WO2021162431A1 - Default beam setting method and device for network cooperative communication - Google Patents

Default beam setting method and device for network cooperative communication Download PDF

Info

Publication number
WO2021162431A1
WO2021162431A1 PCT/KR2021/001742 KR2021001742W WO2021162431A1 WO 2021162431 A1 WO2021162431 A1 WO 2021162431A1 KR 2021001742 W KR2021001742 W KR 2021001742W WO 2021162431 A1 WO2021162431 A1 WO 2021162431A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
information
terminal
tci state
base station
Prior art date
Application number
PCT/KR2021/001742
Other languages
French (fr)
Korean (ko)
Inventor
장영록
박진현
김태형
노훈동
지형주
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2021162431A1 publication Critical patent/WO2021162431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a wireless communication system, and relates to a beam setting method and apparatus for network cooperative communication in a wireless communication system.
  • the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or after the LTE system (Post LTE).
  • 4G network Beyond 4G Network
  • LTE system Post LTE
  • 5G communication systems are being considered for implementation in very high frequency (mmWave) bands (eg, 60 gigabytes (60 GHz) bands).
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Sliding Window Superposition Coding
  • ACM advanced coding modulation
  • FBMC Filter Bank Multi Carrier
  • NOMA advanced access technologies, non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • IoT an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
  • 5G communication technology is implemented by techniques such as beam forming, MIMO, and array antenna.
  • cloud RAN cloud radio access network
  • the present disclosure provides a method of determining a default beam that the terminal assumes when beam information for receiving control information is not indicated in a network cooperative communication system.
  • the method includes, from a base station, first information about at least one first CORESET having a control resource set (CORESET) related index of 0 and at least one first information having a CORESET related index of 1 2 Receiving second information about CORESET; checking whether control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET is received; checking a default beam based on the second information when the control information is not received; and receiving downlink control information from the at least one second CORESET based on the default beam.
  • CORESET control resource set
  • a method of a base station in a wireless communication system includes transmitting first information about at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information about at least one second CORESET having a CORESET-related index of 1 to the terminal ; and transmitting downlink control information to the terminal in the at least one second CORESET, wherein the base station determines at least one transmission configuration indicator (TCI) state for the at least one second CORESET.
  • TCI transmission configuration indicator
  • a terminal of a wireless communication system includes a transceiver; and the transceiver unit to receive, from the base station, first information on at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information on at least one second CORESET having a CORESET-related index of 1 control, check whether control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET is received, and if the control information is not received, the second It is characterized in that it includes a control unit that identifies a default beam based on the information and controls the transceiver to receive downlink control information from the at least one second CORESET based on the default beam.
  • CORESET control resource set
  • TCI transmission configuration indicator
  • a base station of a wireless communication system is provided.
  • TCI transmission configuration indicator
  • a method of pre-arranging a basic operation and a default beam between the terminal and the base station is provided. Accordingly, it is possible to reduce the reduction in power consumption of the terminal and to improve the reception reliability of the control information.
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-A LTE-Advanced
  • NR NR
  • FIG. 1 is a time-frequency domain of a wireless communication system such as Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced (LTE-A), NR or similar according to an embodiment of the present disclosure; It is a diagram showing the transmission structure.
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-A LTE-Advanced
  • NR NR
  • FIG. 2 is a view showing a frame, subframe, slot structure in 5G (5 th generation), according to one embodiment of the present disclosure.
  • FIG 3 is a diagram illustrating an example of a configuration of a bandwidth part (BWP) in a wireless communication system according to an embodiment of the present disclosure.
  • BWP bandwidth part
  • FIG. 4 is a diagram illustrating an example of setting a control region of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram for explaining the structure of a downlink control channel of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of PDSCH frequency axis resource allocation in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of physical downlink shared channel (PDSCH) time axis resource allocation in a wireless communication system according to an embodiment of the present disclosure.
  • PDSCH physical downlink shared channel
  • FIG 8 is a diagram illustrating an example of time-base resource allocation according to subcarrier intervals of a data channel and a control channel in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating a procedure for beam configuration and activation of a PDCCH according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a procedure for beam configuration and activation of a PDSCH according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating a radio protocol structure of a base station and a terminal in a single cell, carrier aggregation, and dual connectivity situation according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of an antenna port configuration and resource allocation for cooperative communication according to some embodiments in a wireless communication system according to an embodiment of the present disclosure.
  • DCI downlink control information
  • FIG. 14 is a diagram illustrating an example of configuring a PDCCH basic beam in consideration of a plurality of TRPs according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating a PDCCH monitoring method in CORESET when configuring a PDCCH basic beam considering a plurality of TRPs according to an embodiment of the present disclosure.
  • 16 is a diagram illustrating a structure of a terminal in a wireless communication system according to an embodiment of the present disclosure.
  • 17 is a diagram illustrating a structure of a base station in a wireless communication system according to an embodiment of the present disclosure.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flow chart block(s) may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible for instructions to perform the processing equipment to provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in the reverse order according to a corresponding function.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles do.
  • '-part' is not limited to software or hardware.
  • the ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the base station is a subject performing resource allocation of the terminal, and may be at least one of gNode B, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • a computer or a multimedia system capable of performing a communication function.
  • the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after a 4 th generation (4G) system with an Internet of Things (IoT) technology, and a system thereof.
  • the present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present disclosure is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • a wireless communication system for example, 3GPP's High Speed Packet Access (HSPA), Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e, such as communication standards such as communication standards such as broadband wireless that provides high-speed, high-quality packet data service It is evolving into a communication system.
  • HSPA High Speed Packet Access
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-A LTE-Advanced
  • LTE-Pro LTE-Pro
  • HRPD High Rate Packet Data
  • UMB Ultra Mobile Broadband
  • IEEE's 802.16e such as communication standards such as communication standards such as broadband wireless that provides high-speed, high-quality packet data service It is evolving into a communication system.
  • Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals.
  • the multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources to which data or control information is to be transmitted for each user so that they do not overlap each other, that is, orthogonality is established. .
  • the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported.
  • Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
  • the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by the existing LTE, LTE-A, or LTE-Pro.
  • the eMBB in a 5G communication system, the eMBB must be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station.
  • it is necessary to provide an increased user perceived data rate of the terminal.
  • transmission/reception technology including a more advanced multi-input multi-output (MIMO) transmission technology.
  • MIMO multi-input multi-output
  • mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system.
  • IoT Internet of Things
  • mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell.
  • a terminal supporting mMTC is highly likely to be located in a shaded area that a cell cannot cover, such as the basement of a building, due to the characteristics of the service, it may require wider coverage compared to other services provided by the 5G communication system.
  • a terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
  • URLLC as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or a machine, industrial automation
  • a service used for unmaned aerial vehicles, remote health care, emergency alerts, etc. it is necessary to provide communication that provides ultra-low latency and ultra-reliability.
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required.
  • TTI Transmit Time Interval
  • the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
  • each service considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
  • embodiments of the present disclosure are described below using LTE, LTE-A, LTE Pro, or NR systems as an example, embodiments of the present disclosure may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present disclosure may be applied to other communication systems through some modifications within a range that does not significantly depart from the scope of the present disclosure as judged by a person having skilled technical knowledge.
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-A LTE-Advanced
  • NR NR
  • FIG. 1 is a time-frequency domain of a wireless communication system such as Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced (LTE-A), NR or similar according to an embodiment of the present disclosure; It is a diagram showing the transmission structure.
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-A LTE-Advanced
  • NR NR
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain
  • the basic unit of a resource is a resource element (Resource Element, RE, 1-01) as 1 OFDM (Orthogonal Frequency Division Multiplexing) symbol (1-02) on the time axis and 1 subcarrier on the frequency axis (Subcarrier) ( 1-03) can be defined.
  • REs Resource Element
  • Subcarrier subcarrier
  • consecutive REs may constitute one resource block (Resource Block, RB, 1-04).
  • a plurality of OFDM symbols may constitute one subframe (One subframe, 1-10).
  • FIG. 2 is a view showing a frame, subframe, slot structure in 5G (5 th generation), according to one embodiment of the present disclosure.
  • one frame is composed of one or more subframes (Subframe, 2-01), and one subframe is composed of one or more slots (Slot, 2-02).
  • one frame (2-00) may be defined as 10 ms.
  • One subframe 2-01 may be defined as 1 ms, and in this case, one frame 2-00 may consist of a total of 10 subframes 2-01.
  • One subframe (2-01) may consist of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per one subframe (2-01) may be different depending on the set value ⁇ (2-04, 2-05) for the subcarrier spacing.
  • 0 (2-04)
  • each subcarrier spacing setting ⁇ and may be defined as in [Table 1] below.
  • one component carrier (CC) or serving cell may be configured with up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth (serving cell bandwidth) like LTE, the power consumption of the terminal may be extreme, and in order to solve this, the base station sets one or more bandwidth parts (BWP) to the terminal Thus, it is possible to support the UE to change the reception area within the cell.
  • the base station may set 'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through a master information block (MIB).
  • MIB master information block
  • the base station may set the initial BWP (first BWP) of the terminal through RRC signaling, and notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI). Thereafter, the base station may indicate which band the terminal uses by announcing the BWP ID through DCI. If the UE does not receive DCI in the currently allocated BWP for a specific time or longer, the UE returns to the 'default BWP' and attempts to receive DCI.
  • first BWP initial BWP
  • DCI downlink control information
  • FIG 3 is a diagram illustrating an example of a configuration of a bandwidth part (BWP) in a wireless communication system according to an embodiment of the present disclosure.
  • BWP bandwidth part
  • FIG. 3 shows an example in which the terminal bandwidth 3-00 is set to two bandwidth parts, that is, a bandwidth part #1(3-05) and a bandwidth part #2(3-10).
  • the base station may set one or more bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
  • BWP :: SEQUENCE ⁇ bwp-ID BWP-Id, (bandwidth part identifier) locationAndBandwidth INTEGER (1..65536), (Bandwidth part location) subcarrierSpacing ENUMERATED ⁇ n0, n1, n2, n3, n4, n5 ⁇ , (subcarrier spacing) cyclicPrefix ENUMERATED ⁇ extended ⁇ (circular transposition) ⁇
  • various parameters related to the bandwidth portion may be set in the terminal.
  • the above-described information may be transmitted by the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling, or may be dynamically transmitted through a MAC control element (MAC CE) or DCI.
  • MAC CE MAC control element
  • the terminal before the RRC (Radio Resource Control) connection may receive an initial bandwidth part (Initial BWP) for the initial connection from the base station through the MIB (Master Information Block). More specifically, in order for the terminal to receive the system information (Remaining System Information; RMSI or System Information Block 1; may correspond to SIB1) necessary for initial access through the MIB in the initial access step, the PDCCH can be transmitted. It is possible to receive setting information for a control resource set (CORESET) and a search space (Search Space). The control region and the search space set by the MIB may be regarded as identifier (Identity, ID) 0, respectively.
  • identifier Identity, ID
  • the base station may notify the terminal of configuration information such as frequency allocation information, time allocation information, and numerology for the control region #0 through the MIB.
  • the base station may notify the UE of configuration information on the monitoring period and occasion for the control region #0, that is, configuration information on the search space #0 through the MIB.
  • the UE may regard the frequency domain set as the control region #0 obtained from the MIB as an initial bandwidth part for initial access.
  • the identifier (ID) of the initial bandwidth part may be regarded as 0.
  • the configuration of the bandwidth part supported by the wireless communication system (eg, 5G or NR system) to which the present disclosure can be applied may be used for various purposes.
  • the bandwidth supported by the terminal when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported by setting the bandwidth portion. For example, in ⁇ Table 2>, the frequency position (setting information 2) of the bandwidth part is set for the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
  • the base station may configure a plurality of bandwidth portions for the terminal. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to an arbitrary terminal, two bandwidth portions may be set to use a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be subjected to frequency division multiplexing (FDM), and when data is transmitted/received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
  • FDM frequency division multiplexing
  • the base station may set bandwidth portions having different sizes of bandwidths to the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits/receives data using the corresponding bandwidth, very large power consumption may be caused. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation in which there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may configure a relatively small bandwidth portion of the terminal, for example, a bandwidth portion of 20 MHz. In the absence of traffic, the UE may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
  • terminals before RRC connection may receive configuration information on the initial bandwidth part through a master information block (MIB) in the initial access stage.
  • MIB master information block
  • the UE is a control region for a downlink control channel through which Downlink Control Information (DCI) for scheduling a System Information Block (SIB) can be transmitted from the MIB of a Physical Broadcast Channel (PBCH) (or a control resource set, Control Resource Set, CORESET) can be set.
  • DCI Downlink Control Information
  • SIB System Information Block
  • PBCH Physical Broadcast Channel
  • the bandwidth of the control region set as the MIB may be regarded as an initial bandwidth part, and the terminal may receive the PDSCH through which the SIB is transmitted through the set initial bandwidth part.
  • the initial bandwidth part may be utilized for other system information (OSI), paging, and random access.
  • OSI system information
  • SS synchronization signal
  • SSB PBCH block
  • the SS/PBCH block may mean a physical layer channel block composed of a primary SS (PSS), a secondary SS (SSS), and a PBCH. More specifically, the SS/PBCH block may be defined as follows.
  • - SSS serves as a reference for downlink time/frequency synchronization, and may provide the remaining cell ID information not provided by PSS. Additionally, it may serve as a reference signal for demodulation of the PBCH.
  • the essential system information may include search space-related control information indicating radio resource mapping information of a control channel, scheduling control information on a separate data channel for transmitting system information, and the like.
  • the SS/PBCH block may consist of a combination of PSS, SSS, and PBCH.
  • One or a plurality of SS/PBCH blocks may be transmitted within 5 ms, and each transmitted SS/PBCH block may be distinguished by an index.
  • the UE may detect the PSS and SSS in the initial access stage and may decode the PBCH.
  • the UE may obtain the MIB from the PBCH, and may receive the control region #0 configured through the MIB.
  • the UE may perform monitoring on the control region #0, assuming that the selected SS/PBCH block and the DMRS (Reference Signal) transmitted in the control region #0 are QCL (Quasi Co Location).
  • System information may be received through downlink control information transmitted in region #0.
  • the UE may obtain RACH (Random Access Channel) related configuration information required for initial access from the received system information.
  • RACH Random Access Channel
  • PRACH Physical RACH
  • the base station receiving the PRACH may obtain information on the SS/PBCH block index selected by the UE. It can be seen that a certain block is selected from among them, and the UE monitors the control region #0 corresponding to (or associated with) the selected SS/PBCH block.
  • DCI downlink control information
  • 5G or NR system a wireless communication system
  • Uplink data (or physical uplink data channel (Physical Uplink Shared Channel, PUSCH)) or downlink data (or physical downlink data channel (Physical Downlink Shared Channel, PDSCH)) in a next-generation mobile communication system (5G or NR system)
  • Scheduling information may be transmitted from the base station to the terminal through DCI.
  • the UE may monitor the DCI format for fallback and the DCI format for non-fallback for PUSCH or PDSCH.
  • the fallback DCI format may consist of a fixed field predetermined between the base station and the terminal, and the non-fallback DCI format may include a configurable field.
  • DCI may be transmitted through a physical downlink control channel (PDCCH), which is a physical downlink control channel, through a channel coding and modulation process.
  • a cyclic redundancy check (CRC) may be attached to the DCI message payload, and the CRC may be scrambled with a Radio Network Temporary Identifier (RNTI) corresponding to the identity of the terminal.
  • RNTI Radio Network Temporary Identifier
  • different RNTIs may be used for scrambling of the CRC attached to the payload of the DCI message. That is, the RNTI may not be explicitly transmitted, but may be transmitted while being included in the CRC calculation process.
  • the UE may check the CRC using the allocated RNTI. If the CRC check result is correct, the terminal can know that the corresponding message has been transmitted to the terminal.
  • DCI scheduling PDSCH for system information may be scrambled with SI-RNTI.
  • DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI.
  • DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI.
  • DCI notifying SFI Slot Format Indicator
  • DCI notifying Transmit Power Control TPC
  • DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (Cell RNTI).
  • DCI format 0_0 may be used as a fallback DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 0_0 in which CRC is scrambled with C-RNTI may include information as shown in [Table 3] below.
  • DCI format 0_1 may be used as a non-fallback DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 0_1 in which CRC is scrambled with C-RNTI may include information as shown in [Table 4] below.
  • ⁇ 0 bit if only resource allocation type 0 is configured; ⁇ 1 bit otherwise.
  • ⁇ 0 bit if only resource allocation type 0 is configured; ⁇ 1 bit otherwise.
  • - Modulation and coding scheme - 5 bits - New data indicator - 1bit - Redundancy version - 2 bits - HARQ process number - 4 bits - 1st downlink assignment index (first downlink assignment index) - 1 or 2 bits ⁇ 1 bit for semi-static HARQ-ACK codebook (in case of semi-static HARQ-ACK codebook); ⁇ 2 bit for dynamic HARQ-ACK codebook with single HARQ-ACK codebook (when dynamic HARQ-ACK codebook is used together with single HARQ-ACK codebook).
  • Second downlink assignment index - 0 or 2 bits ⁇ 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks (when dynamic HARQ-ACK codebook is used together with two HARQ-ACK sub-codebooks); ⁇ 0 bit otherwise.
  • DCI format 1_0 may be used as a fallback DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 1_0 in which CRC is scrambled with C-RNTI may include information as shown in [Table 5] below.
  • DCI formats - [1] bit - Frequency domain resource assignment - [ ] bits - Time domain resource assignment - X bits - VRB-to-PRB mapping - 1 bit.
  • - Modulation and coding scheme - 5 bits - New data indicator - 1 bit - Redundancy version - 2 bits - HARQ process number - 4 bits - Downlink assignment index - 2 bits - TPC command for scheduled PUCCH - [2] bits - PUCCH resource indicator (physical uplink control channel, PUCCH) resource indicator - 3 bits - PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ feedback timing indicator - [3] bits
  • DCI format 1_0 may be used as DCI for scheduling PDSCH for RAR message, and in this case, CRC may be scrambled with RA-RNTI.
  • DCI format 1_0 in which CRC is scrambled with C-RNTI may include information as shown in [Table 6] below.
  • DCI format 1_1 may be used as a non-fallback DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 1_1 in which CRC is scrambled with C-RNTI may include information as shown in [Table 7] below.
  • PRB bundling size indicator (physical resource block bundling size indicator) - 0 or 1 bit - Rate matching indicator - 0, 1, or 2 bits - ZP CSI-RS trigger (zero power channel state information reference signal trigger) - 0, 1, or 2 bits
  • FIG. 4 is a diagram illustrating an example of setting a control region of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an embodiment of a control region (Control Resource Set, CORESET) through which a downlink control channel is transmitted in a wireless communication system according to an embodiment of the present disclosure.
  • CORESET Control Resource Set
  • FIG. 4 shows two control regions (control region #1 (4-01) in one slot (4-20) on a time axis and a bandwidth part (UE bandwidth part) of the terminal on the frequency axis (4-10). ), control area #2 (4-02)) is set.
  • the control regions 4-01 and 4-02 may be set in a specific frequency resource 4-03 within the entire terminal bandwidth part 4-10 on the frequency axis.
  • the control regions 4-01 and 4-02 may be set with one or a plurality of OFDM symbols on the time axis, which may be defined as a control region length (Control Resource Set Duration, 4-04).
  • the control region #1 (4-01) may be set to a control region length of 2 symbols
  • the control region #2 (4-02) may be set to a control region length of 1 symbol.
  • a control region in a wireless communication system (5G or NR system) to which the present disclosure can be applied the base station provides upper layer signaling to the terminal (eg, system information (System Information), MIB (Master Information Block), RRC (Radio Resource Control)) signaling).
  • Setting the control region to the terminal means providing information such as a control region identifier (Identity), a frequency position of the control region, and a symbol length of the control region.
  • the setting of the control area may include information as shown in [Table 8] below.
  • ControlResourceSet SEQUENCE ⁇ -- Corresponds to L1 parameter 'CORESET-ID' controlResourceSetId ControlResourceSetId, ⁇ control area identifier (Identity) ⁇ frequencyDomainResources BIT STRING (SIZE (45)), (frequency axis resource allocation information) duration INTEGER (1..maxCoReSetDuration), (Time axis resource allocation information) cce-REG-MappingType CHOICE ⁇ (CCE-to-REG mapping method) interleaved SEQUENCE ⁇ reg-BundleSize ENUMERATED ⁇ n2, n3, n6 ⁇ , (REG bundle size) precoderGranularity ENUMERATED ⁇ sameAsREG-bundle, allContiguousRBs ⁇ , interleaverSize ENUMERATED ⁇ n2, n3, n6 ⁇ , (interleaver size) shiftIndex INTEGER (0..maxNrofPhysicalResourceBlocks-1) (
  • tci-StatesPDCCH (hereinafter referred to as 'TCI state') configuration information is one or a plurality of SSs (Synchronization) that are in a Quasi Co Located (QCL) relationship with DMRS (Demodulation Reference Signal) transmitted in the corresponding control region. Signal)/Physical Broadcast Channel (PBCH) block index or CSI-RS (Channel State Information Reference Signal) index information.
  • SSs Synchroms
  • QCL Quasi Co Located
  • DMRS Demodulation Reference Signal
  • PBCH Physical Broadcast Channel
  • CSI-RS Channel State Information Reference Signal
  • one or more different antenna ports (or one or more channels, signals, and combinations thereof may be replaced, but in the description of the present disclosure in the future, for convenience, different antenna ports will be referred to) They may be associated with each other by QCL settings as shown in [Table 9] below.
  • QCL-Info :: SEQUENCE ⁇ cell ServCellIndex (Serving cell index to which QCL reference RS is transmitted) bwp-Id BWP-Id (bandwidth partial index over which QCL reference RS is transmitted) referenceSignal CHOICE ⁇ (Indicator indicating one of CSI-RS or SS/PBCH block as QCL reference RS) csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index ⁇ , qcl-Type ENUMERATED ⁇ typeA, typeB, typeC, type D ⁇ , (QCL type indicator) ... ⁇
  • the QCL setting can connect two different antenna ports (QCL) in a relationship between a target antenna port and a (QCL) reference antenna port, and the terminal can perform statistical characteristics (eg, For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, and spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal) are set to the target antenna port. It can be applied (or assumed) upon reception.
  • the target antenna port refers to an antenna port for transmitting a channel or signal set by a higher layer setting including the QCL setting, or an antenna port for transmitting a channel or signal to which a TCI state indicating the QCL setting is applied.
  • the reference antenna port may mean an antenna port for transmitting a channel or signal indicated (specific) by the referenceSignal parameter in the QCL configuration.
  • the statistical characteristics of the channel defined by the QCL setting may be classified according to the QCL type as follows.
  • QCL-TypeA indicates that the bandwidth and transmission period of the target antenna port are both sufficient compared to the reference antenna port (that is, the number of samples and the transmission band/time of the target antenna port on both the frequency axis and the time axis are the number of samples and transmission of the reference antenna port. More than band/time) This is a QCL type used when all statistical properties that can be measured in frequency and time axes can be referenced.
  • QCL-TypeB is a QCL type used when the bandwidth of the target antenna port is sufficient to measure measurable statistical characteristics on the frequency axis, that is, Doppler shift and Doppler spreads.
  • QCL-TypeC is a QCL type used when the bandwidth and transmission period of the target antenna port are insufficient to measure second-order statistics, that is, Doppler spread and delay spreads, so that only first-order statistics, that is, Doppler shift and average delay, can be referred to.
  • QCL-TypeD is a QCL type set when spatial reception filter values used when receiving a reference antenna port can be used when receiving a target antenna port.
  • the base station prefferably set or instruct up to two QCL settings to one target antenna port through the TCI state setting as shown in Table 10 below.
  • TCI-State SEQUENCE ⁇ tci-StateId TCI-StateID, (TCI state indicator) qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied) qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, --Need R ... ⁇
  • the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC.
  • the settable QCL type is specified according to the types of the target antenna port and the reference antenna port, and will be described in detail below.
  • the second QCL setting among the two QCL settings included in the one TCI state setting may be set to QCL-TypeD, and may be omitted in some cases.
  • Tables 11 to 15 below are tables showing valid TCI state settings according to target antenna port types.
  • Table 11 shows the valid TCI state configuration when the target antenna port is CSI-RS for tracking (TRS).
  • TRS refers to an NZP CSI-RS in which a repetition parameter is not set among CSI-RSs and trs-Info is set to true. In the case of setting 3 in Table 11, it can be used for aperiodic TRS.
  • Table 12 shows the valid TCI state configuration when the target antenna port is CSI-RS for CSI.
  • the CSI-RS for CSI means an NZP CSI-RS in which the repetition parameter is not set and trs-Info is not set to true among the CSI-RSs.
  • Table 13 shows the effective TCI state configuration when the target antenna port is CSI-RS for beam management (BM, the same meaning as CSI-RS for L1 RSRP reporting).
  • the CSI-RS for BM means an NZP CSI-RS in which a repetition parameter is set among CSI-RSs, has a value of On or Off, and trs-Info is not set to true.
  • One TRS QCL-TypeA TRS (same as DL RS1)
  • QCL-TypeD 2 TRS
  • QCL-TypeA CSI-RS (BM) QCL-TypeD 3 SS/PBCHBlock
  • QCL-TypeC SS/PBCH Block
  • Table 14 shows the valid TCI state configuration when the target antenna port is a PDCCH DMRS.
  • Table 15 shows the valid TCI state configuration when the target antenna port is a PDSCH DMRS.
  • the target antenna port and the reference antenna port for each step are set to "SSB" -> "TRS” -> "CSI-RS for CSI, or CSI-RS for BM, or PDCCH DMRS. , or PDSCH DMRS".
  • FIG. 5 is a diagram for explaining the structure of a downlink control channel of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel that can be used in 5G according to an embodiment of the present disclosure.
  • a basic unit of time and frequency resources constituting a control channel may be defined as a resource element group (REG) 503 .
  • the REG 503 may be defined as 1 OFDM symbol 501 on the time axis and 1 Physical Resource Block (PRB) 502 on the frequency axis, that is, 12 subcarriers.
  • the base station may configure a downlink control channel allocation unit by concatenating the REG 503 .
  • one CCE 504 may be composed of a plurality of REGs 503 .
  • the REG 503 shown in FIG. 5 may be composed of 12 REs, and if 1 CCE 504 is composed of 6 REGs 503, 1 CCE 504 is composed of 72 REs.
  • the corresponding region may be composed of a plurality of CCEs 504, and a specific downlink control channel is configured with one or a plurality of CCEs 504 according to an aggregation level (AL) in the control region. It can be mapped and transmitted.
  • the CCEs 504 in the control region are divided by numbers, and in this case, the numbers of the CCEs 5-04 may be assigned according to a logical mapping method.
  • the basic unit of the downlink control channel shown in FIG. 5 may include both REs to which DCI is mapped and a region to which the DMRS 505 , which is a reference signal for decoding them, is mapped. As in FIG. 5 , three DMRSs 505 may be transmitted within one REG 503 .
  • a search space representing a set of CCEs may be defined.
  • the search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level. Since there are various aggregation levels that make one bundle with 1, 2, 4, 8, and 16 CCEs, the UE may have a plurality of search spaces.
  • a search space set may be defined as a set of search spaces in all set aggregation levels.
  • the search space may be classified into a common search space and a UE-specific search space.
  • a group of terminals or all terminals may search the common search space of the PDCCH in order to receive cell-common control information such as dynamic scheduling for system information or a paging message.
  • the UE may receive PDSCH scheduling assignment information for transmission of SIB including operator information of a cell by examining the common search space of the PDCCH.
  • the common search space since a certain group of terminals or all terminals must receive the PDCCH, the common search space may be defined as a set of predefined CCEs.
  • the UE may receive scheduling assignment information for UE-specific PDSCH or PUSCH by examining UE-specific search space of PDCCH.
  • the UE-specific search space may be UE-specifically defined as a function of the UE's identity and various system parameters.
  • the parameter for the search space for the PDCCH may be set from the base station to the terminal by higher layer signaling (eg, SIB, MIB, RRC signaling).
  • the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), A combination of DCI format and RNTI to be monitored in the corresponding search space, a control region index to be monitored in the search space, etc. may be set to the UE.
  • the setting may include information as shown in [Table 16] below.
  • SearchSpace :: SEQUENCE ⁇ -- Identity of the search space.
  • SearchSpaceId 0 identifies the SearchSpace configured via PBCH (MIB) or ServingCellConfigCommon.
  • searchSpaceId SearchSpaceId, (search space identifier) controlResourceSetId ControlResourceSetId, (control area identifier) monitoringSlotPeriodicityAndOffset CHOICE ⁇ (Monitoring slot level cycle) s11 NULL, s12 INTEGER (0..1), s14 INTEGER (0..3), s15 INTEGER (0..4), s18 INTEGER (0..7), s110 INTEGER (0..9) s116 INTEGER (0..15), s120 INTEGER (0..19) ⁇ duration (monitoring length) INTEGER (2.2.2559) monitoringSymbolsWithinSlot BIT STRING (SIZE (14)) (Monitoring symbol in slot) nrofCandidates SEQUENCE ⁇ (Number
  • SEQUENCE ⁇ (Common Search Space) ⁇ ue-specific SEQUENCE ⁇ (terminal-specific search space) -- Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1. formats ENUMERATED ⁇ formats 0-0-And-1-0, formats 0-1-And-1-1 ⁇ , ... ⁇
  • the base station may configure one or a plurality of search space sets for the terminal.
  • the base station may set the search space set 1 and the search space set 2 to the terminal, and the DCI format A scrambled with X-RNTI in the search space set 1 may be configured to be monitored in the common search space.
  • DCI format B scrambled with Y-RNTI in search space set 2 may be configured to be monitored in a UE-specific search space.
  • one or a plurality of search space sets may exist in the common search space or the terminal-specific search space.
  • the search space set #1 and the search space set #2 may be set as the common search space
  • the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
  • the common search space may be classified into a search space set of a specific type according to a purpose.
  • An RNTI to be monitored may be different for each type of a determined search space set.
  • the common search space type, purpose, and RNTI to be monitored can be classified as shown in Table 17 below.
  • a combination of the following DCI format and RNTI may be monitored.
  • DCI format a combination of the following DCI format and RNTI.
  • RNTI a combination of the following DCI format and RNTI.
  • the specified RNTIs may follow the following definitions and uses.
  • C-RNTI Cell RNTI
  • Cell RNTI UE-specific PDSCH scheduling purpose
  • TC-RNTI Temporal Cell RNTI
  • CS-RNTI Configured Scheduling RNTI
  • RA-RNTI Random Access RNTI
  • P-RNTI Paging RNTI
  • SI-RNTI System Information RNTI
  • INT-RNTI Used to inform whether pucturing for PDSCH
  • TPC-PUSCH-RNTI Transmit Power Control for PUSCH RNTI
  • TPC-PUCCH-RNTI Used to indicate power control command for PUCCH
  • TPC-SRS-RNTI For instructing power control commands for SRS
  • DCI formats may be defined as shown in [Table 18] below.
  • a plurality of search space sets may be set with different parameters (eg, parameters in [Table 10]). Accordingly, the set of search space sets monitored by the terminal at every time point may be different. For example, if the search space set #1 is set to the X-slot period, the search space set #2 is set to the Y-slot period and X and Y are different, the UE searches with the search space set #1 in a specific slot. All of the space set #2 can be monitored, and one of the search space set #1 and the search space set #2 can be monitored in a specific slot.
  • the following conditions may be considered in order to determine the search space set to be monitored by the terminal.
  • M ⁇ may be defined as the maximum number of PDCCH candidates per slot in a cell set to a subcarrier interval of 15 ⁇ 2 ⁇ kHz, and may be defined as shown in [Table 19] below.
  • the number of CCEs constituting the entire search space per slot may not exceed C ⁇ .
  • C ⁇ may be defined as the maximum number of CCEs per slot in a cell set to a subcarrier spacing of 15 ⁇ 2 ⁇ kHz, and may be defined as shown in [Table 20] below.
  • condition A a situation in which both conditions 1 and 2 are satisfied at a specific time point may be exemplarily defined as “condition A”. Accordingly, not satisfying condition A may mean not satisfying at least one of conditions 1 and 2 described above.
  • condition A may not be satisfied at a specific time point. If condition A is not satisfied at a specific time point, the UE may select and monitor only some of the search space sets configured to satisfy condition A at the corresponding time point, and the base station may transmit the PDCCH to the selected search space set.
  • the following method may be used as a method of selecting a partial search space from among all set search space sets.
  • condition A for PDCCH is not satisfied at a specific time point (slot).
  • the terminal may preferentially select a search space set in which a search space type is set as a common search space from among search space sets existing at a corresponding time, over a search space set set as a terminal-specific search space.
  • the terminal uses the terminal-specific search space You can select search space sets set to .
  • a search space set having a low search space set index may have a higher priority.
  • the terminal or the base station may select terminal-specific search space sets within a range in which condition A is satisfied.
  • frequency domain resource allocation In a wireless communication system (5G system or NR system) to which the present disclosure can be applied, in addition to frequency axis resource candidate allocation through BWP indication, the following detailed frequency domain resource allocation method (frequency domain resource allocation, FD-RA) ) can be provided.
  • FIG. 6 is a diagram illustrating an example of allocation of a frequency axis resource of a physical downlink shared channel (PDSCH) in a wireless communication system according to an embodiment of the present disclosure.
  • PDSCH physical downlink shared channel
  • FIG. 6 shows three frequency axis resource allocation: type 0 (6-00), type 1 (6-05), and dynamic switch (6-10) configurable through a higher layer in the NR system. It is a drawing showing the methods.
  • NRBG means the number of RBGs (resource block groups) determined as shown in [Table 21] below according to the BWP size allocated by the BWP indicator and the upper layer parameter rbg-Size, according to the bitmap. Data is transmitted to the RBG indicated by 1.
  • the base station can set the starting VRB (6-20) and the length (6-25) of frequency-axis resources continuously allocated therefrom.
  • some DCI for allocating PDSCH to the UE payload (6-15) for setting resource type 0 It has frequency axis resource allocation information consisting of bits of a larger value (6-35) among payloads (6-20, 6-25) for setting resource type 1 and. Conditions for this will be described again later.
  • one bit may be added to the first part (MSB) of the frequency axis resource allocation information in DCI, and when the bit is 0, it indicates that resource type 0 is used, and when it is 1, it indicates that resource type 1 is used.
  • next-generation mobile communication system 5G or NR system
  • the base station provides a table for time domain resource allocation information for a downlink data channel (Physical Downlink Shared Channel, PDSCH) and an uplink data channel (Physical Uplink Shared Channel, PUSCH) to the terminal, and higher layer signaling (e.g. For example, RRC signaling) can be set.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • higher layer signaling e.g. For example, RRC signaling
  • the time domain resource allocation information includes the PDCCH-to-PDSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PDSCH scheduled by the received PDCCH is transmitted, denoted by K0. ), PDCCH-to-PUSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PUSCH scheduled by the received PDCCH is transmitted, denoted by K2), the PDSCH or PUSCH within the slot Information on the position and length of the scheduled start symbol, a mapping type of PDSCH or PUSCH, etc. may be included. For example, information such as [Table 22] or [Table 23] below may be notified from the base station to the terminal.
  • the base station may notify one of the entries in the table for the above-described time domain resource allocation information to the terminal through L1 signaling (eg, DCI) (eg, to be indicated by the 'time domain resource allocation' field in DCI) can).
  • L1 signaling eg, DCI
  • the UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
  • FIG. 7 is a diagram illustrating an example of time axis resource allocation of a PDSCH in a wireless communication system according to an embodiment of the present disclosure.
  • the base station has a subcarrier spacing (SCS) of a data channel and a control channel configured by using a higher layer ( , ), a scheduling offset (K 0 ) value, and an OFDM symbol start position (7-00) and length (7-05) in one slot dynamically indicated through DCI, the time axis position of the PDSCH resource can direct
  • FIG 8 is a diagram illustrating an example of time-base resource allocation according to subcarrier intervals of a data channel and a control channel in a wireless communication system according to an embodiment of the present disclosure.
  • the process of transmitting control information through the PDCCH may be expressed as transmitting the PDCCH
  • the process of transmitting data through the PDSCH may be expressed as transmitting the PDSCH.
  • the list of TCI states for each CORESET may be indicated through the upper layer list such as RRC (9-00).
  • the list of TCI states may be indicated by tci-StatesPDCCH-ToAddList and/or tci-StatesPDCCH-ToReleaseList of [Table 8].
  • one of the list of the TCI states set for each CORESET may be activated through MAC-CE (9-20).
  • (9-50) shows an example of a MAC-CE structure for TCI state activation of the PDCCH. do.
  • the meaning of each field in the MAC CE and possible values for each field are as follows.
  • the list of TCI state for PDSCH may be indicated through a higher layer list such as RRC (10-00).
  • the list of TCI states may be indicated by, for example, tci-StatesToAddModList and/or tci-StatesToReleaseList in PDSCH-Config IE for each BWP.
  • a part of the list of the TCI state may be activated through the MAC-CE (10-20).
  • the maximum number of activated TCI states may be determined according to the capability reported by the UE.
  • (10-50) shows an example of a MAC-CE structure for TCI state activation/deactivation of a Rel-15 based PDSCH.
  • the UE may receive the PDSCH through one beam among the TCI states activated with the MAC-CE based on information of a transmission configuration indication (TCI) field in DCI (10). -40). Whether the TCI field exists is determined by a tci-PresentinDCI value, which is a higher layer parameter in CORESET configured for DCI reception. If tci-PresentinDCI is set to 'enabled' in the upper layer, the UE checks the TCI field of 3 bits information to determine the TCI states activated in the DL BWP or the scheduled component carrier and the direction of the beam linked to the DL-RS can do.
  • TCI transmission configuration indication
  • the terminal has a procedure of reporting the capability supported by the terminal to the corresponding base station in a state in which it is connected to the serving base station.
  • UE capability reporting
  • the base station may transmit a UE capability enquiry message for requesting capability report to the terminal in the connected state.
  • the base station may include a UE capability request for each RAT type.
  • the request for each RAT type may include requested frequency band information.
  • the UE capability enquiry message may request a plurality of RAT types in one RRC message container, or may include a UE capability enquiry message including a request for each RAT type a plurality of times and deliver it to the UE. That is, the UE capability enquiry is repeated a plurality of times, and the UE may configure a corresponding UE capability information message and report it a plurality of times.
  • a terminal capability request for MR-DC including NR, LTE, and EN-DC may be made.
  • the UE capability enquiry message is generally sent initially after the UE establishes a connection, but it can be requested by the base station under any conditions when necessary.
  • the terminal receiving the UE capability report request from the base station configures the terminal capability according to the RAT type and band information requested from the base station.
  • the UE configures a band combination (BC) for EN-DC and NR stand alone (SA). That is, a candidate list of BC for EN-DC and NR SA is constructed based on the bands requested by the base station with FreqBandList. In addition, the priorities of the bands have priorities in the order described in the FreqBandList.
  • BC band combination
  • SA stand alone
  • the base station requests a UE capability report by setting the “eutra-nr-only” flag or “eutra” flag, the UE completely removes NR SA BCs from the configured BC candidate list. This operation may occur only when an LTE base station (eNB) requests “eutra” capability.
  • eNB LTE base station
  • fallback BC corresponds to a case in which a band corresponding to at least one SCell is removed from a certain super set BC, and since the super set BC can already cover the fallback BC, it can be omitted.
  • This step also applies to MR-DC, ie LTE bands are also applied.
  • the BCs remaining after this step are the final “candidate BC list”.
  • the UE selects BCs that match the requested RAT type from the final “candidate BC list” and selects BCs to report.
  • the UE configures the supportedBandCombinationList in the predetermined order. That is, the UE configures the BC and UE capability to be reported according to the preset rat-Type order (nr -> eutra-nr -> eutra). Also, configure featureSetCombination for the configured supportedBandCombinationList, and compose a list of “candidate feature set combination” from the candidate BC list from which the list for fallback BC (including capability of the same or lower level) has been removed.
  • the above “candidate feature set combination” includes both feature set combinations for NR and EUTRA-NR BC, and can be obtained from the feature set combination of UE-NR-Capabilities and UE-MRDC-Capabilities containers.
  • featureSetCombinations is included in both containers of UE-MRDC-Capabilities and UE-NR-Capabilities.
  • the feature set of NR includes only UE-NR-Capabilities.
  • the terminal After the terminal capability is configured, the terminal transmits the UE capability information message including the UE capability to the base station.
  • the base station then performs scheduling and transmission/reception management appropriate for the corresponding terminal based on the UE capability received from the terminal.
  • FIG. 11 is a diagram illustrating a radio protocol structure of a base station and a terminal in a single cell, carrier aggregation, and dual connectivity situation according to an embodiment of the present disclosure.
  • the radio protocol of the next-generation mobile communication system is NR SDAP (Service Data Adaptation Protocol S25, S70), NR PDCP (Packet Data Convergence Protocol S30, S65), NR RLC (Radio Link Control) in the terminal and the NR base station, respectively.
  • a main function of the NR SDAP may include some of the following functions.
  • the UE can receive a configuration of whether to use the header of the SDAP layer device or the function of the SDAP layer device for each PDCP layer device, for each bearer, or for each logical channel with an RRC message, and the SDAP header If is set, the UE uses the uplink and downlink QoS flow and data bearer mapping information with the NAS QoS reflection setting 1-bit indicator (NAS reflective QoS) and the AS QoS reflection setting 1-bit indicator (AS reflective QoS) of the SDAP header. can be instructed to update or reset .
  • the SDAP header may include QoS flow ID information indicating QoS.
  • the QoS information may be used as data processing priority and scheduling information to support a smooth service.
  • the main function of the NR PDCP may include some of the following functions.
  • the reordering function of the NR PDCP device refers to a function of reordering PDCP PDUs received from a lower layer in order based on a PDCP sequence number (SN), and a function of delivering data to a higher layer in the reordered order.
  • SN PDCP sequence number
  • the main function of the NR RLC may include some of the following functions.
  • the in-sequence delivery function of the NR RLC device refers to a function of sequentially delivering RLC SDUs received from a lower layer to an upper layer, and an original RLC SDU is divided into several RLC SDUs and received. , it may include a function of reassembling it and delivering it, and may include a function of rearranging the received RLC PDUs based on an RLC sequence number (SN) or PDCP SN (sequence number), and rearranging the order It may include a function of recording the lost RLC PDUs, a function of reporting a status on the lost RLC PDUs to the transmitting side, and a function of requesting retransmission of the lost RLC PDUs.
  • SN RLC sequence number
  • PDCP SN packet data convergence protocol
  • RLC SDU may include a function of sequentially delivering only RLC SDUs before the lost RLC SDU to the upper layer, or if a predetermined timer expires even if there is a lost RLC SDU It may include a function of sequentially delivering all RLC SDUs received before the start of RLC to the upper layer, or if a predetermined timer expires even if there are lost RLC SDUs, all RLC SDUs received so far are sequentially transferred to the upper layer. It may include a function to transmit.
  • the RLC PDUs may be processed in the order in which they are received (in the order of arrival, regardless of the sequence number and sequence number) and delivered to the PDCP device out of sequence (out-of sequence delivery). Segments stored in the buffer or to be received later are received, reconstructed into one complete RLC PDU, processed and delivered to the PDCP device.
  • the NR RLC layer may not include a concatenation function, and the function may be performed in the NR MAC layer or replaced with a multiplexing function of the NR MAC layer.
  • the out-of-sequence delivery function of the NR RLC device refers to a function of directly delivering RLC SDUs received from a lower layer to a higher layer regardless of order, and one RLC SDU originally has several RLCs.
  • it may include a function of reassembling and delivering it, and may include a function of storing the RLC SN or PDCP SN of the received RLC PDUs, arranging the order, and recording the lost RLC PDUs.
  • the NR MAC (S40, S55) may be connected to several NR RLC layer devices configured in one terminal, and the main function of the NR MAC may include some of the following functions.
  • the NR PHY layer (S45, S50) channel-codes and modulates the upper layer data, makes an OFDM symbol and transmits it to the radio channel, or demodulates the OFDM symbol received through the radio channel, decodes the channel, and transmits the operation to the upper layer.
  • the detailed structure of the radio protocol structure may be variously changed according to a carrier (or cell) operating method.
  • a carrier or cell
  • the base station and the terminal use a protocol structure having a single structure for each layer, such as S00.
  • the base station transmits data to the terminal based on CA (carrier aggregation) using multiple carriers in a single TRP the base station and the terminal have a single structure up to RLC like S10, but a protocol for multiplexing the PHY layer through the MAC layer structure will be used.
  • the base station and the terminal have a single structure up to RLC like S20, but the PHY layer through the MAC layer A protocol structure for multiplexing is used.
  • the PDCCH reception performance may be deteriorated and the UE may not properly receive downlink control information.
  • a default beam configuration for PDCCH reception may be considered. After the initial access, the UE did not receive one or more TCI state settings through higher layer signaling for CORESET except CORESET 0, or received one or more TCI state settings through higher layer signaling, but MAC-CE for a specific TCI state If activation is not performed through , a basic beam for PDCCH reception may be configured.
  • the DM-RS used for PDCCH reception may consider a basic beam for PDCCH reception in a manner that assumes that the terminal is in a QCL relationship with the SSB selected at the time of initial access.
  • the UE did not receive one or more TCI state settings through higher layer signaling for CORESET except CORESET 0, or received one or more TCI state settings through higher layer signaling.
  • a basic beam for PDCCH reception may be configured.
  • the DM-RS used for PDCCH reception may consider a basic beam of PDCCH reception by assuming that it has a QCL relationship with the SSB selected in the random access process performed during synchronization reconfiguration. If the UE is not instructed to activate the TCI state through MAC-CE after the most recently performed random access procedure except for contention-free random access triggered by the PDCCH order, the UE is Basic beam configuration for PDCCH reception in CORESET 0 may be performed. At this time, for the basic beam configuration for the PDCCH, the DM-RS used for PDCCH reception is the SSB and QCL selected from the most recently performed random access procedures except for the contention-free random access procedure triggered by the PDCCH order by the UE. A basic beam of PDCCH reception may be considered as a method of assuming a relationship.
  • a problem may occur when the terminal receives downlink data through a plurality of TRPs.
  • the UE may receive up to 5 CORESETs set, and CORESETPoolIndex, which is upper layer signaling, is set for each CORESET, and CORESETs having the same CORESETPoolIndex value are connected to the same TRP It can be assumed that For example, CORESET#1, CORESET#2, and CORESET#3 have 0 as the CORESETPoolIndex value and are connected to TRP#0 and transmitted from TRP#0.
  • the UE can be connected to #1 and transmitted from TRP#1.
  • the UE may assume a QCL relationship with the SSB for CORESET#1 to CORESET#5 reception.
  • a QCL relationship with the SSB can be assumed regardless of a single TRP or a plurality of TRPs, but a transmission beam different from TRP#0 is used.
  • CORESET#4 and CORESET#5 transmitted from TRP#1 which are highly likely to be used, if the default beams set in CORESET#1 to CORESET#3 are identically set using the QCL relationship with the SSB, the CORESET connected to TRP#1 Performance degradation may occur for the reception of the PDCCH transmitted in #4 and CORESET #5.
  • the PDCCH reception performance is guaranteed by providing the PDCCH basic beam configuration and indication method transmitted in the CORESET from each TRP.
  • a method for minimizing the transmission delay time of downlink control information and achieving high reliability is proposed.
  • a detailed PDCCH basic beam configuration method will be described with reference to the following embodiments.
  • TRP transmission reception point
  • the base station is a subject that performs resource allocation of the terminal, and may be at least one of gNode B, gNB, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • computer or a multimedia system capable of performing a communication function.
  • an embodiment of the present disclosure is described below using an NR or LTE/LTE-A system as an example, the embodiment of the present disclosure may be applied to other communication systems having a similar technical background or channel type.
  • the embodiments of the present disclosure may be applied to other communication systems through some modifications within a range that does not significantly depart from the scope of the present disclosure as judged by a person having skilled technical
  • the contents of the present disclosure are applicable to FDD and TDD systems.
  • higher signaling is a signal transmission method in which a base station uses a downlink data channel of a physical layer to a terminal, or from a terminal to a base station using an uplink data channel of a physical layer, It may also be referred to as RRC signaling, PDCP signaling, or MAC (medium access control) control element (MAC control element; MAC CE).
  • RRC signaling PDCP signaling
  • MAC control element MAC control element
  • the PDCCH(s) for allocating the PDSCH to which the cooperative communication is applied has a specific format, or the PDCCH(s) for allocating the PDSCH to which the cooperative communication is applied.
  • PDCCH(s) including a specific indicator indicating whether communication is applied or not, or PDCCH(s) for allocating a PDSCH to which cooperative communication is applied is scrambled with a specific RNTI, or assuming cooperative communication application in a specific section indicated by a higher layer, etc. It is possible to use various methods.
  • an NC-JT case a case in which a UE receives a PDSCH to which cooperative communication is applied based on conditions similar to the above.
  • determining the priority between A and B means selecting one having a higher priority according to a predetermined priority rule and performing an operation corresponding thereto or having a lower priority. It may be mentioned in various ways, such as omit or drop.
  • a wireless communication system (5G or NR system) to which the present disclosure can be applied can support not only a service requiring a high transmission rate, but also a service having a very short transmission delay and a service requiring a high connection density.
  • a plurality of cells, TRP (transmission and reception point), or coordinated transmission between each cell, TRP or / and beam in a wireless communication network including a beam increases the strength of a signal received by the terminal or each cell, It is one of the element technologies that can satisfy various service requirements by efficiently performing TRP and/or inter-beam interference control.
  • Joint transmission is a representative transmission technology for the above-mentioned cooperative communication.
  • one terminal is supported through different cells, TRPs, or/and beams to increase the strength of the signal received by the terminal.
  • TRPs Transmissions
  • MCS Mobility Management Function
  • resource allocation etc.
  • FIG. 12 is a diagram illustrating an example of an antenna port configuration and resource allocation for cooperative communication according to some embodiments in a wireless communication system according to an embodiment of the present disclosure.
  • N000 is an example of coherent joint transmission (C-JT) supporting coherent precoding between each cell, TRP, and/or beam.
  • C-JT coherent joint transmission
  • PDSCH single data
  • TRP A (N005) and TRP B (N010) transmit the same DMRS ports (eg, DMRS ports A and B in both TRPs) for the same PDSCH transmission.
  • the UE may receive one DCI information for receiving one PDSCH demodulated based on DMRS transmitted through DMRS ports A and B.
  • N020 is an example of non-coherent joint transmission (NC-JT) supporting non-coherent precoding between each cell, TRP or/and beam.
  • NC-JT non-coherent joint transmission
  • a PDSCH is transmitted to the UE N035 for each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH.
  • Each cell, TRP or/and beam transmits a different PDSCH to improve throughput compared to single cell, TRP or/and beam transmission, or each cell, TRP or/and beam repeatedly transmits the same PDSCH to transmit a single cell, TRP Alternatively, reliability may be improved compared to beam transmission.
  • the frequency and time resources used by a plurality of TRPs for PDSCH transmission are all the same (N040), when the frequency and time resources used by the plurality of TRPs do not overlap at all (N045), the frequency and time used by the plurality of TRPs Various radio resource allocation may be considered, such as when some of the resources overlap (N050).
  • N050 the frequency and time used by the plurality of TRPs
  • the present disclosure provides a repeated transmission instruction and configuration method for improving NC-JT transmission reliability.
  • DCIs of various types, structures, and relationships may be considered.
  • DCI downlink control information
  • case #1 (N100) is each other in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) in addition to the serving TRP (TRP#0) used for single PDSCH transmission.
  • control information for PDSCH transmitted in (N-1) additional TRPs is in the same format as control information for PDSCH transmitted in serving TRP (same DCI format) This is an example of transmission.
  • the UE uses different TRPs (TRP#0 ⁇ TRP#(N-1)) through DCIs having the same DCI format and the same payload (DCI#0 ⁇ DCI#(N-1)) It is possible to obtain control information for PDSCHs transmitted in .
  • each PDSCH control (allocation) degree of freedom may be completely guaranteed, but when each DCI is transmitted in different TRPs, a coverage difference for each DCI may occur and reception performance may be deteriorated.
  • Case #2 is different (N-1) in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) in addition to the serving TRP (TRP#0) used for single PDSCH transmission.
  • control information for PDSCH transmitted in (N-1) additional TRPs is transmitted in a different format (different DCI format or different DCI payload) from control information for PDSCH transmitted in the serving TRP. This is an example.
  • DCI#0 which is control information for PDSCH transmitted in the serving TRP (TRP#0)
  • TRP#1 includes all information elements of DCI format 1_0 or DCI format 1_1, but cooperative TRP (TRP#1).
  • sDCI shortened DCI
  • DCI format 1_0 or DCI format 1_1 information It can contain only some of the elements.
  • the payload is small compared to normal DCI (nDCI) transmitting PDSCH-related control information transmitted in the serving TRP, or is insufficient compared to nDCI. It is possible to include reserved bits as many as the number of bits.
  • each PDSCH control (allocation) degree of freedom may be limited according to the contents of information elements included in sDCI. It may be less likely to occur.
  • Case #3 (N110) is different (N-1) in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) other than the serving TRP (TRP#0) used for single PDSCH transmission.
  • control information for PDSCH transmitted in (N-1) additional TRPs is transmitted in a different format (different DCI format or different DCI payload) from control information for PDSCH transmitted in the serving TRP. This is an example.
  • DCI#0 which is control information for PDSCH transmitted in the serving TRP (TRP#0)
  • TRP#1 cooperative TRP
  • the sDCI may include at least one of HARQ-related information such as frequency domain resource assignment of cooperative TRPs, time domain resource assignment, and MCS.
  • BWP bandwidth part
  • DCI#0, normal DCI, nDCI DCI#0, normal DCI, nDCI of the serving TRP may be followed.
  • each PDSCH control (allocation) degree of freedom may be limited according to the contents of the information element included in the sDCI, but the reception performance of the sDCI can be adjusted, and compared to case #1 or case #2, the terminal's The complexity of DCI blind decoding may be reduced.
  • Case #4 is different (N-1) in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) in addition to the serving TRP (TRP#0) used for single PDSCH transmission.
  • control information for PDSCH transmitted in (N-1) additional TRPs is transmitted in DCI (long DCI, IDCI), such as control information for PDSCH transmitted in serving TRP. That is, the UE may acquire control information for PDSCHs transmitted in different TRPs (TRP#0 to TRP#(N-1)) through a single DCI.
  • the complexity of DCI blind decoding of the terminal may not increase, but the PDSCH control (allocation) degree of freedom may be low such as the number of cooperative TRPs is limited according to long DCI payload restrictions.
  • sDCI may refer to various auxiliary DCIs, such as shortened DCI, secondary DCI, or normal DCI (DCI format 1_0 to 1_1 described above) including PDSCH control information transmitted in cooperative TRP. If not specified, the description is similarly applicable to the various auxiliary DCIs.
  • case #1, case #2, and case #3 in which one or more DCIs (PDCCHs) are used to support NC-JT are divided into multiple PDCCH-based NC-JTs, and NC-JT
  • case #4 in which a single DCI (PDCCH) is used for JT support can be divided into a single PDCCH-based NC-JT.
  • cooperative TRP may be replaced with various terms such as “cooperative panel” or “cooperative beam” when applied in practice.
  • when NC-JT is applied means "when a terminal receives one or more PDSCHs at the same time in one BWP", "when a terminal receives two or more TCIs (Transmission Configuration) at the same time in one BWP” Indicator) indication based on PDSCH reception", "in case the PDSCH received by the terminal is associated with one or more DMRS port groups", etc., can be interpreted variously according to the situation, but for convenience of explanation, one used as an expression.
  • the radio protocol structure for NC-JT may be used in various ways according to TRP deployment scenarios.
  • a structure based on MAC layer multiplexing similar to S10 of FIG. 11 (CA-like method).
  • CA-like method when the backhaul delay between cooperative TRPs is so large that it cannot be ignored (for example, when time of 2 ms or more is required for information exchange between cooperative TRPs, such as CSI, scheduling, HARQ-ACK, etc.), similarly to S20 of FIG. 11, from the RLC layer It is possible to secure a characteristic strong against delay by using an independent structure for each TRP (DC-like method).
  • CORESET or search space for each TRP can be set as at least one of the following cases.
  • the CORESET setting information set as the upper layer may include an index value, and the TRP for transmitting the PDCCH from the corresponding CORESET may be distinguished by the set index value for each CORESET. That is, in a set of CORESETs having the same higher layer index value, it may be considered that the same TRP transmits a PDCCH or that a PDCCH scheduling a PDSCH of the same TRP is transmitted.
  • the above-described index for each CORESET may be named as CORESETPoolIndex, and it may be considered that the PDCCH is transmitted from the same TRP for CORESETs in which the same CORESETPoolIndex value is set. In the case of CORESET in which the CORESETPoolIndex value is not set, it may be considered that the default value of CORESETPoolIndex is set, and the above-described default value may be 0.
  • each PDCCH-Config may include a PDCCH configuration for each TRP. That is, a list of CORESETs per TRP and/or a list of search spaces per TRP may be configured in one PDCCH-Config, and one or more CORESETs and one or more search spaces included in one PDCCH-Config are considered to correspond to a specific TRP. can do.
  • TRP corresponding to the corresponding CORESET can be distinguished through a beam or beam group set for each CORESET.
  • the CORESETs may be considered to be transmitted through the same TRP, or it may be considered that the PDCCH scheduling the PDSCH of the same TRP is transmitted from the corresponding CORESETs.
  • a beam or beam group is configured for each search space, and TRP for each search space can be distinguished through this. For example, if the same beam/beam group or TCI state is configured in multiple search spaces, it can be considered that the same TRP transmits a PDCCH or that a PDCCH scheduling a PDSCH of the same TRP is transmitted in the corresponding search space. have.
  • the UE When the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required, the UE receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set.
  • the TCI state corresponding to the lowest index among the one or more TCI states preset in ? may be set as the default beam when receiving the PDCCH in each CORESET.
  • CORESETPoolIndex corresponding to #1 may be set as the default beam for PDCCH reception in all CORESETs configured.
  • the terminal receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set
  • the TCI state corresponding to the lowest index among the TCI states preset in all CORESETs in which the CORESETPoolIndex corresponding to TRP#1 is set is set to TRP#1.
  • the corresponding CORESETPoolIndex may be set as the default beam for PDCCH reception in all CORESETs configured.
  • FIG. 14 is a diagram illustrating an example of configuring a PDCCH basic beam in consideration of a plurality of TRPs according to an embodiment of the present disclosure.
  • the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (14-00)
  • the UE receives the PDCCH in the CORESET in which the CORESETPoolIndex corresponding to TRP#0 is set (14-05)
  • SSB We can assume a QCL relationship with (14-25).
  • the UE does not receive one or more TCI state settings through higher layer signaling for CORESETs in which CORESETPoolIndex corresponding to TRP#0 is set except for CORESET 0, or one or more TCI state settings through higher layer signaling
  • a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set may be set.
  • the DM-RS used for PDCCH reception may consider a basic beam for PDCCH reception in a manner that assumes that the terminal is in a QCL relationship with the SSB selected at the time of initial access.
  • the UE does not receive one or more TCI state settings through higher layer signaling for CORESET in which CORESETPoolIndex corresponding to TRP #0 is set except for CORESET 0, or higher layer signaling If one or more TCI state settings have been received through , but activation through MAC-CE is not performed for a specific TCI state, a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set can be set. .
  • the DM-RS used for PDCCH reception may consider a basic beam of PDCCH reception by assuming that it has a QCL relationship with the SSB selected in the random access process performed during synchronization reconfiguration.
  • the terminal receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (14-00)
  • the terminal receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set (14-05)
  • the TCI state corresponding to the lowest index among one or more TCI states preset in each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set may be set as the default beam when receiving the PDCCH in each CORESET (14-10).
  • CORESETPoolIndex corresponding to #1 may be set as a basic beam for PDCCH reception in all configured CORESETs (14-15).
  • the terminal receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set
  • the TCI state corresponding to the lowest index among the TCI states preset in all CORESETs in which the CORESETPoolIndex corresponding to TRP#1 is set is set to TRP#1.
  • a corresponding CORESETPoolIndex may be set as a basic beam for PDCCH reception in all configured CORESETs (14-20).
  • a PDCCH monitoring method in CORESET when configuring a PDCCH basic beam in consideration of a plurality of TRPs will be described.
  • the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required, the UE receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set.
  • the UE Before receiving the MAC-CE for activating the TCI state, the UE may not monitor the PDCCH in each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set.
  • the terminal receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, the terminal receives the MAC-CE that activates the TCI state for each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set.
  • the PDCCH may be received using the TCI state activated by the CE.
  • 15 is a diagram illustrating a PDCCH monitoring method in CORESET when configuring a PDCCH basic beam considering a plurality of TRPs according to an embodiment of the present disclosure.
  • the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (15-00)
  • the UE receives the PDCCH in the CORESET in which the CORESETPoolIndex corresponding to TRP#0 is set (15-05)
  • SSB A QCL relationship with and can be assumed (15-10).
  • the UE does not receive one or more TCI state settings through higher layer signaling for CORESETs in which CORESETPoolIndex corresponding to TRP#0 is set except for CORESET 0, or one or more TCI state settings through higher layer signaling
  • a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set may be set.
  • the DM-RS used for PDCCH reception may consider a basic beam for PDCCH reception in a manner that assumes that the terminal is in a QCL relationship with the SSB selected at the time of initial access.
  • the UE does not receive one or more TCI state settings through higher layer signaling for CORESET in which CORESETPoolIndex corresponding to TRP #0 is set except for CORESET 0, or higher layer signaling If one or more TCI state settings have been received through , but activation through MAC-CE is not performed for a specific TCI state, a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set can be set. .
  • the DM-RS used for PDCCH reception may consider a basic beam of PDCCH reception by assuming that it has a QCL relationship with the SSB selected in the random access process performed during synchronization reconfiguration.
  • the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (15-00)
  • the UE receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set (15-05)
  • the terminal monitors the PDCCH in each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set You may not (15-20).
  • the UE may receive the PDCCH using the TCI state activated by MAC-CE (15-25).
  • 16 is a diagram illustrating a structure of a terminal in a wireless communication system according to an embodiment of the present disclosure.
  • the terminal may include a terminal receiving unit 16-00, a terminal transmitting unit 16-10, and a terminal processing unit (controlling unit) 16-05.
  • the terminal receiving unit 16-00 and the terminal transmitting unit 16-10 may be referred to as a transceiver together. According to the communication method of the terminal described above, the terminal receiving unit 16-00, the terminal transmitting unit 16-10, and the terminal processing unit 16-05 of the terminal may operate.
  • the components of the terminal are not limited to the above-described examples.
  • the terminal may include more components (eg, memory, etc.) or fewer components than the above-described components.
  • the terminal receiving unit 16-00, the terminal transmitting unit 16-10, and the terminal processing unit 16-05 may be implemented in the form of a single chip.
  • the terminal receiving unit 16-00 and the terminal transmitting unit 16-10 may transmit/receive signals to and from the base station.
  • the signal may include control information and data.
  • the transceiver may include an RF transmitter for up-converting and amplifying a frequency of a transmitted signal, and an RF receiver for low-noise amplifying and down-converting a received signal.
  • this is only an embodiment of the transceiver, and components of the transceiver are not limited to the RF transmitter and the RF receiver.
  • the transceiver may receive a signal through a wireless channel, output it to the terminal processing unit 16-05, and transmit a signal output from the terminal processing unit 16-05 through a wireless channel.
  • a memory may store programs and data necessary for the operation of the terminal.
  • the memory may store control information or data included in a signal obtained from the terminal.
  • the memory may be configured as a storage medium or a combination of storage media, such as ROM, RAM, hard disk, CD-ROM, and DVD.
  • the terminal processing unit 16-05 may control a series of processes so that the terminal can operate according to the above-described embodiment of the present disclosure.
  • the terminal processing unit 16-05 may be implemented as a control unit or one or more processors.
  • 17 is a diagram illustrating a structure of a base station in a wireless communication system according to an embodiment of the present disclosure.
  • the base station may include a base station receiving unit 17-00, a base station transmitting unit 17-10, and a base station processing unit (controlling unit) 17-05.
  • the base station receiving unit 17-00 and the base station transmitting unit 17-10 may be referred to as a transceiver together. According to the above-described communication method of the base station, the base station receiving unit 17-00, the base station transmitting unit 17-10, and the base station processing unit 17-05 of the base station may operate. However, the components of the base station are not limited to the above-described example. For example, the base station may include more or fewer components (eg, memory, etc.) than the above-described components. In addition, the base station receiver 17-00, the base station transmitter 17-10, and the base station processor 17-05 may be implemented in the form of a single chip.
  • the base station receiving unit 17-00 and the base station transmitting unit 17-10 may transmit/receive signals to/from the terminal.
  • the signal may include control information and data.
  • the transceiver may include an RF transmitter for up-converting and amplifying a frequency of a transmitted signal, and an RF receiver for low-noise amplifying and down-converting a received signal.
  • this is only an embodiment of the transceiver, and components of the transceiver are not limited to the RF transmitter and the RF receiver.
  • the transceiver may receive a signal through a wireless channel and output it to the base station processing unit 17-05, and transmit the signal output from the base station processing unit 17-05 through the wireless channel.
  • a memory may store programs and data necessary for the operation of the base station.
  • the memory may store control information or data included in a signal obtained from the base station.
  • the memory may be configured as a storage medium or a combination of storage media, such as ROM, RAM, hard disk, CD-ROM, and DVD.
  • the base station processing unit 17-05 may control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure.
  • the base station processing unit 17-05 may be implemented as a control unit or one or more processors.
  • drawings for explaining the method of the present disclosure may omit some components and include only some components within a range that does not impair the essence of the present disclosure.
  • the method of the present disclosure may be performed in combination with some or all of the contents included in each embodiment within a range that does not impair the essence of the disclosure.

