WO2021162325A1 - Method for cell-based assay to detect mog-igg in patients with central nervous system inflammatory diseases - Google Patents

Method for cell-based assay to detect mog-igg in patients with central nervous system inflammatory diseases Download PDF

Info

Publication number
WO2021162325A1
WO2021162325A1 PCT/KR2021/001402 KR2021001402W WO2021162325A1 WO 2021162325 A1 WO2021162325 A1 WO 2021162325A1 KR 2021001402 W KR2021001402 W KR 2021001402W WO 2021162325 A1 WO2021162325 A1 WO 2021162325A1
Authority
WO
WIPO (PCT)
Prior art keywords
mog
igg
secondary antibody
nervous system
central nervous
Prior art date
Application number
PCT/KR2021/001402
Other languages
French (fr)
Korean (ko)
Inventor
김호진
최경호
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Priority to CN202180013657.XA priority Critical patent/CN115104031A/en
Publication of WO2021162325A1 publication Critical patent/WO2021162325A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Definitions

  • the present invention provides a method for detecting MOG-IgG from a sample, comprising the steps of: (a) cloning a nucleic acid encoding a myelin oligodendrocyte glycoprotein (MOG) into a fluorescent protein expression vector; (b) transfecting the MOG-cloned expression vector into cells; (c) selecting a stable transfected cell line by culturing the transfected cells in a medium containing a selection drug; (d) incubating the selected cell line with a sample expected to contain MOG-IgG; (e) adding a fluorescence-conjugated secondary antibody to the incubated sample to form a MOG-IgG and secondary antibody conjugate; and (f) detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugate; a method for providing information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease; a composition for diagnosis of MOG-IgG-related central nervous system
  • the serum status of autoantibodies is an important diagnostic criterion in a wide range of neurological diseases, including autoimmune diseases.
  • Development of a cell-based assay (CBA) using myelin oligodendrocyte glycoprotein (MOG) as a substrate identified MOG-IgG-positive patients with various demyelinating phenotypes.
  • MOG-IgG was not present in patients with multiple sclerosis (MS), so it was thought to differentiate multiple sclerosis from non-MS central nervous system (CNS) demyelinating disorders.
  • MS multiple sclerosis
  • CNS central nervous system
  • MOG-IgG-associated diseases there are clinical, radiological, pathological and prognostic differences between patients with MS and MOG-IgG-associated diseases.
  • persistent positivity of MOG-IgG was associated with clinical relapse despite immunotherapy, whereas conversion to seronegative did not result in clinical relapse.
  • serological findings and other experimental approaches have suggested that MOG-IgG may be pathogenic. Nevertheless, the spectrum of MOG-IgG-associated diseases is still not fully defined. Therefore, the development of sensitive and highly specific assays to identify specific autoantibodies is important in delineating the full spectrum of MOG-IgG-associated diseases by accurately defining the clinical phenotype, disease course and prognosis.
  • One object of the present invention is to construct a stable transfected cell line expressing MOG, react it with a sample isolated from a patient with a central nervous system (CNS) inflammatory disease expected to contain MOG-IgG, and then react it with a MOG-IgG-specific
  • CNS central nervous system
  • a fluorescence-conjugated secondary antibody that binds positively and detecting or analyzing the fluorescence therefrom, it is to detect MOG-IgG from a sample such as blood or serum, and furthermore, to reveal the entire spectrum of MOG-IgG-related diseases.
  • Another object of the present invention is to provide a method for providing information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease, wherein the MOG-IgG-related central nervous system inflammatory disease is AQP4-IgG-negative optic neuromyelitis category. disease (NMOSD), acute disseminated encephalomyelitis (ADEM), myelitis, encephalitis (Encephalitis) or optic neuritis (ON).
  • NOSD acute disseminated encephalomyelitis
  • ADAM acute disseminated encephalomyelitis
  • myelitis myelitis
  • encephalitis encephalitis
  • optic neuritis ON
  • Another object of the present invention is to (a) cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; (b) transfecting the cell with the MOG cloned expression vector; And (c) to provide a composition for diagnosis of MOG-IgG-related central nervous system inflammatory disease comprising a stable transfected cell line expressing MOG, which is prepared by culturing the transfected cells in a medium containing a selection reagent. am.
