WO2021162460A1 - Novel pharmaceutical composition for treating non-alcoholic liver disease - Google Patents

Novel pharmaceutical composition for treating non-alcoholic liver disease Download PDF

Info

Publication number
WO2021162460A1
WO2021162460A1 PCT/KR2021/001801 KR2021001801W WO2021162460A1 WO 2021162460 A1 WO2021162460 A1 WO 2021162460A1 KR 2021001801 W KR2021001801 W KR 2021001801W WO 2021162460 A1 WO2021162460 A1 WO 2021162460A1
Authority
WO
WIPO (PCT)
Prior art keywords
glp
seq
composition
liver
group
Prior art date
Application number
PCT/KR2021/001801
Other languages
French (fr)
Korean (ko)
Inventor
성영철
이성희
박성희
양상인
이용호
배수한
이명식
오지영
박정수
Original Assignee
주식회사 제넥신
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제넥신, 연세대학교 산학협력단 filed Critical 주식회사 제넥신
Publication of WO2021162460A1 publication Critical patent/WO2021162460A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2066IL-10
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2278Vasoactive intestinal peptide [VIP]; Related peptides (e.g. Exendin)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6813Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin the drug being a peptidic cytokine, e.g. an interleukin or interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics

Definitions

  • the present invention relates to a novel pharmaceutical composition, and more particularly, to a pharmaceutical composition for the treatment of non-alcoholic liver disease.
  • non-alcoholic steatohepatitis (hereinafter, referred to as 'NASH') has a characteristic etiology depending on the stage of progression. That is, the etiology of insulin resistance, glucose/lipid regulation, starting from dysregulation, steatosis, inflammation and fibrosis, and apoptosis are gradually related to non-alcoholic fatty liver.
  • disease hereinafter abbreviated as 'NAFLD'
  • NASH classified into F0, F1, F2, F3, and F4 stages
  • non-alcoholic fatty liver disease (hereinafter, abbreviated as 'NAFLD') is a liver disease that is rapidly increasing along with metabolic syndrome accompanied by obesity, diabetes, and hypertension.
  • 'NAFLD' non-alcoholic steatohepatitis
  • 'NASH' non-alcoholic steatohepatitis
  • NASH has a characteristic etiology depending on the stage of progression. That is, the etiology of insulin resistance, glucose/lipid regulation, starting from dysregulation, steatosis, inflammation and fibrosis, and apoptosis are gradually related to non-alcoholic fatty liver. disease, hereinafter abbreviated as 'NAFLD') to NASH (classified into F0, F1, F2, F3, F4 stages) and further progresses to cirrhosis (compensated ⁇ decompensated).
  • WO2016043533A1 discloses a therapeutic agent for nonalcoholic fatty liver comprising an oxyntomodulin derivative, which is a dual agonist of GLP-1/glucagon receptor with increased half-life as an active ingredient, and US9938335 also discloses dual action of glucagon receptor/GLP-1 receptor. Disclosed are a glucagon-like peptide used as an agent and a treatment method for NAFLD and NASH using the same.
  • An object of the present invention is to solve various problems, including the above-mentioned problems, (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region, and a bispecific dimeric fusion protein linked to the C-terminus of the antibody Fc region with IL-10 protein as an active ingredient.
  • alcoholic liver disease nonalcoholic liver disease
  • the present invention provides (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region, and a bispecific dimeric fusion protein linked to the C-terminus of the antibody Fc region with IL-10 protein as an active ingredient. It provides a pharmaceutical composition for the prevention or treatment of alcoholic liver disease.
  • the present invention also provides a therapeutically effective amount of (a) GLP-1 or an analog thereof and an IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; or (c) administering a bispecific dimeric fusion protein in which GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region and IL-10 protein is linked to the C-terminus of the antibody Fc region. It provides a method for treating non-alcoholic liver disease, comprising.
  • composition according to the present invention can effectively inhibit lipid accumulation in the liver, relieve inflammation accompanying fatty liver, and can also effectively inhibit lipid toxicity caused by excessive lipids in the liver, preventing or preventing non-alcoholic liver disease or It can be usefully used for treatment.
  • GLP-1-1/IL-10 fusion protein MD100
  • GLP-1-hyFc left
  • hyFc-IL-10V center
  • Figure 2 is two times for examining the in vitro activity of GLP-1 / IL-10 fusion protein (MD100), GLP-1-hyFc (GX-G6) and liraglutide prepared according to various embodiments of the present invention. It is a series of graphs showing the measurement results of cAMP inducibility.
  • Figure 3 is a GLP-1 / IL-10 fusion protein (MD100), recombinant human IL-10 protein and hyFc-IL-10V according to an embodiment of the present invention according to the concentration of each concentration treatment of TNF ⁇ secretion by ELISA analysis. It is a graph showing the comparison of the results.
  • Figure 4 is a GLP-1 / IL-10 fusion protein according to an embodiment of the present invention (MD100, right) and recombinant IL-10 (left) the binding force of IL-10R Octet Bio-layer interferometry (interferometry) It is a series of graphs that compare the results analyzed through
  • FIG. 5 is a graph showing the results of analyzing the in vivo pharmacokinetics (PK) of the GLP-1 / IL-10 fusion protein (MD100) according to an embodiment of the present invention by ELISA using an Fc region-specific antibody; am.
  • PK in vivo pharmacokinetics
  • FIG. 6 is a graph showing the metabolic-related effects of administration of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention, and the body weight ( A), weight change (B), blood triglyceride content (TG, C), total cholesterol content (D), total bilirubin content (E), insulin resistance (G), glucose tolerance (G) and blood glucose level (H) Show a series of graphs representing the measurement results.
  • FIG. 7 is a result of examining the effect on hepatic steatosis and inflammation according to the administration of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention
  • a series of photographs showing the results of Sirius Red staining of liver tissue slices or photographing livers extracted from each experimental group, the weight of the liver in each experimental group (B), the weight-to-weight ratio (C), and the content of liver triglycerides (D) ), ALT content (E), AST content (F), TNF ⁇ expression level (G), IL-6 expression level (H), and IL-1 ⁇ expression level (I) are shown, respectively.
  • FIG. 8 is a result of examining the effects of GLP-1 + IL-10 combination administration (Combo) according to an embodiment of the present invention on hepatic steatosis and inflammation in a high-fat diet-induced nonalcoholic steatohepatitis mouse model.
  • a series of photographs showing the results of Sirius Red staining of excised livers or liver tissue sections (A), liver weight (B), weight-to-weight ratio (C), liver triglyceride content (D), ALT in each experimental group
  • a series of graphs showing the content (E), the AST content (F), the TNF ⁇ expression level (G), the IL-6 expression level (H), and the IL-1 ⁇ expression level (I) are shown, respectively.
  • FIG. 9 is a result of examining the metabolic profile by administration of a GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention in a high-fat diet-induced nonalcoholic steatohepatitis mouse model by concentration, in each experimental group.
  • a series of graphs showing the results of measuring body weight (A), body weight change (B), blood glucose change (C), and blood glucose level (D) are shown.
  • FIG. 10 is a result of examining the effects of administration of GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention on hepatic steatosis and inflammation in a high-fat diet-induced nonalcoholic steatohepatitis mouse model.
  • a series of photographs showing the results of Sirius Red staining of liver tissue slices or photographing livers extracted from each experimental group (A), the weight of the liver in each experimental group (B), the weight-to-weight ratio (C), and the liver triglyceride content ( D), ALT content (E), AST content (F), TNF ⁇ expression level (G), IL-6 expression level (H) and IL-1 ⁇ expression level (I) are a series of graphs, respectively.
  • FIG. 11 is a result of examining the effect on liver fibrosis according to the administration of each concentration of GLP-1/IL-10 fusion protein (MD100) according to an embodiment in a high-fat diet-induced nonalcoholic steatohepatitis mouse model.
  • a series of photographs (A) showing the results of Sirius Red staining for one liver tissue and a graph (B) showing the results of analysis of hydroxyproline are shown.
  • FIG. 12 is a result of investigating the in vitro lipid toxicity using palmitic acid according to the treatment of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention. , shows a series of graphs showing the results of measuring cell viability (A) and expression levels of various apoptosis markers (B) upon drug treatment.
  • FIG. 13 is a result of in vitro analysis of the degree of inflammation improvement according to the treatment of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention.
  • GLP-1 + IL-10 combination Combo
  • MD100 GLP-1/IL-10 fusion protein
  • FIG. 14 shows in vitro hepatic steatosis induced by oleic acid by treatment with GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention. ), a series of fluorescence micrographs showing the results confirmed through BODIPY staining (A) and a graph (B) quantifying the results of A are shown.
  • FIG. 15 is a graph showing the effect of the treatment of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) on the differentiation of preadipocytes into adipocytes according to an embodiment of the present invention;
  • a series of photographs showing the Sirius Red staining results in each experimental group (A), the triglyceride accumulation level in each experimental group (B), and the PPAR ⁇ expression level were confirmed by Western blot analysis (C), PPAR ⁇ ( D) shows a series of graphs showing the expression levels of C/EBPa(E) and aP2(F).
  • GLP-1 used in the present invention is an abbreviation of "glucagon-like peptide-1", and is 30 or 31 amino acids induced by tissue-specific post-translational processing of proglucagon peptides. It is a peptide hormone of length. GLP-1 is produced and secreted by specific neurons in the enteroendocrine L-cells of the small intestine and the solitary tract nucleus of the brain stem during food intake. The initial product, GLP-1(1-37), is readily amidated and cleaved with two equivalent biological activities by cleavage (GLP-1(7-36) amide and GLP-1(7-37)).
  • Active GLP-1 contains two alpha-helical regions at amino acid positions 13-20 and 24-35 and a linker region connecting the two alpha-helical regions. Since GLP-1 acts to lower blood sugar levels in a glucose-dependent manner, it has been developed and used as a treatment for type 2 diabetes. However, since GLP-1 is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) in vivo, its in vivo half-life is only 2 minutes, so its effect is extremely limited as a natural peptide.
  • DPP-4 dipeptidyl peptidase-4
  • GLP-1 analog refers to a protein that biologically performs the function of GLP-1 and can mediate downstream signaling by binding to the GLP-1/exendin-4 receptor.
  • fusion protein refers to a recombinant protein in which two or more proteins or domains responsible for a specific function in the protein are linked so that each protein or domain takes on its original function.
  • antibody Fc region refers to a crystallized fragment among fragments generated when an antibody is cleaved with papain, and refers to a cell surface receptor called Fc receptor and a complement system. It interacts with several proteins.
  • the antibody Fc region exhibits a homodimeric structure in which fragments comprising the second and third constant regions (CH2 and CH3) of the heavy chain are linked by intermolecular disulfide bonds at the hinge region.
  • the Fc region of IgG has a number of N-glycan attachment sites, which are known to play an important role in Fc receptor-mediated action, and IgG1, IgG2, IgG3, IgG4, and IgD may be used.
  • hybrid antibody Fc region refers to an Fc region peptide produced by a combination of parts of various subtypes of Ig Fc region described in Korean Patent No. 897938, and The combination may show a difference from the wild-type antibody Fc region in binding capacity to Fc receptors and complement.
  • Exendin is a peptide composed of 39 amino acids isolated from the poison of the lizard Heloderma suspectum.
  • Exendin 4 is 50% identical in amino acid sequence to GLP-1, is a member of the glucagon peptide family, and is known to perform an equivalent role to GLP-1 as an agonist of the GLP-1 receptor.
  • Exendin 4 is also called “extenatide”.
  • Exendin 3 is a mutant in which the second and third amino acids in Exendin 4 are substituted with serine and aspartic acid, respectively.
  • Lutisenatide is one of the GLP-1 receptor agonists, manufactured by Sanofi, under the trade name Lyxumia in Europe and Adlyxin in the United States as a daily administration injection for the treatment of type 2 diabetes. It is a drug marketed as
  • Albiglutide used in the present invention is one of the GLP-1 receptor agonists sold under the trade name of Eperzan in Europe and Tanzeum in the United States as a treatment for type 2 diabetes by GSK.
  • Liraglutide is a subcutaneously injectable GLP-1 receptor agonist marketed as a treatment for type 2 diabetes and obesity under the trade name “Victoza” by Novo Nordisk.
  • Taspoglutide is a GLP-1 receptor agonist jointly developed by Ipsen and Roche, which is a therapeutic agent for type 2 diabetes, which is the 8th and 35th amino acids of the GLP-1(7-36) peptide. It is a GLP-1 derivative in which alanine is methylated and the last amino acid is amidated.
  • XTEN is an unstructured low immunogenic peptide containing 6 amino acids added to improve the in vivo half-life of a protein drug developed by Amunix, usually 144 aa. It is composed of multiple amino acids as a unit (US20100239554A1).
  • linker peptide refers to an unstructured peptide used to prepare a fusion protein by linking two or more proteins or peptides having different biological activities.
  • fusion protein refers to a protein in which polypeptides or domains having two or more different biological functions are linked directly or by a linker peptide to simultaneously exert two biological functions.
  • the term "dual-specific dimer fusion protein” refers to a protein having a homodimeric structure by intermolecular interaction among the fusion proteins.
  • GLP-1 or an analog thereof and IL-10 protein (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region, and a bispecific dimeric fusion protein linked to the C-terminus of the antibody Fc region with IL-10 protein as an active ingredient.
  • a pharmaceutical composition for preventing or treating alcoholic liver disease is provided.
  • the non-alcoholic liver disease may be a chronic metabolic liver disease, and preferably may be any one or more selected from the group consisting of non-alcoholic fatty liver, non-alcoholic steatohepatitis, non-alcoholic cirrhosis and non-alcoholic liver cancer. it is not
  • the GLP-1 analog is GLP-1, Exendin 3 (Exendin 3), Exendin 4 (Exendin 4), GLP-1/Exendin 4 hybrid peptide, GLP-1-XTEN, Exendin 4-XTEN , Lixisenatide, Albiglutide, Liraglutide, or Taspoglutide.
  • the GLP-1 may include the amino acid sequence of SEQ ID NO: 6 or 7.
  • Exendin 3 may include the amino acid sequence of SEQ ID NO: 8.
  • Exendin 4 may include the amino acid sequence of SEQ ID NO: 9.
  • the GLP-1/Exendin 4 hybrid may include the amino acid sequence of SEQ ID NO: 1.
  • the Lixisenatide may include the amino acid sequence of SEQ ID NO: 10.
  • the Exendin 4-XTEN may include the amino acid sequence of SEQ ID NO: 11.
  • the Albiglutide may include the amino acid sequence of SEQ ID NO: 12.
  • the Liraglutide may include the amino acid sequence of SEQ ID NO: 13.
  • the Taspoglutide may include the amino acid sequence of SEQ ID NO: 14.
  • the fusion protein may include an antibody Fc region between the GLP-1 or GLP-1 analogue and the IL-10 protein, wherein the antibody Fc region is IgG1, IgG2, IgG3, IgG4, or IgD. It may be an Fc region or a hybrid antibody Fc region in which Fc regions of two or more isotypes are mixed.
  • the antibody Fc region may include an amino acid sequence selected from the group consisting of SEQ ID NO: 2 and SEQ ID NO: 15 to SEQ ID NO: 19.
  • the composition may include an pharmaceutically acceptable carrier, and may additionally include a pharmaceutically acceptable adjuvant, excipient or diluent in addition to the carrier.
  • the term “pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness or similar reactions when administered to humans.
  • examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
  • compositions according to an embodiment of the present invention may be formulated using a method known in the art to enable rapid, sustained or delayed release of the active ingredient when administered to a mammal.
  • Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, and sterile powder forms.
  • composition according to an embodiment of the present invention may be administered by various routes, for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intravertebral administration may be administered, and may also be administered using an implantable device for sustained release or continuous or repeated release.
  • the number of administration may be administered once a day or divided into several times within a desired range, and the administration period is not particularly limited.
  • composition according to an embodiment of the present invention may be formulated in a suitable form together with a commonly used pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycol, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives are benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
  • composition according to the present invention can be used as a suspending agent, solubilizing agent, stabilizer, isotonic agent, preservative, adsorption inhibitor, surfactant, diluent, excipient, pH adjuster, analgesic agent, buffer, Antioxidants and the like may be included as appropriate.
  • solubilizing agent stabilizer
  • isotonic agent preservative
  • adsorption inhibitor surfactant
  • diluent diluent
  • excipient pH adjuster
  • analgesic agent buffer
  • Antioxidants and the like may be included as appropriate.
  • Pharmaceutically acceptable carriers and agents suitable for the present invention including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
  • the dosage of the composition to a patient will depend on many factors, including the patient's height, body surface area, age, the particular compound being administered, sex, time and route of administration, general health, and other drugs being administered concurrently.
  • the pharmaceutically active protein may be administered in an amount of 100 ng/body weight (kg) - 10 mg/body weight (kg), more preferably 1 to 500 ⁇ g/kg (body weight), and most Preferably, it may be administered at 5 to 50 ⁇ g/kg (body weight), and the dosage may be adjusted in consideration of the above factors.
  • a therapeutically effective amount of (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the Fc region, and the C-terminus of the Fc region is linked to a bispecific dimer fusion protein comprising the step of administering to the subject a dimeric fusion protein , to provide a method for treating non-alcoholic liver disease.
  • the non-alcoholic liver disease may be a chronic metabolic liver disease, and preferably may be any one or more selected from the group consisting of non-alcoholic fatty liver, non-alcoholic steatohepatitis, non-alcoholic cirrhosis and non-alcoholic liver cancer. it is not
  • the term "therapeutically effective amount” refers to an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level depends on the type and severity of the subject. , age, sex, drug activity, sensitivity to drug, administration time, administration route and excretion rate, duration of treatment, factors including concomitant drugs, and other factors well known in the medical field.
  • the therapeutically effective amount of the composition of the present invention may be 0.1 mg/kg to 1 g/kg, more preferably 1 mg/kg to 500 mg/kg, but the effective dosage may vary depending on the age, sex and condition of the patient. can be appropriately adjusted.
  • C57BL6/J mice [20-25 g, 5 weeks old (CD-HFD) or 9 weeks old (CDA-HFD), male) were purchased through the central laboratory animal, and the animals were supplied with food and drinking water ad libitum, temperature and light They were acclimatized 7 days before the start of the experiment in a controlled aviary (23 ⁇ 1°C, 12:12h light/dark cycle with lights turned on at 08:00).
  • CD-HFD-induced NASH model 6-week-old mice were fed a CD-HFD (choline-deficient high fat diet, 45% kcal fat) diet for 17 weeks. Fructose (23.1 g/L) + Glucose (18.9 g/L) drinking water was supplied for about 4.5 weeks from 5.5 to 10 weeks.
  • mice were randomly divided into 4 groups [CD-HFD, GLP-1, GLP-1+IL-10 (Combo), GLP-1-hyFc-IL-10V (MD100)], In the Chow group and CD-HFD group, saline, GLP-1 (5 nmol/kg), Combo (5+5 nmol/kg), and MD100 (5 nmol/kg) were administered subcutaneously every 3 days for 4 weeks. measured.
  • CDA-HFD-induced NASH model 10-week-old mice were fed a CDA-HFD (choline-deficient, L-amino acid-restricted high fat diet, 60 kcal% fat) diet for 8 weeks. After 5 weeks of CDA-HFD diet, mice were randomly divided into 7 groups (CDA-HFD, GLP-1, IL-10, Combo, 10 nmol MD100, 20 nmol MD100, 40 nmol MD100).
  • CDA-HFD choline-deficient, L-amino acid-restricted high fat diet, 60 kcal% fat
  • IPGTT Abdominal glucose tolerance test
  • ITT insulin resistance test
  • IPGTT Mice were fasted for 6 hours, and 2 g/kg D-glucose was administered intraperitoneally. Using a blood glucose meter, blood glucose levels were measured at intervals of 10, 20, 30, 45, 60, 90, and 120 minutes.
  • ITT Mice were fasted for 4 hours, and 0.5 U/kg insulin was administered intraperitoneally. Using a blood glucose meter, blood glucose levels were measured at intervals of 10, 20, 30, 45, 60, 90, and 120 minutes.
  • Serum was separated from blood collected from mice using a centrifuge. The content of triglyceride (TG), total cholesterol (TCHO), total bilirubin (TBIL), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in 10 ⁇ l of serum was measured using an automated clinical chemistry analyzer (FUJI). DRI-CHEM 4000i, Japan) was used.
  • Hematoxylin and eosin (H&E) staining After fixing mouse liver tissue in 10% formalin for 24 hours, it was embedded in paraffin to make a paraffin block. Tissues were cut to a thickness of 5 ⁇ m and stained with H&E.
  • Sirius Red Staining was performed using the Picrosirius Red Stain Kit (#24901A-250, #24901B-250, Polysciences Inc., Warrington), and the method was performed according to the manufacturer's instructions.
  • liver triglycerides 1.6. liver triglycerides
  • liver triglyceride content was measured using the EnzyChrom Triglyceride Assay Kit (#ETGA-200, Bioassay), and the specific method was performed according to the manufacturer's instructions.
  • hydroxyproline content was measured using a Hydroxyproline Colorimetric Assay Kit (#K555, Biovision), and the specific method was performed according to the manufacturer's instructions.
  • AML12 cells were stored in DMEM containing 10% fetal bovine serum (FBS, Hyclone, HS3243.01), 1% Insulin-Transferrin-Selenium-A (ITS, Gibco, 51300-044), and 1% penicillin-streptomycin at temperature 37 °C, 5% CO 2 Incubated in the supplied incubator.
  • FBS fetal bovine serum
  • ITS Insulin-Transferrin-Selenium-A
  • penicillin-streptomycin at temperature 37 °C, 5% CO 2 Incubated in the supplied incubator.
  • 3T3-L1 cells were cultured in DMEM containing 10% calf serum and 1% penicillin-streptomycin at a temperature of 37° C. and 5% CO 2 supplied in an incubator.
  • 6x10 4 3T3-L1 preadipocytes were inoculated in a 60 mm culture dish.
  • the culture medium was replaced every 2 days, and on the day after 2 days after saturation, DMEM medium containing 10% FBS, 520 ⁇ M IBMX, 1 ⁇ g/ml insulin, and 1 ⁇ M dexamethasone was replaced. And once every 2 days, the culture medium was replaced in the following order. 1) DMEM medium containing 10% FBS and 1 ⁇ g/ml insulin, 2) DMEM medium containing only 10% FBS, and 3) DMEM medium containing only 10% FBS, and cultured for 2 more days.
  • PA treatment 160 mM palmitic acid (Sigma Aldrich, P0500) was mixed to 500 ⁇ M in DMEM culture medium containing 1% BSA.
  • the prepared lysate was electrophoresed using an SDS-PAGE gel to separate the proteins by size, and then the proteins were transcribed into a polyvinylidene difluoride membrane (PVDF; Merk Millipore, L-IPVH 00010). Then, in order to examine the expression of the protein, the primary antibody was reacted overnight at 4 °C. Then, the HRP-conjugated secondary antibody was reacted at room temperature for 1 hour. Then, the expression of the protein was confirmed using a chemiluminescence kit (Thermo Fisher Scientific, 34580). The antibodies used were as follows.
  • Anti- ⁇ -actin antibody (Santa Cruz Biotechnology, sc-47778); Anti-cleavable caspase-3 antibody (Cell Signaling Technology, 9661S), anti-cleavable PARP antibody (Cell Signaling Technology, 9544S), anti-p-NF-kB antibody (Cell Signaling Technology, 3033S), anti-NF -kB antibody (Cell Signaling Technology, 8242S), anti-PPAR ⁇ antibody (Cell Signaling Technology, 2430S).
  • Ribonuclease Inhibitor Sigma Aldrich, R1158
  • TRIzol ⁇ reagent MRC, TR 118.
  • the synthesized cDNA was subjected to quantitative PCR analysis using SYBR ⁇ Green (ABI, 4367659) and mouse gene-specific primers listed in Table 1 below.
  • the prepared cells were fixed in 4% paraformaldehyde at room temperature for 15 minutes, and then stained with BODIPY staining reagent (1 ⁇ g/ml, Thermo Fisher Scientific, USA) for 20 minutes at room temperature, and then fat was observed with a confocal microscope.
  • a working solution of Oil red O (ORO) was prepared by mixing 0.5% ORO dissolved in isopropanol and deionized water in a ratio of 3:2.
  • the prepared ORO working solution was fixed with 4% formaldehyde for 15 minutes, 1 ml per culture dish (60 mm standard) was added to the prepared cells, and then reacted at room temperature for 2 hours. After 2 hours, they were washed with deionized water and observed under a microscope. Then, after adding 1 ml of isopropanol and reacting for 5 minutes, absorbance was measured at 500 nm to quantitatively measure the degree of accumulation of triglyceride (TG).
  • TG triglyceride
  • the GLP-1 / Exendin 4 hybrid having the amino acid sequence shown in SEQ ID NO: 1, the hyFc region shown in SEQ ID NO: 2, and IL-10V shown in SEQ ID NO: 3 amino acid sequences shown in SEQ ID NOs: 4 and 5, respectively
  • a linker peptide having And after subcloning into IL-10V sub-vector and backbone vector (pBispecific vector, Genexine, Inc.)
  • pBispecific vector Genexine, Inc.
  • Transient expression of the vector constructs prepared as described above was performed using Thermo Fisher's ExpiCHO kit. Specifically, the ExpiCHO-S cell was mixed with the vector construct prepared as above and the ExpiFectamine reagent included in the kit, and then cultured for 1 day in an incubator with 8% CO 2 and 37°C conditions, and then the temperature was set to 32°C. It was lowered and cultured until the 7th day.
  • the supernatant obtained through the above culture was used as a 4X LDS sample for a fusion protein purified through a Protein A column and a secondary column (referred to as 'GLP-1-hyFc', 'hyFc-IL-10V', and 'MD100', respectively). It was diluted appropriately with buffer and water for injection to prepare a final 3-10 ⁇ g/20 ⁇ L.
  • 4X LDS sample buffer, 10X reducing agent, and water for injection were appropriately diluted to make a final 3-10 ⁇ g/20 ⁇ L, and heated in a heating block at 70° C. for 10 minutes.
  • Example 2 In order to confirm whether the fusion protein purified in Example 2 normally exhibits GLP-1 activity, the present inventors analyzed the GLP-1 in vitro activity of the dual specificity fusion protein prepared in Example 2 with cAMP. was investigated by analysis. Specifically, in order to evaluate the degree of cAMP induction by GLP-1 specific reaction, cAMP Hunter TM eXpress GLP1R CHO-K1 GPCR Assay kit (DiscoverX, Cat# 95-0062E2CP2M) was used.
  • cAMP Hunter TM eXpress Assay cells were inoculated into 96-well plates and cultured for 16 hours, followed by MD100 and GLP-1-hyFc and liraglutide at a concentration of 0.1 to 10 nM and incubated for 30 minutes.
  • the biological activity (EC 50 ) of the drug was evaluated by measuring the luminescent signal 1 hour after adding the anti-cAMP antibody and the cAMP detection reagent.
  • the MD100 prepared according to an embodiment of the present invention is GLP almost equivalent to Liraglutide, a commercially available GLP-1 analogue. -1 activity.
  • GLP-1-hyFc is a result of proving that GLP-1 included in the fusion protein according to an embodiment of the present invention functions normally.
  • GLP-1-hyFc Liraglutide MD100 (GLP-1-hyFc-IL-10V) Primary EC 50 (nM) (relative activity versus GLP-1-hyFc) 0.257 (100%) 0.230 (112%) 0.268 (95.9%) R 2 0.998 0.997 0.998 Secondary EC 50 (nM) (relative activity versus GLP-1-hyFc) 0.303 (100%) 0.250 (121%) 0.314 (96.5%) R 2 0.993 0.939 0.995 Average EC 50 (nM) 0.280 ⁇ 0.03 0.240 ⁇ 0.01 0.291 ⁇ 0.03 relative activity 100% 116% 96.2%
  • the present inventors then analyzed IL-10 activity under in vitro conditions to investigate whether the fusion protein prepared according to an embodiment of the present invention can properly function as an IL-10 protein.
  • BMMC mouse bone marrow-derived mast cells
  • DNp dinitrophenyl
  • IgE anti-DNP IgE 1 ⁇ g/ml
  • pM to induce TNF- ⁇ secretion by treatment with the fusion protein (MD100) according to an embodiment of the present invention
  • MD100 fusion protein
  • 1 ⁇ g of the antigen (DNp-BSA) Sigma #A6681, USA
  • TNF- ⁇ secretion inhibitory ability was analyzed by ELISA using an anti-TNF- ⁇ antibody (abchem, USA) in cell culture medium.
  • the fusion protein according to an embodiment of the present invention exhibited an ability to inhibit TNF- ⁇ secretion equivalent to that of commercially available rhIL-10 or hyFc-IL-10V, and at a low concentration, it was relatively It showed a better TNF- ⁇ secretion inhibitory ability. This is to prove that the fusion protein according to an embodiment of the present invention exerts the normal IL-10 function.
  • the present inventors used the Octet Assay System (Octet K2, ForteBio, USA) to confirm the binding affinity to the IL-10 receptor for the dual specificity fusion protein (MD100) according to an embodiment of the present invention - a bio-layer interference method ( Binding kinetics were measured using Bio-layer Interferometry (BLI).
  • the IL-10 receptor is immobilized on an amine-responsive second-generation (AR2G) biosensor (Fortebio, USA) and loaded into the Octet Assay System device, and a fusion protein (MD100) according to an embodiment of the present invention
  • A2G amine-responsive second-generation
  • MD100 fusion protein
  • the association constant (K a ) and dissociation rate constant (K d ) were calculated to calculate the association constant (K D ), and a commercially available recombinant human IL-10 (rhIL-10; Peprotech, USA) was used as a control. did.
  • the binding rate constant (Ka) of the fusion protein according to an embodiment of the present invention is that of recombinant human IL-10.
  • the dissociation rate constant (Kd) was higher than that of recombinant human IL-10.
  • the binding constant (K D ) of the fusion protein according to an embodiment of the present invention to the IL-10 receptor was confirmed to be almost equivalent to that of recombinant human IL-10.
  • the present inventors performed pharmacokinetic analysis to investigate whether the fusion protein according to an embodiment of the present invention stays for a long time in vivo.
  • C max is 2530.3 ⁇ 5533.3 ng / mL
  • half-life (t 1/2 ) is sufficient in vivo exposure to 21 ⁇ 98 hr and durability were confirmed.
  • the present inventors subcutaneously administer the fusion protein (MD100) according to an embodiment of the present invention at various doses to wild-type rats once, thereby maximally tolerated administration Amount and serological changes and morphological changes of target organs were investigated.
  • Example 8 Effects of GLP-1+IL-10 (Combo) and a dual specificity fusion protein according to an embodiment of the present invention on body weight, fat and glucose homeostasis in a CD-HFD-induced NASH mouse model
  • Example 9 Analysis of the effect of Combo and fusion protein according to an embodiment of the present invention on hepatic steatosis and inflammation in a CD-HFD-induced NASH mouse model
  • the present inventors investigated the effect of the combined administration of GLP-1 and IL-10 (Combo) and the fusion protein (MD100) according to an embodiment of the present invention on lipid accumulation in the liver in a CD-HFD-induced NASH mouse model
  • the fat content in liver tissue was investigated.
  • the liver of the CD-HFD group was larger than that of the Chow group (negative control group fed normal Chow feed), and the color was white due to fat, but in the CD-HFD group.
  • the size of the liver was reduced in the GLP-1, Combo, and MD100 administration groups, and the color was also observed to be deep red.
  • FIG. 7A liver weight (FIG. 7B) and liver to body weight ratio (FIG. 7C) were also significantly decreased in the GLP-1 administration group, Combo administration group, and MD100 administration group compared to the CD-HFD group.
  • FIG. 7D Hepatic TG content was also decreased in the GLP-1 administration group, Combo administration group, and MD100 administration group
  • Example 10 Effect of combined administration (Combo) of GLP-1 and IL-10 on hepatic steatosis and inflammation in a CDA-HFD-induced NASH mouse model
  • the present inventors investigated the fat content in liver tissue to examine the effect of the combined administration of GLP-1 and IL-10 (Combo) on TG and fibrosis in the liver in a CDA-HFD-induced NASH mouse model.
  • the liver of the CDA-HFD group was larger and the color was white due to fat.
  • the liver size of the GLP-1 administration group and the Combo administration group was smaller, and the color of the liver was observed.
  • Fig. 8A, top Corresponding to the above results, as a result of performing H&E staining, it was observed that fat droplets were reduced in both the GLP-1 administration group and the Combo administration group (Fig. 8A, bottom). Liver weight (Fig.
  • liver-to-body weight ratio (Fig. 8C) and liver-to-body weight ratio (Fig. 8C) were significantly decreased in the GLP-1 administration group and Combo administration group compared to the CDA-HFD group.
  • the TG content of the liver was significantly increased in the CDA-HFD group compared to the Chow group, but there was no improvement effect in the GLP-1 administration group and the Combo administration group ( FIG. 8D ).
  • Serum ALT level which is an indicator of liver inflammation, was significantly decreased in the GLP-1 administration group and the Combo administration group compared to the CDA-HFD group ( FIG. 8E ).
  • the AST level showed an improvement effect only in the Combo administration group (FIG. 8F).
  • the present inventors fed CDA-HFD for a total of 8 weeks, and from 5 weeks to 8 weeks, various concentrations of the present invention for 3 weeks.
  • the fusion protein according to an embodiment (10, 20, 40 nmol/kg, MD100) was subcutaneously administered to mice.
  • 1 and 2 weeks were significantly reduced compared to the CDA-HFD group, but after 3 weeks of administration, 20 nmol MD100 regained weight similarly to the CDA-HFD group ( FIGS. 9A and 9B ).
  • Example 12 Effect of MD100 on hepatic steatosis and inflammation in a mouse model of CDA-HFD induced NASH
  • the present inventors investigated the fat content in liver tissue. Compared to the Chow group, the liver of the CDA-HFD group was larger and had a white color due to fat, but compared to the CDA-HFD group, the liver size and color slightly darkened in the 40 nmol MD100 administration group were observed (Fig. 10A, top). However, as a result of H&E staining, fat droplets were not reduced in the groups administered with 10, 20 and 40 nmol MD100 (Fig. 10A, bottom).
  • the liver weight was significantly decreased in both the 10 nmol administration group and the 40 nmol MD100 administration group compared with the CDA-HFD group ( FIG. 10B ), but the liver to body weight ratio increased in all groups compared to the Chow group ( FIG. 10C ).
  • the TG content of the liver was significantly increased in the CDA-HFD group compared with the Chow group, but no improvement effect was observed in the 10 nmol and 40 nmol MD100 administration groups, but rather increased in the 20 nmol MD100 administration group ( FIG. 10D ).
  • Serum ALT level an indicator of liver inflammation, was significantly decreased in the 40 nmol MD100 administration group compared to the CD-HFD group (FIG.
  • FIGS. 10G-10I show that MD100 is effective in reducing hepatic steatosis and inflammation in a model of NASH induced by CDA-HFD.
  • the present inventors performed Sirius Red staining and hydroxyproline analysis.
  • the CDA-HFD, 10 nmol, and 20 nmol MD100 groups were observed to increase the amount of collagen compared to the Chow group, and it was confirmed that liver fibrosis was improved in the 40 nmol MD100 group ( FIG. 11A ).
  • the CDA-HFD group significantly increased the amount of collagen compared to the Chow group, but no inhibitory effect was observed in the 10, 20, and 40 nmol MD100 administration groups (FIG. 11B) .
  • Example 14 Effect of Combo and MD100 of GLP-1 and IL-10 in an in vitro lipotoxicity model using palmitic acid (PA)
  • Palmitic acid (PA) is known as the most abundant saturated fatty acid in human plasma, and promotes the production of free radicals to induce cell death.
  • the induction of apoptosis by palmitic acid is referred to as “lipotoxicity”, which is known to be a major cause of increasing the pathogenesis of nonalcoholic steatohepatitis. Therefore, the present inventors measured cell viability after treatment with palmitic acid in cells to determine whether GLP-1 based candidates can inhibit lipotoxicity using an in vitro lipotoxicity model, while immunoblot analysis was performed. As a result, it was confirmed that the cell viability increased the most in the GLP-1 and IL-10 combination treatment group compared to the PA alone treatment group ( FIG. 12A ).
  • Example 15 Effect of Combo and MD100 in In Vitro Inflammation Model Using Bone Marrow-Derived Macrophages (BMDM)
  • Example 16 Effect of Combo and MD100 in an in vitro hepatic steatosis model using oleic acid (OA)
  • the most characteristic feature of nonalcoholic fatty liver disease is the accumulation of lipids in the normal liver. Therefore, the present inventors induced lipid accumulation to investigate the lipid accumulation inhibitory effect of GLP-1-based candidates under in vitro conditions. A significant decrease was observed in the combination treatment group of -1 and IL-10, and the MD100 treatment group ( FIGS. 14A and 14B ).
  • the co-administration of GLP-1 and IL-10 or the dual specificity fusion protein comprising GLP-1 and IL-10 according to an embodiment of the present invention effectively inhibits lipid accumulation in the liver as well as , it has been experimentally proven that it can relieve inflammation accompanying fatty liver and effectively suppress lipotoxicity caused by excessive lipids in the liver. Therefore, the composition for co-administration of GLP-1 and IL-10 and the dual specificity fusion protein according to an embodiment of the present invention are non-alcoholic fatty liver, non-alcoholic steatohepatitis and chronic metabolic liver disease such as liver fibrosis following the course of non-alcoholic fatty liver. It can be used effectively for the treatment of diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a novel composition for treating non-alcoholic liver disease, and more specifically, a pharmaceutical composition which is for treating non-alcoholic liver disease and includes, as an active ingredient: (a) GLP-1 or an analog thereof and the IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to the IL-10 protein; or (c) a dual specificity dimer fusion protein in which GLP-1 or an analog thereof is linked to the N-terminus of an antibody Fc region, and the IL-10 protein is linked to the C-terminus of the antibody Fc region.

