WO2021163278A1 - Variable length container - Google Patents

Variable length container Download PDF

Info

Publication number
WO2021163278A1
WO2021163278A1 PCT/US2021/017587 US2021017587W WO2021163278A1 WO 2021163278 A1 WO2021163278 A1 WO 2021163278A1 US 2021017587 W US2021017587 W US 2021017587W WO 2021163278 A1 WO2021163278 A1 WO 2021163278A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
central
opposing
wing
container
Prior art date
Application number
PCT/US2021/017587
Other languages
French (fr)
Inventor
Todd T. TURNER
Original Assignee
Macro Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macro Plastics, Inc. filed Critical Macro Plastics, Inc.
Priority to EP21754436.0A priority Critical patent/EP4081461A4/en
Publication of WO2021163278A1 publication Critical patent/WO2021163278A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/02Rigid pallets with side walls, e.g. box pallets
    • B65D19/06Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components
    • B65D19/18Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components made wholly or mainly of plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/02Rigid pallets with side walls, e.g. box pallets
    • B65D19/06Rigid pallets with side walls, e.g. box pallets with bodies formed by uniting or interconnecting two or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/08Containers of variable capacity
    • B65D21/083Containers of variable capacity by means of additional elements, e.g. modular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00034Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00049Materials for the base surface
    • B65D2519/00069Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00154Materials for the side walls
    • B65D2519/00174Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00273Overall construction of the pallet made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00293Overall construction of the load supporting surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00323Overall construction of the base surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00333Overall construction of the base surface shape of the contact surface of the base contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00407Integral, e.g. ribs on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00412Integral, e.g. ribs on the base surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00422Integral, e.g. ribs on the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00492Overall construction of the side walls
    • B65D2519/00497Overall construction of the side walls whereby at least one side wall is made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00567Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements mechanical connection, e.g. snap-fitted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00572Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer with separate auxiliary element, e.g. screws, nails, bayonets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00577Connections structures connecting side walls, including corner posts, to each other
    • B65D2519/00582Connections structures connecting side walls, including corner posts, to each other structures intended to be disassembled, i.e. collapsible or dismountable
    • B65D2519/00587Connections structures connecting side walls, including corner posts, to each other structures intended to be disassembled, i.e. collapsible or dismountable side walls directly connected to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00636Connections structures connecting side walls to the pallet
    • B65D2519/00641Structures intended to be disassembled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/00741Dimensional aspects of the pallet
    • B65D2519/00761Dimensional aspects of the pallet the surface being variable, e.g. extendable pallets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/0098Dismountable elements
    • B65D2519/00985Dismountable elements the pallet being not usable as a pallet after dismounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/0098Dismountable elements
    • B65D2519/0099Dismountable elements single dismountable pallet element, e.g. for replacement

