WO2021164156A1 - 电池故障检测方法、电池故障检测系统及计算机产品 - Google Patents

电池故障检测方法、电池故障检测系统及计算机产品 Download PDF

Info

Publication number
WO2021164156A1
WO2021164156A1 PCT/CN2020/096303 CN2020096303W WO2021164156A1 WO 2021164156 A1 WO2021164156 A1 WO 2021164156A1 CN 2020096303 W CN2020096303 W CN 2020096303W WO 2021164156 A1 WO2021164156 A1 WO 2021164156A1
Authority
WO
WIPO (PCT)
Prior art keywords
response
battery
sample
vibration
signal
Prior art date
Application number
PCT/CN2020/096303
Other languages
English (en)
French (fr)
Inventor
李晓宇
林少宏
田劲东
田勇
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US16/972,572 priority Critical patent/US20230138536A1/en
Publication of WO2021164156A1 publication Critical patent/WO2021164156A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2698Other discrete objects, e.g. bricks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery failure detection method, a battery failure detection system, and a computer product.
  • the echelon utilization of retired batteries for electric vehicles is a current hot issue.
  • the state of the decommissioned battery needs to be tested to distinguish whether the decommissioned battery is malfunctioning.
  • the existing solution for detecting the state of the decommissioned battery is realized by using traditional battery charging and discharging equipment to perform the charging and discharging characteristic experiment of the decommissioned battery. This solution not only takes a long time, but also a series of experiments on the decommissioned battery is also a loss of the decommissioned battery itself.
  • the present application provides a battery failure detection method, a battery failure detection system, a terminal, and a computer-readable storage medium, which can quickly and non-destructively detect whether a battery fails.
  • this application provides a battery failure detection method, which is applied to a terminal.
  • the terminal is connected with a vibration generating device for applying vibration signals to the battery to be tested and a response collection for collecting the vibration response amplitude of the battery to be tested.
  • the above-mentioned battery failure detection method includes:
  • the response signal of the battery to be tested is collected by the response collection device.
  • the response signal includes a preset number of vibration response amplitudes of the battery to be tested, wherein the preset number of vibration response amplitudes of the battery to be tested are determined by the Test batteries are generated under the action of vibration signals of different frequencies;
  • the response signal it is determined whether the battery under test is faulty.
  • the present application provides a battery failure detection system, including: a terminal, a vibration generating device connected to the above-mentioned terminal, and a response collection device connected to the above-mentioned terminal;
  • the above-mentioned vibration generating device is used to apply a vibration signal to the battery to be tested;
  • the response collection device is used to collect the vibration response amplitude of the battery to be tested
  • the above-mentioned terminal includes:
  • a vibration generating unit configured to sequentially apply a preset number of vibration signals of different frequencies to the battery under test through the vibration generating device;
  • the response collection unit is configured to collect the response signal of the battery to be tested through the response collection device, the response signal includes a preset number of vibration response amplitudes of the battery to be tested, wherein the preset number of vibrations of the battery to be tested The response amplitude is generated by the above-mentioned battery under test under the action of vibration signals of different frequencies;
  • the fault determination unit is used to determine whether the battery under test has a fault according to the response signal.
  • the present application provides a computer product, which includes a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program roughly implements the method provided in the first aspect when the computer program is executed by a processor. All or part of.
  • a preset number of vibration signals of different frequencies are sequentially applied to the battery to be tested by the vibration generating device; the response signal of the battery to be tested is collected by the response collecting device, and the response signal includes the battery to be tested.
  • a preset number of vibration response amplitudes of the battery to be tested, the preset number of vibration response amplitudes of the battery to be tested are generated by the battery to be tested under the action of vibration signals of different frequencies; the aforementioned response signal is determined to be tested Whether the battery is malfunctioning.
  • the solution of the present application can quickly and non-destructively detect whether the battery is faulty by analyzing the vibration characteristics of the battery.
  • FIG. 1 is a schematic structural diagram of a battery failure detection system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a terminal in a battery failure detection system provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a battery failure detection method provided by an embodiment of the present application.
  • FIG. 4 is an example diagram of a response spectrogram provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the term “if” can be construed as “when” or “once” or “in response to determination” or “in response to detecting “.
  • the phrase “if determined” or “if detected [described condition or event]” can be interpreted as meaning “once determined” or “in response to determination” or “once detected [described condition or event]” depending on the context ]” or “in response to detection of [condition or event described]”.
  • FIG. 1 shows a schematic structural diagram of a battery failure detection system provided by an embodiment of the present application.
  • the above-mentioned battery failure detection system includes: a terminal 10, a vibration generating device 12 connected to the terminal 10, and a vibration generating device 12 connected to the terminal 10 The response collection device14.
  • the vibration generating device 12 applies a vibration signal to the battery under test 16 to cause the battery under test 16 to vibrate, and the response collection device 14 collects the vibration response amplitude of the battery under test 16 in real time, and responds to the collected vibration
  • the amplitude is sent to the terminal 10, and optionally, the vibration response amplitude may be the maximum value of the vibration speed of the battery 16 to be tested.
  • the terminal 10 can determine whether the battery 16 to be tested is faulty according to the received vibration response amplitude, thereby realizing rapid fault detection of the battery 16 to be tested.
  • the above-mentioned vibration generating device 12 includes a frequency sweep generator 121, a tablet ceramic 124 and an object carrier 123.
  • the input end of the frequency sweep signal generator 121 is communicatively connected with the terminal 10, and under the control of the terminal 10, the frequency sweep signal generator 121 generates a sinusoidal electrical signal.
  • the tablet ceramic 124 is connected to the output end of the frequency sweep signal generator 121, and when the sinusoidal electrical signal output by the frequency sweep signal generator 121 is received, the sinusoidal electrical signal is converted into a vibration signal.
  • the pressed ceramic 124 is fixedly connected to the load board 123, and the battery 16 to be tested is placed on the placement position of the load board 123, and the pressed ceramic 124 is not in contact with the battery 16 to be tested.
  • the vibration signal can be transmitted to the battery 16 under test through the object carrier 123, and the battery 16 under test will not cause loss.
  • the sweep signal generator 121 needs to be connected to the power supply 11, and the sweep signal generator 121 and the object carrier 123 are both placed on the horizontal test bench 13 to ensure that the battery 16 to be tested It can be stably placed on the carrier board 123.
  • the pressed ceramic 124 may be replaced with a speaker.
  • the sinusoidal electrical signal can also be converted into a vibration signal.
  • the battery failure detection system provided by the embodiment of the present application may be applicable to cylindrical batteries, square batteries, soft pack batteries, and the like.
  • the battery 16 to be tested may be placed vertically on the placement position of the object carrier 123 or horizontally placed on the placement position of the object carrier 123.
  • the aforementioned response collection device 14 includes a signal processor 142 and a laser interferometer 141.
  • the laser interferometer 141 is connected to the signal processor 142.
  • the laser interferometer 141 emits a first laser signal (the dotted line in Figure 1) to the surface of the battery 16 under test, and receives the second laser signal reflected from the surface of the battery 16 under test, and then sends the second laser signal To the signal processor 142.
  • the signal processor 142 is connected to the terminal 10.
  • the signal processor 142 When the signal processor 142 receives the second laser signal, it processes the second laser signal to obtain the frequency of the vibration signal transmitted to the battery under test 16 and the battery under test 16 The vibration response amplitude generated under the action of the vibration signal, and the obtained frequency and vibration response amplitude of the battery 16 to be tested are sent to the terminal 10. It should be understood that in actual operation, the signal processor 142 is connected to the power supply 15, and the level of the lens of the laser interferometer 141 is slightly higher than the object carrier 123, and is directly facing the object carrier 123 to ensure that the lens emits light. The first laser signal can be irradiated vertically onto the surface of the battery 16 to be tested by fine adjustment.
  • FIG. 2 shows a schematic structural diagram of the aforementioned terminal 10. For ease of description, only parts related to the embodiment of the present application are shown.
  • the terminal 10 specifically includes:
  • the vibration generating unit 101 is configured to sequentially apply a preset number of vibration signals of different frequencies to the battery under test through the vibration generating device;
  • the response collection unit 102 is configured to collect the response signal of the battery to be tested through the response collection device, the response signal includes a preset number of vibration response amplitudes of the battery to be tested, wherein the preset number of the battery to be tested is The vibration response amplitude is generated by the above-mentioned battery to be tested under the action of vibration signals of different frequencies;
  • the fault determination unit 103 is configured to determine whether the battery under test has a fault according to the response signal.
  • the foregoing fault determination unit 103 specifically includes:
  • the matching subunit is used to match the response signal with the response samples of multiple battery samples in the preset response sample library one by one, wherein the response sample library includes at least one response sample of a failed battery sample and one response sample Response samples of battery samples that have not failed.
  • Each response sample corresponds to a piece of identification information.
  • the identification information is used to indicate whether the battery sample associated with the response sample has a failure.
  • the response sample includes the preset of the associated battery sample. A number of vibration response amplitudes, where the preset number of vibration response amplitudes of the battery samples are generated by the associated battery samples under the action of vibration signals of different frequencies;
  • the sample determination subunit is used to determine the most matching response sample with the highest degree of matching with the response signal from the response samples of the multiple battery samples;
  • the fault determination subunit is used to determine whether the battery to be tested has a fault according to the identification information corresponding to the most matching response sample.
  • the above-mentioned fault determination subunit specifically includes:
  • the first fault determination subunit is configured to determine that the battery under test is faulty if the identification information corresponding to the best matching response sample indicates that the battery sample corresponding to the best matching response sample has a fault;
  • the second fault determination subunit is configured to determine that the battery under test is not faulty if the identification information corresponding to the best matching response sample indicates that the battery sample corresponding to the best matching response sample does not have a fault.