Description

신규 비알코올성 간질환의 치료용 약학적 조성물Pharmaceutical composition for treatment of novel non-alcoholic liver disease
본 발명은 신규 약학적 조성물에 관한 것으로서, 구체적으로는 비알코올성 간질환의 치료용 약학적 조성물에 관한 것이다.The present invention relates to a novel pharmaceutical composition, and more particularly, to a pharmaceutical composition for the treatment of non-alcoholic liver disease.
비알코올성 간질환 중 비알코올성 지방간염(non-alcoholic steatohepatitis, 이하, 'NASH'로 지칭함)은 진행 단계에 따라 특징적인 병인이 존재한다. 즉 인슐린 저항성, 당/지질의 조절기능 저하(dysregulation)에서 시작해 지방축적(steatosis), 염증(inflammation) 및 섬유화(fibrosis), 세포사멸 등의 병인들이 점차 관련되어 비알코올성 지방간(non-alcoholic fatty liver disease, 이하, 'NAFLD'로 약칭함)에서 NASH(F0, F1, F2, F3, F4 단계로 구분)로 진행하고 더 나아가 간경변(compensated→ decompensated)으로 진행되는 것이다. Among nonalcoholic liver diseases, non-alcoholic steatohepatitis (hereinafter, referred to as 'NASH') has a characteristic etiology depending on the stage of progression. That is, the etiology of insulin resistance, glucose/lipid regulation, starting from dysregulation, steatosis, inflammation and fibrosis, and apoptosis are gradually related to non-alcoholic fatty liver. disease, hereinafter abbreviated as 'NAFLD') to NASH (classified into F0, F1, F2, F3, and F4 stages) and further progresses to cirrhosis (compensated → decompensated).
비알코올성 간질환 중 비알코올성 지방간(non-alcoholic fatty liver disease, 이하, 'NAFLD'로 약칭함)은 비만, 당뇨병, 고혈압 등을 동반한 대사증후군과 더불어 급격하게 증가되고 있는 간질환으로, 간경변이나 간암으로 진행될 수 있고, 최근 NAFLD의 중증(severe) 염증 형태인 비알코올성 지방간염(non-alcoholic steatohepatitis, 이하, 'NASH'로 지칭함)의 발생률, NASH-관련 간경변이 빠르게 증가하고 있어 이에 대한 치료제 개발을 위한 많은 연구들이 이루어지고 있다.Among non-alcoholic liver diseases, non-alcoholic fatty liver disease (hereinafter, abbreviated as 'NAFLD') is a liver disease that is rapidly increasing along with metabolic syndrome accompanied by obesity, diabetes, and hypertension. The incidence of non-alcoholic steatohepatitis (hereinafter referred to as 'NASH'), which can progress to liver cancer and is a severe inflammatory form of NAFLD, and NASH-related cirrhosis are rapidly increasing. Many studies are being conducted for
NASH는 진행 단계에 따라 특징적인 병인이 존재하는 것으로 알려지고 있다. 즉 인슐린 저항성, 당/지질의 조절기능 저하(dysregulation)에서 시작해 지방축적(steatosis), 염증(inflammation) 및 섬유화(fibrosis), 세포사멸 등의 병인들이 점차 관련되어 비알코올성 지방간(non-alcoholic fatty liver disease, 이하, 'NAFLD'로 약칭함)에서 NASH(F0, F1, F2, F3, F4 단계로 구분)로 진행하고 더 나아가 간경변(compensated → decompensated)으로 진행되는 것이다. It is known that NASH has a characteristic etiology depending on the stage of progression. That is, the etiology of insulin resistance, glucose/lipid regulation, starting from dysregulation, steatosis, inflammation and fibrosis, and apoptosis are gradually related to non-alcoholic fatty liver. disease, hereinafter abbreviated as 'NAFLD') to NASH (classified into F0, F1, F2, F3, F4 stages) and further progresses to cirrhosis (compensated → decompensated).
그러나, 불행하게도 현재까지 NASH 치료제로 승인된 약물이 없고, 질병의 부담을 고려하면 치료제 선택권에 대한 환자의 요구가 충족되지 못하고 있는 미충족 수요(unmet needs)가 높은 약물이다. NAFLD와 NASH의 발생과 진행에 기여하는 기본적인 병태생리학적 기전은 매우 복잡하고, 이러한 작용기전은 현재 연구가 진행되는 여러 표적들에 대한 다양한 치료제 개발에서 확인되고 있다. 광범위한 범위에서 약물 개발은 대사경로, 염증 연쇄반응, 섬유화에 영향을 주는 작용기전의 조절에 초점을 맞추고 있다. 비록 NAFLD 발병에 대한 작용기전이 상당부분 규명되고 있지만, 임상시험 설계의 복잡성으로 인한 치료제 개발에 많은 어려움이 발생하고 있다. 현재 임상3상으로 진행되는 후보물질들이 치료제로서의 가능성을 제시하는 가운데, 간지방증, 괴사염증, 섬유화 감소 측면에서 좋은 결과를 보이고 있다. 다양한 코호트 연구를 통해 장기적인 안전성과 유효성이 확립된다면, 잠재적인 이환율과 사망률을 경감시키는데 도움이 될 것이다.However, unfortunately, there is no drug approved as a treatment for NASH so far, and considering the burden of the disease, it is a drug with high unmet needs, in which patients' needs for treatment options are not met. The basic pathophysiological mechanisms contributing to the development and progression of NAFLD and NASH are very complex, and these mechanisms of action have been confirmed in the development of various therapeutic agents for various targets currently being studied. To a large extent, drug development focuses on the modulation of metabolic pathways, inflammatory cascades, and mechanisms of action that influence fibrosis. Although the mechanism of action for the pathogenesis of NAFLD has been largely elucidated, there are many difficulties in developing therapeutic agents due to the complexity of clinical trial design. Candidates currently undergoing phase 3 clinical trials are showing good results in terms of reducing hepatic steatosis, necrotic inflammation, and fibrosis while suggesting potential as therapeutic agents. If long-term safety and efficacy are established through multiple cohort studies, it will help reduce potential morbidity and mortality.
아울러, GLP-1 수용체를 NAFLD 또는 NASH 치료제로 사용하고자 하는 시도가 이루어지고 있다. 이와 관련하여, WO2016043533A1는 반감기가 증가된 GLP-1/글루카곤 수용체 이중 작용제인 옥신토모듈린 유도체를 유효성분으로 포함하는 비알코올성 지방간 치료제를 개시하고 있고, US9938335 역시 글루카곤 수용체/GLP-1 수용체 이중 작용제로 사용되는 글루카곤 유사 펩타이드 및 이를 이용한 NAFLD 및 NASH 치료방법을 개시하고 있다.In addition, attempts have been made to use the GLP-1 receptor as a therapeutic agent for NAFLD or NASH. In this regard, WO2016043533A1 discloses a therapeutic agent for nonalcoholic fatty liver comprising an oxyntomodulin derivative, which is a dual agonist of GLP-1/glucagon receptor with increased half-life as an active ingredient, and US9938335 also discloses dual action of glucagon receptor/GLP-1 receptor. Disclosed are a glucagon-like peptide used as an agent and a treatment method for NAFLD and NASH using the same.
이러한 선행기술에 기재된 물질들은 동물모델에서 일부 효과가 확인되었으나, 아직까지 최종적으로 임상시험을 통과한 물질은 존재하지 않는 실정이다.Although some of the effects of the substances described in the prior art have been confirmed in animal models, there is still no substance that has finally passed clinical trials.
본 발명의 목적은 상술한 문제점을 포함하여 여러 가지 문제점을 해결하기 위한 것으로서, (a) GLP-1 또는 이의 유사체 및 IL-10 단백질; (b) GLP-1 또는 이의 유사체가 IL-10 단백질에 연결된 융합단백질; 또는 (c) 항체 Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 항체 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질을 유효성분으로 포함하는 비알코올성 간질환(nonalcoholic liver disease)의 예방 또는 치료용 약학적 조성물을 제공하는 것이다. An object of the present invention is to solve various problems, including the above-mentioned problems, (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region, and a bispecific dimeric fusion protein linked to the C-terminus of the antibody Fc region with IL-10 protein as an active ingredient. To provide a pharmaceutical composition for the prevention or treatment of alcoholic liver disease (nonalcoholic liver disease).
상기 목적을 달성하기 위하여, 본 발명은 (a) GLP-1 또는 이의 유사체 및 IL-10 단백질; (b) GLP-1 또는 이의 유사체가 IL-10 단백질에 연결된 융합단백질; 또는 (c) 항체 Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 항체 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질을 유효성분으로 포함하는 비알코올성 간질환의 예방 또는 치료용 약학적 조성물을 제공한다. In order to achieve the above object, the present invention provides (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region, and a bispecific dimeric fusion protein linked to the C-terminus of the antibody Fc region with IL-10 protein as an active ingredient. It provides a pharmaceutical composition for the prevention or treatment of alcoholic liver disease.
또한, 본 발명은 치료적으로 유효한 양의 (a) GLP-1 또는 이의 유사체 및 IL-10 단백질; (b) GLP-1 또는 이의 유사체가 IL-10 단백질에 연결된 융합단백질; 또는 (c) 항체 Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 항체 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질을 개체에 투여하는 단계를 포함하는 비알코올성 간질환의 치료 방법을 제공한다.The present invention also provides a therapeutically effective amount of (a) GLP-1 or an analog thereof and an IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; or (c) administering a bispecific dimeric fusion protein in which GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region and IL-10 protein is linked to the C-terminus of the antibody Fc region. It provides a method for treating non-alcoholic liver disease, comprising.
본 발명에 따른 조성물은 간에서의 지질축적을 효과적으로 억제하고, 지방간에 수반되는 염증을 완화시키며, 간에서의 과도한 지질에 의해 발생하는 지질독성 역시 효과적으로 억제할 수 있어, 비알코올성 간질환의 예방 또는 치료에 유용하게 사용될 수 있다.The composition according to the present invention can effectively inhibit lipid accumulation in the liver, relieve inflammation accompanying fatty liver, and can also effectively inhibit lipid toxicity caused by excessive lipids in the liver, preventing or preventing non-alcoholic liver disease or It can be usefully used for treatment.
도 1은 본 발명의 일 실시예에 따라 생산된 항체 Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 항체 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질(GLP-1/IL-10 융합단백; MD100)의 생성 결과를 나타내는 일련의 SDS-PAGE 겔 사진이다. GLP-1-hyFc(좌측) 및 hyFc-IL-10V(중앙)는 병용 효과를 확인하기 위해 별도 생산하였다:1 is a bispecific dimer in which GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region produced according to an embodiment of the present invention, and IL-10 protein is linked to the C-terminus of the antibody Fc region. This is a series of SDS-PAGE gel pictures showing the results of the generation of the fusion protein (GLP-1/IL-10 fusion protein; MD100). GLP-1-hyFc (left) and hyFc-IL-10V (center) were produced separately to confirm the combined effect:
좌측 및 중앙left and center
1: 비환원 조건1: Non-reducing conditions
2: 환원 조건2: Reduction conditions
우측(GLP-1-hyFc-IL-10V)Right (GLP-1-hyFc-IL-10V)
1: input - 비환원 조건1: input - non-reducing condition
2: flow through - 비환원 조건2: flow through - non-reducing conditions
3: elution - 비환원 조건3: elution - non-reducing conditions
4: input - 환원 조건4: input - reduction condition
5: flow through - 환원 조건5: flow through - reducing conditions
6: elution - 환원 조건6: elution - reducing conditions
도 2는 다양한 본 발명의 일 실시예에 따라 제조된 GLP-1/IL-10 융합단백질(MD100), GLP-1-hyFc(GX-G6) 및 liraglutide의 시험관내 활성을 조사하기 위한 두 차례의 cAMP 유도능 측정 결과를 나타내는 일련의 그래프이다. Figure 2 is two times for examining the in vitro activity of GLP-1 / IL-10 fusion protein (MD100), GLP-1-hyFc (GX-G6) and liraglutide prepared according to various embodiments of the present invention. It is a series of graphs showing the measurement results of cAMP inducibility.
도 3은 본 발명의 일 실시예에 따른 GLP-1/IL-10 융합단백질(MD100)와 재조합 인간 IL-10 단백질 및 hyFc-IL-10V의 농도별 처리에 따른 TNFα의 분비량을 ELISA로 분석한 결과를 비교하여 나타낸 그래프이다.Figure 3 is a GLP-1 / IL-10 fusion protein (MD100), recombinant human IL-10 protein and hyFc-IL-10V according to an embodiment of the present invention according to the concentration of each concentration treatment of TNFα secretion by ELISA analysis. It is a graph showing the comparison of the results.
도 4는 본 발명의 일 실시예에 따른 GLP-1/IL-10 융합단백질(MD100, 우측)와 재조합 IL-10(좌측)의 IL-10R과의 결합력을 Octet Bio-layer 간섭법(interferometry)을 통해 분석한 결과를 비교하여 나타낸 일련의 그래프이다.Figure 4 is a GLP-1 / IL-10 fusion protein according to an embodiment of the present invention (MD100, right) and recombinant IL-10 (left) the binding force of IL-10R Octet Bio-layer interferometry (interferometry) It is a series of graphs that compare the results analyzed through
도 5는 본 발명의 일 실시예에 따른 GLP-1/IL-10 융합단백질(MD100)의 생체 내 약물동력학(pharmacokinetics, PK) 양상을 Fc 영역 특이적 항체를 이용한 ELISA로 분석한 결과를 나타내는 그래프이다.5 is a graph showing the results of analyzing the in vivo pharmacokinetics (PK) of the GLP-1 / IL-10 fusion protein (MD100) according to an embodiment of the present invention by ELISA using an Fc region-specific antibody; am.
도 6은 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합(Combo) 및 GLP-1/IL-10 융합단백질(MD100) 투여에 따른 대사 관련 효과를 나타낸 것으로서, 각 실험군의 체중(A), 체중변화(B), 혈중 트리글리세라이드 함량(TG, C), 총 콜레스테롤 함량(D), 총 빌리루빈 함량(E), 인슐린 저항성(G), 내당능(G) 및 혈당수준(H)을 측정한 결과를 나타내는 일련의 그래프들을 보여준다.6 is a graph showing the metabolic-related effects of administration of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention, and the body weight ( A), weight change (B), blood triglyceride content (TG, C), total cholesterol content (D), total bilirubin content (E), insulin resistance (G), glucose tolerance (G) and blood glucose level (H) Show a series of graphs representing the measurement results.
도 7은 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합(Combo) 및 GLP-1/IL-10 융합단백질(MD100) 투여에 따른 간 지방증 및 염증에 대한 효과를 조사한 결과로서, 각 실험군으로부터 적출된 간을 촬영하거나 간 조직 박편에 대한 시리우스 레드 염색 결과를 나타내는 일련의 사진(A), 각 실험군에서의 간의 중량(B), 체중대간 중량비(C), 간 트리글리세라이드 함량(D), ALT 함량(E), AST 함량(F), TNFα 발현 정도(G), IL-6 발현정도(H) 및 IL-1β 발현정도(I)를 각각 나타내는 일련의 그래프들을 보여준다.7 is a result of examining the effect on hepatic steatosis and inflammation according to the administration of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention; A series of photographs (A) showing the results of Sirius Red staining of liver tissue slices or photographing livers extracted from each experimental group, the weight of the liver in each experimental group (B), the weight-to-weight ratio (C), and the content of liver triglycerides (D) ), ALT content (E), AST content (F), TNFα expression level (G), IL-6 expression level (H), and IL-1β expression level (I) are shown, respectively.
도 8은 고지방 식이 유도 비알코올성 지방간염 마우스 모델에서 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합 투여(Combo)에 따른 간 지방증 및 염증에 미치는 효과를 조사한 결과로서, 각 실험군으로부터 적출된 간을 촬영하거나 간 조직 박편에 대한 시리우스 레드 염색 결과를 나타내는 일련의 사진(A), 각 실험군에서의 간의 중량(B), 체중대간 중량비(C), 간 트리글리세라이드 함량(D), ALT 함량(E), AST 함량(F), TNFα 발현 정도(G), IL-6 발현정도(H) 및 IL-1β 발현정도(I)를 각각 나타내는 일련의 그래프들을 보여준다.8 is a result of examining the effects of GLP-1 + IL-10 combination administration (Combo) according to an embodiment of the present invention on hepatic steatosis and inflammation in a high-fat diet-induced nonalcoholic steatohepatitis mouse model. A series of photographs showing the results of Sirius Red staining of excised livers or liver tissue sections (A), liver weight (B), weight-to-weight ratio (C), liver triglyceride content (D), ALT in each experimental group A series of graphs showing the content (E), the AST content (F), the TNFα expression level (G), the IL-6 expression level (H), and the IL-1β expression level (I) are shown, respectively.
도 9는 고지방 식이 유도 비알코올성 지방간염 마우스 모델에서 본 발명의 일 실시예에 따른 GLP-1/IL-10 융합단백질(MD100)의 농도별 투여에 의한 대사 프로파일을 조사한 결과로서, 각 실험군에서의 체중(A), 체중의 변화(B), 혈당의 변화(C) 및 혈당수준(D)를 각각 측정한 결과를 나타내는 일련의 그래프들을 보여준다.9 is a result of examining the metabolic profile by administration of a GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention in a high-fat diet-induced nonalcoholic steatohepatitis mouse model by concentration, in each experimental group. A series of graphs showing the results of measuring body weight (A), body weight change (B), blood glucose change (C), and blood glucose level (D) are shown.
도 10은 고지방 식이 유도 비알코올성 지방간염 마우스 모델에서 본 발명의 일 실시예에 따른 GLP-1/IL-10 융합단백질(MD100)의 농도별 투여에 따른 간 지방증 및 염증에 미치는 효과를 조사한 결과로서, 각 실험군으로부터 적출된 간을 촬영하거나 간 조직 박편에 대한 시리우스 레드 염색 결과를 나타내는 일련의 사진(A), 각 실험군에서의 간의 중량(B), 체중대간 중량비(C), 간 트리글리세라이드 함량(D), ALT 함량(E), AST 함량(F), TNFα 발현 정도(G), IL-6 발현정도(H) 및 IL-1β 발현정도(I)를 각각 나타내는 일련의 그래프이다.10 is a result of examining the effects of administration of GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention on hepatic steatosis and inflammation in a high-fat diet-induced nonalcoholic steatohepatitis mouse model. , A series of photographs showing the results of Sirius Red staining of liver tissue slices or photographing livers extracted from each experimental group (A), the weight of the liver in each experimental group (B), the weight-to-weight ratio (C), and the liver triglyceride content ( D), ALT content (E), AST content (F), TNFα expression level (G), IL-6 expression level (H) and IL-1β expression level (I) are a series of graphs, respectively.
도 11은 고지방 식이 유도 비알코올성 지방간염 마우스 모델에서 일 실시예에 따른 GLP-1/IL-10 융합단백질(MD100)의 농도별 투여에 따른 간 섬유증에 미치는 영향을 조사한 결과로서, 각 실험군에서 적출한 간조직에 대한 시리우스 레드 염색 결과를 나타내는 일련의 사진(A) 및 하이드록시프롤린 분석 결과를 나타낸 그래프(B)을 보여준다.11 is a result of examining the effect on liver fibrosis according to the administration of each concentration of GLP-1/IL-10 fusion protein (MD100) according to an embodiment in a high-fat diet-induced nonalcoholic steatohepatitis mouse model. A series of photographs (A) showing the results of Sirius Red staining for one liver tissue and a graph (B) showing the results of analysis of hydroxyproline are shown.
도 12는 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합(Combo) 및 GLP-1/IL-10 융합단백질(MD100) 처리에 따른 팔미트산 이용 시험관내 지질독성을 조사한 결과로서, 약물 처리시 세포 생존도(A) 및 다양한 세포사멸 표지자들의 발현 정도(B)를 측정한 결과를 나타내는 일련의 그래프를 보여준다.12 is a result of investigating the in vitro lipid toxicity using palmitic acid according to the treatment of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention. , shows a series of graphs showing the results of measuring cell viability (A) and expression levels of various apoptosis markers (B) upon drug treatment.
도 13은 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합(Combo) 및 GLP-1/IL-10 융합단백질(MD100) 처리에 따른 염증 개선 정도를 시험관내 분석을 통해 분석한 결과로서, 실험물질들을 LPS로 염증을 유도한 골수유래 대식세포(BMDM)에 처리한 후 다양한 염증 관련 지표인 인산화 NK-κB(A), TNF-α(B), IL-6(C) 및 IL-1β(D)의 발현 정도를 측정한 결과를 나타내는 일련의 그래프들을 보여준다.13 is a result of in vitro analysis of the degree of inflammation improvement according to the treatment of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention. As a result, after treatment with LPS-induced bone marrow-derived macrophages (BMDM), various inflammation-related markers such as phosphorylated NK-κB (A), TNF-α (B), IL-6 (C) and IL A series of graphs showing the results of measuring the expression level of -1β(D) are shown.
도 14는 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합(Combo) 및 GLP-1/IL-10 융합단백질(MD100) 처리에 의한 올레산에 의해 유도된 시험관 내 간지방증(hepatic steatosis)에 미치는 영향을 BODIPY 염색을 통해 확인한 결과를 나타내는 일련의 형광현미경 촬영 사진(A) 및 상기 A의 결과를 정량화한 그래프(B)를 나타낸다.14 shows in vitro hepatic steatosis induced by oleic acid by treatment with GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) according to an embodiment of the present invention. ), a series of fluorescence micrographs showing the results confirmed through BODIPY staining (A) and a graph (B) quantifying the results of A are shown.
