnetic core 101 having a uniform gap length when the magnetic core 101 is made circular as shown in FIG. 1 (a). As a result, individual differences in inductance occur and the value of loss changes.
 すなわち、図3(b)において、目標性能303に対し、特性304のように検出電圧が大きめに出ることも、特性305のように検出電圧が小さめに出ることもある。これを補助巻コイルにより目標精度306の範囲に調整する。 That is, in FIG. 3B, the detection voltage may be larger as in the characteristic 304 or smaller as in the characteristic 305 with respect to the target performance 303. This is adjusted to the target accuracy range of 306 by the auxiliary winding coil.
 以上説明したように、まず最大測定電流においても直線性のあるギャップ長とし、そのあと補助巻コイルで目標精度に調整する。 As explained above, first set the gap length to be linear even at the maximum measured current, and then adjust to the target accuracy with the auxiliary winding coil.
 図4は補助巻コイルによる調整の動作説明図であり、図4の特性(a)(b)(c)は、図2の接続(a)(b)(c)にそれぞれ対応している。 FIG. 4 is an operation explanatory view of adjustment by the auxiliary winding coil, and the characteristics (a), (b), and (c) of FIG. 4 correspond to the connections (a), (b), and (c) of FIG. 2, respectively.
 図4(a)は、主巻コイルの特性が図3(b)の特性304の場合である。このとき図2(a)の接続にすれば、主巻コイルと補助巻コイルで巻方向、電流方向が同じで、巻数がN1+N2に増加したことになる。したがって理論的検出電流は1/N1から1/(N1+N2)に小さくなり、結果検出電圧も小さくなって特性401のようになる。 FIG. 4A shows the case where the characteristic of the main winding coil is the characteristic 304 of FIG. 3B. At this time, if the connection shown in FIG. 2A is used, the winding direction and the current direction are the same for the main winding coil and the auxiliary winding coil, and the number of turns is increased to N1 + N2. Therefore, the theoretical detection current is reduced from 1 / N1 to 1 / (N1 + N2), and the resulting detection voltage is also reduced to obtain the characteristic 401.
 図4(b)は、主巻コイルの特性が図3(b)特性305の場合である。このとき図2(b)の接続にすれば、主巻コイルと補助巻コイルで巻方向は一緒だが、電流方向が逆で、巻数がN1-N2に減少したことになる。したがって理論的検出電流は1/N1から1/(N1-N2)に大きくなり、結果検出電圧も大きくなって特性402のようになる。なお、主巻コイルと補助巻コイルで巻方向を逆にし、電流方向を同じにしてもよい。 FIG. 4 (b) shows the case where the characteristic of the main winding coil is the characteristic 305 of FIG. 3 (b). At this time, if the connection shown in FIG. 2B is used, the winding direction is the same for the main winding coil and the auxiliary winding coil, but the current direction is opposite, and the number of turns is reduced to N1-N2. Therefore, the theoretical detection current increases from 1 / N1 to 1 / (N1-N2), and the resulting detection voltage also increases to obtain the characteristic 402. The winding direction may be reversed between the main winding coil and the auxiliary winding coil, and the current direction may be the same.
 図4(c)は、主巻コイルの特性が図3(b)特性304の場合である。このとき図2(c)の接続にすれば、補助巻コイル120に起電力が働き抵抗204に電流が流れる。これにより検出電流が抑制され、検出電圧も小さくなる。このとき、抵抗204であるr=0Ωとしたときに最もこの効果が大きくなり、特性403となる。抵抗204の抵抗値を大きくしていくと特性は特性400に近づく。すなわち、抵抗値を調整することで特性403から特性400の間に調整できる。なお、補助巻コイルの巻方向を主巻コイルと逆にした場合は起電力が逆になり電流が反対に流れるが、効果は図4(c)と同じである。また、補助巻コイル120の巻数が同じ場合、図4(a)と図4(c)では図4(a)の方が検出電圧が小さくなる効果が高い。
  補助巻コイルの巻数はギャップにより生じる誤差から事前に調整しておけばよい。
FIG. 4 (c) shows the case where the characteristic of the main winding coil is the characteristic 304 of FIG. 3 (b). At this time, if the connection shown in FIG. 2C is used, an electromotive force acts on the auxiliary winding coil 120 and a current flows through the resistor 204. As a result, the detection current is suppressed and the detection voltage is also reduced. At this time, when r = 0Ω, which is the resistance 204, this effect becomes the largest, and the characteristic 403 is obtained. As the resistance value of the resistor 204 is increased, the characteristic approaches the characteristic 400. That is, by adjusting the resistance value, it can be adjusted between the characteristic 403 and the characteristic 400. When the winding direction of the auxiliary winding coil is reversed from that of the main winding coil, the electromotive force is reversed and the current flows in the opposite direction, but the effect is the same as in FIG. 4 (c). Further, when the number of turns of the auxiliary winding coil 120 is the same, in FIGS. 4 (a) and 4 (c), the effect of the detection voltage being smaller is higher in FIG. 4 (a).
The number of turns of the auxiliary winding coil may be adjusted in advance from the error caused by the gap.
 図2(a)と図2(b)は、同じ補助巻コイルを用いて主巻コイルとの接続を変えるだけで検出電圧を増減することができる効果がある。 FIGS. 2 (a) and 2 (b) have the effect that the detection voltage can be increased or decreased simply by using the same auxiliary winding coil and changing the connection with the main winding coil.
 図2(c)はギャップ長または巻数N1を調整して事前に主巻コイルの検出電圧を少し大きめになるように調整しておく必要があるが、抵抗204の抵抗値によって微調整できる効果がある。 In FIG. 2C, it is necessary to adjust the gap length or the number of turns N1 so that the detection voltage of the main winding coil is slightly larger in advance, but there is an effect that it can be finely adjusted by the resistance value of the resistor 204. be.
 本実施例の電流センサによれば、電流センサにおいて、磁性コアに主巻コイルに加えて補助巻コイルを設け、補助巻コイルを主巻コイルに対して正極性または負極性に接続し、或いは、補助巻コイルに磁束調整抵抗を接続したので、電流測定の検出電圧の精度を仕様値内に収めることができ、検出直線性を備えた検出回路に接続することができる。また、電流センサに電気回路系がないため、耐久性を持たせることが可能となる。また、可とう性のあるアモルファスの短冊片を積層して磁性コアを構成し、ギャップを有する略環状としたので、変圧器の端子などにも後付け可能で、大口径の取り付けにも対応できる。 According to the current sensor of this embodiment, in the current sensor, an auxiliary winding coil is provided in the magnetic core in addition to the main winding coil, and the auxiliary winding coil is connected to the main winding coil in a positive or negative manner, or Since the magnetic flux adjusting resistor is connected to the auxiliary winding coil, the accuracy of the detection voltage of the current measurement can be kept within the specified value, and it can be connected to the detection circuit having the detection linearity. Further, since the current sensor does not have an electric circuit system, it is possible to have durability. In addition, since the magnetic core is formed by laminating flexible amorphous strips to form a substantially annular shape with a gap, it can be retrofitted to the terminals of a transformer, etc., and can be attached to a large diameter.
 図5は、本発明の実施例2である電流センサの配線図である。図5では第1の補助巻コイル120に加え第2の補助巻コイル500を設ける。図5(a)では、主巻コイル110に対して第1の補助巻コイル120を正極性接続し、第2の補助巻コイル500へ磁束調整抵抗520を接続する。図5(b)では、主巻コイル110に対して第1の補助巻コイル120を負極性接続し、第2の補助巻コイル500へ磁束調整抵抗520を接続する。第1の補助巻コイル120は図2(a)、図2(b)のように動作し、第2の補助巻コイル500は端子511、512間に磁束調整抵抗520を設け、図2(c)の動作をする。 FIG. 5 is a wiring diagram of the current sensor according to the second embodiment of the present invention. In FIG. 5, a second auxiliary winding coil 500 is provided in addition to the first auxiliary winding coil 120. In FIG. 5A, the first auxiliary winding coil 120 is positively connected to the main winding coil 110, and the magnetic flux adjusting resistor 520 is connected to the second auxiliary winding coil 500. In FIG. 5B, the first auxiliary winding coil 120 is negatively connected to the main winding coil 110, and the magnetic flux adjusting resistor 520 is connected to the second auxiliary winding coil 500. The first auxiliary winding coil 120 operates as shown in FIGS. 2 (a) and 2 (b), and the second auxiliary winding coil 500 is provided with a magnetic flux adjusting resistor 520 between terminals 511 and 512, and FIG. 2 (c). ) Works.