Abstract

Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail, security- and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. According to one embodiment of the disclosure, provided is a method by which a terminal determines a default beam to be assumed if beam information for receiving control information is not indicated.

Description

네트워크 협력통신을 위한 기본 빔 설정 방법 및 장치Basic beam setting method and apparatus for network cooperative communication
본 개시(disclosure)는 무선 통신 시스템에 대한 것으로서, 무선 통신 시스템에서 네트워크 협력통신을 위한 빔 설정 방법 및 장치에 관한 것이다.The present disclosure relates to a wireless communication system, and relates to a beam setting method and apparatus for network cooperative communication in a wireless communication system.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후(Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀(advanced small cell), 클라우드 무선 액세스 네트워크(cloud radio access network: cloud RAN), 초고밀도 네트워크(ultra-dense network), 기기 간 통신(Device to Device communication: D2D), 무선 백홀(wireless backhaul), 이동 네트워크(moving network), 협력 통신(cooperative communication), CoMP(Coordinated Multi-Points), 및 수신 간섭제거(interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM(Hybrid FSK and QAM Modulation) 및 SWSC(Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.Efforts are being made to develop an improved 5G communication system or pre-5G communication system in order to meet the increasing demand for wireless data traffic after commercialization of the 4G communication system. For this reason, the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or after the LTE system (Post LTE). In order to achieve high data rates, 5G communication systems are being considered for implementation in very high frequency (mmWave) bands (eg, 60 gigabytes (60 GHz) bands). In order to mitigate the path loss of radio waves and increase the propagation distance of radio waves in the very high frequency band, in the 5G communication system, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) are used. ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed. In addition, for network improvement of the system, in the 5G communication system, an evolved small cell, an advanced small cell, a cloud radio access network (cloud RAN), and an ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and reception interference cancellation Technology development is underway. In addition, in the 5G system, Hybrid FSK and QAM Modulation (FQAM) and Sliding Window Superposition Coding (SWSC), which are advanced coding modulation (ACM) methods, and Filter Bank Multi Carrier (FBMC), NOMA, which are advanced access technologies, (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE(Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물 간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.On the other hand, the Internet is evolving from a human-centered connection network where humans create and consume information to an Internet of Things (IoT) network that exchanges and processes information between distributed components such as objects. Internet of Everything (IoE) technology, which combines big data processing technology through connection with cloud servers, etc. with IoT technology, is also emerging. In order to implement IoT, technology elements such as sensing technology, wired and wireless communication and network infrastructure, service interface technology, and security technology are required. , M2M), and MTC (Machine Type Communication) are being studied. In the IoT environment, an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided. IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts are being made to apply the 5G communication system to the IoT network. For example, in technologies such as sensor network, machine to machine (M2M), and machine type communication (MTC), 5G communication technology is implemented by techniques such as beam forming, MIMO, and array antenna. there will be The application of a cloud radio access network (cloud RAN) as the big data processing technology described above is an example of the convergence of 5G technology and IoT technology.
본 개시(disclosure) 는 네트워크 협력통신 시스템에서, 단말이 제어 정보 수신을 위한 빔 정보가 지시되지 않은 경우 가정(assume) 하는 기본 빔(default beam) 을 결정하는 방법을 제공한다.The present disclosure (disclosure) provides a method of determining a default beam that the terminal assumes when beam information for receiving control information is not indicated in a network cooperative communication system.
상술한 문제점을 해결하기 위해, 본 개시의 일 실시 예에 따르면, 무선 통신 시스템에서 단말의 방법이 제공된다. 상기 방법은, 무선 통신 시스템에서 단말의 방법에 있어서, 기지국으로부터, CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 수신하는 단계; 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 수신하였는지 여부를 확인하는 단계; 상기 제어 정보를 수신하지 않은 경우, 상기 제2 정보에 기반하여 디폴트 빔 (default beam) 을 확인하는 단계; 및 상기 디폴트 빔에 기반하여, 상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 수신하는 단계를 포함하는 것을 특징으로 한다.In order to solve the above problems, according to an embodiment of the present disclosure, there is provided a method of a terminal in a wireless communication system. In the method of a terminal in a wireless communication system, the method includes, from a base station, first information about at least one first CORESET having a control resource set (CORESET) related index of 0 and at least one first information having a CORESET related index of 1 2 Receiving second information about CORESET; checking whether control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET is received; checking a default beam based on the second information when the control information is not received; and receiving downlink control information from the at least one second CORESET based on the default beam.
또한, 본 개시의 일 실시 예에 따르면, 무선 통신 시스템에서 기지국의 방법이 제공된다. 상기 방법은, CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 단말에 전송하는 단계; 및 상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 상기 단말에 전송하는 단계를 포함하며, 상기 기지국이 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 전송하지 않은 경우, 상기 하향링크 제어 정보는 디폴트 빔 (default beam) 에 기반하여 수신되며, 상기 디폴트 빔은 상기 제2 정보에 기반하여 확인되는 것을 특징으로 한다.In addition, according to an embodiment of the present disclosure, a method of a base station in a wireless communication system is provided. The method includes transmitting first information about at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information about at least one second CORESET having a CORESET-related index of 1 to the terminal ; and transmitting downlink control information to the terminal in the at least one second CORESET, wherein the base station determines at least one transmission configuration indicator (TCI) state for the at least one second CORESET. When activating control information is not transmitted, the downlink control information is received based on a default beam, and the default beam is identified based on the second information.
또한, 본 개시의 일 실시 예에 따르면, 무선 통신 시스템의 단말이 제공된다. 상기 단말은, 송수신부; 및 기지국으로부터, CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 수신하도록 상기 송수신부를 제어하고, 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 수신하였는지 여부를 확인하고, 상기 제어 정보를 수신하지 않은 경우, 상기 제2 정보에 기반하여 디폴트 빔 (default beam) 을 확인하며, 상기 디폴트 빔에 기반하여, 상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 수신하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 한다.In addition, according to an embodiment of the present disclosure, a terminal of a wireless communication system is provided. The terminal includes a transceiver; and the transceiver unit to receive, from the base station, first information on at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information on at least one second CORESET having a CORESET-related index of 1 control, check whether control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET is received, and if the control information is not received, the second It is characterized in that it includes a control unit that identifies a default beam based on the information and controls the transceiver to receive downlink control information from the at least one second CORESET based on the default beam.
또한, 본 개시의 일 실시 예에 따르면, 무선 통신 시스템의 기지국이 제공된다. 상기 기지국은, 송수신부; 및 CORESET 관련 (control resource set) 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 단말에 전송하도록 상기 송수신부를 제어하고, 상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 상기 단말에 전송하도록 상기 송수신부를 제어하는 제어부를 포함하며, 상기 기지국이 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 전송하지 않은 경우, 상기 하향링크 제어 정보는 디폴트 빔 (default beam) 에 기반하여 수신되며, 상기 디폴트 빔은 상기 제2 정보에 기반하여 확인되는 것을 특징으로 한다.In addition, according to an embodiment of the present disclosure, a base station of a wireless communication system is provided. The base station, the transceiver; and controlling the transceiver to transmit first information on at least one first CORESET having a CORESET-related (control resource set) index of 0 and second information on at least one second CORESET having a CORESET-related index of 1 to the terminal. and a controller for controlling the transceiver to transmit downlink control information to the terminal in the at least one second CORESET, wherein the base station includes at least one transmission configuration indicator (TCI) for the at least one second CORESET. ) when control information for activating a state is not transmitted, the downlink control information is received based on a default beam, and the default beam is identified based on the second information do.
본 개시에 따르면, 협력통신 시스템에서 단말이 기지국으로부터 제어 정보를 수신하기 위한 빔을 설정 받지 않은 경우, 단말과 기지국의 기본 동작 및 기본 빔(default beam) 을 미리 약속하는 방법이 제공된다. 이에 따르면, 단말의 전력 소모 감소를 감소시킬 수 있고, 제어 정보의 수신 신뢰도를 향상시킬 수 있다.According to the present disclosure, in a cooperative communication system, when the terminal does not set a beam for receiving control information from the base station, a method of pre-arranging a basic operation and a default beam between the terminal and the base station is provided. Accordingly, it is possible to reduce the reduction in power consumption of the terminal and to improve the reception reliability of the control information.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtainable in the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those of ordinary skill in the art to which the present disclosure belongs from the description below. will be.
본 개시의 상기 및 다른 목적, 특징 및 이점은 첨부된 도면을 참조하여 본 개시의 실시 예들에 대한 다음의 설명을 통해 보다 명확해질 것이다.The above and other objects, features and advantages of the present disclosure will become clearer through the following description of embodiments of the present disclosure with reference to the accompanying drawings.
도 1은 본 개시의 일 실시 예에 따른 LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.1 is a time-frequency domain of a wireless communication system such as Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced (LTE-A), NR or similar according to an embodiment of the present disclosure; It is a diagram showing the transmission structure.
도 2는 본 개시의 일 실시 예에 따른 5G(5th generation)에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다. 2 is a view showing a frame, subframe, slot structure in 5G (5 th generation), according to one embodiment of the present disclosure.
도 3은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성의 예시를 도시한 도면이다.3 is a diagram illustrating an example of a configuration of a bandwidth part (BWP) in a wireless communication system according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.4 is a diagram illustrating an example of setting a control region of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시 예에 따른 무선 통신 시스템의 하향링크 제어채널의 구조를 설명하는 도면이다.5 is a diagram for explaining the structure of a downlink control channel of a wireless communication system according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH 주파수 축 자원 할당 예시를 도시한 도면이다.6 is a diagram illustrating an example of PDSCH frequency axis resource allocation in a wireless communication system according to an embodiment of the present disclosure.
도 7은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel) 시간 축 자원 할당의 예시를 도시한 도면이다.7 is a diagram illustrating an example of physical downlink shared channel (PDSCH) time axis resource allocation in a wireless communication system according to an embodiment of the present disclosure.
도 8은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간축 자원 할당 예를 도시한 도면이다.8 is a diagram illustrating an example of time-base resource allocation according to subcarrier intervals of a data channel and a control channel in a wireless communication system according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시 예에 따른 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한 도면이다. 9 is a diagram illustrating a procedure for beam configuration and activation of a PDCCH according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시 예에 따른 PDSCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한 도면이다. 10 is a diagram illustrating a procedure for beam configuration and activation of a PDSCH according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시 예에 따른 single cell, carrier aggregation, dual connectivity 상황에서 기지국과 단말의 무선 프로토콜 구조를 도시한 도면이다.11 is a diagram illustrating a radio protocol structure of a base station and a terminal in a single cell, carrier aggregation, and dual connectivity situation according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 일부 실시 예에 따른 협력 통신(cooperative communication)을 위한 안테나 포트 구성 및 자원 할당 예시를 도시한 도면이다.12 is a diagram illustrating an example of an antenna port configuration and resource allocation for cooperative communication according to some embodiments in a wireless communication system according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 협력 통신을 위한 하향링크 제어 정보(downlink control information, DCI) 구성 예시를 도시한 도면이다.13 is a diagram illustrating an example configuration of downlink control information (DCI) for cooperative communication in a wireless communication system according to an embodiment of the present disclosure.
도 14는 본 개시의 일 실시 예에 따른 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 예시를 도시한 도면이다.14 is a diagram illustrating an example of configuring a PDCCH basic beam in consideration of a plurality of TRPs according to an embodiment of the present disclosure.
도 15는 본 개시의 일 실시 예에 따른 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 시 CORESET 내의 PDCCH 모니터링 방식을 도시한 도면이다.15 is a diagram illustrating a PDCCH monitoring method in CORESET when configuring a PDCCH basic beam considering a plurality of TRPs according to an embodiment of the present disclosure.
도 16은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말 구조를 도시한 도면이다.16 is a diagram illustrating a structure of a terminal in a wireless communication system according to an embodiment of the present disclosure.
도 17은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국 구조를 도시한 도면이다.17 is a diagram illustrating a structure of a base station in a wireless communication system according to an embodiment of the present disclosure.
이하, 본 개시의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents that are well known in the technical field to which the present disclosure pertains and are not directly related to the present disclosure will be omitted. This is to more clearly convey the gist of the present disclosure without obscuring the gist of the present disclosure by omitting unnecessary description.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components are exaggerated, omitted, or schematically illustrated in the accompanying drawings. In addition, the size of each component does not fully reflect the actual size. In each figure, the same or corresponding elements are assigned the same reference numerals.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present disclosure, and a method of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, it is not limited to the embodiments disclosed below and may be implemented in various different forms, and only the embodiments of the present disclosure allow the present disclosure to be complete, and to those of ordinary skill in the art to which the present disclosure pertains. It is provided to fully understand the scope of the invention, and the present disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.At this time, it will be understood that each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions. These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions. These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory. It may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s). The computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible for instructions to perform the processing equipment to provide steps for performing the functions described in the flowchart block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in the reverse order according to a corresponding function.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다. At this time, the term '~ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~ unit' performs certain roles do. However, '-part' is not limited to software or hardware. The '~ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Accordingly, according to some embodiments, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided in the components and '~ units' may be combined into a smaller number of components and '~ units' or further separated into additional components and '~ units'. In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card. Also, according to some embodiments, '~ unit' may include one or more processors.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS(Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE(User Equipment), MS(Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. 이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G(4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G(5th generation) 통신 시스템을 IoT(Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.Hereinafter, the operating principle of the present disclosure will be described in detail with reference to the accompanying drawings. In the following description of the present disclosure, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the subject matter of the present disclosure, the detailed description thereof will be omitted. In addition, the terms described below are terms defined in consideration of functions in the present disclosure, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. Hereinafter, the base station is a subject performing resource allocation of the terminal, and may be at least one of gNode B, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network. The terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function. Of course, it is not limited to the above example. Hereinafter, the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system. The present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after a 4 th generation (4G) system with an Internet of Things (IoT) technology, and a system thereof. The present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.A term referring to broadcast information, a term referring to control information, a term related to communication coverage, a term referring to a state change (eg, an event), and network entities used in the following description Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present disclosure is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 3GPP LTE(3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 개시의 실시 예들이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, some terms and names defined in the 3rd generation partnership project long term evolution (3GPP LTE) standard may be used. However, embodiments of the present disclosure are not limited by the terms and names, and may be equally applied to systems conforming to other standards.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. A wireless communication system, for example, 3GPP's High Speed Packet Access (HSPA), Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e, such as communication standards such as communication standards such as broadband wireless that provides high-speed, high-quality packet data service It is evolving into a communication system.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.As a representative example of a broadband wireless communication system, in an LTE system, an Orthogonal Frequency Division Multiplexing (OFDM) scheme is employed in Downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) is used in Uplink (UL). ) method is used. Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals. The multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources to which data or control information is to be transmitted for each user so that they do not overlap each other, that is, orthogonality is established. .
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communication: URLLC) 등이 있다.As a future communication system after LTE, that is, the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported. Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력(Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. According to some embodiments, the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by the existing LTE, LTE-A, or LTE-Pro. For example, in a 5G communication system, the eMBB must be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station. At the same time, it is necessary to provide an increased user perceived data rate of the terminal. In order to satisfy such a requirement, it is required to improve transmission/reception technology, including a more advanced multi-input multi-output (MIMO) transmission technology. In addition, it is possible to satisfy the data transmission speed required by the 5G communication system by using a frequency bandwidth wider than 20 MHz in a frequency band of 3 to 6 GHz or 6 GHz or more instead of the 2 GHz band used by the current LTE.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다. At the same time, mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system. In order to efficiently provide the Internet of Things, mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell. In addition, since a terminal supporting mMTC is highly likely to be located in a shaded area that a cell cannot cover, such as the basement of a building, due to the characteristics of the service, it may require wider coverage compared to other services provided by the 5G communication system. A terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.Finally, in the case of URLLC, as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or a machine, industrial automation, As a service used for unmaned aerial vehicles, remote health care, emergency alerts, etc., it is necessary to provide communication that provides ultra-low latency and ultra-reliability. For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required. However, the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크(Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다. The services considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 개시의 실시 예들을 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시 예들이 적용될 수 있다. 또한, 본 개시의 실시 예들 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.In addition, although embodiments of the present disclosure are described below using LTE, LTE-A, LTE Pro, or NR systems as an example, embodiments of the present disclosure may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present disclosure may be applied to other communication systems through some modifications within a range that does not significantly depart from the scope of the present disclosure as judged by a person having skilled technical knowledge.
이하 본 개시의 실시 예들이 적용될 수 있는 무선 통신 시스템(예를 들어, 5G 통신 시스템 또는 NR 통신 시스템)의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다. Hereinafter, a frame structure of a wireless communication system to which embodiments of the present disclosure can be applied (eg, a 5G communication system or an NR communication system) will be described in more detail with reference to the drawings.
도 1은 본 개시의 일 실시 예에 따른 LTE(Long Term Evolution 또는 E-UTRA(Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.1 is a time-frequency domain of a wireless communication system such as Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced (LTE-A), NR or similar according to an embodiment of the present disclosure; It is a diagram showing the transmission structure.
도 1을 참조하면, 도 1에 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(Resource Element, RE, 1-01)로서 시간 축으로 1 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(1-02) 및 주파수 축으로 1 부반송파(Subcarrier)(1-03)로 정의될 수 있다. 주파수 영역에서
Figure PCTKR2021001742-appb-I000001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(Resource Block, RB, 1-04)을 구성할 수 있다. 일 실시 예에서, 복수 개의 OFDM 심볼들은 하나의 서브프레임(One subframe, 1-10)을 구성할 수 있다.
Referring to FIG. 1 , in FIG. 1 , the horizontal axis represents the time domain, and the vertical axis represents the frequency domain. In the time and frequency domain, the basic unit of a resource is a resource element (Resource Element, RE, 1-01) as 1 OFDM (Orthogonal Frequency Division Multiplexing) symbol (1-02) on the time axis and 1 subcarrier on the frequency axis (Subcarrier) ( 1-03) can be defined. in the frequency domain
Figure PCTKR2021001742-appb-I000001
(for example, 12) consecutive REs may constitute one resource block (Resource Block, RB, 1-04). In one embodiment, a plurality of OFDM symbols may constitute one subframe (One subframe, 1-10).
도 2는 본 개시의 일 실시 예에 따른 5G(5th generation)에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.2 is a view showing a frame, subframe, slot structure in 5G (5 th generation), according to one embodiment of the present disclosure.
도 2를 참조하면, 하나의 프레임(Frame, 2-00)은 하나 이상의 서브프레임(Subframe, 2-01)으로 구성되고, 하나의 서브프레임은 하나 이상의 슬롯(Slot, 2-02)으로 구성될 수 있다. 일례로, 1 프레임(2-00)은 10ms로 정의될 수 있다. 1 서브프레임(2-01)은 1ms로 정의될 수 있으며, 이 경우 1 프레임(2-00)은 총 10개의 서브프레임(2-01)으로 구성될 수 있다. 1 슬롯(2-02, 2-03)은 14개의 OFDM 심볼로 정의될 수 있다(즉 1 슬롯 당 심볼 수(
Figure PCTKR2021001742-appb-I000002
)=14). 1 서브프레임(2-01)은 하나 또는 다수 개의 슬롯(2-02, 2-03)으로 구성될 수 있으며, 1 서브프레임(2-01)당 슬롯(2-02, 2-03)의 개수는 부반송파 간격에 대한 설정 값 μ(2-04, 2-05)에 따라 다를 수 있다. 도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(2-04)인 경우와 μ=1(2-05)인 경우가 도시되어 있다. μ=0(2-04)일 경우, 1 서브프레임(2-01)은 1개의 슬롯(2-02)으로 구성될 수 있고, μ=1(2-05)일 경우, 1 서브프레임(2-01)은 2개의 슬롯(2-03)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure PCTKR2021001742-appb-I000003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure PCTKR2021001742-appb-I000004
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2021001742-appb-I000005
Figure PCTKR2021001742-appb-I000006
는 하기의 [표 1]과 같이 정의될 수 있다.
Referring to FIG. 2 , one frame (Frame, 2-00) is composed of one or more subframes (Subframe, 2-01), and one subframe is composed of one or more slots (Slot, 2-02). can For example, one frame (2-00) may be defined as 10 ms. One subframe 2-01 may be defined as 1 ms, and in this case, one frame 2-00 may consist of a total of 10 subframes 2-01. One slot (2-02, 2-03) may be defined as 14 OFDM symbols (that is, the number of symbols per slot (
Figure PCTKR2021001742-appb-I000002
)=14). One subframe (2-01) may consist of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per one subframe (2-01) may be different depending on the set value μ(2-04, 2-05) for the subcarrier spacing. In an example of FIG. 2 , a case of μ=0 (2-04) and a case of μ=1 (2-05) are illustrated as subcarrier spacing setting values. When μ = 0 (2-04), one subframe (2-01) may consist of one slot (2-02), and when μ = 1 (2-05), one subframe (2) -01) may consist of two slots 2-03. That is, the number of slots per subframe (
Figure PCTKR2021001742-appb-I000003
) may vary, and accordingly, the number of slots per frame (
Figure PCTKR2021001742-appb-I000004
) may be different. According to each subcarrier spacing setting μ
Figure PCTKR2021001742-appb-I000005
and
Figure PCTKR2021001742-appb-I000006
may be defined as in [Table 1] below.
μμ
Figure PCTKR2021001742-appb-I000007
Figure PCTKR2021001742-appb-I000007
Figure PCTKR2021001742-appb-I000008
Figure PCTKR2021001742-appb-I000008
Figure PCTKR2021001742-appb-I000009
Figure PCTKR2021001742-appb-I000009
00 1414 1010 1One
1One 1414 2020 22
22 1414 4040 44
33 1414 8080 88
44 1414 160160 1616
55 1414 320320 3232
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성되는 것이 가능하다. 따라서 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part, BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원하는 것이 가능하다. NR에서 기지국은 CORESET #0(혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB(master information block)를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그널링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할 지 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은 'default BWP'로 회귀하여 DCI 수신을 시도한다.In NR, one component carrier (CC) or serving cell may be configured with up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth (serving cell bandwidth) like LTE, the power consumption of the terminal may be extreme, and in order to solve this, the base station sets one or more bandwidth parts (BWP) to the terminal Thus, it is possible to support the UE to change the reception area within the cell. In NR, the base station may set 'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through a master information block (MIB). Thereafter, the base station may set the initial BWP (first BWP) of the terminal through RRC signaling, and notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI). Thereafter, the base station may indicate which band the terminal uses by announcing the BWP ID through DCI. If the UE does not receive DCI in the currently allocated BWP for a specific time or longer, the UE returns to the 'default BWP' and attempts to receive DCI.
도 3은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 대역폭 부분(bandwidth part, BWP) 구성의 예시를 도시한 도면이다.3 is a diagram illustrating an example of a configuration of a bandwidth part (BWP) in a wireless communication system according to an embodiment of the present disclosure.
도 3을 참조하면, 도 3은 단말 대역폭(3-00)이 두 개의 대역폭 부분, 즉 대역폭 부분 #1(3-05)과 대역폭 부분 #2(3-10)로 설정된 일 예를 도시한다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 [표 2]와 같은 정보들을 설정해 줄 수 있다.Referring to FIG. 3 , FIG. 3 shows an example in which the terminal bandwidth 3-00 is set to two bandwidth parts, that is, a bandwidth part #1(3-05) and a bandwidth part #2(3-10). The base station may set one or more bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
BWP ::= SEQUENCE {
bwp-ID BWP-Id,
(대역폭부분 식별자)
locationAndBandwidth INTEGER (1..65536),
(대역폭부분 위치)
subcarrierSpacing ENUMERATED {n0, n1, n2, n3, n4, n5 },
(부반송파 간격)
cyclicPrefix ENUMERATED { extended }
(순환 전치)
}
BWP ::= SEQUENCE {
bwp-ID BWP-Id,
(bandwidth part identifier)
locationAndBandwidth INTEGER (1..65536),
(Bandwidth part location)
subcarrierSpacing ENUMERATED {n0, n1, n2, n3, n4, n5 },
(subcarrier spacing)
cyclicPrefix ENUMERATED { extended }
(circular transposition)
}
물론 상술된 예시에 제한되는 것은 아니며, 상술된 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상술한 정보들은 상위 계층 시그널링, 예컨대 RRC 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(Activation)될 수 있다. 설정된 대역폭 부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적(semi-static)으로 전달되거나, MAC CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.Of course, it is not limited to the above-described example, and in addition to the above-described configuration information, various parameters related to the bandwidth portion may be set in the terminal. The above-described information may be transmitted by the base station to the terminal through higher layer signaling, for example, RRC signaling. At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling, or may be dynamically transmitted through a MAC control element (MAC CE) or DCI.
본 개시의 일 실시 예에 따르면, RRC(Radio Resource Control) 연결 전의 단말은 초기 접속을 위한 초기 대역폭 파트(Initial BWP)을 MIB(Master Information Block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로, 단말은 초기 접속 단계에서 MIB를 통해 초기 접속에 필요한 시스템 정보(Remaining System Information; RMSI 또는 System Information Block 1; SIB1에 해당할 수 있음)를 수신하기 위하여, PDCCH가 전송될 수 있는 제어영역(Control Resource Set, CORESET)과 탐색 공간(Search Space)에 대한 설정 정보를 수신할 수 있다. MIB로 설정되는 제어영역과 탐색공간은 각각 식별자(Identity, ID) 0으로 간주될 수 있다. According to an embodiment of the present disclosure, the terminal before the RRC (Radio Resource Control) connection may receive an initial bandwidth part (Initial BWP) for the initial connection from the base station through the MIB (Master Information Block). More specifically, in order for the terminal to receive the system information (Remaining System Information; RMSI or System Information Block 1; may correspond to SIB1) necessary for initial access through the MIB in the initial access step, the PDCCH can be transmitted. It is possible to receive setting information for a control resource set (CORESET) and a search space (Search Space). The control region and the search space set by the MIB may be regarded as identifier (Identity, ID) 0, respectively.
기지국은 단말에게 MIB를 통해 제어영역#0에 대한 주파수 할당 정보, 시간 할당 정보, 뉴머롤로지(Numerology) 등의 설정 정보를 통지할 수 있다. 또한, 기지국은 단말에게 MIB를 통해 제어영역#0에 대한 모니터링 주기 및 occasion에 대한 설정정보, 즉 탐색공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어영역#0으로 설정된 주파수 영역을 초기 접속을 위한 초기 대역폭 파트로 간주할 수 있다. 이 때, 초기 대역폭 파트의 식별자(ID)는 0으로 간주될 수 있다.The base station may notify the terminal of configuration information such as frequency allocation information, time allocation information, and numerology for the control region #0 through the MIB. In addition, the base station may notify the UE of configuration information on the monitoring period and occasion for the control region #0, that is, configuration information on the search space #0 through the MIB. The UE may regard the frequency domain set as the control region #0 obtained from the MIB as an initial bandwidth part for initial access. In this case, the identifier (ID) of the initial bandwidth part may be regarded as 0.
한편, 본 개시가 적용될 수 있는 무선 통신 시스템(예를 들어, 5G 또는 NR 시스템)에서 지원하는 대역폭 파트에 대한 설정은 다양한 목적으로 사용될 수 있다. On the other hand, the configuration of the bandwidth part supported by the wireless communication system (eg, 5G or NR system) to which the present disclosure can be applied may be used for various purposes.
일 예로, 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에, 대역폭 부분에 대한 설정을 통해, 단말이 지원하는 대역폭이 지원될 수 있다. 예컨대 <표 2>에서 대역폭 부분의 주파수 위치(설정정보 2)가 단말에게 설정됨으로써, 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.For example, when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported by setting the bandwidth portion. For example, in <Table 2>, the frequency position (setting information 2) of the bandwidth part is set for the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
또 다른 일 예로, 서로 다른 뉴머롤로지를 지원하기 위한 목적으로, 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 임의의 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분이 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정될 수 있다. 서로 다른 대역폭 부분은 FDM(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화될 수 있다.As another example, for the purpose of supporting different numerologies, the base station may configure a plurality of bandwidth portions for the terminal. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to an arbitrary terminal, two bandwidth portions may be set to use a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be subjected to frequency division multiplexing (FDM), and when data is transmitted/received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
또 다른 일 예로, 단말의 전력 소모 감소를 위한 목적으로, 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭 부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다.As another example, for the purpose of reducing power consumption of the terminal, the base station may set bandwidth portions having different sizes of bandwidths to the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits/receives data using the corresponding bandwidth, very large power consumption may be caused. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation in which there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may configure a relatively small bandwidth portion of the terminal, for example, a bandwidth portion of 20 MHz. In the absence of traffic, the UE may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
상기 대역폭 파트를 설정하는 방법에 있어서, RRC 연결(Connected) 전의 단말들은 초기 접속 단계에서 MIB(Master Information Block)을 통해 초기 대역폭 파트(Initial Bandwidth Part)에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로, 단말은 PBCH(Physical Broadcast Channel)의 MIB로부터, SIB(System Information Block)를 스케줄링하는 DCI(Downlink Control Information)가 전송될 수 있는 하향링크 제어채널을 위한 제어영역(또는 제어자원셋, Control Resource Set, CORESET)을 설정 받을 수 있다. MIB로 설정된 제어영역의 대역폭이 초기 대역폭 파트로 간주될 수 있으며, 설정된 초기 대역폭 파트를 통해 단말은 SIB가 전송되는 PDSCH를 수신할 수 있다. 초기 대역폭 파트는 SIB를 수신하는 용도 외에도, 다른 시스템 정보(Other System Information, OSI), 페이징(Paging), 랜덤 엑세스(Random Access)를 위해 활용될 수도 있다.In the method of setting the bandwidth part, terminals before RRC connection (Connected) may receive configuration information on the initial bandwidth part through a master information block (MIB) in the initial access stage. More specifically, the UE is a control region for a downlink control channel through which Downlink Control Information (DCI) for scheduling a System Information Block (SIB) can be transmitted from the MIB of a Physical Broadcast Channel (PBCH) (or a control resource set, Control Resource Set, CORESET) can be set. The bandwidth of the control region set as the MIB may be regarded as an initial bandwidth part, and the terminal may receive the PDSCH through which the SIB is transmitted through the set initial bandwidth part. In addition to the purpose of receiving the SIB, the initial bandwidth part may be utilized for other system information (OSI), paging, and random access.
이하에서는 본 개시가 적용될 수 있는 무선 통신 시스템(5G 또는 NR 시스템)의 SS(Synchronization Signal)/PBCH 블록(SSB)에 대하여 설명된다.Hereinafter, a synchronization signal (SS)/PBCH block (SSB) of a wireless communication system (5G or NR system) to which the present disclosure can be applied will be described.
SS/PBCH 블록은, PSS(Primary SS), SSS(Secondary SS) 및 PBCH로 구성된 물리계층 채널 블록을 의미할 수 있다. 보다 구체적으로, SS/PBCH 블록은 아래와 같이 정의될 수 있다. The SS/PBCH block may mean a physical layer channel block composed of a primary SS (PSS), a secondary SS (SSS), and a PBCH. More specifically, the SS/PBCH block may be defined as follows.
- PSS: 하향링크 시간/주파수 동기의 기준이 되는 신호로 셀 ID 의 일부 정보를 제공할 수 있다.- PSS: A signal that serves as a reference for downlink time/frequency synchronization and may provide some information on cell ID.
- SSS: 하향링크 시간/주파수 동기의 기준이 되고, PSS 가 제공하지 않은 나머지 셀 ID 정보를 제공할 수 있다. 추가적으로 PBCH의 복조를 위한 기준신호(Reference Signal) 역할을 할 수 있다.- SSS: serves as a reference for downlink time/frequency synchronization, and may provide the remaining cell ID information not provided by PSS. Additionally, it may serve as a reference signal for demodulation of the PBCH.
- PBCH: 단말의 데이터채널 및 제어채널 송수신에 필요한 필수 시스템 정보를 제공할 수 있다. 필수 시스템 정보는 제어채널의 무선자원 매핑 정보를 나타내는 탐색공간 관련 제어정보, 시스템 정보를 전송하는 별도의 데이터 채널에 대한 스케줄링 제어정보 등을 포함할 수 있다.- PBCH: It is possible to provide essential system information necessary for transmitting and receiving a data channel and a control channel of the terminal. The essential system information may include search space-related control information indicating radio resource mapping information of a control channel, scheduling control information on a separate data channel for transmitting system information, and the like.
- SS/PBCH 블록: SS/PBCH 블록은 PSS, SSS 및 PBCH의 조합으로 이루어질 수 있다. SS/PBCH 블록은 5ms 시간 내에서 하나 또는 복수 개가 전송될 수 있고, 전송되는 각각의 SS/PBCH 블록은 인덱스로 구별될 수 있다.- SS/PBCH block: The SS/PBCH block may consist of a combination of PSS, SSS, and PBCH. One or a plurality of SS/PBCH blocks may be transmitted within 5 ms, and each transmitted SS/PBCH block may be distinguished by an index.
단말은 초기 접속 단계에서 PSS 및 SSS를 검출할 수 있고, PBCH를 디코딩할 수 있다. 단말은 PBCH로부터 MIB를 획득할 수 있고, MIB를 통해 제어영역#0을 설정 받을 수 있다. 단말은 선택한 SS/PBCH 블록과 제어영역#0에서 전송되는 DMRS(Demodulation RS(Reference Signal)가 QCL(Quasi Co Location)되어 있다고 가정하고 제어영역#0에 대한 모니터링을 수행할 수 있다. 단말은 제어영역#0에서 전송된 하향링크 제어정보로 시스템 정보를 수신할 수 있다. 단말은 수신한 시스템 정보로부터 초기 접속에 필요한 RACH(Random Access Channel) 관련 설정 정보를 획득할 수 있다. 단말은 선택한 SS/PBCH 인덱스를 고려하여 PRACH(Physical RACH)를 기지국으로 전송할 수 있고, PRACH를 수신한 기지국은 단말이 선택한 SS/PBCH 블록 인덱스에 대한 정보를 획득할 수 있다. 기지국은 단말이 각각의 SS/PBCH 블록들 중에서 어떤 블록을 선택하였고, 단말이 선택한 SS/PBCH 블록과 대응되는(또는 연관되는) 제어영역#0을 모니터링함을 알 수 있다.The UE may detect the PSS and SSS in the initial access stage and may decode the PBCH. The UE may obtain the MIB from the PBCH, and may receive the control region #0 configured through the MIB. The UE may perform monitoring on the control region #0, assuming that the selected SS/PBCH block and the DMRS (Reference Signal) transmitted in the control region #0 are QCL (Quasi Co Location). System information may be received through downlink control information transmitted in region #0. The UE may obtain RACH (Random Access Channel) related configuration information required for initial access from the received system information. In consideration of the PBCH index, PRACH (Physical RACH) may be transmitted to the base station, and the base station receiving the PRACH may obtain information on the SS/PBCH block index selected by the UE. It can be seen that a certain block is selected from among them, and the UE monitors the control region #0 corresponding to (or associated with) the selected SS/PBCH block.
이하에서는 본 개시가 적용될 수 있는 무선 통신 시스템(5G 또는 NR 시스템)에서의 하향링크 제어 정보(Downlink Control Information, 이하 DCI라 한다)가 구체적으로 설명된다.Hereinafter, downlink control information (hereinafter referred to as DCI) in a wireless communication system (5G or NR system) to which the present disclosure can be applied will be described in detail.
차세대 이동통신 시스템(5G 또는 NR 시스템)에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(Physical Uplink Shared Channel, PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(Physical Downlink Shared Channel, PDSCH))에 대한 스케줄링 정보는, DCI를 통해 기지국으로부터 단말에게 전달될 수 있다. 단말은 PUSCH 또는 PDSCH에 대하여 폴백(Fallback)용 DCI 포맷과 논-폴백(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 폴백 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 논-폴백용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.Uplink data (or physical uplink data channel (Physical Uplink Shared Channel, PUSCH)) or downlink data (or physical downlink data channel (Physical Downlink Shared Channel, PDSCH)) in a next-generation mobile communication system (5G or NR system) Scheduling information may be transmitted from the base station to the terminal through DCI. The UE may monitor the DCI format for fallback and the DCI format for non-fallback for PUSCH or PDSCH. The fallback DCI format may consist of a fixed field predetermined between the base station and the terminal, and the non-fallback DCI format may include a configurable field.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH(Physical Downlink Control Channel)을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 부착될 수 있고, CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 될 수 있다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 DCI 메시지의 페이로드에 부착되는 CRC의 스크램블링을 위해 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송될 수 있다. PDCCH 상으로 전송되는 DCI 메시지가 수신되면, 단말은 할당 받은 RNTI를 사용하여 CRC를 확인할 수 있다. CRC 확인 결과가 맞으면 단말은 해당 메시지가 단말에게 전송된 것임을 알 수 있다.DCI may be transmitted through a physical downlink control channel (PDCCH), which is a physical downlink control channel, through a channel coding and modulation process. A cyclic redundancy check (CRC) may be attached to the DCI message payload, and the CRC may be scrambled with a Radio Network Temporary Identifier (RNTI) corresponding to the identity of the terminal. Depending on the purpose of the DCI message, for example, UE-specific data transmission, power control command, or random access response, different RNTIs may be used for scrambling of the CRC attached to the payload of the DCI message. That is, the RNTI may not be explicitly transmitted, but may be transmitted while being included in the CRC calculation process. When the DCI message transmitted on the PDCCH is received, the UE may check the CRC using the allocated RNTI. If the CRC check result is correct, the terminal can know that the corresponding message has been transmitted to the terminal.
예를 들면, 시스템 정보(System Information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(Paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.For example, DCI scheduling PDSCH for system information (SI) may be scrambled with SI-RNTI. DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI. DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI. DCI notifying SFI (Slot Format Indicator) may be scrambled with SFI-RNTI. DCI notifying Transmit Power Control (TPC) may be scrambled with TPC-RNTI. DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (Cell RNTI).
DCI 포맷 0_0은 PUSCH를 스케줄링하는 폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_0은 아래의 [표 3]과 같은 정보들을 포함할 수 있다.DCI format 0_0 may be used as a fallback DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI. In an embodiment, DCI format 0_0 in which CRC is scrambled with C-RNTI may include information as shown in [Table 3] below.
- Identifier for DCI formats (DCI 포맷 식별자) - [1] bit
- Frequency domain resource assignment (주파수 도메인 자원 할당) - [
Figure PCTKR2021001742-appb-I000010
] bits
- Time domain resource assignment (시간 도메인 자원 할당) - X bits
- Frequency hopping flag (주파수 호핑 플래그) - 1bit
- Modulation and coding scheme (변조 및 코딩 스킴) - 5bits
- New data indicator (새로운 데이터 지시자) - 1bit
- Redundancy version (리던던시 버전) - 2bits
- HARQ process number (HARQ 프로세스 번호) - 4bits
- TPC command for scheduled PUSCH (스케줄링된 PUSCH를 위한 전송 전력 제어 (transmit power control) 명령 - [2] bits
- UL/SUL indicator (상향링크/추가적 상향링크 (supplementary UL) 지시자) - 0 or 1 bit
- Identifier for DCI formats - [1] bit
- Frequency domain resource assignment - [
Figure PCTKR2021001742-appb-I000010
] bits
- Time domain resource assignment - X bits
- Frequency hopping flag - 1 bit
- Modulation and coding scheme - 5bits
- New data indicator - 1 bit
- Redundancy version - 2bits
- HARQ process number (HARQ process number) - 4 bits
- TPC command for scheduled PUSCH (transmit power control command for scheduled PUSCH - [2] bits
- UL / SUL indicator (uplink / additional uplink (supplementary UL) indicator) - 0 or 1 bit
DCI 포맷 0_1은 PUSCH를 스케줄링하는 논-폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_1은, 아래의 [표 4]와 같은 정보들을 포함할 수 있다.DCI format 0_1 may be used as a non-fallback DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI. In an embodiment, DCI format 0_1 in which CRC is scrambled with C-RNTI may include information as shown in [Table 4] below.
- Carrier indicator (캐리어 지시자) - 0 or 3 bits
- UL/SUL indicator - 0 or 1bit
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator (대역폭 부분 지시자) - 0, 1, or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0(자원 할당 타입 0의 경우),
Figure PCTKR2021001742-appb-I000011
bits
● For resource allocation type 1(자원 할당 타입 1의 경우),
Figure PCTKR2021001742-appb-I000012
bits
- Time domain resource assignment - 1, 2, 3, or 4 bits
- VRB-to-PRB mapping (가상 자원 블록(virtual resource block)-to-물리 자원 블록(physical resource block) 매핑)- 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Frequency hopping flag - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Modulation and coding scheme - 5 bits
- New data indicator - 1bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- 1st downlink assignment index(제1 하향링크 할당 인덱스) - 1 or 2 bits
● 1 bit for semi-static HARQ-ACK codebook(준정적 HARQ-ACK 코드북의 경우);
● 2 bit for dynamic HARQ-ACK codebook with single HARQ-ACK codebook(단일 HARQ-ACK 코드북과 함께 동적 HARQ-ACK 코드북이 사용되는 경우).
- 2nd downlink assignment index(제2 하향링크 할당 인덱스) - 0 or 2 bits
● 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks(2개의 HARQ-ACK 부코드북과 함께 동적 HARQ-ACK 코드북이 사용되는 경우);
● 0 bit otherwise.
- TPC command for scheduled PUSCH - 2 bits
- SRS resource indicator -
Figure PCTKR2021001742-appb-I000013
or
Figure PCTKR2021001742-appb-I000014
bits
Figure PCTKR2021001742-appb-I000015
bits for non-codebook based PUSCH transmission(PUSCH 전송이 코드북 기반이 아닐 경우)
Figure PCTKR2021001742-appb-I000016
bits for codebook based PUSCH transmission(PUSCH 전송이 코드북 기반일 경우)
- Precoding information and number of layers(프리코딩 정보 및 레이어의 개수)-up to 6 bits
- Antenna ports(안테나 포트) - up to 5 bits
- SRS request(SRS 요청) - 2bits
- CSI request(채널 상태 정보 요청) - 0, 1, 2, 3, 4, 5, or 6 bits
- CBG transmission information(코드 블록 그룹(code block group) 전송 정보) - 0 2, 4, 6, or 8 bits
- PTRS-DMRS association(위상 트래킹 기준 신호-복조 기준 신호 관계) - 0 or 2 bits
- beta_offset indicator(베타 오프셋 지시자) - 0 or 2 bits
- DMRS sequence initialization(복조 기준 신호 시퀀스 초기화) - 0 or 1 bit
- Carrier indicator - 0 or 3 bits
- UL/SUL indicator - 0 or 1bit
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator - 0, 1, or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0 (for resource allocation type 0),
Figure PCTKR2021001742-appb-I000011
bits
● For resource allocation type 1 (for resource allocation type 1),
Figure PCTKR2021001742-appb-I000012
bits
- Time domain resource assignment - 1, 2, 3, or 4 bits
- VRB-to-PRB mapping (virtual resource block-to-physical resource block mapping)- 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Frequency hopping flag - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Modulation and coding scheme - 5 bits
- New data indicator - 1bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- 1st downlink assignment index (first downlink assignment index) - 1 or 2 bits
● 1 bit for semi-static HARQ-ACK codebook (in case of semi-static HARQ-ACK codebook);
● 2 bit for dynamic HARQ-ACK codebook with single HARQ-ACK codebook (when dynamic HARQ-ACK codebook is used together with single HARQ-ACK codebook).
- 2nd downlink assignment index (second downlink assignment index) - 0 or 2 bits
● 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks (when dynamic HARQ-ACK codebook is used together with two HARQ-ACK sub-codebooks);
● 0 bit otherwise.
- TPC command for scheduled PUSCH - 2 bits
- SRS resource indicator -
Figure PCTKR2021001742-appb-I000013
or
Figure PCTKR2021001742-appb-I000014
bits
Figure PCTKR2021001742-appb-I000015
bits for non-codebook based PUSCH transmission
Figure PCTKR2021001742-appb-I000016
bits for codebook based PUSCH transmission
- Precoding information and number of layers-up to 6 bits
- Antenna ports - up to 5 bits
- SRS request - 2 bits
- CSI request (channel state information request) - 0, 1, 2, 3, 4, 5, or 6 bits
- CBG transmission information (code block group transmission information) - 0 2, 4, 6, or 8 bits
- PTRS-DMRS association (phase tracking reference signal - demodulation reference signal relationship) - 0 or 2 bits
- beta_offset indicator - 0 or 2 bits
- DMRS sequence initialization - 0 or 1 bit
DCI 포맷 1_0은 PDSCH를 스케줄링하는 폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은, 아래의 [표 5]와 같은 정보들을 포함할 수 있다.DCI format 1_0 may be used as a fallback DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI. In an embodiment, DCI format 1_0 in which CRC is scrambled with C-RNTI may include information as shown in [Table 5] below.
- Identifier for DCI formats - [1] bit
- Frequency domain resource assignment - [
Figure PCTKR2021001742-appb-I000017
] bits
- Time domain resource assignment - X bits
- VRB-to-PRB mapping - 1 bit.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 2 bits
- TPC command for scheduled PUCCH - [2] bits
- PUCCH resource indicator(물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 자원 지시자 - 3 bits
- PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ 피드백 타이밍 지시자 - [3] bits
- Identifier for DCI formats - [1] bit
- Frequency domain resource assignment - [
Figure PCTKR2021001742-appb-I000017
] bits
- Time domain resource assignment - X bits
- VRB-to-PRB mapping - 1 bit.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 2 bits
- TPC command for scheduled PUCCH - [2] bits
- PUCCH resource indicator (physical uplink control channel, PUCCH) resource indicator - 3 bits
- PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ feedback timing indicator - [3] bits
또는, DCI 포맷 1_0은 RAR 메시지에 대한 PDSCH를 스케줄링하는 DCI로 사용될 수 있고, 이 때 CRC는 RA-RNTI로 스크램블링 될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은, 아래의 [표 6] 와 같은 정보들을 포함할 수 있다.Alternatively, DCI format 1_0 may be used as DCI for scheduling PDSCH for RAR message, and in this case, CRC may be scrambled with RA-RNTI. DCI format 1_0 in which CRC is scrambled with C-RNTI may include information as shown in [Table 6] below.
- Frequency domain resource assignment -
Figure PCTKR2021001742-appb-I000018
bits
- Time domain resource assignment - 4 bits
- VRB-to-PRB mapping - 1 bit
- Modulation and coding scheme - 5 bits
- TB scaling - 2 bits
- Reserved bits - 16 bits
- Frequency domain resource assignment -
Figure PCTKR2021001742-appb-I000018
bits
- Time domain resource assignment - 4 bits
- VRB-to-PRB mapping - 1 bit
- Modulation and coding scheme - 5 bits
- TB scaling - 2 bits
- Reserved bits - 16 bits
DCI 포맷 1_1은 PDSCH를 스케줄링하는 논-폴백 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. 일 실시 예에서, C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_1은, 아래의 [표 7]과 같은 정보들을 포함할 수 있다.DCI format 1_1 may be used as a non-fallback DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI. In an embodiment, DCI format 1_1 in which CRC is scrambled with C-RNTI may include information as shown in [Table 7] below.
- Carrier indicator - 0 or 3 bits
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator - 0, 1 or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0,
Figure PCTKR2021001742-appb-I000019
bits
● For resource allocation type 1,
Figure PCTKR2021001742-appb-I000020
bits
- Time domain resource assignment - 0, 1, 2, 3, or 4 bits
- VRB-to-PRB mapping - 0 or 1 bit:
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- PRB bundling size indicator(물리 자원 블록 번들링 크기 지시자) - 0 or 1 bit
- Rate matching indicator(레이트 매칭 지시자) - 0, 1, or 2 bits
- ZP CSI-RS trigger(영전력 채널 상태 정보 기준 신호 트리거) - 0, 1, or 2 bits
For transport block 1(제1 전송 블록의 경우):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
For transport block 2(제2 전송 블록의 경우):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 0 or 2 or 4 bits
- TPC command for scheduled PUCCH - 2 bits
- PUCCH resource indicator - 3 bits
- PDSCH-to-HARQ_feedback timing indicator - 3bits
- Antenna ports - 4, 5 or 6 bits
- Transmission configuration indication(전송 설정 지시) - 0 or 3 bits
- SRS request - 2 bits
- CBG transmission information - 0, 2, 4, 6, or 8 bits
- CBG flushing out information(코드 블록 그룹 플러싱 아웃 정보) - 0 or 1 bit
- DMRS sequence initialization - 1 bit
- Carrier indicator - 0 or 3 bits
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator - 0, 1 or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0,
Figure PCTKR2021001742-appb-I000019
bits
● For resource allocation type 1,
Figure PCTKR2021001742-appb-I000020
bits
- Time domain resource assignment - 0, 1, 2, 3, or 4 bits
- VRB-to-PRB mapping - 0 or 1 bit:
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- PRB bundling size indicator (physical resource block bundling size indicator) - 0 or 1 bit
- Rate matching indicator - 0, 1, or 2 bits
- ZP CSI-RS trigger (zero power channel state information reference signal trigger) - 0, 1, or 2 bits
For transport block 1 (for the first transport block):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
For transport block 2 (for the second transport block):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 0 or 2 or 4 bits
- TPC command for scheduled PUCCH - 2 bits
- PUCCH resource indicator - 3 bits
- PDSCH-to-HARQ_feedback timing indicator - 3bits
- Antenna ports - 4, 5 or 6 bits
- Transmission configuration indication - 0 or 3 bits
- SRS request - 2 bits
- CBG transmission information - 0, 2, 4, 6, or 8 bits
- CBG flushing out information (code block group flushing out information) - 0 or 1 bit
- DMRS sequence initialization - 1 bit
도 4는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역 설정의 일 예를 도시한 도면이다.4 is a diagram illustrating an example of setting a control region of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
구체적으로, 도 4는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)에 대한 일 실시 예를 도시한 도면이다.Specifically, FIG. 4 is a diagram illustrating an embodiment of a control region (Control Resource Set, CORESET) through which a downlink control channel is transmitted in a wireless communication system according to an embodiment of the present disclosure.
도 4를 참조하면, 도 4는 주파수 축으로 단말의 대역폭 파트(UE bandwidth part)(4-10), 시간축으로 1 슬롯(4-20) 내에 2개의 제어영역(제어영역#1(4-01), 제어영역#2(4-02))이 설정되어 있는 일 실시 예를 도시한다. 제어영역(4-01, 4-02)은 주파수 축으로 전체 단말 대역폭 파트(4-10) 내에서 특정 주파수 자원(4-03)에 설정될 수 있다. 제어영역(4-01, 4-02)은 시간 축으로는 하나 또는 복수 개의 OFDM 심볼로 설정될 수 있고, 이는 제어영역 길이(Control Resource Set Duration, 4-04)으로 정의될 수 있다. 도 4를 참조하면, 제어영역#1(4-01)은 2 심볼의 제어영역 길이로 설정될 수 있고, 제어영역#2(4-02)는 1 심볼의 제어영역 길이로 설정될 수 있다. Referring to FIG. 4, FIG. 4 shows two control regions (control region #1 (4-01) in one slot (4-20) on a time axis and a bandwidth part (UE bandwidth part) of the terminal on the frequency axis (4-10). ), control area #2 (4-02)) is set. The control regions 4-01 and 4-02 may be set in a specific frequency resource 4-03 within the entire terminal bandwidth part 4-10 on the frequency axis. The control regions 4-01 and 4-02 may be set with one or a plurality of OFDM symbols on the time axis, which may be defined as a control region length (Control Resource Set Duration, 4-04). Referring to FIG. 4 , the control region #1 (4-01) may be set to a control region length of 2 symbols, and the control region #2 (4-02) may be set to a control region length of 1 symbol.
한편. 본 개시가 적용될 수 있는 무선 통신 시스템(5G 또는 NR 시스템)에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 함으로써 설정될 수 있다. 단말에게 제어영역을 설정한다는 것은 제어영역 식별자(Identity), 제어영역의 주파수 위치, 제어영역의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예를 들면, 제어영역의 설정은 아래의 [표 8]과 같은 정보들을 포함할 수 있다.Meanwhile. A control region in a wireless communication system (5G or NR system) to which the present disclosure can be applied, the base station provides upper layer signaling to the terminal (eg, system information (System Information), MIB (Master Information Block), RRC (Radio Resource Control)) signaling). Setting the control region to the terminal means providing information such as a control region identifier (Identity), a frequency position of the control region, and a symbol length of the control region. For example, the setting of the control area may include information as shown in [Table 8] below.
ControlResourceSet ::= SEQUENCE {
-- Corresponds to L1 parameter 'CORESET-ID'

