WO2021163951A1 - 一种基于状态切换的测量方法、电子设备及存储介质 - Google Patents

一种基于状态切换的测量方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2021163951A1
WO2021163951A1 PCT/CN2020/075987 CN2020075987W WO2021163951A1 WO 2021163951 A1 WO2021163951 A1 WO 2021163951A1 CN 2020075987 W CN2020075987 W CN 2020075987W WO 2021163951 A1 WO2021163951 A1 WO 2021163951A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
parameter
failure detection
beam failure
terminal device
Prior art date
Application number
PCT/CN2020/075987
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20919562.7A priority Critical patent/EP4106384A4/en
Priority to PCT/CN2020/075987 priority patent/WO2021163951A1/zh
Priority to CN202080096134.1A priority patent/CN115088287A/zh
Publication of WO2021163951A1 publication Critical patent/WO2021163951A1/zh
Priority to US17/818,479 priority patent/US20220394535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • This application relates to the field of wireless communication technologies, and in particular to a measurement method, electronic equipment and storage medium based on state switching.
  • embodiments of the present application provide a measurement method, electronic device, and storage medium based on state switching, which clarify how the terminal device performs beam failure detection when the state of the beam failure detection changes in transmission.
  • an embodiment of the present application provides a measurement method based on state switching, including: a terminal device receives a first parameter and a second parameter; when the beam failure detection state is switched from the second state to the first state, The terminal device performs beam failure detection based on the first parameter; the second parameter is used for switching the beam failure detection state from the first state to the beam failure detection in the second state.
  • an embodiment of the present application provides a measurement method based on state switching, including: a terminal device receives a third parameter and a fourth parameter; when the state of the radio link monitoring is switched from the fourth state to the third state The terminal device performs radio link failure detection based on the third parameter; the fourth parameter is used for the state of radio link monitoring to switch from the third state to the radio link failure in the fourth state Detection.
  • an embodiment of the present application provides a measurement method based on state switching, including: a network device sends a fifth parameter and a sixth parameter; the fifth parameter is used to switch the state of beam failure detection from the second state to the second state. Beam failure detection in a state, the sixth parameter is used for the beam failure detection state to be switched from the first state to the beam failure detection in the second state; or, the fifth parameter is used for the state of radio link monitoring The wireless link failure detection when switching from the fourth state to the third state, and the sixth parameter is used for the wireless link failure detection when the state of the wireless link monitoring is switched from the third state to the fourth state.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes: a first receiving unit configured to receive a first parameter and a second parameter; and a first processing unit configured to determine the status of beam failure detection When the second state is switched to the first state, the beam failure detection is performed based on the first parameter; the second parameter is used for the beam failure detection state to be switched from the first state to the second state Beam failed detection.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes: a second receiving unit configured to receive a third parameter and a fourth parameter; and a second processing unit configured to monitor the status of the radio link In the case of switching from the fourth state to the third state, radio link failure detection is performed based on the third parameter; the state of the fourth parameter for radio link monitoring is switched from the third state to the second state Wireless link failure detection in four states. .
  • an embodiment of the present application provides a network device, the network device includes: a sending unit configured to send a fifth parameter and a sixth parameter; the status of the fifth parameter used for beam failure detection is changed from the second status Switch to beam failure detection in the first state, and the sixth parameter is used for beam failure detection when the state of beam failure detection is switched from the first state to the second state; or, the fifth parameter is used for wireless link
  • the monitored state is switched from the fourth state to the wireless link failure detection in the third state
  • the sixth parameter is used for the wireless link failure detection when the wireless link monitoring state is switched from the third state to the fourth state.
  • an embodiment of the present application provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal when the computer program is running.
  • the steps of the measurement method based on state switching performed by the device.
  • an embodiment of the present application provides a network device, including a processor and a memory configured to store a computer program that can run on the processor, wherein the processor is configured to execute the above-mentioned network when the computer program is running. The steps of the measurement method based on state switching performed by the device.
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a terminal device installed with the chip executes the above-mentioned measurement method based on state switching performed by the terminal device .
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a network device installed with the chip executes the measurement method based on state switching performed by the network device described above .
  • an embodiment of the present application provides a storage medium that stores an executable program, and when the executable program is executed by a processor, the above-mentioned terminal device executes the measurement method based on state switching.
  • an embodiment of the present application provides a storage medium that stores an executable program, and when the executable program is executed by a processor, the above-mentioned network device executes the measurement method based on state switching.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the above-mentioned measurement method based on state switching performed by the terminal device.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the state-switch-based measurement method performed by the aforementioned network device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the measurement method based on state switching performed by the above-mentioned terminal device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the measurement method based on state switching performed by the above-mentioned network-end device.
  • the measurement method, electronic device, and storage medium based on state switching include: a terminal device receives a first parameter and a second parameter; when the beam failure detection state is switched from the second state to the first state The terminal device performs beam failure detection based on the first parameter; the second parameter is used for switching the beam failure detection state from the first state to the beam failure detection in the second state. It is clarified that different beam failure detection states correspond to different parameters for beam failure detection; when the beam failure detection state is switched from the second state to the first state, the terminal device performs beaming based on the first parameter Failure detection; in the case where the state of beam failure detection is switched from the first state to the second state, the terminal device performs beam failure detection based on the second parameter. In this way, the requirements of the network for beam failure detection under different measurement criteria can be adapted.
  • FIG. 1 is a schematic diagram of the composition structure of a communication system according to an embodiment of the application
  • FIG. 2 is a schematic diagram of an optional processing flow of the measurement method based on state switching provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the processing flow of beam failure detection when the normal BFD state is switched to the relaxed BFD state according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of another optional processing flow of the measurement method based on state switching provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the RLF process of switching from normal RLM to relaxed RLM according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of another optional processing flow of the measurement method based on state switching provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of an optional structure of a terminal device according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of another optional composition structure of a terminal device according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of an optional composition structure of a network device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the hardware composition structure of an electronic device according to an embodiment of the application.
  • BFD beam failure detection
  • RLM radio link monitoring
  • 5G Enhance Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communications
  • mMTC Massive Machine Type Communication
  • eMBB still aims for users to obtain multimedia content, services and data, and its demand is growing very rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements are also quite different, so it cannot be generalized, and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low-cost modules and long service life.
  • the New Radio (NR) system can also be deployed independently.
  • a new Radio Resource Control (RRC) state is defined, that is, deactivation ( RRC-Inactive) state.
  • RRC-Inactive Radio Resource Control
  • the paging process is initiated by the core network (Core Network, CN), and the paging area is configured by the CN.
  • CN Core Network
  • the network equipment can know that the location of the terminal equipment is based on the paging area level of the RAN.
  • the NR system introduces the beam failure recovery (BFR) process, which is used for the synchronization signal block (Synchronization Signal Block, SSB)/signal status information reference signal (Channel Status Indicator Reference Signal, CSI) of the current service.
  • BFR beam failure recovery
  • SSB Synchronization Signal Block
  • CSI Channel Status Indicator Reference Signal
  • the terminal device can indicate a new SSB or CSI-RS beam to the network device.
  • the physical layer of the terminal device sends beam failure indications to the Media Access Control (MAC) layer; and the beam failure detection is completed by counting these beam failure indications.
  • MAC Media Access Control
  • the MAC layer of the terminal device maintains a counter BFI_COUNTER, and the initial value of BFI_COUNTER is set to 0; each time the MAC layer receives a beam failure indication sent by the physical layer, BFI_COUNTER automatically increases by 1, and at the same time starts or restarts a beam failure detection timing ⁇ (BeamFailureDetectionTimer). Every time the Beam Failure DetectionTimer times out, BFI_COUNTER is cleared.
  • BFI_COUNTER is greater than or equal to a threshold configured by Radio Resource Control (RRC) signaling-the maximum number of beam failures (Beam Failure Instance Max Count)
  • RRC Radio Resource Control
  • the RLM in the related technology will be described below.
  • the RLM monitors the downlink channel quality of the serving cell.
  • the physical layer of the terminal equipment evaluates the radio link quality within a preset time, and compares the radio link quality with the signal to interference plus noise ratio (Signal to Interference plus Noise Ratio). , SINR) Qin threshold and Qout threshold comparison, if the wireless link quality is lower than Qout, the physical layer reports a downlink out-of-sync indication to the higher layer; if the wireless link quality is higher than Qin , The physical layer reports a downlink synchronization (in-of-sync) indication to the higher layer.
  • SINR Signal to Interference plus Noise Ratio
  • Qout of- and Qin thresholds are determined by detecting the block error rate (Block Error Rate, BLER) of the Downlink Control Channel (Physical Downlink Control Channel, PDCCH) format 1-0 to determine Qin and Qout.
  • BLER Block Error Rate
  • the BLER values corresponding to Qin and Qout are configured through RRC signaling per cell. The default value is 10% for the BLER corresponding to Qout and 2% for the BLER corresponding to Qin.
  • the terminal equipment involves the following timers and constants in the downlink out-of-synchronization judgment of the network equipment: N310, T310 and N311.
  • These timers and constant parameters can be configured to terminal equipment through dedicated signaling, such as RLF-TimersAndConstants IE; if not configured through dedicated signaling, use the parameter UE-TimersAndConstants IE configuration in the system broadcast (SIB1).
  • the timer T310 is started. If N311 consecutive "in_Sync" are received before the timer T310 expires, the timer T310 is stopped, indicating that the terminal device has resumed downlink synchronization. Otherwise, the terminal device is in a downlink out-of-synchronization state, that is, a radio link failure (Radio Link Failure, RLF).
  • RLF Radio Link Failure
  • RSRP reference signal receiving power
  • the configuration of s-SearchDeltaP in the system message (SIB3) indicates that the cell supports the terminal equipment to relax the neighbor cell measurement.
  • the terminal device can perform neighbor cell measurement relaxation if and only if the following conditions are met:
  • Srxlev is the current Srxlev measurement value of the serving cell
  • SrxlevRef is the reference Srxlev value of the serving cell
  • the terminal device selects or reselects to a new cell; or if (Srxlev-SrxlevRef)>0; or if the relaxation measurement condition is not met within the TSearchDeltaP time; the terminal device sets SrxlevRef as the current Srxlev measurement value of the serving cell; where The value of TSearchDeltaP is 5 minutes, or if eDRX is configured and the eDRX period is longer than 5 minutes, the value of TSearchDeltaP is the length of the eDRX period.
  • the embodiment of this application provides a measurement method based on state switching.
  • the measurement method based on state switching of the embodiment of this application can be applied to various communication systems, such as global system of mobile communication (GSM) system, code Code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) ) System, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, advanced long term evolution (LTE-A) system, new wireless (new) radio, NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed frequency bands, NR (NR-based access to unlicensed spectrum, NR-) on unlicensed frequency bands U) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, wireless local area networks (WLAN), wireless fidelity (wireless) fidelity, WiFi), next-
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the network equipment involved in the embodiments of this application may be a common base station (such as NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • a common base station such as NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be referred to as user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal device can be accessed via a radio access network.