도 15는 본 발명의 일 실시예에 따른 GLP-1 + IL-10 조합(Combo) 및 GLP-1/IL-10 융합단백질(MD100) 처리에 따른 지방전구세포의 지방세포로의 분화에 미치는 영향을 분석한 결과로서, 각 실험군에서의 시리우스 레드 염색 결과를 나타내는 일련의 사진(A), 각 실험군에서의 트리글리세라이드 축적 정도(B), PPARγ 발현정도를 웨스턴 블랏 분석으로 확인한 결과(C), PPARγ(D), C/EBPα(E) 및 aP2(F)의 발현정도를 나타내는 일련의 그래프를 보여준다.15 is a graph showing the effect of the treatment of GLP-1 + IL-10 combination (Combo) and GLP-1/IL-10 fusion protein (MD100) on the differentiation of preadipocytes into adipocytes according to an embodiment of the present invention; As the analysis results, a series of photographs showing the Sirius Red staining results in each experimental group (A), the triglyceride accumulation level in each experimental group (B), and the PPARγ expression level were confirmed by Western blot analysis (C), PPARγ ( D) shows a series of graphs showing the expression levels of C/EBPa(E) and aP2(F).
본 발명에서 사용되는 용어 "GLP-1"은 "글루카곤-유사 펩타이드-1(glucagon-like peptide-1)"의 약어로서, 프로글루카곤 펩타이드의 조직 특이적인 번역 후 가공에 의해 유도되는 30 또는 31 아미노산 길이의 펩타이드 호르몬이다. GLP-1은 음식 섭취 시 소장의 장내분비(enteroendocrine) L-세포 및 뇌간(brain stem)의 고립속(solitary tract) 핵 내의 특정 신경세포에서 생산되어 분비된다. 최초 산물인 GLP-1(1-37)은 쉽게 아마이드화되며 절단에 의해 두 가지의 동등한 생물학적 활성을 가진 절단된 형태(GLP-1(7-36) 아마이드 및 GLP-1(7-37))로 전환된다. 활성 GLP-1은 아미노산 위치 13-20 및 24-35의 두 개의 알파-나선 부위와 상기 두 알파-나선 부위를 연결하는 링커 지역을 포함한다. GLP-1은 포도당-의존적으로 혈당 수준을 낮추는 역할을 수행하기 때문에, 제2형 당뇨병 치료제로 개발되어 사용되고 있다. 그러나, 생체 내에서 GLP-1은 디펩티딜 펩티데이즈-4(DPP-4)에 의해 신속하게 분해되기 때문에 생체 내 반감기가 2분에 불과하여, 자연상태의 펩타이드로는 그 효과가 극히 제한적이다.The term "GLP-1" used in the present invention is an abbreviation of "glucagon-like peptide-1", and is 30 or 31 amino acids induced by tissue-specific post-translational processing of proglucagon peptides. It is a peptide hormone of length. GLP-1 is produced and secreted by specific neurons in the enteroendocrine L-cells of the small intestine and the solitary tract nucleus of the brain stem during food intake. The initial product, GLP-1(1-37), is readily amidated and cleaved with two equivalent biological activities by cleavage (GLP-1(7-36) amide and GLP-1(7-37)). is converted to Active GLP-1 contains two alpha-helical regions at amino acid positions 13-20 and 24-35 and a linker region connecting the two alpha-helical regions. Since GLP-1 acts to lower blood sugar levels in a glucose-dependent manner, it has been developed and used as a treatment for type 2 diabetes. However, since GLP-1 is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) in vivo, its in vivo half-life is only 2 minutes, so its effect is extremely limited as a natural peptide.
본 발명에서 사용되는 용어 "GLP-1 유사체"는 생물학적으로 GLP-1의 기능을 수행하는 단백질로서 GLP-1/exendin-4 수용체에 결합하여 하류 신호전달을 매개할 수 있는 단백질을 의미한다.As used herein, the term "GLP-1 analog" refers to a protein that biologically performs the function of GLP-1 and can mediate downstream signaling by binding to the GLP-1/exendin-4 receptor.
본 발명에서 사용되는 용어, "융합단백질"은 둘 이상의 단백질 또는 단백질 내 특정 기능을 담당하는 도메인이 각각의 단백질 또는 도메인이 본연의 기능을 담당하도록 연결된 재조합 단백질(recombinant protein)을 의미한다. As used herein, the term "fusion protein" refers to a recombinant protein in which two or more proteins or domains responsible for a specific function in the protein are linked so that each protein or domain takes on its original function.
본 발명에서 사용되는 용어, "항체 Fc 영역"은 항체를 파파인으로 절단하였을 때 생성되는 단편 중 결정화되는 단편(crystalized fragment)을 의미하며, Fc 수용체라고 지칭되는 세포 표면 수용체 및 보체계(complement system)의 몇몇 단백질과 상호작용을 한다. 항체 Fc 영역은 중쇄의 두 번째 및 세 번째 불변 영역(CH2 및 CH3)을 포함하는 단편이 힌지 부분에서 분자 간 이황화 결합에 의해 연결된 동형 이량체 구조를 나타낸다. IgG의 Fc 영역은 다수의 N-글리칸 부착 부위를 가지고 있으며, 이는 Fc 수용체-매개 작용에 있어서 중요한 역할을 수행하는 것으로 알려져 있으며, IgG1, IgG2, IgG3, IgG4, 및 IgD 등이 사용될 수 있다.As used herein, the term “antibody Fc region” refers to a crystallized fragment among fragments generated when an antibody is cleaved with papain, and refers to a cell surface receptor called Fc receptor and a complement system. It interacts with several proteins. The antibody Fc region exhibits a homodimeric structure in which fragments comprising the second and third constant regions (CH2 and CH3) of the heavy chain are linked by intermolecular disulfide bonds at the hinge region. The Fc region of IgG has a number of N-glycan attachment sites, which are known to play an important role in Fc receptor-mediated action, and IgG1, IgG2, IgG3, IgG4, and IgD may be used.
본 발명에서 사용되는 용어, "하이브리드 항체 Fc 영역"은 대한민국 특허 제897938호에 기재된 다양한 서브타입의 Ig Fc 영역의 부분들의 조합에 의해 생성된 Fc 영역 펩타이드를 의미하며, 이러한 항체 Fc 영역의 부분들의 조합에 의해 Fc 수용체 및 보체와의 결합능에 있어서 야생형 항체 Fc 영역과 차이를 나타낼 수 있다.As used herein, the term "hybrid antibody Fc region" refers to an Fc region peptide produced by a combination of parts of various subtypes of Ig Fc region described in Korean Patent No. 897938, and The combination may show a difference from the wild-type antibody Fc region in binding capacity to Fc receptors and complement.
본 발명에서 사용되는 용어, "Exendin"은 도마뱀 Heloderma suspectum의 독에서 분리된 39 아미노산으로 구성된 펩타이드이다. Exendin 4는 GLP-1과 아미노산 서열상 50% 동일하며, 글루카곤 펩타이드 패밀리의 일원으로, GLP-1 수용체의 작용제로서 GLP-1과 동등한 역할을 수행하는 것으로 알려져 있다. Exendin 4는 "extenatide"로도 불린다. Exendin 3는 상기 Exendin 4에서 두 번째 및 세 번째 아미노산이 각각 세린 및 아스파르트산으로 치환된 변이체이다.As used herein, the term "Exendin" is a peptide composed of 39 amino acids isolated from the poison of the lizard Heloderma suspectum. Exendin 4 is 50% identical in amino acid sequence to GLP-1, is a member of the glucagon peptide family, and is known to perform an equivalent role to GLP-1 as an agonist of the GLP-1 receptor. Exendin 4 is also called "extenatide". Exendin 3 is a mutant in which the second and third amino acids in Exendin 4 are substituted with serine and aspartic acid, respectively.
본 발명에서 사용되는 용어, "Lixisenatide"는 GLP-1 수용체 작용제 중 하나로서, Sanofi사에 의해 제조되어, 유럽에서는 Lyxumia라는 상표명으로, 미국에서는 Adlyxin이라는 상표명으로 제2형 당뇨병 치료를 위한 일일 투여 주사제로 판매되고 있는 약물이다.As used herein, the term "Lixisenatide" is one of the GLP-1 receptor agonists, manufactured by Sanofi, under the trade name Lyxumia in Europe and Adlyxin in the United States as a daily administration injection for the treatment of type 2 diabetes. It is a drug marketed as
본 발명에서 사용되는 용어, "Albiglutide"는 GSK사에 의해 유럽에서는 Eperzan이라는 상표명으로, 미국에서는 Tanzeum이라는 상표명으로 제2형 당뇨병 치료제로 판매되고 있는 GLP-1 수용체 작용제 중의 하나이다.The term "Albiglutide" used in the present invention is one of the GLP-1 receptor agonists sold under the trade name of Eperzan in Europe and Tanzeum in the United States as a treatment for type 2 diabetes by GSK.
본 발명에서 사용되는 용어, "Liraglutide"는 Novo Nordisk사에 의해 "Victoza"라는 상표명으로 제2형 당뇨병 및 비만 치료제로 판매되고 있는 피하주사형 GLP-1 수용체 작용제이다.As used herein, the term "Liraglutide" is a subcutaneously injectable GLP-1 receptor agonist marketed as a treatment for type 2 diabetes and obesity under the trade name "Victoza" by Novo Nordisk.
본 발명에서 사용되는 용어, "Taspoglutide"는 Ipsen사와 Roche사에 의해 공동개발된 GLP-1 수용체 작용제로 제2형 당뇨병 치료제로, GLP-1(7-36) 펩타이드의 8번째 및 35번째 아미노산인 알라닌이 메틸화되어 있고 마지막 아미노산이 아마이드화되어 있는 GLP-1 유도체이다.As used herein, the term "Taspoglutide" is a GLP-1 receptor agonist jointly developed by Ipsen and Roche, which is a therapeutic agent for type 2 diabetes, which is the 8th and 35th amino acids of the GLP-1(7-36) peptide. It is a GLP-1 derivative in which alanine is methylated and the last amino acid is amidated.
본 발명에서 사용되는 용어, "XTEN"은 Amunix사에 의해 개발된 단백질 의약품의 생체 내 반감기를 향상시키기 위해 부가되는 6개의 아미노산을 포함하는 비구조화된(unstructed) 저면역원성 펩타이드로서 통상 144 a.a.를 단위로 하여 그의 배수의 아미노산으로 구성되어 있다(US20100239554A1).As used herein, the term "XTEN" is an unstructured low immunogenic peptide containing 6 amino acids added to improve the in vivo half-life of a protein drug developed by Amunix, usually 144 aa. It is composed of multiple amino acids as a unit (US20100239554A1).
본 발명에서 사용되는 용어, "링커 펩타이드"는 둘 이상의 다른 생물학적 활성을 가진 단백질 또는 펩타이드를 연결하여 융합단백질을 제조할 사용되는 비구조화된 펩타이드이다.As used herein, the term "linker peptide" refers to an unstructured peptide used to prepare a fusion protein by linking two or more proteins or peptides having different biological activities.
본 발명에서 사용되는 용어, "융합단백질"은 둘 이상의 다른 생물학적 기능을 갖는 폴리펩타이드 또는 도메인이 직접 또는 링커 펩타이드에 의해 연결되어 두 가지 생물학적 기능을 동시헤 발휘하는 단백질을 의미한다.As used herein, the term “fusion protein” refers to a protein in which polypeptides or domains having two or more different biological functions are linked directly or by a linker peptide to simultaneously exert two biological functions.
본 발명에서 사용되는 용어, "이중 특이성 이량체 융합단백질"은 상기 융합단백질 중 분자간 상호작용에 의해 동형 이량체의 구조를 갖는 단백질을 의미한다. As used herein, the term "dual-specific dimer fusion protein" refers to a protein having a homodimeric structure by intermolecular interaction among the fusion proteins.
본 발명의 일 관점에 따르면, (a) GLP-1 또는 이의 유사체 및 IL-10 단백질; (b) GLP-1 또는 이의 유사체가 IL-10 단백질에 연결된 융합단백질; 또는 (c) 항체 Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 항체 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질을 유효성분으로 포함하는 비알코올성 간질환의 예방 또는 치료용 약학적 조성물이 제공된다.According to one aspect of the present invention, (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region, and a bispecific dimeric fusion protein linked to the C-terminus of the antibody Fc region with IL-10 protein as an active ingredient. A pharmaceutical composition for preventing or treating alcoholic liver disease is provided.
상기 비알코올성 간질환은 만성 대사성 간질환인 것일 수 있고, 바람직하게는 비알코올성 지방간, 비알코올성 지방간염, 비알코올성 간경변증 및 비알코올성 간암으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니다. The non-alcoholic liver disease may be a chronic metabolic liver disease, and preferably may be any one or more selected from the group consisting of non-alcoholic fatty liver, non-alcoholic steatohepatitis, non-alcoholic cirrhosis and non-alcoholic liver cancer. it is not
상기 조성물에 있어서, 상기 GLP-1 유사체는 GLP-1, 엑센딘 3(Exendin 3), 엑센딘 4(Exendin 4), GLP-1/Exendin 4 하이브리드 펩타이드, GLP-1-XTEN, Exendin 4-XTEN, Lixisenatide, Albiglutide, Liraglutide, 또는 Taspoglutide일 수 있다.In the composition, the GLP-1 analog is GLP-1, Exendin 3 (Exendin 3), Exendin 4 (Exendin 4), GLP-1/Exendin 4 hybrid peptide, GLP-1-XTEN, Exendin 4-XTEN , Lixisenatide, Albiglutide, Liraglutide, or Taspoglutide.
상기 조성물에 있어서, 상기 GLP-1은 서열번호 6 또는 7의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the GLP-1 may include the amino acid sequence of SEQ ID NO: 6 or 7.
상기 조성물에 있어서, 상기 Exendin 3는 서열번호 8의 아미노산 서열을 포함하는 것일 수 있다.In the composition, Exendin 3 may include the amino acid sequence of SEQ ID NO: 8.
상기 조성물에 있어서, 상기 Exendin 4는 서열번호 9의 아미노산 서열을 포함하는 것일 수 있다.In the composition, Exendin 4 may include the amino acid sequence of SEQ ID NO: 9.
상기 조성물에 있어서, 상기 GLP-1/Exendin 4 하이브리드는 서열번호 1의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the GLP-1/Exendin 4 hybrid may include the amino acid sequence of SEQ ID NO: 1.
상기 조성물에 있어서, 상기 Lixisenatide는 서열번호 10의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the Lixisenatide may include the amino acid sequence of SEQ ID NO: 10.
상기 조성물에 있어서, 상기 Exendin 4-XTEN은 서열번호 11의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the Exendin 4-XTEN may include the amino acid sequence of SEQ ID NO: 11.
상기 조성물에 있어서, 상기 Albiglutide는 서열번호 12의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the Albiglutide may include the amino acid sequence of SEQ ID NO: 12.
상기 조성물에 있어서, 상기 Liraglutide는 서열번호 13의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the Liraglutide may include the amino acid sequence of SEQ ID NO: 13.
상기 조성물에 있어서, 상기 Taspoglutide는 서열번호 14의 아미노산 서열을 포함하는 것일 수 있다.In the composition, the Taspoglutide may include the amino acid sequence of SEQ ID NO: 14.
상기 조성물에 있어서, 상기 융합단백질은 상기 GLP-1 또는 GLP-1 유사체와 IL-10 단백질 사이에 항체 Fc 영역을 포함할 수 있으며, 상기 항체 Fc 영역은 IgG1, IgG2, IgG3, IgG4, 또는 IgD의 Fc 영역 또는 2종 이상의 아이소타입의 Fc 영역이 혼합된 하이브리드 항체 Fc 영역일 수 있다. In the composition, the fusion protein may include an antibody Fc region between the GLP-1 or GLP-1 analogue and the IL-10 protein, wherein the antibody Fc region is IgG1, IgG2, IgG3, IgG4, or IgD. It may be an Fc region or a hybrid antibody Fc region in which Fc regions of two or more isotypes are mixed.
상기 조성물에 있어서, 상기 항체 Fc 영역은 서열번호 2, 서열번호 15 내지 서열번호 19로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 것일 수 있다.In the composition, the antibody Fc region may include an amino acid sequence selected from the group consisting of SEQ ID NO: 2 and SEQ ID NO: 15 to SEQ ID NO: 19.
상기 조성물은 악학적으로 허용 가능한 담체를 포함할 수 있고, 상기 담체 외에 약학적으로 허용가능한 보조제, 부형제 또는 희석제를 추가적으로 포함하는 것일 수 있다. The composition may include an pharmaceutically acceptable carrier, and may additionally include a pharmaceutically acceptable adjuvant, excipient or diluent in addition to the carrier.
본 발명에서 사용되는 용어, "약학적으로 허용가능한"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. As used herein, the term “pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not normally cause gastrointestinal disorders, allergic reactions such as dizziness or similar reactions when administered to humans. Examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
또한, 본 발명의 일 실시예에 따른 약학적 조성물은 포유동물에 투여 시, 활성 성분의 신속한 방출, 또는 지속 또는 지연된 방출이 가능하도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 형태를 포함한다. In addition, the pharmaceutical composition according to an embodiment of the present invention may be formulated using a method known in the art to enable rapid, sustained or delayed release of the active ingredient when administered to a mammal. Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, and sterile powder forms.
본 발명의 일 실시예에 따른 조성물은 다양한 경로로 투여될 수 있으며, 예를 들면, 경구, 비경구, 예를 들면 좌제, 경피, 정맥, 복강, 근육 내, 병변 내, 비강, 척추관 내 투여로 투여될 수 있으며, 또한 서방형 또는 연속적 또는 반복적 방출을 위한 이식장치를 사용하여 투여될 수 있다. 투여횟수는 원하는 범위 내에서 하루에 1회, 또는 수회로 나누어 투여할 수 있으며, 투여 기간도 특별히 한정되지 않는다. The composition according to an embodiment of the present invention may be administered by various routes, for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intravertebral administration may be administered, and may also be administered using an implantable device for sustained release or continuous or repeated release. The number of administration may be administered once a day or divided into several times within a desired range, and the administration period is not particularly limited.
본 발명의 일 실시예에 따른 조성물은 일반적으로 사용되는 약학적으로 허용가능한 담체와 함께 적합한 형태로 제형화될 수 있다. 약학적으로 허용되는 담체로는 예를 들면, 물, 적합한 오일, 식염수, 수성 글루코즈 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 또한 본 발명에 따른 조성물은 그 투여방법이나 제형에 따라 필요한 경우, 현탁제, 용해보조제, 안정화제, 등장화제, 보존제, 흡착방지제, 계면활성화제, 희석제, 부형제, pH 조정제, 무통화제, 완충제, 산화방지제 등을 적절히 포함할 수 있다. 상기에 예시된 것들을 비롯하여 본 발명에 적합한 약학적으로 허용되는 담체 및 제제는 문헌[Remington's Pharmaceutical Sciences, 최신판]에 상세히 기재되어 있다. The composition according to an embodiment of the present invention may be formulated in a suitable form together with a commonly used pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycol, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid. Suitable preservatives are benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. In addition, the composition according to the present invention can be used as a suspending agent, solubilizing agent, stabilizer, isotonic agent, preservative, adsorption inhibitor, surfactant, diluent, excipient, pH adjuster, analgesic agent, buffer, Antioxidants and the like may be included as appropriate. Pharmaceutically acceptable carriers and agents suitable for the present invention, including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
상기 조성물의 환자에 대한 투여량은 환자의 신장, 체표면적, 연령, 투여되는 특정 화합물, 성별, 투여 시간 및 경로, 일반적인 건강, 및 동시에 투여되는 다른 약물들을 포함하는 많은 요소들에 따라 다르다. 약학적으로 활성인 단백질은 100 ng/체중(kg) - 10 ㎎/체중(㎏)의 양으로 투여될 수 있고, 더 바람직하게는 1 내지 500 ㎍/kg(체중)으로 투여될 수 있으며, 가장 바람직하게는 5 내지 50 ㎍/kg(체중)으로 투여될 수 있는데, 상기 요소들을 고려하여 투여량이 조절될 수 있다.The dosage of the composition to a patient will depend on many factors, including the patient's height, body surface area, age, the particular compound being administered, sex, time and route of administration, general health, and other drugs being administered concurrently. The pharmaceutically active protein may be administered in an amount of 100 ng/body weight (kg) - 10 mg/body weight (kg), more preferably 1 to 500 μg/kg (body weight), and most Preferably, it may be administered at 5 to 50 μg/kg (body weight), and the dosage may be adjusted in consideration of the above factors.
본 발명의 다른 일 관점에 따르면, 치료적으로 유효한 양의 (a) GLP-1 또는 이의 유사체 및 IL-10 단백질; (b) GLP-1 또는 이의 유사체가 IL-10 단백질에 연결된 융합단백질; 또는 (c) Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질을 개체에 투여하는 단계를 포함하는, 비알코올성 간질환의 치료방법을 제공한다. According to another aspect of the present invention, a therapeutically effective amount of (a) GLP-1 or an analog thereof and IL-10 protein; (b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; Or (c) GLP-1 or an analog thereof is linked to the N-terminus of the Fc region, and the C-terminus of the Fc region is linked to a bispecific dimer fusion protein comprising the step of administering to the subject a dimeric fusion protein , to provide a method for treating non-alcoholic liver disease.
상기 비알코올성 간질환은 만성 대사성 간질환인 것일 수 있고, 바람직하게는 비알코올성 지방간, 비알코올성 지방간염, 비알코올성 간경변증 및 비알코올성 간암으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니다. The non-alcoholic liver disease may be a chronic metabolic liver disease, and preferably may be any one or more selected from the group consisting of non-alcoholic fatty liver, non-alcoholic steatohepatitis, non-alcoholic cirrhosis and non-alcoholic liver cancer. it is not