 図5の構成では、第1の補助巻コイル120の巻数N2と第2の補助巻コイル500の巻数N3を調整しておくことで、図3の特性304や特性305の場合の両方の特性においても抵抗520を調整することで、微調整して目標精度306内とすることが可能になる効果がある。なお、第1の補助巻コイル120は図5においても図2(c)の使用方法とすることが可能である。また、第1の補助巻コイル120の巻数N2と第2の補助巻コイル500の巻数N3を異なる巻数としておくことで、第2の補助巻コイル500を図2(a)、図2(b)のように使用し、第1の補助巻コイル120を図2(c)のように使用することもでき、これにより目標精度への調整値の種類を多くすることができる効果がある。 In the configuration of FIG. 5, by adjusting the number of turns N2 of the first auxiliary winding coil 120 and the number of turns N3 of the second auxiliary winding coil 500, both the characteristics of the characteristic 304 and the characteristic 305 of FIG. 3 can be obtained. By adjusting the resistance 520, it is possible to make fine adjustments within the target accuracy of 306. The first auxiliary winding coil 120 can be used in the same manner as shown in FIG. 2 (c) in FIG. Further, by setting the number of turns N2 of the first auxiliary winding coil 120 and the number of turns N3 of the second auxiliary winding coil 500 to be different, the second auxiliary winding coil 500 is shown in FIGS. 2 (a) and 2 (b). The first auxiliary winding coil 120 can also be used as shown in FIG. 2 (c), which has the effect of increasing the types of adjustment values to the target accuracy.
 図6は、本発明の実施例3である電流センサの配線図である。図6では検出抵抗202と並列に分流抵抗600を設けたものである。図6(a)では、主巻コイル110に対して補助巻コイル120を正極性直列接続し、主巻コイル110の端子と補助巻コイル120の端子間に分流抵抗600を接続する。図6(b)では、主巻コイル110に対して補助巻コイル120を負極性直列接続し、主巻コイル110の端子と補助巻コイル120の端子間に分流抵抗600を接続する。分流抵抗600に検出電流を逃がすことにより検出抵抗202に流れる電流を減らすことができ、結果として検出電圧を小さくすることができる。分流抵抗600の抵抗値r2を変えることで検出電圧の微調整が可能である。 FIG. 6 is a wiring diagram of the current sensor according to the third embodiment of the present invention. In FIG. 6, a flow dividing resistor 600 is provided in parallel with the detection resistor 202. In FIG. 6A, the auxiliary winding coil 120 is positively connected in series to the main winding coil 110, and the flow dividing resistor 600 is connected between the terminal of the main winding coil 110 and the terminal of the auxiliary winding coil 120. In FIG. 6B, the auxiliary winding coil 120 is connected in series with the main winding coil 110 in a negative electrode manner, and the flow dividing resistor 600 is connected between the terminal of the main winding coil 110 and the terminal of the auxiliary winding coil 120. By letting the detection current escape to the diversion resistor 600, the current flowing through the detection resistor 202 can be reduced, and as a result, the detection voltage can be reduced. The detection voltage can be finely adjusted by changing the resistance value r2 of the diversion resistor 600.
 図6の構成では、図3の特性304や特性305の場合の両方の特性においても分流抵抗600を調整することで、微調整して目標精度306内とすることが可能になる効果がある。なお、補助巻コイル120は、図6においても図2(c)の使用方法とすることができる。 In the configuration of FIG. 6, by adjusting the flow diversion resistance 600 in both the characteristics of the characteristics 304 and the characteristics 305 of FIG. 3, it is possible to make fine adjustments within the target accuracy of 306. The auxiliary winding coil 120 can be used in the same manner as shown in FIG. 2 (c) in FIG.
 図7は、本発明の実施例4である電流センサの配線図である。図7では第1の補助巻コイル120、第2の補助巻コイル500に加え、第3の補助巻コイル700を設ける。第1の補助巻コイル120、第2の補助巻コイル500、第3の補助巻コイル700のそれぞれの巻数N2、N3、N4を異なる値とすることで、図2(a)と図2(b)を同時に利用して巻数の差分の値も使用できるようになり、微調整が可能となる。図7で図示している例では巻数をN1+N2-N4とでき、さらに第2の補助巻コイル500で微調整することが可能である。 FIG. 7 is a wiring diagram of the current sensor according to the fourth embodiment of the present invention. In FIG. 7, in addition to the first auxiliary winding coil 120 and the second auxiliary winding coil 500, a third auxiliary winding coil 700 is provided. By setting the turns N2, N3, and N4 of the first auxiliary winding coil 120, the second auxiliary winding coil 500, and the third auxiliary winding coil 700 to different values, FIGS. 2A and 2B ) Can be used at the same time to use the value of the difference in the number of turns, which enables fine adjustment. In the example shown in FIG. 7, the number of turns can be N1 + N2-N4, and further fine adjustment can be made with the second auxiliary winding coil 500.
 第1の補助巻コイル120、第2の補助巻コイル500、第3の補助巻コイル700は図7で図示した例にとどまらず、それぞれにおいて図2(a)、図2(b)、図2(c)の使用方法が可能である。 The first auxiliary winding coil 120, the second auxiliary winding coil 500, and the third auxiliary winding coil 700 are not limited to the examples shown in FIG. 7, and are shown in FIGS. 2 (a), 2 (b), and 2 respectively. The method of use (c) is possible.
 図7の構成では、図5の構成よりさらに目標精度への調整値の種類を多くすることができる効果がある。 The configuration of FIG. 7 has the effect of being able to increase the types of adjustment values to the target accuracy even more than the configuration of FIG.
 図8は、本発明の実施例5である電流センサの配線図である。図8では第1の補助巻コイル120に加え、第3の補助巻コイル700を設け、巻数をN1+N2-N4とする。そして、主巻コイル110の端子と第3の補助巻コイル700の端子間に分流抵抗600を接続する。分流抵抗600の抵抗値r2を変えることで検出電圧の微調整が可能となり、図7の実施例4と同様の効果が得られる。 FIG. 8 is a wiring diagram of the current sensor according to the fifth embodiment of the present invention. In FIG. 8, in addition to the first auxiliary winding coil 120, a third auxiliary winding coil 700 is provided, and the number of turns is N1 + N2-N4. Then, a flow dividing resistor 600 is connected between the terminal of the main winding coil 110 and the terminal of the third auxiliary winding coil 700. By changing the resistance value r2 of the diversion resistor 600, the detection voltage can be finely adjusted, and the same effect as that of the fourth embodiment of FIG. 7 can be obtained.
 図8の構成でも、図6の実施例3の構成よりさらに目標精度への調整値の種類を多くすることができる効果がある。 The configuration of FIG. 8 also has the effect of being able to increase the types of adjustment values to the target accuracy more than the configuration of the third embodiment of FIG.
 ここで、図9に、補助巻コイルを設けた場合の、接続状態と検出電圧の大きさの関係を示す。 Here, FIG. 9 shows the relationship between the connection state and the magnitude of the detected voltage when the auxiliary winding coil is provided.
 図9(a)は補助巻コイルが1個の場合である。補助巻数をN2とする。補助巻コイルの使用方法は、正極性接続、負極性接続、補助巻コイルに抵抗R2を接続、補助巻コイルをショートの4つの状態がある。補助巻コイルに抵抗R2を接続した状態は、ある程度以上の抵抗値にして、補助巻コイルがなく主巻コイル(巻数N1)だけと同様の検出電圧となる状態とする。 FIG. 9A shows a case where there is one auxiliary winding coil. The number of auxiliary turns is N2. There are four ways to use the auxiliary winding coil: positive electrode connection, negative electrode connection, resistance R2 connected to the auxiliary winding coil, and short circuit of the auxiliary winding coil. When the resistor R2 is connected to the auxiliary winding coil, the resistance value is set to a certain level or higher so that the detection voltage is the same as that of the main winding coil (number of turns N1) without the auxiliary winding coil.