  • network, RAN communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be a portable or pocket-sized , Handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be referred to as user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal device can be accessed via a radio access network.
  • network, RAN
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and terminal equipment at the same time. Unlicensed spectrum for communication.
  • Between network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the frequency spectrum below 7 gigahertz (gigahertz, GHz), can also communicate through the frequency spectrum above 7 GHz, and can also use the frequency spectrum below 7 GHz and Communication is performed in the frequency spectrum above 7GHz.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal devices 120 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Direct terminal connection
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • An optional processing procedure of the measurement method based on state switching provided in the embodiment of the present application, as shown in FIG. 2, includes the following steps:
  • Step S201 The terminal device receives the first parameter and the second parameter.
  • the first parameter may include: a parameter value of the maximum number of first beam failures (beamFailureInstanceMaxCount) and/or a first value of a beam failure detection timer (beamFailureDetectionTimer).
  • the second parameter may include: the parameter value of the second beamFailureInstanceMaxCount and/or the second value of the beamFailureDetectionTimer
  • the first parameter is used for beam failure detection when the beam failure detection state is the first state
  • the second parameter is used for beam failure detection when the beam failure detection state is the second state.
  • the first parameter and the second parameter are carried in a radio link monitoring configuration (Radio Link Monitoring Config) message.
  • the terminal device receives the RRC reconfiguration message by the network device, and obtains the Radio Link Monitoring Config based on the RRC reconfiguration message.
  • the Radio Link Monitoring Config may also include a failure detection resource (failureDetectionResources) configuration.
  • Step S202 When the state of beam failure detection is switched from the second state to the first state, the terminal device performs beam failure detection based on the first parameter.
  • the first state is relaxed beam failure detection, and the second state is normal beam failure detection; or, the first state is normal beam failure detection, and the second state is relaxed beam failure detection. Detection.
  • the beam measurement time interval of the relaxation beam failure detection is greater than the beam measurement time interval of the normal beam failure detection.
  • the terminal device Perform beam failure detection based on the first parameter corresponding to the relaxed beam failure detection.
  • the terminal device performs beam failure detection based on the first maximum value of the first beam failure count (BeamFailureInstanceMaxCount) and the first value of the beam failure detection timer (BeamFailureDetectionTimer) in the first parameter.
  • BeamFailureInstanceMaxCount the first maximum value of the first beam failure count
  • BeamFailureDetectionTimer the first value of the beam failure detection timer
  • the terminal device When the terminal device receives the beam failure indication sent by the physical layer, the terminal device configures the value of the beam failure indication counter (BFI_COUNTER) to increase by 1 (the initial value of BFI_COUNTER is 0), and starts or restarts the beam failure detection
  • the timer (BeamFailureDetectionTimer) is configured to set the beam failure detection timer to the first value; when the BeamFailureDetectionTimer times out, the terminal device configures the value of BFI_COUNTER to be zero; the BeamFailureDetectionTimer has not timed out and the BFI_COUNTER If the value of is greater than or equal to the first maximum number of beam failures (BeamFailureInstanceMaxCount), the terminal device determines that a beam failure occurs.
  • BeamFailureInstanceMaxCount the first maximum number of beam failures
  • the terminal device when it performs beam failure detection based on the first parameter, it may determine that the value of the configuration beam failure indication counter is zero according to the second indication information sent by the network device, and/or determine to stop operation The beam failure detection timer. For example, if the second indication information indicates that the value of the configuration beam failure indication counter is zero, the value of the terminal device configuration beam failure indication counter is zero. If the terminal device does not receive the second indication information, the terminal device configures the value of the beam failure indication counter to be zero by default. If the second indication information indicates to stop running the beam failure detection timer, the terminal device stops running the beam failure detection timer; if the terminal device does not receive the second indication information, the terminal device stops running the beam failure detection timer by default.
  • the second indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the method may further include:
  • step S202' the terminal device receives first indication information, where the first indication information is used to indicate that the beam failure detection state is switched from the second state to the first state.
  • the first indication information may be carried in any one of the following: RRC signaling, Media Access Control Control Element (MAC CE), and PDCCH.
  • RRC signaling Media Access Control Control Element (MAC CE)
  • MAC CE Media Access Control Control Element
  • PDCCH Physical Downlink Control Control Channel
  • the terminal device can not only determine that the beam failure detection state is switched from the second state to the first state through step S202', the terminal device can also use the RSRP measurement value of the serving cell to determine that the terminal device is in the low mobility criterion.
  • Low mobility state Determine whether to switch from the second state to the first state, or switch from the first state to the second state according to whether the terminal device is in the low mobility state.
  • the RRC signaling sent by the network device to the terminal device can be expressed as:
  • the value of the beam failure indication counter In the normal BFD state, each time a beam failure indication is received, the value of the beam failure indication counter is increased by one; when the beam failure detection state is switched from the normal BFD state to the relaxed BFD state, the value of the beam failure indication counter is configured to be zero ; In the relaxed BFD state, start the beam failure detection timer, and configure the value of the beam failure detection timer to be the first value corresponding to the relaxed BFD state, and each time a beam failure indication is received, the value of the beam failure indication counter is increased 1; when the value of BeamFailureDetectionTimer is greater than the first value, the value of BFI_COUNTER configured by the terminal device is zero; when the value of BeamFailureDetectionTimer is less than or equal to the first value, and the value of BFI_COUNTER is greater than or equal to the first BeamFailureInstanceMaxCount, The terminal device determines that a beam failure occurs.
  • the normal BFD state and the relaxed BFD state share a beam failure indicator counter and a beam failure detection timer.
  • the shared beam failure indicator counter needs to be cleared to stop the running beam failure detection. Timer.
  • the normal BFD state and the relaxed BFD state may respectively correspond to a beam failure indication counter and a beam failure detection timer; for example, the normal BFD state corresponds to a second beam failure indication counter and a second beam failure detection timer;
  • the value of the second beam failure indication counter corresponding to the normal BFD state can be cleared or not; however, the first beam corresponding to the relaxed BFD state
  • the value of the failure indication counter needs to be configured to zero.
  • the second beam failure detection timer corresponding to the normal BFD state may or may not stop running; however, the first beam failure detection timer corresponding to the relaxed BFD state needs to be started.
  • the value of the first beam failure indication counter corresponding to the relaxed BFD state can be cleared or not; however, the second beam corresponding to the normal BFD state fails.
  • the value of the indicating counter needs to be configured to zero.
  • the first beam failure detection timer corresponding to the relaxed BFD state may or may not stop running; however, the second beam failure detection timer corresponding to the normal BFD state needs to be started.
  • different BeamFailureInstanceMaxCount and different BeamFailureDetectionTimer values are introduced respectively; used to adapt to different measurement criteria (measurement in the normal BFD state and the relaxed BFD state The measurement below) the requirements of the network equipment for beam failure detection.
  • the beam failure detection timer is stopped and the value of the beam failure indication counter is cleared to avoid the influence of the number of beam failures in different BFD states.
  • Another optional processing procedure of the measurement method based on state switching includes the following steps:
  • Step S301 The terminal device receives the third parameter and the fourth parameter.
  • the third parameter may include the third value of the T310 timer, the first N311, and the first N310.
  • the second parameter may include: the fourth value of the T310 timer, the second N311, and the second N310.
  • the third parameter is used for wireless link failure detection when the state of wireless link monitoring is the third state
  • the fourth parameter is used for wireless link failure detection when the state of wireless link monitoring is the fourth state.
  • the third parameter and the fourth parameter are carried in a radio link failure timer and constant (RLF-TimersAndConstants) configuration message.
  • the terminal device receives the network device through the RRC reconfiguration message, and obtains the RLF-TimersAndConstants configuration based on the RRC reconfiguration message.
  • Step S302 When the state of the radio link monitoring is switched from the fourth state to the third state, the terminal device performs radio link failure detection based on the third parameter.
  • the third state is relaxed wireless link monitoring, and the fourth state is normal wireless link monitoring; or, the third state is normal wireless link monitoring, and the fourth state is Relax wireless link monitoring.
  • the wireless link measurement time interval of the relaxed wireless link monitoring is greater than the wireless link measurement time interval of the normal wireless link monitoring.
  • the terminal device performs beam failure detection based on the third parameter corresponding to the relaxed radio link monitoring.
  • the terminal device performs radio link failure detection based on the third value of the T310 timer in the third parameter, the first N311 and the first N310.
  • the terminal device When the terminal device is in the connected state and the terminal device receives the first N310 consecutive downlink out-of-synchronization indications sent by the physical layer, and the T310 timer, the T304 timer, and the T311 timer are not running, Start the T310 timer, and configure the value of the T310 timer to the third value; when the T310 timer does not expire and the terminal device receives the first N311 consecutive downlink synchronization instructions, The terminal device stops running the T310 timer and determines that the terminal device is in a downlink synchronization state; otherwise, it is determined that the terminal device is in a downlink out-of-synchronization state.
  • the terminal device when the terminal device performs radio link failure detection based on the third parameter, it may determine the value of the configured downlink synchronization indicator counter and the value of the downlink out-of-synchronization indicator counter according to the fourth indicator information sent by the network device Is zero; and/or, the terminal device determines the T310 timer to stop running according to the received fourth indication information. For example, if the fourth indication information indicates that the value of the configured downlink synchronization indication counter is zero, the terminal device configures the value of the downlink synchronization indication counter to zero. If the terminal device does not receive the fourth indication information, the terminal device configures the value of the downlink synchronization indication counter to be zero by default. If the fourth instruction information indicates to stop running the T310 timer, the terminal device stops running the T310 timer; if the terminal device does not receive the fourth instruction information, the terminal device stops running the T310 timer by default.
  • the fourth indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the method may further include:
  • Step S302' the terminal device receives third indication information, which is used to indicate that the state of the radio link monitoring is switched from the fourth state to the third state.
  • the third indication information may be carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the terminal device can not only determine that the beam failure detection state is switched from the second state to the first state through step S302', the terminal device can also use the RSRP measurement value of the serving cell to determine that the terminal device is in the low mobility criterion.
  • Low mobility state Determine whether to switch from the fourth state to the third state, or switch from the third state to the fourth state according to whether the terminal device is in the low mobility state.
  • the RRC signaling sent by the network device to the terminal device can be expressed as:
  • the T310 timer is started when the second N310 Qouts are received, and the value of the T310 timer is configured to the third value corresponding to the relaxed RLM state; during the T310 timer operation period, 4 Qins are received; according to The third instruction message sent by the network device is switched from the normal RLM state to the relaxed RLM state; the T310 timer is stopped, and the values of Qin and Qout are cleared; when the terminal device is in the connected state, the terminal device receives When the first N310 consecutive downlink out-of-synchronization indications sent by the physical layer and the T310 timer, T304 timer and T311 timer are not running, start the T310 timer and configure the value of the T310 timer Is the third value; when the T310 timer does not expire and the terminal device receives the first N311 consecutive downlink synchronization instructions, the terminal device stops running the T310 timer and determines the The terminal device is in a downlink synchronization state; otherwise, it is determined that the terminal terminal
  • the normal RLM state and the relaxed RLM state share a downlink synchronization indicator counter, a downlink out-of-synchronization indicator counter, and a T310 timer.