  • the above-mentioned matching subunit specifically includes:
  • the spectrum generation subunit is used to generate a response spectrum according to the target response sample.
  • the abscissa of the response spectrum is the frequency
  • the ordinate is the vibration response amplitude
  • the target response sample is the value of any battery sample in the response sample library.
  • the detection point acquisition subunit is configured to acquire a peak point in the response spectrum and at least two adjacent points closest to the peak point, and use the peak point and the adjacent points as detection points;
  • the first standard deviation calculation subunit is used to calculate the standard deviation of the vibration response amplitude corresponding to the detection point as the first standard deviation
  • the target amplitude obtaining subunit is used to obtain the vibration response amplitude of the battery under test under the action of the vibration signal of more than one target frequency in the response signal, so as to obtain more than one target vibration response amplitude, where ,
  • the above one or more target frequencies are the frequencies corresponding to the detection points;
  • the second standard deviation calculation subunit is used to calculate the standard deviation of the above-mentioned one or more target vibration response amplitudes as the second standard deviation;
  • the absolute value calculation subunit is used to calculate the absolute value of the difference between the first standard deviation and the second standard deviation
  • the matching degree calculation subunit is used to obtain the matching degree between the response signal and the target response sample according to the absolute value of the difference.
  • the above-mentioned matching subunit specifically includes:
  • the correlation analysis subunit is used to analyze the correlation between the response signal and the target response sample to obtain the correlation coefficient between the response signal and the target response sample.
  • the target response sample is any battery in the response sample library. Sample response sample;
  • the matching degree determining subunit is used to use the correlation coefficient as the matching degree between the response signal and the target response sample.
  • the above-mentioned matching subunit further includes:
  • the filtering subunit is used to eliminate the vibration response amplitude of the response signal and the target control sample that is less than the preset response threshold.
  • the foregoing correlation analysis subunit specifically includes:
  • the correlation coefficient determining subunit is used to perform correlation analysis on the retained response signal and the retained target response sample to obtain the correlation coefficient between the response signal and the target response sample.
  • a preset number of vibration signals of different frequencies are sequentially applied to the battery under test by a vibration generating device, so that the battery under test generates a vibration response amplitude under the action of each vibration signal;
  • the response signal of the battery to be tested is collected by the response collection device, the response signal includes a preset number of vibration response amplitudes of the battery to be tested; and it is determined whether the battery to be tested is faulty according to the response signal.
  • the solution of the present application can quickly and non-destructively detect whether the battery is faulty by analyzing the vibration characteristics of the battery.
  • FIG. 3 shows a flowchart of a battery failure detection method provided by an embodiment of the present application.
  • the battery failure detection method is applied to a terminal.
  • the terminal is connected with a vibration generating device for applying vibration signals to the battery under test and for collecting
  • the response collection device for the vibration response amplitude of the battery to be tested is detailed as follows:
  • Step 301 Apply a preset number of vibration signals of different frequencies to the battery under test through the vibration generating device;
  • the terminal controls the vibration generating device to sequentially apply a preset number of vibration signals to the battery to be tested.
  • the value of the preset number should be as large as possible to ensure the accuracy of the detection result, for example, the preset number is 1000 .
  • different vibration signals have different frequencies.
  • a vibration signal may be applied to the battery under test at the same time interval, until a preset number of vibration signals are applied to the battery under test, and the frequency of the vibration signal is successively increased by an equal difference.
  • the frequency of the vibration signal applied to the battery under test in the next second is 1750 Hz greater than the frequency of the vibration signal applied to the battery under test currently. It should be noted that the selection of the frequency of the vibration signal is determined by factors such as the shape, size, structure, and material of the battery to be tested.
  • Step 302 Collect the response signal of the battery to be tested through the response collection device
  • each time a vibration signal is applied to the battery under test the battery under test will generate a vibration response amplitude corresponding to the vibration signal.
  • the terminal collects the response signal of the battery to be tested through the response collection device.
  • the response signal includes a preset number of vibration response amplitudes of the battery to be tested, and each vibration response amplitude in the response signal is determined by the effect of one of the vibration signals of the battery to be tested on the preset number of vibration signals with different frequencies.
  • the response signal is represented by the response spectrum.
  • the fourth curve from top to bottom in Figure 4 is the response spectrum corresponding to the response signal, and the response spectrum corresponding to the response signal is based on the vibration signal.
  • the frequency (unit: Hz) is the abscissa
  • the vibration response amplitude (unit: m/s) is the ordinate. It should be understood that the response spectrum of the response signal in Fig. 4 is only an example.
  • Step 303 Determine whether the battery to be tested is faulty according to the response signal.
  • the response signal may reflect the vibration characteristics of the battery under test under the action of a preset number of vibration signals with different frequencies.
  • batteries under test in different states such as a battery under test that has failed and a battery under test that has not failed, exhibit different vibration characteristics under the action of the aforementioned preset number of vibration signals with different frequencies. Therefore, by analyzing the vibration characteristics reflected by the response signal, it can be determined whether the battery under test associated with the response signal is faulty.
  • the above steps 301 and 302 can be repeated to obtain multiple response signals of the battery under test.
  • the battery under test is under the action of vibration signals of the same frequency.
  • the resulting vibration response amplitude is averaged. Combining all the obtained average values as an average response signal, and determining whether the battery under test is faulty according to the average response signal can improve the accuracy of the detection result.
  • step 303 specifically includes:
  • A2. Determine the most matching response sample with the highest degree of matching with the response signal from the response samples of the multiple battery samples
  • A3. Determine whether the battery to be tested is malfunctioning according to the identification information corresponding to the best matching response sample.
  • the preset response sample library includes multiple response samples, each response sample is associated with a battery sample, and each response sample includes a preset number of vibration responses of the battery sample associated with the response sample Amplitude.
  • Each response sample is obtained in the following way: a preset number of vibration signals of different frequencies are sequentially applied to the battery sample through the vibration generating device, so that the battery sample generates a preset number of vibration response amplitudes, and the battery sample is collected by the response collection device.
  • the preset number of vibration response amplitudes is used as a response sample. It should be noted that the preset number of vibration signals with different frequencies sequentially applied to the battery sample are the same as those applied to the battery under test, and the battery sample and the battery under test should belong to the same battery.
  • the response sample library should include at least one response sample of a battery sample that has failed and a response sample of a battery sample that has not failed.
  • each response sample corresponds to one piece of identification information, and the identification information is used to indicate whether the battery sample associated with the response sample corresponding to the identification information has failed.
  • the response signal is matched with multiple response samples in the response sample library one by one, and the response sample with the highest degree of matching with the response signal is determined as the most matching response sample. After the most matching response sample is determined, the identification information corresponding to the most matching response sample is obtained, and by analyzing the identification information corresponding to the most matching response sample, it can be determined whether the battery under test is malfunctioning.
  • the response samples are represented by response spectrum.
  • the first three curves from top to bottom in Figure 4 are the response spectrums corresponding to the three response samples, and the response spectrums corresponding to the response samples are The frequency of the vibration signal (unit: Hz) is the abscissa, and the vibration response amplitude (unit: m/s) is the ordinate.
  • the first curve is the response spectrum corresponding to the response sample associated with the battery sample 3 that has failed
  • the second curve is the response sample corresponding to the response sample associated with the battery sample 2 that has not failed.
  • Response spectrum the third curve is the response spectrum corresponding to the response sample associated with the battery sample 1 that has not failed. It should be understood that the response spectrum of the response sample in FIG. 4 is only an example.
  • step A3 specifically includes:
  • identification information corresponding to the best matching response sample indicates that the battery sample corresponding to the best matching response sample is faulty, it is determined that the battery under test is faulty;
  • identification information corresponding to the best matching response sample indicates that the battery sample corresponding to the best matching response sample has not failed, it is determined that the battery under test has not failed.
  • the battery sample corresponding to the above-mentioned best matching response sample is the closest to the state of the battery to be tested. Therefore, according to the indication of the identification information corresponding to the best matching response sample, if the battery sample corresponding to the best matching response sample fails, it is determined that the battery under test is faulty; if the battery sample corresponding to the best matching response sample does not have a fault, then the battery sample is determined to be The test battery is not malfunctioning.
  • step A1 specifically includes:
  • any response sample in the response sample library will be used as an example to introduce the response sample.
  • Target response sample Specifically, the response spectrum corresponding to the target response sample is generated, the peak point in the response spectrum corresponding to the target response sample and at least two adjacent points closest to the peak point are acquired, and all the acquired peak points and adjacent points are used as detection points.
  • the above-mentioned peak point may refer to the global peak point corresponding to the global maximum in the response spectrum of the target response sample.
  • the above-mentioned global peak point and the one closest to the above-mentioned global peak point may be At least two adjacent points are used as detection points.
  • the maximum value of the zero-order spectrum in the response spectrum of the target response sample can be used as the global peak point.
  • the aforementioned peak point may also refer to multiple local peak points corresponding to multiple local maxima in the response spectrum of the target response sample.
  • the multiple local peak points can be At least two adjacent points closest to each local peak point are used as detection points.