  • Another object of the present invention is to provide a method for diagnosing MOG-IgG-related central nervous system inflammatory disease.
  • One aspect of the present invention for achieving the above object is a method for detecting MOG-IgG from a sample, comprising: cloning a nucleic acid encoding a myelin oligodendrocyte glycoprotein (MOG) into a fluorescent protein expression vector; Transfecting the MOG-cloned expression vector into cells; selecting a stable transfected cell line expressing MOG by culturing the transfected cells in a medium containing a selection drug; incubating the selected cell line and a sample expected to contain MOG-IgG together; forming a MOG-IgG and secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; And it provides a method comprising the step of detecting or analyzing the fluorescence from the MOG-IgG and the secondary antibody conjugate.
  • MOG myelin oligodendrocyte glycoprotein
  • MOG myelin oligodendrocyte glycoprotein
  • CNS central nervous system
  • IgG MOG-immunoglobulin G antibody
  • MOG in the present invention is a full-length human MOG (Full-length MOG, FL-MOG), and the nucleic acid encoding the MOG in the present invention may consist of the nucleotide sequence shown in SEQ ID NO: 1.
  • stable transfected cell line refers to a stable cell line expressing the FL-MOG, comprising the steps of cloning a nucleic acid encoding MOG into a fluorescent protein expression vector; Transfecting the MOG-cloned expression vector into cells; It can be prepared by culturing the transfected cells in a medium containing a selection drug to select a stable transfected cell line (MOG-HEK293) expressing MOG.
  • the fluorescent protein may be EGFP, GFP, YFP, DsRed2, Tdtomato or mCherry
  • the expression vector may be a pIRES2-EGFP or a pIRES-DsRed2 vector.
  • the expression vector into which the MOG is cloned in the present invention may be a cloned full-length human MOG (FL-MOG) encoded by the nucleotide sequence shown in SEQ ID NO: 1 in the pIRES2-EGFP vector.
  • the cells to be transfected may be mammalian cells, that is, HEK (human embryonic kidney) 293, HeLa, CHO (chinese hamster ovary) or NIH3T3 cells, and the selection reagent is hygromycin, furo It may be mycin (puromycin), blasticidi (blasticidi), or G418 (geneticin), but is not particularly limited thereto.
  • full-length human MOG (Full-length MOG, FL-MOG) cDNA is isolated from the FL-MOG/pIRES2-DsRed2 plasmid and cloned into the XhoI and SmaI sites of the pIRES2-EGFP vector. Then, it was transfected into HEK293 cells using Lipofectamine 2000 reagent, and then a stable transfected cell line was selected through a medium containing G418 as a selection reagent, where FL-MOG cDNA was extracted or isolated and cloned into an expression vector.
  • the process may be performed by a person skilled in the art by appropriately selecting a method known in the art.
  • the stable cell line expressing the FL-MOG is for detecting MOG-IgG in the sample and further diagnosing MOG-IgG-related central nervous system inflammatory disease. It may refer to spinal fluid, blood, or serum isolated from a disease patient or from a patient expected to contain MOG-IgG, and more preferably refer to blood or serum.
  • the sample can be used by a person skilled in the art by diluting it at an appropriate ratio as needed.
  • MOG-IgG-related central nervous system inflammatory disease may appear in MOG-IgG-positive patients with various demyelinating phenotypes, specifically, AQP4-IgG-negative neuromyelitis optica spectrum disorder (NMOSD), It may mean acute disseminated encephalomyelitis (ADEM), myelitis, encephalitis, or optic neuritis (ON), but is not particularly limited thereto.
  • NOSD neuromyelitis optica spectrum disorder
  • ADAM acute disseminated encephalomyelitis
  • myelitis myelitis
  • encephalitis encephalitis
  • optic neuritis ON
  • the stable cell line expressing the FL-MOG is incubated with the isolated blood or serum, and then a fluorescence-conjugated secondary antibody is added to the incubated sample to MOG-IgG and secondary antibody. form a conjugate.