본 발명에서 사용되는 용어, "치료적으로 유효한 양(therapeutically effective amount)"이란 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물의 치료적으로 유효한 양은 0.1 mg/kg 내지 1 g/kg, 더 바람직하게는 1 mg/kg 내지 500 mg/kg일 수 있으나, 유효 투여량은 환자의 나이, 성별 및 상태에 따라 적절히 조절될 수 있다.As used herein, the term "therapeutically effective amount" refers to an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level depends on the type and severity of the subject. , age, sex, drug activity, sensitivity to drug, administration time, administration route and excretion rate, duration of treatment, factors including concomitant drugs, and other factors well known in the medical field. The therapeutically effective amount of the composition of the present invention may be 0.1 mg/kg to 1 g/kg, more preferably 1 mg/kg to 500 mg/kg, but the effective dosage may vary depending on the age, sex and condition of the patient. can be appropriately adjusted.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명하기로 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention in more detail, and the scope of the present invention is not limited to these examples.
실시예 1. 연구재료 및 방법Example 1. Research materials and methods
1.1. 실험동물 1.1. laboratory animal
중앙실험동물을 통하여 C57BL6/J 마우스[20-25g, 5주령 (CD-HFD) 또는 9주령 (CDA-HFD), 수컷)을 구입하고, 동물들은 사료와 식수를 자유로이 공급받고, 온도와 빛이 조절되는 사육장(23±1℃, 08:00에 조명을 켜는 12:12h 명/암 주기)에서 실험 시작 7일 전부터 순응시켰다. C57BL6/J mice [20-25 g, 5 weeks old (CD-HFD) or 9 weeks old (CDA-HFD), male) were purchased through the central laboratory animal, and the animals were supplied with food and drinking water ad libitum, temperature and light They were acclimatized 7 days before the start of the experiment in a controlled aviary (23±1°C, 12:12h light/dark cycle with lights turned on at 08:00).
1.2. 식이 유도 비알코올성 지방간염 동물 모델 및 약물 투약1.2. Diet-induced nonalcoholic steatohepatitis animal model and drug dosing
CD-HFD 유도 NASH 모델: 6주령 마우스에 17주 동안 CD-HFD (choline-deficient high fat diet, 45% kcal fat) 식이를 급이하였다. 5.5주부터 10주까지 약 4.5주동안 Fructose(23.1g/L)+Glucose(18.9g/L) 식수를 공급하였다. CD-HFD 식이 공급 13주 후 마우스는 무작위로 4군[CD-HFD, GLP-1, GLP-1+IL-10(Combo), GLP-1-hyFc-IL-10V(MD100)]으로 나누고, Chow 군과 CD-HFD 군에는 식염수, GLP-1(5 nmol/kg), Combo(5+5 nmol/kg), MD100(5 nmol/kg)을 3일마다 피하로 4주간 투약하고 매주 체중을 측정하였다. CD-HFD-induced NASH model : 6-week-old mice were fed a CD-HFD (choline-deficient high fat diet, 45% kcal fat) diet for 17 weeks. Fructose (23.1 g/L) + Glucose (18.9 g/L) drinking water was supplied for about 4.5 weeks from 5.5 to 10 weeks. After 13 weeks of CD-HFD diet, mice were randomly divided into 4 groups [CD-HFD, GLP-1, GLP-1+IL-10 (Combo), GLP-1-hyFc-IL-10V (MD100)], In the Chow group and CD-HFD group, saline, GLP-1 (5 nmol/kg), Combo (5+5 nmol/kg), and MD100 (5 nmol/kg) were administered subcutaneously every 3 days for 4 weeks. measured.
② CDA-HFD 유도 NASH 모델: 10주령 마우스에 8주 동안 CDA-HFD(콜린-결핍, L-아미노산-제한 고지방 식이, 60 kcal% fat)식이를 공급하였다. CDA-HFD 식이 공급 5주 후 마우스는 무작위로 7군(CDA-HFD, GLP-1, IL-10, Combo, 10 nmol MD100, 20 nmol MD100, 40 nmol MD100)으로 나눈 후 Chow 군에는 식염수, CDA-HFD(hyFc M1, backbone), GLP-1(10 nmol/kg), IL-10(10 nmol/kg), Combo(10+10 nmol/kg), MD100(10, 20, 40 nmol/kg)을 2일마다 피하로 3주간 투약하고 매주 체중을 측정하였다. ② CDA-HFD-induced NASH model : 10-week-old mice were fed a CDA-HFD (choline-deficient, L-amino acid-restricted high fat diet, 60 kcal% fat) diet for 8 weeks. After 5 weeks of CDA-HFD diet, mice were randomly divided into 7 groups (CDA-HFD, GLP-1, IL-10, Combo, 10 nmol MD100, 20 nmol MD100, 40 nmol MD100). -HFD (hyFc M1, backbone), GLP-1 (10 nmol/kg), IL-10 (10 nmol/kg), Combo (10+10 nmol/kg), MD100 (10, 20, 40 nmol/kg) was administered subcutaneously every 2 days for 3 weeks, and body weight was measured weekly.
1.3. 복강 당부하 검사(IPGTT) 및 인슐린 저항성 검사(ITT)1.3. Abdominal glucose tolerance test (IPGTT) and insulin resistance test (ITT)
① IPGTT: 마우스를 6시간 동안 금식 시키고, 복강에 2 g/kg D-글루코오스를 투여하였다. 혈당 측정기를 이용하여 10, 20, 30, 45, 60, 90, 120분 간격으로 혈당수준을 측정하였다. ① IPGTT : Mice were fasted for 6 hours, and 2 g/kg D-glucose was administered intraperitoneally. Using a blood glucose meter, blood glucose levels were measured at intervals of 10, 20, 30, 45, 60, 90, and 120 minutes.
② ITT: 마우스를 4시간 동안 금식 시키고, 복강에 0.5 U/kg 인슐린을 투여하였다. 혈당 측정기를 이용하여 10, 20, 30, 45, 60, 90, 120분 간격으로 혈당수준을 측정하였다. ② ITT: Mice were fasted for 4 hours, and 0.5 U/kg insulin was administered intraperitoneally. Using a blood glucose meter, blood glucose levels were measured at intervals of 10, 20, 30, 45, 60, 90, and 120 minutes.
1.4. 혈액 화학 분석1.4. blood chemistry analysis
마우스에서 채취된 혈액을 원심분리기를 이용하여 혈청을 분리하였다. 혈청 10 ㎕ 내의 중성지방(Triglyceride; TG), 총 콜레스테롤(TCHO), 총 빌리루빈(TBIL), 알라닌 아미노트랜스퍼레이즈(ALT), 아스파르테이트 아미노트랜스퍼레이즈(AST)의 함량을 자동 임상 화학 분석기(FUJI DRI-CHEM 4000i, Japan)를 이용하여 측정하였다. Serum was separated from blood collected from mice using a centrifuge. The content of triglyceride (TG), total cholesterol (TCHO), total bilirubin (TBIL), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in 10 μl of serum was measured using an automated clinical chemistry analyzer (FUJI). DRI-CHEM 4000i, Japan) was used.
1.5. 조직학적 분석1.5. histological analysis
① 헤마톡실린 및 에오신(H&E) 염색: 마우스의 간 조직을 10% 포르말린에 24시간 동안 고정시킨 후 파라핀에 포매시켜 파라핀 블럭을 만들었다. 5 μm 두께로 조직을 잘라 H&E 염색하였다. ① Hematoxylin and eosin (H&E) staining : After fixing mouse liver tissue in 10% formalin for 24 hours, it was embedded in paraffin to make a paraffin block. Tissues were cut to a thickness of 5 μm and stained with H&E.
② 시리우스 레드 염색: 시리우스 레드(Sirius Red) 염색은 Picrosirius Red Stain Kit (#24901A-250, #24901B-250, Polysciences Inc., Warrington)를 이용하여 수행되었으며, 방법은 제조업체의 지침에 따라 진행되었다. ② Sirius Red Staining : Sirius Red staining was performed using the Picrosirius Red Stain Kit (#24901A-250, #24901B-250, Polysciences Inc., Warrington), and the method was performed according to the manufacturer's instructions.
1.6. 간 트리글리세라이드1.6. liver triglycerides
30 mg의 간 조직을 균질화한 후 EnzyChrom Triglyceride Assay Kit (#ETGA-200, Bioassay)을 이용하여 간 트리글리세라이드 함량을 측정하였으며, 구체적인 방법은 제조업체의 지침에 따라 수행되었다. After homogenizing 30 mg of liver tissue, the liver triglyceride content was measured using the EnzyChrom Triglyceride Assay Kit (#ETGA-200, Bioassay), and the specific method was performed according to the manufacturer's instructions.
1.7. 하이드록시프롤린 분석1.7. Hydroxyproline analysis
10 mg의 간 조직을 균질화한 후, Hydroxyproline Colorimetric Assay Kit (#K555, Biovision)을 이용하여 하이드록시프롤라인 함량을 측정하였으며, 구체적인 방법은 제조업체의 지침에 따라 진행되었다.After homogenizing 10 mg of liver tissue, the hydroxyproline content was measured using a Hydroxyproline Colorimetric Assay Kit (#K555, Biovision), and the specific method was performed according to the manufacturer's instructions.
1.8. 세포배양1.8. cell culture
① AML12 세포는 10% 우태아 혈청(FBS, Hyclone, HS3243.01)과 1% Insulin-Transferrin-Selenium-A(ITS, Gibco, 51300-044), 1% 페니실린-스트렙토마이신을 포함한 DMEM에 온도 37℃, 5% CO2가 공급된 배양기에서 배양하였다. ① AML12 cells were stored in DMEM containing 10% fetal bovine serum (FBS, Hyclone, HS3243.01), 1% Insulin-Transferrin-Selenium-A (ITS, Gibco, 51300-044), and 1% penicillin-streptomycin at temperature 37 ℃, 5% CO 2 Incubated in the supplied incubator.
② 3T3-L1 세포는 10% 송아지 혈청과 1% 페니실린-스트렙토마이신을 포함한 DMEM에 온도 37℃, 5% CO2가 공급된 배양기에서 배양하였다. ② 3T3-L1 cells were cultured in DMEM containing 10% calf serum and 1% penicillin-streptomycin at a temperature of 37° C. and 5% CO 2 supplied in an incubator.
1.9 3T3-L1 세포분화1.9 3T3-L1 Cell Differentiation
6x104개의 3T3-L1 지방전구세포를 60 mm 배양접시에 접종하였다. 2일마다 배양액을 교체해주면서, 포화후 2일이 경과한 날에 10% FBS, 520 μM IBMX, 1 μg/ml 인슐린, 및 1 μM 덱사메타손을 포함한 DMEM 배지로 교체하였다. 그리고 2일에 한번씩 다음과 같은 순서로 배양액을 교체하였다. 1) 10% FBS와 1 μg/ml 인슐린을 포함한 DMEM 배지, 2) 10% FBS만 포함된 DMEM 배지, 및 3) 10% FBS만 포함된 DMEM 배지로 교체해주고, 2일 더 배양하였다.6x10 4 3T3-L1 preadipocytes were inoculated in a 60 mm culture dish. The culture medium was replaced every 2 days, and on the day after 2 days after saturation, DMEM medium containing 10% FBS, 520 μM IBMX, 1 μg/ml insulin, and 1 μM dexamethasone was replaced. And once every 2 days, the culture medium was replaced in the following order. 1) DMEM medium containing 10% FBS and 1 μg/ml insulin, 2) DMEM medium containing only 10% FBS, and 3) DMEM medium containing only 10% FBS, and cultured for 2 more days.
1.10. 팔미트산(PA) 및 올레산(OA) 처리1.10. Palmitic acid (PA) and oleic acid (OA) treatment
① PA 처리: 1% BSA를 포함한 DMEM 배양액에 160 mM의 팔미트산(Sigma Aldrich, P0500)를 500 μM이 되도록 섞어서 처리하였다. ① PA treatment: 160 mM palmitic acid (Sigma Aldrich, P0500) was mixed to 500 μM in DMEM culture medium containing 1% BSA.
② OA 처리 방법: 1% BSA를 포함한 DMEM 배양액에 1 M의 올레산(Sigma Aldrich, O1008)를 200 μM이 되도록 섞어서 처리하였다. ② OA treatment method: 1 M oleic acid (Sigma Aldrich, O1008) was mixed with DMEM culture medium containing 1% BSA to 200 μM.
1.11. 분자세포생물학적 분석1.11. Molecular and cell biological analysis
① 면역블랏 분석: 준비된 세포를 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM 페닐메틸설포닐 플루로라이드(PMSF; Sigma Aldrich, 10837091001), 10% 글리세롤, 0.1% Triton X-100(Sigma Aldrich, T8787), 1 mM 에틸렌디아민테트라아세이트(EDTA), 0.5% IGEPAL CA-630(Sigma Aldrich, 56741), 10 mM β-포스포글리세라이드, 1 mM Na3V04, 5 mM NaF, 1 mg/ml of 아프로티닌(Sigma Aldrich, 10236624001) 및 류펩틴(Sigma Aldrich, L8511)을 포함하는 용해 완충액을 사용하여 용해시켰다. 준비된 용해물을 SDS-PAGE 겔을 이용하여 전기영동시켜, 단백질을 크기 별로 분리한 후, 폴리비닐리덴 디플루오로라이드 막(PVDF; Merk Millipore, L-IPVH 00010)으로 단백질을 전사시켰다. 그 다음, 단백질의 발현을 알아보기 위해서, 1차 항체를 4℃에서 밤새 반응시켰다. 이어서, HRP-결합 2차 항체를 상온에서에서 1시간 동안 반응시켰였다. 이후, 단백질의 발현을 화학발광 키트(Thermo Fisher Scientific, 34580)를 이용하여 확인하였다. 사용된 항체는 다음과 같다. 항-β-액틴 항체(Santa Cruz Biotechnology, sc-47778); 항-절단형 카스페이즈-3 항체(Cell Signaling Technology, 9661S), 항-절단형 PARP 항체(Cell Signaling Technology, 9544S), 항-p-NF-kB 항체(Cell Signaling Technology, 3033S), 항-NF-kB 항체(Cell Signaling Technology, 8242S), 항-PPARγ 항체(Cell Signaling Technology, 2430S).① Immunoblot analysis: Prepared cells were treated with 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma Aldrich, 10837091001), 10% glycerol, 0.1% Triton X-100 ( Sigma Aldrich, T8787), 1 mM ethylenediaminetetraacetate (EDTA), 0.5% IGEPAL® CA-630 (Sigma Aldrich, 56741), 10 mM β-phosphoglyceride, 1 mM Na 3 V0 4 , 5 mM NaF, 1 mg/ml of aprotinin (Sigma Aldrich, 10236624001) and leupeptin (Sigma Aldrich, L8511). was used to dissolve it. The prepared lysate was electrophoresed using an SDS-PAGE gel to separate the proteins by size, and then the proteins were transcribed into a polyvinylidene difluoride membrane (PVDF; Merk Millipore, L-IPVH 00010). Then, in order to examine the expression of the protein, the primary antibody was reacted overnight at 4 ℃. Then, the HRP-conjugated secondary antibody was reacted at room temperature for 1 hour. Then, the expression of the protein was confirmed using a chemiluminescence kit (Thermo Fisher Scientific, 34580). The antibodies used were as follows. anti-β-actin antibody (Santa Cruz Biotechnology, sc-47778); Anti-cleavable caspase-3 antibody (Cell Signaling Technology, 9661S), anti-cleavable PARP antibody (Cell Signaling Technology, 9544S), anti-p-NF-kB antibody (Cell Signaling Technology, 3033S), anti-NF -kB antibody (Cell Signaling Technology, 8242S), anti-PPARγ antibody (Cell Signaling Technology, 2430S).
② Quantitative RT-PCR분석 방법② Quantitative RT-PCR analysis method
준비된 세포에 TRIzol 시약(MRC, TR 118)에 Ribonuclease Inhibitor(Sigma Aldrich, R1158)를 처리하여 RNA를 추출하였다. 추출된 RNA(1 μg)에 역전사를 위해 무작위 헥사머 프라이머와 TAKARA cDNA 합성 키트(TaKaRa, RR036A)를 이용하여 cDNA를 합성했다. 합성된 cDNA는 SYBR Green(ABI, 4367659) 과 하기 표 1에 기재된 마우스 유전자 특이적 프라이머를 이용하여 정량적 PCR분석을 수행하였다. RNA was extracted by treating the prepared cells with Ribonuclease Inhibitor (Sigma Aldrich, R1158) with TRIzol ㄾ reagent (MRC, TR 118). For reverse transcription of the extracted RNA (1 μg), cDNA was synthesized using a random hexamer primer and TAKARA cDNA synthesis kit (TaKaRa, RR036A). The synthesized cDNA was subjected to quantitative PCR analysis using SYBR ㄾ Green (ABI, 4367659) and mouse gene-specific primers listed in Table 1 below.
유전자gene 프라이머 방향Primer direction 핵산 서열(서열번호)Nucleic Acid Sequence (SEQ ID NO:)
TNF-αTNF-α 포워드forward 5'-GCCACCACGCTCTTCTG-3' (20)5'-GCCACCACGCTCTTCTG-3' (20)
리버스Reverse 5'-GGTGTGGGTGAGGAGCA-3' (21)5'-GGTGTGGGTGAGGAGCA-3' (21)
IL-6IL-6 포워드forward 5'-ACAACCACGGCCTTCCCTAC-3' (22)5'-ACAACCACGGCCTTCCCTAC-3' (22)
리버스Reverse 5'-CACGATTTCCCAGAGAACATGTG-3' (23)5'-CACGATTTCCCAGAGAACATGTG-3' (23)
IL-1βIL-1β 포워드forward 5'-AACCTGCTGGTGTGTGACGTTC-3' (24)5'-AACCTGCTGGTGTGTGACGTTC-3' (24)
리버스Reverse 5'-CAGCACGAGGCTTTTTTGTTGT-3' (25)5'-CAGCACGAGGCTTTTTTGTTGT-3' (25)
PPARγPPARγ 포워드forward 5'-CTCTCAGCTGTTCGCCAA-3' (26)5'-CTCTCAGCTGTTCGCCAA-3' (26)
리버스Reverse 5'-CACGTGCTCTGTGACGATCT-3' (27)5'-CACGTGCTCTGTGACGATCT-3' (27)
CEBPαCEBPα 포워드forward 5'-CTGGCTCTGGGTCTGGAA-3' (28)5'-CTGGCTCTGGGTCTGGAA-3' (28)
리버스Reverse 5'-AGCCACAGGGGTGTGTGT-3' (29)5'-AGCCACAGGGGTGTGTGT-3' (29)
aP2aP2 포워드forward 5'-CCGCAGACGACAGGAAGG-3' (30)5'-CCGCAGACGACAGGAAGG-3' (30)
리버스Reverse 5'-AGGGCCCCGCCATCT-3' (31)5'-AGGGCCCCGCCATCT-3' (31)
18S18S 포워드forward 5'-CGCTCCCAAGATCCAACTAC-3' (32)5'-CGCTCCCAAGATCCAACTAC-3' (32)
리버스Reverse 5'-CTGAGAAACGGCTACCACATC-3' (33)5'-CTGAGAAACGGCTACCACATC-3' (33)
1.12. BODIPY 염색1.12. BODIPY staining
준비된 세포를 4% 파라포름알데하이드에 상온에서 15분 동안 고정 시킨 후, BODIPY 염색시약(1 μg/ml, Thermo Fisher Scientific, USA)로 상온에서 20분 염색한 후 공초점 현미경으로 지방을 관찰하였다. The prepared cells were fixed in 4% paraformaldehyde at room temperature for 15 minutes, and then stained with BODIPY staining reagent (1 μg/ml, Thermo Fisher Scientific, USA) for 20 minutes at room temperature, and then fat was observed with a confocal microscope.
1.13. Oil red O 염색1.13. Oil red O dyeing
Oil red O(ORO) 작용 용액은 이소프로파놀에 용해된 0.5% ORO와 탈이온수를 3:2의 비율로 혼합함으로써 준비하였다. 준비된 ORO 작용 용액을 4% 포름알데하이드로 15분 동안 고정시켜 준비한 세포에 배양접시(60 mm 기준)당 1 ml 첨가한 후 상온에서 2시간 반응시켰다. 2시간 후, 탈이온수로 세척한 후 현미경으로 관찰하였다. 그리고, 1 ml의 이소프로판올을 첨가하고 5분간 반응시킨 후 500 nm로 흡광도를 측정하여 트리글리세라이드(TG)의 축적정도를 정량적으로 측정하였다.A working solution of Oil red O (ORO) was prepared by mixing 0.5% ORO dissolved in isopropanol and deionized water in a ratio of 3:2. The prepared ORO working solution was fixed with 4% formaldehyde for 15 minutes, 1 ml per culture dish (60 mm standard) was added to the prepared cells, and then reacted at room temperature for 2 hours. After 2 hours, they were washed with deionized water and observed under a microscope. Then, after adding 1 ml of isopropanol and reacting for 5 minutes, absorbance was measured at 500 nm to quantitatively measure the degree of accumulation of triglyceride (TG).
실시예 2. 이중 특이성 융합단백질의 고안Example 2. Design of a dual specificity fusion protein
본 발명자들은 GLP-1 또는 GLP-1 유사체가 hyFc 영역에 의해 IL-10 변이체(IL-10V)에 의해 연결된 GLP-1-hyFc-IL-10V 단백질을 암호화하는 유전자 컨스트럭트를 고안하였다.We devised a gene construct encoding GLP-1-hyFc-IL-10V protein in which GLP-1 or GLP-1 analogues are linked by an IL-10 variant (IL-10V) by a hyFc region.
구체적으로 서열번호 1로 기재되는 아미노산 서열을 갖는 GLP-1/Exendin 4 하이브리드, 서열번호 2로 기재되는 hyFc 영역 및 서열번호 3으로 기재되는 IL-10V를 각각 서열번호 4 및 5로 기재되는 아미노산 서열을 갖는 링커 펩타이드에 의해 연결되도록 한 이중 특이성 융합단백질을 고안한 후, 이를 암호화하는 폴리뉴클레오타이드를 합성하거나 PCR로 증폭하여 제조한 후, GLP-1/Eendin-4 sub-vector, hyFc sub-vector, 및 IL-10V sub-vector 및 골격벡터(pBispecific vector, Genexine, Inc.)에 서브클로닝한 후, 한 tube에서 반응시켜 최종 벡터 컨스트럭트를 제조하였다. 병용 효과를 확인하기 위해 GLP-1-hyFc와 hyFc-IL-10V를 별도로 고안하여 사용하였다. 상기와 같이 제조된 벡터 컨스트럭트들을 Thermo Fisher사의 ExpiCHO kit를 이용하여 일시적 발현을 수행하였다. 구체적으로 ExpiCHO-S cell에 상기와 같이 제조된 벡터 컨스트럭트와 키트 내에 포함되어 있는 ExpiFectamine 시약을 혼합한 후 8% CO2 및 37℃의 조건을 갖춘 배양기에서 1일간 배양 후 온도를 32℃로 낮춰서 7일 차까지 배양을 진행하였다.Specifically, the GLP-1 / Exendin 4 hybrid having the amino acid sequence shown in SEQ ID NO: 1, the hyFc region shown in SEQ ID NO: 2, and IL-10V shown in SEQ ID NO: 3 amino acid sequences shown in SEQ ID NOs: 4 and 5, respectively After designing a bispecific fusion protein to be linked by a linker peptide having And after subcloning into IL-10V sub-vector and backbone vector (pBispecific vector, Genexine, Inc.), it was reacted in one tube to prepare a final vector construct. In order to confirm the combined effect, GLP-1-hyFc and hyFc-IL-10V were separately designed and used. Transient expression of the vector constructs prepared as described above was performed using Thermo Fisher's ExpiCHO kit. Specifically, the ExpiCHO-S cell was mixed with the vector construct prepared as above and the ExpiFectamine reagent included in the kit, and then cultured for 1 day in an incubator with 8% CO 2 and 37°C conditions, and then the temperature was set to 32°C. It was lowered and cultured until the 7th day.
상기 배양을 통해 얻어진 상층액을 Protein A 칼럼 및 이차 칼럼을 통해 정제된 융합단백질(각각, 'GLP-1-hyFc', 'hyFc-IL-10V', 'MD100'으로 명명함)을 4X LDS 시료 완충액과 주사용수로 적절히 희석하여 최종 3-10 μg/20 μL이 되도록 조제하였다. 환원조건 시료의 경우 각 분석하고자 하는 물질과 4X LDS 시료 완충액, 10X 환원제와 주사용수를 적절히 희석하여 최종 3-10 μg/20 μL이 되도록 조제하고 70℃ 가열블록에서 10분간 가열하였다. 준비된 시료를 미리 설치된 전기영동 장비에 고정된 겔의 각 웰에 20 μL씩 적재하였다. 사이즈 마커의 경우 3~5 μL/well을 적재하였다. 전원공급장치를 120 V, 90분으로 설정한 후 전기영동을 수행하였다. 전기영동이 완료된 겔을 분리한 후 염색용액 및 탈-염색 용액을 이용하여 염색하고, 결과를 분석하였다. 그 결과, 도 1에서 확인되는 바와 같이 본 발명의 일 실시예에 따른 이중 특이성 융합단백질은 정상적으로 발현이 됨을 확인할 수 있었다. 이후, 상기 확보된 이중 특이성 융합단백질을 암호화하는 유전자 컨스트럽트를 pAD15 발현벡터(WO2015/009052A)에 삽입한 후, CHO DG44(from Dr. Chasin, Columbia University, USA) 세포에 형질감염시킨 후, 이중 특이성 융합단백질을 안정적으로 발현하는 세포주를 구축하였다.The supernatant obtained through the above culture was used as a 4X LDS sample for a fusion protein purified through a Protein A column and a secondary column (referred to as 'GLP-1-hyFc', 'hyFc-IL-10V', and 'MD100', respectively). It was diluted appropriately with buffer and water for injection to prepare a final 3-10 µg/20 µL. In the case of reducing condition samples, each material to be analyzed, 4X LDS sample buffer, 10X reducing agent, and water for injection were appropriately diluted to make a final 3-10 μg/20 μL, and heated in a heating block at 70° C. for 10 minutes. 20 μL of the prepared sample was loaded into each well of the gel fixed in the pre-installed electrophoresis equipment. For size markers, 3-5 μL/well were loaded. After setting the power supply to 120 V, 90 minutes, electrophoresis was performed. After the electrophoresis was completed, the gel was separated and stained using a staining solution and a de-staining solution, and the results were analyzed. As a result, as shown in FIG. 1 , it was confirmed that the dual specificity fusion protein according to an embodiment of the present invention was normally expressed. Thereafter, the gene construct encoding the obtained bispecific fusion protein was inserted into the pAD15 expression vector (WO2015/009052A), and then transfected into CHO DG44 (from Dr. Chasin, Columbia University, USA) cells, A cell line stably expressing the dual specificity fusion protein was constructed.
