WO2021164139A1 - Microphone optique - Google Patents

Microphone optique Download PDF

Info

Publication number
WO2021164139A1
WO2021164139A1 PCT/CN2020/089538 CN2020089538W WO2021164139A1 WO 2021164139 A1 WO2021164139 A1 WO 2021164139A1 CN 2020089538 W CN2020089538 W CN 2020089538W WO 2021164139 A1 WO2021164139 A1 WO 2021164139A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
grating
light
flexible film
optical microphone
Prior art date
Application number
PCT/CN2020/089538
Other languages
English (en)
Chinese (zh)
Inventor
雅尼克·凯夫兰
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021164139A1 publication Critical patent/WO2021164139A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • This application relates to the field of microphone technology, and in particular to an optical microphone.
  • Traditional microphones are based on capacitors, vibrating the diaphragm through sound waves, and by changing the substrate spacing of the capacitor to produce voltage changes, so as to achieve acoustic-electric conversion.
  • Optical microphone is a relatively new type of microphone.
  • Optical microphones generally include three modules: optoelectronic module, integrated circuit module (ASIC), and microelectromechanical module (MEMS).
  • the optoelectronic module can emit light toward the microelectromechanical module and receive The light reflected by the electromechanical module, when the sound wave vibrates the diaphragm of the microelectromechanical module, the diaphragm slightly vibrates and changes the intensity and phase of the light reflected back to the optoelectronic module.
  • the optoelectronic module converts the intensity and phase signal of the reflected light into an electrical signal. And delivered to the integrated circuit module, so as to achieve the transition from acoustic signal to optical signal to electrical signal.
  • the present application provides an optical microphone to improve the acousto-optic conversion performance of the optical microphone in the prior art.
  • the optical microphone provided by the present application includes a housing, a photoelectric module, a microelectromechanical module, and an integrated circuit module; the housing has an inner cavity and a sound inlet that connects the inner cavity with the outside; the photoelectric module is arranged in the The inner cavity includes a light generator module and a light detector module; the microelectromechanical module is arranged in the inner cavity and covers the sound inlet, and includes a grating and a flexible film; the integrated circuit module is arranged on the The inner cavity is electrically connected to the optoelectronic module and the microelectromechanical module; wherein the flexible film and the grating are spaced along the incident direction of the sound wave and the flexible film is close to the sound inlet, and the flexible film And the side of the grating facing the optoelectronic module are respectively provided with a reflective layer; the sound inlet is opened on the first wall of the housing; the optoelectronic module is provided on the second wall of the housing , The first shell wall is opposite
  • the microelectromechanical module further includes lenses arranged at intervals on the side of the grating facing the optoelectronic module; when the light emitted by the light generator module irradiates the lens perpendicularly, The lens is refracted and irradiated obliquely on the grating; when the light reflected by the grating or the flexible film irradiates the lens obliquely, it is refracted by the lens and irradiated perpendicularly to the light detector module.
  • the microelectromechanical module further includes a support arm that supports the flexible membrane and is fixed to the first shell wall, and the grating is arranged at intervals on the flexible membrane away from the inlet through the support.
  • the flexible film separates the inner cavity along the incident direction of the sound wave to form a front cavity and a back cavity.
  • the flexible membrane is further provided with a sound inlet hole which conducts the front cavity and the rear cavity.
  • the grating includes a number of parallel and spaced slits.
  • the grating is made of a lens, and at least one diffractive surface is provided on the lens.
  • the integrated circuit module is disposed on the second housing wall.
  • the light generator module and the light detector module are arranged on different dies.
  • the light detector module includes multiple light detectors.
  • the light generator module and the light detector module are arranged on the same die.
  • Light generator module When the optical microphone is in use, sound waves enter the shell through the sound inlet and vibrate the flexible film to change the distance between the flexible film and the grating. Part of the light emitted by the light generator module is diffracted by the grating and irradiated on the flexible film and reflected by the flexible film back to the light detector module, and part of the light is directly reflected back to the light detector module by the reflective layer of the grating. Obviously these two parts of light reach the light detector.
  • the module has a certain amplitude difference and phase difference, and the amplitude difference and phase difference are related to the distance between the flexible film and the grating. Therefore, micro-electromechanical modules, photoelectric modules and integrated circuit modules can realize the transformation from acoustic signals to optical signals and then to electrical signals.
  • the microelectromechanical module is arranged on one side of the sound inlet and covers the sound inlet, the photoelectric module is arranged on the side opposite to the microelectromechanical module in the rear cavity, and the flexible membrane is directed toward the sound inlet
  • the grating is arranged toward the optoelectronic module so that the front cavity of the optical microphone is a cavity that does not contain any devices to improve performance.
  • the flexible film of the microelectromechanical module is arranged next to the sound inlet, so that the front cavity has a smaller volume and the rear cavity has a larger volume, which is beneficial to further improve performance.
  • the optical microphone has the advantages of accurate sound-to-light conversion performance.
  • FIG. 1 is a schematic diagram of a first structure of an optical microphone provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a second structure of an optical microphone provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a third structure of an optical microphone provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a fourth structure of an optical microphone provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a grating and a supporting plate of an optical microphone provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of the first structure of an optical microphone provided by an embodiment of this application
  • FIG. 2 is a schematic diagram of a second structure of an optical microphone provided by an embodiment of this application
  • FIG. 3 is a third optical microphone provided by an embodiment of this application