  • one local maximum point of the zero-order spectrum and two local maximum points of the first-order spectrum in the response spectrum of the target response sample may be used as the three local peak points of the response spectrum.
  • the local maximum points in the higher-order frequency spectrum can also be extracted together as local peak points.
  • the peak point in the response spectrum corresponding to the target response sample and the four adjacent points closest to each peak point can be acquired as detection points. For example, if there are 3 peak points, a total of 12 adjacent points can be obtained, and these 15 points are used as detection points.
  • each detection point corresponds to a vibration response amplitude (that is, the ordinate of the detection point), and the standard deviation of the vibration response amplitude corresponding to all the detection points is calculated and recorded as the first standard deviation.
  • the target frequency is the frequency corresponding to all the detection points (that is, the abscissa of the detection point), for example, if There are three detection points corresponding to the frequencies of 17500Hz, 35000Hz and 52500Hz, then there are three target frequencies of 17500Hz, 35000Hz and 52500Hz respectively.
  • the vibration response amplitude of the battery to be tested under the action of vibration signals of more than one target frequency is recorded as the target vibration response amplitude.
  • the reciprocal of the absolute value of the difference between the first standard deviation and the second standard deviation may be used as the matching degree.
  • the response spectrum corresponding to the target response sample can be any one of the first three curves from top to bottom in Figure 4.
  • the frequency corresponding to a peak point is 35000 Hz
  • the two adjacent points closest to the peak point are
  • the abscissa (frequency) of the response spectrum corresponding to the target response sample is two points at 33250Hz and 36750Hz.
  • step A1 specifically includes:
  • any response sample in the response sample library will be used as an example to introduce the response sample.
  • Target response sample Specifically, a correlation analysis is performed on the preset number of vibration response amplitudes in the response signal and the preset number of vibration response amplitudes in the target response sample to obtain the correlation coefficient between the response signal and the target response sample. The correlation coefficient is taken as the matching degree between the response signal and the target response sample.
  • the method further includes:
  • the vibration response amplitude of the response signal and the target control sample that is less than the preset response threshold is eliminated.
  • the vibration response amplitude generated by the battery under test is relatively large, and when a vibration signal with a non-resonant frequency is applied to the battery under test, the vibration response amplitude generated by the battery under test is relatively small.
  • Too small vibration response amplitude may affect the accuracy of correlation analysis. Therefore, the vibration response amplitude in the response signal and the target response sample can be traversed, the vibration response amplitude less than the preset response threshold can be eliminated, and the vibration response amplitude greater than or equal to the response threshold in the response signal and the target response sample can be retained.
  • step D1 specifically includes:
  • a correlation analysis is performed on the vibration response amplitude of the retained response signal and the vibration response amplitude of the retained target response sample to obtain a correlation coefficient between the response signal and the target response sample.
  • a preset number of vibration signals of different frequencies are sequentially applied to the battery under test by a vibration generating device, so that the battery under test generates a vibration response amplitude under the action of each vibration signal;
  • the response signal of the battery to be tested is collected by the response collection device, the response signal includes a preset number of vibration response amplitudes of the battery to be tested; and it is determined whether the battery to be tested is faulty according to the response signal.
  • the solution of the present application can quickly and non-destructively detect whether the battery is faulty by analyzing the vibration characteristics of the battery.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • the terminal 5 of this embodiment includes: at least one processor 50 (only one is shown in FIG. 5), a memory 51, and a memory 51 that is stored in the memory 51 and can run on the at least one processor 50.
  • the computer program 52 when the processor 50 executes the computer program 52, the following steps are implemented:
  • the response signal of the battery to be tested is collected by the response collection device.
  • the response signal includes a preset number of vibration response amplitudes of the battery to be tested, wherein the preset number of vibration response amplitudes of the battery to be tested are determined by the Test batteries are generated under the action of vibration signals of different frequencies;
  • the response signal it is determined whether the battery under test is faulty.
  • the foregoing determination of whether the battery under test is faulty based on the response signal includes:
  • the response sample library includes at least one response sample of a battery sample that has failed and a battery sample that has not failed.
  • Each response sample corresponds to a piece of identification information.
  • the identification information is used to indicate whether the battery sample associated with the response sample is malfunctioning, and the response sample includes a preset number of vibration response amplitudes of the associated battery sample , Wherein the preset number of vibration response amplitudes of the battery samples are generated by the associated battery samples under the action of vibration signals of different frequencies;
  • the identification information corresponding to the best matching response sample it is determined whether the battery to be tested is faulty.
  • the foregoing determination of whether the foregoing battery to be tested is faulty based on the identification information corresponding to the foregoing most matching response sample includes:
  • identification information corresponding to the best matching response sample indicates that the battery sample corresponding to the best matching response sample is faulty, it is determined that the battery under test is faulty;
  • the identification information corresponding to the best matching response sample indicates that the battery sample corresponding to the best matching response sample has not failed, it is determined that the battery under test has not failed.
  • the foregoing response signal is combined with a plurality of preset response sample libraries.
  • the response samples of the battery samples are matched one by one, including:
  • a response spectrum is generated according to the target response sample, the abscissa of the response spectrum is the above frequency, the ordinate is the amplitude of the vibration response, and the target response sample is a response sample of any battery sample in the response sample library;
  • the degree of matching between the response signal and the target response sample is obtained according to the absolute value of the difference.
  • the foregoing response signal is combined with a plurality of preset response sample libraries.
  • the response samples of the battery samples are matched one by one, including:
  • the target response sample is a response sample of any battery sample in the response sample library
  • the correlation coefficient is taken as the degree of matching between the response signal and the target response sample.
  • the correlation coefficient in the foregoing correlation analysis of the foregoing response signal and the target response sample, the relationship between the foregoing response signal and the target response sample is obtained. Before the correlation coefficient, it also includes:
  • the foregoing correlation analysis of the response signal and the target response sample to obtain the correlation coefficient between the response signal and the target response sample includes:
  • Correlation analysis is performed on the retained response signal and the retained target response sample, and the correlation coefficient between the response signal and the target response sample is obtained.
  • the aforementioned terminal 5 may be a computing device such as a mobile phone, a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal may include, but is not limited to, a processor 50 and a memory 51.
  • FIG. 5 is only an example of the terminal 5, and does not constitute a limitation on the terminal 5. It may include more or less components than those shown in the figure, or a combination of certain components, or different components, such as It can also include input and output devices, network access devices, and so on.
  • the so-called processor 50 may be a central processing unit (Central Processing Unit) Unit, CPU), the processor 50 may also be other general-purpose processors, digital signal processors (Digital Signal Processors) Signal Processor, DSP), Application Specific Integrated Circuit (Application Specific Integrated Circuit, ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the above-mentioned memory 51 may be an internal storage unit of the above-mentioned terminal 5 in some embodiments, for example, the hard disk or memory of the terminal 5.
  • the above-mentioned memory 51 may also be an external storage device of the above-mentioned terminal 5, such as a plug-in hard disk equipped on the above-mentioned terminal 5, and a smart memory card (Smart Media Card, SMC), Secure Digital (Secure Digital, SD) card, flash memory card (Flash Card) and so on.
  • the aforementioned memory 51 may also include both an internal storage unit of the aforementioned terminal 5 and an external storage device.
  • the above-mentioned memory 51 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the above-mentioned computer program.
  • the aforementioned memory 51 can also be used to temporarily store data that has been output or will be output.
  • a preset number of vibration signals of different frequencies are sequentially applied to the battery under test by a vibration generating device, so that the battery under test generates a vibration response amplitude under the action of each vibration signal;
  • the response signal of the battery to be tested is collected by the response collection device, the response signal includes a preset number of vibration response amplitudes of the battery to be tested; and it is determined whether the battery to be tested is faulty according to the response signal.
  • the solution of the present application can quickly and non-destructively detect whether the battery is faulty by analyzing the vibration characteristics of the battery.
  • the embodiments of the present application also provide a computer-readable storage medium, and the above-mentioned computer-readable storage medium stores a computer program, and when the above-mentioned computer program is executed by a processor, the steps in each of the above-mentioned method embodiments are implemented.
  • the above-mentioned computer-readable storage medium may be included in any computer product.
  • the above-mentioned computer-readable storage medium itself may be regarded as a computer product.
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a terminal, causes the terminal to execute the steps in the foregoing method embodiments.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • this application implements all or part of the processes in the above-mentioned embodiments and methods, which can be completed by instructing relevant hardware through a computer program.
  • the above-mentioned computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the above-mentioned computer program includes computer program code, and the above-mentioned computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the above-mentioned computer-readable medium may at least include: any entity or device capable of carrying the computer program code to the terminal, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM read-only memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals
  • software distribution media For example, U disk, mobile hard disk, floppy disk or CD-ROM, etc.
  • computer-readable media cannot be electrical carrier signals and telecommunication signals.
  • the disclosed apparatus/network equipment and method may be implemented in other ways.
  • the device/network device embodiments described above are merely illustrative.
  • the division of the above-mentioned modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or Components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Abstract