  • the "fluorescence-bound secondary antibody" is for a cell-based assay (CBA) for MOG or MOG-IgG, and the secondary antibody may in particular be anti-human IgG (H+L).
  • CBA cell-based assay
  • H+L anti-human IgG
  • fluorescence-conjugated IgG (H+L) when using fluorescence-conjugated IgG (H+L) as a secondary antibody that specifically binds to MOG-IgG, there is a strong positive difference between CBA-IF and CBA-FACS results.
  • the step of "detecting or analyzing fluorescence" in the present invention is not particularly limited thereto, but may be performing an immunofluorescence assay (IF) or a flow cytometry assay (FACS).
  • IF immunofluorescence assay
  • FACS flow cytometry assay
  • three different secondary antibodies against MOG-HEK293 cells Alexa Fluor-594 bound goat anti-human IgG (H+L), Alexa Fluor-594 bound goat anti-human IgGl CBA-IF (NCC-CBA) was performed using Fc, Alexa Fluor-594 bound goat anti-human IgM, followed by CBA-FACS with three different secondary antibodies (anti-human IgG (H+L); The specificity and sensitivity of IgG1-Fc and IgM) to MOG were measured.
  • Another aspect of the present invention for achieving the above object, cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; transfecting the cell with the MOG cloned expression vector; culturing the transfected cells in a medium containing a selection reagent to select a stable transfected cell line expressing MOG; incubating the selected cell line and a sample expected to contain MOG-IgG together; forming a MOG-IgG and secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; And it provides a method of providing information for the prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease, comprising the step of detecting or analyzing the fluorescence from the MOG-IgG and the secondary antibody conjugate.
  • the term 'MOG-IgG-related central nervous system inflammatory disease' is the same as described above.
  • MOG-IgG-associated central nervous system including optic neuromyelitis category disease (NMOSD), acute disseminated encephalomyelitis (ADEM), myelitis, Encephalitis, or optic neuritis (ON) in MOG-IgG-positive patients with various demyelinating phenotypes Since inflammatory diseases may appear, information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory diseases may be provided by checking the presence and level of MOG-IgG in the sample through the above method.
  • NOSD optic neuromyelitis category disease
  • ADAM acute disseminated encephalomyelitis
  • myelitis myelitis
  • Encephalitis Encephalitis
  • optic neuritis ON
  • MOG-IgG when a stable cell line expressing the FL-MOG and a sample expected to contain MOG-IgG are incubated together, and a secondary antibody that specifically binds to MOG-IgG is added, MOG-IgG is released from the sample. When present in the sample, red fluorescence is observed around the cell membrane due to FL-MOG and MOG-IgG binding, and when MOG-IgG is not present in the sample, red fluorescence is not observed. Furthermore, it can be used to analyze the MOG-IgG expression level, clinical phenotype, disease course, and prognosis of a patient group with MOG-IgG-related central nervous system inflammatory disease, and to classify the patient group.
  • Another aspect of the present invention for achieving the above object cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; transfecting the cell with the MOG cloned expression vector; And it provides a composition for diagnosis of MOG-IgG-related central nervous system inflammatory disease, comprising a stable transfected cell line expressing MOG, which is prepared by culturing the transfected cells in a medium containing a selection reagent.
  • the term 'MOG-IgG-related central nervous system inflammatory disease' is the same as described above.
  • Another aspect of the present invention for achieving the above object, cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; transfecting the cell with the MOG cloned expression vector; culturing the transfected cells in a medium containing a selection reagent to select a stable transfected cell line expressing MOG; incubating the selected cell line and a sample expected to contain MOG-IgG together; forming a MOG-IgG and secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; and detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugates.
  • the term 'MOG-IgG-related central nervous system inflammatory disease' is the same as described above.
  • FIG. 1A and 1B show the results of confirming transfection by Western blot and flow cytometry for hMOG-HEK293 cell line transfected with FL-MOG, respectively, and C to E of FIG. 1 are control (HC) and MOG, respectively.
  • HC control
  • MOG MOG
  • FIG. 2A shows the results of performing CBA-FACS using secondary antibodies IgG (H+L), IgG1-Fc and IgM for the sera of CNS inflammatory disease patients and controls (HC), respectively.