 抵抗R2を接続した状態、すなわち主巻コイルのみの検出電圧を基準とするとき、負極性接続の状態は巻数はN1-N2とN1より少なくなり、検出電圧は主巻コイルよりも大きくなる(図4(b)参照)。補助巻コイルをショート(0)の状態は、基準の主巻コイルよりも検出電圧が小さくなる(図4(c)参照)。正極性接続の状態は巻数はN1+N2とN1より大きくなり、検出電圧は主巻コイルよりも小さく、また、一般的には補助巻コイルをショートの状態よりさらに小さくなる(図4(a)(c)参照)。すなわち、図9(a)に示すNo.1,2,3,4の順に検出電圧は大きくなる。なお、抵抗値の値をショートからR2の間に設定することで、No.2とNo.3の間の検出電圧をさらに細かく設定できる。 When the resistor R2 is connected, that is, when the detection voltage of only the main winding coil is used as a reference, the number of turns is less than N1-N2 and N1 and the detection voltage is larger than that of the main winding coil in the negative electrode connection state (FIG. 4 (b)). When the auxiliary winding coil is shorted (0), the detected voltage is smaller than that of the reference main winding coil (see FIG. 4C). In the positive connection state, the number of turns is larger than N1 + N2 and N1, the detected voltage is smaller than that of the main winding coil, and generally, the auxiliary winding coil is further smaller than that of the short state (FIGS. 4 (a) and 4 (c)). )reference). That is, No. 1 shown in FIG. 9 (a). The detection voltage increases in the order of 1, 2, 3, and 4. By setting the resistance value between short and R2, No. 2 and No. The detection voltage between 3 can be set more finely.
 図9(b)は、補助巻コイルが2個の場合の、組み合わせを示す。補助巻コイルの巻数をN2とN3とし、N2の方がN3よりも大きいとする。N2、N3それぞれに対し正極性接続、負極性接続、補助巻コイルに抵抗接続、補助巻コイルをショートの4つの状態がある。補助巻コイルに抵抗R2を接続した状態は、ある程度以上の抵抗値にして、補助巻コイルがなく主巻コイル(巻数N1)だけと同様の検出電圧となる状態とする。また、補助巻コイルN3に抵抗R3を接続した状態は、ある程度以上の抵抗値にして、補助巻コイルがなく主巻コイル(巻数N1)だけと同様の検出電圧となる状態とする。 FIG. 9B shows a combination when there are two auxiliary winding coils. It is assumed that the number of turns of the auxiliary winding coil is N2 and N3, and N2 is larger than N3. There are four states for each of N2 and N3: positive electrode connection, negative electrode connection, resistance connection to the auxiliary winding coil, and short circuit of the auxiliary winding coil. When the resistor R2 is connected to the auxiliary winding coil, the resistance value is set to a certain level or higher so that the detection voltage is the same as that of the main winding coil (number of turns N1) without the auxiliary winding coil. Further, the state in which the resistor R3 is connected to the auxiliary winding coil N3 is set to a resistance value of a certain level or higher so that the detection voltage is the same as that of the main winding coil (number of turns N1) without the auxiliary winding coil.
 抵抗R2をN2に接続した状態および抵抗R3をN3に接続した状態、すなわち主巻コイルのみの検出電圧を基準とする(No.11)。このとき検出電圧の大きさは基準に対して図9(b)に示す状態になる。N2やN3のどちらか一方の状態が同じ状態の場合、他方の状態が図9(a)のときに、図9(a)に示す検出電圧の順番となる。N2、N3がどちらも負極性接続の場合に検出電圧は最大に、N2、N3がどちらも正極性接続の場合に検出電圧は最小になる。なお、No.8のN2:ショート、N3:負極性接続の状態は、N2:ショートで検出電圧は小さくなる方向、N3:負極性接続で検出電圧は大きくなる方向であるが、N2>N3であるためこの基準に対して大小効果はN2、N3の巻数によって変化する。 The state where the resistor R2 is connected to N2 and the state where the resistor R3 is connected to N3, that is, the detection voltage of only the main winding coil is used as a reference (No. 11). At this time, the magnitude of the detected voltage is in the state shown in FIG. 9 (b) with respect to the reference. When either one of N2 and N3 is in the same state and the other state is in FIG. 9A, the order of the detection voltages shown in FIG. 9A is obtained. When both N2 and N3 are negatively connected, the detected voltage is maximized, and when both N2 and N3 are positively connected, the detected voltage is minimized. In addition, No. The state of N2: short circuit and N3: negative electrode connection of 8 is N2: short and the detection voltage is small, and N3: negative electrode connection is large and the detection voltage is large. On the other hand, the magnitude effect changes depending on the number of turns of N2 and N3.
 図7に示す補助巻コイルが3個の場合は、正極性接続、負極性接続、補助巻コイルに抵抗接続、補助巻コイルをショートの4つの状態がそれぞれあるため、その状態の組み合わせは図9(c)に示すように4×4×4=64となる。一般的に補助巻コイルがK個の場合、図9(d)に示すように組合せは4のK乗になる。 When there are three auxiliary winding coils shown in FIG. 7, there are four states: positive electrode connection, negative electrode connection, resistance connection to the auxiliary winding coil, and shorting of the auxiliary winding coil. Therefore, the combination of these states is shown in FIG. As shown in (c), 4 × 4 × 4 = 64. Generally, when the number of auxiliary winding coils is K, the combination is 4 to the K power as shown in FIG. 9 (d).
 補助巻コイルの巻数を選んで複数の補助巻コイルを用いることで、図2の方式を組み合わせて非常に細かく検出電圧を補正することができる。 By selecting the number of turns of the auxiliary winding coil and using a plurality of auxiliary winding coils, the detection voltage can be corrected very finely by combining the methods shown in FIG.
 本発明の実施例6は、電流センサの調整に関するものである。図3で説明した調整方法を、図10の接続図と、図11の調整フローで示す。 Example 6 of the present invention relates to the adjustment of the current sensor. The adjustment method described with reference to FIG. 3 is shown in the connection diagram of FIG. 10 and the adjustment flow of FIG.
 図10に示すように、電流センサ100は、ギャップ102を有する略環状の磁性コアに、主巻コイル110および補助巻コイル120を巻き付けたものであり、主巻コイルの両端111,112にはインダクタンス測定器901を接続する。 As shown in FIG. 10, in the current sensor 100, a main winding coil 110 and an auxiliary winding coil 120 are wound around a substantially annular magnetic core having a gap 102, and inductances are provided at both ends 111 and 112 of the main winding coil. Connect the measuring instrument 901.
 図11に示す調整フローは、次のとおりである。
S1001:調整を開始する。
S1002:インダクタンス測定器901を用い、ギャップ102を初期値のギャップ長にした時の、主巻コイル110の両端111と112の間のインダクタンスを測定する。このとき、補助巻コイル120の両端121と122間はオープンにしておく。
S1003:最適なインダクタンスの領域内(設定範囲)であるかどうか判断する。
S1004:最適なインダクタンスの領域内(設定範囲)でない場合、ギャップ長を調整する。インダクタンスが小さい場合はギャップ長を狭く、インダクタンスが大きい場合はギャップ長を広くする方向に調整する。このあと、ステップS1003に戻って判断を繰り返す。
S1003で、インダクタンスが最適なインダクタンスの領域内(設定範囲)に入ると、ギャップ長の調整は完了する。
S1005:電流センサ100を線材200を囲むように配置し、線材に測定電流を流して、図3に示す検出電圧を測定する。
S1006:図2(a)または(b)に示すように、補助巻コイルを主巻コイルに正極性接続または負極性接続して、或いは、図2(c)に示すように、補助巻コイルに磁束調整抵抗を接続調整して、検出電圧が目標精度306に入るように調整を行う。
S1007:調整を終了する。
The adjustment flow shown in FIG. 11 is as follows.
S1001: Adjustment is started.
S1002: An inductance measuring device 901 is used to measure the inductance between both ends 111 and 112 of the main winding coil 110 when the gap 102 is set to the initial value gap length. At this time, both ends 121 and 122 of the auxiliary winding coil 120 are left open.