Definitions

  • the embodiments described herein relate to shipping containers made of multiple components that can be re-arranged and interconnected into a variety of different sizes.
  • the conventional shipping container presents a number of disadvantages to the transportation, shipping, agricultural, retail, and handling industry.
  • the conventional shipping container is typically created from a single mold and thus often comprises only a single piece of plastic (as a non-limiting example) that is only one defined size and length. This is a significant disadvantage because the conventional shipping container cannot change sizes or lengths to accommodate various types of bulk goods. Rather, industries dealing in bulk goods have to acquire and store numerous conventional shipping containers of various sizes.
  • variable length shipping container that can be re-arranged and interconnected into a variety of sizes.
  • Such a shipping container would provide industries dealing in bulk goods with the flexibility to re-arrange shipping containers into any desired size without having to acquire and store a variety of conventional shipping containers.
  • a variable length shipping container would be much more affordable and simpler to manufacture because it would require significantly smaller molds and presses to manufacture the different components.
  • the variable length containers within the scope of present embodiments meet these and other needs. In doing so, the variable length container possesses market adaptability because of its versatility to be re-arranged into a variety of configurations based on user’s needs.
  • variable length container is also less burdensome for manufacturers because it is lower risk to manufacture smaller parts.
  • variable length container eliminates the problem of manufacturers having to maintain a large inventory of different sized molds.
  • the variable length containers within the scope of present embodiments also provide manufacturers more discrete control over the material properties of the final product because different resins and materials could be used for different components.
  • a variable length container sometimes referred to herein as a “shipping container” or “container” for brevity, according to multiple embodiments and alternatives comprises multiple components that can be interconnected and re-arranged to provide the user with an array of shipping container sizes.
  • Current embodiments provide for a variable length container comprising a central member, a pair of intermediate members, a pair of wing members, and a support assembly.
  • the support assembly consists of a central forkstrap, a pair of end forkstraps, a plurality of horizontal supports, and a pair of runners.
  • the edges of the central member are configured to receive either the pair of wing members, the pair of intermediate members, or other variations as selected by the user.
  • the edges of the central member include a plurality of teeth and a plurality of receiving notches that engage with the corresponding teeth and receiving notches located on the edges of the wing members or the intermediate members.
  • the central member further includes receiving slots which are adapted to receive either the ribs of the wing members or the ribs of the intermediate members.
  • the intermediate members include ribs to engage the central member and receiving slots adapted to receive the ribs of the wing members.
  • the central forkstrap is generally positioned below and parallel to the length of the central member, while the pair of end forkstraps are positioned below and parallel to the length of the wing members.
  • Current embodiments provide for a plurality of horizontal supports that connect the central forkstrap to the pair of end forkstraps via a series of tines and corresponding apertures located at the ends of the horizontal supports.
  • the horizontal supports and the runners are perpendicular to the central forkstrap and the pair of end forkstraps.
  • the central forkstrap and the pair of end forkstraps each comprise a middle component, a pair of connectors, and a pair of end components.
  • the bottom surface of the central member comprises a plurality of forkstrap receiving bores that are adapted to receive and engage the middle component and end components of the central forkstrap.
  • the bottom surface of the pair of wing members comprise a plurality of forkstrap receiving bores adapted to receive the middle component and end components of the pair of end forkstraps.
  • the variable length container is further secured together by screws and forkstrap connectors.
  • the central member, the intermediate members, and the wing members each having a plurality of receiving notches to receive the teeth of the sidewalls.
  • a user can assemble the variable length container by securing the wing members to the central member, then attaching the support assembly to the bottom surface of the wing members and the central member. A user can then attach the sidewalls to complete the assembly.
  • the user can vary the length of the shipping container by also incorporating additional wing members, one or more intermediate members, or by selecting wing members of various sizes.
  • variable length container in current embodiments affords a versatility of sizes and lengths that provides a key advantage over conventional shipping containers.
  • the components may be easily and quickly re-arranged into a number configurations disclosed herein.
  • the versatility of the variable length container provides a number of advantages over the conventional shipping container.
  • Fig. l is a top, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 2 is a bottom, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 3 is a top, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 4 is a bottom, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
  • FIG. 5 is a perspective view of the end component of a central forkstrap, according to multiple embodiments and alternatives.
  • Fig. 6 is a perspective view of the end component of an end forkstrap, according to multiple embodiments and alternatives.
  • Fig. 7 is a perspective view of an assembled base and sidewalls, according to multiple embodiments and alternatives.
  • Fig. 8 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 9 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 10 is a top, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 11 is a bottom, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 12 is a top, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 13 is a bottom, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 14 is a perspective view of an assembled base and sidewalls, according to multiple embodiments and alternatives.
  • Fig. 15 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 16 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 17 is a bottom, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 18 is a perspective view of an assembled base and sidewalls, according to multiple embodiments and alternatives.
  • Fig. 19 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
  • Fig. 20 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
  • Figures 1 and 2 show an assembled base 5 according to multiple embodiments and alternatives.
  • An assembled base 5 consists of a central member 10, a pair of wing members 50, and a support assembly 8.
  • the support assembly 8 consists of a central forkstrap 85, a pair of end forkstraps 100, a plurality of horizontal supports 115, and a pair of runners 122, and the support assembly 8 is positioned below the central member 10 and the pair of wing members 50.
  • the central forkstrap 85 is secured to the middle of the bottom surface 18 of the central member 10 and positioned parallel to the length of the central member 10.
  • the pair of end forkstraps 100 are attached to the bottom surface 58 of the pair of wing members 50 and positioned parallel to the length of the pair of wing members 50.
  • the plurality of horizontal supports 115 connect the central forkstrap 85 to the pair of end forkstraps 100, and the horizontal supports 115 are positioned perpendicular to the lengths of the central member 10 and the wing members 50.
  • the central member 10 and the pair of wing members 50 interconnect and secure to one another via corresponding ribs and receiving slots, and corresponding teeth and receiving notches.
  • the central member 10 and the pair of wing members 50 are further secured together by screws after the ribs engage the receiving slots and the teeth engage the receiving notches.
  • the central forkstrap 85 and the pair of end forkstraps 100 connect to the plurality of horizontal supports 115 via corresponding tines and apertures; and the pair of runners 122 attach to the bottom surface 18 of the central member 10 and the bottom surface 58 of the pair of wing members 50 via screws.
  • the top surface 12 of the central member 10 and the top surface 52 of the pair of wing members 50 are generally smooth, while the bottom surface 18 of the central member 10 and the bottom surface 58 of the wing members 50 consist of reinforcing cells that increase the rigidity and load bearing potential of the variable length container.
  • Figure 3 shows an exploded view of the assembled base 5 and best illustrates how the central member 10 interconnects and secures to the wing members 50.
  • the central member 10 comprises a middle section 25 (which extends horizontally) and a pair of end sections 35 (which extend vertically and are perpendicular to the middle section 25).
  • the parallel edges 28 of the middle section 25 include a plurality of teeth 30 and a plurality of receiving notches 32 (best shown in Fig. 4) that interconnect with a corresponding plurality of teeth 70 and a plurality of receiving notches 72 located on the internal edges 68 of the middle section 65 of the wing members 50.
  • the end sections 35 of the central member 10 also include a plurality of receiving notches 38 which are adapted to receive the teeth 130 of sidewalls 128.
  • the wing members 50 consist of a middle section 65 (which extends horizontally), a pair of end sections 78 (which extend vertically and are perpendicular to the middle section 65), and a shoulder 75 located opposite the internal edge 68.