controlResourceSetId ControlResourceSetId,
{제어영역 식별자(Identity)}
frequencyDomainResources BIT STRING (SIZE (45)),
(주파수 축 자원할당 정보)
duration INTEGER (1..maxCoReSetDuration),
(시간 축 자원할당 정보)
cce-REG-MappingType CHOICE {
(CCE-to-REG 매핑 방식)
interleaved SEQUENCE {
reg-BundleSize ENUMERATED {n2, n3, n6},
(REG 번들 크기)
precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},
interleaverSize ENUMERATED {n2, n3, n6},
(인터리버 크기)
shiftIndex INTEGER (0..maxNrofPhysicalResourceBlocks-1)
(인터리버 쉬프트(Shift))
},
nonInterleaved NULL
},
tci-StatesPDCCH SEQUENCE (SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
(QCL 설정 정보)
tci-PresentInDCI ENUMERATED {enabled}
}
ControlResourceSet ::= SEQUENCE {
-- Corresponds to L1 parameter 'CORESET-ID'

controlResourceSetId ControlResourceSetId,
{control area identifier (Identity)}
frequencyDomainResources BIT STRING (SIZE (45)),
(frequency axis resource allocation information)
duration INTEGER (1..maxCoReSetDuration),
(Time axis resource allocation information)
cce-REG-MappingType CHOICE {
(CCE-to-REG mapping method)
interleaved SEQUENCE {
reg-BundleSize ENUMERATED {n2, n3, n6},
(REG bundle size)
precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},
interleaverSize ENUMERATED {n2, n3, n6},
(interleaver size)
shiftIndex INTEGER (0..maxNrofPhysicalResourceBlocks-1)
(Interleaver Shift)
},
nonInterleaved NULL
},
tci-StatesPDCCH SEQUENCE (SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
(QCL setting information)
tci-PresentInDCI ENUMERATED {enabled}
}
[표 8]에서 tci-StatesPDCCH(이하 'TCI state'라 한다) 설정 정보는, 해당 제어영역에서 전송되는 DMRS(Demodulation Reference Signal)와 QCL(Quasi Co Located) 관계에 있는 하나 또는 다수 개의 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록(Block) 인덱스 또는 CSI-RS(Channel State Information Reference Signal) 인덱스의 정보를 포함할 수 있다. In [Table 8], tci-StatesPDCCH (hereinafter referred to as 'TCI state') configuration information is one or a plurality of SSs (Synchronization) that are in a Quasi Co Located (QCL) relationship with DMRS (Demodulation Reference Signal) transmitted in the corresponding control region. Signal)/Physical Broadcast Channel (PBCH) block index or CSI-RS (Channel State Information Reference Signal) index information.
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 시그널 및 이들의 조합들로 대체되는 것도 가능하나 향후 본 개시의 설명에서는 편의를 위하여 서로 다른 안테나 포트들로 통일하여 지칭한다)은 아래 [표 9]와 같은 QCL 설정에 의하여 서로 연결(associate)될 수 있다.In a wireless communication system, one or more different antenna ports (or one or more channels, signals, and combinations thereof may be replaced, but in the description of the present disclosure in the future, for convenience, different antenna ports will be referred to) They may be associated with each other by QCL settings as shown in [Table 9] below.
QCL-Info ::= SEQUENCE {
cell ServCellIndex (QCL reference RS가 전송되는 서빙 셀 인덱스)
bwp-Id BWP-Id (QCL reference RS가 전송되는 대역폭 부분 인덱스)
referenceSignal CHOICE {(CSI-RS 혹은 SS/PBCH block 중 하나를 QCL reference RS로 지시하는 지시자)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, type D}, (QCL type 지시자)
...
}
QCL-Info ::= SEQUENCE {
cell ServCellIndex (Serving cell index to which QCL reference RS is transmitted)
bwp-Id BWP-Id (bandwidth partial index over which QCL reference RS is transmitted)
referenceSignal CHOICE {(Indicator indicating one of CSI-RS or SS/PBCH block as QCL reference RS)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, type D}, (QCL type indicator)
...
}
구체적으로 QCL 설정은 두 개의 서로 다른 안테나 포트들을(QCL) target 안테나 포트와(QCL) reference 안테나 포트의 관계로 연결할 수 있으며, 단말은 상기 reference 안테나 포트에서 측정된 채널의 통계적인 특성들(예를 들어 Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx(혹은 Tx) 파라미터 등 채널의 large scale 파라미터 내지 단말의 수신 공간 필터 계수 혹은 송신 공간 필터 계수) 중 전부 혹은 일부를 target 안테나 포트 수신 시 적용(혹은 가정) 할 수 있다. 위에서 target 안테나 포트라 함은 상기 QCL 설정을 포함하는 상위 레이어 설정에 의하여 설정되는 채널 혹은 신호를 송신하는 안테나 포트 내지는 상기 QCL 설정을 지시하는 TCI state가 적용되는 채널 혹은 신호를 송신하는 안테나 포트를 의미할 수 있다. 위에서 reference 안테나 포트라 함은 상기 QCL 설정 내 referenceSignal 파라미터에 의하여 지시(특정)되는 채널 혹은 신호를 송신하는 안테나 포트를 의미할 수 있다.Specifically, the QCL setting can connect two different antenna ports (QCL) in a relationship between a target antenna port and a (QCL) reference antenna port, and the terminal can perform statistical characteristics (eg, For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, and spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal) are set to the target antenna port. It can be applied (or assumed) upon reception. In the above, the target antenna port refers to an antenna port for transmitting a channel or signal set by a higher layer setting including the QCL setting, or an antenna port for transmitting a channel or signal to which a TCI state indicating the QCL setting is applied. can In the above, the reference antenna port may mean an antenna port for transmitting a channel or signal indicated (specific) by the referenceSignal parameter in the QCL configuration.
구체적으로, 상기 QCL 설정에 의하여 한정되는(상기 QCL 설정 내에서 파라미터 qcl-Type에 의하여 지시되는) 채널의 통계적인 특성들은 QCL type에 따라 다음과 같이 분류될 수 있다.Specifically, the statistical characteristics of the channel defined by the QCL setting (indicated by the parameter qcl-Type in the QCL setting) may be classified according to the QCL type as follows.
* 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}* 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
* 'QCL-TypeB': {Doppler shift, Doppler spread}* 'QCL-TypeB': {Doppler shift, Doppler spread}
* 'QCL-TypeC': {Doppler shift, average delay}* 'QCL-TypeC': {Doppler shift, average delay}
* 'QCL-TypeD': {Spatial Rx parameter}* 'QCL-TypeD': {Spatial Rx parameter}
이때 QCL type의 종류는 위 네 가지 종류에 한정되는 것은 아니나 설명의 요지를 흐리지 않기 위하여 모든 가능한 조합들을 나열하지는 않는다. 위에서 QCL-TypeA는 target 안테나 포트의 대역폭 및 전송 구간이 reference 안테나 포트 대비 모두 충분하여(즉 주파수 축 및 시간 축 모두에서 target 안테나 포트의 샘플 수 및 전송 대역/시간이 reference 안테나 포트의 샘플 수 및 전송 대역/시간보다 많은 경우) 주파수 및 시간 축에서 측정 가능한 모든 통계적 특성들을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeB는 target 안테나 포트의 대역폭이 주파수 축에서 측정 가능한 통계적 특성들, 즉 Doppler shift, Doppler spread들을 측정하기에 충분한 경우에 사용되는 QCL type이다. QCL-TypeC는 target 안테나 포트의 대역폭 및 전송 구간이 second-order statistics, 즉 Doppler spread 및 delay spread들을 측정하기에는 불충분하여 first-order statistics, 즉 Doppler shift, average delay만을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeD는 reference 안테나 포트를 수신할 때 사용한 공간 수신 필터 값 들을 target 안테나 포트 수신 시 사용할 수 있을 때 설정되는 QCL type이다.At this time, the types of QCL type are not limited to the above four types, but all possible combinations are not listed in order not to obscure the gist of the description. In the above, QCL-TypeA indicates that the bandwidth and transmission period of the target antenna port are both sufficient compared to the reference antenna port (that is, the number of samples and the transmission band/time of the target antenna port on both the frequency axis and the time axis are the number of samples and transmission of the reference antenna port. More than band/time) This is a QCL type used when all statistical properties that can be measured in frequency and time axes can be referenced. QCL-TypeB is a QCL type used when the bandwidth of the target antenna port is sufficient to measure measurable statistical characteristics on the frequency axis, that is, Doppler shift and Doppler spreads. QCL-TypeC is a QCL type used when the bandwidth and transmission period of the target antenna port are insufficient to measure second-order statistics, that is, Doppler spread and delay spreads, so that only first-order statistics, that is, Doppler shift and average delay, can be referred to. . QCL-TypeD is a QCL type set when spatial reception filter values used when receiving a reference antenna port can be used when receiving a target antenna port.
한편, 기지국은 아래 표 10와 같은 TCI state설정을 통하여 최대 두 개의 QCL 설정을 하나의 target 안테나 포트에 설정 혹은 지시하는 것이 가능하다.On the other hand, it is possible for the base station to set or instruct up to two QCL settings to one target antenna port through the TCI state setting as shown in Table 10 below.
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateID,(TCI state 지시자)
qcl-Type1 QCL-Info, (해당 TCI state가 적용되는 target 안테나 포트에 대한 첫 번째 QCL 설정)
qcl-Type2 QCL-Info (해당 TCI state가 적용되는 target 안테나 포트에 대한 두 번째 QCL 설정) OPTIONAL, --Need R
...
}
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateID, (TCI state indicator)
qcl-Type1 QCL-Info, (Set the first QCL for the target antenna port to which the TCI state is applied)
qcl-Type2 QCL-Info (Set the second QCL for the target antenna port to which the TCI state is applied) OPTIONAL, --Need R
...
}
하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 첫 번째 QCL 설정은 QCL-TypeA, QCL-TypeB, QCL-TypeC 중 하나로 설정될 수 있다. 이때 설정 가능한 QCL type은 target 안테나 포트 및 reference 안테나 포트의 종류에 따라 특정되며 아래 상세히 설명한다. 또한 상기 하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 두 번째 QCL 설정은 QCL-TypeD로 설정될 수 있으며 경우에 따라 생략되는 것이 가능하다.Among the two QCL settings included in one TCI state setting, the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC. In this case, the settable QCL type is specified according to the types of the target antenna port and the reference antenna port, and will be described in detail below. In addition, the second QCL setting among the two QCL settings included in the one TCI state setting may be set to QCL-TypeD, and may be omitted in some cases.
아래 표 11 내지 15에서는 target 안테나 포트 종류에 따른 유효한 TCI state 설정들을 나타내는 표 들이다.Tables 11 to 15 below are tables showing valid TCI state settings according to target antenna port types.
표 11은 target 안테나 포트가 CSI-RS for tracking(TRS) 일 경우 유효한 TCI state 설정을 나타낸다. 상기 TRS는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info가 true로 설정된 NZP CSI-RS를 의미한다. 표 11에서 3번 설정의 경우 aperiodic TRS를 위하여 사용될 수 있다.Table 11 shows the valid TCI state configuration when the target antenna port is CSI-RS for tracking (TRS). The TRS refers to an NZP CSI-RS in which a repetition parameter is not set among CSI-RSs and trs-Info is set to true. In the case of setting 3 in Table 11, it can be used for aperiodic TRS.
[표 11] Target 안테나 포트가 CSI-RS for tracking(TRS) 일 경우 유효한 TCI state 설정[Table 11] Valid TCI state setting when the target antenna port is CSI-RS for tracking (TRS)
Valid TCI
state
Configuration
Valid TCI
state
Configuration
DL RS1DL RS1 qcl-Type1qcl-Type1 DL RS2
(if configured)
DL RS2
(if configured)
qcl-Type2
(if configured)
qcl-Type2
(if configured)
1One SSBSSB QCL-TypeCQCL-TypeC SSBSSB QCL-TypeDQCL-TypeD
22 SSBSSB QCL-TypeCQCL-TypeC CSI-RS (BM)CSI-RS (BM) QCL-TypeDQCL-TypeD
33 TRS (periodic)TRS (periodic) QCL-TypeAQCL-TypeA TRS (same as DL RS1)TRS (same as DL RS1) QCL-TypeDQCL-TypeD
표 12는 target 안테나 포트가 CSI-RS for CSI 일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for CSI는 CSI-RS 중 repetition 파라미터가 설정되지 않고 trs-Info 또한 true로 설정되지 않은 NZP CSI-RS를 의미한다.Table 12 shows the valid TCI state configuration when the target antenna port is CSI-RS for CSI. The CSI-RS for CSI means an NZP CSI-RS in which the repetition parameter is not set and trs-Info is not set to true among the CSI-RSs.
[표 12] Target 안테나 포트가 CSI-RS for CSI일 경우 유효한 TCI state 설정[Table 12] Valid TCI state setting when the target antenna port is CSI-RS for CSI
Valid TCI
state
Configuration
Valid TCI
state
Configuration
DL RS1DL RS1 qcl-Type1qcl-Type1 DL RS2
(if configured)
DL RS2
(if configured)
qcl-Type2
(if configured)
qcl-Type2
(if configured)
1One TRSTRS QCL-TypeAQCL-TypeA SSBSSB QCL-TypeDQCL-TypeD
22 TRSTRS QCL-TypeAQCL-TypeA CSI-RS (BM)CSI-RS (BM) QCL-TypeDQCL-TypeD
33 TRSTRS QCL-TypeAQCL-TypeA TRS (same as DL RS1)TRS (same as DL RS1) QCL-TypeDQCL-TypeD
44 TRSTRS QCL-TypeBQCL-TypeB
표 13은 target 안테나 포트가 CSI-RS for beam management(BM, CSI-RS for L1 RSRP reporting과 동일한 의미)일 경우 유효한 TCI state 설정을 나타낸다. 상기 CSI-RS for BM은 CSI-RS 중 repetition 파라미터가 설정되어 On 또는 Off의 값을 가지며, trs-Info가 true로 설정되지 않은 NZP CSI-RS를 의미한다.Table 13 shows the effective TCI state configuration when the target antenna port is CSI-RS for beam management (BM, the same meaning as CSI-RS for L1 RSRP reporting). The CSI-RS for BM means an NZP CSI-RS in which a repetition parameter is set among CSI-RSs, has a value of On or Off, and trs-Info is not set to true.
[표 13] Target 안테나 포트가 CSI-RS for BM(for L1 RSRP reporting)일 경우 유효한 TCI state 설정[Table 13] Valid TCI state configuration when the target antenna port is CSI-RS for BM (for L1 RSRP reporting)
Valid TCI
state
Configuration
Valid TCI
state
Configuration
DL RS1DL RS1 qcl-Type1qcl-Type1 DL RS2
(if configured)
DL RS2
(if configured)
qcl-Type2
(if configured)
qcl-Type2
(if configured)
1One TRSTRS QCL-TypeAQCL-TypeA TRS (same as DL RS1)TRS (same as DL RS1) QCL-TypeDQCL-TypeD
22 TRSTRS QCL-TypeAQCL-TypeA CSI-RS (BM)CSI-RS (BM) QCL-TypeDQCL-TypeD
33 SS/PBCHBlockSS/PBCHBlock QCL-TypeCQCL-TypeC SS/PBCH BlockSS/PBCH Block QCL-TypeDQCL-TypeD
표 14는 target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.Table 14 shows the valid TCI state configuration when the target antenna port is a PDCCH DMRS.
[표 14] Target 안테나 포트가 PDCCH DMRS일 경우 유효한 TCI state 설정[Table 14] Valid TCI state setting when target antenna port is PDCCH DMRS
Valid TCI
state
Configuration
Valid TCI
state
Configuration
DL RS1DL RS1 qcl-Type1qcl-Type1 DL RS2
(if configured)
DL RS2
(if configured)
qcl-Type2
(if configured)
qcl-Type2
(if configured)
1One TRSTRS QCL-TypeAQCL-TypeA TRS (same as DL RS1)TRS (same as DL RS1) QCL-TypeDQCL-TypeD
22 TRSTRS QCL-TypeAQCL-TypeA CSI-RS (BM)CSI-RS (BM) QCL-TypeDQCL-TypeD
33 CSI-RS (CSI)CSI-RS (CSI) QCL-TypeAQCL-TypeA CSI-RS (same as DL RS1)CSI-RS (same as DL RS1) QCL-TypeDQCL-TypeD
표 15는 target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정을 나타낸다.Table 15 shows the valid TCI state configuration when the target antenna port is a PDSCH DMRS.
[표 15] Target 안테나 포트가 PDSCH DMRS일 경우 유효한 TCI state 설정[Table 15] Valid TCI state setting when target antenna port is PDSCH DMRS
Valid TCI
state
Configuration
Valid TCI
state
Configuration
DL RS1DL RS1 qcl-Type1qcl-Type1 DL RS2
(if configured)
DL RS2
(if configured)
qcl-Type2
(if configured)
qcl-Type2
(if configured)
1One TRSTRS QCL-TypeAQCL-TypeA TRSTRS QCL-TypeDQCL-TypeD
22 TRSTRS QCL-TypeAQCL-TypeA CSI-RS (BM)CSI-RS (BM) QCL-TypeDQCL-TypeD
33 CSI-RS (CSI)CSI-RS (CSI) QCL-TypeAQCL-TypeA CSI-RS (CSI)CSI-RS (CSI) QCL-TypeDQCL-TypeD
상기 표 11 내지 15에 의한 대표적인 QCL 설정 방법은 각 단계 별 target 안테나 포트 및 reference 안테나 포트를 "SSB" -> "TRS" -> "CSI-RS for CSI, 또는 CSI-RS for BM, 또는 PDCCH DMRS, 또는 PDSCH DMRS"와 같이 설정하여 운용하는 것이다. 이를 통하여 SSB 및 TRS로부터 측정할 수 있는 통계적 특성들을 각 안테나 포트들까지 연계시켜 단말의 수신 동작을 돕는 것이 가능하다.In the representative QCL setting method according to Tables 11 to 15, the target antenna port and the reference antenna port for each step are set to "SSB" -> "TRS" -> "CSI-RS for CSI, or CSI-RS for BM, or PDCCH DMRS. , or PDSCH DMRS". Through this, it is possible to link the statistical characteristics that can be measured from the SSB and the TRS to each antenna port to help the reception operation of the terminal.
도 5는 본 개시의 일 실시 예에 따른 무선 통신 시스템의 하향링크 제어채널의 구조를 설명하는 도면이다. 5 is a diagram for explaining the structure of a downlink control channel of a wireless communication system according to an embodiment of the present disclosure.
구체적으로, 도 5는 본 개시의 일 실시 예에 따른 5G에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 예시를 도시하는 도면이다.Specifically, FIG. 5 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel that can be used in 5G according to an embodiment of the present disclosure.
도 5를 참조하면, 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위는 REG(Resource Element Group, 503)로 정의될 수 있다. REG(503)는 시간 축으로 1 OFDM 심볼(501), 주파수 축으로 1 PRB(Physical Resource Block, 502), 즉, 12개 서브캐리어(Subcarrier)로 정의될 수 있다. 기지국은 REG(503)를 연접하여 하향링크 제어채널 할당 단위를 구성할 수 있다. Referring to FIG. 5 , a basic unit of time and frequency resources constituting a control channel may be defined as a resource element group (REG) 503 . The REG 503 may be defined as 1 OFDM symbol 501 on the time axis and 1 Physical Resource Block (PRB) 502 on the frequency axis, that is, 12 subcarriers. The base station may configure a downlink control channel allocation unit by concatenating the REG 503 .
도 5에 도시된 바와 같이, 5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element, 504)라고 할 경우, 1 CCE(504)는 복수의 REG(503)로 구성될 수 있다. 예를 들면, 도 5에 도시된 REG(503)는 12개의 RE로 구성될 수 있고, 1 CCE(504)가 6개의 REG(503)로 구성된다면 1 CCE(504)는 72개의 RE로 구성될 수 있다. 하향링크 제어영역이 설정되면 해당 영역은 복수의 CCE(504)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어영역 내의 집성 레벨(Aggregation Level, AL)에 따라 하나 또는 복수의 CCE(504)로 매핑 되어 전송될 수 있다. 제어영역내의 CCE(504)들은 번호로 구분되며 이 때 CCE(5-04)들의 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.As shown in FIG. 5 , when a basic unit to which a downlink control channel is allocated in 5G is referred to as a control channel element (CCE), one CCE 504 may be composed of a plurality of REGs 503 . For example, the REG 503 shown in FIG. 5 may be composed of 12 REs, and if 1 CCE 504 is composed of 6 REGs 503, 1 CCE 504 is composed of 72 REs. can When a downlink control region is set, the corresponding region may be composed of a plurality of CCEs 504, and a specific downlink control channel is configured with one or a plurality of CCEs 504 according to an aggregation level (AL) in the control region. It can be mapped and transmitted. The CCEs 504 in the control region are divided by numbers, and in this case, the numbers of the CCEs 5-04 may be assigned according to a logical mapping method.
도 5에 도시된 하향링크 제어채널의 기본 단위, 즉 REG(503)에는 DCI가 매핑되는 RE들과, 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(505)가 매핑되는 영역이 모두 포함될 수 있다. 도 5에서와 같이 1 REG(503) 내에 3개의 DMRS(505)가 전송될 수 있다. PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(Aggregation Level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예를 들어, AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다. The basic unit of the downlink control channel shown in FIG. 5 , that is, the REG 503 , may include both REs to which DCI is mapped and a region to which the DMRS 505 , which is a reference signal for decoding them, is mapped. As in FIG. 5 , three DMRSs 505 may be transmitted within one REG 503 . The number of CCEs required to transmit the PDCCH may be 1, 2, 4, 8, or 16 according to an aggregation level (AL), and the number of different CCEs is the link adaptation of the downlink control channel. can be used to implement For example, when AL=L, one downlink control channel may be transmitted through L CCEs.
단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space)이 정의될 수 있다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(Candidate)들의 집합이다. 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로, 단말은 복수개의 탐색공간을 가질 수 있다. 탐색공간 세트(Set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.The UE needs to detect a signal without knowing the information on the downlink control channel. For blind decoding, a search space representing a set of CCEs may be defined. The search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level. Since there are various aggregation levels that make one bundle with 1, 2, 4, 8, and 16 CCEs, the UE may have a plurality of search spaces. A search space set may be defined as a set of search spaces in all set aggregation levels.
탐색공간은 공통(Common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 본 개시의 일 실시 예에 따르면, 일정 그룹의 단말들 또는 모든 단말들은 시스템 정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다. The search space may be classified into a common search space and a UE-specific search space. According to an embodiment of the present disclosure, a group of terminals or all terminals may search the common search space of the PDCCH in order to receive cell-common control information such as dynamic scheduling for system information or a paging message.
예를 들어, 단말은 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보를 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신해야 하므로, 공통 탐색공간은 기 약속된 CCE의 집합으로써 정의될 수 있다. 한편, 단말은 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케줄링 할당 정보를 PDCCH의 단말-특정 탐색공간을 조사함으로써 수신할 수 있다. 단말-특정 탐색공간은 단말의 신원(Identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다. For example, the UE may receive PDSCH scheduling assignment information for transmission of SIB including operator information of a cell by examining the common search space of the PDCCH. In the case of the common search space, since a certain group of terminals or all terminals must receive the PDCCH, the common search space may be defined as a set of predefined CCEs. Meanwhile, the UE may receive scheduling assignment information for UE-specific PDSCH or PUSCH by examining UE-specific search space of PDCCH. The UE-specific search space may be UE-specifically defined as a function of the UE's identity and various system parameters.
한편, 본 개시가 적용될 수 있는 무선 통신 시스템(5G 또는 NR 시스템)에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색공간을 모니터링 하고자 하는 제어영역 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, 상기 설정은 아래의 [표 16]과 같은 정보들을 포함할 수 있다.On the other hand, in a wireless communication system (5G or NR system) to which the present disclosure can be applied, the parameter for the search space for the PDCCH may be set from the base station to the terminal by higher layer signaling (eg, SIB, MIB, RRC signaling). For example, the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), A combination of DCI format and RNTI to be monitored in the corresponding search space, a control region index to be monitored in the search space, etc. may be set to the UE. For example, the setting may include information as shown in [Table 16] below.
SearchSpace ::= SEQUENCE {
-- Identity of the search space. SearchSpaceId = 0 identifies the SearchSpace configured via PBCH (MIB) or ServingCellConfigCommon.
searchSpaceId SearchSpaceId,
(탐색공간 식별자)
controlResourceSetId ControlResourceSetId,
(제어영역 식별자)
monitoringSlotPeriodicityAndOffset CHOICE {
(모니터링 슬롯 레벨 주기)
s11 NULL,
s12 INTEGER (0..1),
s14 INTEGER (0..3),
s15 INTEGER (0..4),
s18 INTEGER (0..7),
s110 INTEGER (0..9)
s116 INTEGER (0..15),
s120 INTEGER (0..19)
}
duration (모니터링 길이) INTEGER (2..2559)
monitoringSymbolsWithinSlot BIT STRING (SIZE (14))
(슬롯 내 모니터링 심볼)
nrofCandidates SEQUENCE {
(집성 레벨 별 PDCCH 후보군 수)
aggregationLevel1 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel2 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel4 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel8 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel16 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
},