  • the BFD state switch occurs, the value of the shared downlink synchronization indicator counter and the downlink out-of-synchronization indicator need to be checked. The value of the counter is cleared, and the running T310 timer is stopped.
  • the normal RLM state and the relaxed RLM state may respectively correspond to a downlink synchronization indicator counter, a downlink out-of-synchronization indicator counter, and a T310 timer; for example, the normal RLM state corresponds to a second downlink synchronization indicator counter and a second downlink out-of-synchronization counter.
  • the values of the second downlink synchronization indicator counter and the second downlink out-of-synchronization indicator counter corresponding to the normal RLM state can be cleared If it is zero, it may not be cleared; however, the values of the first downlink synchronization indicator counter and the first downlink out-of-synchronization indicator counter corresponding to the relaxed RLM state need to be configured to be zero.
  • the second T310 timer corresponding to the normal RLM state may or may not stop running; however, the first T310 timer corresponding to the relaxed RLM state needs to be started.
  • the values of the first downlink synchronization indicator counter and the first downlink out-of-synchronization indicator counter corresponding to the relaxed RLM state can be cleared or not; but , The values of the second downlink synchronization indicator counter and the second downlink out-of-synchronization indicator counter corresponding to the normal RLM state need to be configured to zero.
  • the first T310 timer corresponding to the relaxed RLM state may or may not stop running; however, the second T310 timer corresponding to the normal RLM state needs to be started.
  • T310 timer values and different N311 and N310 values are introduced respectively; it is used to adapt to different measurement criteria (in the normal RLM state). Measure and relax the requirements of network equipment for RLF detection under the measurement in the RLM state.
  • stop running the T310 timer stop running the T310 timer, and clear the value of the downlink synchronization indicator counter and the downlink out-of-synchronization indicator counter to zero, which can avoid the number of radio link failures in different RLM states Impact.
  • Another optional processing flow of the measurement method based on state switching provided by the embodiment of the present application, as shown in FIG. 6, includes the following steps:
  • Step S401 The network device sends the fifth parameter and the sixth parameter.
  • the fifth parameter is used to switch the state of beam failure detection from the second state to the beam failure detection in the first state
  • the sixth parameter is used to switch the state of beam failure detection from the first state to The beam fails to be detected in the second state.
  • the first state is relaxed beam failure detection, and the second state is normal beam failure detection; or, the first state is normal beam failure detection, and the second state is relaxed beam failure detection.
  • the beam measurement time interval of the relaxation beam failure detection is greater than the beam measurement time interval of the normal beam failure detection.
  • the fifth parameter and the sixth parameter may be carried in a radio link detection configuration message, and the fifth parameter and the sixth parameter may be carried in an RRC reconfiguration message.
  • the method may further include:
  • Step S400 The network device sends first indication information, where the first indication information is used to indicate that the beam failure detection state is switched from the second state to the first state.
  • the first indication information is carried in any one of the following: RRC signaling, MAC CE, and downlink control channel PDCCH.
  • the method may further include:
  • Step S400' the network device sends second indication information, the second indication information is used to indicate that the value of the configuration beam failure indication counter is zero, and/or the second indication information is used to indicate that the beam is stopped operating Failure detection timer.
  • the second indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the fifth parameter is used for wireless link failure detection when the state of wireless link monitoring is switched from the fourth state to the third state
  • the sixth parameter is used for the state of wireless link monitoring The wireless link failure detection is switched from the third state to the fourth state.
  • the third state is relaxed wireless link monitoring, and the fourth state is normal wireless link monitoring; or, the third state is normal wireless link monitoring, and the fourth state is relaxed Wireless link monitoring.
  • the wireless link measurement time interval of the relaxed wireless link monitoring is greater than the wireless link measurement time interval of the normal wireless link monitoring.
  • the fifth parameter and the sixth parameter may be carried in a radio link detection configuration message; the fifth parameter and the sixth parameter may be carried in a radio resource control RRC reconfiguration message.
  • the method may further include:
  • Step S40a The network device sends third indication information, where the third indication information is used to indicate that the state of the radio link monitoring is switched from the fourth state to the third state.
  • the third indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the method may further include:
  • Step S40b The network device sends fourth indication information, where the fourth indication information is used to indicate that the value of the downlink synchronization indication counter and the value of the downlink out-of-synchronization indication counter are configured to be zero, and/or the fourth indication information T310 timer used to instruct to stop running.
  • the fourth indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the embodiment of the present application also provides a terminal device.
  • the first receiving unit 501 is configured to receive the first parameter and the second parameter
  • the first processing unit 502 is configured to perform beam failure detection based on the first parameter when the state of beam failure detection is switched from the second state to the first state;
  • the second parameter is used to switch the state of beam failure detection from the first state to beam failure detection in the second state.
  • the first parameter and the second parameter are carried in a radio link detection configuration message.
  • the first parameter and the second parameter are carried in an RRC reconfiguration message.
  • the first receiving unit 501 is further configured to receive first indication information, where the first indication information is used to indicate that the state of beam failure detection is switched from the second state to the first state.
  • the first indication information is carried in any one of the following: RRC signaling, MAC CE, and downlink control channel PDCCH.
  • the first processing unit 502 is configured such that the value of the beam failure indication counter is zero; and/or the beam failure detection timer is stopped.
  • the first processing unit 502 is configured to perform beam failure detection based on the maximum number of first beam failure times in the first parameter and the first value of the beam failure detection timer.
  • the first processing unit 502 is configured to increase the value of the beam failure indication counter by 1, and start or restart the beam failure detection timer when receiving the beam failure indication sent by the physical layer. Configuring the value of the beam failure detection timer to the first value;
  • the beam failure detection timer does not expire and the value of the beam failure indication counter is greater than or equal to the maximum number of first beam failures, it is determined that a beam failure occurs.
  • the first processing unit 502 is configured to determine, according to the received second indication information, that the value of the configuration beam failure indication counter is zero; and/or, according to the received second indication information, determine the beam to stop operating Failure detection timer.
  • the second indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the first state is relaxed beam failure detection, and the second state is normal beam failure detection; or, the first state is normal beam failure detection, and the second state is relaxed beam failure detection. Detection.
  • the beam measurement time interval of the relaxation beam failure detection is greater than the beam measurement time interval of the normal beam failure detection.
  • the embodiment of the present application also provides a terminal device.
  • the second receiving unit 601 is configured to receive the third parameter and the fourth parameter
  • the second processing unit 602 is configured to perform wireless link failure detection based on the third parameter when the state of the wireless link monitoring is switched from the fourth state to the third state;
  • the fourth parameter is used for wireless link failure detection when the state of the radio link monitoring is switched from the third state to the fourth state.
  • the third parameter and the fourth parameter are carried in a radio link failure timer and constant configuration message.
  • the third parameter and the fourth parameter are carried in a radio resource control RRC reconfiguration message.
  • the second receiving unit 601 is further configured to receive third indication information, where the third indication information is used to indicate that the state of the radio link monitoring is switched from the fourth state to the third state.
  • the third indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the second processing unit 602 is configured to configure the value of the downlink synchronization indicator counter and the value of the downlink out-of-synchronization indicator counter to zero; and/or stop the running T310 timer.
  • the second processing unit 602 is configured to perform radio link failure detection based on the third value of the T310 timer in the third parameter, the first N311 and the first N310.
  • the second processing unit 602 is configured such that when the terminal device is in the connected state, the second receiving unit receives the first N310 consecutive downlink out-of-synchronization indications sent by the physical layer, and the When the third value of the T310 timer, the T304 timer, and the T311 timer are not running, start the T310 timer, and configure the value of the T310 timer to the third value;
  • the second receiving unit When the T310 timer does not expire and the second receiving unit receives the first N311 consecutive downlink synchronization instructions, it stops running the T310 timer and determines that the terminal device is in the downlink synchronization state; otherwise, It is determined that the terminal device is in a downlink out-of-synchronization state.
  • the second processing unit 602 is configured to determine the value of the configured downlink synchronization indication counter and the value of the downlink out-of-synchronization indication counter according to the received fourth indication information; and/or, according to the received fourth indication information Four instructions confirm the stop of the T310 timer.
  • the fourth indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the third state is relaxed wireless link monitoring, and the fourth state is normal wireless link monitoring; or, the third state is normal wireless link monitoring, and the fourth state is Relax wireless link monitoring.
  • the wireless link measurement time interval of the relaxed wireless link monitoring is greater than the wireless link measurement time interval of the normal wireless link monitoring.
  • the embodiment of the present application also provides a network device, a schematic diagram of an optional composition structure of the network device, as shown in FIG. 9, the network device 800 includes:
  • the sending unit 801 is configured to send the fifth parameter and the sixth parameter;
  • the fifth parameter is used to switch the beam failure detection state from the second state to the beam failure detection in the first state
  • the sixth parameter is used to switch the beam failure detection state from the first state to the second state.
  • the fifth parameter is used for radio link failure detection when the state of radio link monitoring is switched from the fourth state to the third state
  • the sixth parameter is used for radio link monitoring state is switched from the third state To the wireless link failure detection in the fourth state.
  • the fifth parameter and the sixth parameter are used for beam failure detection
  • the fifth parameter and the sixth parameter are carried in a radio link detection configuration message.
  • the fifth parameter and the sixth parameter are used for beam failure detection
  • the fifth parameter and the sixth parameter are carried in a radio resource control RRC reconfiguration message.
  • the sending unit is further configured to send first indication information, and the first indication information is used to indicate the beam The state of the failed detection is switched from the second state to the first state.
  • the first indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the first state is relaxed beam failure detection, and the second state is normal beam failure detection; or, the first state is normal beam failure detection, and the second state is relaxed beam failure detection. Detection.
  • the beam measurement time interval of the relaxation beam failure detection is greater than the beam measurement time interval of the normal beam failure detection.
  • the sending unit is further configured to send second indication information
  • the second indication information is used to indicate that the value of the configuration beam failure indication counter is zero, and/or the second indication information is used to indicate that the beam failure detection timer is stopped operating.
  • the second indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the fifth parameter and the sixth parameter are used for radio link failure detection, the fifth parameter and the sixth parameter are carried in a radio link failure timer and constant configuration message middle.
  • the fifth parameter and the sixth parameter are carried in an RRC reconfiguration message.
  • the sending unit 801 is further configured to send third indication information, where the third indication information is used to indicate that the state of the radio link monitoring is switched from the fourth state to the third state.
  • the third indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • the third state is relaxed wireless link monitoring, and the fourth state is normal wireless link monitoring; or, the third state is normal wireless link monitoring, and the fourth state is Relax wireless link monitoring.
  • the wireless link measurement time interval of the relaxed wireless link monitoring is greater than the wireless link measurement time interval of the normal wireless link monitoring.