  • the internal edge 68 of the middle section 65 of the wing members 50 comprises a plurality of teeth 70 and a plurality of receiving notches 72 which interconnect and secure to the edges 28 of the middle section 25 of the central member 10.
  • the pair of end sections 78 and shoulder 75 include a plurality of receiving notches 80 which are adapted to receive the teeth 130 of sidewalls 128.
  • the middle section 65 of the wing members 50 and the middle section 25 of the central member 10 cooperate to form a floor of assembled base 5.
  • the assembled base 5 is further secured by a plurality of forkstrap connectors 125.
  • U.S. Pub. No. 2016/0090208 (Ser. No. 14/785,770, filed October 20, 2015) titled “Shipping Container and Forkstrap Connector Therefor” (Turner, Todd. T; published March 31, 2016), the full contents of which are incorporated by reference, describes multiple embodiments for a forkstrap connector 125 including barbs for engaging the other components of the assembled base 5.
  • the central member 10 includes a plurality of forkstrap connector bores 15
  • the wing members 50 include a plurality of forkstrap connector bores 55
  • the support assembly 8 also includes a plurality of forkstrap connector bores 98, 112. When each of the forkstrap connector bores are aligned, the forkstrap connectors 125 are inserted into the various bores to secure the central member 10 and the wing members 50 to the support assembly 8.
  • Figure 4 illustrates a bottom, exploded view of the assembled base 5 and best illustrates how the central forkstrap 85 interconnects with the horizontal supports 115 and the pair of end forkstraps 100.
  • Figure 4 also illustrates how the pair of runners 122 attach to the bottom surface 18 of the central member 10 and the bottom surface 58 of the pair of wing members 50 via screws.
  • the bottom surface 18 of the central member 10 includes a plurality of forkstrap receiving bores 22 that are adapted to receive the middle component 88 and end components 90 of the central forkstrap 85.
  • the bottom surface 58 of the wing members 50 includes a plurality of forkstrap receiving bores 62 that are adapted to receive the middle component 102 and end components 105 of the pair of end forkstraps 100.
  • the central forkstrap 85 forms a plurality of forkstrap connector bores 98, and likewise the pair of end forkstrap 100 form a plurality of forkstrap connector bores 112.
  • the bores can receive the forkstrap connectors 125 to secure the assembled base 5 together.
  • the plurality of horizontal supports 115 comprise a generally rectangular shape and a pair of apertures 120 positioned on opposing ends.
  • the end components 90 of the central forkstrap 85 include a series of tines 95 located on opposing sides 92 to engage the apertures 120 of the horizontal supports 115.
  • the end components 105 of the pair of end forkstraps 100 include a series of tines 110 located only on the internal side 108 in order to engage the apertures 120 of the horizontal supports 115.
  • the edges 28 of the central member 10 include a plurality of teeth 30 and a plurality of receiving notches 32 which connect and secure to the internal edge 68 of the wing members 50.
  • the internal edge 68 of the wing members 50 includes a plurality of teeth 70 and a plurality of receiving notches 72.
  • a series of screws are inserted to span the width of the plurality of teeth and receiving notches.
  • the end sections 35 of the central member 10 include several receiving slots 33 which are adapted to receive and engage the ribs 82 located on the end sections 78 of the wing members 50.
  • a series of screws are inserted across the width of the receiving slots 33 and the ribs 82 to secure the central member 10 with the wing members 50.
  • Fig. 4 illustrates the pair of runners 122 which extend perpendicular to the lengths of the central member 10 and the wing members 50. In some embodiments, the pair of runners 122 are secured in place by screws.
  • Figure 7 illustrates assembled base 5 and an exploded view of sidewalls 128 with a plurality of teeth 130.
  • Figs. 8 & 9 illustrate a variable length container 135 having an assembled base 5 secured to sidewalls 128.
  • the bottom edge of the sidewalls 128 include a plurality of teeth 130 which engage and secure to the receiving notches 38 of the central member 10 and the receiving notches 80 of the wing members 50.
  • the plurality of teeth 130 can be further secured to the receiving notches 38, 80 via screws or other suitable mechanisms.
  • the sidewalls 128 are molded as a single piece.
  • Figs. 10 and 11 illustrate assembled base 205.
  • assembled base 205 consists of support assembly 207, central member 10, a pair of intermediate members 240, and a pair of wing members 50.
  • the only differences between assembled base 205 and assembled base 5 are the pair of intermediate members 240, and horizontal supports 215 and a pair runners 222 that are longer in length than horizontal supports 115 and runners 122. It will be appreciated by one of ordinary skill in the art that a user may utilize assembled base 205 when a shipping container with a longer length is needed.
  • the pair of intermediate members 240 are positioned between the central member 10 and the pair of wing members 50.
  • the pair of intermediate members 240 comprise a top surface 242, a bottom surface 245, a middle section 248 (which extends horizontally) and an end section 258 (which extends vertically and is perpendicular to middle section 248).
  • the end section 258 also includes receiving notches 260 that are adapted to receive the teeth 230 of the sidewalls 228.
  • the bottom surface 245 of the pair of intermediate members 240 also include reinforcing cells for support.
  • the middle section 65 of the wing members 50, the middle section 25 of the central member 10, and the middle section 248 of the pair of intermediate members 240 cooperate to form a floor of assembled base 205.
  • support assembly 207 consists of central forkstrap 85, a pair of end forkstraps 100, a pair of runners 222, and a plurality of horizontal supports 215.
  • the support assembly 207 secures to the bottom surface of the central member 10, the pair of intermediate members 240, and the pair of wing members 50 via forkstrap connectors 125, screws, and any other mechanism known to those of ordinary skill in the art.
  • Figs. 12 and 13 illustrate the components of the support assembly 207 and the interconnections between the central member 10, the pair of intermediate members 240, and the pair of wing members 50.
  • the pair of intermediate members 240 each include an internal side 250 and an external side 251.
  • the internal side 250 is adapted to receive and connect with the central member 10
  • the external side 251 is adapted to receive and connect with the pair of wing members 50.
  • the pair of intermediate members 240 are also adapted to receive and connect with other intermediate members 240.
  • both the internal side 250 and the external side 251 comprise a plurality of teeth 252 and a plurality of receiving notches 255 that correspond to the teeth and notches of the central member 10 and the pair of wing members 50.
  • the internal side 250 of the end section 258 also includes ribs 262 that can be received in the receiving slot 33 of the central member 10, or the receiving slot 265 of another intermediate member 240.
  • the external side of the end section 258 includes a receiving slot 265 that is adapted to receive the ribs 82 of the wing members 50, or the ribs 262 of another intermediate member 240.
  • Figure 14 illustrates assembled base 205 and an exploded view of sidewalls 228 having a plurality of teeth 230.
  • Figs. 15 and 16 show variable length container 235, which comprises assembled base 205, support assembly 207, and sidewalls 228.
  • the sidewalls 228 include a plurality of teeth 230 that connect to the receiving notches of the central member 10, the pair of intermediate members 240, and the pair of wing members 50.
  • the sidewalls 228 are molded as a single piece.
  • Fig. 17 illustrates assembled base 305 comprising central member 10, a pair of wing members 350, and support assembly 307.
  • the pair of wing members 350 are wider than the wing members 50 and consequently offer the user even more flexibility in selecting a different sized variable length container.
  • the support assembly 307 comprises a pair of runners 322 and horizontal supports 315 which are sized to support the central member 10 when connected to the pair of wing members 350.
  • variable length container 335 consists of sidewalls 328 connected to assembled base 305. As best shown in Fig. 18, the sidewalls 328 connect to the assembled base 305 via a plurality of teeth 330.
  • a user may connect a central member 10 with any sized wing member (including but not limited to wing members 50 and/or wing members 350) to adjust the length of the shipping container.
  • a user may incorporate any number of intermediate members 240 to adjust the length of the container, including but not limited to, at least one intermediate member 240 interposed between at least one of the wing members and the central member 10, a pair of intermediate members 240, and at least three intermediate members 240.
  • the width of the variable length containers disclosed herein remains the same but the user may connect any number of other pieces to vary the length of the shipping container for the desired purpose.
  • a user first aligns and presses the internal edges 68 of the wing members 50 into the edges 28 of the central member 10 until the corresponding teeth and receiving notches are fully engaged.
  • the user can further secure the wing members 50 with the central member 10 by inserting screws that the span the lengths of the various teeth and receiving notches.
  • the pair of runners 122 are secured to the bottom surface of the assembled wing members 50 and central member 10 via screws.
  • the user then inserts the apertures 120 of the horizontal supports 115 into the series of tines 95 of the central forkstrap 85, and inserts the series of tines 110 of the pair of end forkstraps 100 into the opposing apertures of the horizontal supports 115.