searchSpaceType CHOICE {
(탐색공간 타입)
-- Configures this search space as common search space (CSS) and DCI formats to monitor.
common SEQUENCE {
(공통 탐색 공간)
}
ue-specific SEQUENCE {
(단말-특정 탐색 공간)
-- Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1.
formats ENUMERATED {formats 0-0-And-1-0, formats 0-1-And-1-1},
...
}
SearchSpace ::= SEQUENCE {
-- Identity of the search space. SearchSpaceId = 0 identifies the SearchSpace configured via PBCH (MIB) or ServingCellConfigCommon.
searchSpaceId SearchSpaceId,
(search space identifier)
controlResourceSetId ControlResourceSetId,
(control area identifier)
monitoringSlotPeriodicityAndOffset CHOICE {
(Monitoring slot level cycle)
s11 NULL,
s12 INTEGER (0..1),
s14 INTEGER (0..3),
s15 INTEGER (0..4),
s18 INTEGER (0..7),
s110 INTEGER (0..9)
s116 INTEGER (0..15),
s120 INTEGER (0..19)
}
duration (monitoring length) INTEGER (2.2.2559)
monitoringSymbolsWithinSlot BIT STRING (SIZE (14))
(Monitoring symbol in slot)
nrofCandidates SEQUENCE {
(Number of PDCCH candidates by aggregation level)
aggregationLevel1 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel2 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel4 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel8 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel16 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
},