  • the sending unit 801 is further configured to send fourth indication information
  • the fourth indication information is used to indicate the configuration of the value of the downlink synchronization indication counter and the value of the downlink out-of-synchronization indication count is zero, and/or the fourth indication information is used to indicate the stop of the T310 timer.
  • the fourth indication information is carried in any one of the following: RRC signaling, MAC CE, and PDCCH.
  • An embodiment of the present application also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of the measurement method based on state switching.
  • An embodiment of the present application also provides a network device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned network device when the computer program is running. Steps of the measurement method based on state switching.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the above-mentioned measurement method based on state switching performed by the terminal device.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the measurement method based on state switching performed by the above-mentioned network device.
  • the embodiment of the present application also provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned terminal device executes the measurement method based on state switching.
  • An embodiment of the present application further provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned network device executes the measurement method based on state switching.
  • the embodiments of the present application also provide a computer program product, including computer program instructions, which cause a computer to execute the state switching-based measurement method performed by the above-mentioned terminal device.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the state switching-based measurement method performed by the above-mentioned network device.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the measurement method based on state switching performed by the above-mentioned terminal device.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the measurement method based on state switching performed by the above-mentioned network device.
  • FIG. 10 is a schematic diagram of the hardware composition structure of an electronic device (terminal device or network device) according to an embodiment of the present application.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 10.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the electronic device 700.
  • Examples of such data include: any computer program used to operate on the electronic device 700, such as the application program 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be used by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable Logic Device
  • controller MCU
  • MPU or other electronic components to implement the foregoing method.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种基于状态切换的测量方法,包括:终端设备接收第一参数和第二参数;在波束失败检测的状态由第二状态切换至第一状态的情况下,所述终端设备基于所述第一参数进行波束失败检测;所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。本申请还公开了另一种基于状态切换的测量方法、电子设备及存储介质。

Description

一种基于状态切换的测量方法、电子设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种基于状态切换的测量方法、电子设备及存储介质。
背景技术
相关技术中,对于低移动性(low mobility)的终端设备(User Equipment,UE),如何进行在波束失败检测的状态发生变化时,如从放松波束失败检测切换到正常波束失败检测、或从正常波束失败检测切换到放松失败检测时,如何进行波束失败检测尚未被明确。
发明内容
为解决上述技术问题,本申请实施例提供一种基于状态切换的测量方法、电子设备及存储介质,明确了波束失败检测的状态发送变化的情况下,终端设备如何进行波束失败检测。
第一方面,本申请实施例提供一种基于状态切换的测量方法,包括:终端设备接收第一参数和第二参数;在波束失败检测的状态由第二状态切换至第一状态的情况下,所述终端设备基于所述第一参数进行波束失败检测;所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。
第二方面,本申请实施例提供一种基于状态切换的测量方法,包括:终端设备接收第三参数和第四参数;在无线链路监测的状态由第四状态切换至第三状态的情况下,所述终端设备基于所述第三参数进行无线链路失败检测;所述第四参数用于无线链路监测的状态由所述第三状态切换至所述第四状态下的无线链路失败检测。
第三方面,本申请实施例提供一种基于状态切换的测量方法,包括:网络设备发送第五参数和第六参数;所述第五参数用于波束失败检测的状态由第二状态切换至第一状态下的波束失败检测,所述第六参数用于波束失败检测的状态由第一状态切换至第二状态下的波束失败检测;或者,所述第五参数用于无线链路监测的状态由第四状态切换至第三状态下的无线链路失败检测,所述第六参数用于无线链路监测的状态由第三状态切换至第四状态下的无线链路失败检测。
第四方面,本申请实施例提供一种终端设备,所述终端设备包括:第一接收单元,配置为接收第一参数和第二参数;第一处理单元,配置为在波束失败检测的状态由第二状态切换至第一状态的情况下,基于所述第一参数进行波束失败检测;所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。
第五方面,本申请实施例提供一种终端设备,所述终端设备包括:第二接收单元,配置为接收第三参数和第四参数;第二处理单元,配置为在无线链路监测的状态由第四状态切换至第三状态的情况下,基于所述第三参数进行无线链路失败检测;所述第四参数用于无线链路监测的状态由所述第三状态切换至所述第四状态下的无线链路失败检测。。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括:发送单元,配置为发送第五参数和第六参数;所述第五参数用于波束失败检测的状态由第二状态切换至第一状态下的波束失败检测,所述第六参数用于波束失败检测的状态由第一状态切换至第二状态下的波束失败检测;或者,所述第五参数用于无线链路监测的状态由第四状态切换至第三状态下的无线链路失败检测,所述第六参数用于无线链路监测的状态由第三状态切换至第四状态下的无线链路失败检测。
第七方面,本申请实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的基于状态切换的测量方法的步骤。
第八方面,本申请实施例提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的基于状态切换的测量方法的步骤。
第九方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端设备执行上述终端设备执行的基于状态切换的测量方法。
第十方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的网络设备执行上述网络设备执行的基于状态切换的测量方法。
第十一方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的基于状态切换的测量方法。
第十二方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的基于状态切换的测量方法。
第十三方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的基于状态切换的测量方法。
第十四方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的基于状态切换的测量方法。
第十五方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的基于状态切换的测量方法。
第十六方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述网络端设备执行的基于状态切换的测量方法。
本申请实施例提供的基于状态切换的测量方法、电子设备及存储介质,包括:终端设备接收第一参数和第二参数;在波束失败检测的状态由第二状态切换至第一状态的情况下,所述终端设备基于所述第一参数进行波束失败检测;所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。明确了不同的波束失败检测状态对应不同的用于波束失败检测的参数;在波束失败检测的状态由第二状态切换至第一状态的情况下,所述终端设备基于所述第一参数进行波束失败检测;在波束失败检测的状态由第一状态切换至第二状态的情况下,所述终端设备基于所述第二参数进行波束失败检测。如此,能够适配不同测量准则下网络对波束失败检测的需求。
附图说明
图1为本申请实施例通信系统的组成结构示意图;
图2为本申请实施例提供的基于状态切换的测量方法的一种可选处理流程示意图;
图3为本申请实施例正常BFD状态切换至放松BFD状态的波束失败检测的处理流程示意图;
图4为本申请实施例提供的基于状态切换的测量方法的另一种可选处理流程示意图;
图5为本申请实施例正常RLM切换至放松RLM的RLF过程示意图;
图6为本申请实施例提供的基于状态切换的测量方法的又一种可选处理流程示意图;
图7为本申请实施例终端设备的一种可选组成结构示意图;
图8为本申请实施例终端设备的另一种可选组成结构示意图;
图9为本申请实施例网络设备的一种可选组成结构示意图;
图10为本申请实施例电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在对本申请实施例提供的基于状态切换的测量方法进行详细说明之前,先对相关技术中波束失败检测(Beam Failuer Detection,BFD)和无线链路监测(Radio Link Monitoring,RLM)进行简要说明。
当前,随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性和复杂性,3GPP国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra Reliable Low Latency Communications,URLLC)、和大规模机器类通信(Massive Machine Type Communication,mMTC)。
eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力 自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
新无线(New Radio,NR)系统也可以独立部署,为了降低空口信令、快速恢复无线连接和快速恢复数据业务,定义了新的无线资源控制(Radio Resource Control,RRC)状态,即去激活(RRC-Inactive)状态。其中,空闲(RRC-Idle)状态下,移动性为基于终端设备的小区重选,寻呼过程由核心网(Core Network,CN)发起,寻呼区域由CN配置。网络设备侧不存在终端设备上下文,也不存在RRC连接。RRC-Inactive状态下,移动性为基于终端设备的小区重选,存在CN-NR之间的连接,终端设备上下文存在于某个网络设备上,寻呼过程由RAN触发,基于RAN的寻呼区域由RAN管理,网络设备能够知道终端设备的位置是基于RAN的寻呼区域级别的。
下面对相关技术中的BFD进行说明。