  • the support assembly 8 (comprising the horizontal supports 115, the central forkstrap 85, and the pair of end forkstraps 100 assembled together) is then placed on to the bottom surface 18 of central member 10 and bottom surface 58 of the wing members 50 such that the middle components 88, 102 of the forkstraps 85, 100 engage the forkstrap receiving bores 22, 62.
  • the user then inserts the bottom end of forkstrap connectors 125 into the bores and completes the assembly of assembled base 5.
  • the user engages the teeth 130 of the sidewalls 128 with the various receiving notches 38, 80 to assemble the variable length container 135 (as shown in Fig. 5).
  • a user may vary the length of the shipping container by also incorporating at least one intermediate member 240 interposed between one of the wing members 50 and the central member 10, by using a pair of intermediate members 240 (shown in Fig. 10) to assemble variable length container 235 (shown in Fig. 15), by using at least three intermediate members 240, by incorporating wing members 350 instead of wing members 50 (shown in Fig. 17) to assemble variable length container 335 (shown in Fig. 19), or any other combination using the components disclosed herein.
  • FIG. 1 Another embodiment, referred to herein as embodiment A, comprises a variable length container having a base formed from a central member, a first wing member, and a second wing member; said central member having a pair of external edges; said first wing member and said second wing member each having an internal edge, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member.
  • embodiment B further comprising at least one intermediate member interposed between at least one of said wing members and said central member.
  • each of said at least one intermediate member has an external edge and an opposing internal edge; said external edge of each said at least one intermediate member being configured identically to said external edges of the central member; said internal edge of each said at least one intermediate member being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least one intermediate member.
  • the container further comprises a first intermediate member and a second intermediate member; wherein the first intermediate member is interposed between said first wing member and said central member; wherein the second intermediate member is interposed between said second wing member and said central member.
  • said first intermediate member and said second intermediate member each having an external edge and an opposing internal edge; said external edge of each said first and second intermediate member being configured identically to said external edges of the central member; said internal edge of each said first and second intermediate member being adapted to interlock with an external edge of said central member.
  • the central member, the first wing member, the second wing member, the first intermediate member, and the second intermediate member each further comprise a middle section and a pair of opposing end sections; wherein said middle sections cooperate to form a floor of said container and said opposing end sections extend upward.
  • the base further comprises a first pair of opposing sides and a second pair of opposing sides; wherein the first pair of opposing sides are defined by an external edge of the first wing member and an external edge of the second wing member; wherein the second pair of opposing sides are defined by said opposing end sections of the central member, the first wing member, the second wing member, the first intermediate member, and the second intermediate member.
  • the container further comprises a first pair of opposing sidewalls and a second pair of opposing sidewalls.
  • said first pair of opposing sidewalls and said second pair of opposing sidewalls each define a bottom edge having a plurality of teeth; wherein said external edge of each wing member forms a plurality of receiving notches adapted to receive the plurality of teeth of the first pair of opposing sidewalls; wherein said opposing end sections of the central member, the first wing member, the second member, the first intermediate member and the second intermediate member define a plurality of receiving notches adapted to receive the plurality of teeth of the second pair of opposing sidewalls.
  • the container further comprises a support assembly having a central forkstrap, a first end forkstrap, a second end forkstrap, and a plurality of horizontal supports.
  • the central forkstrap comprises a middle component integrally connected to a pair of opposing end components, the end components each having opposing sides defining a series of tines, the central forkstrap being configured to be received in a bottom surface of the central member; wherein said first end forkstrap and said second end forkstap each comprise a middle component integrally connected to a pair of opposing end components, the pair of opposing end components each having an internal side and an external side, the internal side defining a series of tines, said first end forkstrap and said second end forkstrap each being configured to be received in a bottom surface of one of the wing members; wherein the central forkstrap, the first end forkstrap, and the second end forkstrap each have a length suitable to span a length of the middle sections.
  • the plurality of horizontal supports each comprise a rectangular shape having a pair of opposing ends, each of the opposing ends defining an aperture which is adapted to receive the series of tines of the central forkstrap and the series of tines of one of the end forkstraps.
  • the plurality of horizontal supports each have a length suitable to engage both the central forkstrap and one of the end forkstraps.
  • the container may be further defined by incorporating the additional features of any one or more of embodiments B, C, D, E, F, G, H, I, J, K, L, or M.
  • FIG. 1 Another embodiment, referred to herein as embodiment N, is a variable length container comprising a base formed from a central member, a first wing member, and a second wing member; said central member having a pair of external edges, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said central member being positioned perpendicular to and extending vertically from the middle section of said central member; said first wing member and said second wing member each having an internal edge, an opposing external edge, a middle section, and a pair of opposing end sections, said pair of opposing end sections of each wing member being positioned perpendicular to and extending vertically from the middle section of each wing member, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member.
  • the container further comprises an at least one intermediate member interposed between at least one of said wing members and said central member; wherein each of said at least one intermediate member has an external edge, an opposing internal edge, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said at least on intermediate member being positioned perpendicular to and extending vertically from the middle section of said at least one intermediate member; said external edge of each said at least one intermediate member being configured identically to said external edges of the central member; said internal edge of each said at least one intermediate member being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least one intermediate member.
  • the base further comprises a first pair of opposing sides and a second pair of opposing sides; wherein the first pair of opposing sides are defined by the external edge of the first wing member and the external edge of the second wing member, said first pair of opposing sides defining a pair of edges having a plurality of receiving notches; wherein the second pair of opposing sides are defined by said opposing end sections of the central member, the first wing member, the second wing member, and the at least one intermediate member, said second pair of opposing sides defining a pair of edges having a plurality of receiving notches.
  • the container further comprises a first pair of opposing sidewalls and a second pair of opposing sidewalls; wherein said first pair of opposing sidewalls define a bottom edge having a plurality of teeth, said plurality of teeth being adapted to be received in the plurality of receiving notches of the first pair of opposing sides; wherein said second pair of opposing sidewalls define a bottom edge having a plurality of teeth, said plurality of teeth being adapted to be received in the plurality of receiving notches of the second pair of opposing sides.
  • the container may be further defined by incorporating the additional features of any one or more of embodiments O, P, Q, or R.
  • FIG. 1 Another embodiment, referred to herein as embodiment S, is a variable length container comprising a base formed from a central member, a first wing member, a second wing member, a first intermediate member, and a second intermediate member; said central member having a pair of external edges, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said central member being positioned perpendicular to and extending vertically from the middle section of said central member; said first wing member and said second wing member each having an internal edge, an opposing external edge, a middle section, and a pair of opposing end sections, said pair of opposing end sections of each wing member being positioned perpendicular to and extending vertically from the middle section of each wing member, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member; said first intermediate member and said second intermediate member each having an external edge, an opposing internal edge, a middle section, and a pair of opposing end sections
  • the container further comprises at least three intermediate members each having an external edge and an opposing internal edges; said external edge of each said at least three intermediate members being configured identically to said external edges of the central member; said internal edge of each said at least three intermediate members being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least three intermediate members.