涉及电池技术领域,提供了一种电池故障检测方法、电池故障检测系统、终端及计算机可读存储介质,所述方法包括:通过振动产生装置对待测电池依次施加预设数量个不同频率的振动信号(301);通过响应采集装置采集所述待测电池的响应信号(302),所述响应信号包括所述待测电池的预设数量个振动响应幅值,其中,预设数量个振动响应幅值由所述待测电池分别在不同频率的振动信号的作用下产生;根据所述响应信号确定所述待测电池是否发生故障(303)。通过上述方法,可以快速且无损地检测电池是否发生故障。

Description

电池故障检测方法、电池故障检测系统及计算机产品 技术领域
本申请涉及电池技术领域,尤其涉及一种电池故障检测方法、电池故障检测系统及计算机产品。
背景技术
目前,电动汽车退役电池梯次利用是当前的热点问题。在退役电池梯次利用之前,需要对退役电池的状态进行检测,以区分退役电池是否发生故障。
技术问题
现有的对退役电池的状态进行检测的方案,是利用传统电池充放电设备对退役电池进行充放电特性实验实现的。该方案不但耗时长,而且对退役电池进行一系列实验对退役电池本身也是一种损耗。
技术解决方案
有鉴于此,本申请提供了一种电池故障检测方法、电池故障检测系统、终端及计算机可读存储介质,可以快速且无损地检测电池是否发生故障。
第一方面,本申请提供了一种电池故障检测方法,应用于终端,上述终端连接有用于对待测电池施加振动信号的振动产生装置和用于采集上述待测电池的振动响应幅值的响应采集装置,上述电池故障检测方法包括:
通过上述振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号;
通过上述响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值,其中,上述待测电池的预设数量个振动响应幅值由上述待测电池分别在不同频率的振动信号的作用下产生;
根据上述响应信号确定上述待测电池是否发生故障。
第二方面,本申请提供了一种电池故障检测系统,包括:终端、与上述终端连接的振动产生装置以及与上述终端连接的响应采集装置;
其中,上述振动产生装置用于对待测电池施加振动信号;
上述响应采集装置用于采集上述待测电池的振动响应幅值;
上述终端包括:
振动产生单元,用于通过上述振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号;
响应采集单元,用于通过上述响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值,其中,上述待测电池的预设数量个振动响应幅值由上述待测电池分别在不同频率的振动信号的作用下产生;
故障确定单元,用于根据上述响应信号确定上述待测电池是否发生故障。
第三方面,本申请提供了一种计算机产品,其包括计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时大致实现如第一方面所提供的方法的全部或者部分。
有益效果
由上可见,本申请方案中通过上述振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号;通过上述响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值,上述待测电池的预设数量个振动响应幅值由上述待测电池分别在不同频率的振动信号的作用下产生;根据上述响应信号确定上述待测电池是否发生故障。本申请方案通过分析电池的振动特性,可以快速且无损地检测电池是否发生故障。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电池故障检测系统的结构示意图;
图2是本申请实施例提供的电池故障检测系统中的终端的结构示意图;
图3是本申请实施例提供的电池故障检测方法的流程示意图;
图4是本申请实施例提供的响应频谱图的示例图;
图5是本申请实施例提供的终端的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1示出了本申请实施例提供的一种电池故障检测系统的结构示意图,在图1中,上述电池故障检测系统包括:终端10、与终端10连接的振动产生装置12以及与终端10连接的响应采集装置14。在终端10的控制下,振动产生装置12对待测电池16施加振动信号,使待测电池16产生振动,响应采集装置14实时采集待测电池16的振动响应幅值,并将采集到的振动响应幅值发送给终端10,可选地,振动响应幅值可以是待测电池16的振动速度的最大值。终端10可以根据接收到的振动响应幅值确定待测电池16是否发生故障,实现了对待测电池16的快速故障检测。
可选地,上述振动产生装置12包括扫频发生器121、压片陶瓷124以及载物板123。扫频信号发生器121的输入端与终端10通信连接,在终端10的控制下,扫频信号发生器121产生正弦电信号。压片陶瓷124与扫频信号发生器121的输出端连接,当接收到扫频信号发生器121输出的正弦电信号时,将该正弦电信号转换为振动信号。压片陶瓷124固定连接在载物板123上,载物板123的放置位上放置有待测电池16,且压片陶瓷124不与待测电池16接触。当压片陶瓷124输出振动信号时,振动信号可以通过载物板123传导至待测电池16上,对待测电池16本身不会造成损耗。应理解的是,在实际操作中,扫频信号发生器121需要连接电源11,并且扫频信号发生器121和载物板123均放置在水平的测试台架13上,以确保待测电池16可以稳定放置在载物板123上。
可选地,在本申请实施例提供的电池故障检测系统中,压片陶瓷124可以被替换为扬声器。通过扬声器,也可以将正弦电信号转换为振动信号。
可选地,本申请实施例提供的电池故障检测系统可以适用于圆柱形电池、方形电池及软包电池等。
可选地,待测电池16可以竖直放置在载物板123的放置位上,也可以水平放置在载物板123的放置位上。
可选地,上述响应采集装置14包括信号处理器142和激光干涉仪141。激光干涉仪141与信号处理器142连接。激光干涉仪141向待测电池16的表面发射第一激光信号(如图1中的虚线),并接收从待测电池16的表面反射回来的第二激光信号,然后将该第二激光信号发送至信号处理器142。信号处理器142与终端10连接,当信号处理器142接收到第二激光信号时,对第二激光信号进行处理,以得到传导至待测电池16上的振动信号的频率和待测电池16在振动信号的作用下产生的振动响应幅值,并将得到的待测电池16的频率和振动响应幅值发送给终端10。应理解的是,在实际操作中,信号处理器142与电源15连接,激光干涉仪141的镜头的水平高度要略高于载物板123,且正对载物板123,以保证镜头中出射的第一激光信号可以通过微调而垂直照射到待测电池16的表面上。
图2示出了上述终端10的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分。
该终端10具体包括:
振动产生单元101,用于通过上述振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号;
响应采集单元102,用于通过上述响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值,其中,上述待测电池的预设数量个振动响应幅值由上述待测电池分别在不同频率的振动信号的作用下产生;
故障确定单元103,用于根据上述响应信号确定上述待测电池是否发生故障。
可选地,上述故障确定单元103具体包括:
匹配子单元,用于将上述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,其中,上述响应样本库中至少包括一个发生故障的电池样本的响应样本和一个未发生故障的电池样本的响应样本,每个响应样本分别对应一个标识信息,上述标识信息用于指示与响应样本相关联的电池样本是否发生故障,上述响应样本包括相关联的电池样本的预设数量个振动响应幅值,其中,电池样本的预设数量个振动响应幅值振动响应幅值由相关联的电池样本分别在不同频率的振动信号的作用下产生;
样本确定子单元,用于从上述多个电池样本的响应样本中确定与上述响应信号匹配度最高的最匹配响应样本;
故障确定子单元,用于根据上述最匹配响应样本对应的标识信息确定上述待测电池是否发生故障。
可选地,上述故障确定子单元具体包括:
第一故障确定子单元,用于若上述最匹配响应样本对应的标识信息指示上述最匹配响应样本对应的电池样本发生故障,则确定上述待测电池发生故障;
第二故障确定子单元,用于若上述最匹配响应样本对应的标识信息指示上述最匹配响应样本对应的电池样本未发生故障,则确定上述待测电池未发生故障。
可选地,上述匹配子单元具体包括:
频谱生成子单元,用于根据目标响应样本生成响应频谱,上述响应频谱的横坐标为上述频率,纵坐标为上述振动响应幅值,上述目标响应样本为上述响应样本库中的任一个电池样本的响应样本;
检测点获取子单元,用于获取上述响应频谱中的峰值点以及与上述峰值点最近的至少两个邻近点,并将上述峰值点及上述邻近点作为检测点;
第一标准差计算子单元,用于计算检测点对应的振动响应幅值的标准差,作为第一标准差;
目标幅值获取子单元,用于在上述响应信号中,获取上述待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,以得到一个以上目标振动响应幅值,其中,上述一个以上目标频率为检测点对应的频率;
第二标准差计算子单元,用于计算上述一个以上目标振动响应幅值的标准差,作为第二标准差;
绝对值计算子单元,用于计算上述第一标准差和上述第二标准差之间的差值的绝对值;
匹配度计算子单元,用于根据上述差值的绝对值得到上述响应信号与上述目标响应样本之间的匹配度。
可选地,上述匹配子单元具体包括:
相关性分析子单元,用于对上述响应信号与目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数,上述目标响应样本为上述响应样本库中的任一个电池样本的响应样本;
匹配度确定子单元,用于将上述相关系数作为上述响应信号与上述目标响应样本之间的匹配度。
可选地,上述匹配子单元还包括:
过滤子单元,用于对上述响应信号与上述目标对照样本中小于预设的响应阈值的振动响应幅值进行剔除处理。
可选地,上述相关性分析子单元具体包括:
相关系数确定子单元,用于对保留的响应信号与保留的目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数。
由上可见,本申请方案中通过振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号,使上述待测电池分别在每个振动信号的作用下产生一个振动响应幅值;并通过响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值;根据上述响应信号确定上述待测电池是否发生故障。本申请方案通过分析电池的振动特性,可以快速且无损地检测电池是否发生故障。