为了进行波束管理,NR系统引入了波束失败恢复(Beam Failure Recovery,BFR)过程,用于当服务的同步信号块(Synchronization Signal Block,SSB)/信号状态信息参考信号(Channel Status Indicator Reference Signal,CSI-RS)波束发生波束失败时,终端设备能够指示网络设备一个新的SSB或CSI-RS波束。终端设备的物理层会向媒体接入控制(Media Access Control,MAC)层发送波束失败指示;而波束失败检测是通过对这些波束失败指示计数而完成的。具体的,终端设备的MAC层维护一个计数器BFI_COUNTER,BFI_COUNTER的初始值置为0;MAC层每收到物理层发送的一个波束失败指示,BFI_COUNTER就自动加1,同时启动或重启一个波束失败探测定时器(BeamFailureDetectionTimer)。每次Beam Failure DetectionTimer超时,BFI_COUNTER就清零。当BFI_COUNTER大于或等于一个通过无限资源控制(Radio Resource Control,RRC)信令配置的阈值-波束失败次数最大值(Beam Failure Instance Max Count)时,终端设备就认为发生了波束失败,并触发波束失败恢复过程。
下面对相关技术中的RLM进行说明。
RLM是监听服务小区下行链路的信道质量,终端设备的物理层在预设的时间内评估无线链路质量,将所述无线链路质量与信号与加扰噪声比(Signal to Interference plus Noise Ratio,SINR)的Qin门限和Qout门限比较,如果所述无线链路质量低于Qout,则物理层向高层上报下行失步(out-of-sync)指示;如果所述无线链路质量高于Qin,则物理层向高层上报下行同步(in-of-sync)指示。Qout of-和Qin门限是通过检测下行控制信道(Physical Downlink Control Channel,PDCCH)format 1-0的误块率(Block Error Rate,BLER)来确定Qin和Qout。其中Qin和Qout对应的BLER值是通过RRC信令per cell配置的。缺省默认值对于Qout对应的BLER为10%,Qin对应的BLER为2%。
终端设备在网络设备的下行失步判定中涉及到如下几个定时器和常量:N310,T310和N311。这些定时器和常量参数,可以通过专用信令配置给终端设备,如RLF-TimersAndConstants IE;如果没有通过专用信令配置,则使用系统广播(SIB1)里面的参数UE-TimersAndConstants IE配置。
当终端设备处于RRC_CONNECTED状态,收到连续N310个“out_of_Sync”,且T310、T301、T304和T311都没有运行,则启动定时器T310。如果在定时器T310超时前收到连续N311个“in_Sync”,则停止定时器T310,说明终端设备已经恢复下行同步。否则终端设备处于下行失步状态,即无线链路失败(Radio Link Failure,RLF)。
针对低移动性的NB-IoT和eMTC终端设备,当服务小区的参考信号接收功率(Reference Signal Receiving Power,RSRP)变化很少时,意味着终端设备进行小区重选的需求不大,因此可以对邻区测量进行放松,达到终端设备节能的目的。具体的:
系统消息(SIB3)中配置s-SearchDeltaP,则表着该小区支持终端设备放松邻区测量。当且仅当满足如下条件时终端设备可进行邻区测量放松:
1、在时间范围TSearchDeltaP,内满足邻区测量放松条件;
2、自从上次测量不足24H。
放松测量的条件:(SrxlevRef-Srxlev)<SSearchDeltaP
其中,Srxlev是服务小区的当前Srxlev测量值,SrxlevRef是服务小区的参考Srxlev值。
当终端设备选择或重选到一个新的小区;或者如果(Srxlev-SrxlevRef)>0;或者如果在TSearchDeltaP时间内放松测量条件没有满足;终端设备将SrxlevRef设为服务小区的当前Srxlev测量值;其中TSearchDeltaP的取值为5分钟,或者如果配置了eDRX且eDRX周期长于5分钟时,TSearchDeltaP的取值为eDRX周期长度。
在NR版本17(Rel-17)的终端设备节能项目中,计划对BFD和RLM引入测量放松,这意味着对于低移动性的终端设备,用于RLM/BFD的物理层测量由于节能的考虑会进行放松,即测量 间隔会增大。此时如果仍然沿用现有的BFD机制和RLM机制将会出现一些问题,例如不同测量间隔产生的Qin/Qout能否连续计数,不同测量间隔的波束失败指示能否连续计数。现有的timer是否仍然适用,是否需要延长,都是需要解决的问题。
本申请实施例提供一种基于状态切换的测量方法,本申请实施例的基于状态切换的测量方法可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100,如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以 是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例提供的基于状态切换的测量方法的一种可选处理流程,如图2所示,包括以下步骤:
步骤S201,终端设备接收第一参数和第二参数。
在一些实施例中,所述第一参数可以包括:第一波束失败最大次数(beamFailureInstanceMaxCount)的参数值和/或波束失败探测定时器(beamFailureDetectionTimer)的第一值。所述第二参数可以包括:第二beamFailureInstanceMaxCount的参数值和/或beamFailureDetectionTimer的第二值
所述第一参数用于波束失败检测状态为第一状态下的波束失败检测,所述第二参数用于波束失败检测状态为第二状态下的波束失败检测。所述第一参数和所述第二参数携带于无线链路检测配置(Radio Link Monitoring Config)消息中。
在具体实施时,所述终端设备接收网络设备通过RRC重配置消息,基于所述RRC重配置消息获取Radio Link Monitoring Config。
在一些实施例中,所述Radio Link Monitoring Config除了包括第一参数和第二参数以外,还可以包括失败探测资源(failureDetectionResources)配置。
步骤S202,在波束失败检测的状态由第二状态切换至第一状态的情况下,所述终端设备基于所述第一参数进行波束失败检测。
在一些实施例中,所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。其中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
以所述第二状态为正常波束失败检测,所述第一状态为放松波束失败检测为例,在波束失败检测的状态由正常波束失败检测切换至放松波束失败检测的情况下,所述终端设备基于所述放松波束失败检测对应的第一参数进行波束失败检测。
在具体实施时,所述终端设备基于所述第一参数中的第一波束失败次数最大值(BeamFailureInstanceMaxCount)和波束失败检测定时器(BeamFailureDetectionTimer)的第一值,进行波束失败检测。所述终端设备接收到物理层发送的波束失败指示的情况下,所述终端设备配置波束失败指示计数器(BFI_COUNTER)的值增加1(BFI_COUNTER的初始值为0),启动或重启所述波束失败检测定时器(BeamFailureDetectionTimer),配置所述波束失败检测定时器的值为所述第一值;所述BeamFailureDetectionTimer超时时,所述终端设备配置BFI_COUNTER的值为零;所述BeamFailureDetectionTimer未超时、且所述BFI_COUNTER的值大于或等于第一波束失败次数最大值(BeamFailureInstanceMaxCount)的情况下,所述终端设备确定发生波束失败。
在一些实施例中,所述终端设备基于所述第一参数进行波束失败检测时,可以根据网络设备发送的第二指示信息确定配置波束失败指示计数器的值为零,和/或,确定停止运行的波束失败检测定时器。举例来说,若第二指示信息指示配置波束失败指示计数器的值为零,则终端设备配置波束失败指示计数器的值为零。若终端设备未接收到第二指示信息,则终端设备默认配置波束失败指示计数器的值为零。若第二指示信息指示停止运行波束失败检测定时器,则终端设备停止运行波束失败检测定时器;若终端设备未接收到第二指示信息,则终端设备默认停止运行波束失败检测定时器。
其中,所述第二指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述方法还可以包括:
步骤S202’,终端设备接收第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
在一些实施例中,所述第一指示信息可以携带于下述中的任意一项中:RRC信令、媒体接入控制单元(Media Access Control Control Element,MAC CE)和PDCCH。
在具体实施时,终端设备不仅可以通过步骤S202’确定波束失败检测的状态由第二状态切换至第一状态,所述终端设备还可以使用服务小区的RSRP测量值按照low mobility准则判断终端设备处于low mobility状态;根据终端设备是否处于low mobility状态,判断是否由第二状态切换至第一状态,或者由第一状态切换至第二状态。
本申请实施例中,针对第一指示信息和第二指示信息的传输,网络设备向终端设备发送的RRC信令可以表示为:
Figure PCTCN2020075987-appb-000001
下面基于图3对本申请实施例正常BFD状态切换至放松BFD状态的波束失败检测过程进行描述。
在正常BFD状态,每接收到一次波束失败指示,波束失败指示计数器的值增加1;在波束失败检测的状态由正常BFD状态切换至放松BFD状态的情况下,配置波束失败指示计数器的值为零; 在放松BFD状态下,启动波束失败检测定时器,并配置所述波束失败检测定时器的值为放松BFD状态对应的第一值,每接收到一次波束失败指示,波束失败指示计数器的值增加1;在BeamFailureDetectionTimer的值大于第一值时,所述终端设备配置BFI_COUNTER的值为零;BeamFailureDetectionTimer的值小于或等于第一值时、且所述BFI_COUNTER的值大于或等于第一BeamFailureInstanceMaxCount的情况下,所述终端设备确定发生波束失败。
上述实施例中,正常BFD状态和放松BFD状态共用一个波束失败指示计数器和波束失败检测定时器,发生BFD状态切换时,需要对共用的波束失败指示计数器进行清零,停止正在运行的波束失败检测定时器。
在一些实施例中,正常BFD状态和放松BFD状态可以分别对应一个波束失败指示计数器和波束失败检测定时器;如,正常BFD状态对应第二波束失败指示计数器和第二波束失败检测定时器;在该场景下,由正常BFD状态切换至放松BFD状态的情况下,正常BFD状态对应的第二波束失败指示计数器的值可以清零,也可以不清零;但是,放松BFD状态对应的第一波束失败指示计数器的值需要配置为零。正常BFD状态对应的第二波束失败检测定时器可以停止运行,也可以不停止运行;但是,需要启动放松BFD状态对应的第一波束失败检测定时器。
同理,由放松BFD状态切换至正常BFD状态的情况下,放松BFD状态对应的第一波束失败指示计数器的值可以清零,也可以不清零;但是,正常BFD状态对应的第二波束失败指示计数器的值需要配置为零。放松BFD状态对应的第一波束失败检测定时器可以停止运行,也可以不停止运行;但是,需要启动正常BFD状态对应的第二波束失败检测定时器。
本申请实施例中,针对正常BFD状态和放松BFD状态中的波束失败检测,分别引入不同的BeamFailureInstanceMaxCount和不同的BeamFailureDetectionTimer的值;用于适配不同测量准则(正常BFD状态下的测量和放松BFD状态下的测量)下网络设备对波束失败检测的需求。在正常BFD状态和放松BFD状态之间切换时,停止运行波束失败检测定时器,并将波束失败指示计数器的值清零,能避免不同BFD状态下的波束失败次数的影响。
本申请实施例提供的基于状态切换的测量方法的另一种可选处理流程,如图4所示,包括以下步骤:
步骤S301,终端设备接收第三参数和第四参数。
在一些实施例中,所述第三参数可以包括T310定时器的第三值、第一N311和第一N310。所述第二参数可以包括:T310定时器的第四值、第二N311和第二N310。
所述第三参数用于无线链路监测的状态为第三状态下的无线链路失败检测,所述第四参数用于无线链路监测的状态为第四状态下的无线链路失败检测。所述第三参数和所述第四参数携带于无线链路失败定时器和常数(RLF-TimersAndConstants)配置消息中。
在具体实施时,所述终端设备接收网络设备通过RRC重配置消息,基于所述RRC重配置消息获取RLF-TimersAndConstants配置。
步骤S302,在无线链路监测的状态由第四状态切换至第三状态的情况下,所述终端设备基于所述第三参数进行无线链路失败检测。
在一些实施例中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
其中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
以所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测为例,在无线链路监测的状态由正常无线链路监测切换至放松无线链路监测的情况下,所述终端设备基于所述放松无线链路监测对应的第三参数进行波束失败检测。
在具体实施时,所述终端设备基于所述第三参数中T310定时器的第三值、第一N311和第一N310,进行无线链路失败检测。所述终端设备处于连接态时,所述终端设备接收到物理层发送的连续第一N310个下行失步指示、且所述T310定时器、T304定时器和T311定时器均未运行的情况下,启动所述T310定时器,配置所述T310定时器的值为所述第三值;在所述T310定时器未超时时,所述终端设备接收到连续第一N311个下行同步指示的情况下,所述终端设备停止运行所述T310定时器,确定所述终端设备处于下行同步状态;否则,确定所述终端设备处于下行失步状态。
在一些实施例中,所述终端设备基于所述第三参数进行无线链路失败检测时,可以根据网络设备发送的第四指示信息确定配置下行同步指示计数器的值和下行失步指示计数器的值为零;和/或,所述终端设备根据接收的第四指示信息确定停止运行的T310定时器。举例来说,若第四指示信息指 示配置下行同步指示计数器的值为零,则终端设备配置下行同步指示计数器的值为零。若终端设备未接收到第四指示信息,则终端设备默认配置下行同步指示计数器的值为零。若第四指示信息指示停止运行T310定时器,则终端设备停止运行T310定时器;若终端设备未接收到第四指示信息,则终端设备默认停止运行T310定时器。
其中,所述第四指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述方法还可以包括:
步骤S302’,终端设备接收第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
在一些实施例中,所述第三指示信息可以携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在具体实施时,终端设备不仅可以通过步骤S302’确定波束失败检测的状态由第二状态切换至第一状态,所述终端设备还可以使用服务小区的RSRP测量值按照low mobility准则判断终端设备处于low mobility状态;根据终端设备是否处于low mobility状态,判断是否由第四状态切换至第三状态,或者由第三状态切换至第四状态。
本申请实施例中,针对第三指示信息和第四指示信息的传输,网络设备向终端设备发送的RRC信令可以表示为:
Figure PCTCN2020075987-appb-000002
下面基于图5对本申请实施例正常RLM状态切换至放松RLM状态的RLF过程进行描述。
在正常RLM状态,接收到第二N310个Qout时启动T310定时器,配置所述T310定时器的值为放松RLM状态对应的第三值;在T310定时器运行期间,接收到4个Qin;根据网络设备发送的第三指示信息,由正常RLM状态切换至放松RLM状态;则停止运行T310定时器,Qin和Qout的值清零;在所述终端设备处于连接态时,所述终端设备接收到物理层发送的连续第一N310个下行失步指示、且所述T310定时器、T304定时器和T311定时器均未运行的情况下,启动所述T310定时器,配置所述T310定时器的值为所述第三值;在所述T310定时器未超时时,所述终端设备接收到连续第一N311个下行同步指示的情况下,所述终端设备停止运行所述T310定时器,确定所述终端设备处于下行同步状态;否则,确定所述终端设备处于下行失步状态。其中,所述第一N310、所述第三值和所述第一N311适用于放松RLM状态。