S1003: It is determined whether or not it is within the region of the optimum inductance (setting range).
S1004: If it is not within the optimum inductance region (setting range), the gap length is adjusted. If the inductance is small, the gap length is narrowed, and if the inductance is large, the gap length is widened. After that, the process returns to step S1003 and the determination is repeated.
In S1003, when the inductance falls within the region of the optimum inductance (setting range), the adjustment of the gap length is completed.
S1005: The current sensor 100 is arranged so as to surround the wire rod 200, a measurement current is passed through the wire rod, and the detection voltage shown in FIG. 3 is measured.
S1006: As shown in FIG. 2A or FIG. 2B, the auxiliary winding coil is positively or negatively connected to the main winding coil, or as shown in FIG. 2C, the auxiliary winding coil is connected. The magnetic flux adjustment resistor is connected and adjusted so that the detected voltage falls within the target accuracy of 306.
S1007: The adjustment is completed.
 以上のように調整することで、電流センサの検出電圧を目標精度内とすることができる。 By adjusting as described above, the detection voltage of the current sensor can be within the target accuracy.
 図12は、本発明の実施例7である電流センサの接続端子を示す図である。図12の(a)正極性接続、(b)負極性接続、(c)磁束調整接続は、図2の(a)(b)(c)の接続にそれぞれ対応している。 FIG. 12 is a diagram showing connection terminals of the current sensor according to the seventh embodiment of the present invention. The positive electrode connection, the negative electrode connection, and the magnetic flux adjusting connection of FIG. 12 correspond to the connections of (a), (b), and (c) of FIG. 2, respectively.
 主巻コイル110の端子111、112は第1の端子板1101に、補助巻コイルの端子121、122は第2の端子板1102に配置されている。そして、第1の端子板1101と第2の端子板1102は平行に配置され、主巻コイルの一方の端子111と補助巻コイルの他方の端子121、主巻コイルの他方の端子112と補助巻コイルの一方の端子122は同じ側にあり向き合っている。主巻コイルの一方の端子111は検出部201に近い側に配置する。 The terminals 111 and 112 of the main winding coil 110 are arranged on the first terminal plate 1101, and the terminals 121 and 122 of the auxiliary winding coil are arranged on the second terminal plate 1102. The first terminal plate 1101 and the second terminal plate 1102 are arranged in parallel, and one terminal 111 of the main winding coil and the other terminal 121 of the auxiliary winding coil, and the other terminal 112 of the main winding coil and the auxiliary winding are arranged in parallel. One terminal 122 of the coil is on the same side and faces each other. One terminal 111 of the main winding coil is arranged on the side closer to the detection unit 201.
 図12(a)の正極性接続では、主巻コイルの他方の端子112と補助巻コイルの一方の端子121の間を接続線1103で斜めに接続する。そして、検出部201を、主巻コイルの一方の端子111と、補助巻コイルの他方の端子122とに接続する。 In the positive electrode connection shown in FIG. 12 (a), the other terminal 112 of the main winding coil and the one terminal 121 of the auxiliary winding coil are diagonally connected by a connecting wire 1103. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and the other terminal 122 of the auxiliary winding coil.
 図12(b)の負極性接続では、主巻コイルの他方の端子112と補助巻コイルの他方の端子122の間を接続線1104で真直ぐに接続する。そして、検出部201を、主巻コイルの一方の端子111と、補助巻コイルの一方の端子121とに接続する。 In the negative electrode connection shown in FIG. 12B, the connection wire 1104 connects straight between the other terminal 112 of the main winding coil and the other terminal 122 of the auxiliary winding coil. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and one terminal 121 of the auxiliary winding coil.
 図12(c)の磁束調整抵抗を接続では、補助巻コイルの2つの端子121と端子122の間に磁束調整抵抗204を接続する。そして、主巻コイルの2つの端子に検出部201を接続する。 When connecting the magnetic flux adjusting resistor shown in FIG. 12 (c), the magnetic flux adjusting resistor 204 is connected between the two terminals 121 and 122 of the auxiliary winding coil. Then, the detection unit 201 is connected to the two terminals of the main winding coil.
 主巻コイルを接続する2つの端子を配置した第1の端子板の2つの端子と、前記補助巻コイルを接続する2つの端子を配置した第2の端子板の2つの端子を、同じ側にあり向き合って配置することにより、図12の接続を行うことができる。 The two terminals of the first terminal plate in which the two terminals for connecting the main winding coil are arranged and the two terminals of the second terminal plate in which the two terminals for connecting the auxiliary winding coil are arranged are placed on the same side. By arranging them facing each other, the connection shown in FIG. 12 can be made.
 図12の接続端子の実施例では、主巻コイルの一方の端子111は常に検出部201に一番近くで接続できる。また、2端子の端子板2つのみで構成でき、図2の(a)(b)(c)の接続を容易に行うことができる。 In the example of the connection terminal of FIG. 12, one terminal 111 of the main winding coil can always be connected to the detection unit 201 closest to the detection unit 201. Further, it can be configured with only two terminal plates having two terminals, and the connections (a), (b) and (c) of FIG. 2 can be easily performed.
 図13は、本発明の実施例8である電流センサの接続端子を示す図である。図13の(a)正極性接続、(b)負極性接続、(c)磁束調整接続は、図2の(a)(b)(c)の接続にそれぞれ対応している。 FIG. 13 is a diagram showing connection terminals of the current sensor according to the eighth embodiment of the present invention. The positive electrode connection, the negative electrode connection, and the magnetic flux adjusting connection of FIG. 13 correspond to the connections of (a), (b), and (c) of FIG. 2, respectively.
 第3の端子板1201は3端子であり、主巻コイル110の2つの端子111、112は第3の端子板1201に配置され、主巻コイルの一方の端子111は検出部201に近い一端側に配置する。そして、主巻コイルの他方の端子112は中央の端子112aに接続し、中央の端子112aと他端の端子112bとを接続する。補助巻コイルの2つの端子121、122は第4の端子板1202に配置する。そして、中央の端子112aと補助巻コイルの一方の端子121、他端の端子112bと補助巻コイルの他方の端子122は向き合っている。 The third terminal plate 1201 has three terminals, the two terminals 111 and 112 of the main winding coil 110 are arranged on the third terminal plate 1201, and one terminal 111 of the main winding coil is on one end side close to the detection unit 201. Place in. Then, the other terminal 112 of the main winding coil is connected to the central terminal 112a, and the central terminal 112a and the other end terminal 112b are connected. The two terminals 121 and 122 of the auxiliary winding coil are arranged on the fourth terminal plate 1202. The central terminal 112a and one terminal 121 of the auxiliary winding coil, and the terminal 112b at the other end and the other terminal 122 of the auxiliary winding coil face each other.
 図13(a)の正極性接続では、中央の端子112aと補助巻コイルの一方の端子121の間を接続線1203で真直ぐに接続する。そして、検出部201を、主巻コイルの一方の端子111と、補助巻コイルの他方の端子122とに接続する。 In the positive electrode connection shown in FIG. 13A, the central terminal 112a and one terminal 121 of the auxiliary winding coil are connected straight with a connection line 1203. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and the other terminal 122 of the auxiliary winding coil.
 図13(b)の負極性接続では、他端の端子112bと補助巻コイルの他方の端子122の間を接続線1203で真直ぐに接続する。そして、検出部201を、主巻コイルの一方の端子111と、補助巻コイルの一方の端子121とに接続する。 In the negative electrode connection shown in FIG. 13B, the terminal 112b at the other end and the other terminal 122 of the auxiliary winding coil are connected straight with a connecting wire 1203. Then, the detection unit 201 is connected to one terminal 111 of the main winding coil and one terminal 121 of the auxiliary winding coil.
 図13(c)の磁束調整抵抗を接続では、補助巻コイルの2つの端子121と端子122の間に抵抗204を接続する。そして、主巻コイルの2つの端子111と112aとに検出部201を接続する。このとき端子112aと端子112bとを接続する必要はない。 When connecting the magnetic flux adjustment resistor shown in FIG. 13 (c), connect the resistor 204 between the two terminals 121 and 122 of the auxiliary winding coil. Then, the detection unit 201 is connected to the two terminals 111 and 112a of the main winding coil. At this time, it is not necessary to connect the terminal 112a and the terminal 112b.