  • B shows the results of calculating the area under the curve (AUC) for each ROC curve and MFI ratio for IgG (H+L) and IgG1-Fc.
  • Figure 3 calculates the optimal cutoff from the ROC curve for various CNS inflammatory disease patients, and shows the distribution of the MFI ratio for each disease.
  • 5A and B show the results of observation of fluorescence signals in FL-MOG + HEK293 cell lines and EV-transfected HEK293 cell lines transfected with FL-MOG, respectively, and secondary antibodies IgG (H+L), IgG1-Fc and Shows the results of performing CBA-FACS using IgM.
  • NCC National Cancer Center
  • HC healthy people as controls
  • the demographics of the 355 patient groups are shown in Table 1, and their serum status was assessed by in-house CBA.
  • the patient population included 333 randomly selected patients with CNS inflammatory disease treated at NCC and 22 patients previously identified as MOG-IgG positive by IgG1 Oxford CBA (Oxford-CBA).
  • the specificity and sensitivity of three different secondary antibodies (anti-human IgG (H+L), IgG1-Fc and IgM) in 105 patients were evaluated by flow cytometry analysis, and the specificity and sensitivity of the secondary antibody were evaluated in 10 patients. confirmed by CBA-IF in the patient. Concordance of NCC CBA-IF (NCC-CBA) and Oxford-CBA-IF was evaluated in 125 patients (including 22 MOG-IgG seropositive patients). Serum collected from all participants was stored at -80°C, and the diagnosis of NMOSD and MS was based on the 2015 International NMOSD Diagnostic Panel criteria and the 2010 McDonald's criteria, respectively.
  • Full-length human MOG (Full-length MOG, FL-MOG) cDNA was isolated from the FL-MOG/pIRES2-DsRed2 plasmid and cloned into the XhoI and SmaI sites of the pIRES2-EGFP vector (Clontech, Mountain View, CA, USA). All sequences were confirmed by automated sequencing. Thereafter, the cloned FL-MOG plasmid or empty vector plasmid was transfected into Human Embryonic Kidney 293 (HEK293) cells (ATCC, Manassas, VA, USA) using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA).
  • G418 green fluorescent protein
  • flow cytometry FL-MOG protein expression in GFP-positive cells was confirmed by Western blot using an anti-MOG antibody (Santacruz, Dallas, TEXAS, USA).
  • CBA-IF MOG-IgG cell-based indirect immunofluorescence assay
  • CBA-IF was directed against MOG-HEK293 cells by three different secondary antibodies, Alexa Fluor-594 bound goat anti-human IgG (H+L) (diluted 1:2000 in PBS), Alexa Fluor-594 bound Goat anti-human IgG (FC ⁇ fragment specific, diluted 1:750 with PBS), Alexa Fluor-594 bound goat anti-human IgM (diluted 1:750 with PBS).
  • HEK293 cells stably transfected with an empty vector (EV) were used as a control to exclude non-specific background staining.
  • EV empty vector
  • HEK293 cells were harvested and washed in staining buffer (2 mM EDTA-1X PBS supplemented with 0.5% bovine serum albumin). 2 ⁇ 10 5 cells were incubated with patient serum (diluted 1:40 with staining buffer, 200 ⁇ l) in 96-well U-bottom plates (Thermo Fisher Scientific, MA, USA) on ice for 30 min.
  • viability dye 7-AAD (BD Biosciences, CA, USA; 5 ⁇ l per sample) was added to the cells prior to acquisition to exclude dead cells. A total of 10,000 cells were acquired from FACSVerse and data were analyzed using Flow Jo software (TreeStar, Ashland, OR, USA). Binding was expressed as mean fluorescence intensity (MFI), and the MFI ratio was determined as the MFI of MOG-transfected HEK293 cells divided by the MFI of EV-transfected HEK293 cells.
  • MFI mean fluorescence intensity
  • Receiver-operating characteristic (ROC) curve analysis was used to determine the usefulness of the MFI ratio for determining MOG-IgG seropositivity, using CBA-IF as a reference standard. The optimal cutoff of the highest specificity and sensitivity was determined through ROC curve analysis. Specificity was calculated as [(number of MOG-IgG negative among AQP4-IgG positive NMOSD, MS and other neurological disease (OND) patients) / total number of AQP4-IgG positive NMOSD, MS and OND patients] x 100.