上述实施例中,正常RLM状态和放松RLM状态共用一个下行同步指示计数器、下行失步指示计数器和T310定时器,发生BFD状态切换时,需要对共用的下行同步指示计数器的值和下行失步指示计数器的值进行清零,停止正在运行的T310定时器。
在一些实施例中,正常RLM状态和放松RLM状态可以分别对应一个下行同步指示计数器、下行失步指示计数器和T310定时器;如,正常RLM状态对应第二下行同步指示计数器、第二下行失步指示计数器和第二T310定时器;在该场景下,由正常RLM状态切换至放松RLM状态的情况下,正常RLM状态对应的第二下行同步指示计数器和第二下行失步指示计数器的值可以清零,也可 以不清零;但是,放松RLM状态对应的第一下行同步指示计数器和第一下行失步指示计数器的值需要配置为零。正常RLM状态对应的第二T310定时器可以停止运行,也可以不停止运行;但是,需要启动放松RLM状态对应的第一T310定时器。
同理,由放松RLM状态切换至正常RLM状态的情况下,放松RLM状态对应的第一下行同步指示计数器和第一下行失步指示计数器的值可以清零,也可以不清零;但是,正常RLM状态对应的第二下行同步指示计数器和第二下行失步指示计数器的值需要配置为零。放松RLM状态对应的第一T310定时器可以停止运行,也可以不停止运行;但是,需要启动正常RLM状态对应的第二T310定时器。
本申请实施例中,针对正常RLM状态和放松RLM状态中的RLF检测,分别引入不同的T310定时器的值和不同的N311和N310的值;用于适配不同测量准则(正常RLM状态下的测量和放松RLM状态下的测量)下网络设备对RLF检测的需求。在正常RLM状态和放松RLM状态之间切换时,停止运行T310定时器,并将下行同步指示计数器的值和下行失步指示计数器的值清零,能避免不同RLM状态下的无线链路失败次数的影响。
本申请实施例提供的基于状态切换的测量方法的又一种可选处理流程,如图6所示,包括以下步骤:
步骤S401,网络设备发送第五参数和第六参数。
在一些实施例中,所述第五参数用于波束失败检测的状态由第二状态切换至第一状态下的波束失败检测,所述第六参数用于波束失败检测的状态由第一状态切换至第二状态下的波束失败检测。
可选地,所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。其中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
在该场景下,所述第五参数和所述第六参数可以携带于无线链路检测配置消息中,所述第五参数和所述第六参数可以携带于RRC重配置消息中。
在该场景下,所述方法还可以包括:
步骤S400,所述网络设备发送第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
可选地,所述第一指示信息携带于下述中的任意一项中:RRC信令、MAC CE和下行控制信道PDCCH。
在该场景下,所述方法还可以包括:
步骤S400’,所述网络设备发送第二指示信息,所述第二指示信息用于指示配置波束失败指示计数器的值为零,和/或,所述第二指示信息用于指示停止运行的波束失败检测定时器。
其中,所述第二指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在另一些实施例中,所述第五参数用于无线链路监测的状态由第四状态切换至第三状态下的无线链路失败检测,所述第六参数用于无线链路监测的状态由第三状态切换至第四状态下的无线链路失败检测。
可选地,,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。其中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
在该场景下,所述第五参数和所述第六参数可以携带于无线链路检测配置消息中;所述第五参数和所述第六参数可以携带于无线资源控制RRC重配置消息中。
在该场景下,所述方法还可以包括:
步骤S40a,所述网络设备发送第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
其中,所述第三指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在该场景下,所述方法还可以包括:
步骤S40b,所述网络设备发送第四指示信息,所述第四指示信息用于指示配置下行同步指示计数器的值和下行失步指示计数器的值为零,和/或,所述第四指示信息用于指示停止运行的T310定时器。
其中,所述第四指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
本申请实施例还提供一种终端设备,所述终端设备的一种可选组成结构示意图,如图7所示,终端设备500包括:
第一接收单元501,配置为接收第一参数和第二参数;
第一处理单元502,配置为在波束失败检测的状态由第二状态切换至第一状态的情况下,基于所述第一参数进行波束失败检测;
所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。
在一些实施例中,所述第一参数和所述第二参数携带于无线链路检测配置消息中。
在一些实施例中,所述第一参数和所述第二参数携带于RRC重配置消息中。
在一些实施例中,所述第一接收单元501,还配置为接收第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
在一些实施例中,所述第一指示信息携带于下述中的任意一项中:RRC信令、MAC CE和下行控制信道PDCCH。
在一些实施例中,所述第一处理单元502,配置为波束失败指示计数器的值为零;和/或,停止运行的波束失败检测定时器。
在一些实施例中,所述第一处理单元502,配置为基于所述第一参数中的第一波束失败次数最大值和波束失败检测定时器的第一值,进行波束失败检测。
在一些实施例中,所述第一处理单元502,配置为接收到物理层发送的波束失败指示的情况下,配置波束失败指示计数器的值增加1,启动或重启所述波束失败检测定时器,配置所述波束失败检测定时器的值为所述第一值;
所述波束失败检测定时器超时时,配置波束失败指示计数器的值为零;
所述波束失败检测定时器未超时时、且所述波束失败指示计数器的值大于或等于第一波束失败次数最大值的情况下,确定发生波束失败。
在一些实施例中,所述第一处理单元502,配置为根据接收的第二指示信息确定配置波束失败指示计数器的值为零;和/或,根据接收的第二指示信息确定停止运行的波束失败检测定时器。
在一些实施例中,所述第二指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。
在一些实施例中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
本申请实施例还提供一种终端设备,所述终端设备的另一种可选组成结构示意图,如图8所示,终端设备600包括:
第二接收单元601,配置为接收第三参数和第四参数;
第二处理单元602,配置为在无线链路监测的状态由第四状态切换至第三状态的情况下,基于所述第三参数进行无线链路失败检测;
所述第四参数用于无线链路监测的状态由所述第三状态切换至所述第四状态下的无线链路失败检测。
在一些实施例中,所述第三参数和所述第四参数携带于无线链路失败定时器和常数配置消息中。
在一些实施例中,所述第三参数和所述第四参数携带于无线资源控制RRC重配置消息中。
在一些实施例中,所述第二接收单元601,还配置为接收第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
在一些实施例中,所述第三指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述第二处理单元602,配置为配置下行同步指示计数器的值和下行失步指示计数器的值为零;和/或,停止运行的T310定时器。
在一些实施例中,所述第二处理单元602,配置为基于所述第三参数中T310定时器的第三值、第一N311和第一N310,进行无线链路失败检测。
在一些实施例中,所述第二处理单元602,配置为所述终端设备处于连接态时,所述第二接收单元接收到物理层发送的连续第一N310个下行失步指示、且所述T310定时器第三值、T304定时器和T311定时器均未运行的情况下,启动所述T310定时器,配置所述T310定时器的值为所述第三值;
在所述T310定时器未超时时,所述第二接收单元接收到连续第一N311个下行同步指示的情况下,停止运行所述T310定时器,确定所述终端设备处于下行同步状态;否则,确定所述终端设备处于下行失步状态。
在一些实施例中,所述第二处理单元602,配置为根据接收的第四指示信息确定配置下行同步指示计数器的值和下行失步指示计数器的值为零;和/或,根据接收的第四指示信息确定停止运行的T310定时器。
在一些实施例中,所述第四指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
在一些实施例中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
本申请实施例还提供一种网络设备,所述网络设备的一种可选组成结构示意图,如图9所示,网络设备800包括:
发送单元801,配置为发送第五参数和第六参数;
所述第五参数用于波束失败检测的状态由第二状态切换至第一状态下的波束失败检测,所述第六参数用于波束失败检测的状态由第一状态切换至第二状态下的波束失败检测;
或者,所述第五参数用于无线链路监测的状态由第四状态切换至第三状态下的无线链路失败检测,所述第六参数用于无线链路监测的状态由第三状态切换至第四状态下的无线链路失败检测。
在一些实施例中,在所述第五参数和所述第六参数用于波束失败检测的情况下,所述第五参数和所述第六参数携带于无线链路检测配置消息中。
在一些实施例中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述第五参数和所述第六参数携带于无线资源控制RRC重配置消息中。
在一些实施例中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述发送单元,还配置为发送第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
在一些实施例中,所述第一指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。
在一些实施例中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
在一些实施例中,在所述第五参数和所述第六参数用于波束失败检测的情况下,所述发送单元,还配置为发送第二指示信息;
所述第二指示信息用于指示配置波束失败指示计数器的值为零,和/或,所述第二指示信息用于指示停止运行的波束失败检测定时器。
在一些实施例中,所述第二指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述第五参数和所述第六参数用无线链路失败检测的情况下,所述第五参数和所述第六参数携带于无线链路失败定时器和常数配置消息中。
在一些实施例中,所述第五参数和所述第六参数携带于RRC重配置消息中。
在一些实施例中,所述发送单元801,还配置为发送第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
在一些实施例中,所述第三指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
在一些实施例中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
在一些实施例中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
在一些实施例中,所述第五参数和所述第六参数用于无线链路失败检测的情况下,所述发送单元801,还配置为发送第四指示信息;
所述第四指示信息用于指示配置下行同步指示计数器的值和下行失步指示计数的器值为零,和/或,所述第四指示信息用于指示停止运行的T310定时器。
在一些实施例中,所述第四指示信息携带于下述中的任意一项中:RRC信令、MAC CE和PDCCH。
本申请实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的基于状态切换的测量方法的步骤。
本申请实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的基于状态切换的测量方法的步骤。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述终端设备执行的基于状态切换的测量方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述网络设备执行的基于状态切换的测量方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的基于状态切换的测量方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的基于状态切换的测量方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的基于状态切换的测量方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的基于状态切换的测量方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的基于状态切换的测量方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述网络设备执行的基于状态切换的测量方法。
图10是本申请实施例的电子设备(终端设备或网络设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701 可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (97)

  1. 一种基于状态切换的测量方法,所述方法包括:
    终端设备接收第一参数和第二参数;
    在波束失败检测的状态由第二状态切换至第一状态的情况下,所述终端设备基于所述第一参数进行波束失败检测;
    所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。
  2. 根据权利要求1所述的方法,其中,所述第一参数和所述第二参数携带于无线链路检测配置消息中。
  3. 根据权利要求1或2所述的方法,其中,所述第一参数和所述第二参数携带于无线资源控制RRC重配置消息中。
  4. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
  5. 根据权利要求4所述的方法,其中,所述第一指示信息携带于下述中的任意一项中:
    RRC信令、媒体接入控制单元MAC CE和下行控制信道PDCCH。
  6. 根据权利要求1至5任一项所述的方法,其中,所述终端设备基于所述第一参数进行波束失败检测,包括:
    所述终端设备配置波束失败指示计数器的值为零;
    和/或,所述终端设备停止运行的波束失败检测定时器。
  7. 根据权利要求1至6任一项所述的方法,其中,所述终端设备基于所述第一参数进行波束失败检测,包括:
    所述终端设备基于所述第一参数中的第一波束失败次数最大值和波束失败检测定时器的第一值,进行波束失败检测。
  8. 根据权利要求7所述的方法,其中,所述终端设备基于所述第一参数中的第一波束失败次数最大值和波束失败检测定时器的第一值,进行波束失败检测包括:
    所述终端设备接收到物理层发送的波束失败指示的情况下,所述终端设备配置波束失败指示计数器的值增加1,启动或重启所述波束失败检测定时器,配置所述波束失败检测定时器的值为所述第一值;