searchSpaceType CHOICE {
(Search space type)
-- Configures this search space as common search space (CSS) and DCI formats to monitor.
common SEQUENCE {
(Common Search Space)
}
ue-specific SEQUENCE {
(terminal-specific search space)
-- Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1.
formats ENUMERATED {formats 0-0-And-1-0, formats 0-1-And-1-1},
...
}
설정 정보에 기초하여 기지국은 단말에게 하나 또는 복수 개의 탐색공간 세트를 설정할 수 있다. 본 개시의 일 실시 예에 따르면, 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있고, 탐색공간 세트 1에서 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정할 수 있고, 탐색공간 세트 2에서 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정할 수 있다. Based on the configuration information, the base station may configure one or a plurality of search space sets for the terminal. According to an embodiment of the present disclosure, the base station may set the search space set 1 and the search space set 2 to the terminal, and the DCI format A scrambled with X-RNTI in the search space set 1 may be configured to be monitored in the common search space. and DCI format B scrambled with Y-RNTI in search space set 2 may be configured to be monitored in a UE-specific search space.
설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 복수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.According to the configuration information, one or a plurality of search space sets may exist in the common search space or the terminal-specific search space. For example, the search space set #1 and the search space set #2 may be set as the common search space, and the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
공통 탐색공간은 목적에 따라 특정 타입(type)의 탐색공간 세트로 분류될 수 있다. 정해진 탐색공간 세트 타입 별로 모니터링 될 RNTI가 서로 다를 수 있다. 예를 들어 공통 탐색공간 타입, 목적, 및 모니터링 될 RNTI는 다음 표 17과 같이 분류할 수 있다.The common search space may be classified into a search space set of a specific type according to a purpose. An RNTI to be monitored may be different for each type of a determined search space set. For example, the common search space type, purpose, and RNTI to be monitored can be classified as shown in Table 17 below.
탐색공간 타입Search space type 목적purpose RNTIRNTI
Type0 CSSType0 CSS SIB 스케줄을 위한 PDCCH 전송PDCCH transmission for SIB schedule SI-RNTISI-RNTI
Type0A CSSType0A CSS SIB1 외 다른 SI 스케줄(SIB2 등)을 위한 PDCCH 전송PDCCH transmission for SI schedules other than SIB1 (SIB2, etc.) SI-RNTISI-RNTI
Type1 CSSType1 CSS RAR(random access response) 스케줄, Msg3 재전송 스케줄, Msg4 스케줄을 위한 PDCCH 전송PDCCH transmission for random access response (RAR) schedule, Msg3 retransmission schedule, and Msg4 schedule RA-RNTI, TC-RNTIRA-RNTI, TC-RNTI
Type2 CSSType2 CSS 페이징paging P-RNTIP-RNTI
Type3 CSSType3 CSS 그룹 제어 정보 전송Send group control information INT-RNTI,
SFI-RNTI,
TPC-PUSCH-RNTI,
TPC-PUCCH-RNTI,
TPC-SRS-RNTI
INT-RNTI,
SFI-RNTI,
TPC-PUSCH-RNTI,
TPC-PUCCH-RNTI,
TPC-SRS-RNTI
PCell의 경우, 데이터 스케줄을 위한 PDCCH 전송In case of PCell, PDCCH transmission for data schedule C-RNTI,
MCS-C-RNTI,
CS-RNTI
C-RNTI,
MCS-C-RNTI,
CS-RNTI
한편 공통 탐색공간에서는 아래의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.Meanwhile, in the common search space, a combination of the following DCI format and RNTI may be monitored. Of course, it is not limited to the following examples.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
- DCI format 2_0 with CRC scrambled by SFI-RNTI- DCI format 2_0 with CRC scrambled by SFI-RNTI
- DCI format 2_1 with CRC scrambled by INT-RNTI- DCI format 2_1 with CRC scrambled by INT-RNTI
- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 아래의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.In the UE-specific search space, a combination of the following DCI format and RNTI may be monitored. Of course, it is not limited to the following examples.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
한편, 명시되어 있는 RNTI들은 아래와 같은 정의 및 용도를 따를 수 있다.On the other hand, the specified RNTIs may follow the following definitions and uses.
C-RNTI(Cell RNTI): 단말-특정 PDSCH 스케줄링 용도C-RNTI (Cell RNTI): UE-specific PDSCH scheduling purpose
TC-RNTI(Temporary Cell RNTI): 단말-특정 PDSCH 스케줄링 용도TC-RNTI (Temporary Cell RNTI): UE-specific PDSCH scheduling purpose
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케줄링 용도CS-RNTI (Configured Scheduling RNTI): Semi-statically configured UE-specific PDSCH scheduling purpose
RA-RNTI(Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케줄링 용도RA-RNTI (Random Access RNTI): Used for scheduling PDSCH in the random access phase
P-RNTI(Paging RNTI): 페이징이 전송되는 PDSCH 스케줄링 용도P-RNTI (Paging RNTI): PDSCH scheduling purpose for which paging is transmitted
SI-RNTI(System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케줄링 용도SI-RNTI (System Information RNTI): PDSCH scheduling purpose in which system information is transmitted
INT-RNTI(Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도INT-RNTI (Interruption RNTI): Used to inform whether pucturing for PDSCH
TPC-PUSCH-RNTI(Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): Used to indicate power control command for PUSCH
TPC-PUCCH-RNTI(Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도Transmit Power Control for PUCCH RNTI (TPC-PUCCH-RNTI): Used to indicate power control command for PUCCH
TPC-SRS-RNTI(Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도 Transmit Power Control for SRS RNTI (TPC-SRS-RNTI): For instructing power control commands for SRS
일 실시 예에서, 상술된 DCI 포맷들은 아래의 [표 18]와 같이 정의될 수 있다.In an embodiment, the above-described DCI formats may be defined as shown in [Table 18] below.
DCI formatDCI format UsageUsage
0_00_0 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
0_10_1 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
1_01_0 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
1_11_1 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
2_02_0 Notifying a group of UEs of the slot formatNotifying a group of UEs of the slot format
2_12_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UENotifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_22_2 Transmission of TPC commands for PUCCH and PUSCHTransmission of TPC commands for PUCCH and PUSCH
2_32_3 Transmission of a group of TPC commands for SRS transmission by one or more UEsTransmission of a group of TPC commands for SRS transmission by one or more UEs
본 개시가 적용될 수 있는 무선 통신 시스템(5G 시스템 또는 NR 시스템)에서는 복수 개의 탐색공간 세트가 서로 다른 파라미터들(예컨대, [표 10]의 파라미터들)로 설정될 수 있다. 따라서, 매 시점에서 단말이 모니터링하는 탐색공간 세트의 집합이 달라질 수 있다. 예를 들면, 탐색공간 세트#1이 X-슬롯 주기로 설정되어 있고, 탐색공간 세트#2가 Y-슬롯 주기로 설정되어 있고 X와 Y가 다를 경우, 단말은 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2를 모두 모니터링 할 수 있고, 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2 중 하나를 모니터링 할 수 있다. In a wireless communication system (5G system or NR system) to which the present disclosure can be applied, a plurality of search space sets may be set with different parameters (eg, parameters in [Table 10]). Accordingly, the set of search space sets monitored by the terminal at every time point may be different. For example, if the search space set #1 is set to the X-slot period, the search space set #2 is set to the Y-slot period and X and Y are different, the UE searches with the search space set #1 in a specific slot. All of the space set #2 can be monitored, and one of the search space set #1 and the search space set #2 can be monitored in a specific slot.
복수 개의 탐색공간 세트가 단말에게 설정되었을 경우, 단말이 모니터링해야 하는 탐색공간 세트를 결정하기 위하여, 아래와 같은 조건들이 고려될 수 있다. When a plurality of search space sets are configured for the terminal, the following conditions may be considered in order to determine the search space set to be monitored by the terminal.
[조건 1: 최대 PDCCH 후보군 수 제한][Condition 1: Limit the maximum number of PDCCH candidates]
슬롯 당 모니터링 할 수 있는 PDCCH 후보군의 수는 Mμ를 넘지 않을 수 있다. Mμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서의 슬롯 당 최대 PDCCH 후보군 수로 정의될 수 있으며, 아래의 [표 19]과 같이 정의될 수 있다.The number of PDCCH candidates that can be monitored per slot may not exceed M μ. M μ may be defined as the maximum number of PDCCH candidates per slot in a cell set to a subcarrier interval of 15·2 μ kHz, and may be defined as shown in [Table 19] below.
Figure PCTKR2021001742-appb-I000021
Figure PCTKR2021001742-appb-I000021
Maximum number of PDCCH candidates per slot and per serving cell (
Figure PCTKR2021001742-appb-I000022
)
Maximum number of PDCCH candidates per slot and per serving cell (
Figure PCTKR2021001742-appb-I000022
)
00 4444
1One 3636
22 2222
33 2020
[조건 2: 최대 CCE 수 제한][Condition 2: Limit the maximum number of CCEs]
슬롯 당 전체 탐색공간(여기서 전체 탐색공간이란 복수 개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미할 수 있다)을 구성하는 CCE의 개수는 Cμ를 넘지 않을 수 있다. Cμ는 서브캐리어 간격 15·2μ kHz으로 설정된 셀에서의 슬롯 당 최대 CCE의 수로 정의될 수 있으며, 아래의 [표 20]과 같이 정의될 수 있다.The number of CCEs constituting the entire search space per slot (here, the total search space may mean the entire set of CCEs corresponding to the union region of a plurality of search space sets) may not exceed C μ. C μ may be defined as the maximum number of CCEs per slot in a cell set to a subcarrier spacing of 15·2 μ kHz, and may be defined as shown in [Table 20] below.
Figure PCTKR2021001742-appb-I000023
Figure PCTKR2021001742-appb-I000023
Maximum number of CCEs per slot and per serving cell (
Figure PCTKR2021001742-appb-I000024
)
Maximum number of CCEs per slot and per serving cell (
Figure PCTKR2021001742-appb-I000024
)
00 5656
1One 5656
22 4848
33 3232
설명의 편의를 위해, 특정 시점에서 상기 조건 1, 2를 모두 만족시키는 상황은 예시적으로 "조건 A"로 정의될 수 있다. 따라서, 조건 A를 만족시키지 않는 것은 상술된 조건 1, 2 중에서 적어도 하나의 조건을 만족시키지 않는 것을 의미할 수 있다.For convenience of description, a situation in which both conditions 1 and 2 are satisfied at a specific time point may be exemplarily defined as “condition A”. Accordingly, not satisfying condition A may mean not satisfying at least one of conditions 1 and 2 described above.
기지국의 탐색공간 세트들의 설정에 따라 특정 시점에서 조건 A가 만족되지 않는 경우가 발생할 수 있다. 특정 시점에서 조건 A가 만족되지 않을 경우, 단말은 해당 시점에서 조건 A를 만족하도록 설정된 탐색공간 세트들 중에서 일부만을 선택하여 모니터링 할 수 있고, 기지국은 선택된 탐색공간 세트로 PDCCH를 전송할 수 있다. According to the setting of the search space sets of the base station, the condition A may not be satisfied at a specific time point. If condition A is not satisfied at a specific time point, the UE may select and monitor only some of the search space sets configured to satisfy condition A at the corresponding time point, and the base station may transmit the PDCCH to the selected search space set.
본 개시의 일 실시 예에 따르면, 전체 설정된 탐색공간 세트 중에서 일부 탐색공간을 선택하는 방법으로 하기의 방법을 따를 수 있다.According to an embodiment of the present disclosure, the following method may be used as a method of selecting a partial search space from among all set search space sets.
[방법 1][Method 1]
특정 시점(슬롯)에서 PDCCH에 대한 조건 A를 만족시키지 못할 경우, If condition A for PDCCH is not satisfied at a specific time point (slot),
단말은(또는 기지국은) 해당 시점에 존재하는 탐색공간 세트들 중에서 탐색 공간 타입이 공통 탐색공간으로 설정되어 있는 탐색공간 세트를 단말-특정 탐색공간으로 설정된 탐색공간 세트보다 우선적으로 선택할 수 있다.The terminal (or the base station) may preferentially select a search space set in which a search space type is set as a common search space from among search space sets existing at a corresponding time, over a search space set set as a terminal-specific search space.
공통 탐색공간으로 설정되어 있는 탐색공간 세트들이 모두 선택되었을 경우(즉, 공통 탐색공간으로 설정되어 있는 모든 탐색공간을 선택한 후에도 조건 A를 만족할 경우), 단말은(또는 기지국은) 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트들을 선택할 수 있다. 이 때, 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트가 복수 개일 경우, 탐색공간 세트 인덱스(Index)가 낮은 탐색공간 세트가 더 높은 우선 순위를 가질 수 있다. 우선 순위를 고려하여, 단말 혹은 기지국은 단말-특정 탐색공간 세트들을 조건 A가 만족되는 범위 내에서 선택할 수 있다.When all search space sets set as the common search space are selected (that is, condition A is satisfied even after selecting all search spaces set as the common search space), the terminal (or the base station) uses the terminal-specific search space You can select search space sets set to . In this case, when there are a plurality of search space sets set as the terminal-specific search space, a search space set having a low search space set index may have a higher priority. Considering the priority, the terminal or the base station may select terminal-specific search space sets within a range in which condition A is satisfied.
아래에서는 본 개시가 적용될 수 있는 무선 통신 시스템(5G 시스템 또는 NR 시스템)에서 데이터 전송을 위한 시간 및 주파수 자원 할당 방법들을 설명하기로 한다.Hereinafter, methods for allocating time and frequency resources for data transmission in a wireless communication system (5G system or NR system) to which the present disclosure can be applied will be described.
본 개시가 적용될 수 있는 무선 통신 시스템(5G 시스템 또는 NR 시스템)에서는 BWP 지시(indication)를 통한 주파수 축 자원 후보 할당에 더하여 다음과 같은 세부적인 주파수 축 자원 할당 방법(frequency domain resource allocation, FD-RA)들이 제공될 수 있다. In a wireless communication system (5G system or NR system) to which the present disclosure can be applied, in addition to frequency axis resource candidate allocation through BWP indication, the following detailed frequency domain resource allocation method (frequency domain resource allocation, FD-RA) ) can be provided.
도 6은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH(physical downlink shared channel)의 주파수축 자원 할당 예를 도시하는 도면이다.6 is a diagram illustrating an example of allocation of a frequency axis resource of a physical downlink shared channel (PDSCH) in a wireless communication system according to an embodiment of the present disclosure.
구체적으로, 도 6은 NR 시스템에서 상위 레이어를 통하여 설정 가능한 type 0(6-00), type 1(6-05), 그리고 동적 변경(dynamic switch)(6-10)의 세 가지 주파수 축 자원 할당 방법들을 도시하는 도면이다.Specifically, FIG. 6 shows three frequency axis resource allocation: type 0 (6-00), type 1 (6-05), and dynamic switch (6-10) configurable through a higher layer in the NR system. It is a drawing showing the methods.
도 6을 참조하면, 만약 상위 레이어 시그널링을 통하여 단말이 resource type 0 만을 사용하도록 설정된 경우(6-00), 해당 단말에게 PDSCH를 할당하는 일부 하향링크 제어 정보(downlink control information, DCI)는 NRBG개의 비트로 구성되는 비트맵을 가진다. 이를 위한 조건은 차후 다시 설명한다. 이때 NRBG는 BWP 지시자(indicator)가 할당하는 BWP 크기(size) 및 상위 레이어 파라미터 rbg-Size에 따라 아래 [표 21]와 같이 결정되는 RBG(resource block group)의 수를 의미하며, 비트맵에 의하여 1로 표시되는 RBG에 데이터가 전송되게 된다.Referring to FIG. 6, if the UE is configured to use only resource type 0 through higher layer signaling (6-00), some downlink control information (DCI) for allocating PDSCH to the UE is NRBG It has a bitmap composed of bits. Conditions for this will be described again later. At this time, NRBG means the number of RBGs (resource block groups) determined as shown in [Table 21] below according to the BWP size allocated by the BWP indicator and the upper layer parameter rbg-Size, according to the bitmap. Data is transmitted to the RBG indicated by 1.
Bandwidth Part SizeBandwidth Part Size Configuration 1Configuration 1 Configuration 2 Configuration 2
1-361-36 22 44
37-7237-72 44 88
73-14473-144 88 1616
145-275145-275 1616 1616
만약 상위 레이어 시그널링을 통하여 단말이 resource type 1 만을 사용하도록 설정된 경우(6-05), 해당 단말에게 PDSCH를 할당하는 일부 DCI는
Figure PCTKR2021001742-appb-I000025
개의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 기지국은 이를 통하여 starting VRB(6-20)와 이로부터 연속적으로 할당되는 주파수 축 자원의 길이(6-25)를 설정할 수 있다.
If the UE is configured to use only resource type 1 through higher layer signaling (6-05), some DCI for allocating PDSCH to the UE is
Figure PCTKR2021001742-appb-I000025
It has frequency axis resource allocation information composed of bits. Conditions for this will be described again later. Through this, the base station can set the starting VRB (6-20) and the length (6-25) of frequency-axis resources continuously allocated therefrom.
만약 상위 레이어 시그널링을 통하여 단말이 resource type 0과 resource type 1를 모두 사용하도록 설정된 경우(6-10), 해당 단말에게 PDSCH를 할당하는 일부 DCI는 resource type 0을 설정하기 위한 payload(6-15)와 resource type 1을 설정하기 위한 payload(6-20, 6-25)중 큰 값(6-35)의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 차후 다시 설명된다. 이때, DCI 내 주파수 축 자원 할당 정보의 제일 앞 부분(MSB)에 한 비트가 추가될 수 있고, 해당 비트가 0일 경우 resource type 0이 사용됨을 지시되고, 1일 경우 resource type 1이 사용됨을 지시될 수 있다.If the UE is configured to use both resource type 0 and resource type 1 through higher layer signaling (6-10), some DCI for allocating PDSCH to the UE payload (6-15) for setting resource type 0 It has frequency axis resource allocation information consisting of bits of a larger value (6-35) among payloads (6-20, 6-25) for setting resource type 1 and. Conditions for this will be described again later. At this time, one bit may be added to the first part (MSB) of the frequency axis resource allocation information in DCI, and when the bit is 0, it indicates that resource type 0 is used, and when it is 1, it indicates that resource type 1 is used. can be
아래에서는 차세대 이동통신 시스템(5G 또는 NR 시스템)에서의 데이터 채널에 대한 시간 도메인 자원할당 방법이 설명된다.Hereinafter, a method of allocating time domain resources for a data channel in a next-generation mobile communication system (5G or NR system) will be described.
기지국은 단말에게 하향링크 데이터채널(Physical Downlink Shared Channel, PDSCH) 및 상향링크 데이터채널(Physical Uplink Shared Channel, PUSCH)에 대한 시간 도메인 자원할당 정보에 대한 테이블(Table)을, 상위 계층 시그널링(예를 들어 RRC 시그널링)으로 설정할 수 있다. PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 테이블이 설정될 수 있다. 일 실시 예에서, 시간 도메인 자원할당 정보에는 PDCCH-to-PDSCH 슬롯 타이밍(PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함), PDCCH-to-PUSCH 슬롯 타이밍(PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케줄링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다. 예를 들면, 아래의 [표 22] 또는 [표 23]와 같은 정보들이 기지국으로부터 단말로 통지될 수 있다.The base station provides a table for time domain resource allocation information for a downlink data channel (Physical Downlink Shared Channel, PDSCH) and an uplink data channel (Physical Uplink Shared Channel, PUSCH) to the terminal, and higher layer signaling (e.g. For example, RRC signaling) can be set. For PDSCH, a table consisting of maxNrofDL-Allocations=16 entries may be configured, and for PUSCH, a table configured with maxNrofUL-Allocations=16 entries may be configured. In an embodiment, the time domain resource allocation information includes the PDCCH-to-PDSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PDSCH scheduled by the received PDCCH is transmitted, denoted by K0. ), PDCCH-to-PUSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PUSCH scheduled by the received PDCCH is transmitted, denoted by K2), the PDSCH or PUSCH within the slot Information on the position and length of the scheduled start symbol, a mapping type of PDSCH or PUSCH, etc. may be included. For example, information such as [Table 22] or [Table 23] below may be notified from the base station to the terminal.
Figure PCTKR2021001742-appb-I000026
Figure PCTKR2021001742-appb-I000026
Figure PCTKR2021001742-appb-I000027
Figure PCTKR2021001742-appb-I000027
기지국은 상술된 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 하나를, L1 시그널링(예를 들어 DCI)를 통해 단말에게 통지할 수 있다(예를 들어 DCI 내의 '시간 도메인 자원할당' 필드로 지시될 수 있음). 단말은 기지국으로부터 수신한 DCI에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.The base station may notify one of the entries in the table for the above-described time domain resource allocation information to the terminal through L1 signaling (eg, DCI) (eg, to be indicated by the 'time domain resource allocation' field in DCI) can). The UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
도 7은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 PDSCH의 시간축 자원 할당 예를 도시하는 도면이다.7 is a diagram illustrating an example of time axis resource allocation of a PDSCH in a wireless communication system according to an embodiment of the present disclosure.
도 7을 참조하면, 기지국은 상위 레이어를 이용하여 설정되는 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격(subcarrier spacing, SCS)(
Figure PCTKR2021001742-appb-I000028
,
Figure PCTKR2021001742-appb-I000029
), 스케줄링 오프셋(scheduling offset)(K0) 값, 그리고 DCI를 통하여 동적으로 지시되는 한 slot 내 OFDM symbol 시작 위치(7-00)와 길이(7-05)에 따라 PDSCH 자원의 시간 축 위치를 지시할 수 있다.
Referring to FIG. 7 , the base station has a subcarrier spacing (SCS) of a data channel and a control channel configured by using a higher layer (
Figure PCTKR2021001742-appb-I000028
,
Figure PCTKR2021001742-appb-I000029
), a scheduling offset (K 0 ) value, and an OFDM symbol start position (7-00) and length (7-05) in one slot dynamically indicated through DCI, the time axis position of the PDSCH resource can direct
도 8은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격에 따른 시간축 자원 할당 예를 도시하는 도면이다.8 is a diagram illustrating an example of time-base resource allocation according to subcarrier intervals of a data channel and a control channel in a wireless communication system according to an embodiment of the present disclosure.
도 8을 참조하면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 같은 경우(8-00,
Figure PCTKR2021001742-appb-I000030
=
Figure PCTKR2021001742-appb-I000031
), 데이터와 제어를 위한 슬롯 번호(slot number)가 같으므로, 기지국 및 단말은 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어, 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다. 반면, 데이터 채널 및 제어 채널의 서브캐리어 간격이 다른 경우(8-05,
Figure PCTKR2021001742-appb-I000032
), 데이터와 제어를 위한 슬롯 번호(slot number)가 다르므로, 기지국 및 단말은 PDCCH의 서브캐리어 간격을 기준으로 하여, 미리 정해진 슬롯 오프셋(slot offset) K0에 맞추어 스케줄링 오프셋(scheduling offset)이 발생하는 것을 알 수 있다.
Referring to FIG. 8, when the subcarrier spacing of the data channel and the control channel are the same (8-00,
Figure PCTKR2021001742-appb-I000030
=
Figure PCTKR2021001742-appb-I000031
), since the slot number for data and control are the same, the base station and the terminal can know that a scheduling offset occurs in accordance with a predetermined slot offset K 0 . On the other hand, when the subcarrier spacing of the data channel and the control channel are different (8-05,
Figure PCTKR2021001742-appb-I000032
), since the slot numbers for data and control are different, the base station and the terminal based on the subcarrier interval of the PDCCH, a scheduling offset according to a predetermined slot offset K 0 . can be seen to occur.
다음으로, 기지국이 단말로 제어 정보 및 데이터 전송을 위한 빔 설정 방법을 살펴본다. 본 개시에서는 설명의 편의를 위해 PDCCH를 통해 제어 정보를 전송하는 과정을 PDCCH를 전송한다고 표현할 수 있으며, PDSCH를 통해 데이터를 전송하는 과정을 PDSCH를 전송한다고 표현할 수 있다.Next, a beam setting method for the base station to transmit control information and data to the terminal will be described. In the present disclosure, for convenience of description, the process of transmitting control information through the PDCCH may be expressed as transmitting the PDCCH, and the process of transmitting data through the PDSCH may be expressed as transmitting the PDSCH.
먼저 PDCCH에 대한 빔 설정 방법에 대해 설명하기로 한다. First, a beam configuration method for the PDCCH will be described.
도 9는 PDCCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한다. 우선 각 CORESET 별로 TCI State의 list가 RRC 등 상위 레이어 목록을 통해 지시될 수 있다(9-00). 상기 TCI state의 list는 상기 [표 8]의 tci-StatesPDCCH-ToAddList 및/또는 tci-StatesPDCCH-ToReleaseList 로 지시될 수 있다. 다음으로, CORESET별로 설정된 상기 TCI state의 list 중 하나가 MAC-CE를 통해 활성화될 수 있다(9-20).(9-50)은 PDCCH의 TCI state 활성화를 위한 MAC-CE 구조의 일례를 도시한다. 상기 MAC CE 내의 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.9 shows a procedure for beam configuration and activation of a PDCCH. First, the list of TCI states for each CORESET may be indicated through the upper layer list such as RRC (9-00). The list of TCI states may be indicated by tci-StatesPDCCH-ToAddList and/or tci-StatesPDCCH-ToReleaseList of [Table 8]. Next, one of the list of the TCI states set for each CORESET may be activated through MAC-CE (9-20). (9-50) shows an example of a MAC-CE structure for TCI state activation of the PDCCH. do. The meaning of each field in the MAC CE and possible values for each field are as follows.
Figure PCTKR2021001742-appb-I000033
Figure PCTKR2021001742-appb-I000033
다음으로 PDSCH에 대한 빔 설정 방법을 설명하기로 한다. Next, a beam configuration method for the PDSCH will be described.
도 10은 PDSCH의 빔 설정 및 활성화(activation)을 위한 과정을 도시한다. PDSCH에 대한 TCI state의 list는 RRC 등 상위 레이어 목록을 통해 지시될 수 있다(10-00). 상기 TCI state의 list는 예컨대 BWP 별 PDSCH-Config IE 내 tci-StatesToAddModList 및/또는 tci-StatesToReleaseList 로 지시될 수 있다. 다음으로 상기 TCI state의 list 중 일부가 MAC-CE를 통해 활성화될 수 있다(10-20). 활성화되는 TCI state의 최대 수는 단말이 보고하는 capability에 따라 결정될 수 있다.(10-50)는 Rel-15 기반 PDSCH의 TCI state activation/deactivation을 위한 MAC-CE 구조의 일례를 도시한다.10 shows a procedure for beam configuration and activation of a PDSCH. The list of TCI state for PDSCH may be indicated through a higher layer list such as RRC (10-00). The list of TCI states may be indicated by, for example, tci-StatesToAddModList and/or tci-StatesToReleaseList in PDSCH-Config IE for each BWP. Next, a part of the list of the TCI state may be activated through the MAC-CE (10-20). The maximum number of activated TCI states may be determined according to the capability reported by the UE. (10-50) shows an example of a MAC-CE structure for TCI state activation/deactivation of a Rel-15 based PDSCH.
상기 MAC CE 내 각 필드의 의미 및 각 필드에 설정 가능한 값은 다음과 같다.The meaning of each field in the MAC CE and possible values for each field are as follows.
Figure PCTKR2021001742-appb-I000034
Figure PCTKR2021001742-appb-I000034
단말은 DCI format 1_1 혹은 DCI format 1_2를 수신한 경우, DCI 내 transmission configuration indication(TCI) 필드의 정보에 기반하여 상기 MAC-CE로 활성화된 TCI state 중 하나의 빔으로 PDSCH를 수신할 수 있다(10-40). 상기 TCI 필드의 존재 여부는 상기 DCI 수신을 위해 설정된 CORESET 내의 상위 레이어 파라미터인 tci-PresentinDCI 값에 의해 결정된다. 만일 상기 상위 레이어에서 tci-PresentinDCI가 'enabled'로 설정되면, 단말은 3bits 정보의 TCI 필드를 확인하여 DL BWP 또는 스케줄된 component carrier에 활성화된 TCI states와 DL-RS에 연계된 빔의 방향을 판단할 수 있다.When the UE receives DCI format 1_1 or DCI format 1_2, the UE may receive the PDSCH through one beam among the TCI states activated with the MAC-CE based on information of a transmission configuration indication (TCI) field in DCI (10). -40). Whether the TCI field exists is determined by a tci-PresentinDCI value, which is a higher layer parameter in CORESET configured for DCI reception. If tci-PresentinDCI is set to 'enabled' in the upper layer, the UE checks the TCI field of 3 bits information to determine the TCI states activated in the DL BWP or the scheduled component carrier and the direction of the beam linked to the DL-RS can do.
한편, 본 개시가 적용될 수 있는 무선 통신 시스템(LTE, 5G 및 NR 시스템)에서 단말은 서빙 기지국에 연결한 상태에서 해당 기지국에게 단말이 지원하는 capability를 보고하는 절차를 가진다. 아래 설명에서 이를 UE capability(보고)로 지칭한다. 기지국은 연결 상태의 단말에게 capability 보고를 요청하는 UE capability enquiry 메시지를 전달할 수 있다. 상기 메시지에는 기지국이 RAT type 별 단말 capability 요청을 포함할 수 있다. 상기 RAT type 별 요청에는 요청하는 주파수 밴드 정보가 포함될 수 있다. 또한, 상기 UE capability enquiry 메시지는 하나의 RRC 메시지 container에서 복수의 RAT type을 요청할 수 있으며, 혹은 각 RAT type 별 요청을 포함한 UE capability enquiry 메시지를 복수 번 포함해서 단말에게 전달할 수 있다. 즉, UE capability enquiry가 복수 회 반복되고 단말은 이에 해당하는 UE capability information 메시지를 구성하여 복수 회 보고할 수 있다. 차세대 이동 통신 시스템에서는 NR, LTE, EN-DC를 비롯한 MR-DC에 대한 단말 capability 요청을 할 수 있다. 참고로 상기 UE capability enquiry 메시지는 일반적으로 단말이 연결을 하고 난 이후, 초기에 보내는 것이 일반적이지만, 기지국이 필요할 때 어떤 조건에서도 요청할 수 있다.On the other hand, in a wireless communication system (LTE, 5G and NR systems) to which the present disclosure can be applied, the terminal has a procedure of reporting the capability supported by the terminal to the corresponding base station in a state in which it is connected to the serving base station. In the description below, this is referred to as UE capability (reporting). The base station may transmit a UE capability enquiry message for requesting capability report to the terminal in the connected state. In the message, the base station may include a UE capability request for each RAT type. The request for each RAT type may include requested frequency band information. In addition, the UE capability enquiry message may request a plurality of RAT types in one RRC message container, or may include a UE capability enquiry message including a request for each RAT type a plurality of times and deliver it to the UE. That is, the UE capability enquiry is repeated a plurality of times, and the UE may configure a corresponding UE capability information message and report it a plurality of times. In the next-generation mobile communication system, a terminal capability request for MR-DC including NR, LTE, and EN-DC may be made. For reference, the UE capability enquiry message is generally sent initially after the UE establishes a connection, but it can be requested by the base station under any conditions when necessary.
상기 단계에서 기지국으로부터 UE capability 보고 요청을 받은 단말은 기지국으로부터 요청 받은 RAT type 및 밴드 정보에 따라 단말 capability를 구성한다. 아래에 NR 시스템에서 단말이 UE capability를 구성하는 방법을 정리하였다.In the above step, the terminal receiving the UE capability report request from the base station configures the terminal capability according to the RAT type and band information requested from the base station. Below, a method for configuring UE capability in the NR system is summarized.
1. 만약 단말이 기지국으로부터 UE capability 요청으로 LTE 그리고/혹은 NR 밴드에 대한 리스트를 제공받으면, 단말은 EN-DC 와 NR stand alone(SA)에 대한 band combination(BC)를 구성한다. 즉, 기지국에 FreqBandList로 요청한 밴드들을 바탕으로 EN-DC 와 NR SA에 대한 BC의 후보 리스트를 구성한다. 또한, 밴드의 우선순위는 FreqBandList에 기재된 순서대로 우선순위를 가진다.1. If the UE receives a list of LTE and/or NR bands as a UE capability request from the base station, the UE configures a band combination (BC) for EN-DC and NR stand alone (SA). That is, a candidate list of BC for EN-DC and NR SA is constructed based on the bands requested by the base station with FreqBandList. In addition, the priorities of the bands have priorities in the order described in the FreqBandList.
2. 만약 기지국이 “eutra-nr-only”flag 혹은 “eutra”flag를 세팅하여 UE capability 보고를 요청한 경우, 단말은 상기의 구성된 BC의 후보 리스트 중에서 NR SA BC들에 대한 것은 완전히 제거한다. 이러한 동작은 LTE 기지국(eNB)이 “eutra”capability를 요청하는 경우에만 일어날 수 있다.2. If the base station requests a UE capability report by setting the “eutra-nr-only” flag or “eutra” flag, the UE completely removes NR SA BCs from the configured BC candidate list. This operation may occur only when an LTE base station (eNB) requests “eutra” capability.
3. 이후 단말은 상기 단계에서 구성된 BC의 후보 리스트에서 fallback BC들을 제거한다. 여기서 fallback BC는 어떤 super set BC에서 최소 하나의 SCell에 해당하는 밴드를 제거한 경우에 해당하며, super set BC가 이미 fallback BC를 커버할 수 있기 때문에 생략이 가능하다. 이 단계는 MR-DC에서도 적용되며, 즉 LTE 밴드들도 적용된다. 이 단계 이후에 남아있는 BC는 최종 “후보 BC 리스트”이다.3. Thereafter, the terminal removes fallback BCs from the candidate list of BCs configured in the above step. Here, fallback BC corresponds to a case in which a band corresponding to at least one SCell is removed from a certain super set BC, and since the super set BC can already cover the fallback BC, it can be omitted. This step also applies to MR-DC, ie LTE bands are also applied. The BCs remaining after this step are the final “candidate BC list”.
4. 단말은 상기의 최종 “후보 BC 리스트”에서 요청 받은 RAT type에 맞는 BC들을 선택하여 보고할 BC들을 선택한다. 본 단계에서는 정해진 순서대로 단말이 supportedBandCombinationList를 구성한다. 즉, 단말은 미리 설정된 rat-Type의 순서에 맞춰서 보고할 BC 및 UE capability를 구성하게 된다.(nr -> eutra-nr -> eutra). 또한 구성된 supportedBandCombinationList에 대한 featureSetCombination을 구성하고, fallback BC(같거나 낮은 단계의 capability를 포함하고 있는)에 대한 리스트가 제거된 후보 BC 리스트에서 “후보 feature set combination”의 리스트를 구성한다. 상기의 “후보 feature set combination”은 NR 및 EUTRA-NR BC에 대한 feature set combination을 모두 포함하며, UE-NR-Capabilities와 UE-MRDC-Capabilities 컨테이너의 feature set combination으로부터 얻을 수 있다. 4. The UE selects BCs that match the requested RAT type from the final “candidate BC list” and selects BCs to report. In this step, the UE configures the supportedBandCombinationList in the predetermined order. That is, the UE configures the BC and UE capability to be reported according to the preset rat-Type order (nr -> eutra-nr -> eutra). Also, configure featureSetCombination for the configured supportedBandCombinationList, and compose a list of “candidate feature set combination” from the candidate BC list from which the list for fallback BC (including capability of the same or lower level) has been removed. The above “candidate feature set combination” includes both feature set combinations for NR and EUTRA-NR BC, and can be obtained from the feature set combination of UE-NR-Capabilities and UE-MRDC-Capabilities containers.
5. 또한, 만약 요청된 rat Type이 eutra-nr이고 영향을 준다면, featureSetCombinations은 UE-MRDC-Capabilities 와 UE-NR-Capabilities 의 두 개의 컨테이너에 전부 포함된다. 하지만 NR의 feature set은 UE-NR-Capabilities만 포함된다.5. Also, if the requested rat Type is eutra-nr and affects, featureSetCombinations is included in both containers of UE-MRDC-Capabilities and UE-NR-Capabilities. However, the feature set of NR includes only UE-NR-Capabilities.
단말 capability가 구성되고 난 이후, 단말은 UE capability가 포함된 UE capability information 메시지를 기지국에 전달한다. 기지국은 단말로부터 수신한 UE capability를 기반으로 이후 해당 단말에게 적당한 스케줄링 및 송수신 관리를 수행한다.After the terminal capability is configured, the terminal transmits the UE capability information message including the UE capability to the base station. The base station then performs scheduling and transmission/reception management appropriate for the corresponding terminal based on the UE capability received from the terminal.
도 11은 본 개시의 일 실시 예에 따른 single cell, carrier aggregation, dual connectivity 상황에서 기지국과 단말의 무선 프로토콜 구조를 도시하는 도면이다.11 is a diagram illustrating a radio protocol structure of a base station and a terminal in a single cell, carrier aggregation, and dual connectivity situation according to an embodiment of the present disclosure.