 主巻コイルを接続する3つの端子を配置した第3の端子板の3つの端子の内の片側の2つの端子と、補助巻コイルを接続する2つの端子を配置した第4の端子板の2つの端子を、同じ側にあり向き合って配置することにより、図13の接続を行うことができる。 2 of the 2 terminals on one side of the 3 terminals of the 3rd terminal plate in which the 3 terminals for connecting the main winding coil are arranged, and 2 in the 4th terminal plate in which the 2 terminals for connecting the auxiliary winding coil are arranged. By arranging the two terminals on the same side and facing each other, the connection shown in FIG. 13 can be made.
 図13の接続端子の実施例では、主巻コイルの一方の端子111は常に検出部201に一番近くで接続できる。また、主巻コイルの端子と補助巻コイルの端子間は同じ長さの接続線1203で接続できる。 In the example of the connection terminal of FIG. 13, one terminal 111 of the main winding coil can always be connected to the detection unit 201 closest to the detection unit 201. Further, the terminals of the main winding coil and the terminals of the auxiliary winding coil can be connected by a connecting wire 1203 having the same length.
 図14は本発明の実施例9である電流センサを構成する部品図であり、図15は図14の部品を使用して構成される本発明の実施例9である電流センサである。 FIG. 14 is a component diagram constituting the current sensor according to the ninth embodiment of the present invention, and FIG. 15 is a current sensor according to the ninth embodiment of the present invention configured by using the component of FIG.
 図14(a)は両端の端子1301、1302を有する部分主巻コイル1300であり、主巻コイル110の一部を構成する。部分主巻コイル1300を複数使用して、主巻コイル110を構成する。 FIG. 14A is a partial main winding coil 1300 having terminals 1301 and 1302 at both ends, which constitutes a part of the main winding coil 110. A plurality of partial main winding coils 1300 are used to form the main winding coil 110.
 図14(b)は両端の端子1311、1312を有する補助正巻コイル1310であり、部分主巻コイル1300と同じ巻方向である。 FIG. 14B shows an auxiliary positive winding coil 1310 having terminals 1311 and 1312 at both ends, which has the same winding direction as the partial main winding coil 1300.
 図14(c)は両端の端子1321、1322を有する補助負巻コイル1320であり、部分主巻コイル1300と逆の巻方向である。 FIG. 14C shows an auxiliary negative winding coil 1320 having terminals 1321 and 1322 at both ends, and the winding direction is opposite to that of the partial main winding coil 1300.
 図15の(a)正極性接続、(b)負極性接続、(c)磁束調整抵抗を接続は、図2の(a)(b)(c)の接続にそれぞれ対応している。 The (a) positive electrode connection, (b) negative electrode connection, and (c) magnetic flux adjustment resistor connection in FIG. 15 correspond to the connections in FIGS. 2 (a), (b), and (c), respectively.
 図15(a)の正極性接続では、磁性コア101に複数の部分主巻コイル1300a、1300b、1300c、…を通し、また、補助正巻コイル1310を通して、直列に接続して電流センサ100を構成する。 In the positive electrode connection of FIG. 15A, a plurality of partial main winding coils 1300a, 1300b, 1300c, ... do.
 図15(b)の負極性接続では、磁性コア101に複数の部分主巻コイル1300a、1300b、1300c、…を通し、また、補助負巻コイル1320を通して、直列に接続して電流センサ100を構成する。 In the negative electrode connection of FIG. 15B, a plurality of partial main winding coils 1300a, 1300b, 1300c, ... Are passed through the magnetic core 101, and the auxiliary negative winding coil 1320 is passed in series to form the current sensor 100. do.
 図15(c)の磁束調整抵抗を接続では、磁性コア101に複数の部分主巻コイル1300a、1300b、1300c、…を通して、直列に接続する。そして、補助正巻コイル1310または補助負巻コイル1320を通して、磁束調整抵抗204を接続して、電流センサ100を構成する。 When connecting the magnetic flux adjusting resistor shown in FIG. 15 (c), the magnetic core 101 is connected in series through a plurality of partial main winding coils 1300a, 1300b, 1300c, .... Then, the magnetic flux adjusting resistor 204 is connected through the auxiliary positive winding coil 1310 or the auxiliary negative winding coil 1320 to form the current sensor 100.
 図15の構成によれば、主巻コイル110が複数の部分主巻コイル1300に分かれているため、図15の真直ぐの状態から図1(a)の円形の状態に曲げることが、図1(d)の主巻コイル110が一体になっている場合よりも容易にできる効果がある。また、複数の部分主巻コイル1300に分かれているため、部分主巻コイル1300の数を調整することで簡単に主巻コイルの巻数N1を変更できる効果がある。さらにまた、補助正巻コイル1310、補助負巻コイル1320の数を調整できるため、図3(b)の目標精度306内に調整することが容易にできる効果がある。 According to the configuration of FIG. 15, since the main winding coil 110 is divided into a plurality of partial main winding coils 1300, bending from the straight state of FIG. 15 to the circular state of FIG. 1 (a) can be performed in FIG. 1 (a). There is an effect that can be easily performed as compared with the case where the main winding coil 110 of d) is integrated. Further, since the coil is divided into a plurality of partial main winding coils 1300, there is an effect that the number of turns N1 of the main winding coil can be easily changed by adjusting the number of the partial main winding coils 1300. Furthermore, since the number of the auxiliary positive winding coil 1310 and the auxiliary negative winding coil 1320 can be adjusted, there is an effect that the adjustment can be easily performed within the target accuracy 306 of FIG. 3 (b).
 図16は、本発明の実施例10の電流センサを取り付けた変圧器の一例である。
  変圧器1501は、例えば三相の配電用変圧器であり、内部に鉄心と、鉄心に巻回した1次巻線および2次巻線を備えている。1次巻線に接続した1次側の電極1511u、1511v、1511wのそれぞれの絶縁部(ブッシュ)1512u、1512v、1512wに、または、2次巻線に接続した2次側の電極1521u、1521v、1521wのそれぞれの絶縁部(ブッシュ)1522u、1522v、1522wに、本発明の電流センサ100a、100b、100c、100d、100e、100fを取り付ける。
FIG. 16 is an example of a transformer to which the current sensor of the tenth embodiment of the present invention is attached.
The transformer 1501 is, for example, a three-phase power distribution transformer, which includes an iron core and a primary winding and a secondary winding wound around the iron core. The insulating portions (bush) 1512u, 1512v, 1512w of the primary side electrodes 1511u, 1511v, 1511w connected to the primary winding, or the secondary side electrodes 1521u, 1521v, connected to the secondary winding, respectively. The current sensors 100a, 100b, 100c, 100d, 100e, 100f of the present invention are attached to the respective insulating portions (bush) 1522u, 1522v, 1522w of 1521w.
 電流センサは既存の変圧器へ後付けができ、大口径・大電流でも測定精度を出せ、また、電気回路系がないため、変圧器と同等の耐久性を持たせることができる。なお、図16では1次側、2次側の全絶縁部(ブッシュ)に電流センサを取り付けているが、1次側或いは2次側のみ、または必要な一部の絶縁部(ブッシュ)のみへ取り付けてもよい。 The current sensor can be retrofitted to an existing transformer, measurement accuracy can be obtained even with a large diameter and large current, and since there is no electric circuit system, it can have the same durability as a transformer. In FIG. 16, the current sensor is attached to all the insulating portions (bush) on the primary side and the secondary side, but only to the primary side or the secondary side, or only a part of the required insulating portion (bush). It may be attached.
 図17は、本発明の実施例11の、図16の変圧器に取り付けた電流センサの検出出力を分析する測定システムの一例である。
  変圧器1501のブッシユに取り付けた電流センサ100a、100b、100c、100d、100e、100fのそれぞれのセンサ出力に対して、検出部1603を構成する検出回路201a、201b、201c、201d、201e、201fのそれぞれで検出電圧を検出し、それぞれの増幅検出電圧を分析部1601に出力する。
FIG. 17 is an example of a measurement system according to the eleventh embodiment of the present invention that analyzes the detection output of the current sensor attached to the transformer of FIG.