Abstract

A variable length container comprising a central member, a pair of wing members, and a support assembly. In some embodiments, the variable length container also comprises at least one intermediate member and sidewalls. The interconnectivity of the components permit the user to vary the length of the container as needed.

Description

UNITED STATES PATENT AND TRADEMARK OFFICE AS RECEIVING OFFICE
PCT INTERNATIONAL PATENT APPLICATION
VARIABLE LENGTH CONTAINER
CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This international patent application claims the benefit of and priority to U.S. Provisional Patent Application serial number 62/975,838, with a filing date of February 13, 2020, the contents of which are fully incorporated herein by reference.
FIELD OF INVENTION
[002] The embodiments described herein relate to shipping containers made of multiple components that can be re-arranged and interconnected into a variety of different sizes.
BACKGROUND
[003] For many years, industries dealing in bulk goods have utilized returnable shipping containers. The use of the conventional shipping container, however, presents a number of disadvantages to the transportation, shipping, agricultural, retail, and handling industry. In particular, the conventional shipping container is typically created from a single mold and thus often comprises only a single piece of plastic (as a non-limiting example) that is only one defined size and length. This is a significant disadvantage because the conventional shipping container cannot change sizes or lengths to accommodate various types of bulk goods. Rather, industries dealing in bulk goods have to acquire and store numerous conventional shipping containers of various sizes.
[004] Moreover, it is expensive to manufacture the conventional shipping container because the process typically requires an enormous press that is needed to inject the plastic into the mold and compress the material into the desired shape and size. For example, it often costs upwards of $1,000,000 to acquire the machinery necessary to manufacture the conventional shipping container. It is also challenging to manufacture a conventional shipping container that consists of a single, large part because a manufacturer is required to maintain a large inventory of different sized molds. In addition, a single quality issue anywhere in the conventional shipping container has the potential to ruin the entire container.
[005] Accordingly, there is a significant need for a variable length shipping container that can be re-arranged and interconnected into a variety of sizes. Such a shipping container would provide industries dealing in bulk goods with the flexibility to re-arrange shipping containers into any desired size without having to acquire and store a variety of conventional shipping containers. Likewise, a variable length shipping container would be much more affordable and simpler to manufacture because it would require significantly smaller molds and presses to manufacture the different components. Along with other features and advantages outlined herein, the variable length containers within the scope of present embodiments meet these and other needs. In doing so, the variable length container possesses market adaptability because of its versatility to be re-arranged into a variety of configurations based on user’s needs. The variable length container is also less burdensome for manufacturers because it is lower risk to manufacture smaller parts. In addition, the variable length container eliminates the problem of manufacturers having to maintain a large inventory of different sized molds. The variable length containers within the scope of present embodiments also provide manufacturers more discrete control over the material properties of the final product because different resins and materials could be used for different components.
SUMMARY OF EMBODIMENTS
[006] A variable length container, sometimes referred to herein as a “shipping container” or “container” for brevity, according to multiple embodiments and alternatives comprises multiple components that can be interconnected and re-arranged to provide the user with an array of shipping container sizes. Current embodiments provide for a variable length container comprising a central member, a pair of intermediate members, a pair of wing members, and a support assembly. In some embodiments, the support assembly consists of a central forkstrap, a pair of end forkstraps, a plurality of horizontal supports, and a pair of runners.
[007] According to present embodiments, the edges of the central member are configured to receive either the pair of wing members, the pair of intermediate members, or other variations as selected by the user. In some embodiments, the edges of the central member include a plurality of teeth and a plurality of receiving notches that engage with the corresponding teeth and receiving notches located on the edges of the wing members or the intermediate members. In some embodiments, the central member further includes receiving slots which are adapted to receive either the ribs of the wing members or the ribs of the intermediate members. Likewise, the intermediate members include ribs to engage the central member and receiving slots adapted to receive the ribs of the wing members.
[008] With respect to the support assembly, the central forkstrap is generally positioned below and parallel to the length of the central member, while the pair of end forkstraps are positioned below and parallel to the length of the wing members. Current embodiments provide for a plurality of horizontal supports that connect the central forkstrap to the pair of end forkstraps via a series of tines and corresponding apertures located at the ends of the horizontal supports. In some embodiments, the horizontal supports and the runners are perpendicular to the central forkstrap and the pair of end forkstraps.
[009] The central forkstrap and the pair of end forkstraps each comprise a middle component, a pair of connectors, and a pair of end components. According to present embodiments, the bottom surface of the central member comprises a plurality of forkstrap receiving bores that are adapted to receive and engage the middle component and end components of the central forkstrap. Likewise, the bottom surface of the pair of wing members comprise a plurality of forkstrap receiving bores adapted to receive the middle component and end components of the pair of end forkstraps. In some embodiments, the variable length container is further secured together by screws and forkstrap connectors.
[0010] Current embodiments provide for the central member, the intermediate members, and the wing members each having a plurality of receiving notches to receive the teeth of the sidewalls. As discussed in more detail below, a user can assemble the variable length container by securing the wing members to the central member, then attaching the support assembly to the bottom surface of the wing members and the central member. A user can then attach the sidewalls to complete the assembly. Moreover, in current embodiments the user can vary the length of the shipping container by also incorporating additional wing members, one or more intermediate members, or by selecting wing members of various sizes.
[0011] Accordingly, the variable length container in current embodiments affords a versatility of sizes and lengths that provides a key advantage over conventional shipping containers. The components may be easily and quickly re-arranged into a number configurations disclosed herein. Along with other features disclosed herein, the versatility of the variable length container provides a number of advantages over the conventional shipping container.
BRIEF DESCRIPTION OF THE FTGTTRES
[0012] The drawings and embodiments described herein are illustrative of multiple alternative structures, aspects, and features of the present embodiments, and they are not to be understood as limiting the scope of present embodiments. It will be further understood that the drawing Figures described and provided herein are not to scale, and that the embodiments are not limited to the precise arrangements and instrumentalities shown.
[0013] Fig. l is a top, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives. Fig. 2 is a bottom, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
[0014] Fig. 3 is a top, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
[0015] Fig. 4 is a bottom, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
[0016] Fig. 5 is a perspective view of the end component of a central forkstrap, according to multiple embodiments and alternatives.
[0017] Fig. 6 is a perspective view of the end component of an end forkstrap, according to multiple embodiments and alternatives.
[0018] Fig. 7 is a perspective view of an assembled base and sidewalls, according to multiple embodiments and alternatives.
[0019] Fig. 8 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
[0020] Fig. 9 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
[0021] Fig. 10 is a top, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
[0022] Fig. 11 is a bottom, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
[0023] Fig. 12 is a top, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives.
[0024] Fig. 13 is a bottom, perspective, and exploded view of a base of a variable length container, according to multiple embodiments and alternatives. [0025] Fig. 14 is a perspective view of an assembled base and sidewalls, according to multiple embodiments and alternatives.
[0026] Fig. 15 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
[0027] Fig. 16 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
[0028] Fig. 17 is a bottom, perspective view of an assembled base of a variable length container, according to multiple embodiments and alternatives.
[0029] Fig. 18 is a perspective view of an assembled base and sidewalls, according to multiple embodiments and alternatives.
[0030] Fig. 19 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
[0031] Fig. 20 is a perspective view of a variable length container, according to multiple embodiments and alternatives.
MULTIPLE EMBODIMENTS AND ALTERNATIVES [0032] Figures 1 and 2 show an assembled base 5 according to multiple embodiments and alternatives. An assembled base 5 consists of a central member 10, a pair of wing members 50, and a support assembly 8. As shown most clearly in Figs. 2 and 4, the support assembly 8 consists of a central forkstrap 85, a pair of end forkstraps 100, a plurality of horizontal supports 115, and a pair of runners 122, and the support assembly 8 is positioned below the central member 10 and the pair of wing members 50. In some embodiments, the central forkstrap 85 is secured to the middle of the bottom surface 18 of the central member 10 and positioned parallel to the length of the central member 10. Likewise, the pair of end forkstraps 100 are attached to the bottom surface 58 of the pair of wing members 50 and positioned parallel to the length of the pair of wing members 50. In some embodiments, the plurality of horizontal supports 115 connect the central forkstrap 85 to the pair of end forkstraps 100, and the horizontal supports 115 are positioned perpendicular to the lengths of the central member 10 and the wing members 50.
[0033] As disclosed in more detail below, the central member 10 and the pair of wing members 50 interconnect and secure to one another via corresponding ribs and receiving slots, and corresponding teeth and receiving notches. In certain embodiments, the central member 10 and the pair of wing members 50 are further secured together by screws after the ribs engage the receiving slots and the teeth engage the receiving notches. In some embodiments, the central forkstrap 85 and the pair of end forkstraps 100 connect to the plurality of horizontal supports 115 via corresponding tines and apertures; and the pair of runners 122 attach to the bottom surface 18 of the central member 10 and the bottom surface 58 of the pair of wing members 50 via screws. According to multiple embodiments and alternatives, the top surface 12 of the central member 10 and the top surface 52 of the pair of wing members 50 are generally smooth, while the bottom surface 18 of the central member 10 and the bottom surface 58 of the wing members 50 consist of reinforcing cells that increase the rigidity and load bearing potential of the variable length container.
[0034] Figure 3 shows an exploded view of the assembled base 5 and best illustrates how the central member 10 interconnects and secures to the wing members 50. As shown in Fig. 3, the central member 10 comprises a middle section 25 (which extends horizontally) and a pair of end sections 35 (which extend vertically and are perpendicular to the middle section 25). In some embodiments, the parallel edges 28 of the middle section 25 include a plurality of teeth 30 and a plurality of receiving notches 32 (best shown in Fig. 4) that interconnect with a corresponding plurality of teeth 70 and a plurality of receiving notches 72 located on the internal edges 68 of the middle section 65 of the wing members 50. As further described below, the end sections 35 of the central member 10 also include a plurality of receiving notches 38 which are adapted to receive the teeth 130 of sidewalls 128.