  • FIG. 4 is a schematic diagram of a fourth structure of an optical microphone provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of a grating and a supporting plate of an optical microphone provided by an embodiment of the application.
  • the optical microphone includes a housing 1, an optoelectronic module 2, a microelectromechanical module 3, and an integrated circuit module 4;
  • the photoelectric module 2 is arranged in the inner cavity and includes a light generator module 21 and a light detector module 22;
  • the microelectromechanical module 3 is arranged in the inner cavity and covers the sound inlet 11, including The grating 32 and the film portion 31;
  • the integrated circuit module 4 is arranged in the inner cavity and is electrically connected to the optoelectronic module 2 and the microelectromechanical module 3.
  • the housing 1 includes a first housing wall 12 with a sound inlet 11, a second housing wall 13 where a photoelectric module 2, an integrated circuit module 4 are arranged, and a side connecting the first housing wall 12 and the second housing wall 13 Shell wall 14;
  • the side shell wall 14 can be integrally formed as a part of the first shell wall 12 or the second shell wall 13, or it can be an independent part.
  • the film portion 31 includes a flexible film 312 and a support arm 313 that supports the flexible film 312 and is fixed to the first shell wall 12.
  • the grating 32 is arranged on the side of the flexible film 312 away from the sound inlet 11 through the support 33 at intervals.
  • the inner cavity is separated along the incident direction X of the sound wave to form a front cavity and a back cavity.
  • the membrane portion 31 covers the sound inlet 11.
  • the flexible film 312 and the side of the grating 32 facing the optoelectronic module 2 are respectively provided with a reflective layer.
  • a part of the light emitted by the light generator module 21 is diffracted by the grating 32 and then irradiated on the flexible film 312 and reflected back to the light detector module 22 via the flexible film 312, and part of the light is reflected back to the light detector module 22 via the reflective layer of the grating 32.
  • the microelectromechanical module 3 is arranged on the side of the sound inlet 11 and covers the sound inlet 11, and the optoelectronic module 2 is arranged on the side opposite to the microelectromechanical module 3 in the rear cavity, and the flexible The film 312 faces the sound inlet 11 and the grating 32 faces the optoelectronic module 2 so that the front cavity of the optical microphone is a cavity that does not contain any devices to improve performance.
  • the flexible film 312 of the microelectromechanical module 3 is arranged next to the sound inlet 11, so that the front cavity has a smaller volume and the rear cavity has a larger volume, which is beneficial to further improve performance.
  • the optical microphone has the advantages of accurate sound-to-light conversion performance.
  • the microelectromechanical module 3 further includes lenses 34 arranged at intervals on the side of the grating 32 facing the optoelectronic module 2; when the light emitted by the light generator module 21 irradiates the lens 34 perpendicularly, it is refracted by the lens 34 The light reflected by the grating 32 or the flexible film 312 irradiates the lens 34 obliquely, and is refracted by the lens 34 to irradiate the light detector module 22 perpendicularly.
  • a lens 34 is provided on the side of the grating 32 facing the optoelectronic module 2, and the path of the light emitted by the light generator module 21 can be changed through the refraction of the light by the lens 34.
  • the die of the light generator module 21 can be placed flat on the shell wall of the housing 1, and the die of the light generator module 21 does not have to be placed obliquely so that the light emitted by the light generator module 21 directly irradiates the grating.
  • the incident angle is less than 90°.
  • the die of the light detector module 22 can also be placed flat on the wall of the housing 1 without being inclined. Therefore, this structure can achieve the beneficial effect of more convenient setting of the light generator module 21 and the light detector module 22.
  • the flexible film 312 is further provided with a sound inlet hole 311 that conducts the front cavity and the back cavity.
  • the sound inlet hole 311 can conduct the front cavity and the back cavity to balance the sound pressure inside the front cavity and the back cavity, which is more conducive to the beneficial effect of the flexible membrane 312 vibrating under the action of sound waves.
  • the grating 32 includes a number of parallel and spaced slits.
  • the grating 32 may be provided with a reflective plane.
  • the grating 32 uses silicon as a substrate, and a metal film is plated as a reflective layer on the side of the silicon facing the optoelectronic module using a specific process.
  • This metal may be gold. , Aluminum, silver or copper. .
  • the grating 32 is made of a lens, and at least one diffractive surface 321 is provided on the lens.
  • the lens can also use glass as a substrate, and a diffractive surface 321 is formed by forming a regular non-flat surface (such as a step) on the substrate, and the diffraction surface 321 structure realizes the diffraction of light.
  • the microelectromechanical module 3 further includes a support plate 35 that surrounds and supports the grating 32.
  • the support plate 35 is provided with a plurality of openings 351 for the two support plates 35. Air circulation on the side.
  • the shape of the opening 351 is not limited.
  • the supporting plate 35 is supported by the supporting member 33.
  • the integrated circuit module 4 is also electrically connected to the flexible film 312 and the grating 32 respectively, so that electrostatic force is generated between the flexible film 312 and the grating 32.
  • the integrated circuit module 4 is electrically connected to the flexible film 312 and the grating 32, and an electrostatic force can be generated by applying a voltage between the flexible film 312 and the grating 32 to the integrated circuit module 4, so that the flexible film 312.
  • An “electrostatic spring” is generated between the grating 32.
  • the “electrostatic spring” produces the effect of “enlarging” or “shrinking” the vibrational deformation of the flexible film 312.
  • the light generator module 21 and the light detector module 22 are arranged on different dies.
  • the housing 1 can be made of a PCB board. Circuits can be formed on the PCB, and the integrated circuit module 4 can be electrically connected to the flexible film 312 and the grating through these circuits. It should be noted that the integrated circuit module 4 may be arranged on the first shell wall 12, the second shell wall 13 or the side shell wall 14.
  • the light generator module 21 may be specifically configured as a laser diode
  • the light detector module 22 may be specifically configured as a photodiode
  • the laser diode and the photodiode may be configured with different dies.
  • the light detector module 22 may include multiple light detectors.
  • the light generator module 21 and the light detector module 22 may also be arranged on the same die.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