    所述波束失败检测定时器超时时,所述终端设备配置波束失败指示计数器的值为零;
    所述波束失败检测定时器未超时、且所述波束失败指示计数器的值大于或等于第一波束失败次数最大值的情况下,所述终端设备确定发生波束失败。
  9. 根据权利要求6所述的方法,其中,所述终端设备根据接收的第二指示信息确定配置波束失败指示计数器的值为零;
    和/或,所述终端设备根据接收的第二指示信息确定停止运行的波束失败检测定时器。
  10. 根据权利要求9所述的方法,其中,所述第二指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  11. 根据权利要求1至10任一项所述的方法,其中,
    所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;
    或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。
  12. 根据权利要求11所述的方法,其中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
  13. 一种基于状态切换的测量方法,所述方法包括:
    终端设备接收第三参数和第四参数;
    在无线链路监测的状态由第四状态切换至第三状态的情况下,所述终端设备基于所述第三参数进行无线链路失败检测;
    所述第四参数用于无线链路监测的状态由所述第三状态切换至所述第四状态下的无线链路失败检测。
  14. 根据权利要求13所述的方法,其中,所述第三参数和所述第四参数携带于无线链路失败 定时器和常数配置消息中。
  15. 根据权利要求13或14所述的方法,其中,所述第三参数和所述第四参数携带于无线资源控制RRC重配置消息中。
  16. 根据权利要求13至15任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
  17. 根据权利要求16所述的方法,其中,所述第三指示信息携带于下述中的任意一项中:
    RRC信令、媒体接入控制单元MAC CE和下行控制信道PDCCH。
  18. 根据权利要求13至17任一项所述的方法,其中,所述终端设备基于所述第三参数进行无线链路失败检测,包括:
    所述终端设备配置下行同步指示计数器的值和下行失步指示计数器的值为零;
    和/或,所述终端设备停止运行的T310定时器。
  19. 根据权利要求13至18任一项所述的方法,其中,所述终端设备基于所述第三参数进行无线链路失败检测,包括:
    所述终端设备基于所述第三参数中T310定时器的第三值、第一N311和第一N310,进行无线链路失败检测。
  20. 根据权利要求19所述的方法,其中,所述终端设备基于所述第三参数中T310定时器的第三值、第一N311和第一N310,进行无线链路失败检测,包括:
    所述终端设备处于连接态时,所述终端设备接收到物理层发送的连续第一N310个下行失步指示、且所述T310定时器、T304定时器和T311定时器均未运行的情况下,启动所述T310定时器,配置所述T310定时器的值为所述第三值;
    在所述T310定时器未超时时,所述终端设备接收到连续第一N311个下行同步指示的情况下,所述终端设备停止运行所述T310定时器,确定所述终端设备处于下行同步状态;否则,确定所述终端设备处于下行失步状态。
  21. 根据权利要求18所述的方法,其中所述终端设备根据接收的第四指示信息确定配置下行同步指示计数器的值和下行失步指示计数器的值为零;
    和/或,所述终端设备根据接收的第四指示信息确定停止运行的T310定时器。
  22. 根据权利要求21所述的方法,其中,所述第四指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  23. 根据权利要求13至22任一项所述的方法,其中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;
    或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
  24. 根据权利要求23所述的方法,其中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
  25. 一种基于状态切换的测量方法,所述方法包括:
    网络设备发送第五参数和第六参数;
    所述第五参数用于波束失败检测的状态由第二状态切换至第一状态下的波束失败检测,所述第六参数用于波束失败检测的状态由第一状态切换至第二状态下的波束失败检测;
    或者,所述第五参数用于无线链路监测的状态由第四状态切换至第三状态下的无线链路失败检测,所述第六参数用于无线链路监测的状态由第三状态切换至第四状态下的无线链路失败检测。
  26. 根据权利要求25所述的方法,其中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述第五参数和所述第六参数携带于无线链路检测配置消息中。
  27. 根据权利要求25或26所述的方法,其中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述第五参数和所述第六参数携带于无线资源控制RRC重配置消息中。
  28. 根据权利要求25至27任一项所述的方法,其中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
  29. 根据权利要求28所述的方法,其中,所述第一指示信息携带于下述中的任意一项中:
    RRC信令、媒体接入控制单元MAC CE和下行控制信道PDCCH。
  30. 根据权利要求25至29任一项所述的方法,其中,所述第一状态为放松波束失败检测,所 述第二状态为正常波束失败检测;
    或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。
  31. 根据权利要求30所述的方法,其中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
  32. 根据权利要求25至31任一项所述的方法,其中,在所述第五参数和所述第六参数用于波束失败检测的情况下,所述方法还包括:
    所述网络设备发送第二指示信息;
    所述第二指示信息用于指示配置波束失败指示计数器的值为零,和/或,所述第二指示信息用于指示停止运行的波束失败检测定时器。
  33. 根据权利要求32所述的方法,其中,所述第二指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  34. 根据权利要求25所述的方法,其中,所述第五参数和所述第六参数用无线链路失败检测的情况下,所述第五参数和所述第六参数携带于无线链路失败定时器和常数配置消息中。
  35. 根据权利要求34所述的方法,其中,所述第五参数和所述第六参数携带于RRC重配置消息中。
  36. 根据权利要求25、34和35任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
  37. 根据权利要求36所述的方法,其中,所述第三指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  38. 根据权利要求25、34至37任一项所述的方法,其中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;
    或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
  39. 根据权利要求38所述的方法,其中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
  40. 根据权利要求25、34至38任一项所述的方法,所述第五参数和所述第六参数用于无线链路失败检测的情况下,所述方法还包括:
    所述网络设备发送第四指示信息;
    所述第四指示信息用于指示配置下行同步指示计数器的值和下行失步指示计数器的值为零,和/或,所述第四指示信息用于指示停止运行的T310定时器。
  41. 根据权利要求40所述的方法,其中,所述第四指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  42. 一种终端设备,所述终端设备包括:
    第一接收单元,配置为接收第一参数和第二参数;
    第一处理单元,配置为在波束失败检测的状态由第二状态切换至第一状态的情况下,基于所述第一参数进行波束失败检测;
    所述第二参数用于波束失败检测的状态由所述第一状态切换至所述第二状态下的波束失败检测。
  43. 根据权利要求42所述的终端设备,其中,所述第一参数和所述第二参数携带于无线链路检测配置消息中。
  44. 根据权利要求42或43所述的终端设备,其中,所述第一参数和所述第二参数携带于无线资源控制RRC重配置消息中。
  45. 根据权利要求42至44任一项所述的终端设备,其中,所述第一接收单元,还配置为接收第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
  46. 根据权利要求45所述的终端设备,其中,所述第一指示信息携带于下述中的任意一项中:
    RRC信令、媒体接入控制单元MAC CE和下行控制信道PDCCH。
  47. 根据权利要去42至46任一项所述的终端设备,其中,所述第一处理单元,配置为波束失败指示计数器的值为零;和/或,停止运行的波束失败检测定时器。
  48. 根据权利要求42至47任一项所述的终端设备,其中,所述第一处理单元,配置为基于所述第一参数中的第一波束失败次数最大值和波束失败检测定时器的第一值,进行波束失败检测。
  49. 根据权利要求48所述的终端设备,其中,所述第一处理单元,配置为接收到物理层发送 的波束失败指示的情况下,配置波束失败指示计数器的值增加1,启动或重启所述波束失败检测定时器,配置所述波束失败检测定时器的值为所述第一值;
    所述波束失败检测定时器超时时,配置波束失败指示计数器的值为零;
    所述波束失败检测定时器未超时时、且所述波束失败指示计数器的值大于或等于第一波束失败次数最大值的情况下,确定发生波束失败。
  50. 根据权利要求47所述的终端设备,其中,所述第一处理单元,配置为根据接收的第二指示信息确定配置波束失败指示计数器的值为零;
    和/或,根据接收的第二指示信息确定停止运行的波束失败检测定时器。
  51. 根据权利要求50所述的终端设备,其中,所述第二指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  52. 根据权利要求42至51任一项所述的终端设备,其中,所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;
    或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。
  53. 根据权利要求52所述的终端设备,其中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
  54. 一种终端设备,所述终端设备包括:
    第二接收单元,配置为接收第三参数和第四参数;
    第二处理单元,配置为在无线链路监测的状态由第四状态切换至第三状态的情况下,基于所述第三参数进行无线链路失败检测;
    所述第四参数用于无线链路监测的状态由所述第三状态切换至所述第四状态下的无线链路失败检测。
  55. 根据权利要求54所述的终端设备,其中,所述第三参数和所述第四参数携带于无线链路失败定时器和常数配置消息中。
  56. 根据权利要求54或55所述的终端设备,其中,所述第三参数和所述第四参数携带于无线资源控制RRC重配置消息中。
  57. 根据权利要求54至56任一项所述的终端设备,其中,所述第二接收单元,还配置为接收第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
  58. 根据权利要求57所述的终端设备,其中,所述第三指示信息携带于下述中的任意一项中:
    RRC信令、媒体接入控制单元MAC CE和下行控制信道PDCCH。
  59. 根据权利要求54至58任一项所述的终端设备,其中,所述第二处理单元,配置为配置下行同步指示计数器的值和下行失步指示计数器的值为零;和/或,停止运行的T310定时器。
  60. 根据权利要求54至59任一项所述的终端设备,其中,所述第二处理单元,配置为基于所述第三参数中T310定时器的第三值、第一N311和第一N310,进行无线链路失败检测。
  61. 根据权利要求60所述的终端设备,其中,所述第二处理单元,配置为所述终端设备处于连接态时,所述第二接收单元接收到物理层发送的连续第一N310个下行失步指示、且所述T310定时器第三值、T304定时器和T311定时器均未运行的情况下,启动所述T310定时器,配置所述T310定时器的值为所述第三值;
    在所述T310定时器未超时时,所述第二接收单元接收到连续第一N311个下行同步指示的情况下,停止运行所述T310定时器,确定所述终端设备处于下行同步状态;否则,确定所述终端设备处于下行失步状态。
  62. 根据权利要求59所述的终端设备,其中,所述第二处理单元,配置为根据接收的第四指示信息确定配置下行同步指示计数器的值和下行失步指示计数器的值为零;
    和/或,根据接收的第四指示信息确定停止运行的T310定时器。
  63. 根据权利要求62所述的终端设备,其中,所述第四指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  64. 根据权利要求54至63任一项所述的终端设备,其中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;
    或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
  65. 根据权利要求64所述的终端设备,其中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
  66. 一种网络设备,所述网络设备包括:
    发送单元,配置为发送第五参数和第六参数;
    所述第五参数用于波束失败检测的状态由第二状态切换至第一状态下的波束失败检测,所述第六参数用于波束失败检测的状态由第一状态切换至第二状态下的波束失败检测;
    或者,所述第五参数用于无线链路监测的状态由第四状态切换至第三状态下的无线链路失败检测,所述第六参数用于无线链路监测的状态由第三状态切换至第四状态下的无线链路失败检测。
  67. 根据权利要求66所述的网络设备,其中,在所述第五参数和所述第六参数用于波束失败检测的情况下,所述第五参数和所述第六参数携带于无线链路检测配置消息中。
  68. 根据权利要求66或67所述的网络设备,其中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述第五参数和所述第六参数携带于无线资源控制RRC重配置消息中。
  69. 根据权利要求66至68任一项所述的网络设备,其中,所述第五参数和所述第六参数用于波束失败检测的情况下,所述发送单元,还配置为发送第一指示信息,所述第一指示信息用于指示波束失败检测的状态由第二状态切换至第一状态。
  70. 根据权利要求69所述的网络设备,其中,所述第一指示信息携带于下述中的任意一项中:
    RRC信令、媒体接入控制单元MAC CE和下行控制信道PDCCH。
  71. 根据权利要求66至70任一项所述的网络设备,其中,所述第一状态为放松波束失败检测,所述第二状态为正常波束失败检测;
    或者,所述第一状态为正常波束失败检测,所述第二状态为放松波束失败检测。
  72. 根据权利要求71所述的网络设备,其中,所述放松波束失败检测的波束测量时间间隔大于所述正常波束失败检测的波束测量时间间隔。