[0035] In some embodiments, the wing members 50 consist of a middle section 65 (which extends horizontally), a pair of end sections 78 (which extend vertically and are perpendicular to the middle section 65), and a shoulder 75 located opposite the internal edge 68. As previously noted, the internal edge 68 of the middle section 65 of the wing members 50 comprises a plurality of teeth 70 and a plurality of receiving notches 72 which interconnect and secure to the edges 28 of the middle section 25 of the central member 10. The pair of end sections 78 and shoulder 75 include a plurality of receiving notches 80 which are adapted to receive the teeth 130 of sidewalls 128. The middle section 65 of the wing members 50 and the middle section 25 of the central member 10 cooperate to form a floor of assembled base 5. [0036] As best shown in Fig. 3, in some embodiments the assembled base 5 is further secured by a plurality of forkstrap connectors 125. U.S. Pub. No. 2016/0090208 (Ser. No. 14/785,770, filed October 20, 2015) titled “Shipping Container and Forkstrap Connector Therefor” (Turner, Todd. T; published March 31, 2016), the full contents of which are incorporated by reference, describes multiple embodiments for a forkstrap connector 125 including barbs for engaging the other components of the assembled base 5. According to multiple embodiments and alternatives, the central member 10 includes a plurality of forkstrap connector bores 15, the wing members 50 include a plurality of forkstrap connector bores 55, and the support assembly 8 also includes a plurality of forkstrap connector bores 98, 112. When each of the forkstrap connector bores are aligned, the forkstrap connectors 125 are inserted into the various bores to secure the central member 10 and the wing members 50 to the support assembly 8.
[0037] Figure 4 illustrates a bottom, exploded view of the assembled base 5 and best illustrates how the central forkstrap 85 interconnects with the horizontal supports 115 and the pair of end forkstraps 100. Figure 4 also illustrates how the pair of runners 122 attach to the bottom surface 18 of the central member 10 and the bottom surface 58 of the pair of wing members 50 via screws. As shown in Fig. 4, the bottom surface 18 of the central member 10 includes a plurality of forkstrap receiving bores 22 that are adapted to receive the middle component 88 and end components 90 of the central forkstrap 85. Likewise, the bottom surface 58 of the wing members 50 includes a plurality of forkstrap receiving bores 62 that are adapted to receive the middle component 102 and end components 105 of the pair of end forkstraps 100. The central forkstrap 85 forms a plurality of forkstrap connector bores 98, and likewise the pair of end forkstrap 100 form a plurality of forkstrap connector bores 112. When the forkstrap connector bores 98 and 112 are aligned with the connector bores of the central member 10 and the wing members 50, the bores can receive the forkstrap connectors 125 to secure the assembled base 5 together.
[0038] The plurality of horizontal supports 115 comprise a generally rectangular shape and a pair of apertures 120 positioned on opposing ends. As shown in Fig. 5, the end components 90 of the central forkstrap 85 include a series of tines 95 located on opposing sides 92 to engage the apertures 120 of the horizontal supports 115. As shown in Fig. 6, the end components 105 of the pair of end forkstraps 100 include a series of tines 110 located only on the internal side 108 in order to engage the apertures 120 of the horizontal supports 115.
[0039] As previously noted, the edges 28 of the central member 10 include a plurality of teeth 30 and a plurality of receiving notches 32 which connect and secure to the internal edge 68 of the wing members 50. Likewise, the internal edge 68 of the wing members 50 includes a plurality of teeth 70 and a plurality of receiving notches 72. In some embodiments, once the central member 10 is secured to the wing members 50, a series of screws are inserted to span the width of the plurality of teeth and receiving notches. [0040] In some embodiments, the end sections 35 of the central member 10 include several receiving slots 33 which are adapted to receive and engage the ribs 82 located on the end sections 78 of the wing members 50. Upon receiving the ribs, in some embodiments a series of screws are inserted across the width of the receiving slots 33 and the ribs 82 to secure the central member 10 with the wing members 50. Fig. 4 illustrates the pair of runners 122 which extend perpendicular to the lengths of the central member 10 and the wing members 50. In some embodiments, the pair of runners 122 are secured in place by screws.
[0041] Figure 7 illustrates assembled base 5 and an exploded view of sidewalls 128 with a plurality of teeth 130. Figs. 8 & 9 illustrate a variable length container 135 having an assembled base 5 secured to sidewalls 128. According to multiple embodiments and alternatives, the bottom edge of the sidewalls 128 include a plurality of teeth 130 which engage and secure to the receiving notches 38 of the central member 10 and the receiving notches 80 of the wing members 50. The plurality of teeth 130 can be further secured to the receiving notches 38, 80 via screws or other suitable mechanisms. In some embodiments, the sidewalls 128 are molded as a single piece.
[0042] Figs. 10 and 11 illustrate assembled base 205. According to multiple embodiments and alternatives, assembled base 205 consists of support assembly 207, central member 10, a pair of intermediate members 240, and a pair of wing members 50. In some embodiments, the only differences between assembled base 205 and assembled base 5 are the pair of intermediate members 240, and horizontal supports 215 and a pair runners 222 that are longer in length than horizontal supports 115 and runners 122. It will be appreciated by one of ordinary skill in the art that a user may utilize assembled base 205 when a shipping container with a longer length is needed.
[0043] As shown in Fig. 10, the pair of intermediate members 240 are positioned between the central member 10 and the pair of wing members 50. In some embodiments, the pair of intermediate members 240 comprise a top surface 242, a bottom surface 245, a middle section 248 (which extends horizontally) and an end section 258 (which extends vertically and is perpendicular to middle section 248). The end section 258 also includes receiving notches 260 that are adapted to receive the teeth 230 of the sidewalls 228. The bottom surface 245 of the pair of intermediate members 240 also include reinforcing cells for support. The middle section 65 of the wing members 50, the middle section 25 of the central member 10, and the middle section 248 of the pair of intermediate members 240 cooperate to form a floor of assembled base 205.
[0044] As best illustrated in Fig. 11, support assembly 207 consists of central forkstrap 85, a pair of end forkstraps 100, a pair of runners 222, and a plurality of horizontal supports 215. The support assembly 207 secures to the bottom surface of the central member 10, the pair of intermediate members 240, and the pair of wing members 50 via forkstrap connectors 125, screws, and any other mechanism known to those of ordinary skill in the art.
[0045] Figs. 12 and 13 illustrate the components of the support assembly 207 and the interconnections between the central member 10, the pair of intermediate members 240, and the pair of wing members 50. According to multiple embodiments and alternatives, the pair of intermediate members 240 each include an internal side 250 and an external side 251. The internal side 250 is adapted to receive and connect with the central member 10 and the external side 251 is adapted to receive and connect with the pair of wing members 50. The pair of intermediate members 240 are also adapted to receive and connect with other intermediate members 240. In some embodiments, both the internal side 250 and the external side 251 comprise a plurality of teeth 252 and a plurality of receiving notches 255 that correspond to the teeth and notches of the central member 10 and the pair of wing members 50. The internal side 250 of the end section 258 also includes ribs 262 that can be received in the receiving slot 33 of the central member 10, or the receiving slot 265 of another intermediate member 240. The external side of the end section 258 includes a receiving slot 265 that is adapted to receive the ribs 82 of the wing members 50, or the ribs 262 of another intermediate member 240.
[0046] Figure 14 illustrates assembled base 205 and an exploded view of sidewalls 228 having a plurality of teeth 230. Figs. 15 and 16 show variable length container 235, which comprises assembled base 205, support assembly 207, and sidewalls 228. The sidewalls 228 include a plurality of teeth 230 that connect to the receiving notches of the central member 10, the pair of intermediate members 240, and the pair of wing members 50. In some embodiments, the sidewalls 228 are molded as a single piece.
[0047] Fig. 17 illustrates assembled base 305 comprising central member 10, a pair of wing members 350, and support assembly 307. According to multiple embodiments, the pair of wing members 350 are wider than the wing members 50 and consequently offer the user even more flexibility in selecting a different sized variable length container. To accommodate the different length of assembled base 305, the support assembly 307 comprises a pair of runners 322 and horizontal supports 315 which are sized to support the central member 10 when connected to the pair of wing members 350.
[0048] As shown in Figs. 18-20, variable length container 335 consists of sidewalls 328 connected to assembled base 305. As best shown in Fig. 18, the sidewalls 328 connect to the assembled base 305 via a plurality of teeth 330.
[0049] It will be appreciated by one of ordinary skill in the art that a user may connect a central member 10 with any sized wing member (including but not limited to wing members 50 and/or wing members 350) to adjust the length of the shipping container. Likewise, a user may incorporate any number of intermediate members 240 to adjust the length of the container, including but not limited to, at least one intermediate member 240 interposed between at least one of the wing members and the central member 10, a pair of intermediate members 240, and at least three intermediate members 240. According to multiple embodiments and alternatives, the width of the variable length containers disclosed herein remains the same but the user may connect any number of other pieces to vary the length of the shipping container for the desired purpose.
[0050] In operation, to assemble the variable length container 135 a user first aligns and presses the internal edges 68 of the wing members 50 into the edges 28 of the central member 10 until the corresponding teeth and receiving notches are fully engaged. In some embodiments, the user can further secure the wing members 50 with the central member 10 by inserting screws that the span the lengths of the various teeth and receiving notches. Next, the pair of runners 122 are secured to the bottom surface of the assembled wing members 50 and central member 10 via screws. The user then inserts the apertures 120 of the horizontal supports 115 into the series of tines 95 of the central forkstrap 85, and inserts the series of tines 110 of the pair of end forkstraps 100 into the opposing apertures of the horizontal supports 115. The support assembly 8 (comprising the horizontal supports 115, the central forkstrap 85, and the pair of end forkstraps 100 assembled together) is then placed on to the bottom surface 18 of central member 10 and bottom surface 58 of the wing members 50 such that the middle components 88, 102 of the forkstraps 85, 100 engage the forkstrap receiving bores 22, 62. The user then inserts the bottom end of forkstrap connectors 125 into the bores and completes the assembly of assembled base 5. Lastly, the user then engages the teeth 130 of the sidewalls 128 with the various receiving notches 38, 80 to assemble the variable length container 135 (as shown in Fig. 5).
[0051] A user may vary the length of the shipping container by also incorporating at least one intermediate member 240 interposed between one of the wing members 50 and the central member 10, by using a pair of intermediate members 240 (shown in Fig. 10) to assemble variable length container 235 (shown in Fig. 15), by using at least three intermediate members 240, by incorporating wing members 350 instead of wing members 50 (shown in Fig. 17) to assemble variable length container 335 (shown in Fig. 19), or any other combination using the components disclosed herein.