실시예 3. 시험관 내 GLP-1 활성 분석Example 3. In vitro GLP-1 activity assay
본 발명자들은 상기 실시예 2에서 정제된 융합단백질이 GLP-1 활성을 정상적으로 나타내는지 여부를 확인하기 위해, 상기 실시예에서 제조된 이중 특이성 융합단백질의 GLP-1 시험관내(in vitro) 활성을 cAMP 분석으로 조사하였다. 구체적으로, GLP-1 특이적인 반응에 의해 cAMP가 유도되는 정도를 평가하기 위해, cAMP HunterTM eXpress GLP1R CHO-K1 GPCR Assay kit(DiscoverX, Cat# 95-0062E2CP2M)를 사용하였다. cAMP HunterTM eXpress Assay cell을 96 웰 플레이트에 접종하여 16 시간 배양 후, MD100 및 GLP-1-hyFc와 liraglutide를 0.1~10 nM 농도로 처리하여 30분간 배양하였다. 항-cAMP 항체와 cAMP 검출시약을 넣고 1 시간 이후에 발광신호(luminescent signal)를 측정하여 약물의 생물학적 활성(EC50)을 평가하였다. In order to confirm whether the fusion protein purified in Example 2 normally exhibits GLP-1 activity, the present inventors analyzed the GLP-1 in vitro activity of the dual specificity fusion protein prepared in Example 2 with cAMP. was investigated by analysis. Specifically, in order to evaluate the degree of cAMP induction by GLP-1 specific reaction, cAMP Hunter TM eXpress GLP1R CHO-K1 GPCR Assay kit (DiscoverX, Cat# 95-0062E2CP2M) was used. cAMP Hunter TM eXpress Assay cells were inoculated into 96-well plates and cultured for 16 hours, followed by MD100 and GLP-1-hyFc and liraglutide at a concentration of 0.1 to 10 nM and incubated for 30 minutes. The biological activity (EC 50 ) of the drug was evaluated by measuring the luminescent signal 1 hour after adding the anti-cAMP antibody and the cAMP detection reagent.
그 결과, 도 2 및 표 2(이중 특이성 융합단백질의 GLP-1 활성 분석)에서 확인되는 바와 같이, 본 발명의 일 실시예에 따라 제조된 MD100은 시판되는 GLP-1 유사체인 Liraglutide와 거의 동등한 GLP-1 활성을 나타냈다. GLP-1-hyFc에서도 동일한 결과가 나타났고, 이는, 본 발명의 일 실시예에 따른 융합단백질에 포함된 GLP-1이 정상적으로 작용함을 입증한 결과이다. As a result, as confirmed in FIG. 2 and Table 2 (GLP-1 activity analysis of the dual specificity fusion protein), the MD100 prepared according to an embodiment of the present invention is GLP almost equivalent to Liraglutide, a commercially available GLP-1 analogue. -1 activity. The same results were also found in GLP-1-hyFc, which is a result of proving that GLP-1 included in the fusion protein according to an embodiment of the present invention functions normally.
GLP-1-hyFc(GX-G6)GLP-1-hyFc (GX-G6) LiraglutideLiraglutide MD100(GLP-1-hyFc-IL-10V)MD100 (GLP-1-hyFc-IL-10V)
1차Primary EC50 (nM)(GLP-1-hyFc 대비 상대적 활성)EC 50 (nM) (relative activity versus GLP-1-hyFc) 0.257(100%)0.257 (100%) 0.230(112%)0.230 (112%) 0.268(95.9%)0.268 (95.9%)
R2 R 2 0.9980.998 0.9970.997 0.9980.998
2차Secondary EC50 (nM)(GLP-1-hyFc 대비 상대적 활성)EC 50 (nM) (relative activity versus GLP-1-hyFc) 0.303(100%)0.303 (100%) 0.250(121%)0.250 (121%) 0.314(96.5%)0.314 (96.5%)
R2 R 2 0.9930.993 0.9390.939 0.9950.995
평균 EC50 (nM)Average EC 50 (nM) 0.280±0.030.280±0.03 0.240±0.010.240±0.01 0.291±0.030.291±0.03
상대활성 relative activity 100%100% 116%116% 96.2%96.2%
실시예 4. 시험관 내 IL-10 활성 분석Example 4. In Vitro IL-10 Activity Assay
본 발명자들은 이어 본 발명의 일 실시예에 따라 제조된 융합단백질이 IL-10 단백질로서의 기능을 제대로 발휘할 수 있는지 여부를 조사하기 위해, 시험관 내 조건에서 IL-10 활성을 분석하였다.The present inventors then analyzed IL-10 activity under in vitro conditions to investigate whether the fusion protein prepared according to an embodiment of the present invention can properly function as an IL-10 protein.
구체적으로, 마우스 골수유래 비만 세포(BMMC)을 이용하여 디니트로페닐(dinitrophenyl, DNp)-BSA에 특이적인 항체 IgE(anti-DNP IgE) 1 μg/ml을 다양한 농도(0, 10, 100 및 1000 pM)의 본 발명의 일 실시예에 따른 융합단백질(MD100)과 함께 처리하여 TNF-α 분비를 유도하고, 1일이 경과한 후에 상기 항원(DNp-BSA) (Sigma #A6681,USA) 1 μg/ml을 처리하고 1일 경과 후에 TNF-α 분비 억제능을 세포배양액을 대상으로 한 항-TNF-α 항체(abchem, USA)를 이용한 ELISA를 통해 분석하였다. 대조군으로 시판중인 rhIL-10(Peprotech, USA)과 상기 실시예 1에서 제조된 hyFc-IL-10V를 사용하였다. 그 결과, 도 3에서 확인되는 바와 같이, 본 발명의 일 실시예에 따른 융합단백질은 시판 rhIL-10이나 hyFc-IL-10V와 동등한 정도의 TNF-α 분비 억제능을 나타냈으며, 저 농도에서는 상대적으로 더 우수한 TNF-α 분비 억제능을 나타냈다. 이는, 본 발명의 일 실시예에 따른 융합단백질이 정상적인 IL-10의 기능을 발휘함을 입증하는 것이다.Specifically, using mouse bone marrow-derived mast cells (BMMC), dinitrophenyl (DNp)-BSA-specific antibody IgE (anti-DNP IgE) 1 μg/ml was administered at various concentrations (0, 10, 100 and 1000). pM) to induce TNF-α secretion by treatment with the fusion protein (MD100) according to an embodiment of the present invention, and 1 μg of the antigen (DNp-BSA) (Sigma #A6681, USA) after 1 day has elapsed After 1 day of treatment with /ml, TNF-α secretion inhibitory ability was analyzed by ELISA using an anti-TNF-α antibody (abchem, USA) in cell culture medium. As a control, commercially available rhIL-10 (Peprotech, USA) and hyFc-IL-10V prepared in Example 1 were used. As a result, as confirmed in FIG. 3 , the fusion protein according to an embodiment of the present invention exhibited an ability to inhibit TNF-α secretion equivalent to that of commercially available rhIL-10 or hyFc-IL-10V, and at a low concentration, it was relatively It showed a better TNF-α secretion inhibitory ability. This is to prove that the fusion protein according to an embodiment of the present invention exerts the normal IL-10 function.
실시예 5. IL-10R 수용체 결합력 평가Example 5. IL-10R receptor binding affinity evaluation
본 발명자들은 본 발명의 일 실시예에 따른 이중 특이성 융합단백질(MD100)에 대해 IL-10 수용체와의 결합력을 확인하기 위해 Octet Assay System(Octet K2, ForteBio, USA)을 이용한 생체-층 간섭법(Bio-layer Interferometry, BLI)을 이용하여 결합동역학(binding kinetics)을 측정하였다. 이를 위해 구체적으로, 아민 반응성 2세대(AR2G) 바이오센서(Fortebio, USA)에 IL-10 수용체를 고정화한 뒤 상기 Octet Assay System 장치에 적재하고, 본 발명의 일 실시예에 따른 융합단백질(MD100)의 결합속도상수(Ka)와 해리속도상수(Kd) 산출을 통해 결합상수(KD)를 산출하였으며, 대조군으로는 시판중인 재조합 인간 IL-10(rhIL-10; Peprotech, USA)을 사용하였다.The present inventors used the Octet Assay System (Octet K2, ForteBio, USA) to confirm the binding affinity to the IL-10 receptor for the dual specificity fusion protein (MD100) according to an embodiment of the present invention - a bio-layer interference method ( Binding kinetics were measured using Bio-layer Interferometry (BLI). To this end, specifically, the IL-10 receptor is immobilized on an amine-responsive second-generation (AR2G) biosensor (Fortebio, USA) and loaded into the Octet Assay System device, and a fusion protein (MD100) according to an embodiment of the present invention The association constant (K a ) and dissociation rate constant (K d ) were calculated to calculate the association constant (K D ), and a commercially available recombinant human IL-10 (rhIL-10; Peprotech, USA) was used as a control. did.
그 결과 도 4 및 표 3(융합단백질의 IL-10 수용체와의 결합력 분석)에서 확인되는 바와 같이, 본 발명의 일 실시예에 따른 융합단백질의 결합속도 상수(Ka)는 재조합 인간 IL-10의 그것과 유사한 반면, 해리속도 상수(Kd)는 재조합 인간 IL-10의 그것이 더 높게 나타났다. 그러나 전체적으로 볼 때 본 발명의 일 실시예에 따른 융합단백질의 IL-10 수용체에 대한 결합상수(KD)는 재조합 인간 IL-10의 그것과 거의 동등한 수준인 것으로 확인되었다.As a result, as confirmed in FIGS. 4 and 3 (analysis of binding affinity of the fusion protein with the IL-10 receptor), the binding rate constant (Ka) of the fusion protein according to an embodiment of the present invention is that of recombinant human IL-10. On the other hand, the dissociation rate constant (Kd) was higher than that of recombinant human IL-10. However, when viewed as a whole, the binding constant (K D ) of the fusion protein according to an embodiment of the present invention to the IL-10 receptor was confirmed to be almost equivalent to that of recombinant human IL-10.
시료sample rhIL-10rhIL-10 MD100MD100
평균 KD (nM)Mean K D (nM) 46.546.5 61.3561.35
평균 Ka (1/Ms)Average K a (1/Ms) 56500±105056500±1050 12850±49512850±495
평균 Kd (1/s)Average K d (1/s) 0.0026±0.00020.0026±0.0002 0.0008±0.00010.0008±0.0001
평균 R2 average R 2 0.950.95 0.980.98
실시예 6. 약물동력학(pharmacokinetics) 분석Example 6. Pharmacokinetics analysis
본 발명자들은 본 발명의 일 실시예에 따른 융합단백질이 생체 내에서 장기간 체류하는지 여부를 조사하기 위해, 약물동력학 분석을 수행하였다.The present inventors performed pharmacokinetic analysis to investigate whether the fusion protein according to an embodiment of the present invention stays for a long time in vivo.
구체적으로, 본 발명의 일 실시예에 따른 융합단백질(MD100)을 0.5, 및 1.5 mg/kg의 투여량으로 각각 야생형 랫트에 피하투여하였다(n=3). 그리고 투여 전, 투여 후 1, 5, 10, 24, 48, 72, 120, 및 168 시간에 채혈하여 혈청 내 MD100의 농도를 hyFc 특이적 항체를 이용한 ELISA 분석으로 측정한 후 Winnolin S/W를 이용하여 PK 파라미터를 산출하였다. 그 결과, 도 5 및 표 4 (융합 단백질의 약물 동력학적 프로파일)에서 확인되는 바와 같이, Cmax는 2530.3 ~ 5533.3 ng/mL, 반감기(t1/2)는 21~98 hr로 충분한 생체 내 노출과 지속성을 가짐을 확인하였다. Specifically, the fusion protein (MD100) according to an embodiment of the present invention was subcutaneously administered to wild-type rats at doses of 0.5 and 1.5 mg/kg, respectively (n=3). And before administration and 1, 5, 10, 24, 48, 72, 120, and 168 hours after administration, the concentration of MD100 in the serum was measured by ELISA analysis using a hyFc-specific antibody, and then using Winnolin S/W to calculate the PK parameters. As a result, as confirmed in Figure 5 and Table 4 (pharmacokinetic profile of fusion protein), C max is 2530.3 ~ 5533.3 ng / mL, half-life (t 1/2 ) is sufficient in vivo exposure to 21 ~ 98 hr and durability were confirmed.
투여량Dosage Cmax(ng/mL)C max (ng/mL) Tmax(hr)T max (hr) Clast(ng/mL)C last (ng/mL) t1/2(hr)t 1/2 (hr) AUClast(ng×hr/mL)AUC last (ng×hr/mL)
0.5 mg/kg0.5 mg/kg 2530.27 ± 208.622530.27 ± 208.62 48.00 ± 0.0048.00 ± 0.00 445.03 ± 10.47445.03 ± 10.47 21.3 ± 4.0321.3 ± 4.03 408186.33 ± 14791.41408186.33 ± 14791.41
1.5 mg/kg1.5 mg/kg 5533.29 ± 901.50 5533.29 ± 901.50 56.00 ± 13.8656.00 ± 13.86 1066.11 ± 130.011066.11 ± 130.01 98.4 ± 18.698.4 ± 18.6 1001119.24 ± 75675.591001119.24 ± 75675.59
실시예 7. 단회 독성 분석Example 7. Single Toxicity Assay
본 발명자들은 본 발명의 일 실시예에 따른 융합단백질의 단회 독성을 분석하기 위해, 본 발명의 일 실시예에 따른 융합단백질(MD100)을 다양한 투여량으로 야생형 랫트에 1회 피하투여함으로써 최대 내성 투여량 및 혈청학적 변화 및 표적 기관의 형태적 변화 등을 조사하였다.In order to analyze the single-time toxicity of the fusion protein according to an embodiment of the present invention, the present inventors subcutaneously administer the fusion protein (MD100) according to an embodiment of the present invention at various doses to wild-type rats once, thereby maximally tolerated administration Amount and serological changes and morphological changes of target organs were investigated.
시험 결과, 표 5(단회 독성 평가 실험군 설정)에서 나타난 바와 같이, 임상증상, 육안 관찰, 혈청학적 검사에서 약물 투여와 관련된 변화는 관찰되지 않았다. 체중의 경우 투여 후 2일째 약물 투여 전과 비교하여 대부분 감소하는 양상을 나타냈으며, 이는 사료 섭취량 감소를 동반하였다. 이는 본 발명의 일 실시예에 따른 융합단백질 내에 포함된 GLP-1의 약리학적 작용으로 식욕 감소로 인한 체중 감소로 판단되며 독성학적 의미는 크지 않다고 판단된다.As a result of the test, as shown in Table 5 (one-time toxicity evaluation experimental group setting), no drug administration-related changes were observed in clinical symptoms, visual observation, and serological examination. In the case of body weight, most showed a decrease compared to before drug administration on the 2nd day after administration, and this was accompanied by a decrease in feed intake. This is a pharmacological action of GLP-1 contained in the fusion protein according to an embodiment of the present invention, which is determined to be weight loss due to decreased appetite, and has no significant toxicological significance.
장기의 중량 분석결과 웅성 고용량군에서는 대조군과 비교하여 비장의 중량 증가 및 흉선 중량의 감소가 확인되었는데, 이는 이미 알려진 IL-10의 독성시험에서 2 mg/kg 이상 투여에서 관찰된 결과와 일치하는 것이다. 비장 증대의 경우, 인간 재조합 IL-10과 같은 이종 사이토카인으로 인해 면역학적 반응으로 인한 약리학적 작용이라고 판단된다. 흉선의 경우, 보고된 조직병리학적 변화로, 피질 세포사멸이 발생하였으며, 이러한 변화는 8 mg/kg으로 2주간 반복투여한 시험에서는 관찰되었으나 3개월 이상의 장기시험에서는 관찰되지 않았다. 또한 림프구의 수와 연관되지 않고 기능에 영향을 주지 않은 점과 대조군에서도 발견되는 점으로 미루어 볼 때, 일시적인 현상으로 판단되었다. 결론적으로, 본 발명의 일 실시예에 따른 융합단백질(MD100)은 0.5, 5, 50 mg/kg을 단회 투여한 시험에서 최고 투여량인 50 mg/kg까지 독성학적 영향은 관찰되지 않아 최대 내성 투여량은 50 mg/kg 이상으로 판단된다.As a result of organ weight analysis, an increase in the weight of the spleen and a decrease in the weight of the thymus were confirmed in the male high-dose group compared to the control group, which is consistent with the results observed at doses of 2 mg/kg or more in the known toxicity test of IL-10. . In the case of spleen enlargement, it is considered that the pharmacological action is due to an immunological response due to a heterologous cytokine such as human recombinant IL-10. In the case of the thymus, as a histopathological change reported, cortical apoptosis occurred, and this change was observed in the repeated administration of 8 mg/kg for 2 weeks, but was not observed in the long-term study of 3 months or longer. In addition, it was judged to be a temporary phenomenon, judging from the fact that it was not related to the number of lymphocytes and did not affect the function and was also found in the control group. In conclusion, in the fusion protein (MD100) according to an embodiment of the present invention, no toxicological effect was observed up to the highest dose of 50 mg/kg in a test in which 0.5, 5, and 50 mg/kg were administered as a single dose, so maximum tolerated administration The dose is judged to be 50 mg/kg or more.
실험군experimental group 물질matter 농도(mg/kg)Concentration (mg/kg) 투여경로route of administration 투여량Dosage 실험두수(암/수)Number of experimental heads (male/female)
1One 대조군(제형 완충액)Control (Formulation Buffer) 00 피하(s.c)subcutaneous (s.c) 5 ml/kg5 ml/kg 6/66/6
22 MD100MD100 0.50.5 6/66/6
33 MD100 MD100 55 6/66/6
44 MD100 MD100 5050 6/66/6
실시예 8. CD-HFD 유도 NASH 마우스 모델에서 체중, 지방 및 포도당 항상성에 대한 GLP-1+IL-10(Combo) 및 본 발명의 일 실시예에 따른 이중 특이성 융합단백질의 효과Example 8. Effects of GLP-1+IL-10 (Combo) and a dual specificity fusion protein according to an embodiment of the present invention on body weight, fat and glucose homeostasis in a CD-HFD-induced NASH mouse model
CD-HFD 유도 NASH 마우스 모델에서 에너지 대사에 대한 GLP-1+IL-10(Combo)와 본 발명의 일 실시예에 따른 융합단백질(MD100)의 효과를 알아보기 위하여 본 발명자들은 총 17주 동안 CD-HFD를 급이하고 13주부터 17주까지 4주간 GLP-1, Combo 또는 MD100을 마우스에 피하로 투여하였다. GLP-1, Combo, MD100 군 모두 CD-HFD 군과 비교하여 4주 처리시 체중이 유의적으로 감소하였으며(도 6A), 2주 처리 후부터 Combo와 MD100군에서 몸무게 감소가 관찰되었다(도 6B). 혈중 중성지방 (TG)는 Combo군은 CD-HFD 군과 비교하여 통계학적으로 감소하였다(도 6C). 그러나 혈중 총 콜레스테롤(TCHO)은 CD-HFD 군과 비교하여 Combo 군에서 유의적으로 감소하는 효과는 보지 못하였으며(도 6D), 총 빌리루빈(TBIL)의 수치는 증가하는 경향을 보였다(도 6E). 아울러, 포도당 항상성에 대한 Combo와 MD100의 역할을 알아보기 위하여 본 발명자들은 인슐린 저항성과 당부하 실험을 수행하였다. 그 결과, CD-HFD 군과 비교하여 Combo 투여군과 MD100 투여군에서 인슐린 저항성과 포도당 부하를 향상시킬 수 있었다(도 6F 및 6G). 또한 금식 후의 마우스의 혈당은 GLP-1 투여군과 Combo 투여군에서 개선되는 것을 확인하였다(도 6H). 종합적으로, 이들 데이터는 Combo와 MD100이 체중 및 혈당 조절에 잠재적인 치료 효과를 가지고 있음을 시사한다. In order to examine the effect of GLP-1+IL-10 (Combo) and the fusion protein (MD100) according to an embodiment of the present invention on energy metabolism in a CD-HFD-induced NASH mouse model, the present inventors conducted CD for a total of 17 weeks. -HFD was fed and GLP-1, Combo, or MD100 was subcutaneously administered to mice for 4 weeks from 13 to 17 weeks. All of the GLP-1, Combo, and MD100 groups significantly decreased body weight during 4 weeks of treatment compared to the CD-HFD group (FIG. 6A), and after 2 weeks of treatment, a decrease in body weight was observed in the Combo and MD100 groups (FIG. 6B). . Blood triglyceride (TG) was statistically decreased in the Combo group compared with the CD-HFD group ( FIG. 6C ). However, the total cholesterol (TCHO) in the blood did not show a significant decrease in the Combo group compared to the CD-HFD group (FIG. 6D), and the total bilirubin (TBIL) level showed a tendency to increase (FIG. 6E). . In addition, to investigate the roles of Combo and MD100 on glucose homeostasis, the present inventors performed insulin resistance and glucose tolerance experiments. As a result, compared to the CD-HFD group, it was possible to improve insulin resistance and glucose load in the Combo-administered group and the MD100-administered group ( FIGS. 6F and 6G ). In addition, it was confirmed that the blood glucose of the mice after fasting was improved in the GLP-1 administration group and the Combo administration group (FIG. 6H). Taken together, these data suggest that Combo and MD100 have potential therapeutic effects on weight and glycemic control.
실시예 9. CD-HFD 유도 NASH 마우스 모델에서 간 지방증 및 염증에 대한 Combo 및 본 발명의 일 실시예에 따른 융합단백질의 효과 분석Example 9. Analysis of the effect of Combo and fusion protein according to an embodiment of the present invention on hepatic steatosis and inflammation in a CD-HFD-induced NASH mouse model