图3示出了本申请实施例提供的一种电池故障检测方法的流程图,该电池故障检测方法应用于终端,上述终端连接有用于对待测电池施加振动信号的振动产生装置和用于采集上述待测电池的振动响应幅值的响应采集装置,详述如下:
步骤301,通过上述振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号;
在本申请实施例中,终端控制振动产生装置对待测电池依次施加预设数量个振动信号,上述预设数量的数值应该尽可能地大,以保证检测结果的准确性,比如预设数量为1000。该预设数量个振动信号中,不同的振动信号具有不同的频率。可选地,可以每间隔一个相同的时间,对待测电池施加一个振动信号,直到对待测电池施加了预设数量个振动信号,且振动信号的频率依次等差递增。例如,每间隔1秒对待测电池施加一个振动信号,下一秒对待测电池施加的振动信号的频率比当前对待测电池施加的振动信号的频率要大1750Hz。需要说明的是,振动信号的频率大小的选择是根据待测电池的外形、尺寸、结构、材料等因素决定的。
步骤302,通过上述响应采集装置采集上述待测电池的响应信号;
在本申请实施例中,每对待测电池施加一个振动信号,会使待测电池产生一个对应该振动信号的振动响应幅值。终端通过响应采集装置采集待测电池的响应信号。该响应信号中包括待测电池的预设数量个振动响应幅值,响应信号中的每个振动响应幅值由待测电池在上述预设数量个不同频率的振动信号中的一个振动信号的作用下产生。如图4所示,为了便于说明,将响应信号通过响应频谱的方式体现,图4中从上至下的第四条曲线为响应信号对应的响应频谱,响应信号对应的响应频谱以振动信号的频率(单位为Hz)为横坐标,以振动响应幅值(单位为m/s)为纵坐标,应理解的是,图4中响应信号的响应频谱仅是一个示例。
步骤303,根据上述响应信号确定上述待测电池是否发生故障。
在本申请实施例中,响应信号可以反映待测电池在预设数量个不同频率的振动信号的作用下所表现出的振动特性。而不同状态的待测电池,例如发生故障的待测电池和未发生故障的待测电池,在上述预设数量个不同频率的振动信号的作用下所表现出的振动特性是不同的。因此,通过分析响应信号反映的振动特性,可以确定与响应信号相关联的待测电池是否发生故障。
可选地,针对同一待测电池,可以重复执行上述步骤301和步骤302,得到该待测电池的多个响应信号,在上述多个响应信号中,对待测电池在相同频率的振动信号作用下产生的振动响应幅值求平均値。将得到的所有平均值组合作为一个平均响应信号,根据上述平均响应信号确定待测电池是否发生故障,可以提高检测结果的准确性。
可选地,上述步骤303具体包括:
A1、将上述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配;
A2、从上述多个电池样本的响应样本中确定与上述响应信号匹配度最高的最匹配响应样本;
A3、根据上述最匹配响应样本对应的标识信息确定上述待测电池是否发生故障。
具体地,预设的响应样本库中包括多个响应样本,每个响应样本与一个电池样本相关联,且每个响应样本中包括与这个响应样本相关联的电池样本的预设数量个振动响应幅值。每个响应样本通过以下方式得到:通过振动产生装置对电池样本依次施加预设数量个不同频率的振动信号,使电池样本产生预设数量个振动响应幅值,通过响应采集装置采集电池样本产生的预设数量个振动响应幅值,将该预设数量个振动响应幅值作为一个响应样本。需要说明的是,对电池样本依次施加的预设数量个不同频率的振动信号与对待测电池施加的相同,且电池样本与待测电池应该属于同一种电池。为了能够确定待测电池是否发生故障,上述响应样本库中应该至少包括一个发生故障的电池样本的响应样本和一个未发生故障的电池样本的响应样本。在响应样本库中,每个响应样本对应有一个标识信息,该标识信息用于指示与对应于该标识信息的响应样本相关联的电池样本是否发生故障。将响应信号与响应样本库中的多个响应样本一一进行匹配,将与响应信号匹配度最高的响应样本确定为最匹配响应样本。在确定了最匹配响应样本后,获取最匹配响应样本对应的标识信息,通过分析最匹配响应样本对应的标识信息,就可以确定待测电池是否发生故障。
进一步地,如图4所示,为了便于说明,将响应样本通过响应频谱的方式体现,图4中从上至下前三条曲线为三个响应样本对应的响应频谱,响应样本对应的响应频谱以振动信号的频率(单位为Hz)为横坐标,以振动响应幅值(单位为m/s)为纵坐标。按照从上至下的顺序,第一条曲线为与发生故障的电池样本3相关联的响应样本对应的响应频谱,第二条曲线为与未发生故障的电池样本2相关联的响应样本对应的响应频谱,第三条曲线为与未发生故障的电池样本1相关联的响应样本对应的响应频谱。应理解的是,图4中响应样本的响应频谱仅是一个示例。
可选地,上述步骤A3具体包括:
B1、若上述最匹配响应样本对应的标识信息指示上述最匹配响应样本对应的电池样本发生故障,则确定上述待测电池发生故障;
B2、若上述最匹配响应样本对应的标识信息指示上述最匹配响应样本对应的电池样本未发生故障,则确定上述待测电池未发生故障。
具体地,上述最匹配响应样本对应的电池样本与待测电池的状态最接近。因此,根据最匹配响应样本对应的标识信息的指示,如果最匹配响应样本对应的电池样本发生故障,则确定待测电池发生故障;如果最匹配响应样本对应的电池样本未发生故障,则确定待测电池未发生故障。
可选地,上述步骤A1具体包括:
C1、根据目标响应样本生成响应频谱;
C2、获取上述响应频谱中的峰值点以及与上述峰值点最近的至少两个邻近点,并将上述峰值点及上述邻近点作为检测点;
C3、计算检测点对应的振动响应幅值的标准差,作为第一标准差;
C4、在上述响应信号中,获取上述待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,以得到一个以上目标振动响应幅值;
C5、计算上述一个以上目标振动响应幅值的标准差,作为第二标准差;
C6、计算上述第一标准差和上述第二标准差之间的差值的绝对值;
C7、根据上述差值的绝对值得到上述响应信号与上述目标响应样本之间的匹配度。
可以理解的是,由于将响应信号与每个响应样本进行匹配时都执行相同或相似的操作,为了便于说明,将以响应样本库中的任意一个响应样本为例进行介绍,该响应样本即为目标响应样本。具体地,生成目标响应样本对应的响应频谱,获取目标响应样本对应的响应频谱中的峰值点以及与峰值点最近的至少两个邻近点,将获取到的所有峰值点和邻近点作为检测点。
作为本实施例的一个优选实施方式,上述峰值点可以是指目标响应样本的响应频谱中全局极大值所对应的全局峰值点,这时可以将上述全局峰值点和与上述全局峰值点最近的至少两个邻近点作为检测点。例如,可以将目标响应样本的响应频谱中零阶频谱的极大值作为全局峰值点。
作为本实施例的另一个优选实施方式,上述峰值点也可以是指目标响应样本的响应频谱中多个局部极大值所对应的多个局部峰值点,这时可以将上述多个局部峰值点和与每个局部峰值点最近的至少两个邻近点均作为检测点。例如,可以将目标响应样本的响应频谱中零阶频谱的一个局部极大值点和一阶频谱的两个局部极大值点作为响应频谱的三个局部峰值点。根据需要,也可以提取更高阶的频谱中的局部极大值点一起作为局部峰值点。作为示例,可以获取目标响应样本对应的响应频谱中的峰值点以及与每个峰值点最近的四个邻近点作为检测点。例如,若存在3个峰值点,则可以获取共12个邻近点,将这15个点作为检测点。
进一步地,每个检测点对应一个振动响应幅值(即检测点的纵坐标),计算所有检测点对应的振动响应幅值的标准差,记为第一标准差。在响应信号中,获取待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,目标频率即为所有检测点对应的频率(即检测点的横坐标),例如,若有三个检测点对应的频率分别是17500Hz、35000Hz和52500Hz,则存在三个目标频率分别为17500Hz、35000Hz和52500Hz。将待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值记为目标振动响应幅值。计算所有目标振动响应幅值的标准差,记为第二标准差。计算第一标准差和第二标准差之间的差值的绝对值,第一标准差和第二标准差之间的差值的绝对值越小,则响应信号与目标响应样本之间的匹配度越高。可选地,可以将第一标准差和第二标准差之间的差值的绝对值的倒数作为匹配度。
示例性地,目标响应样本对应的响应频谱可以是图4中从上至下前三条曲线中的任意一条,当一个峰值点对应的频率为35000Hz时,与该峰值点最近的两个邻近点为目标响应样本对应的响应频谱中横坐标(频率)为33250Hz和36750Hz的两个点。
可选地,上述步骤A1具体包括:
D1、对上述响应信号与目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数;
D2、将上述相关系数作为上述响应信号与上述目标响应样本之间的匹配度。
可以理解的是,由于将响应信号与每个响应样本进行匹配时都执行相同或相似的操作,为了便于说明,将以响应样本库中的任意一个响应样本为例进行介绍,该响应样本即为目标响应样本。具体地,对响应信号中预设数量个振动响应幅值与目标响应样本中预设数量个振动响应幅值进行相关性分析,得到响应信号与目标响应样本之间的相关系数。将该相关系数作为响应信号与目标响应样本之间的匹配度。
可选地,在上述步骤D1之前还包括:
对上述响应信号与上述目标对照样本中小于预设的响应阈值的振动响应幅值进行剔除处理。
具体地,由于对待测电池施加谐振频率的振动信号时,待测电池产生的振动响应幅值较大,对待测电池施加非谐振频率的振动信号时,待测电池产生的振动响应幅值较小,过于小的振动响应幅值可能会对相关性分析的准确性造成一定影响。因此,可以遍历响应信号和目标响应样本中的振动响应幅值,将小于预设的响应阈值的振动响应幅值剔除,保留响应信号和目标响应样本中大于或等于响应阈值的振动响应幅值。
可选地,上述步骤D1具体包括:
E1、对保留的响应信号与保留的目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数。
具体地,对保留的响应信号的振动响应幅值与保留的目标响应样本的振动响应幅值进行相关性分析,得到响应信号与目标响应样本之间的相关系数。