도 11을 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(Service Data Adaptation Protocol S25, S70), NR PDCP(Packet Data Convergence Protocol S30, S65), NR RLC(Radio Link Control S35, S60), NR MAC(Medium Access Control S40, S55)으로 이루어진다. Referring to FIG. 11 , the radio protocol of the next-generation mobile communication system is NR SDAP (Service Data Adaptation Protocol S25, S70), NR PDCP (Packet Data Convergence Protocol S30, S65), NR RLC (Radio Link Control) in the terminal and the NR base station, respectively. S35, S60) and NR MAC (Medium Access Control S40, S55).
NR SDAP(S25, S70)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.A main function of the NR SDAP (S25, S70) may include some of the following functions.
- 사용자 데이터의 전달 기능(transfer of user plane data)- Transfer of user plane data
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)- Mapping between a QoS flow and a DRB for both DL and UL for uplink and downlink
- 상향 링크와 하향 링크에 대해서 QoS flow ID의 마킹 기능(marking QoS flow ID in both DL and UL packets)- Marking QoS flow ID in both DL and UL packets for uplink and downlink
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능(reflective QoS flow to DRB mapping for the UL SDAP PDUs). - A function of mapping a relective QoS flow to a data bearer for uplink SDAP PDUs (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케줄링 정보 등으로 사용될 수 있다. With respect to the SDAP layer device, the UE can receive a configuration of whether to use the header of the SDAP layer device or the function of the SDAP layer device for each PDCP layer device, for each bearer, or for each logical channel with an RRC message, and the SDAP header If is set, the UE uses the uplink and downlink QoS flow and data bearer mapping information with the NAS QoS reflection setting 1-bit indicator (NAS reflective QoS) and the AS QoS reflection setting 1-bit indicator (AS reflective QoS) of the SDAP header. can be instructed to update or reset . The SDAP header may include QoS flow ID information indicating QoS. The QoS information may be used as data processing priority and scheduling information to support a smooth service.
NR PDCP(S30, S65)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. The main function of the NR PDCP (S30, S65) may include some of the following functions.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)- Header compression and decompression (ROHC only)
- 사용자 데이터 전송 기능(Transfer of user data)- Transfer of user data
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)- In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)- Out-of-sequence delivery of upper layer PDUs
- 순서 재정렬 기능(PDCP PDU reordering for reception)- Order reordering function (PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)- Duplicate detection of lower layer SDUs
- 재전송 기능(Retransmission of PDCP SDUs)- Retransmission of PDCP SDUs
- 암호화 및 복호화 기능(Ciphering and deciphering)- Encryption and decryption function (Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)- Timer-based SDU discard in uplink.
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.In the above, the reordering function of the NR PDCP device refers to a function of reordering PDCP PDUs received from a lower layer in order based on a PDCP sequence number (SN), and a function of delivering data to a higher layer in the reordered order. may include, or may include a function of directly delivering without considering the order, may include a function of reordering the order to record the lost PDCP PDUs, and report the status of the lost PDCP PDUs It may include a function for the transmitting side, and may include a function for requesting retransmission for lost PDCP PDUs.
NR RLC(S35, S60)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.The main function of the NR RLC (S35, S60) may include some of the following functions.
- 데이터 전송 기능(Transfer of upper layer PDUs)- Data transfer function (Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)- In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)- Out-of-sequence delivery of upper layer PDUs
- ARQ 기능(Error Correction through ARQ)- ARQ function (Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)- Concatenation, segmentation and reassembly of RLC SDUs
- 재분할 기능(Re-segmentation of RLC data PDUs)- Re-segmentation of RLC data PDUs
- 순서 재정렬 기능(Reordering of RLC data PDUs)- Reordering of RLC data PDUs
- 중복 탐지 기능(Duplicate detection)- Duplicate detection
- 오류 탐지 기능(Protocol error detection)- Protocol error detection
- RLC SDU 삭제 기능(RLC SDU discard)- RLC SDU discard function (RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)- RLC re-establishment function (RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로(일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.In the above description, the in-sequence delivery function of the NR RLC device refers to a function of sequentially delivering RLC SDUs received from a lower layer to an upper layer, and an original RLC SDU is divided into several RLC SDUs and received. , it may include a function of reassembling it and delivering it, and may include a function of rearranging the received RLC PDUs based on an RLC sequence number (SN) or PDCP SN (sequence number), and rearranging the order It may include a function of recording the lost RLC PDUs, a function of reporting a status on the lost RLC PDUs to the transmitting side, and a function of requesting retransmission of the lost RLC PDUs. and, if there is a lost RLC SDU, it may include a function of sequentially delivering only RLC SDUs before the lost RLC SDU to the upper layer, or if a predetermined timer expires even if there is a lost RLC SDU It may include a function of sequentially delivering all RLC SDUs received before the start of RLC to the upper layer, or if a predetermined timer expires even if there are lost RLC SDUs, all RLC SDUs received so far are sequentially transferred to the upper layer. It may include a function to transmit. In addition, the RLC PDUs may be processed in the order in which they are received (in the order of arrival, regardless of the sequence number and sequence number) and delivered to the PDCP device out of sequence (out-of sequence delivery). Segments stored in the buffer or to be received later are received, reconstructed into one complete RLC PDU, processed and delivered to the PDCP device. The NR RLC layer may not include a concatenation function, and the function may be performed in the NR MAC layer or replaced with a multiplexing function of the NR MAC layer.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다. In the above, the out-of-sequence delivery function of the NR RLC device refers to a function of directly delivering RLC SDUs received from a lower layer to a higher layer regardless of order, and one RLC SDU originally has several RLCs. When received after being divided into SDUs, it may include a function of reassembling and delivering it, and may include a function of storing the RLC SN or PDCP SN of the received RLC PDUs, arranging the order, and recording the lost RLC PDUs. can
NR MAC(S40, S55)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. The NR MAC (S40, S55) may be connected to several NR RLC layer devices configured in one terminal, and the main function of the NR MAC may include some of the following functions.
- 맵핑 기능(Mapping between logical channels and transport channels)- Mapping function (Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)- Multiplexing/demultiplexing of MAC SDUs
- 스케줄링 정보 보고 기능(Scheduling information reporting)- Scheduling information reporting function
- HARQ 기능(Error correction through HARQ)- HARQ function (Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)- Priority handling between logical channels of one UE
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)- Priority handling between UEs by means of dynamic scheduling
- MBMS 서비스 확인 기능(MBMS service identification)- MBMS service identification
- 전송 포맷 선택 기능(Transport format selection)- Transport format selection
- 패딩 기능(Padding)- Padding function
NR PHY 계층(S45, S50)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.The NR PHY layer (S45, S50) channel-codes and modulates the upper layer data, makes an OFDM symbol and transmits it to the radio channel, or demodulates the OFDM symbol received through the radio channel, decodes the channel, and transmits the operation to the upper layer. can be done
상기 무선 프로토콜 구조는 캐리어(혹은 셀) 운영 방식에 따라 세부 구조가 다양하게 변경될 수 있다. 일례로 기지국이 단일 캐리어(혹은 셀)을 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S00과 같이 각 계층 별 단일 구조를 가지는 프로토콜 구조를 사용하게 된다. 반면 기지국이 단일 TRP에서 다중 캐리어를 사용하는 CA(carrier aggregation)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S10과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다. 또 다른 예시로 기지국이 다중 TRP에서 다중 캐리어를 사용하는 DC(dual connectivity)를 기반으로 단말에게 데이터를 전송하는 경우 기지국 및 단말은 S20과 같이 RLC 까지는 단일 구조를 가지지만 MAC layer를 통하여 PHY layer를 multiplexing 하는 프로토콜 구조를 사용하게 된다.The detailed structure of the radio protocol structure may be variously changed according to a carrier (or cell) operating method. For example, when the base station transmits data to the terminal based on a single carrier (or cell), the base station and the terminal use a protocol structure having a single structure for each layer, such as S00. On the other hand, when the base station transmits data to the terminal based on CA (carrier aggregation) using multiple carriers in a single TRP, the base station and the terminal have a single structure up to RLC like S10, but a protocol for multiplexing the PHY layer through the MAC layer structure will be used. As another example, when the base station transmits data to the terminal based on DC (dual connectivity) using multiple carriers in multiple TRP, the base station and the terminal have a single structure up to RLC like S20, but the PHY layer through the MAC layer A protocol structure for multiplexing is used.
한편, PDCCH의 빔 설정 또는 활성화가 되어 있지 않은 경우, PDCCH 수신 성능이 열화 되어 단말이 하향링크 제어정보를 제대로 수신하지 못하는 경우가 발생할 수 있다. 이를 방지하기 위해, PDCCH 빔 설정 또는 활성화가 되지 않는 몇 가지 경우에 대해 PDCCH 수신에 대한 기본 빔(default beam) 설정을 고려할 수 있다. 초기 접속 이후에는 단말은 CORESET 0를 제외한 CORESET에 대해 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받지 못했거나, 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받았지만 특정 TCI state에 대해 MAC-CE를 통한 활성화를 수행하지 못한 경우, PDCCH 수신에 대한 기본 빔을 설정할 수 있다. 이 때, PDCCH 수신에 사용되는 DM-RS는 단말이 초기 접속 시에 선택했던 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다. 또한, 동기 재설정(Reconfiguration with sync) 과정 이후에는 단말은 CORESET 0를 제외한 CORESET에 대해 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받지 못했거나, 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받았지만 특정 TCI state에 대해 MAC-CE를 통한 활성화를 수행하지 못한 경우, PDCCH 수신에 대한 기본 빔을 설정할 수 있다. 이 때, PDCCH 수신에 사용되는 DM-RS는 단말이 동기 재설정 시에 수행한 랜덤 접속 과정에서 선택했던 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다. 만약 단말이 PDCCH order로 인해 트리거되는 비경쟁 기반 랜덤 엑세스 과정(contention-free random access)을 제외하고 가장 최근에 수행한 랜덤 엑세스 과정 이후에 MAC-CE를 통한 TCI state 활성화를 지시 받지 못했다면, 단말은 CORESET 0 내의 PDCCH 수신에 대한 기본 빔 설정을 수행할 수 있다. 이 때, PDCCH에 대한 기본 빔 설정을 위해, PDCCH 수신에 사용되는 DM-RS는 단말이 PDCCH order로 인해 트리거 되는 비경쟁 기반 랜덤 엑세스 과정을 제외하고 가장 최근에 수행한 랜덤 엑세스 과정 중에서 선택한 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다.On the other hand, if the beam configuration or activation of the PDCCH is not performed, the PDCCH reception performance may be deteriorated and the UE may not properly receive downlink control information. To prevent this, in some cases in which PDCCH beam configuration or activation is not performed, a default beam configuration for PDCCH reception may be considered. After the initial access, the UE did not receive one or more TCI state settings through higher layer signaling for CORESET except CORESET 0, or received one or more TCI state settings through higher layer signaling, but MAC-CE for a specific TCI state If activation is not performed through , a basic beam for PDCCH reception may be configured. In this case, the DM-RS used for PDCCH reception may consider a basic beam for PDCCH reception in a manner that assumes that the terminal is in a QCL relationship with the SSB selected at the time of initial access. In addition, after the synchronization reset (Reconfiguration with sync) process, the UE did not receive one or more TCI state settings through higher layer signaling for CORESET except CORESET 0, or received one or more TCI state settings through higher layer signaling. When activation through MAC-CE is not performed for a specific TCI state, a basic beam for PDCCH reception may be configured. In this case, the DM-RS used for PDCCH reception may consider a basic beam of PDCCH reception by assuming that it has a QCL relationship with the SSB selected in the random access process performed during synchronization reconfiguration. If the UE is not instructed to activate the TCI state through MAC-CE after the most recently performed random access procedure except for contention-free random access triggered by the PDCCH order, the UE is Basic beam configuration for PDCCH reception in CORESET 0 may be performed. At this time, for the basic beam configuration for the PDCCH, the DM-RS used for PDCCH reception is the SSB and QCL selected from the most recently performed random access procedures except for the contention-free random access procedure triggered by the PDCCH order by the UE. A basic beam of PDCCH reception may be considered as a method of assuming a relationship.
이와 같이 단말이 CORESET에 대한 기본 빔 설정이 필요한 경우에, 만약 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신할 때 문제점이 발생할 수 있다. 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하는 경우, 단말은 최대 5개의 CORESET을 설정 받을 수 있고, 각 CORESET은 상위 레이어 시그널링인 CORESETPoolIndex이 설정되어, 같은 CORESETPoolIndex 값을 가지는 CORESET은 같은 TRP에 연결되었다고 가정할 수 있다. 예를 들어, CORESET#1, CORESET#2, CORESET#3은 CORESETPoolIndex 값으로 0을 가지고 TRP#0에 연결되어 TRP#0으로부터 전송되고, CORESET#4, CORESET#5는 CORESETPoolIndex 값으로 1을 가지고 TRP#1에 연결되어 TRP#1로부터 전송될 수 있다. 이 때, 단말은 CORESET#1 내지 CORESET#5에 대한 기본 빔 설정이 필요한 경우, CORESET#1 내지 CORESET#5 수신에 대해 SSB와의 QCL 관계를 가정할 수 있다. 그러나, TRP#0와 연결된 CORESET#1, CORESET#2, CORESET#3의 수신에 대해서는 단일 TRP 혹은 복수 개의 TRP와 무관하게 SSB와의 QCL 관계를 가정할 수 있지만, TRP#0과 서로 다른 송신 빔을 사용할 가능성이 높은 TRP#1에서 전송되는 CORESET#4와 CORESET#5에 대해, SSB와의 QCL 관계를 이용하여 CORESET#1 내지 CORESET#3에 설정된 기본 빔을 동일하게 설정한다면, TRP#1과 연결된 CORESET#4, CORESET#5에서 전송되는 PDCCH 수신에 대해 성능 열화가 발생할 수 있다.In this way, when the terminal needs to set the basic beam for CORESET, a problem may occur when the terminal receives downlink data through a plurality of TRPs. When the UE receives downlink data through a plurality of TRPs, the UE may receive up to 5 CORESETs set, and CORESETPoolIndex, which is upper layer signaling, is set for each CORESET, and CORESETs having the same CORESETPoolIndex value are connected to the same TRP It can be assumed that For example, CORESET#1, CORESET#2, and CORESET#3 have 0 as the CORESETPoolIndex value and are connected to TRP#0 and transmitted from TRP#0. It can be connected to #1 and transmitted from TRP#1. In this case, when the UE needs to set the basic beam for CORESET#1 to CORESET#5, it may assume a QCL relationship with the SSB for CORESET#1 to CORESET#5 reception. However, for the reception of CORESET#1, CORESET#2, and CORESET#3 connected to TRP#0, a QCL relationship with the SSB can be assumed regardless of a single TRP or a plurality of TRPs, but a transmission beam different from TRP#0 is used. For CORESET#4 and CORESET#5 transmitted from TRP#1, which are highly likely to be used, if the default beams set in CORESET#1 to CORESET#3 are identically set using the QCL relationship with the SSB, the CORESET connected to TRP#1 Performance degradation may occur for the reception of the PDCCH transmitted in #4 and CORESET #5.
따라서, 본 개시에서는 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH의 기본 빔 설정이 필요한 경우, 각 TRP로부터의 CORESET에서 전송되는 PDCCH 기본 빔 설정 및 지시 방식을 제공함으로써 PDCCH 수신 성능을 보장하여 하향링크 제어 정보의 전송 지연 시간을 최소화하는 동시에 높은 신뢰도를 달성할 수 있는 방법을 제안한다. 구체적인 PDCCH 기본 빔 설정 방식은 하기 실시 예들을 통해 설명하기로 한다.Therefore, in the present disclosure, when the UE receives downlink data through a plurality of TRPs and the basic beam configuration of the PDCCH is required, the PDCCH reception performance is guaranteed by providing the PDCCH basic beam configuration and indication method transmitted in the CORESET from each TRP. Thus, a method for minimizing the transmission delay time of downlink control information and achieving high reliability is proposed. A detailed PDCCH basic beam configuration method will be described with reference to the following embodiments.
이하 본 개시의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 개시를 설명함에 있어서 관련된 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in the description of the present disclosure, if it is determined that a detailed description of a related function or configuration may unnecessarily obscure the subject matter of the present disclosure, the detailed description thereof will be omitted. In addition, the terms described below are terms defined in consideration of functions in the present disclosure, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification.
본 개시의 이하 설명에서 편의를 위하여 TCI state 내지 spatial relation information 등의 상위 레이어/L1 파라미터, 혹은 cell ID, TRP ID, panel ID 등의 지시자를 통하여 구분될 수 있는 셀, 전송 지점, 패널, 빔 또는/및 전송 방향 등을 TRP(transmission reception point, 전송 지점)로 통일하여 기술한다. 따라서 실제 적용 시 TRP는 상기 용어들 중 하나로 적절히 대체되는 것이 가능하다.For convenience in the following description of the present disclosure, a cell, transmission point, panel, beam or / and a transmission direction and the like are unified and described as a transmission reception point (TRP). Therefore, in actual application, it is possible to appropriately replace TRP with one of the above terms.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, gNB, eNode B, Node B, BS(Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE(User Equipment), MS(Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 또한, 이하에서 NR 혹은 LTE/LTE-A 시스템을 일례로서 본 개시의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시 예가 적용될 수 있다. 또한, 본 개시의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다. Hereinafter, the base station is a subject that performs resource allocation of the terminal, and may be at least one of gNode B, gNB, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network. The terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function. In addition, although an embodiment of the present disclosure is described below using an NR or LTE/LTE-A system as an example, the embodiment of the present disclosure may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present disclosure may be applied to other communication systems through some modifications within a range that does not significantly depart from the scope of the present disclosure as judged by a person having skilled technical knowledge.
본 개시에서의 내용은 FDD 및 TDD 시스템에서 적용이 가능한 것이다. The contents of the present disclosure are applicable to FDD and TDD systems.
이하 본 개시에서 상위 시그널링(또는 상위 레이어 시그널링)은 기지국에서 물리계층의 하향링크 데이터 채널을 이용하여 단말로, 혹은 단말에서 물리계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법이며, RRC 시그널링, 혹은 PDCP 시그널링, 혹은 MAC(medium access control) 제어요소(MAC control element; MAC CE)라고 언급될 수도 있다. Hereinafter, in the present disclosure, higher signaling (or higher layer signaling) is a signal transmission method in which a base station uses a downlink data channel of a physical layer to a terminal, or from a terminal to a base station using an uplink data channel of a physical layer, It may also be referred to as RRC signaling, PDCP signaling, or MAC (medium access control) control element (MAC control element; MAC CE).
이하 본 개시에서 단말은 협력 통신 적용 여부를 판단함에 있어 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 특정 포맷을 가지거나, 또는 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 협력 통신 적용 여부를 알려주는 특정 지시자를 포함하거나, 또는 협력 통신이 적용되는 PDSCH를 할당하는 PDCCH(들)이 특정 RNTI로 스크램블링 되거나, 또는 상위레이어로 지시되는 특정 구간에서 협력 통신 적용을 가정하거나 하는 등 다양한 방법들을 사용하는 것이 가능하다. 이후 설명의 편의를 위하여 단말이 상기와 유사한 조건들을 기반으로 협력 통신이 적용된 PDSCH를 수신하는 것을 NC-JT case로 지칭하도록 하겠다.Hereinafter, in the present disclosure, when the UE determines whether cooperative communication is applied, the PDCCH(s) for allocating the PDSCH to which the cooperative communication is applied has a specific format, or the PDCCH(s) for allocating the PDSCH to which the cooperative communication is applied. PDCCH(s) including a specific indicator indicating whether communication is applied or not, or PDCCH(s) for allocating a PDSCH to which cooperative communication is applied is scrambled with a specific RNTI, or assuming cooperative communication application in a specific section indicated by a higher layer, etc. It is possible to use various methods. Hereinafter, for convenience of description, a case in which a UE receives a PDSCH to which cooperative communication is applied based on conditions similar to the above will be referred to as an NC-JT case.
이하 본 개시에서 A 와 B 간 우선순위를 결정한다 함은 미리 정해진 우선순위 규칙(priority rule)에 따라 더 높은 우선순위를 가지는 것을 선택하여 그에 해당하는 동작을 수행하거나 또는 더 낮은 우선순위를 가지는 것에 대한 동작을 생략(omit or drop)하는 등 다양하게 언급될 수 있다.Hereinafter, in the present disclosure, determining the priority between A and B means selecting one having a higher priority according to a predetermined priority rule and performing an operation corresponding thereto or having a lower priority. It may be mentioned in various ways, such as omit or drop.
이하 본 개시에서는 다수의 실시 예를 통하여 상기 예제들을 설명하나 이는 독립적인 것들이 아니며 하나 이상의 실시 예가 동시에 또는 복합적으로 적용되는 것이 가능하다.Hereinafter, in the present disclosure, the above examples will be described through a plurality of embodiments, but these are not independent and it is possible that one or more embodiments may be applied simultaneously or in combination.
<제 1실시 예: DCI reception for NC-JT><First embodiment: DCI reception for NC-JT>
본 개시가 적용될 수 있는 무선 통신 시스템(5G 또는 NR 시스템)은 기존과는 달리 높은 전송속도를 요구하는 서비스뿐만 아니라 매우 짧은 전송 지연을 갖는 서비스 및 높은 연결 밀도를 요구하는 서비스를 모두 지원할 수 있다. 다수의 셀, TRP(transmission and reception point), 또는 빔을 포함하는 무선통신 네트워크에서 각 셀, TRP 또는/및 빔 간의 협력 통신(coordinated transmission)은 단말이 수신하는 신호의 세기를 늘리거나 각 셀, TRP 또는/및 빔 간 간섭 제어를 효율적으로 수행하여 다양한 서비스 요구조건을 만족시킬 수 있는 요소기술 중 하나이다. A wireless communication system (5G or NR system) to which the present disclosure can be applied can support not only a service requiring a high transmission rate, but also a service having a very short transmission delay and a service requiring a high connection density. A plurality of cells, TRP (transmission and reception point), or coordinated transmission between each cell, TRP or / and beam in a wireless communication network including a beam increases the strength of a signal received by the terminal or each cell, It is one of the element technologies that can satisfy various service requirements by efficiently performing TRP and/or inter-beam interference control.
합동 전송(JT, Joint Transmission)은 상술한 협력 통신을 위한 대표적인 전송 기술로 합동 전송 기술을 통해 서로 다른 셀, TRP 또는/및 빔을 통하여 하나의 단말을 지원하여 단말이 수신하는 신호의 세기를 늘릴 수 있다. 한편 각 셀, TRP 또는/및 빔과 단말 간 채널은 그 특성이 크게 다를 수 있기 때문에 각 셀, TRP 또는/및 빔과 단말 간 링크에 서로 다른 프리코딩, MCS, 자원할당 등이 적용될 필요가 있다. 특히 각 셀, TRP 또는/및 빔 간 비-코히런트(Non-coherent) 프리코딩을 지원하는 비-코히런트 합동 전송(NC-JT, Non-Coherent Joint Transmission)의 경우 각 셀, TRP 또는/및 빔 들을 위한 개별적인 DL(downlink) 전송 정보 설정이 중요하게 된다. 한편 이와 같은 각 셀, TRP 또는/및 빔 별 개별적인 DL 전송정보 설정은 DL DCI 전송에 필요한 페이로드(payload)를 증가시키는 주요 요인이 되며, 이는 DCI를 전송하는 PDCCH(physical downlink control channel)의 수신 성능에 악영향을 미칠 수 있다. 따라서 JT 지원을 위하여 DCI 정보량과 PDCCH 수신 성능 간 트레이드 오프(tradeoff)를 주의 깊게 설계할 필요가 있다. Joint transmission (JT) is a representative transmission technology for the above-mentioned cooperative communication. Through the joint transmission technology, one terminal is supported through different cells, TRPs, or/and beams to increase the strength of the signal received by the terminal. can On the other hand, since the characteristics of each cell, TRP or / and the channel between the beam and the terminal may be significantly different, it is necessary to apply different precoding, MCS, resource allocation, etc. to each cell, TRP or / and the link between the beam and the terminal. . In particular, for Non-Coherent Joint Transmission (NC-JT) that supports non-coherent precoding between each cell, TRP or/and beam, each cell, TRP or/and Individual downlink (DL) transmission information configuration for beams becomes important. Meanwhile, such individual DL transmission information configuration for each cell, TRP, and/or beam becomes a major factor in increasing the payload required for DL DCI transmission, which is a physical downlink control channel (PDCCH) for transmitting DCI. performance may be adversely affected. Therefore, it is necessary to carefully design a tradeoff between the amount of DCI information and the PDCCH reception performance for JT support.
도 12는 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 일부 실시 예에 따른 협력 통신(cooperative communication)을 위한 안테나 포트 구성 및 자원 할당 예시를 도시한 도면이다.12 is a diagram illustrating an example of an antenna port configuration and resource allocation for cooperative communication according to some embodiments in a wireless communication system according to an embodiment of the present disclosure.
도 12를 참조하면, 합동 전송(JT, Joint Transmission)기법과 상황에 따른 TRP별 무선자원 할당 예제들이 도시된다. 도 12에서 N000은 각 셀, TRP 또는/및 빔 간 코히런트(Coherent) 프리코딩을 지원하는 코히런트 합동 전송(C-JT, Coherent Joint Transmission)의 예시이다. C-JT에서는 TRP A(N005)과 TRP B(N010)에서 단일 데이터(PDSCH)를 단말(N015)에게 전송하게 되며 다수의 TRP에서 합동(joint) 프리코딩을 수행하게 된다. 이는 TRP A(N005)과 TRP B(N010)에서 상기 같은 PDSCH 전송을 위한 동일한 DMRS 포트들(예를 들어 두 TRP 모두에서 DMRS port A, B)을 전송하게 됨을 의미한다. 이 경우 단말은 DMRS port A, B를 통해 전송되는 DMRS에 기반하여 복조되는 하나의 PDSCH를 수신하기 위한 DCI 정보 하나를 수신할 수 있다. Referring to FIG. 12 , examples of radio resource allocation for each TRP according to a joint transmission (JT) technique and situation are shown. In FIG. 12, N000 is an example of coherent joint transmission (C-JT) supporting coherent precoding between each cell, TRP, and/or beam. In C-JT, single data (PDSCH) is transmitted from TRP A (N005) and TRP B (N010) to the terminal (N015), and joint precoding is performed in multiple TRPs. This means that TRP A (N005) and TRP B (N010) transmit the same DMRS ports (eg, DMRS ports A and B in both TRPs) for the same PDSCH transmission. In this case, the UE may receive one DCI information for receiving one PDSCH demodulated based on DMRS transmitted through DMRS ports A and B.
도 12에서 N020은 각 셀, TRP 또는/및 빔 간 비-코히런트(Non-coherent) 프리코딩을 지원하는 비-코히런트 합동 전송(NC-JT, Non-Coherent Joint Transmission)의 예시이다. NC-JT의 경우 각 셀, TRP 또는/및 빔 별로 PDSCH를 단말(N035)에게 전송하며, 각 PDSCH에는 개별 프리코딩이 적용될 수 있다. 각 셀, TRP 또는/및 빔이 각기 다른 PDSCH를 전송하여 단일 셀, TRP 또는/및 빔 전송 대비 처리율을 향상시키거나, 각 셀, TRP 또는/및 빔이 동일 PDSCH를 반복 전송하여 단일 셀, TRP 또는/및 빔 전송 대비 신뢰도를 향상시킬 수 있다. In FIG. 12, N020 is an example of non-coherent joint transmission (NC-JT) supporting non-coherent precoding between each cell, TRP or/and beam. In the case of NC-JT, a PDSCH is transmitted to the UE N035 for each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH. Each cell, TRP or/and beam transmits a different PDSCH to improve throughput compared to single cell, TRP or/and beam transmission, or each cell, TRP or/and beam repeatedly transmits the same PDSCH to transmit a single cell, TRP Alternatively, reliability may be improved compared to beam transmission.
PDSCH 전송을 위해 다수의 TRP에서 사용하는 주파수 및 시간 자원이 모두 동일한 경우(N040), 다수의 TRP에서 사용하는 주파수 및 시간 자원이 전혀 겹치지 않는 경우(N045), 다수의 TRP에서 사용하는 주파수 및 시간 자원의 일부가 겹치는 경우(N050)와 같이 다양한 무선 자원 할당이 고려될 수 있다. 상술한 무선 자원 할당에 대한 각 경우에서 신뢰도 향상을 위해 다수 TRP가 동일 PDSCH를 반복 전송하는 경우, 수신 단말이 해당 PDSCH의 반복 전송 여부를 모른다면 해당 단말은 해당 PDSCH에 대한 물리계층에서의 컴바이닝(combining)을 수행할 수 없어 신뢰도 향상에 한계가 있을 수 있다. 그러므로 본 개시에서는 NC-JT 전송 신뢰도 향상을 위한 반복 전송 지시 및 구성 방법을 제공한다.When the frequency and time resources used by a plurality of TRPs for PDSCH transmission are all the same (N040), when the frequency and time resources used by the plurality of TRPs do not overlap at all (N045), the frequency and time used by the plurality of TRPs Various radio resource allocation may be considered, such as when some of the resources overlap (N050). When multiple TRPs repeatedly transmit the same PDSCH to improve reliability in each case of the above-described radio resource allocation, if the receiving terminal does not know whether the corresponding PDSCH is repeatedly transmitted, the corresponding terminal performs combining in the physical layer for the corresponding PDSCH. (combining) cannot be performed, so there may be a limit to improving reliability. Therefore, the present disclosure provides a repeated transmission instruction and configuration method for improving NC-JT transmission reliability.
NC-JT 지원을 위하여 하나의 단말에게 동시에 다수의 PDSCH들을 할당하기 위하여 다양한 형태, 구조 및 관계의 DCI들이 고려될 수 있다.In order to simultaneously allocate a plurality of PDSCHs to one UE for NC-JT support, DCIs of various types, structures, and relationships may be considered.
도 13은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 협력 통신을 위한 하향링크 제어 정보(downlink control information, DCI) 구성 예시를 도시한 도면이다. 13 is a diagram illustrating an example configuration of downlink control information (DCI) for cooperative communication in a wireless communication system according to an embodiment of the present disclosure.
도 13을 참조하면, NC-JT 지원을 위한 DCI 디자인의 네 가지 예시들이 도시된다.Referring to FIG. 13 , four examples of DCI design for NC-JT support are shown.
도 13을 참고하면, case #1(N100)은 단일 PDSCH 전송 시 사용되는 serving TRP(TRP#0) 이외에(N-1)개의 추가적인 TRP(TRP#1~TRP#(N-1))에서 서로 다른(N-1)개의 PDSCH가 전송되는 상황에서,(N-1)개의 추가적인 TRP에서 전송되는 PDSCH에 대한 제어 정보가 serving TRP에서 전송되는 PDSCH에 대한 제어 정보와 같은 형태(same DCI format)로 전송되는 예시이다. 즉, 단말은 모두 동일한 DCI format 및 같은 페이로드(payload)를 가지는 DCI들을 통하여(DCI#0 ~ DCI#(N-1)) 서로 다른 TRP들(TRP#0~TRP#(N-1))에서 전송되는 PDSCH들에 대한 제어 정보를 획득할 수 있다. Referring to FIG. 13, case #1 (N100) is each other in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) in addition to the serving TRP (TRP#0) used for single PDSCH transmission. In a situation where other (N-1) PDSCHs are transmitted, control information for PDSCH transmitted in (N-1) additional TRPs is in the same format as control information for PDSCH transmitted in serving TRP (same DCI format) This is an example of transmission. That is, the UE uses different TRPs (TRP#0 ~ TRP#(N-1)) through DCIs having the same DCI format and the same payload (DCI#0 ~ DCI#(N-1)) It is possible to obtain control information for PDSCHs transmitted in .
상술한 case #1은 각 PDSCH 제어(할당) 자유도가 완전히 보장될 수 있으나, 각 DCI가 서로 다른 TRP에서 전송되는 경우 DCI 별 커버리지(coverage) 차이가 발생하여 수신 성능이 열화 될 수 있다.In case #1 described above, each PDSCH control (allocation) degree of freedom may be completely guaranteed, but when each DCI is transmitted in different TRPs, a coverage difference for each DCI may occur and reception performance may be deteriorated.
case #2(N105)은 단일 PDSCH 전송 시 사용되는 serving TRP(TRP#0) 이외에(N-1)개의 추가적인 TRP(TRP#1~TRP#(N-1))에서 서로 다른(N-1)개의 PDSCH가 전송되는 상황에서,(N-1)개의 추가적인 TRP에서 전송되는 PDSCH에 대한 제어 정보가 serving TRP에서 전송되는 PDSCH에 대한 제어 정보와 다른 형태(different DCI format 또는 different DCI payload)로 전송되는 예시이다. Case #2 (N105) is different (N-1) in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) in addition to the serving TRP (TRP#0) used for single PDSCH transmission. In a situation where PDSCHs are transmitted, control information for PDSCH transmitted in (N-1) additional TRPs is transmitted in a different format (different DCI format or different DCI payload) from control information for PDSCH transmitted in the serving TRP. This is an example.
예를 들어, serving TRP(TRP#0)에서 전송되는 PDSCH에 대한 제어 정보인 DCI#0의 경우 DCI format 1_0 내지는 DCI format 1_1의 모든 정보 요소(information element)들을 포함하지만, 협력 TRP(TRP#1~TRP#(N-1))에서 전송되는 PDSCH들에 대한 제어 정보인 shortened DCI(이하, sDCI)(sDCI#0~sDCI#(N-2))들의 경우 DCI format 1_0 내지는 DCI format 1_1의 정보 요소 중 일부만을 포함할 수 있다. 따라서 협력 TRP에서 전송되는 PDSCH들에 대한 제어 정보를 전송하는 sDCI의 경우 serving TRP에서 전송되는 PDSCH 관련 제어 정보를 전송하는 normal DCI(nDCI) 대비 페이로드(payload)가 작거나, 또는 nDCI 대비 모자라는 비트 수만큼 reserved bit들을 포함하는 것이 가능하다. For example, DCI#0, which is control information for PDSCH transmitted in the serving TRP (TRP#0), includes all information elements of DCI format 1_0 or DCI format 1_1, but cooperative TRP (TRP#1). In the case of shortened DCI (hereinafter sDCI) (sDCI#0~sDCI#(N-2)), which is control information for PDSCHs transmitted in ~TRP#(N-1)), DCI format 1_0 or DCI format 1_1 information It can contain only some of the elements. Therefore, in the case of sDCI transmitting control information on PDSCHs transmitted in the cooperative TRP, the payload is small compared to normal DCI (nDCI) transmitting PDSCH-related control information transmitted in the serving TRP, or is insufficient compared to nDCI. It is possible to include reserved bits as many as the number of bits.
상술한 case #2은 sDCI에 포함되는 정보 요소의 컨텐츠(contents)에 따라 각 PDSCH 제어(할당) 자유도가 제한될 수 있으나, sDCI의 수신 성능이 nDCI 대비 우수해지므로 DCI 별 커버리지(coverage) 차이가 발생할 확률이 낮아질 수 있다.In case #2 described above, each PDSCH control (allocation) degree of freedom may be limited according to the contents of information elements included in sDCI. It may be less likely to occur.