For each sensor output of the current sensors 100a, 100b, 100c, 100d, 100e, 100f attached to the bush of the transformer 1501, the detection circuits 201a, 201b, 201c, 201d, 201e, 201f constituting the detection unit 1603 Each detects a detection voltage, and outputs each amplification detection voltage to the analysis unit 1601.
 分析部1601は、それぞれの増幅検出電圧に対し、時計部1602からの時間情報を関連付けて時間管理する。 The analysis unit 1601 manages the time by associating the time information from the clock unit 1602 with each amplification detection voltage.
 分析部1601は、それぞれの増幅検出電圧に対し、それぞれの増幅検出電圧の比較分析を時間に関連付けて行う。 The analysis unit 1601 performs a comparative analysis of each amplification detection voltage with respect to each amplification detection voltage in relation to time.
 本実施例によれば、変圧器の電流波形を求めることができるので、変圧器の監視を行うことができる。また、変圧器の二次側の電流を検出することにより、負荷の状況を監視することができる。 According to this embodiment, since the current waveform of the transformer can be obtained, the transformer can be monitored. In addition, the load status can be monitored by detecting the current on the secondary side of the transformer.
 図18は、本発明の実施例12の、図16の変圧器の複数に取り付けた電流センサの検出出力を分析する測定システムの一例である。 FIG. 18 is an example of a measurement system according to a twelfth embodiment of the present invention that analyzes the detection output of current sensors attached to a plurality of transformers of FIG.
 一般的に複数の変圧器はそれぞれ離れた場所に設置されている。図18の例では変圧器1501a、検出部1603a、時計部1602a、通信部1701aが一つの場所、変圧器1501b、検出部1603b、時計部1602b、通信部1701bが別の一つの場所、変圧器1501c、検出部1603c、時計部1602c、通信部1701cがさらに別の一つの場所、という3箇所の異なる場所に設置されている。なお、設置個所は3箇所に限らず何箇所であってもよい。 Generally, multiple transformers are installed in separate locations. In the example of FIG. 18, the transformer 1501a, the detection unit 1603a, the clock unit 1602a, and the communication unit 1701a are in one place, the transformer 1501b, the detection unit 1603b, the clock unit 1602b, and the communication unit 1701b are in another place, the transformer 1501c. , The detection unit 1603c, the clock unit 1602c, and the communication unit 1701c are installed in three different places, that is, another place. The installation location is not limited to three, and may be any number.
 分析部1601、通信部1702は1つの場所例えばセンタにある。センタの通信部1702は、各変圧器の通信部1701a、1701b、1702cからのデータ情報を通信回線を介して受信し収集して、分析部1601にそのデータ情報を送る。そして、分析部1601はそのデータ情報を比較分析する。なお、通信回線は、専用回線やインターネット回線など、何れの回線も用いることができる。 The analysis unit 1601 and the communication unit 1702 are in one place, for example, the center. The communication unit 1702 of the center receives and collects data information from the communication units 1701a, 1701b, 1702c of each transformer via the communication line, and sends the data information to the analysis unit 1601. Then, the analysis unit 1601 compares and analyzes the data information. As the communication line, any line such as a dedicated line or an internet line can be used.
 このとき、各変圧器の通信部1701a、1701b、1702cとセンタの通信部1702との間での通信は、時間管理することが一般的に困難である。そのため、時間情報と増幅検出電圧との関連付けはそれぞれの場所で行い、通信する。すなわち、時計部1602aからの時間情報を検出部1603aで増幅検出電圧との関連付けを行いデータ情報として通信部1701aから、通信する。また、時計部1602bからの時間情報を検出部1603bで増幅検出電圧との関連付けを行いデータ情報として通信部1701bから、通信する。また、時計部1602cからの時間情報を検出部1603cで増幅検出電圧との関連付けを行いデータ情報として通信部1701cから、通信する。 At this time, it is generally difficult to manage the time of communication between the communication units 1701a, 1701b, 1702c of each transformer and the communication unit 1702 of the center. Therefore, the time information and the amplified detection voltage are associated with each other at each location for communication. That is, the time information from the clock unit 1602a is associated with the amplified detection voltage by the detection unit 1603a, and the communication unit 1701a communicates as data information. Further, the time information from the clock unit 1602b is associated with the amplified detection voltage by the detection unit 1603b, and the communication unit 1701b communicates as data information. Further, the time information from the clock unit 1602c is associated with the amplified detection voltage by the detection unit 1603c, and the communication unit 1701c communicates as data information.
 時計1602a、1602b、1603cは異なる場所にあるが、GPS(グローバル・ポジショニング・システム)やその他の方法を用い、完全に時間情報を一致させておく。 Although the clocks 1602a, 1602b, and 1603c are in different locations, use GPS (Global Positioning System) or other methods to completely match the time information.
 図18の測定システムの実施例では、一群の複数の変圧器に対し、離れた場所に変圧器、分析部があってもそれぞれの変圧器に取り付けた電流センサの増幅検出電圧の比較分析を時間に関連付けて行うことができる。 In the embodiment of the measurement system of FIG. 18, comparative analysis of the amplification detection voltage of the current sensor attached to each transformer is performed for a plurality of transformers in a group even if there are transformers and analysis units at remote locations. Can be done in association with.
 なお、図17、図18の測定システムにおいて、分析部1601で分析に使用する情報は変圧器の電流センサのデータ情報だけではなく、他のあらゆる情報を利用してもよい。 In the measurement system of FIGS. 17 and 18, the information used for analysis by the analysis unit 1601 may be not only the data information of the current sensor of the transformer but also any other information.
 本実施例によれば、一群の変圧器の電流を検出できるので、各工場や各地域の一群の変圧器の状況を監視でき、適切な電力配電が可能となる。 According to this embodiment, since the current of a group of transformers can be detected, the status of a group of transformers in each factory or each region can be monitored, and appropriate power distribution becomes possible.
 本発明の電流センサは、少なくとも一つの変圧器の1次側または2次側の電流を測定する測定システムに適用が可能である。 The current sensor of the present invention can be applied to a measuring system that measures the current on the primary side or the secondary side of at least one transformer.
 100…電流センサ、101…磁性コア、102…ギャップ、110…主巻コイル、111、112…端子、120…補助巻コイル、121、122…端子、200…線材、201…検出部(検出回路)、202…検出抵抗、203…アンプ、204…磁束調整抵抗、
500…第2の補助巻コイル、511、512…端子、520…磁束調整抵抗、600…分流抵抗、700…第3の補助巻コイル、701、702…端子、1101,1102…端子板、1103、1104…接続線、1201,1202…端子板、1203…接続線、1300…部分主巻コイル、1310…補助正巻コイル、1320…補助負巻コイル、1501…変圧器、1511u、1511v、1511w、1521u、1521v、1521w…電極、1512u、1512v、1512w、1522u、1522v、1522w…絶縁部(ブッシュ)、1601…分析部、1602…時計部、1603…検出部、1701、1702…通信部。
100 ... Current sensor, 101 ... Magnetic core, 102 ... Gap, 110 ... Main winding coil, 111, 112 ... Terminal, 120 ... Auxiliary winding coil, 121, 122 ... Terminal, 200 ... Wire rod, 201 ... Detection unit (detection circuit) , 202 ... detection resistance, 203 ... amplifier, 204 ... magnetic flux adjustment resistance,
500 ... Second auxiliary winding coil, 511, 512 ... Terminal, 520 ... Magnetic flux adjustment resistance, 600 ... Diversification resistance, 700 ... Third auxiliary winding coil, 701, 702 ... Terminal, 1101, 1102 ... Terminal plate 1103, 1104 ... Connection line, 1201, 1202 ... Terminal plate 1203 ... Connection line, 1300 ... Partial main winding coil, 1310 ... Auxiliary positive winding coil, 1320 ... Auxiliary negative winding coil, 1501 ... Transformer, 1511u, 1511v, 1511w, 1521u , 1521v, 1521w ... Electrodes, 1512u, 1512v, 1512w, 1522u, 1522v, 1522w ... Insulation unit (bush), 1601 ... Analysis unit, 1602 ... Clock unit, 1603 ... Detection unit, 1701, 1702 ... Communication unit.