[0052] Another embodiment, referred to herein as embodiment A, comprises a variable length container having a base formed from a central member, a first wing member, and a second wing member; said central member having a pair of external edges; said first wing member and said second wing member each having an internal edge, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member. [0053] In an embodiment within the scope of embodiment A, and referred to herein as embodiment B, further comprising at least one intermediate member interposed between at least one of said wing members and said central member. In an embodiment within the scope of embodiment A, and referred to herein as embodiment C, each of said at least one intermediate member has an external edge and an opposing internal edge; said external edge of each said at least one intermediate member being configured identically to said external edges of the central member; said internal edge of each said at least one intermediate member being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least one intermediate member.
[0054] In an embodiment within the scope of embodiment A, and referred to herein as embodiment D, the container further comprises a first intermediate member and a second intermediate member; wherein the first intermediate member is interposed between said first wing member and said central member; wherein the second intermediate member is interposed between said second wing member and said central member.
[0055] In an embodiment within the scope of embodiment A, and referred to herein as embodiment E, said first intermediate member and said second intermediate member each having an external edge and an opposing internal edge; said external edge of each said first and second intermediate member being configured identically to said external edges of the central member; said internal edge of each said first and second intermediate member being adapted to interlock with an external edge of said central member.
[0056] In an embodiment within the scope of embodiment A, and referred to herein as embodiment F, the central member, the first wing member, the second wing member, the first intermediate member, and the second intermediate member each further comprise a middle section and a pair of opposing end sections; wherein said middle sections cooperate to form a floor of said container and said opposing end sections extend upward. In an embodiment within the scope of embodiment A, and referred to herein as embodiment G, the base further comprises a first pair of opposing sides and a second pair of opposing sides; wherein the first pair of opposing sides are defined by an external edge of the first wing member and an external edge of the second wing member; wherein the second pair of opposing sides are defined by said opposing end sections of the central member, the first wing member, the second wing member, the first intermediate member, and the second intermediate member. In an embodiment within the scope of embodiment A, and referred to herein as embodiment H, the container further comprises a first pair of opposing sidewalls and a second pair of opposing sidewalls.
[0057] In an embodiment within the scope of embodiment A, and referred to herein as embodiment I, said first pair of opposing sidewalls and said second pair of opposing sidewalls each define a bottom edge having a plurality of teeth; wherein said external edge of each wing member forms a plurality of receiving notches adapted to receive the plurality of teeth of the first pair of opposing sidewalls; wherein said opposing end sections of the central member, the first wing member, the second member, the first intermediate member and the second intermediate member define a plurality of receiving notches adapted to receive the plurality of teeth of the second pair of opposing sidewalls.
[0058] In an embodiment within the scope of embodiment A, and referred to herein as embodiment J, the container further comprises a support assembly having a central forkstrap, a first end forkstrap, a second end forkstrap, and a plurality of horizontal supports. In an embodiment within the scope of embodiment A, and referred to herein as embodiment K, the central forkstrap comprises a middle component integrally connected to a pair of opposing end components, the end components each having opposing sides defining a series of tines, the central forkstrap being configured to be received in a bottom surface of the central member; wherein said first end forkstrap and said second end forkstap each comprise a middle component integrally connected to a pair of opposing end components, the pair of opposing end components each having an internal side and an external side, the internal side defining a series of tines, said first end forkstrap and said second end forkstrap each being configured to be received in a bottom surface of one of the wing members; wherein the central forkstrap, the first end forkstrap, and the second end forkstrap each have a length suitable to span a length of the middle sections. In an embodiment within the scope of embodiment A, and referred to herein as embodiment L, the plurality of horizontal supports each comprise a rectangular shape having a pair of opposing ends, each of the opposing ends defining an aperture which is adapted to receive the series of tines of the central forkstrap and the series of tines of one of the end forkstraps. In an embodiment within the scope of embodiment A, and referred to herein as embodiment M, the plurality of horizontal supports each have a length suitable to engage both the central forkstrap and one of the end forkstraps. The container may be further defined by incorporating the additional features of any one or more of embodiments B, C, D, E, F, G, H, I, J, K, L, or M.
[0059] Another embodiment, referred to herein as embodiment N, is a variable length container comprising a base formed from a central member, a first wing member, and a second wing member; said central member having a pair of external edges, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said central member being positioned perpendicular to and extending vertically from the middle section of said central member; said first wing member and said second wing member each having an internal edge, an opposing external edge, a middle section, and a pair of opposing end sections, said pair of opposing end sections of each wing member being positioned perpendicular to and extending vertically from the middle section of each wing member, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member. [0060] In an embodiment within the scope of embodiment N, referred to herein as embodiment O, the container further comprises an at least one intermediate member interposed between at least one of said wing members and said central member; wherein each of said at least one intermediate member has an external edge, an opposing internal edge, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said at least on intermediate member being positioned perpendicular to and extending vertically from the middle section of said at least one intermediate member; said external edge of each said at least one intermediate member being configured identically to said external edges of the central member; said internal edge of each said at least one intermediate member being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least one intermediate member.
[0061] In an embodiment within the scope of embodiment N, and referred to herein as embodiment P, said middle sections of said central member, said wing members, and said at least one intermediate member cooperate to form a floor of said container. In an embodiment within the scope of embodiment N, and referred to herein as embodiment Q, the base further comprises a first pair of opposing sides and a second pair of opposing sides; wherein the first pair of opposing sides are defined by the external edge of the first wing member and the external edge of the second wing member, said first pair of opposing sides defining a pair of edges having a plurality of receiving notches; wherein the second pair of opposing sides are defined by said opposing end sections of the central member, the first wing member, the second wing member, and the at least one intermediate member, said second pair of opposing sides defining a pair of edges having a plurality of receiving notches. In an embodiment within the scope of embodiment N, and referred to herein as embodiment R, the container further comprises a first pair of opposing sidewalls and a second pair of opposing sidewalls; wherein said first pair of opposing sidewalls define a bottom edge having a plurality of teeth, said plurality of teeth being adapted to be received in the plurality of receiving notches of the first pair of opposing sides; wherein said second pair of opposing sidewalls define a bottom edge having a plurality of teeth, said plurality of teeth being adapted to be received in the plurality of receiving notches of the second pair of opposing sides. The container may be further defined by incorporating the additional features of any one or more of embodiments O, P, Q, or R. [0062] Another embodiment, referred to herein as embodiment S, is a variable length container comprising a base formed from a central member, a first wing member, a second wing member, a first intermediate member, and a second intermediate member; said central member having a pair of external edges, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said central member being positioned perpendicular to and extending vertically from the middle section of said central member; said first wing member and said second wing member each having an internal edge, an opposing external edge, a middle section, and a pair of opposing end sections, said pair of opposing end sections of each wing member being positioned perpendicular to and extending vertically from the middle section of each wing member, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member; said first intermediate member and said second intermediate member each having an external edge, an opposing internal edge, a middle section, and a pair of opposing end sections, said pair of opposing end sections of each intermediate member being positioned perpendicular to and extending vertically from the middle section of each intermediate member, the first intermediate member being interposed between said first wing member and said central member, the second intermediate member being interposed between said second wing member and said central member, said external edge of each said first and second intermediate members being configured identically to said external edges of the central member, said internal edge of each said first and second intermediate members being adapted to interlock with an external edge of said central member.
[0063] In an embodiment within the scope of embodiment S, referred to herein as embodiment T, the container further comprises at least three intermediate members each having an external edge and an opposing internal edges; said external edge of each said at least three intermediate members being configured identically to said external edges of the central member; said internal edge of each said at least three intermediate members being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least three intermediate members.
[0064] It will be understood that the embodiments described herein are not limited in their application to the details of the teachings and descriptions set forth, or as illustrated in the accompanying figures. Rather, it will be understood that the present embodiments and alternatives, as described and claimed herein, are capable of being practiced or carried out in various ways.
[0065] Also, it is to be understood that words and phrases used herein are for the purpose of description and should not be regarded as limiting. The use herein of “including,” “comprising,” “e.g.,” “containing,” or “having” and variations of those words is meant to encompass the items listed thereafter, and equivalents of those, as well as additional items. [0066] Accordingly, the foregoing descriptions of several embodiments and alternatives are meant to illustrate, rather than to serve as limits on the scope of what has been disclosed herein. The descriptions herein are not intended to be exhaustive, nor are they meant to limit the understanding of the embodiments to the precise forms disclosed. It will be understood by those having ordinary skill in the art that modifications and variations of these embodiments are reasonably possible in light of the above teachings and descriptions.