case #3(N110)은 단일 PDSCH 전송 시 사용되는 serving TRP(TRP#0) 이외(N-1)개의 추가적인 TRP(TRP#1~TRP#(N-1))에서 서로 다른(N-1)개의 PDSCH가 전송되는 상황에서,(N-1)개의 추가적인 TRP에서 전송되는 PDSCH에 대한 제어 정보가 serving TRP에서 전송되는 PDSCH에 대한 제어 정보와 다른 형태(different DCI format 또는 different DCI payload)로 전송되는 예시이다. Case #3 (N110) is different (N-1) in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) other than the serving TRP (TRP#0) used for single PDSCH transmission. In a situation where PDSCHs are transmitted, control information for PDSCH transmitted in (N-1) additional TRPs is transmitted in a different format (different DCI format or different DCI payload) from control information for PDSCH transmitted in the serving TRP. This is an example.
예를 들어, serving TRP(TRP#0)에서 전송되는 PDSCH에 대한 제어 정보인 DCI#0의 경우 DCI format 1_0 내지는 DCI format 1_1의 모든 정보 요소(information element)들을 포함하고, 협력 TRP(TRP#1~TRP#(N-1))에서 전송되는 PDSCH들에 대한 제어 정보의 경우 DCI format 1_0 내지는 DCI format 1_1의 정보 요소 중 일부만을 하나의 'secondary' DCI(sDCI)에 모아서 전송하는 것이 가능하다. 예를 들어, 상기 sDCI는 협력 TRP들의 주파수 영역 자원 할당(frequency domain resource assignment), 시간 영역 자원 할당(time domain resource assignment), MCS 등 HARQ 관련 정보 중 적어도 하나의 정보를 포함할 수 있다. 이외에, BWP(bandwidth part) 지시자(indicator) 또는 캐리어 지시자(carrier indicator) 등 sDCI 내 포함되지 않은 정보의 경우 serving TRP의 DCI(DCI#0, normal DCI, nDCI)를 따를 수 있다. For example, in the case of DCI#0, which is control information for PDSCH transmitted in the serving TRP (TRP#0), includes all information elements of DCI format 1_0 or DCI format 1_1, and cooperative TRP (TRP#1). In the case of control information for PDSCHs transmitted in ~TRP#(N-1)), it is possible to collect and transmit only some of the information elements of DCI format 1_0 or DCI format 1_1 in one 'secondary' DCI (sDCI). For example, the sDCI may include at least one of HARQ-related information such as frequency domain resource assignment of cooperative TRPs, time domain resource assignment, and MCS. In addition, in the case of information not included in sDCI, such as a bandwidth part (BWP) indicator or carrier indicator, DCI (DCI#0, normal DCI, nDCI) of the serving TRP may be followed.
case #3은 sDCI에 포함되는 정보 요소의 컨텐츠(contents)에 따라 각 PDSCH 제어(할당) 자유도가 제한될 수 있으나, sDCI의 수신 성능 조절이 가능하고 case #1 또는 case #2와 비교하여 단말의 DCI 블라인드 디코딩(blind decoding)의 복잡도가 감소할 수 있다.In case #3, each PDSCH control (allocation) degree of freedom may be limited according to the contents of the information element included in the sDCI, but the reception performance of the sDCI can be adjusted, and compared to case #1 or case #2, the terminal's The complexity of DCI blind decoding may be reduced.
case #4(N115)는 단일 PDSCH 전송 시 사용되는 serving TRP(TRP#0) 이외에(N-1)개의 추가적인 TRP(TRP#1~TRP#(N-1))에서 서로 다른(N-1)개의 PDSCH가 전송되는 상황에서,(N-1)개의 추가적인 TRP에서 전송되는 PDSCH에 대한 제어 정보를 serving TRP에서 전송되는 PDSCH에 대한 제어 정보와 같은 DCI(long DCI, lDCI)에서 전송하는 예시이다. 즉, 단말은 단일 DCI를 통하여 서로 다른 TRP들(TRP#0~TRP#(N-1))에서 전송되는 PDSCH들에 대한 제어 정보를 획득할 수 있다. case #4의 경우, 단말의 DCI 블라인드 디코딩(blind decoding)의 복잡도가 증가하지 않을 수 있으나, long DCI payload 제한에 따라 협력 TRP 수가 제한되는 등 PDSCH 제어(할당) 자유도가 낮을 수 있다.Case #4 (N115) is different (N-1) in (N-1) additional TRPs (TRP#1 to TRP#(N-1)) in addition to the serving TRP (TRP#0) used for single PDSCH transmission. In a situation in which PDSCHs are transmitted, control information for PDSCH transmitted in (N-1) additional TRPs is transmitted in DCI (long DCI, IDCI), such as control information for PDSCH transmitted in serving TRP. That is, the UE may acquire control information for PDSCHs transmitted in different TRPs (TRP#0 to TRP#(N-1)) through a single DCI. In case #4, the complexity of DCI blind decoding of the terminal may not increase, but the PDSCH control (allocation) degree of freedom may be low such as the number of cooperative TRPs is limited according to long DCI payload restrictions.
이후의 설명 및 실시 예들에서 sDCI는 shortened DCI, secondary DCI, 또는 협력 TRP에서 전송되는 PDSCH 제어 정보를 포함하는 normal DCI(상기 설명한 DCI format 1_0 내지는 1_1) 등 다양한 보조 DCI들을 지칭할 수 있으며 특별한 제한이 명시되지 않은 경우 해당 설명은 상기 다양한 보조 DCI들에 유사하게 적용이 가능한 것이다.In the following description and embodiments, sDCI may refer to various auxiliary DCIs, such as shortened DCI, secondary DCI, or normal DCI (DCI format 1_0 to 1_1 described above) including PDSCH control information transmitted in cooperative TRP. If not specified, the description is similarly applicable to the various auxiliary DCIs.
이후의 설명 및 실시 예들에서는 NC-JT 지원을 위하여 하나 이상의 DCI(PDCCH)가 사용되는 전술한 case #1, case #2, case #3의 경우를 multiple PDCCH 기반 NC-JT로 구분하고, NC-JT 지원을 위하여 단일 DCI(PDCCH)가 사용되는 전술한 case #4의 경우를 single PDCCH 기반 NC-JT로 구분할 수 있다.In the following description and embodiments, the aforementioned case #1, case #2, and case #3 in which one or more DCIs (PDCCHs) are used to support NC-JT are divided into multiple PDCCH-based NC-JTs, and NC-JT The above-described case #4 in which a single DCI (PDCCH) is used for JT support can be divided into a single PDCCH-based NC-JT.
본 개시의 실시 예들에서 "협력 TRP"는 실제 적용 시 "협력 패널(panel)" 또는 "협력 빔(beam)" 등 다양한 용어로 대체될 수 있다.In embodiments of the present disclosure, “cooperative TRP” may be replaced with various terms such as “cooperative panel” or “cooperative beam” when applied in practice.
본 개시의 실시 예들에서 "NC-JT가 적용되는 경우"라 함은 "단말이 하나의 BWP에서 동시에 하나 이상의 PDSCH를 수신하는 경우", "단말이 하나의 BWP에서 동시에 두 개 이상의 TCI(Transmission Configuration Indicator) indication을 기반으로 PDSCH를 수신하는 경우", "단말이 수신하는 PDSCH가 하나 이상의 DMRS 포트 그룹(port group)에 association 된 경우" 등 상황에 맞게 다양하게 해석되는 것이 가능하나 설명의 편의상 한 가지 표현으로 사용하였다.In the embodiments of the present disclosure, "when NC-JT is applied" means "when a terminal receives one or more PDSCHs at the same time in one BWP", "when a terminal receives two or more TCIs (Transmission Configuration) at the same time in one BWP" Indicator) indication based on PDSCH reception", "in case the PDSCH received by the terminal is associated with one or more DMRS port groups", etc., can be interpreted variously according to the situation, but for convenience of explanation, one used as an expression.
본 개시에서 NC-JT를 위한 무선 프로토콜 구조는 TRP 전개 시나리오에 따라 다양하게 사용될 수 있다. 일례로 협력 TRP 간 backhaul 지연이 없거나 작은 경우 도 11의 S10과 유사하게 MAC layer multiplexing에 기반한 구조를 사용하는 것이 가능하다(CA-like method). 반면 협력 TRP 간 backhaul 지연이 무시할 수 없을 만큼 큰 경우(예를 들어 협력 TRP 간 CSI, scheduling, HARQ-ACK 등의 정보 교환에 2 ms 이상의 시간이 필요한 경우) 도 11의 S20과 유사하게 RLC layer 부터 TRP 별 독립적인 구조를 사용하여 지연에 강인한 특성을 확보하는 것이 가능하다(DC-like method).In the present disclosure, the radio protocol structure for NC-JT may be used in various ways according to TRP deployment scenarios. As an example, when there is no or small backhaul delay between cooperative TRPs, it is possible to use a structure based on MAC layer multiplexing similar to S10 of FIG. 11 (CA-like method). On the other hand, when the backhaul delay between cooperative TRPs is so large that it cannot be ignored (for example, when time of 2 ms or more is required for information exchange between cooperative TRPs, such as CSI, scheduling, HARQ-ACK, etc.), similarly to S20 of FIG. 11, from the RLC layer It is possible to secure a characteristic strong against delay by using an independent structure for each TRP (DC-like method).
<제 1-1 실시 예: Multi-PDCCH 기반 NC-JT 전송을 위한 하향링크 제어채널 설정 방법><Embodiment 1-1: Method of setting downlink control channel for NC-JT transmission based on Multi-PDCCH>
Multiple PDCCH 기반 NC-JT에서는 각 TRP의 PDSCH 스케줄을 위한 DCI 전송 시, TRP별로 구분되는 CORESET 또는 탐색 공간을 가질 수 있다. TRP별 CORESET 또는 탐색 공간은 다음의 경우 중 적어도 하나와 같이 설정 가능하다.In multiple PDCCH-based NC-JT, when transmitting DCI for PDSCH schedule of each TRP, it may have a CORESET or search space divided for each TRP. CORESET or search space for each TRP can be set as at least one of the following cases.
● CORESET 별 상위 레이어 인덱스 설정: 상위 레이어로 설정된 CORESET 설정 정보에는 인덱스 값이 포함될 수 있으며, 설정된 CORESET 별 인덱스 값으로 해당 CORESET에서 PDCCH를 전송하는 TRP가 구분될 수 있다. 즉, 상위 레이어 인덱스 값이 동일한 CORESET들의 집합에서는 동일 TRP가 PDCCH를 전송한다고 간주하거나 동일 TRP의 PDSCH를 스케줄하는 PDCCH가 전송된다고 간주할 수 있다. 상술한 CORESET 별 인덱스는 CORESETPoolIndex와 같이 명명될 수 있으며, 동일한 CORESETPoolIndex 값이 설정된 CORESET들에 대해서는 동일한 TRP로부터 PDCCH가 전송된다고 간주할 수 있다. CORESETPoolIndex 값이 설정되지 않은 CORESET의 경우, CORESETPoolIndex의 기본값이 설정되었다고 간주할 수 있으며, 상술한 기본값은 0일 수 있다.● Upper layer index setting for each CORESET: The CORESET setting information set as the upper layer may include an index value, and the TRP for transmitting the PDCCH from the corresponding CORESET may be distinguished by the set index value for each CORESET. That is, in a set of CORESETs having the same higher layer index value, it may be considered that the same TRP transmits a PDCCH or that a PDCCH scheduling a PDSCH of the same TRP is transmitted. The above-described index for each CORESET may be named as CORESETPoolIndex, and it may be considered that the PDCCH is transmitted from the same TRP for CORESETs in which the same CORESETPoolIndex value is set. In the case of CORESET in which the CORESETPoolIndex value is not set, it may be considered that the default value of CORESETPoolIndex is set, and the above-described default value may be 0.
● 다수의 PDCCH-Config 설정: 하나의 BWP 내 다수의 PDCCH-Config가 설정되며, 각 PDCCH-Config는 TRP별 PDCCH 설정을 포함할 수 있다. 즉 하나의 PDCCH-Config에 TRP별 CORESET의 리스트 및/또는 TRP별 탐색공간의 리스트가 구성될 수 있으며 하나의 PDCCH-Config에 포함된 하나 이상의 CORESET 및 하나 이상의 탐색 공간은 특정 TRP에 해당하는 것으로 간주할 수 있다.● Multiple PDCCH-Config Configuration: Multiple PDCCH-Configs in one BWP are configured, and each PDCCH-Config may include a PDCCH configuration for each TRP. That is, a list of CORESETs per TRP and/or a list of search spaces per TRP may be configured in one PDCCH-Config, and one or more CORESETs and one or more search spaces included in one PDCCH-Config are considered to correspond to a specific TRP. can do.
● CORESET 빔/빔 그룹 구성: CORESET 별로 설정되는 빔 혹은 빔 그룹을 통해 해당 CORESET에 대응하는 TRP가 구분될 수 있다. 예컨대 다수의 CORESET에 동일한 TCI state가 설정되는 경우, 해당 CORESET들은 동일한 TRP를 통해 전송된다고 간주하거나 해당 CORESET에서 동일 TRP의 PDSCH를 스케줄하는 PDCCH가 전송된다고 간주할 수 있다.● CORESET beam/beam group configuration: TRP corresponding to the corresponding CORESET can be distinguished through a beam or beam group set for each CORESET. For example, when the same TCI state is configured in a plurality of CORESETs, the CORESETs may be considered to be transmitted through the same TRP, or it may be considered that the PDCCH scheduling the PDSCH of the same TRP is transmitted from the corresponding CORESETs.
● 탐색공간 빔/빔 그룹 구성: 탐색공간별로 빔 혹은 빔 그룹을 구성하며, 이를 통해 탐색공간 별 TRP가 구분될 수 있다. 예컨대 다수의 탐색공간에 동일한 빔/빔 그룹 혹은 TCI state가 설정되는 경우, 해당 탐색공간에서는 동일 TRP가 PDCCH를 전송한다고 간주하거나 해당 탐색공간에서 동일 TRP의 PDSCH를 스케줄하는 PDCCH가 전송된다고 간주할 수 있다.● Search space beam/beam group configuration: A beam or beam group is configured for each search space, and TRP for each search space can be distinguished through this. For example, if the same beam/beam group or TCI state is configured in multiple search spaces, it can be considered that the same TRP transmits a PDCCH or that a PDCCH scheduling a PDSCH of the same TRP is transmitted in the corresponding search space. have.
상기와 같이 CORESET 또는 탐색 공간을 TRP별로 구분함으로써, 각 TRP 별 PDSCH 및 HARQ-ACK 정보 분류가 가능하며 이를 통해 TRP별 독립적인 HARQ-ACK codebook 생성 및 독립적인 PUCCH resource 사용이 가능하다.By dividing the CORESET or search space by TRP as described above, it is possible to classify PDSCH and HARQ-ACK information for each TRP, and through this, it is possible to generate an independent HARQ-ACK codebook for each TRP and use an independent PUCCH resource.
<제2 실시 예: 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 방식><Second embodiment: PDCCH basic beam configuration method considering a plurality of TRPs>
본 개시의 일 실시 예로, 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 방식에 대해 설명한다. According to an embodiment of the present disclosure, a PDCCH basic beam configuration method in consideration of a plurality of TRPs will be described.
단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH 기본 빔 설정이 필요한 경우, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET에 기 설정된 1개 이상의 TCI state 중 가장 낮은 인덱스에 해당하는 TCI state를 각 CORESET 내의 PDCCH 수신 시의 기본 빔으로 설정할 수 있다. When the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required, the UE receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set. The TCI state corresponding to the lowest index among the one or more TCI states preset in ? may be set as the default beam when receiving the PDCCH in each CORESET.
또한, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 가장 낮은 인덱스의 CORESET에 기 설정된 TCI state 중 가장 낮은 인덱스에 해당하는 TCI state를 TRP#1에 대응되는 CORESETPoolIndex가 설정된 모든 CORESET 내에서의 PDCCH 수신에 대한 기본 빔으로 설정할 수 있다. 또한, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 모든 CORESET에 기 설정된 TCI state 중 가장 낮은 인덱스에 해당하는 TCI state를 TRP#1에 대응되는 CORESETPoolIndex가 설정된 모든 CORESET 내에서의 PDCCH 수신에 대한 기본 빔으로 설정할 수 있다.In addition, when receiving a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, the terminal TRP the TCI state corresponding to the lowest index among the TCI states preset in the CORESET of the lowest index in which the CORESETPoolIndex corresponding to TRP#1 is set. CORESETPoolIndex corresponding to #1 may be set as the default beam for PDCCH reception in all CORESETs configured. In addition, when the terminal receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, the TCI state corresponding to the lowest index among the TCI states preset in all CORESETs in which the CORESETPoolIndex corresponding to TRP#1 is set is set to TRP#1. The corresponding CORESETPoolIndex may be set as the default beam for PDCCH reception in all CORESETs configured.
도 14는 본 개시의 일 실시 예에 따른 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 예시를 도시한 도면이다. 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH 기본 빔 설정이 필요한 경우(14-00), 단말은 TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서의 PDCCH 수신 시(14-05) SSB와의 QCL 관계를 가정할 수 있다(14-25). 일례로, 초기 접속 이후에는 단말은 CORESET 0를 제외하고 TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET에 대해 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받지 못했거나, 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받았지만 특정 TCI state에 대해 MAC-CE를 통한 활성화를 수행하지 못한 경우, TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서의 PDCCH 수신에 대한 기본 빔을 설정할 수 있다. 이 때, PDCCH 수신에 사용되는 DM-RS는 단말이 초기 접속 시에 선택했던 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다. 또한, 동기 재설정(Reconfiguration with sync) 과정 이후에는 단말은 CORESET 0를 제외하고 TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET에 대해 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받지 못했거나, 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받았지만 특정 TCI state에 대해 MAC-CE를 통한 활성화를 수행하지 못한 경우, TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서의 PDCCH 수신에 대한 기본 빔을 설정할 수 있다. 이 때, PDCCH 수신에 사용되는 DM-RS는 단말이 동기 재설정 시에 수행한 랜덤 접속 과정에서 선택했던 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다. 또한, 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH 기본 빔 설정이 필요한 경우(14-00), 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시(14-05), TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET에 기 설정된 1개 이상의 TCI state 중 가장 낮은 인덱스에 해당하는 TCI state를 각 CORESET 내의 PDCCH 수신 시의 기본 빔으로 설정할 수 있다(14-10). 또한, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 가장 낮은 인덱스의 CORESET에 기 설정된 TCI state 중 가장 낮은 인덱스에 해당하는 TCI state를 TRP#1에 대응되는 CORESETPoolIndex가 설정된 모든 CORESET 내에서의 PDCCH 수신에 대한 기본 빔으로 설정할 수 있다(14-15). 또한, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 모든 CORESET에 기 설정된 TCI state 중 가장 낮은 인덱스에 해당하는 TCI state를 TRP#1에 대응되는 CORESETPoolIndex가 설정된 모든 CORESET 내에서의 PDCCH 수신에 대한 기본 빔으로 설정할 수 있다(14-20).14 is a diagram illustrating an example of configuring a PDCCH basic beam in consideration of a plurality of TRPs according to an embodiment of the present disclosure. When the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (14-00), the UE receives the PDCCH in the CORESET in which the CORESETPoolIndex corresponding to TRP#0 is set (14-05) SSB We can assume a QCL relationship with (14-25). For example, after the initial access, the UE does not receive one or more TCI state settings through higher layer signaling for CORESETs in which CORESETPoolIndex corresponding to TRP#0 is set except for CORESET 0, or one or more TCI state settings through higher layer signaling If the TCI state is set but activation through MAC-CE is not performed for a specific TCI state, a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set may be set. In this case, the DM-RS used for PDCCH reception may consider a basic beam for PDCCH reception in a manner that assumes that the terminal is in a QCL relationship with the SSB selected at the time of initial access. In addition, after the synchronization reset (Reconfiguration with sync) process, the UE does not receive one or more TCI state settings through higher layer signaling for CORESET in which CORESETPoolIndex corresponding to TRP #0 is set except for CORESET 0, or higher layer signaling If one or more TCI state settings have been received through , but activation through MAC-CE is not performed for a specific TCI state, a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set can be set. . In this case, the DM-RS used for PDCCH reception may consider a basic beam of PDCCH reception by assuming that it has a QCL relationship with the SSB selected in the random access process performed during synchronization reconfiguration. In addition, when the terminal receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (14-00), the terminal receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set (14-05) , the TCI state corresponding to the lowest index among one or more TCI states preset in each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set may be set as the default beam when receiving the PDCCH in each CORESET (14-10). In addition, when receiving a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, the terminal TRP the TCI state corresponding to the lowest index among the TCI states preset in the CORESET of the lowest index in which the CORESETPoolIndex corresponding to TRP#1 is set. CORESETPoolIndex corresponding to #1 may be set as a basic beam for PDCCH reception in all configured CORESETs (14-15). In addition, when the terminal receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, the TCI state corresponding to the lowest index among the TCI states preset in all CORESETs in which the CORESETPoolIndex corresponding to TRP#1 is set is set to TRP#1. A corresponding CORESETPoolIndex may be set as a basic beam for PDCCH reception in all configured CORESETs (14-20).
<제3 실시 예: 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 시 CORESET 내의 PDCCH 모니터링 방식><Third embodiment: PDCCH monitoring method in CORESET when setting a PDCCH basic beam considering a plurality of TRPs>
본 개시의 일 실시 예로, 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 시 CORESET 내의 PDCCH 모니터링 방식에 대해 설명한다. 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH 기본 빔 설정이 필요한 경우, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET에 대해 TCI state를 활성화하는 MAC-CE를 수신하기 전이라면, 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET 내의 PDCCH를 모니터링하지 않을 수 있다. 만약 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET에 대해 TCI state를 활성화하는 MAC-CE를 수신한 후라면, 단말은 MAC-CE로 활성화된 TCI state를 이용하여 PDCCH를 수신할 수 있다.In an embodiment of the present disclosure, a PDCCH monitoring method in CORESET when configuring a PDCCH basic beam in consideration of a plurality of TRPs will be described. When the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required, the UE receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set. Before receiving the MAC-CE for activating the TCI state, the UE may not monitor the PDCCH in each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set. If the terminal receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, the terminal receives the MAC-CE that activates the TCI state for each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set. The PDCCH may be received using the TCI state activated by the CE.
도 15는 본 개시의 일 실시 예에 따른 복수 개의 TRP를 고려한 PDCCH 기본 빔 설정 시 CORESET 내의 PDCCH 모니터링 방식을 도시한 도면이다. 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH 기본 빔 설정이 필요한 경우(15-00), 단말은 TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서의 PDCCH 수신 시(15-05) SSB와의 QCL 관계를 가정할 수 있다(15-10). 일례로, 초기 접속 이후에는 단말은 CORESET 0를 제외하고 TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET에 대해 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받지 못했거나, 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받았지만 특정 TCI state에 대해 MAC-CE를 통한 활성화를 수행하지 못한 경우, TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서의 PDCCH 수신에 대한 기본 빔을 설정할 수 있다. 이 때, PDCCH 수신에 사용되는 DM-RS는 단말이 초기 접속 시에 선택했던 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다. 또한, 동기 재설정(Reconfiguration with sync) 과정 이후에는 단말은 CORESET 0를 제외하고 TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET에 대해 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받지 못했거나, 상위 레이어 시그널링을 통해 1개 이상의 TCI state 설정을 받았지만 특정 TCI state에 대해 MAC-CE를 통한 활성화를 수행하지 못한 경우, TRP#0에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서의 PDCCH 수신에 대한 기본 빔을 설정할 수 있다. 이 때, PDCCH 수신에 사용되는 DM-RS는 단말이 동기 재설정 시에 수행한 랜덤 접속 과정에서 선택했던 SSB와 QCL 관계에 있다고 가정하는 방법으로 PDCCH 수신의 기본 빔을 고려할 수 있다. 또한, 단말이 복수 개의 TRP를 통해 하향링크 데이터를 수신하고 PDCCH 기본 빔 설정이 필요한 경우(15-00), 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시(15-05), TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET에 대해 TCI state를 활성화하는 MAC-CE를 수신하기 전이라면(15-15), 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET 내의 PDCCH를 모니터링하지 않을 수 있다(15-20). 만약 단말은 TRP#1에 대응되는 CORESETPoolIndex가 설정된 CORESET 내에서 PDCCH 수신 시, TRP#1에 대응되는 CORESETPoolIndex가 설정된 각 CORESET에 대해 TCI state를 활성화하는 MAC-CE를 수신한 후라면(15-15), 단말은 MAC-CE로 활성화된 TCI state를 이용하여 PDCCH를 수신할 수 있다(15-25).15 is a diagram illustrating a PDCCH monitoring method in CORESET when configuring a PDCCH basic beam considering a plurality of TRPs according to an embodiment of the present disclosure. When the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (15-00), the UE receives the PDCCH in the CORESET in which the CORESETPoolIndex corresponding to TRP#0 is set (15-05) SSB A QCL relationship with and can be assumed (15-10). For example, after the initial access, the UE does not receive one or more TCI state settings through higher layer signaling for CORESETs in which CORESETPoolIndex corresponding to TRP#0 is set except for CORESET 0, or one or more TCI state settings through higher layer signaling If the TCI state is set but activation through MAC-CE is not performed for a specific TCI state, a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set may be set. In this case, the DM-RS used for PDCCH reception may consider a basic beam for PDCCH reception in a manner that assumes that the terminal is in a QCL relationship with the SSB selected at the time of initial access. In addition, after the synchronization reset (Reconfiguration with sync) process, the UE does not receive one or more TCI state settings through higher layer signaling for CORESET in which CORESETPoolIndex corresponding to TRP #0 is set except for CORESET 0, or higher layer signaling If one or more TCI state settings have been received through , but activation through MAC-CE is not performed for a specific TCI state, a default beam for PDCCH reception in CORESET in which CORESETPoolIndex corresponding to TRP#0 is set can be set. . In this case, the DM-RS used for PDCCH reception may consider a basic beam of PDCCH reception by assuming that it has a QCL relationship with the SSB selected in the random access process performed during synchronization reconfiguration. In addition, when the UE receives downlink data through a plurality of TRPs and the PDCCH basic beam setting is required (15-00), the UE receives the PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set (15-05) , before receiving a MAC-CE that activates the TCI state for each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set (15-15), the terminal monitors the PDCCH in each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set You may not (15-20). If the UE receives a PDCCH within the CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set, after receiving the MAC-CE that activates the TCI state for each CORESET in which the CORESETPoolIndex corresponding to TRP#1 is set (15-15) , the UE may receive the PDCCH using the TCI state activated by MAC-CE (15-25).
도 16은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 단말의 구조를 도시한 도면이다.16 is a diagram illustrating a structure of a terminal in a wireless communication system according to an embodiment of the present disclosure.
도 16을 참조하면, 단말은 단말기 수신부(16-00), 단말기 송신부(16-10) 및 단말기 처리부(제어부)(16-05)를 포함할 수 있다. Referring to FIG. 16 , the terminal may include a terminal receiving unit 16-00, a terminal transmitting unit 16-10, and a terminal processing unit (controlling unit) 16-05.
단말기 수신부(16-00)와 단말기 송신부(16-10)는 함께 송수신부라 칭해질 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 단말기 수신부(16-00), 단말기 송신부(16-10) 및 단말기 처리부(16-05)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소(예를 들어, 메모리 등)를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 단말기 수신부(16-00), 단말기 송신부(16-10) 및 단말기 처리부(16-05)가 하나의 칩(chip) 형태로 구현될 수도 있다. The terminal receiving unit 16-00 and the terminal transmitting unit 16-10 may be referred to as a transceiver together. According to the communication method of the terminal described above, the terminal receiving unit 16-00, the terminal transmitting unit 16-10, and the terminal processing unit 16-05 of the terminal may operate. However, the components of the terminal are not limited to the above-described examples. For example, the terminal may include more components (eg, memory, etc.) or fewer components than the above-described components. In addition, the terminal receiving unit 16-00, the terminal transmitting unit 16-10, and the terminal processing unit 16-05 may be implemented in the form of a single chip.
단말기 수신부(16-00) 및 단말기 송신부(16-10)(또는, 송수신부)는 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시 예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.The terminal receiving unit 16-00 and the terminal transmitting unit 16-10 (or transceiving unit) may transmit/receive signals to and from the base station. Here, the signal may include control information and data. To this end, the transceiver may include an RF transmitter for up-converting and amplifying a frequency of a transmitted signal, and an RF receiver for low-noise amplifying and down-converting a received signal. However, this is only an embodiment of the transceiver, and components of the transceiver are not limited to the RF transmitter and the RF receiver.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(16-05)로 출력하고, 단말기 처리부(16-05)로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다. In addition, the transceiver may receive a signal through a wireless channel, output it to the terminal processing unit 16-05, and transmit a signal output from the terminal processing unit 16-05 through a wireless channel.
메모리(미도시)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다.A memory (not shown) may store programs and data necessary for the operation of the terminal. In addition, the memory may store control information or data included in a signal obtained from the terminal. The memory may be configured as a storage medium or a combination of storage media, such as ROM, RAM, hard disk, CD-ROM, and DVD.
단말기 처리부(16-05)는 전술한 본 개시의 실시 예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 단말기 처리부(16-05)는 제어부나 하나 이상의 프로세서로 구현될 수 있다. The terminal processing unit 16-05 may control a series of processes so that the terminal can operate according to the above-described embodiment of the present disclosure. The terminal processing unit 16-05 may be implemented as a control unit or one or more processors.
도 17은 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구조를 도시한 도면이다.17 is a diagram illustrating a structure of a base station in a wireless communication system according to an embodiment of the present disclosure.
도 17을 참조하면, 기지국은 기지국 수신부(17-00), 기지국 송신부(17-10), 기지국 처리부(제어부)(17-05)를 포함할 수 있다. Referring to FIG. 17 , the base station may include a base station receiving unit 17-00, a base station transmitting unit 17-10, and a base station processing unit (controlling unit) 17-05.
기지국 수신부(17-00)와 기지국 송신부(17-10)는 함께 송수신부라 칭해질 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 기지국 수신부(17-00), 기지국 송신부(17-10), 기지국 처리부(17-05)가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소(예를 들어, 메모리 등)를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 기지국 수신부(17-00), 기지국 송신부(17-10), 기지국 처리부(17-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.The base station receiving unit 17-00 and the base station transmitting unit 17-10 may be referred to as a transceiver together. According to the above-described communication method of the base station, the base station receiving unit 17-00, the base station transmitting unit 17-10, and the base station processing unit 17-05 of the base station may operate. However, the components of the base station are not limited to the above-described example. For example, the base station may include more or fewer components (eg, memory, etc.) than the above-described components. In addition, the base station receiver 17-00, the base station transmitter 17-10, and the base station processor 17-05 may be implemented in the form of a single chip.
기지국 수신부(17-00) 및 기지국 송신부(17-10)(또는, 송수신부)는 단말과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부의 일 실시 예일뿐이며, 송수신부의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.The base station receiving unit 17-00 and the base station transmitting unit 17-10 (or transceiver) may transmit/receive signals to/from the terminal. Here, the signal may include control information and data. To this end, the transceiver may include an RF transmitter for up-converting and amplifying a frequency of a transmitted signal, and an RF receiver for low-noise amplifying and down-converting a received signal. However, this is only an embodiment of the transceiver, and components of the transceiver are not limited to the RF transmitter and the RF receiver.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(17-05)로 출력하고, 기지국 처리부(17-05)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. In addition, the transceiver may receive a signal through a wireless channel and output it to the base station processing unit 17-05, and transmit the signal output from the base station processing unit 17-05 through the wireless channel.
메모리(미도시)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 메모리는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 메모리는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. A memory (not shown) may store programs and data necessary for the operation of the base station. In addition, the memory may store control information or data included in a signal obtained from the base station. The memory may be configured as a storage medium or a combination of storage media, such as ROM, RAM, hard disk, CD-ROM, and DVD.
기지국 처리부(17-05)는 전술한 본 개시의 실시 예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 기지국 처리부(17-05)는 제어부나 하나 이상의 프로세서로 구현될 수 있다.The base station processing unit 17-05 may control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure. The base station processing unit 17-05 may be implemented as a control unit or one or more processors.
한편, 본 개시의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행 될 수도 있다. On the other hand, in the drawings for explaining the method of the present disclosure, the order of description does not necessarily correspond to the order of execution, and the precedence relationship may be changed or may be executed in parallel.
또는, 본 개시의 방법을 설명하는 도면은 본 개시의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.Alternatively, the drawings for explaining the method of the present disclosure may omit some components and include only some components within a range that does not impair the essence of the present disclosure.
또한, 본 개시의 방법은 개시의 본질을 해치지 않는 범위 내에서 각 실시 예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.In addition, the method of the present disclosure may be performed in combination with some or all of the contents included in each embodiment within a range that does not impair the essence of the disclosure.
또한, 본 개시에 개시되지는 않았지만, 본 개시에서 제안하는 table에 포함된 적어도 하나의 구성요소를 포함한 별도의 table 또는 정보가 사용되는 방법도 가능하다. Also, although not disclosed in the present disclosure, a method in which a separate table or information including at least one component included in the table proposed in the present disclosure is used is also possible.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 실시 예 1 내지 실시 예 3의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다.On the other hand, the embodiments of the present disclosure disclosed in the present specification and drawings are merely provided for specific examples to easily explain the technical content of the present disclosure and help the understanding of the present disclosure, and are not intended to limit the scope of the present disclosure. That is, it will be apparent to those of ordinary skill in the art to which the present disclosure pertains that other modified examples can be implemented based on the technical spirit of the present disclosure. In addition, each of the above embodiments may be operated in combination with each other as needed. For example, parts of Embodiments 1 to 3 of the present disclosure may be combined with each other to operate a base station and a terminal.