  • HEK293 cells stably transfected with FL-MOG were used to construct in-house CBA-IF, successful transfection was confirmed by Western blot and flow cytometry, and fluorescence levels were measured by fluorescence microscopy (Fig. 1). A and B).
  • FIGS. 1C and 1D there was no difference in fluorescence between IgG (H + L) and IgG Fc, and in particular, it was confirmed that no fluorescence signal was seen when an IgM secondary antibody was used. Specifically, green fluorescence was observed in the cytosol of MOG-transfected cells, and when patient serum containing MOG-IgG was added, MOG-IgG was bound to FL-MOG, and red fluorescence was observed around the cell membrane. (FIG. 1E). On the other hand, it was confirmed that red fluorescence was not observed when the patient serum did not contain MOG-IgG ( FIGS. 1C and 1D ).
  • the female to male ratio was 28:13, and the mean age at onset of the disease was 28 years (range: 3 to 60 years).
  • Clinical phenotypes at onset included optic neuritis (37%), myelitis (29%), brain attacks (24%), and poly-regional involvement (10%).
  • 10 patients were monophasic and 31 patients relapsed: 26/41 (63%) patients had at least one cerebral involvement ( brain attack), 23/41 (56%) patients experienced at least one optic neuritis attack, and 20/41 (49%) patients experienced at least one myelitis attack.
  • IgG (H+L) a total of 105/355 patients with CNS inflammatory disease (65/105 patients) were randomized, and 40 patients with MOG -IgG seropositive patients) and HC were tested using CBA-FACS for the sera of 25 patients, and three different secondary antibodies IgG (H+L), IgG1-Fc and IgM were used (FIG. 2A).
  • the serostats of 105 patients detected by CBA-IF were classified as MOG-IgG seropositive and seronegative, and the MFI ratio of each patient was determined by CBA-FACS. Using ROC curve analysis, the area under the curve for the MFI ratio of IgG (H+L) was 1.00 and that of IgG1-Fc was 0.97 ( FIG. 2B ).
  • CBA-IF scores were determined as described above, and correlations between CBA-IF scores and CBA-FACS results were also determined.
  • the IF scores of 40 MOG-IgG seropositive patients were as follows: 10 patients scored 1 point, 13 patients scored 2 points, 10 patients scored 3 points, and 7 patients scored 4.
  • the anti-human IgG (H+L) secondary antibody showed a stronger positive correlation with the CBA-IF score than the IgG1-Fc secondary antibody ( FIG. 4 ).
  • 125 patients (36 with AQP4-IgG positive NMOSD, 13 with AQP4-IgG negative NMOSD, 27 with MS, 21 with single or recurrent myelitis, single or 6 with recurrent optic neuritis and 22 with ODD) were compared with IgG1 (Oxford) CBA-IF.
  • Anti-human IgG (H+L) secondary antibody (NCC) was used for CBA-IF.
  • MOG-transfected cells we found positive binding in MOG-transfected cells as well as EV-transfected cells by (NCC) CBA-IF and CBA-FACS ( FIGS. 5A and 5B ).
  • MOG-IgG positive binding was observed for both anti-human IgG (H+L) and IgG-Fc secondary antibodies.
  • the MOG-IgG MFI ratio was lower than the cutoff for all three secondary antibodies (anti-human IgG (H+L), IgG1-Fc and IgM) ( FIG. 5B ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to: a method for detecting myelin oligodendrocyte glycoprotein (MOG)-IgG comprising the steps of: (a) cloning a nucleic acid encoding MOG into a fluorescent protein expression vector; (b) transfecting a cell with the expression vector cloned with MOG; (c) selecting a stable transfected cell line by culturing the transfected cell in a medium containing a selection drug; (d) incubating the selected cell line and a sample expected to contain MOG-IgG together; (e) forming MOG-IgG and a secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; and (f) detecting or analyzing fluorescence from the MOG-IgG and the secondary antibody conjugate; a method of providing information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory diseases; a composition for diagnosis of MOG-IgG-related central nervous system inflammatory diseases; and a method of diagnosing MOG-IgG-related central nervous system inflammatory diseases. The present invention confirms that there is a strong positive correlation between CBA-IF and CBA-FACS results when using fluorescence-conjugated IgG (H+L) as a secondary antibody specifically binding to MOG-IgG, and a high matching rate of about 98% is shown even compared with the existing IgG1 (Oxford) CBA-IF. In particular, the method of the present invention does not require repetitive transfection by constructing a stable cell line expressing MOG, and is advantageous in that there is no cross reaction with secondary antibody IgM, so that a more clear fluorescence signal having a high specificity can be obtained.