본 발명자들은 CD-HFD 유도 NASH 마우스 모델에서 간에서의 지질 축적에 대한 GLP-1 및 IL-10의 병용투여(Combo)와 본 발명의 일 실시예에 따른 융합단백질(MD100)의 효과를 알아보기 위하여 간 조직에서 지방 함량을 조사하였다. 그 결과, 도 7에서 확인되는 바와 같이, Chow 그룹(일반 Chow 급이를 섭취시킨 음성 대조군 그룹)에 비하여 CD-HFD 군의 간은 더 크고 지방으로 인하여 색이 하얗게 관찰되었으나, CD-HFD 군에 비하여 GLP-1, Combo, MD100 투여군에서 간의 크기가 작아졌고, 색깔도 진한 적색으로 관찰되었다. H&E 염색을 수행한 결과, GLP-1 투여군, Combo 투여군, MD100 투여군에서 모두 CD-HFD 모델과 비교하여 지방 방울(fat droplet)의 감소를 확인할 수 있었다(도 7A). 또한 간 무게 (도 7B) 및 간 대 체중 비율(도 7C)도 CD-HFD 군에 비교하여 GLP-1 투여군, Combo 투여군 및 MD100 투여군에서 유의하게 감소되었다. 간의 TG 함량 역시 GLP-1 투여군, Combo 투여군 및 MD100 투여군에서 감소되었다(도 7D). 혈청의 간 염증 지표인 ALT 수준의 경우 GLP-1 투여군은 CD-HFD 군과 비교하여 변화가 없었지만, Combo 투여군과 MD100 투여군은 유의하게 감소하였다(도 7E). 반면 AST 수준은 그룹간의 차이가 나타나지 않았다(도 7F). 아울러, 본 발명자들은 CD-HFD 유도 NASH 마우스 모델에서 GLP-1 투여군과 Combo 투여군의 염증억제 효과를 알아보기 위해서, 마우스 간 조직을 이용한 qRT-PCR 실험을 수행하였다. 그 결과, Combo 투여군 및 MD100 투여군의 염증 표적 유전자의 유의한 발현억제 효과는 관찰할 수 없었다(도 7G-7I). 위의 결과를 바탕으로 Combo 투여군과 MD100 투여군은 CD-HFD으로 유도되는 NASH 마우스의 간 조직에서 지질 축적을 감소시키는데 효과적임을 알 수 있었다. The present inventors investigated the effect of the combined administration of GLP-1 and IL-10 (Combo) and the fusion protein (MD100) according to an embodiment of the present invention on lipid accumulation in the liver in a CD-HFD-induced NASH mouse model For this purpose, the fat content in liver tissue was investigated. As a result, as shown in FIG. 7 , the liver of the CD-HFD group was larger than that of the Chow group (negative control group fed normal Chow feed), and the color was white due to fat, but in the CD-HFD group, In comparison, the size of the liver was reduced in the GLP-1, Combo, and MD100 administration groups, and the color was also observed to be deep red. As a result of performing H&E staining, it was confirmed that a decrease in fat droplets was observed in the GLP-1 administration group, the Combo administration group, and the MD100 administration group compared with the CD-HFD model ( FIG. 7A ). In addition, liver weight (FIG. 7B) and liver to body weight ratio (FIG. 7C) were also significantly decreased in the GLP-1 administration group, Combo administration group, and MD100 administration group compared to the CD-HFD group. Hepatic TG content was also decreased in the GLP-1 administration group, Combo administration group, and MD100 administration group ( FIG. 7D ). In the case of serum ALT level, an indicator of liver inflammation, the GLP-1 administration group did not change compared to the CD-HFD group, but the Combo administration group and the MD100 administration group significantly decreased ( FIG. 7E ). On the other hand, there was no difference in AST levels between groups (FIG. 7F). In addition, the present inventors performed a qRT-PCR experiment using mouse liver tissue to examine the anti-inflammatory effects of the GLP-1 administration group and the Combo administration group in a CD-HFD-induced NASH mouse model. As a result, no significant expression inhibitory effect of the inflammatory target gene was observed in the Combo-administered group and the MD100-administered group ( FIGS. 7G-7I ). Based on the above results, it was found that the Combo-administered group and the MD100-administered group were effective in reducing lipid accumulation in the liver tissue of CD-HFD-induced NASH mice.
실시예 10. CDA-HFD 유도 NASH 마우스 모델에서 GLP-1 및 IL-10의 병용투여(Combo)가 간 지방증 및 염증에 미치는 영향Example 10. Effect of combined administration (Combo) of GLP-1 and IL-10 on hepatic steatosis and inflammation in a CDA-HFD-induced NASH mouse model
본 발명자들은 CDA-HFD 유도 NASH 마우스 모델에서 GLP-1 및 IL-10의 병용투여(Combo)가 간에서의 TG 및 섬유증에 미치는 효과를 알아보기 위하여 간 조직에서 지방 함량을 조사하였다. Chow 군에 비하여 CDA-HFD 군의 간은 더 크고 지방으로 인하여 색이 하얗게 관찰되었으며, CDA-HFD 군에 비하여 GLP-1 투여군과 Combo 투여군에서 간의 크기가 작아졌고, 간의 색이 짙어지는 것이 관찰되었다(도 8A, 상단). 상기 결과와 상응하게, H&E 염색을 수행한 결과, GLP-1 투여군과 Combo 투여군에서 모두 지방 방울이 감소되는 것이 관찰되었다(도 8A, 하단). 간 무게(도 8B) 및 간 대 체중 비율(도 8C)은 CDA-HFD 군에 비교하여 GLP-1 투여군과 Combo 투여군에서 유의하게 감소하였다. 간의 TG 함량은 Chow 군과 비교하여 CDA-HFD 군에서 유의하게 증가하였으나 GLP-1 투여군 및 Combo 투여군에서는 개선 효과가 나타나지 않았다(도 8D). 혈청의 간 염증 지표인 ALT 수준은 GLP-1 투여군과 Combo 투여군에서 CDA-HFD 군과 비교하여 유의하게 감소하였으며(도 8E). AST 수준은 Combo 투여군에서만 개선 효과를 나타내었다(도 8F). CDA-HFD 유도 NASH 마우스 모델에서 Combo 투여군의 염증억제 효과를 알아보기 위해서, 마우스 간 조직을 이용한 qRT-PCR 실험을 수행한 결과, GLP-1 투여군, IL-10 투여군, Combo 투여군에서 염증 표적 유전자의 발현 억제 효과가 있는 것을 관찰할 수 있었다(도 8G-8I). 이러한 데이터는 CDA-HFD에 의해 유도되는 NASH 모델에서 Combo 투여군이 간 지방증 및 염증 감소에 효과적이라는 것을 시사한다. The present inventors investigated the fat content in liver tissue to examine the effect of the combined administration of GLP-1 and IL-10 (Combo) on TG and fibrosis in the liver in a CDA-HFD-induced NASH mouse model. Compared to the Chow group, the liver of the CDA-HFD group was larger and the color was white due to fat. Compared to the CDA-HFD group, the liver size of the GLP-1 administration group and the Combo administration group was smaller, and the color of the liver was observed. (Fig. 8A, top). Corresponding to the above results, as a result of performing H&E staining, it was observed that fat droplets were reduced in both the GLP-1 administration group and the Combo administration group (Fig. 8A, bottom). Liver weight (Fig. 8B) and liver-to-body weight ratio (Fig. 8C) were significantly decreased in the GLP-1 administration group and Combo administration group compared to the CDA-HFD group. The TG content of the liver was significantly increased in the CDA-HFD group compared to the Chow group, but there was no improvement effect in the GLP-1 administration group and the Combo administration group ( FIG. 8D ). Serum ALT level, which is an indicator of liver inflammation, was significantly decreased in the GLP-1 administration group and the Combo administration group compared to the CDA-HFD group ( FIG. 8E ). The AST level showed an improvement effect only in the Combo administration group (FIG. 8F). In order to investigate the anti-inflammatory effect of the Combo-administered group in the CDA-HFD-induced NASH mouse model, a qRT-PCR experiment using mouse liver tissue was performed. It was observed that there is an expression inhibitory effect (FIGS. 8G-8I). These data suggest that the Combo-administered group is effective in reducing hepatic steatosis and inflammation in the NASH model induced by CDA-HFD.
실시예 11. CDA-HFD 유도 NASH 마우스 모델에서 MD100이 대사 프로파일에 미치는 영향Example 11. Effect of MD100 on Metabolic Profile in CDA-HFD Induced NASH Mouse Model
CDA-HFD 유도 NASH 마우스 모델에서 MD100의 투여량에 따른 대사 프로파일의 변화를 알아보기 위하여 본 발명자들은 총 8주 동안 CDA-HFD를 급이하고 5주부터 8주까지 3주간 다양한 농도의 본 발명의 일 실시예에 따른 융합단백질(10, 20, 40 nmol/kg, MD100)를 마우스에 피하투여하였다. 그 결과 모든 MD100 투여군에서 CDA-HFD 군과 비교하여 1주와 2주는 유의하게 감소하였으나, 3주 투여 후 20 nmol MD100은 CDA-HFD 군과 비슷하게 무게가 회복되었다(도 9A 및 9B). 약물 투여 전과 후를 비교하였을 때, Chow, CDA-HFD 및 20 nmol MD100 투여군에서 혈당수준의 차이가 관찰되지 않았으나 10 nmol MD100 투여군은 투여 후 혈당수준이 증가하였고, 40 nmol MD100 투여군은 투여 후 혈당수준이 감소하였다(도 9C). 그러나 CDA-HFD 군과 비교시 약물 투여 후 모든 실험군에서 혈당수준이 감소하였다(도 9D).In order to investigate the change in the metabolic profile according to the dose of MD100 in the CDA-HFD-induced NASH mouse model, the present inventors fed CDA-HFD for a total of 8 weeks, and from 5 weeks to 8 weeks, various concentrations of the present invention for 3 weeks. The fusion protein according to an embodiment (10, 20, 40 nmol/kg, MD100) was subcutaneously administered to mice. As a result, in all MD100-administered groups, 1 and 2 weeks were significantly reduced compared to the CDA-HFD group, but after 3 weeks of administration, 20 nmol MD100 regained weight similarly to the CDA-HFD group ( FIGS. 9A and 9B ). When comparing before and after drug administration, no difference in blood glucose level was observed in the Chow, CDA-HFD, and 20 nmol MD100 administration groups, but the 10 nmol MD100 administration group increased blood glucose levels after administration, and the 40 nmol MD100 administration group showed blood glucose levels after administration. was decreased (Fig. 9C). However, compared with the CDA-HFD group, blood glucose levels were decreased in all experimental groups after drug administration ( FIG. 9D ).
실시예 12. CDA-HFD 유도 NASH 마우스 모델에서 MD100이 간 지방증 및 염증에 미치는 영향Example 12. Effect of MD100 on hepatic steatosis and inflammation in a mouse model of CDA-HFD induced NASH
CDA-HFD 유도 NASH 마우스 모델에서 간에서의 지질 축적 및 섬유증에 대한MD100의 용량 의존적 효과를 알아보기 위하여 본 발명자들은 간 조직에서 지방 함량을 조사하였다. Chow 그룹에 비하여 CDA-HFD 군의 간은 더 크고 지방으로 인하여 색이 하얗게 관찰되었으나, CDA-HFD 군에 비하여 40 nmol MD100 투여군에서 간의 크기가 작아지는 것과, 색이 약간 짙어지는 것이 관찰되었다(도 10A, 상단). 그러나 H&E 염색결과, 10, 20 및 40 nmol MD100 투여군에서 지방 방울은 감소되지 않았다(도 10A, 하단). 간 무게는 CDA-HFD 군과 비교하여 10 nmol 투여군과 40 nmol MD100 투여군 모두에서 유의하게 감소하였으나(도 10B), 간 대 체중 비율은 Chow 군과 비교하여 모든 그룹에서 증가하였다(도 10C). 간의 TG 함량은 Chow 군과 비교하여 CDA-HFD 군에서 유의하게 증가하였으나, 10 nmol 및 40 nmol MD100 투여군에서는 개선 효과가 나타나지 않았으며, 오히려 20 nmol MD100 투여군에서 증가하였다(도 10D). 혈청의 간 염증 지표인 ALT 수준은 40 nmol MD100 투여군에서 CD-HFD 군과 비교하여 유의하게 감소하였으며(도 10E), AST 수준 역시도 40 nmol MD100 투여군에서 개선 효과가 나타났다(도 10F). CDA-HFD 유도 NASH 마우스 모델에서 MD100의 투여량에 따른 염증 억제 효과를 알아보기 위해서, 마우스 간 조직을 이용한 qRT-PCR 실험을 수행한 결과, MD100의 투여량에 따라서 염증 표적 유전자의 발현이 감소됨을 관찰할 수 있었다(도 10G-10I). 이러한 데이터는 CDA-HFD에 의해 유도되는 NASH 모델에서 MD100이 간 지방증 및 염증 감소에 효과적이라는 것을 시사한다.To investigate the dose-dependent effect of MD100 on lipid accumulation and fibrosis in the liver in a CDA-HFD-induced NASH mouse model, the present inventors investigated the fat content in liver tissue. Compared to the Chow group, the liver of the CDA-HFD group was larger and had a white color due to fat, but compared to the CDA-HFD group, the liver size and color slightly darkened in the 40 nmol MD100 administration group were observed (Fig. 10A, top). However, as a result of H&E staining, fat droplets were not reduced in the groups administered with 10, 20 and 40 nmol MD100 (Fig. 10A, bottom). The liver weight was significantly decreased in both the 10 nmol administration group and the 40 nmol MD100 administration group compared with the CDA-HFD group ( FIG. 10B ), but the liver to body weight ratio increased in all groups compared to the Chow group ( FIG. 10C ). The TG content of the liver was significantly increased in the CDA-HFD group compared with the Chow group, but no improvement effect was observed in the 10 nmol and 40 nmol MD100 administration groups, but rather increased in the 20 nmol MD100 administration group ( FIG. 10D ). Serum ALT level, an indicator of liver inflammation, was significantly decreased in the 40 nmol MD100 administration group compared to the CD-HFD group (FIG. 10E), and the AST level was also improved in the 40 nmol MD100 administration group (FIG. 10F). In order to investigate the anti-inflammatory effect according to the dose of MD100 in the CDA-HFD-induced NASH mouse model, a qRT-PCR experiment using mouse liver tissue was performed. could be observed ( FIGS. 10G-10I ). These data suggest that MD100 is effective in reducing hepatic steatosis and inflammation in a model of NASH induced by CDA-HFD.
실시예 13. CDA-HFD 유도 NASH 마우스 모델에서 MD100이 간 섬유증에 미치는 영향Example 13. Effect of MD100 on Liver Fibrosis in CDA-HFD Induced NASH Mouse Model
CDA-HFD 유도 NASH 마우스 모델에서 MD100이 간 섬유증을 개선시키는 효과를 나타내는지 알아보기 위하여, 본 발명자들은 시리우스 레드(Sirius Red) 염색 및 하이드록시프롤린 분석을 수행하였다. CDA-HFD, 10 nmol, 20 nmol MD100 군은 Chow 군에 비하여 콜라겐 양이 증가하는 것으로 관찰되었으며, 40 nmol MD100 군에서 간 섬유증의 개선을 확인할 수 있었다(도 11A). 반면 하이드록시프롤린 분석을통하여 정량적인 분석을 하였을 때, CDA-HFD 군은 Chow 군에 비하여 콜라겐 양이 유의하게 증가하였으나 10, 20, 및 40 nmol MD100 투여군에서 억제 효과는 관찰되지 않았다(도 11B).In order to examine whether MD100 exhibits an effect on improving liver fibrosis in a CDA-HFD-induced NASH mouse model, the present inventors performed Sirius Red staining and hydroxyproline analysis. The CDA-HFD, 10 nmol, and 20 nmol MD100 groups were observed to increase the amount of collagen compared to the Chow group, and it was confirmed that liver fibrosis was improved in the 40 nmol MD100 group ( FIG. 11A ). On the other hand, when quantitative analysis was performed through hydroxyproline analysis, the CDA-HFD group significantly increased the amount of collagen compared to the Chow group, but no inhibitory effect was observed in the 10, 20, and 40 nmol MD100 administration groups (FIG. 11B) .
실시예 14. 팔미트산(PA)를 이용한 시험관 내 지방독성 모델에서의 GLP-1 및 IL-10의 Combo 및 MD100의 효과 규명Example 14. Effect of Combo and MD100 of GLP-1 and IL-10 in an in vitro lipotoxicity model using palmitic acid (PA)
팔미트산(PA)은 인간 혈장에 가장 많이 존재하는 포화 지방산으로 알려져 있으며, 활성산소의 생성을 촉진시켜, 세포사멸을 유도한다. 팔미트산에 의한 세포사멸 유도현상을 "지질독성(lipotoxicity)"라고 지칭하며, 이는 비알코올성 지방간염의 발병(pathogenesis)을 증가시키는 주요 원인으로 알려져 있다. 따라서, 본 발명자들은 시험관내 지질독성 모델을 이용하여 GLP-1 기반 후보 물질들이 지질독성을 억제할 수 있는지 알아보기 위하여 팔미트산을 세포에 처리한 후 세포 생존도를 측정하는 한편, 면역블랏 분석을 수행하였다. 그 결과, PA 단독 처리군에 비하여, GLP-1 및 IL-10 병용 처리군에서 세포 생존도가 가장 증가하는 것을 확인하였다(도 12A). 아울러, 상술한 결과와 상응하게, 세포사멸 표지자(marker)로 알려진 절단형 Caspase-3와 PARP의 발현 역시 GLP-1 및 IL-10의 병용 처리군에서 가장 감소함을 확인할 수 있었다(도 12B). Palmitic acid (PA) is known as the most abundant saturated fatty acid in human plasma, and promotes the production of free radicals to induce cell death. The induction of apoptosis by palmitic acid is referred to as “lipotoxicity”, which is known to be a major cause of increasing the pathogenesis of nonalcoholic steatohepatitis. Therefore, the present inventors measured cell viability after treatment with palmitic acid in cells to determine whether GLP-1 based candidates can inhibit lipotoxicity using an in vitro lipotoxicity model, while immunoblot analysis was performed. As a result, it was confirmed that the cell viability increased the most in the GLP-1 and IL-10 combination treatment group compared to the PA alone treatment group ( FIG. 12A ). In addition, consistent with the above results, it was confirmed that the expression of cleaved Caspase-3 and PARP, known as apoptosis markers, also decreased the most in the combined treatment group of GLP-1 and IL-10 ( FIG. 12B ). .
실시예 15. 골수-유래 대식세포(BMDM)을 이용한 시험관 내 염증 모델에서의 Combo 및 MD100의 효과 규명 Example 15. Effect of Combo and MD100 in In Vitro Inflammation Model Using Bone Marrow-Derived Macrophages (BMDM)
비알코올성 지방간염은 염증을 동반하고, 지속된 염증에 의하여 병증이 가속화된다고 알려져 있다. 따라서, 본 발명자들은 BMDM에 LPS를 처리하여 염증을 유도한 시험관 내 염증 모델을 이용하여 GLP-1 및 IL-10 병용 처리(Combo)와 본 발명의 일 실시예에 따른 융합단백질(MD100)의 항-염증 효과를 qPCR 실험과 면역블랏 분석을 통해 조사하였다. 그 결과, GLP-1 및 IL-10의 병용 처리군(Combo)과 MD100 처리군에서 전-염증성 경로인 NF-kB 신호전달이 억제되는 것을 확인하였고(도 13A), 이러한 결과와 상응하게, 전-염증성 표적 유전자인 TNF-α(도 13B), IL-6(도 13C) 및 IL-1β(도 13D)의 발현 역시 감소되어 있는 것을 확인하였다.It is known that nonalcoholic steatohepatitis is accompanied by inflammation, and the disease is accelerated by the continued inflammation. Therefore, the present inventors used an in vitro inflammation model in which BMDM was treated with LPS to induce inflammation. -The inflammatory effect was investigated through qPCR experiments and immunoblot analysis. As a result, it was confirmed that NF-kB signaling, a pro-inflammatory pathway, was inhibited in the combination treatment group (Combo) and MD100 treatment group of GLP-1 and IL-10 ( FIG. 13A ). Corresponding to these results, - It was confirmed that the expression of inflammatory target genes TNF-α (FIG. 13B), IL-6 (FIG. 13C) and IL-1β (FIG. 13D) is also reduced.
실시예 16. 올레산(OA)을 이용한 시험관내 간 지방증(steatosis) 모델에서 Combo 및 MD100의 효과 규명Example 16. Effect of Combo and MD100 in an in vitro hepatic steatosis model using oleic acid (OA)
비알코올성 지방간 질환의 가장 큰 특징은 정상 간에 지질이 축적되는 것이다. 따라서, 본 발명자들은 시험관 내 조건에서 GLP-1 기반 후보 물질들의 지질 축적 억제효과를 규명 위하여 지질 축적을 유도하였고, 그 결과, OA에 의해서 축적된 세포 내 지방 축적이 IL-10 단독 처리군, GLP-1 및 IL-10의 병용 처리군, MD100 처리군에서 유의하게 감소하는 것을 관찰하였다(도 14A 및 14B).The most characteristic feature of nonalcoholic fatty liver disease is the accumulation of lipids in the normal liver. Therefore, the present inventors induced lipid accumulation to investigate the lipid accumulation inhibitory effect of GLP-1-based candidates under in vitro conditions. A significant decrease was observed in the combination treatment group of -1 and IL-10, and the MD100 treatment group ( FIGS. 14A and 14B ).
실시예 17. 시험관 내 지질생성 모델 구축을 통한 Combo 및 MD100의 효과 규명 Example 17. Identification of the effects of Combo and MD100 through in vitro lipogenesis model construction
정상 간에서 비알코올성 지방간으로 진행될 때 흔히 비만이나 인슐린 저항성과 같은 대사 증후군이 동반된다고 알려져 있다. 이 과정에서는 지방세포로부터 유리되는 지방산이 많아지고, 따라서 과량의 지방산이 간 내로 유입되어 간 내에서의 지방 합성을 유도한다. 이는 간 세포 내에 과량의 지방 축적을 유도하여 지방간을 형성한다고 알려져 있다. 따라서 3T3-L1 지방전구세포 분화 시스템을 이용하여 Combo 및 MD100이 지방세포가 형성되는 과정인 지질생성(adipogenesis) 과정을 억제함으로써 지방세포로부터 유리되어 간 내로 유입되는 지방산의 양을 감소시킬 수 있는지 조사하였다. 그 결과, 지질생성과 관련된 유전자 및 지질축적이 MD100 처리군에서 가장 유의하게 감소하는 것을 관찰할 수 있었다(도 15A-15F).It is known that metabolic syndrome such as obesity or insulin resistance is often accompanied when normal liver progresses to nonalcoholic fatty liver. In this process, more fatty acids are released from adipocytes, and thus excess fatty acids are introduced into the liver to induce fat synthesis in the liver. It is known that it induces excessive fat accumulation in liver cells to form fatty liver. Therefore, using the 3T3-L1 preadipocyte differentiation system, we investigated whether Combo and MD100 can reduce the amount of fatty acids released from adipocytes and flowing into the liver by inhibiting the adipogenesis process, the process in which adipocytes are formed. did. As a result, it was observed that the gene and lipid accumulation related to lipogenesis were most significantly decreased in the MD100 treatment group ( FIGS. 15A-15F ).
상술한 바와 같이, 본 발명의 일 실시예에 따른 GLP-1 및 IL-10의 병용투여 또는 GLP-1 및 IL-10을 포함하는 이중 특이성 융합단백질은 간에서의 지질축적을 효과적으로 억제할 뿐만 아니라, 지방간에 수반되는 염증을 완화시키며 간에서의 과도한 지질에 의해 발생하는 지질독성 역시 효과적으로 억제할 수 있음이 실험적으로 입증이 되었다. 따라서, 본 발명의 일 실시예에 따른 GLP-1 및 IL-10의 병용투여 조성물 및 이중 특이성 융합단백질은 비알코올성 지방간, 비알코올성 지방간염 및 비알코올성 지방간의 경과에 따른 간섬유증과 같은 만성 대사성 간질환의 치료에 효율적으로 사용될 수 있다.As described above, the co-administration of GLP-1 and IL-10 or the dual specificity fusion protein comprising GLP-1 and IL-10 according to an embodiment of the present invention effectively inhibits lipid accumulation in the liver as well as , it has been experimentally proven that it can relieve inflammation accompanying fatty liver and effectively suppress lipotoxicity caused by excessive lipids in the liver. Therefore, the composition for co-administration of GLP-1 and IL-10 and the dual specificity fusion protein according to an embodiment of the present invention are non-alcoholic fatty liver, non-alcoholic steatohepatitis and chronic metabolic liver disease such as liver fibrosis following the course of non-alcoholic fatty liver. It can be used effectively for the treatment of diseases.