由上可见,本申请方案中通过振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号,使上述待测电池分别在每个振动信号的作用下产生一个振动响应幅值;并通过响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值;根据上述响应信号确定上述待测电池是否发生故障。本申请方案通过分析电池的振动特性,可以快速且无损地检测电池是否发生故障。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图5为本申请一实施例提供的终端的结构示意图。如图5所示,该实施例的终端5包括:至少一个处理器50(图5中仅示出一个)、存储器51以及存储在上述存储器51中并可在上述至少一个处理器50上运行的计算机程序52,上述处理器50执行上述计算机程序52时实现以下步骤:
通过上述振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号;
通过上述响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值,其中,上述待测电池的预设数量个振动响应幅值由上述待测电池分别在不同频率的振动信号的作用下产生;
根据上述响应信号确定上述待测电池是否发生故障。
假设上述为第一种可能的实施方式,则在第一种可能的实施方式作为基础而提供的第二种可能的实施方式中,上述根据上述响应信号确定上述待测电池是否发生故障,包括:
将上述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,其中,上述响应样本库中至少包括一个发生故障的电池样本的响应样本和一个未发生故障的电池样本的响应样本,每个响应样本分别对应一个标识信息,上述标识信息用于指示与响应样本相关联的电池样本是否发生故障,上述响应样本包括相关联的电池样本的预设数量个振动响应幅值,其中,电池样本的预设数量个振动响应幅值由相关联的电池样本分别在不同频率的振动信号的作用下产生;
从上述多个电池样本的响应样本中确定与上述响应信号匹配度最高的最匹配响应样本;
根据上述最匹配响应样本对应的标识信息确定上述待测电池是否发生故障。
在上述第二种可能的实施方式作为基础而提供的第三种可能的实施方式中,上述根据上述最匹配响应样本对应的标识信息确定上述待测电池是否发生故障,包括:
若上述最匹配响应样本对应的标识信息指示上述最匹配响应样本对应的电池样本发生故障,则确定上述待测电池发生故障;
若上述最匹配响应样本对应的标识信息指示上述最匹配响应样本对应的电池样本未发生故障,则确定上述待测电池未发生故障。
在上述第二种可能的实施方式作为基础,或者上述第三种可能的实施方式作为基础而提供的第四种可能的实施方式中,上述将上述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,包括:
根据目标响应样本生成响应频谱,上述响应频谱的横坐标为上述频率,纵坐标为上述振动响应幅值,上述目标响应样本为上述响应样本库中的任一个电池样本的响应样本;
获取上述响应频谱中的峰值点以及与上述峰值点最近的至少两个邻近点,并将上述峰值点及上述邻近点作为检测点;
计算检测点对应的振动响应幅值的标准差,作为第一标准差;
在上述响应信号中,获取上述待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,以得到一个以上目标振动响应幅值,其中,上述一个以上目标频率为检测点对应的频率;
计算上述一个以上目标振动响应幅值的标准差,作为第二标准差;
计算上述第一标准差和上述第二标准差之间的差值的绝对值;
根据上述差值的绝对值得到上述响应信号与上述目标响应样本之间的匹配度。
在上述第二种可能的实施方式作为基础,或者上述第三种可能的实施方式作为基础而提供的第五种可能的实施方式中,上述将上述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,包括:
对上述响应信号与目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数,上述目标响应样本为上述响应样本库中的任一个电池样本的响应样本;
将上述相关系数作为上述响应信号与上述目标响应样本之间的匹配度。
在上述第五种可能的实施方式作为基础而提供的第六种可能的实施方式中,在上述对上述响应信号与目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数之前,还包括:
对上述响应信号与上述目标对照样本中小于预设的响应阈值的振动响应幅值进行剔除处理;
相应地,上述对上述响应信号与目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数,包括:
对保留的响应信号与保留的目标响应样本进行相关性分析,得到上述响应信号与上述目标响应样本之间的相关系数。
上述终端5可以是手机、桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是终端5的举例,并不构成对终端5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),该处理器50还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
上述存储器51在一些实施例中可以是上述终端5的内部存储单元,例如终端5的硬盘或内存。上述存储器51在另一些实施例中也可以是上述终端5的外部存储设备,例如上述终端5上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,上述存储器51还可以既包括上述终端5的内部存储单元也包括外部存储设备。上述存储器51用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如上述计算机程序的程序代码等。上述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
由上可见,本申请方案中通过振动产生装置对上述待测电池依次施加预设数量个不同频率的振动信号,使上述待测电池分别在每个振动信号的作用下产生一个振动响应幅值;并通过响应采集装置采集上述待测电池的响应信号,上述响应信号包括上述待测电池的预设数量个振动响应幅值;根据上述响应信号确定上述待测电池是否发生故障。本申请方案通过分析电池的振动特性,可以快速且无损地检测电池是否发生故障。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将上述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现上述各个方法实施例中的步骤。做为本实施例的一种实施方式,上述计算机可读存储介质可包括在任何计算机产品中。或者,上述计算机可读存储介质本身可以被认为是一种计算机产品。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行上述各个方法实施例中的步骤。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,上述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,上述计算机程序包括计算机程序代码,上述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。上述计算机可读介质至少可以包括:能够将计算机程序代码携带到终端的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上上述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种电池故障检测方法,包括:
    通过振动产生装置对待测电池依次施加预设数量个不同频率的振动信号;
    通过响应采集装置采集所述待测电池的响应信号,所述响应信号包括所述待测电池的预设数量个振动响应幅值,其中,所述待测电池的预设数量个振动响应幅值分别由所述待测电池响应于不同频率的振动信号而产生;
    根据所述响应信号确定所述待测电池是否发生故障。
  2. 根据权利要求1所述的电池故障检测方法,其中,所述根据所述响应信号确定所述待测电池是否发生故障包括:
    将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,其中所述响应样本库中包括至少一个发生故障的电池样本的响应样本和至少一个未发生故障的电池样本的响应样本,每个响应样本分别对应一个标识信息,所述标识信息用于指示与响应样本相关联的电池样本是否发生故障,所述响应样本包括相关联的电池样本的预设数量个振动响应幅值,其中所述电池样本的预设数量个振动响应幅值由相关联的电池样本分别在不同频率的振动信号的作用下产生;
    从所述多个电池样本的响应样本中确定与所述响应信号匹配度最高的最匹配响应样本;
    根据所述最匹配响应样本对应的标识信息确定所述待测电池是否发生故障。
  3. 根据权利要求2所述的电池故障检测方法,其中,所述根据所述最匹配响应样本对应的标识信息确定所述待测电池是否发生故障,包括:
    若所述最匹配响应样本对应的标识信息指示所述最匹配响应样本对应的电池样本发生故障,则确定所述待测电池发生故障;
    若所述最匹配响应样本对应的标识信息指示所述最匹配响应样本对应的电池样本未发生故障,则确定所述待测电池未发生故障。
  4. 根据权利要求2所述的电池故障检测方法,其中,所述将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,包括:
    根据目标响应样本生成响应频谱,所述响应频谱的横坐标为所述频率,纵坐标为所述振动响应幅值,所述目标响应样本为所述响应样本库中的任一个电池样本的响应样本;
    获取所述响应频谱中的峰值点以及与所述峰值点最近的至少两个邻近点,并将所述峰值点及所述邻近点作为检测点;
    计算检测点对应的振动响应幅值的标准差,作为第一标准差;
    在所述响应信号中,获取所述待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,以得到一个以上目标振动响应幅值,其中,所述一个以上目标频率为检测点对应的频率;
    计算所述一个以上目标振动响应幅值的标准差,作为第二标准差;
    计算所述第一标准差和所述第二标准差之间的差值的绝对值;
    根据所述差值的绝对值得到所述响应信号与所述目标响应样本之间的匹配度。
  5. 根据权利要求2所述的电池故障检测方法,其中,所述将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,包括:
    对所述响应信号与目标响应样本进行相关性分析,得到所述响应信号与所述目标响应样本之间的相关系数,所述目标响应样本为所述响应样本库中的任一个电池样本的响应样本;
    将所述相关系数作为所述响应信号与所述目标响应样本之间的匹配度。
  6. 根据权利要求5所述的电池故障检测方法,其中,在所述对所述响应信号与目标响应样本进行相关性分析,得到所述响应信号与所述目标响应样本之间的相关系数之前,还包括:
    对所述响应信号与所述目标对照样本中小于预设的响应阈值的振动响应幅值 进行剔除处理;
    相应地,所述对所述响应信号与目标响应样本进行相关性分析,得到所述响应信号与所述目标响应样本之间的相关系数,包括:
    对保留的响应信号与保留的目标响应样本进行相关性分析,得到所述响应信号与所述目标响应样本之间的相关系数。
  7. 一种电池故障检测系统,其中,包括:终端、与所述终端连接的振动产生装置以及与所述终端连接的响应采集装置;
    其中,所述振动产生装置用于对待测电池施加振动信号;
    所述响应采集装置用于采集所述待测电池的振动响应幅值;
    所述终端包括:
    振动产生单元,用于通过所述振动产生装置对所述待测电池依次施加预设数量个不同频率的振动信号;
    响应采集单元,用于通过所述响应采集装置采集所述待测电池的响应信号,所述响应信号包括所述待测电池的预设数量个振动响应幅值,其中,所述待测电池的预设数量个振动响应幅值由所述待测电池分别在不同频率的振动信号的作用下产生;
    故障确定单元,用于根据所述响应信号确定所述待测电池是否发生故障。
  8. 根据权利要求7所述的电池故障检测系统,其中,
    所述振动产生装置包括扫频信号发生器、压片陶瓷以及载物板;
    其中所述扫频信号发生器的输入端与所述终端通信连接,所述扫频信号发生器用于根据所述终端的控制产生正弦电信号;
    所述压片陶瓷与所述扫频信号发生器的输出端连接,用于将所述正弦电信号转换为所述振动信号;
    所述载物板与所述压片陶瓷固定连接,用于放置所述待测电池,以及将所述振动信号传导至所述待测电池上;
    所述响应采集装置包括信号处理器和激光干涉仪;
    其中所述激光干涉仪与所述信号处理器连接,用于向所述待测电池的表面发射第一激光信号,并接收从所述待测电池的表面反射回来的第二激光信号,以及将所述第二激光信号发送至所述信号处理器;
    所述信号处理器与所述终端连接,用于对所述第二激光信号进行处理以得到所述待测电池的频率和所述待测电池的振动响应幅值,并将所述待测电池的频率和所述待测电池的振动响应幅值发送给所述终端。
  9. 根据权利要求7所述的电池故障检测系统,其中,所述故障确定单元包括:
    匹配子单元,用于将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,其中所述响应样本库中包括至少一个发生故障的电池样本的响应样本和至少一个未发生故障的电池样本的响应样本,每个响应样本分别对应一个标识信息,所述标识信息用于指示与响应样本相关联的电池样本是否发生故障,所述响应样本包括相关联的电池样本的预设数量个振动响应幅值,其中所述电池样本的预设数量个振动响应幅值由相关联的电池样本分别在不同频率的振动信号的作用下产生;
    样本确定子单元,用于从所述多个电池样本的响应样本中确定与所述响应信号匹配度最高的最匹配响应样本;
    故障确定子单元,用于根据所述最匹配响应样本对应的标识信息确定所述待测电池是否发生故障。
  10. 根据权利要求9所述的电池故障检测系统,其中,所述故障确定子单元包括:
    第一故障确定子单元,用于若所述最匹配响应样本对应的标识信息指示所述最匹配响应样本对应的电池样本发生故障,则确定所述待测电池发生故障;
    第二故障确定子单元,用于若所述最匹配响应样本对应的标识信息指示所述最匹配响应样本对应的电池样本未发生故障,则确定所述待测电池未发生故障。
  11. 根据权利要求9所述的电池故障检测系统,其中,所述匹配子单元包括:
    频谱生成子单元,用于根据目标响应样本生成响应频谱,所述响应频谱的横坐标为所述频率,纵坐标为所述振动响应幅值,所述目标响应样本为所述响应样本库中的任一个电池样本的响应样本;
    检测点获取子单元,用于获取所述响应频谱中的峰值点以及与所述峰值点最近的至少两个邻近点,并将所述峰值点及所述邻近点作为检测点;
    第一标准差计算子单元,用于计算检测点对应的振动响应幅值的标准差,作为第一标准差;
    目标幅值获取子单元,用于在所述响应信号中,获取所述待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,以得到一个以上目标振动响应幅值,其中,所述一个以上目标频率为检测点对应的频率;
    第二标准差计算子单元,用于计算所述一个以上目标振动响应幅值的标准差,作为第二标准差;
    绝对值计算子单元,用于计算所述第一标准差和所述第二标准差之间的差值的绝对值;
    匹配度计算子单元,用于根据所述差值的绝对值得到所述响应信号与所述目标响应样本之间的匹配度。
  12. 根据权利要求11所述的电池故障检测系统,其中,所述匹配子单元还包括:
    过滤子单元,用于对所述响应信号与所述目标对照样本中小于预设的响应阈值的振动响应幅值进行剔除处理。
  13. 根据权利要求9所述的电池故障检测系统,其中,所述匹配子单元包括:
    相关性分析子单元,用于对所述响应信号与目标响应样本进行相关性分析,得到所述响应信号与所述目标响应样本之间的相关系数,所述目标响应样本为所述响应样本库中的任一个电池样本的响应样本;
    匹配度确定子单元,用于将所述相关系数作为所述响应信号与所述目标响应样本之间的匹配度。
  14. 根据权利要求13所述的电池故障检测系统,其中,所述相关性分析子单元包括:
    相关系数确定子单元,用于对保留的响应信号与保留的目标响应样本进行相关性分析,得到所述响应信号与所述目标响应样本之间的相关系数。
  15. 一种计算机产品,包括计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行时实现以下步骤:
    接收待测电池的响应信号,所述响应信号包括所述待测电池的预设数量个振动响应幅值,其中,所述待测电池的预设数量个振动响应幅值由所述待测电池分别在不同频率的振动信号的作用下产生;和
    根据所述响应信号确定所述待测电池是否发生故障。
  16. 根据权利要求15所述的计算机产品,其中,所述根据所述响应信号确定所述待测电池是否发生故障,包括:
    将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,其中所述响应样本库中包括至少一个发生故障的电池样本的响应样本和至少一个未发生故障的电池样本的响应样本,每个响应样本分别对应一个标识信息,所述标识信息用于指示与响应样本相关联的电池样本是否发生故障,所述响应样本包括相关联的电池样本的预设数量个振动响应幅值,其中所述电池样本的预设数量个振动响应幅值由相关联的电池样本分别在不同频率的振动信号的作用下产生;
    从所述多个电池样本的响应样本中确定与所述响应信号匹配度最高的最匹配响应样本;和
    根据所述最匹配响应样本对应的标识信息确定所述待测电池是否发生故障。
  17. 根据权利要求16所述的计算机产品,其中,所述根据所述最匹配响应样本对应的标识信息确定所述待测电池是否发生故障,包括:
    若所述最匹配响应样本对应的标识信息指示所述最匹配响应样本对应的电池样本发生故障,则确定所述待测电池发生故障;和
    若所述最匹配响应样本对应的标识信息指示所述最匹配响应样本对应的电池样本未发生故障,则确定所述待测电池未发生故障。
  18. 根据权利要求16所述的计算机产品,其中,所述将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,包括:
    根据目标响应样本生成响应频谱,所述响应频谱的横坐标为所述频率,纵坐标为所述振动响应幅值,所述目标响应样本为所述响应样本库中的任一个电池样本的响应样本;
    获取所述响应频谱中的峰值点以及与所述峰值点最近的至少两个邻近点,并将所述峰值点及所述邻近点作为检测点;
    计算检测点对应的振动响应幅值的标准差,作为第一标准差;
    在所述响应信号中,获取所述待测电池分别在一个以上目标频率的振动信号的作用下产生的振动响应幅值,以得到一个以上目标振动响应幅值,其中,所述一个以上目标频率为检测点对应的频率;
    计算所述一个以上目标振动响应幅值的标准差,作为第二标准差;
    计算所述第一标准差和所述第二标准差之间的差值的绝对值;和
    根据所述差值的绝对值得到所述响应信号与所述目标响应样本之间的匹配度。
  19. 根据权利要求16所述的计算机产品,其中,所述将所述响应信号与预设的响应样本库中多个电池样本的响应样本一一进行匹配,包括:
    对所述响应信号与目标响应样本进行相关性分析以得到所述响应信号与所述目标响应样本之间的相关系数,所述目标响应样本为所述响应样本库中的任一个电池样本的响应样本;和
    将所述相关系数作为所述响应信号与所述目标响应样本之间的匹配度。
  20. 根据权利要求19所述的计算机产品,其中,在所述对所述响应信号与目标响应样本进行相关性分析以得到所述响应信号与所述目标响应样本之间的相关系数之前,所述计算机程序被处理器执行时还实现以下步骤:
    对所述响应信号与所述目标对照样本中小于预设的响应阈值的振动响应幅值进行剔除处理;
    相应地,所述对所述响应信号与目标响应样本进行相关性分析以得到所述响应信号与所述目标响应样本之间的相关系数,包括:
    对保留的响应信号与保留的目标响应样本进行相关性分析以得到所述响应信号与所述目标响应样本之间的相关系数。
PCT/CN2020/096303 2020-02-18 2020-06-16 电池故障检测方法、电池故障检测系统及计算机产品 WO2021164156A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/972,572 US20230138536A1 (en) 2020-02-18 2020-06-16 Battery malfunction detection method and system, and computer product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010099104.8 2020-02-18
CN202010099104.8A CN113030738B (zh) 2020-02-18 2020-02-18 一种电池故障检测方法、电池故障检测系统及终端