  73. 根据权利要求66至72任一项所述的网络设备,其中,在所述第五参数和所述第六参数用于波束失败检测的情况下,所述发送单元,还配置为发送第二指示信息;
    所述第二指示信息用于指示配置波束失败指示计数器的值为零,和/或,所述第二指示信息用于指示停止运行的波束失败检测定时器。
  74. 根据权利要求73所述的网络设备,其中,所述第二指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  75. 根据权利要求66所述的网络设备,其中,所述第五参数和所述第六参数用无线链路失败检测的情况下,所述第五参数和所述第六参数携带于无线链路失败定时器和常数配置消息中。
  76. 根据权利要去75所述的网络设备,其中,所述第五参数和所述第六参数携带于RRC重配置消息中。
  77. 根据权利要求66、75和76任一项所述的网络设备,其中,所述发送单元,还配置为发送第三指示信息,所述第三指示信息用于指示无线链路监测的状态由第四状态切换至第三状态。
  78. 根据权利要求77所述的网络设备,其中,所述第三指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  79. 根据权利要求66、75至78任一项所述的网络设备,其中,所述第三状态为放松无线链路监测,所述第四状态为正常无线链路监测;
    或者,所述第三状态为正常无线链路监测,所述第四状态为放松无线链路监测。
  80. 根据权利要求79所述的网络设备,其中,所述放松无线链路监测的无线链路测量时间间隔大于所述正常无线链路监测的无线链路测量时间间隔。
  81. 根据权利要求66、75至79任一项所述的网络设备,其中,所述第五参数和所述第六参数用于无线链路失败检测的情况下,所述发送单元,还配置为发送第四指示信息;
    所述第四指示信息用于指示配置下行同步指示计数器的值和下行失步指示计数的器值为零,和/或,所述第四指示信息用于指示停止运行的T310定时器。
  82. 根据权利要求81所述的网络设备,其中,所述第四指示信息携带于下述中的任意一项中:
    RRC信令、MAC CE和PDCCH。
  83. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至12任一项所述的基于状态切换的测量方法的步骤。
  84. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求13至24任一项所述的基于状态切换的测量方法的步骤。
  85. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求25至41任一项所述的基于状态切换的测量方法的步骤。
  86. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至12任一项所述的基于状态切换的测量方法。
  87. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求13至24任一项所述的基于状态切换的测量方法。
  88. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求25至41任一项所述的基于状态切换的测量方法。
  89. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至12任一项所述的基于状态切换的测量方法。
  90. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求13至24任一项所述的基于状态切换的测量方法。
  91. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求25至41任一项所述的基于状态切换的测量方法。
  92. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至12任一项所述的基于状态切换的测量方法。
  93. 一种计算机程序,所述计算机程序使得计算机执行如权利要求13至24任一项所述的基于状态切换的测量方法。
  94. 一种计算机程序,所述计算机程序使得计算机执行如权利要求25至41任一项所述的基于状态切换的测量方法。
  95. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至12任一项所述的基于状态切换的测量方法。
  96. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求13至24任一项所述的基于状态切换的测量方法。
  97. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求25至41任一项所述的基于状态切换的测量方法。
PCT/CN2020/075987 2020-02-20 2020-02-20 一种基于状态切换的测量方法、电子设备及存储介质 WO2021163951A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20919562.7A EP4106384A4 (en) 2020-02-20 2020-02-20 Measurement methods based on state switching, electronic device, and storage medium
PCT/CN2020/075987 WO2021163951A1 (zh) 2020-02-20 2020-02-20 一种基于状态切换的测量方法、电子设备及存储介质
CN202080096134.1A CN115088287A (zh) 2020-02-20 2020-02-20 一种基于状态切换的测量方法、电子设备及存储介质
US17/818,479 US20220394535A1 (en) 2020-02-20 2022-08-09 Measurement methods based on state switching, electronic device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075987 WO2021163951A1 (zh) 2020-02-20 2020-02-20 一种基于状态切换的测量方法、电子设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/818,479 Continuation US20220394535A1 (en) 2020-02-20 2022-08-09 Measurement methods based on state switching, electronic device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021163951A1 true WO2021163951A1 (zh) 2021-08-26

Family

ID=77390366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075987 WO2021163951A1 (zh) 2020-02-20 2020-02-20 一种基于状态切换的测量方法、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20220394535A1 (zh)
EP (1) EP4106384A4 (zh)
CN (1) CN115088287A (zh)
WO (1) WO2021163951A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122670A1 (en) * 2021-12-21 2023-06-29 Interdigital Patent Holdings, Inc. Measurement relaxation for radio link monitoring and reporting of measurement relaxation state in wireless systems
WO2023151063A1 (zh) * 2022-02-13 2023-08-17 北京小米移动软件有限公司 测量放松方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220104044A1 (en) * 2020-09-25 2022-03-31 Mediatek Inc. Efficient RLM/BFD Measurement in Connected Mode
US20220103232A1 (en) * 2020-09-29 2022-03-31 Qualcomm Incorporated Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
US11870533B2 (en) * 2021-08-31 2024-01-09 Qualcomm Incorporated Techniques for individual beam failure detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190320490A1 (en) * 2018-04-13 2019-10-17 Qualcomm Incorporated Interaction between wus and rrm measurement
CN110519787A (zh) * 2018-05-22 2019-11-29 中国移动通信有限公司研究院 无线链路监测评估时延的确定方法、终端及网络侧设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111123B2 (en) * 2015-04-30 2018-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Relaxed measurement reporting with control plane dual connectivity
WO2020204463A1 (ko) * 2019-04-01 2020-10-08 한국전자통신연구원 통신 시스템에서 채널 품질의 측정 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190320490A1 (en) * 2018-04-13 2019-10-17 Qualcomm Incorporated Interaction between wus and rrm measurement
CN110519787A (zh) * 2018-05-22 2019-11-29 中国移动通信有限公司研究院 无线链路监测评估时延的确定方法、终端及网络侧设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "RRM relaxation for power saving", 3GPP DRAFT; R2-1908779 - RRM RELAXATION FOR POWER SAVING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051766601 *
SAMSUNG: "On the supporting of relaxed measurement state for UE power saving", 3GPP DRAFT; R2-1911450 ON THE SUPPORTING OF RELAXED MEASUREMENT STATE FOR UE POWER SAVING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 4, XP051769207 *
See also references of EP4106384A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122670A1 (en) * 2021-12-21 2023-06-29 Interdigital Patent Holdings, Inc. Measurement relaxation for radio link monitoring and reporting of measurement relaxation state in wireless systems
WO2023151063A1 (zh) * 2022-02-13 2023-08-17 北京小米移动软件有限公司 测量放松方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP4106384A4 (en) 2023-06-28
CN115088287A (zh) 2022-09-20
EP4106384A1 (en) 2022-12-21
US20220394535A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021163951A1 (zh) 一种基于状态切换的测量方法、电子设备及存储介质
JP6743290B2 (ja) 動的カバレッジモード切り替え及び通信帯域幅調整
WO2021174385A1 (zh) 一种寻呼方法、电子设备及存储介质
WO2021082009A1 (zh) 小区测量的方法、终端设备和网络设备
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
US11197233B2 (en) Method for sending and acquiring system information, device and communication system
WO2021196007A1 (zh) 一种无线资源管理测量方法、电子设备及存储介质
US20210250866A1 (en) Method and apparatus for reducing terminal power consumption, and terminal
WO2020029198A1 (zh) 无线链路检测方法、装置和通信系统
EP4156850A1 (en) Measurement method and apparatus, terminal device and network device
WO2021087731A1 (zh) 一种辅助信息处理方法、电子设备及存储介质
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2022006879A1 (zh) 一种寻呼指示的传输方法、电子设备及存储介质
WO2021196100A1 (zh) 一种小区切换方法、电子设备及存储介质
WO2023185808A1 (zh) 小区同步方法及装置
WO2021212436A1 (zh) 一种无线链路监测模式转换方法及终端设备
WO2021138777A1 (zh) 一种频点测量放松方法、电子设备及存储介质
WO2021203239A1 (zh) 一种下行同步方法、电子设备及存储介质
JP7428809B2 (ja) 測定方法、装置及び端末デバイス
WO2021108958A1 (zh) 一种定时器控制方法、配置方法、电子设备及存储介质
WO2021056465A1 (zh) 一种确定无线链路连接状态的方法、电子设备及存储介质
WO2021226888A1 (zh) 一种确定测量放松要求的方法、电子设备及存储介质
WO2021097627A1 (zh) 一种确定无线链路连接状态的方法、电子设备及存储介质
WO2024031402A1 (zh) 测量放松的方法、装置以及通信系统
US20220353772A1 (en) Cell reselection method, electronic device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919562

Country of ref document: EP

Effective date: 20220912