Description

중추 신경계 염증성 질환 환자에서 MOG-IGG를 검출하기 위한 세포 기반 분석 방법Cell-based assay method for detection of MOG-IGG in patients with central nervous system inflammatory disease
본 발명은 시료로부터 MOG-IgG를 검출하기 위한 방법으로서, (a) MOG(myelin oligodendrocyte glycoprotein)를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; (b) MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염(transfection)시키는 단계; (c) 상기 형질 감염된 세포를 선별 시약(selection drug)이 포함된 배지에서 배양하여 안정한 형질 감염 세포주를 선별하는 단계; (d) 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계; (e) 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및 (f) 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는 방법; MOG-IgG 관련 중추 신경계 염증성 질환의 예측 또는 진단을 위한 정보를 제공하는 방법; MOG-IgG 관련 중추 신경계 염증성 질환의 진단용 조성물; 및 MOG-IgG 관련 중추 신경계 염증성 질환의 진단 방법에 관한 것이다.The present invention provides a method for detecting MOG-IgG from a sample, comprising the steps of: (a) cloning a nucleic acid encoding a myelin oligodendrocyte glycoprotein (MOG) into a fluorescent protein expression vector; (b) transfecting the MOG-cloned expression vector into cells; (c) selecting a stable transfected cell line by culturing the transfected cells in a medium containing a selection drug; (d) incubating the selected cell line with a sample expected to contain MOG-IgG; (e) adding a fluorescence-conjugated secondary antibody to the incubated sample to form a MOG-IgG and secondary antibody conjugate; and (f) detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugate; a method for providing information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease; a composition for diagnosis of MOG-IgG-related central nervous system inflammatory disease; and to a method for diagnosing MOG-IgG-related central nervous system inflammatory diseases.
자가 항체의 혈청 상태(Serostatus)는 자가면역 질환을 비롯한 광범위한 신경계 질환에서 중요한 진단 기준이다. 수초 희소돌기아교세포 당 단백질(myelin oligodendrocyte glycoprotein, MOG)을 기질로 사용한 세포 기반 분석(cell-based assay, CBA)의 개발은 다양한 탈수초성 표현형을 갖는 MOG-IgG 양성 환자를 확인하였다. 소아 및 성인의 급성 파종성 뇌척수염(acute disseminated encephalomyelitis, ADEM), 발작, 뇌염(Encephalitis), 아쿠아포린 4(aquaporin 4, AQP4)-IgG 음성 시신경척수염범주질환(NMOSD), 시신경염(optic neuritis, ON), 척수염 및 뇌간 뇌염에서는 MOG-IgG가 존재하였다. 한편 MOG-IgG는 다발성경화증(multiple sclerosis, MS) 환자에게는 존재하지 않았으므로, 다발성경화증과 비-MS 중추 신경계(CNS) 탈수초성 장애를 구별하는 것으로 생각되었다. 또한, MS와 MOG-IgG 관련 질환의 환자들 사이에는 임상적, 방사선학적, 병리학적 및 예후적으로 차이가 있다. 최근 연구에 따르면, MOG-IgG의 지속적인 양성은 면역 요법에도 불구하고 임상적 재발과 관련이 있는 반면, 혈청 음성으로의 전환은 임상적 재발을 초래하지 않았다. 게다가, 혈청학적 소견 및 다른 실험적 접근들은 MOG-IgG가 병원성일 수 있음을 제안하였다. 그럼에도 불구하고, 아직까지 MOG-IgG 관련 질병의 스펙트럼은 완전히 정의되지 않은 상태이다. 따라서, 특정 자가항체를 식별하기 위한 민감하고 매우 특이적인 분석법의 개발은 임상 표현형, 질병 코스 및 예후를 정확하게 정의하여 MOG-IgG 관련 질병의 전체 스펙트럼을 기술하는데 있어 중요하다.The serum status of autoantibodies (Serostatus) is an important diagnostic criterion in a wide range of neurological diseases, including autoimmune diseases. Development of a cell-based assay (CBA) using myelin oligodendrocyte glycoprotein (MOG) as a substrate identified MOG-IgG-positive patients with various demyelinating phenotypes. Acute disseminated encephalomyelitis (ADEM) in children and adults, seizures, Encephalitis, aquaporin 4 (AQP4)-IgG-negative optic neuromyelitis category disease (NMOSD), optic neuritis (ON) , MOG-IgG was present in myelitis and brainstem encephalitis. On the other hand, MOG-IgG was not present in patients with multiple sclerosis (MS), so it was thought to differentiate multiple sclerosis from non-MS central nervous system (CNS) demyelinating disorders. In addition, there are clinical, radiological, pathological and prognostic differences between patients with MS and MOG-IgG-associated diseases. According to a recent study, persistent positivity of MOG-IgG was associated with clinical relapse despite immunotherapy, whereas conversion to seronegative did not result in clinical relapse. Furthermore, serological findings and other experimental approaches have suggested that MOG-IgG may be pathogenic. Nevertheless, the spectrum of MOG-IgG-associated diseases is still not fully defined. Therefore, the development of sensitive and highly specific assays to identify specific autoantibodies is important in delineating the full spectrum of MOG-IgG-associated diseases by accurately defining the clinical phenotype, disease course and prognosis.
본 발명의 하나의 목적은, MOG를 발현하는 안정한 형질 감염 세포주를 구축하고 이를 MOG-IgG를 포함할 것으로 예상되는 중추 신경계(CNS) 염증성 질환 환자로부터 분리된 시료와 반응시킨 후, MOG-IgG 특이적으로 결합하는 형광-결합된 2차 항체를 첨가하여 이로부터 형광을 검출 또는 분석함으로써, 혈액 또는 혈청 등 시료로부터 MOG-IgG를 검출하고 나아가 MOG-IgG 관련 질병의 전체 스펙트럼을 밝히기 위함이다.One object of the present invention is to construct a stable transfected cell line expressing MOG, react it with a sample isolated from a patient with a central nervous system (CNS) inflammatory disease expected to contain MOG-IgG, and then react it with a MOG-IgG-specific By adding a fluorescence-conjugated secondary antibody that binds positively and detecting or analyzing the fluorescence therefrom, it is to detect MOG-IgG from a sample such as blood or serum, and furthermore, to reveal the entire spectrum of MOG-IgG-related diseases.
본 발명의 다른 하나의 목적은 MOG-IgG 관련 중추 신경계 염증성 질환의 예측 또는 진단을 위한 정보를 제공하는 방법을 제공하기 위함으로, 상기 MOG-IgG 관련 중추 신경계 염증성 질환은 AQP4-IgG 음성 시신경척수염범주질환(NMOSD), 급성 파종성 뇌척수염(ADEM), 척수염(Myelitis), 뇌염(Encephalitis) 또는 시신경염(ON)일 수 있다.Another object of the present invention is to provide a method for providing information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease, wherein the MOG-IgG-related central nervous system inflammatory disease is AQP4-IgG-negative optic neuromyelitis category. disease (NMOSD), acute disseminated encephalomyelitis (ADEM), myelitis, encephalitis (Encephalitis) or optic neuritis (ON).
본 발명의 또 다른 하나의 목적은 (a) MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; (b) MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계; 및 (c) 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하는 단계에 의해 제조되는, MOG를 발현하는 안정한 형질 감염 세포주를 포함하는 MOG-IgG 관련 중추 신경계 염증성 질환의 진단용 조성물을 제공하기 위함이다.Another object of the present invention is to (a) cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; (b) transfecting the cell with the MOG cloned expression vector; And (c) to provide a composition for diagnosis of MOG-IgG-related central nervous system inflammatory disease comprising a stable transfected cell line expressing MOG, which is prepared by culturing the transfected cells in a medium containing a selection reagent. am.