Claims (15)

  1. (a) GLP-1 또는 이의 유사체 및 IL-10 단백질;(a) GLP-1 or an analog thereof and an IL-10 protein;
    (b) GLP-1 또는 이의 유사체가 IL-10 단백질에 연결된 융합단백질; 또는(b) a fusion protein in which GLP-1 or an analog thereof is linked to an IL-10 protein; or
    (c) 항체 Fc 영역의 N-말단에 GLP-1 또는 이의 유사체가 연결되고, 상기 항체 Fc 영역의 C-말단에 IL-10 단백질이 연결된 이중 특이성 이량체 융합단백질을 유효성분으로 포함하는 비알코올성 간질환(nonalcoholic liver disease)의 치료용 약학적 조성물.(c) non-alcoholic comprising as an active ingredient a bispecific dimer fusion protein in which GLP-1 or an analog thereof is linked to the N-terminus of the antibody Fc region and IL-10 protein is linked to the C-terminus of the antibody Fc region A pharmaceutical composition for the treatment of liver disease (nonalcoholic liver disease).
  2. 제 1 항에 있어서, The method of claim 1,
    상기 GLP-1 유사체는 GLP-1, 엑센딘 3(Exendin 3), 엑센딘 4(Exendin 4), GLP-1/Exendin 4 하이브리드, GLP-1-EXTEN, Lixisenatide, Albiglutide, Liraglutide, Dulaglutide, Extenatide, Taspoglutide, 또는 Lixisenatide 인 것인, 조성물.The GLP-1 analog is GLP-1, Exendin 3 (Exendin 3), Exendin 4 (Exendin 4), GLP-1 / Exendin 4 hybrid, GLP-1-EXTEN, Lixisenatide, Albiglutide, Liraglutide, Dulaglutide, Extenatide, Taspoglutide, or Lixisenatide, the composition.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 GLP-1은 서열번호 6 또는 서열번호 7의 아미노산 서열을 포함하는 것인, 조성물.The GLP-1 is a composition comprising the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 7.
  4. 제 2 항에 있어서, 3. The method of claim 2,
    상기 Exendin 3는 서열번호 8의 아미노산 서열을 포함하는 것인, 조성물.The Exendin 3 is a composition comprising the amino acid sequence of SEQ ID NO: 8.
  5. 제 2 항에 있어서, 3. The method of claim 2,
    상기 Exendin 4는 서열번호 9의 아미노산 서열을 포함하는 것인, 조성물.The Exendin 4 is a composition comprising the amino acid sequence of SEQ ID NO: 9.
  6. 제 2 항에 있어서, 3. The method of claim 2,
    상기 GLP-1/Exendin 4 하이브리드는 서열번호 1의 아미노산 서열을 포함하는 것인, 조성물.The GLP-1 / Exendin 4 hybrid is a composition comprising the amino acid sequence of SEQ ID NO: 1.
  7. 제 2 항에 있어서,3. The method of claim 2,
    상기 Lixisenatide는 서열번호 10의 아미노산 서열을 포함하는 것인, 조성물.The Lixisenatide is a composition comprising the amino acid sequence of SEQ ID NO: 10.
  8. 제 2 항에 있어서, 3. The method of claim 2,
    상기 Exendin 4-XTEN은 서열번호 11의 아미노산 서열을 포함하는 것인, 조성물. The Exendin 4-XTEN is a composition comprising the amino acid sequence of SEQ ID NO: 11.
  9. 제 2 항에 있어서, 3. The method of claim 2,
    상기 Albiglutide는 서열번호 12의 아미노산 서열을 포함하는 것인, 조성물.The Albiglutide is a composition comprising the amino acid sequence of SEQ ID NO: 12.
  10. 제 2 항에 있어서, 3. The method of claim 2,
    상기 Liraglutide는 서열번호 13의 아미노산 서열을 포함하는 것인, 조성물.The Liraglutide is a composition comprising the amino acid sequence of SEQ ID NO: 13.
  11. 제 2 항에 있어서, 3. The method of claim 2,
    상기 Taspoglutide는 서열번호 14의 아미노산 서열을 포함하는 것인, 조성물.The Taspoglutide is a composition comprising the amino acid sequence of SEQ ID NO: 14.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 항체 Fc 영역은 IgG1, IgG2, IgG3, IgG4, 또는 IgD의 Fc 영역 또는 하이브리드 항체 Fc 영역인 것인, 조성물.The antibody Fc region is an Fc region or a hybrid antibody Fc region of IgG1, IgG2, IgG3, IgG4, or IgD.
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 하이브리드 항체 Fc 영역은 둘 이상의 아이소타입의 적어도 두 개 이상부분이 혼합된 형태의 항체 Fc 영역인 것인, 조성물.The hybrid antibody Fc region is an antibody Fc region in which at least two or more portions of two or more isotypes are mixed.
  14. 제 12 항에 있어서,13. The method of claim 12,
    상기 항체 Fc 영역은 서열번호 2, 서열번호 15 내지 서열번호 19로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 것인, 조성물.The antibody Fc region is a composition comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 15 to SEQ ID NO: 19.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 비알코올성 간질환은 비알코올성 지방간, 비알코올성 지방간염, 비알코올성 간경변증 및 비알코올성 간암으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것인, 조성물. The non-alcoholic liver disease is any one or more selected from the group consisting of non-alcoholic fatty liver, non-alcoholic steatohepatitis, non-alcoholic cirrhosis and non-alcoholic liver cancer, the composition.
PCT/KR2021/001801 2020-02-13 2021-02-10 Novel pharmaceutical composition for treating non-alcoholic liver disease WO2021162460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200017803A KR20210103265A (en) 2020-02-13 2020-02-13 A novel pharmaceutical composition for treating non-alcoholic steatohepatitis
KR10-2020-0017803 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021162460A1 true WO2021162460A1 (en) 2021-08-19