Claims

CLAIMS What is claimed is:
1. A variable length container comprising: a base formed from a central member, a first wing member, and a second wing member; said central member having a pair of external edges; said first wing member and said second wing member each having an internal edge, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member.
2. The container of claim 1, further comprising at least one intermediate member interposed between at least one of said wing members and said central member.
3. The container of claim 2, wherein each of said at least one intermediate member has an external edge and an opposing internal edge; said external edge of each said at least one intermediate member being configured identically to said external edges of the central member; said internal edge of each said at least one intermediate member being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least one intermediate member.
4. The container of claim 1, further comprising a first intermediate member and a second intermediate member; wherein the first intermediate member is interposed between said first wing member and said central member; wherein the second intermediate member is interposed between said second wing member and said central member.
5. The container of claim 4, wherein said first intermediate member and said second intermediate member each having an external edge and an opposing internal edge; said external edge of each said first and second intermediate member being configured identically to said external edges of the central member; said internal edge of each said first and second intermediate member being adapted to interlock with an external edge of said central member.
6. The container of claim 5, wherein the central member, the first wing member, the second wing member, the first intermediate member, and the second intermediate member each further comprise a middle section and a pair of opposing end sections; wherein said middle sections cooperate to form a floor of said container and said opposing end sections extend upward.
7. The container of claim 6, wherein the base further comprises a first pair of opposing sides and a second pair of opposing sides; wherein the first pair of opposing sides are defined by an external edge of the first wing member and an external edge of the second wing member; wherein the second pair of opposing sides are defined by said opposing end sections of the central member, the first wing member, the second wing member, the first intermediate member, and the second intermediate member.
8 The container of claim 7, further comprising a first pair of opposing sidewalls and a second pair of opposing sidewalls.
9. The container of claim 8, wherein said first pair of opposing sidewalls and said second pair of opposing sidewalls each define a bottom edge having a plurality of teeth; wherein said external edge of each wing member forms a plurality of receiving notches adapted to receive the plurality of teeth of the first pair of opposing sidewalls; wherein said opposing end sections of the central member, the first wing member, the second member, the first intermediate member and the second intermediate member define a plurality of receiving notches adapted to receive the plurality of teeth of the second pair of opposing sidewalls.
10. The container of claim 9, further comprising a support assembly having a central forkstrap, a first end forkstrap, a second end forkstrap, and a plurality of horizontal supports.
11. The container of claim 10, wherein the central forkstrap comprises a middle component integrally connected to a pair of opposing end components, the end components each having opposing sides defining a series of tines, the central forkstrap being configured to be received in a bottom surface of the central member; wherein said first end forkstrap and said second end forkstap each comprise a middle component integrally connected to a pair of opposing end components, the pair of opposing end components each having an internal side and an external side, the internal side defining a series of tines, said first end forkstrap and said second end forkstrap each being configured to be received in a bottom surface of one of the wing members; wherein the central forkstrap, the first end forkstrap, and the second end forkstrap each have a length suitable to span a length of the middle sections.
12. The container of claim 11, wherein the plurality of horizontal supports each comprise a rectangular shape having a pair of opposing ends, each of the opposing ends defining an aperture which is adapted to receive the series of tines of the central forkstrap and the series of tines of one of the end forkstraps.
13. The container of claim 12, wherein the plurality of horizontal supports each have a length suitable to engage both the central forkstrap and one of the end forkstraps.
14. A variable length container comprising: a base formed from a central member, a first wing member, and a second wing member; said central member having a pair of external edges, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said central member being positioned perpendicular to and extending vertically from the middle section of said central member; said first wing member and said second wing member each having an internal edge, an opposing external edge, a middle section, and a pair of opposing end sections, said pair of opposing end sections of each wing member being positioned perpendicular to and extending vertically from the middle section of each wing member, said internal edge of each wing member being adapted to interlock with one of the external edges of said central member.
15. The container of claim 14, further comprising an at least one intermediate member interposed between at least one of said wing members and said central member; wherein each of said at least one intermediate member has an external edge, an opposing internal edge, a middle section, and a pair of opposing end sections, each of said pair of opposing end sections of said at least on intermediate member being positioned perpendicular to and extending vertically from the middle section of said at least one intermediate member; said external edge of each said at least one intermediate member being configured identically to said external edges of the central member; said internal edge of each said at least one intermediate member being adapted to interlock with an external edge of said central member and being adapted to interlock with said external edge of another of said at least one intermediate member.
PCT/US2021/017587 2020-02-13 2021-02-11 Variable length container WO2021163278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21754436.0A EP4081461A4 (en) 2020-02-13 2021-02-11 Variable length container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062975838P 2020-02-13 2020-02-13
US62/975,838 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021163278A1 true WO2021163278A1 (en) 2021-08-19

Family

ID=77273359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/017587 WO2021163278A1 (en) 2020-02-13 2021-02-11 Variable length container

Country Status (3)

Country Link
US (1) US20210253301A1 (en)
EP (1) EP4081461A4 (en)
WO (1) WO2021163278A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017121813A1 (en) * 2017-09-20 2019-03-21 Schoeller Allibert Gmbh Plastic pallet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483899A (en) * 1994-07-05 1996-01-16 Christie; Eugene P. Modular pallet arrangement
US6776300B2 (en) * 2000-04-07 2004-08-17 Xytec Systems, Inc. Collapsible container with closed, multi-paneled sidewalls
WO2014186273A1 (en) * 2013-05-13 2014-11-20 Macro Plastics, Inc. Shipping container and forkstrap connector therefor
WO2015072844A1 (en) * 2013-11-13 2015-05-21 Swee Wun Yap Modular pallet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2696356A (en) * 1952-02-07 1954-12-07 Int Paper Co Pallet
JPS63186621U (en) * 1987-05-22 1988-11-30
BE1014934A7 (en) * 2002-07-30 2004-06-01 Essoo Bewshain Modular crate has crater section modules in different sizes with stops to prevent modules from detaching
US8720692B2 (en) * 2007-11-21 2014-05-13 Rehrig Pacific Company Pallet
US20090232632A1 (en) * 2008-03-14 2009-09-17 Baltz Kyle L Support platform
GB2449374B (en) * 2008-07-23 2009-05-13 Rftraq Ltd A pallet made of plastics material
CN202115794U (en) * 2011-06-13 2012-01-18 黄文藩 Expandable foldable box
JP2013056686A (en) * 2011-09-08 2013-03-28 Futoshi Fujimoto Assembled returnable box
US9919835B2 (en) * 2013-06-06 2018-03-20 Good Works Studio, Inc. Multi-purpose transport and flooring structures, and associated methods of manufacture
CN104003050A (en) * 2014-05-19 2014-08-27 深圳市华星光电技术有限公司 Pallet and packing case
DE102017111334B3 (en) * 2017-05-24 2018-08-30 Karl-Heinz Fuchs speaker system
US10939676B1 (en) * 2018-09-20 2021-03-09 Summit Outdoors, Llc Modular platform system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483899A (en) * 1994-07-05 1996-01-16 Christie; Eugene P. Modular pallet arrangement
US6776300B2 (en) * 2000-04-07 2004-08-17 Xytec Systems, Inc. Collapsible container with closed, multi-paneled sidewalls
WO2014186273A1 (en) * 2013-05-13 2014-11-20 Macro Plastics, Inc. Shipping container and forkstrap connector therefor
WO2015072844A1 (en) * 2013-11-13 2015-05-21 Swee Wun Yap Modular pallet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4081461A4 *

Also Published As

Publication number Publication date
EP4081461A1 (en) 2022-11-02
EP4081461A4 (en) 2023-06-28
US20210253301A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US4671411A (en) Nestable open case
US5941179A (en) Variable-configuration pallet of modular construction
EP1834884B1 (en) Lid-equipped, monomaterial container for horticultural use
US20020011194A1 (en) Preformed modules to manufacture pallets and pallets obtained therefrom
US20210253301A1 (en) Variable length container
DE10032812C2 (en) Device for the transport and storage of goods
DE202013012290U1 (en) quarter pallet
WO1999017998A1 (en) Reinforced plastic pallets
NZ286886A (en) Stackable tray; comprises a flat, rectangular floor panel and two side panels, structural details of panels
US20200247579A1 (en) Modular pallets
US20210354876A1 (en) Shipping containers with interchangeable feet
WO1998032689A1 (en) Nestable shims
EP0510942B1 (en) Adjustable tray
US20030205495A1 (en) Stackable tray having prestressed sections
EP3577033A1 (en) Nestable pallet with runners
KR101067255B1 (en) A loading ledge
US20220386772A1 (en) Modular Shelf
WO2007030837A1 (en) An assemble/disassemble type container
US20190055059A1 (en) Stackable and nestable container
EP0614433B1 (en) Nestable container
GB1575688A (en) Tray for crockery or other articles
AU758653B2 (en) Variable-configuration pallet of modular construction
GB2422596A (en) Partitioned container
ZA200503738B (en) Collapsible container
WO2007043968A1 (en) A load-carrying pallet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021754436

Country of ref document: EP

Effective date: 20220727

NENP Non-entry into the national phase

Ref country code: DE