Claims (15)

  1. 무선 통신 시스템에서 단말의 방법에 있어서,A method of a terminal in a wireless communication system, comprising:
    기지국으로부터, CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 수신하는 단계;Receiving, from a base station, first information about at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information about at least one second CORESET having a CORESET-related index of 1;
    상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 수신하였는지 여부를 확인하는 단계;checking whether control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET is received;
    상기 제어 정보를 수신하지 않은 경우, 상기 제2 정보에 기반하여 디폴트 빔 (default beam) 을 확인하는 단계; 및checking a default beam based on the second information when the control information is not received; and
    상기 디폴트 빔에 기반하여, 상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.and receiving downlink control information from the at least one second CORESET based on the default beam.
  2. 제1항에 있어서,According to claim 1,
    상기 제어 정보를 수신하지 않은 경우, 상기 적어도 하나의 제2 CORESET에서 PDCCH (physical downlink control channel) 의 모니터링을 생략하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method further comprising the step of omitting monitoring of a physical downlink control channel (PDCCH) in the at least one second CORESET when the control information is not received.
  3. 제1항에 있어서, According to claim 1,
    상기 디폴트 빔은 상기 적어도 하나의 제2 CORESET 중 어느 하나의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 방법.The default beam is identified based on information on the TCI state of the lowest index among at least one TCI state for any one CORESET among the at least one second CORESET.
  4. 제1항에 있어서, According to claim 1,
    상기 디폴트 빔은 상기 적어도 하나의 제2 CORESET 중 가장 낮은 인덱스의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 방법.The default beam is identified based on information on the TCI state of the lowest index among at least one TCI state for the CORESET of the lowest index among the at least one second CORESET.
  5. 제1항에 있어서, According to claim 1,
    상기 디폴트 빔은 상기 적어도 제2 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 방법.The default beam is identified based on information on the TCI state of the lowest index among the at least one TCI state for the at least the second CORESET.
  6. 무선 통신 시스템에서 기지국의 방법에 있어서,A method of a base station in a wireless communication system, comprising:
    CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 단말에 전송하는 단계; 및transmitting first information on at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information on at least one second CORESET having a CORESET-related index of 1 to the terminal; and
    상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 상기 단말에 전송하는 단계를 포함하며,Transmitting downlink control information to the terminal in the at least one second CORESET,
    상기 기지국이 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 전송하지 않은 경우, 상기 하향링크 제어 정보는 디폴트 빔 (default beam) 에 기반하여 수신되며,When the base station does not transmit control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET, the downlink control information is based on a default beam is received by
    상기 디폴트 빔은 상기 제2 정보에 기반하여 확인되는 것을 특징으로 하는 방법.The method of claim 1, wherein the default beam is identified based on the second information.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 기지국이 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI 상태를 활성화하는 제어 정보를 전송하지 않은 경우, 상기 적어도 하나의 제2 CORESET에서 PDCCH (physical downlink control channel)의 모니터링은 생략되는 것을 특징으로 하는 방법.When the base station does not transmit control information for activating at least one TCI state for the at least one second CORESET, monitoring of a physical downlink control channel (PDCCH) in the at least one second CORESET is omitted. how to do it
  8. 제6항에 있어서, 7. The method of claim 6,
    상기 디폴트 빔은 상기 적어도 하나의 제2 CORESET 중 어느 하나의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보, 상기 적어도 하나의 제2 CORESET 중 가장 낮은 인덱스의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보, 또는 상기 디폴트 빔은 상기 적어도 제2 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 방법.The default beam includes information on the TCI state of the lowest index among at least one TCI state for any one CORESET among the at least one second CORESET, and at least for the CORESET of the lowest index among the at least one second CORESET. Information on the TCI state of the lowest index among one TCI state, or the default beam is confirmed based on information on the TCI state of the lowest index among at least one TCI state for the at least second CORESET How to.
  9. 무선 통신 시스템의 단말에 있어서,In a terminal of a wireless communication system,
    송수신부; 및transceiver; and
    기지국으로부터, CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 수신하도록 상기 송수신부를 제어하고,Control the transceiver to receive, from the base station, first information on at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information on at least one second CORESET having a CORESET-related index of 1 do,
    상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 수신하였는지 여부를 확인하고,Checking whether control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET is received;
    상기 제어 정보를 수신하지 않은 경우, 상기 제2 정보에 기반하여 디폴트 빔 (default beam) 을 확인하며,If the control information is not received, a default beam is checked based on the second information,
    상기 디폴트 빔에 기반하여, 상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 수신하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 단말.and a controller for controlling the transceiver to receive downlink control information from the at least one second CORESET based on the default beam.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 제어부는,The control unit is
    상기 제어 정보를 수신하지 않은 경우, 상기 적어도 하나의 제2 CORESET에서 PDCCH (physical downlink control channel) 의 모니터링을 생략하는 것을 특징으로 하는 단말.When the control information is not received, the terminal, characterized in that the monitoring of the PDCCH (physical downlink control channel) in the at least one second CORESET is omitted.
  11. 제9항에 있어서, 10. The method of claim 9,
    상기 디폴트 빔은 상기 적어도 하나의 제2 CORESET 중 어느 하나의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 단말.The default beam is identified based on information on the TCI state of the lowest index among at least one TCI state for any one CORESET among the at least one second CORESET.
  12. 제9항에 있어서, 10. The method of claim 9,
    상기 디폴트 빔은 상기 적어도 하나의 제2 CORESET 중 가장 낮은 인덱스의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 단말.The default beam is identified based on information on the TCI state of the lowest index among at least one TCI state for the CORESET of the lowest index among the at least one second CORESET.
  13. 제9항에 있어서,10. The method of claim 9,
    상기 디폴트 빔은 상기 적어도 제2 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 단말.The default beam is identified based on information on the TCI state of the lowest index among the at least one TCI state for the at least the second CORESET.
  14. 무선 통신 시스템의 기지국에 있어서,In a base station of a wireless communication system,
    송수신부; 및transceiver; and
    CORESET (control resource set) 관련 인덱스가 0인 적어도 하나의 제1 CORESET에 대한 제1 정보 및 CORESET 관련 인덱스가 1인 적어도 하나의 제2 CORESET에 대한 제2 정보를 단말에 전송하도록 상기 송수신부를 제어하고,Control the transceiver to transmit first information on at least one first CORESET having a control resource set (CORESET)-related index of 0 and second information on at least one second CORESET having a CORESET-related index of 1 to the terminal, and ,
    상기 적어도 하나의 제2 CORESET에서 하향링크 제어 정보를 상기 단말에 전송하도록 상기 송수신부를 제어하는 제어부를 포함하며,a control unit for controlling the transceiver to transmit downlink control information to the terminal in the at least one second CORESET;
    상기 기지국이 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI (transmission configuration indicator) 상태 (state) 를 활성화하는 제어 정보를 전송하지 않은 경우, 상기 하향링크 제어 정보는 디폴트 빔 (default beam) 에 기반하여 수신되며,When the base station does not transmit control information for activating at least one transmission configuration indicator (TCI) state for the at least one second CORESET, the downlink control information is based on a default beam is received by
    상기 디폴트 빔은 상기 제2 정보에 기반하여 확인되는 것을 특징으로 하는 기지국.The base station, characterized in that the default beam is identified based on the second information.
  15. 제13항에 있어서,14. The method of claim 13,
    상기 기지국이 상기 적어도 하나의 제2 CORESET에 대한 적어도 하나의 TCI 상태를 활성화하는 제어 정보를 전송하지 않은 경우, 상기 적어도 하나의 제2 CORESET에서 PDCCH (physical downlink control channel)의 모니터링은 생략되고,If the base station does not transmit control information for activating at least one TCI state for the at least one second CORESET, monitoring of a physical downlink control channel (PDCCH) in the at least one second CORESET is omitted,
    상기 디폴트 빔은 상기 적어도 하나의 제2 CORESET 중 어느 하나의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보, 상기 적어도 하나의 제2 CORESET 중 가장 낮은 인덱스의 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보, 또는 상기 디폴트 빔은 상기 적어도 제2 CORESET에 대한 적어도 하나의 TCI 상태 중 가장 낮은 인덱스의 TCI 상태에 대한 정보에 기반하여 확인되는 것을 특징으로 하는 기지국.The default beam includes information on the TCI state of the lowest index among at least one TCI state for any one CORESET among the at least one second CORESET, and at least for the CORESET of the lowest index among the at least one second CORESET. Information on the TCI state of the lowest index among one TCI state, or the default beam is confirmed based on information on the TCI state of the lowest index among at least one TCI state for the at least second CORESET base station.
PCT/KR2021/001742 2020-02-14 2021-02-09 Default beam setting method and device for network cooperative communication WO2021162431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0018608 2020-02-14
KR1020200018608A KR20210103882A (en) 2020-02-14 2020-02-14 Method and apparatus to configure default beam in network cooperative communications

Publications (1)

Publication Number Publication Date
WO2021162431A1 true WO2021162431A1 (en) 2021-08-19

Family

ID=77292342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001742 WO2021162431A1 (en) 2020-02-14 2021-02-09 Default beam setting method and device for network cooperative communication

Country Status (2)

Country Link
KR (1) KR20210103882A (en)
WO (1) WO2021162431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132491A1 (en) * 2022-01-05 2023-07-13 삼성전자 주식회사 Method and apparatus for determining beam for transmission and reception of downlink control information in wireless communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11723041B2 (en) 2020-04-09 2023-08-08 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving signal in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission
US20190342907A1 (en) * 2018-05-04 2019-11-07 Asustek Computer Inc. Method and apparatus for downlink control information (dci) content processing considering active downlink (dl) bandwidth part (bwp) change in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission
US20190342907A1 (en) * 2018-05-04 2019-11-07 Asustek Computer Inc. Method and apparatus for downlink control information (dci) content processing considering active downlink (dl) bandwidth part (bwp) change in a wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Enhancements on multiple TRP or panel transmission", 3GPP DRAFT; R1-1913023, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820268 *
INTEL CORPORATION: "On multi-TRP/multi-panel transmission", 3GPP DRAFT; R1-1912222, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823299 *
LG ELECTRONICS: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1912269, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823334 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132491A1 (en) * 2022-01-05 2023-07-13 삼성전자 주식회사 Method and apparatus for determining beam for transmission and reception of downlink control information in wireless communication system

Also Published As

Publication number Publication date
KR20210103882A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2021034052A1 (en) Apparatus and method for transmission of uplink control information in network cooperative communication
WO2020204524A1 (en) Method and apparatus for adjusting maximum uplink transmission power in wireless communication system
WO2021054726A1 (en) Method and apparatus for repeating uplink transmission for network cooperative communication
WO2020145629A1 (en) Method and apparatus for data transmission and reception for network coordinated communication
WO2021101285A1 (en) Method and device for measuring interference signal in wireless communication system
WO2021015552A1 (en) Method for measurement and report of channel state information for network cooperative communication
WO2020145733A1 (en) Method and apparatus for resource allocation for network coordination
WO2021201533A1 (en) Method and apparatus for performing communication in wireless communication system
WO2021162510A1 (en) Method and device for repetitive transmission of uplink control information for network cooperative communication
WO2022086259A1 (en) Method and apparatus for uplink data repetitive transmission and reception for network cooperative communication
WO2021133121A1 (en) Method and apparatus for repeatedly transmitting uplink data for network cooperative communication
WO2020167032A1 (en) Method and apparatus for transmitting and receiving data in wireless communication system
WO2020197354A1 (en) Method and apparatus for transmitting and receiving multiple data in wireless cooperative communication system
WO2021162416A1 (en) Method and apparatus for configuring default beam in wireless communication systems
WO2021158087A1 (en) Method and apparatus for transmitting control information for network cooperative communication
WO2022025628A1 (en) Method and device for transmitting/receiving control information in wireless cooperative communication system
WO2020111686A1 (en) Method and device for transmitting and receiving harq-ack feedback in wireless communication system
WO2022154582A1 (en) Method and apparatus for configuration of repetitive transmission and reception of downlink control information in wireless communication system
WO2019035701A1 (en) Downlink control channel configuration method and apparatus in wireless communication system for reducing power consumption of terminal
WO2021162431A1 (en) Default beam setting method and device for network cooperative communication
WO2022191590A1 (en) Method and apparatus for configuring beam in wireless communication system
WO2021060954A1 (en) Method and device for transmitting/receiving data, for network cooperative communication
WO2023153864A1 (en) Method and device for harq-ack transmission in wireless communication system
WO2022086256A1 (en) Method and device for repetitive transmission/reception of downlink control information in wireless communication system
WO2021206512A1 (en) Apparatus and method for providing channel state information in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753513

Country of ref document: EP

Kind code of ref document: A1