Family

ID=77292386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001801 WO2021162460A1 (en) 2020-02-13 2021-02-10 Novel pharmaceutical composition for treating non-alcoholic liver disease

Country Status (2)

Country Link
KR (1) KR20210103265A (en)
WO (1) WO2021162460A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032699A (en) * 2014-09-16 2016-03-24 한미약품 주식회사 Use of a long acting glp-1/glucagon receptor dual agonist for the treatment of non-alcoholic fatty liver disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032699A (en) * 2014-09-16 2016-03-24 한미약품 주식회사 Use of a long acting glp-1/glucagon receptor dual agonist for the treatment of non-alcoholic fatty liver disease

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARMSTRONG MATTHEW J.; HULL DIANA; GUO KATHY; BARTON DARREN; HAZLEHURST JONATHAN M.; GATHERCOLE LAURA L.; NASIRI MARYAM; YU JINGLEI: "Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis", JOURNAL OF HEPATOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 64, no. 2, 21 September 2015 (2015-09-21), AMSTERDAM, NL, pages 399 - 408, XP029389250, ISSN: 0168-8278, DOI: 10.1016/j.jhep.2015.08.038 *
ASRIH MOHAMED, JORNAYVAZ FRANÇOIS R: "Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance", JOURNAL OF ENDOCRINOLOGY, JOURNAL OF ENDOCRINOLOGY, vol. 218, no. 3, 5 July 2013 (2013-07-05), pages R25 - R36, XP055835959, ISSN: 0022-0795, DOI: 10.1530/JOE-13-0201 *
CINTRA, D.E. PAULI, J.R. ARAUJO, E.P. MORAES, J.C. DE SOUZA, C.T. MILANSKI, M. MORARI, J. GAMBERO, A. SAAD, M.J. : "Interleukin-10 is a protective factor against diet-induced insulin resistance in liver", JOURNAL OF HEPATOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 48, no. 4, 31 January 2008 (2008-01-31), AMSTERDAM, NL, pages 628 - 637, XP022534924, ISSN: 0168-8278 *
KIM H.-J., HIGASHIMORI T., PARK S.-Y., CHOI H., DONG J., KIM Y.-J., NOH H.-L., CHO Y.-R., CLINE G., KIM Y.-B., KIM J. K.: "Differential Effects of Interleukin-6 and -10 on Skeletal Muscle and Liver Insulin Action In Vivo", DIABETES, AMERICAN DIABETES ASSOCIATION, US, vol. 53, no. 4, 1 April 2004 (2004-04-01), US, pages 1060 - 1067, XP055835969, ISSN: 0012-1797, DOI: 10.2337/diabetes.53.4.1060 *

Also Published As

Publication number Publication date
KR20210103265A (en) 2021-08-23

Similar Documents

Publication Publication Date Title
AU2016346870B2 (en) Dual function proteins and pharmaceutical composition comprising same
WO2016108654A1 (en) Glp and immunoglobulin hybrid fc fused polypeptide and use thereof
AU2016346864B2 (en) Long-acting FGF21 fusion proteins and pharmaceutical composition comprising same
WO2012165915A2 (en) Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate
WO2013133667A1 (en) Pharmaceutical composition for the prevention or treatment of non-alcoholic fatty liver disease
WO2018088838A1 (en) Pharmaceutical composition for preventing or treating hepatitis, hepatic fibrosis, and hepatic cirrhosis comprising fusion proteins
WO2014017845A2 (en) A liquid formulation of long acting insulinotropic peptide conjugate
WO2014017849A1 (en) A liquid formulation of long-acting insulin and insulinotropic peptide
WO2013029279A1 (en) Novel glp-i analogue, preparation method and use thereof
WO2018169282A2 (en) Pharmaceutical composition containing atpif1 for treatment of diabetes
WO2016114633A1 (en) Long-acting fgf21 fusion proteins and pharmaceutical composition comprising the same
EP3240802A1 (en) Glucagon derivatives
WO2021162460A1 (en) Novel pharmaceutical composition for treating non-alcoholic liver disease
WO2020116810A1 (en) Pharmaceutical composition, comprising inhibitory peptide against fas signaling, for prevention or treatment of obesity, fatty liver, or steatohepatitis
WO2020184941A1 (en) Glp-1 fusion proteins and uses thereof
WO2022010319A1 (en) Fusion protein including glucagon-like peptide-1 and interleukin-1 receptor antagonist and use thereof
WO2021221359A1 (en) Long-acting glp-1 and glucagon receptor dual agonist
US20230310630A1 (en) Therapeutic use of combination comprising triple agonistic long-acting conjugate or triple agonist
JP2013511287A (en) Polypeptide conjugate
WO2017142331A1 (en) Pharmaceutical composition comprising recombinant hgh for the treatment of growth hormone deficiency
WO2021182928A1 (en) Novel bispecific protein and use thereof
WO2021182927A1 (en) Pharmaceutical composition for treating novel metabolic syndrome and diseases associated therewith
WO2021230705A1 (en) Novel recombinant fusion protein and use thereof
EP3416677A1 (en) Pharmaceutical composition comprising recombinant hgh for the treatment of growth hormone deficiency
WO2020017916A1 (en) Pharmaceutical composition comprising polypeptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754030

Country of ref document: EP

Kind code of ref document: A1