Claims (14)

  1.  ギャップを有する略環状の磁性コアと、前記磁性コアの周囲に巻き回した電流を測定する主巻コイルとを備え、前記ギャップの箇所で開閉できる構成のカレントトランスタイプの電流センサであって、
     前記磁性コアの周囲に巻き回した、補助巻コイルを備え、
     前記補助巻コイルは、前記主巻コイルと同じ巻き方向となるように主巻コイルに接続する第1接続、前記主巻コイルと逆の巻き方向となるように主巻コイルに接続する第2接続、前記主巻コイルに接続せずに、0Ωを含む磁束調整抵抗に接続する第3接続、の何れかの接続を選択可能としたことを特徴とする電流センサ。
    A current transformer type current sensor having a substantially annular magnetic core having a gap and a main winding coil for measuring the current wound around the magnetic core, and having a configuration that can be opened and closed at the gap.
    An auxiliary winding coil wound around the magnetic core is provided.
    The auxiliary winding coil has a first connection connected to the main winding coil so as to have the same winding direction as the main winding coil, and a second connection connected to the main winding coil so as to have a winding direction opposite to that of the main winding coil. The current sensor is characterized in that it is possible to select any of the third connection, which is connected to the magnetic flux adjusting resistor including 0Ω, without connecting to the main winding coil.
  2.  請求項1に記載の電流センサにおいて、
     前記第1接続、前記第2接続または前記第3接続により、電流測定の検出電圧を目標精度に収めることを特徴とする電流センサ。
    In the current sensor according to claim 1,
    A current sensor characterized in that the detection voltage of current measurement is kept within a target accuracy by the first connection, the second connection, or the third connection.
  3.  請求項1に記載の電流センサにおいて、
     複数の前記補助巻コイルを備え、
    一部の補助巻コイルは、前記第1接続および/または第2接続で接続され、
    残りの一部の補助巻コイルは、前記第3接続で接続されていることを特徴とする電流センサ。
    In the current sensor according to claim 1,
    With a plurality of the auxiliary winding coils,
    Some auxiliary winding coils are connected by the first connection and / or the second connection.
    The remaining part of the auxiliary winding coil is a current sensor characterized by being connected by the third connection.
  4.  請求項1に記載の電流センサにおいて、
     前記磁性コアは、磁性材料から成る可とう性を有する短冊片を積層して構成したことを特徴とする電流センサ。
    In the current sensor according to claim 1,
    The magnetic core is a current sensor characterized in that it is formed by laminating flexible strips made of a magnetic material.
  5.  請求項4に記載の電流センサにおいて、
     前記磁性材料は、アモルファス材料であることを特徴とする電流センサ。
    In the current sensor according to claim 4,
    A current sensor characterized in that the magnetic material is an amorphous material.
  6.  請求項1に記載の電流センサにおいて、
     前記第1接続または前記第2接続した主巻コイルと補助巻コイルの他方の端子には、検出電流の一部を流す分流抵抗を接続したことを特徴とする電流センサ。
    In the current sensor according to claim 1,
    A current sensor characterized in that a diversion resistor through which a part of a detected current flows is connected to the other terminal of the first connection or the second connection main winding coil and the auxiliary winding coil.
  7.  請求項1に記載の電流センサにおいて、
     前記主巻コイルを接続する2つの端子を配置した第1の端子板と、
    前記補助巻コイルを接続する2つの端子を配置した第2の端子板と、を備え、
     前記第1の端子板の2つの端子と前記第2の端子板の2つの端子は、同じ側にあり向き合っていることを特徴とする電流センサ。
    In the current sensor according to claim 1,
    A first terminal plate in which two terminals for connecting the main winding coil are arranged, and
    A second terminal plate in which two terminals for connecting the auxiliary winding coil are arranged is provided.
    A current sensor characterized in that the two terminals of the first terminal plate and the two terminals of the second terminal plate are on the same side and face each other.
  8.  請求項1に記載の電流センサにおいて、
     前記主巻コイルを接続する3つの端子を配置した第3の端子板と、
    前記補助巻コイルを接続する2つの端子を配置した第4の端子板と、を備え、
     前記第3の端子板の3つの端子の内の片側の2つの端子と前記第4の端子板の2つの端子は、同じ側にあり向き合っていることを特徴とする電流センサ。
    In the current sensor according to claim 1,
    A third terminal plate in which the three terminals for connecting the main winding coil are arranged, and
    A fourth terminal plate in which two terminals for connecting the auxiliary winding coil are arranged is provided.
    A current sensor characterized in that two terminals on one side of the three terminals on the third terminal plate and two terminals on the fourth terminal plate are on the same side and face each other.
  9.  請求項1に記載の電流センサにおいて、
     前記主巻コイルは、直列接続される複数の部分主巻コイルから成り、
     前記補助巻コイルは、前記部分主巻コイルと同じ巻き方向である補助正巻コイルおよび/または前記部分主巻コイルと逆の巻き方向である補助負巻コイルから成り、
     前記磁性コアに、前記複数の部分主巻コイルと、前記補助正巻コイルおよび/または前記補助負巻コイルを取り付けたことを特徴とする電流センサ。
    In the current sensor according to claim 1,
    The main winding coil is composed of a plurality of partial main winding coils connected in series.
    The auxiliary winding coil comprises an auxiliary positive winding coil having the same winding direction as the partial main winding coil and / or an auxiliary negative winding coil having a winding direction opposite to that of the partial main winding coil.
    A current sensor characterized in that the plurality of partial main winding coils, the auxiliary positive winding coil and / or the auxiliary negative winding coil are attached to the magnetic core.
  10.  ギャップを有する略環状の磁性コアと、前記磁性コアの周囲に巻き回した電流を測定する主巻コイルと、補助巻コイルとを備え、前記ギャップの箇所で開閉できる構成のカレントトランスタイプの電流センサの調整方法であって、
     前記主巻コイルにインダクタンス測定器を接続し、インダクタンスを測定するステップと、
     インダクタンス値が設定範囲に入るように前記主巻コイルのギャップ長を調整するステップと、
     前記電流センサを線材を囲むように配置し、線材に測定電流を流して主巻コイルの検出電圧を測定するステップと、
     前記補助巻コイルを前記主巻コイルに正極性接続または負極性接続して、或いは、前記補助巻コイルに磁束調整抵抗を接続調整して、検出電圧が目標精度内に入るように調整するステップと、
    を有する電流センサの調整方法。
    A current transformer type current sensor that includes a substantially annular magnetic core having a gap, a main winding coil that measures the current wound around the magnetic core, and an auxiliary winding coil, and can be opened and closed at the gap. It is an adjustment method of
    A step of connecting an inductance measuring device to the main winding coil and measuring the inductance, and
    The step of adjusting the gap length of the main winding coil so that the inductance value falls within the set range, and
    A step of arranging the current sensor so as to surround the wire and passing a measurement current through the wire to measure the detection voltage of the main winding coil.
    A step of connecting the auxiliary winding coil to the main winding coil with a positive electrode or a negative electrode, or connecting and adjusting a magnetic flux adjusting resistor to the auxiliary winding coil to adjust the detected voltage so as to be within the target accuracy. ,
    How to adjust the current sensor with.
  11.  鉄心と、前記鉄心に巻き回した1次巻線および2次巻線と、前記1次巻線に接続した1次電極と、前記2次巻線に接続した2次電極とを備える変圧器であって、
     前記1次電極の絶縁部および/または2次電極の絶縁部に取り付けた電流センサを備え、
     前記電流センサは、
    ギャップを有する略環状の磁性コアと、前記磁性コアの周囲に巻き回した電流を測定する主巻コイルと、補助巻コイルとを備え、前記ギャップの箇所で開閉できる構成のカレントトランスタイプの電流センサであって、
    前記補助巻コイルは、前記主巻コイルと同じ巻き方向となるように主巻コイルに接続する第1接続、前記主巻コイルと逆の巻き方向となるように主巻コイルに接続する第2接続、前記主巻コイルに接続せずに、0Ωを含む磁束調整抵抗に接続する第3接続、の何れかの接続を選択可能としたことを特徴とする変圧器。
    A transformer including an iron core, a primary winding and a secondary winding wound around the iron core, a primary electrode connected to the primary winding, and a secondary electrode connected to the secondary winding. There,
    A current sensor attached to the insulating portion of the primary electrode and / or the insulating portion of the secondary electrode is provided.