La présente invention concerne le domaine technique des microphones, et en particulier à un microphone optique. Le microphone optique comprend une coque, un module photoélectrique, un module micro-électromécanique et un module de circuit intégré, dans lequel la coque est pourvue d'une cavité intérieure et d'une entrée sonore qui permet à la cavité intérieure d'être en communication avec l'extérieur; le module photoélectrique est disposé dans la cavité intérieure et comprend un module générateur de lumière et un module détecteur de lumière; le module micro-électromécanique est disposé dans la cavité intérieure, couvre l'entrée sonore et comprend un réseau optique et une membrane flexible; le module à circuit intégré est disposé dans la cavité intérieure et est connecté électriquement au module photoélectrique; la membrane flexible et le réseau optique sont disposés à distance l'un de l'autre et à proximité de l'entrée du son dans la direction d'incidence des ondes sonores, et une couche réfléchissante est respectivement disposée sur le côté de la membrane flexible et le côté du réseau optique qui font face au module photoélectrique; l'entrée du son est prévue dans la paroi de la coquille d'un côté de la coquille; le module photoélectrique est disposé sur la paroi de l'enveloppe de l'enveloppe qui est opposée à l'entrée du son; une partie de la lumière émise par le module générateur de lumière est diffractée par le réseau optique, puis irradie la membrane flexible et est réfléchie vers le module détecteur de lumière au moyen de la membrane flexible, et le reste de la lumière est réfléchi vers un module de détection photoélectrique au moyen de la couche réfléchissante du réseau optique.
PCT/CN2020/089538 2020-02-17 2020-05-11 Microphone optique WO2021164139A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010097109.7A CN111263283A (zh) 2020-02-17 2020-02-17 光学麦克风
CN202010097109.7 2020-02-17

Publications (1)

Publication Number Publication Date
WO2021164139A1 true WO2021164139A1 (fr) 2021-08-26

Family

ID=70949359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089538 WO2021164139A1 (fr) 2020-02-17 2020-05-11 Microphone optique

Country Status (2)