Publications (1)

Publication Number Publication Date
WO2021164156A1 true WO2021164156A1 (zh) 2021-08-26

Family

ID=76458576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096303 WO2021164156A1 (zh) 2020-02-18 2020-06-16 电池故障检测方法、电池故障检测系统及计算机产品

Country Status (3)

Country Link
US (1) US20230138536A1 (zh)
CN (1) CN113030738B (zh)
WO (1) WO2021164156A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116659797B (zh) * 2023-08-02 2023-12-12 宁德时代新能源科技股份有限公司 冲击响应谱确定方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243284A (zh) * 2011-04-07 2011-11-16 深圳市量能科技有限公司 一种检测卷绕式电池微短路的方法
CN103257319A (zh) * 2013-04-25 2013-08-21 浙江天能电池江苏新能源有限公司 一种阀控式铅蓄电池组寿命检测方法及检测装置
CN103308864A (zh) * 2013-07-09 2013-09-18 中国人民解放军国防科学技术大学 二次电池soh值估算和剩余寿命测试方法
JP2014122817A (ja) * 2012-12-20 2014-07-03 Mitsubishi Heavy Ind Ltd 二次電池の性能推定方法、性能推定装置及びプログラム
CN105589010A (zh) * 2014-11-06 2016-05-18 罗伯特·博世有限公司 用于识别电池组电池中的接触故障的设备和方法
CN105606325A (zh) * 2016-03-18 2016-05-25 天津力神电池股份有限公司 一种圆柱型锂离子电池振动和内阻测试设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128165B2 (en) * 2011-05-04 2015-09-08 Datang Nxp Semiconductors Co., Ltd. Battery cell impedance measurement method and apparatus
CN105425169A (zh) * 2016-01-13 2016-03-23 厦门理工学院 车用蓄电池综合性能动态测试设备
CN105807234B (zh) * 2016-03-21 2019-01-29 安徽工程大学 电动汽车电池性能测试装置
CN107045103B (zh) * 2016-11-29 2020-02-04 北京长城华冠汽车科技股份有限公司 电动汽车动力电池寿命测试装置和方法
US10502793B2 (en) * 2016-12-09 2019-12-10 The Regents Of The University Of California Nonlinear acoustic resonance spectroscopy (NARS) for determining physical conditions of batteries
KR101753807B1 (ko) * 2017-03-27 2017-07-04 김상준 배터리 성능회복장치
CN108318200A (zh) * 2018-01-10 2018-07-24 东方电气集团东方汽轮机有限公司 一种叶片静态振动频率测试系统及其使用方法
CN108646200A (zh) * 2018-08-23 2018-10-12 重庆雅讯电源技术有限公司 电池健康状态评估方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243284A (zh) * 2011-04-07 2011-11-16 深圳市量能科技有限公司 一种检测卷绕式电池微短路的方法
JP2014122817A (ja) * 2012-12-20 2014-07-03 Mitsubishi Heavy Ind Ltd 二次電池の性能推定方法、性能推定装置及びプログラム
CN103257319A (zh) * 2013-04-25 2013-08-21 浙江天能电池江苏新能源有限公司 一种阀控式铅蓄电池组寿命检测方法及检测装置
CN103308864A (zh) * 2013-07-09 2013-09-18 中国人民解放军国防科学技术大学 二次电池soh值估算和剩余寿命测试方法
CN105589010A (zh) * 2014-11-06 2016-05-18 罗伯特·博世有限公司 用于识别电池组电池中的接触故障的设备和方法
CN105606325A (zh) * 2016-03-18 2016-05-25 天津力神电池股份有限公司 一种圆柱型锂离子电池振动和内阻测试设备

Also Published As

Publication number Publication date
US20230138536A1 (en) 2023-05-04
CN113030738B (zh) 2022-09-16
CN113030738A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2019104854A1 (zh) 性能测试评价方法、装置、终端设备及存储介质
EP2095236B1 (en) Method, system and computer program for testing software applications based on multiple data sources
CN101442448B (zh) 刀片服务器测试系统及方法
TW201216048A (en) Test system
CN1298105A (zh) 网络分析仪、网络分析方法和记录媒体
WO2021164156A1 (zh) 电池故障检测方法、电池故障检测系统及计算机产品
CN114255784A (zh) 一种基于声纹识别的变电站设备故障诊断方法及相关装置
CN103425580A (zh) 一种自动快速获取和校验云计算设备配置信息的方法
CN109557515B (zh) 测距仪的检测方法、检测装置、终端设备及存储介质
WO2023160099A1 (zh) 一种gpio防抖功能测试方法、系统、装置及芯片
CN109586788B (zh) 监控系统故障诊断方法、装置、计算机设备及存储介质
CN116706876A (zh) 一种双高电力系统宽频振荡识别方法、装置及设备
CN101930389A (zh) 计算机的自动测试系统及其测试方法
CN115373962A (zh) 测试存储设备io性能的方法、系统、存储介质及设备
TW201101023A (en) Automatic testing system and a method of computer therefore
CN115185829A (zh) 业务流程测试方法、装置、终端设备及存储介质
CN111859985B (zh) Ai客服模型测试方法、装置、电子设备及存储介质
CN108255715B (zh) 一种测试结果处理方法及终端设备
CN116297883B (zh) 一种基于敲击声的结构识别方法、装置、系统及终端设备
CN109032880A (zh) 一种协同bios自检的硬件调测方法及装置
CN116183010B (zh) 动态称重传感器的故障诊断方法、装置、设备及存储介质
US10917327B1 (en) Adaptive testing based on real-time analysis
US20230350772A1 (en) Power supply health check system and method thereof
US7716534B2 (en) Methods and apparatus for measuring performance in processing system
US7698079B2 (en) Characterizing across-die process variation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20919611

Country of ref document: EP

Kind code of ref document: A1