    The current sensor
    A current transformer type current sensor that includes a substantially annular magnetic core having a gap, a main winding coil that measures the current wound around the magnetic core, and an auxiliary winding coil, and can be opened and closed at the gap. And
    The auxiliary winding coil has a first connection connected to the main winding coil so as to have the same winding direction as the main winding coil, and a second connection connected to the main winding coil so as to have a winding direction opposite to that of the main winding coil. The transformer is characterized in that it is possible to select any of the third connection, which is connected to the magnetic flux adjusting resistor including 0Ω, without connecting to the main winding coil.
  12.  請求項11に記載の少なくとも1つの変圧器と、
     前記電流センサからのセンサ信号を検出する検出部と、
     前記検出部からの検出信号を取り込み、信号分析を行う分析部と、
    を有することを特徴とする測定システム。
    At least one transformer according to claim 11,
    A detection unit that detects the sensor signal from the current sensor, and
    An analysis unit that captures the detection signal from the detection unit and performs signal analysis,
    A measurement system characterized by having.
  13.  請求項12に記載の測定システムにおいて、
     時間情報または時刻情報を出力する時計部を設け、
     前記分析部で、前記検出信号と、前記時間情報または前記時刻情報を関連付けて分析することを特徴とする測定システム。
    In the measurement system according to claim 12,
    A clock unit that outputs time information or time information is provided.
    A measurement system characterized in that the analysis unit analyzes the detection signal in association with the time information or the time information.
  14.  請求項11に記載の少なくとも1つの変圧器と、
     前記電流センサからのセンサ信号を検出する検出部と、
     時間情報または時刻情報を出力する時計部と、
     前記検出部の検出信号と前記時計部の時間情報または時刻情報とを関連付けて通信する通信部と、
     通信回線を介して送られた前記検出部の検出信号と前記時計部の時間情報または時刻情報とを受信する通信部と、
     前記検出信号と前記時間情報または前記時刻情報を関連付けて分析する分析部と、
    を有することを特徴とする測定システム。
    At least one transformer according to claim 11,
    A detection unit that detects the sensor signal from the current sensor, and
    A clock unit that outputs time information or time information,
    A communication unit that communicates by associating the detection signal of the detection unit with the time information or time information of the clock unit.
    A communication unit that receives the detection signal of the detection unit and the time information or time information of the clock unit sent via the communication line.
    An analysis unit that analyzes the detection signal in association with the time information or the time information,
    A measurement system characterized by having.
PCT/JP2020/036680 2020-02-18 2020-09-28 Electric current sensor, adjustment method therefor, transformer having said electric current sensor mounted thereon, measurement system for analyzing output of electric current sensor of transformer WO2021166313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020025523A JP7281424B2 (en) 2020-02-18 2020-02-18 A current sensor, its adjustment method, the transformer on which it is mounted, and a measurement system for analyzing the output of the transformer's current sensor
JP2020-025523 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166313A1 true WO2021166313A1 (en) 2021-08-26

Family

ID=77390609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036680 WO2021166313A1 (en) 2020-02-18 2020-09-28 Electric current sensor, adjustment method therefor, transformer having said electric current sensor mounted thereon, measurement system for analyzing output of electric current sensor of transformer

Country Status (2)

Country Link
JP (1) JP7281424B2 (en)
WO (1) WO2021166313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655261A (en) * 2021-09-22 2021-11-16 南通大学 Novel nested micro-current transformer and use method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148821U (en) * 1982-03-31 1983-10-06 株式会社三英社製作所 Lightning resistant pushing
JPS6060562A (en) * 1983-09-13 1985-04-08 Mitsubishi Electric Corp Current detecting circuit
JPH0514930U (en) * 1991-08-06 1993-02-26 日新電機株式会社 Signal detector
JPH06273455A (en) * 1993-03-24 1994-09-30 Nippon Hoso Kyokai <Nhk> Turned-on-electricity indicator
JP2001058278A (en) * 1999-08-18 2001-03-06 Miyachi Technos Corp Fusing work method and device therefor
JP2001349908A (en) * 2000-06-07 2001-12-21 Shoden Corp Thunderbolt current detector
JP2003279600A (en) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp Current detector
JP2008235782A (en) * 2007-03-23 2008-10-02 Toshiba Corp Non-contact power transmission device
JP2012068187A (en) * 2010-09-27 2012-04-05 Hioki Ee Corp Current sensor
JP2015201560A (en) * 2014-04-09 2015-11-12 株式会社東芝 oil-filled transformer
JP2016181620A (en) * 2015-03-24 2016-10-13 三菱電機株式会社 Magnetic core for current transformer, current transformer and watthour meter
JP2019078552A (en) * 2017-10-20 2019-05-23 Tdk株式会社 Magnetic field detector and current sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148821U (en) * 1982-03-31 1983-10-06 株式会社三英社製作所 Lightning resistant pushing
JPS6060562A (en) * 1983-09-13 1985-04-08 Mitsubishi Electric Corp Current detecting circuit
JPH0514930U (en) * 1991-08-06 1993-02-26 日新電機株式会社 Signal detector
JPH06273455A (en) * 1993-03-24 1994-09-30 Nippon Hoso Kyokai <Nhk> Turned-on-electricity indicator
JP2001058278A (en) * 1999-08-18 2001-03-06 Miyachi Technos Corp Fusing work method and device therefor
JP2001349908A (en) * 2000-06-07 2001-12-21 Shoden Corp Thunderbolt current detector
JP2003279600A (en) * 2002-03-22 2003-10-02 Mitsubishi Electric Corp Current detector
JP2008235782A (en) * 2007-03-23 2008-10-02 Toshiba Corp Non-contact power transmission device
JP2012068187A (en) * 2010-09-27 2012-04-05 Hioki Ee Corp Current sensor
JP2015201560A (en) * 2014-04-09 2015-11-12 株式会社東芝 oil-filled transformer
JP2016181620A (en) * 2015-03-24 2016-10-13 三菱電機株式会社 Magnetic core for current transformer, current transformer and watthour meter
JP2019078552A (en) * 2017-10-20 2019-05-23 Tdk株式会社 Magnetic field detector and current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655261A (en) * 2021-09-22 2021-11-16 南通大学 Novel nested micro-current transformer and use method thereof
CN113655261B (en) * 2021-09-22 2023-12-22 南通大学 Nested micro-current transformer and use method thereof

Also Published As

Publication number Publication date
JP7281424B2 (en) 2023-05-25
JP2021131262A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US6844799B2 (en) Compact low cost current sensor and current transformer core having improved dynamic range
US5146156A (en) Current intensity transformer device for measuring a variable electric current
US7365535B2 (en) Closed-loop magnetic sensor system
TW591234B (en) Current detector and overload current protective device using the same
US9964602B2 (en) Magnetic sensor
JPS61245511A (en) Dc and ac current transformer
WO2021166313A1 (en) Electric current sensor, adjustment method therefor, transformer having said electric current sensor mounted thereon, measurement system for analyzing output of electric current sensor of transformer
CN101634666A (en) Ultra-high current Hall detection method and device
US4967145A (en) Active current transformer
CN110031666A (en) A kind of large direct current measuring device and measurement method
JP2001264360A (en) Dc current detector
CN105842511A (en) Dual-coil anti-magnetic-type current transformer
US5400006A (en) Current transformer with plural part core
CN111505363A (en) Closed-loop current transformer
CN104849532B (en) Precise current sensor
KR20210085664A (en) Hall Sensor Type Current Sensor and Manufacturing Method thereof
CN212723044U (en) Closed-loop current transformer
JP2011232189A (en) Current sensor and method for manufacturing the same
JP3142092U (en) Current detection circuit
RU2329514C1 (en) Alternating current measurening tool
US2177274A (en) Watt-hour meter compensation
AU2004240255B2 (en) Current transformer for metering alternating current
JPH11194141A (en) Current detector
US20230021222A1 (en) Residual current sensor for high currents
CN205427014U (en) Antimagnetic formula current transformer of twin coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919382

Country of ref document: EP

Kind code of ref document: A1