Country Link
CN (1) CN111263283A (fr)
WO (1) WO2021164139A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118522B (zh) * 2020-09-29 2022-04-29 瑞声声学科技(深圳)有限公司 Mems麦克风
CN112932455A (zh) * 2021-01-28 2021-06-11 上海联影医疗科技股份有限公司 磁共振成像设备及磁共振扫描方法
CN113194393A (zh) * 2021-05-21 2021-07-30 安徽奥飞声学科技有限公司 一种光学麦克风
US20240107239A1 (en) * 2022-09-26 2024-03-28 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Mems optical microphone
US20240101410A1 (en) * 2022-09-26 2024-03-28 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Mems optical microphone
US20240171919A1 (en) * 2022-11-23 2024-05-23 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Optical microphone
US20240214749A1 (en) * 2022-12-26 2024-06-27 AAC Technologies Pte. Ltd. Mems optical microphone
CN116074715A (zh) * 2022-12-28 2023-05-05 Oppo广东移动通信有限公司 光学麦克风及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646121A (zh) * 2008-08-08 2010-02-10 鸿富锦精密工业(深圳)有限公司 麦克风模组
WO2014195372A1 (fr) * 2013-06-06 2014-12-11 Technical University Of Denmark Capteur de pression tout optique
US20150365770A1 (en) * 2014-06-11 2015-12-17 Knowles Electronics, Llc MEMS Device With Optical Component
US20160007108A1 (en) * 2014-07-07 2016-01-07 Apple Inc. Grating only optical microphone
CN106792298A (zh) * 2016-12-15 2017-05-31 北京快鱼电子股份公司 一种光纤光栅麦克风及其制作方法
CN108696812A (zh) * 2018-06-01 2018-10-23 山东省科学院激光研究所 光纤光栅麦克风
CN110388980A (zh) * 2019-07-31 2019-10-29 山东大学 一种基于衍射光栅结构的微型声学传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116430B2 (en) * 2002-03-29 2006-10-03 Georgia Technology Research Corporation Highly-sensitive displacement-measuring optical device
US7485847B2 (en) * 2004-12-08 2009-02-03 Georgia Tech Research Corporation Displacement sensor employing discrete light pulse detection
CN207763811U (zh) * 2018-01-24 2018-08-24 合肥正阳光电科技有限责任公司 一种微型衍射光栅声压传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646121A (zh) * 2008-08-08 2010-02-10 鸿富锦精密工业(深圳)有限公司 麦克风模组
WO2014195372A1 (fr) * 2013-06-06 2014-12-11 Technical University Of Denmark Capteur de pression tout optique
US20150365770A1 (en) * 2014-06-11 2015-12-17 Knowles Electronics, Llc MEMS Device With Optical Component
US20160007108A1 (en) * 2014-07-07 2016-01-07 Apple Inc. Grating only optical microphone
CN106792298A (zh) * 2016-12-15 2017-05-31 北京快鱼电子股份公司 一种光纤光栅麦克风及其制作方法
CN108696812A (zh) * 2018-06-01 2018-10-23 山东省科学院激光研究所 光纤光栅麦克风
CN110388980A (zh) * 2019-07-31 2019-10-29 山东大学 一种基于衍射光栅结构的微型声学传感器

Also Published As

Publication number Publication date
CN111263283A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021164139A1 (fr) Microphone optique
US20210258700A1 (en) Optical microphone
US11533569B1 (en) Optical microphone with a dual light source
US20220167096A1 (en) Optical microphone assembly
KR100437142B1 (ko) 광 마이크로 폰
US11240607B2 (en) Optical microphone assembly
US20050241398A1 (en) Acoustoelectric conversion device
JP2010187076A (ja) マイクロホンユニット
WO2001043494A1 (fr) Transducteur electroacoustique optique
CN110388980A (zh) 一种基于衍射光栅结构的微型声学传感器
CN113194393A (zh) 一种光学麦克风
WO2023232628A1 (fr) Dispositif transducteur acoustique à volume arrière étendu
Ono et al. Design and experiments of bio-mimicry sound source localization sensor with gimbal-supported circular diaphragm
US20230164470A1 (en) Microphone component and method of manufacture
WO2024108867A1 (fr) Microphone optique
CN111573614B (zh) 一种高谐振频率的大孔径振镜及制备方法
WO2024066102A1 (fr) Microphone optique mems
JP3974114B2 (ja) 振動板集積基体、音響電気変換素子、音響電気変換システム及び振動板集積基体の製造方法
JP2001157298A (ja) 光学式マイクロホンおよびその製造方法
WO2024066065A1 (fr) Microphone optique mems
WO2024130848A1 (fr) Puce de microphone et microphone
JP2001296310A (ja) 光センサおよびその製造方法
WO2024066132A1 (fr) Microphone optique à mems
CN117319905A (zh) 一种扬声器模组、电子设备、mems扬声器及其制作方法
WO2024160666A1 (fr) Microphone mems optique et procédé de fabrication d'un microphone mems optique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920268

Country of ref document: EP

Kind code of ref document: A1