본 발명의 또 다른 하나의 목적은 MOG-IgG 관련 중추 신경계 염증성 질환의 진단 방법을 제공하기 위함이다.Another object of the present invention is to provide a method for diagnosing MOG-IgG-related central nervous system inflammatory disease.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.This will be described in detail as follows. Meanwhile, each description and embodiment disclosed in the present application may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in this application fall within the scope of this application. In addition, it cannot be seen that the scope of the present application is limited by the detailed description described below.
상기 목적을 달성하기 위한 본 발명의 하나의 양태는, 시료로부터 MOG-IgG를 검출하기 위한 방법으로서, MOG(myelin oligodendrocyte glycoprotein)를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염(transfection)시키는 단계; 상기 형질 감염된 세포를 선별 시약(selection drug)이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주를 선별하는 단계; 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계; 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는 방법을 제공한다.One aspect of the present invention for achieving the above object is a method for detecting MOG-IgG from a sample, comprising: cloning a nucleic acid encoding a myelin oligodendrocyte glycoprotein (MOG) into a fluorescent protein expression vector; Transfecting the MOG-cloned expression vector into cells; selecting a stable transfected cell line expressing MOG by culturing the transfected cells in a medium containing a selection drug; incubating the selected cell line and a sample expected to contain MOG-IgG together; forming a MOG-IgG and secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; And it provides a method comprising the step of detecting or analyzing the fluorescence from the MOG-IgG and the secondary antibody conjugate.
본 발명에서 "MOG(myelin oligodendrocyte glycoprotein)"는 중추 신경계(CNS)에서 신경의 수초화에 중요한 역할을 하며, 이는 미엘린초(myelin sheath)의 표면과 희소돌기아교세포의 형질막에 분포하는 당단백질이다. MOG를 기질로 하는 세포 기반 분석(cell-based assay, CBA)의 발달에 따라 다양한 중추 신경계(CNS) 염증성 질환에서 MOG-면역글로불린 G(immunoglobulin G antibody, IgG), 즉 MOG-IgG가 관련이 있음이 알려져 있다. 본 발명에서의 MOG는 전장 인간 MOG (Full-length MOG, FL-MOG)로, 본 발명에서 상기 MOG를 코딩하는 핵산은 서열번호 1로 표시되는 염기서열로 이루어진 것일 수 있다.In the present invention, "myelin oligodendrocyte glycoprotein (MOG)" plays an important role in myelination of nerves in the central nervous system (CNS), which is a glycoprotein distributed on the surface of the myelin sheath and the plasma membrane of oligodendrocytes. . With the development of a cell-based assay (CBA) based on MOG, MOG-immunoglobulin G antibody (IgG), i.e. MOG-IgG, has been implicated in various central nervous system (CNS) inflammatory diseases. This is known MOG in the present invention is a full-length human MOG (Full-length MOG, FL-MOG), and the nucleic acid encoding the MOG in the present invention may consist of the nucleotide sequence shown in SEQ ID NO: 1.
본 발명에서 "안정한 형질 감염 세포주"는 상기 FL-MOG를 발현하는 안정한 세포주(stable cell line)을 의미하는 것으로, MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염(transfection)시키는 단계; 상기 형질 감염된 세포를 선별 시약(selection drug)이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주(MOG-HEK293)를 선별하는 단계를 통해 제조될 수 있다. 구체적으로, 상기 형광 단백질은 EGFP, GFP, YFP, DsRed2, Tdtomato 또는 mCherry일 수 있고, 상기 발현 벡터는 pIRES2-EGFP 또는 pIRES-DsRed2 벡터일 수 있다. 보다 구체적으로, 본 발명에서 MOG가 클로닝된 발현 벡터는 pIRES2-EGFP 벡터에 서열번호 1로 표시되는 염기서열에 의해 코딩되는 전장 인간 MOG (FL-MOG)가 클로닝된 것일 수 있다. 또한, 상기 형질 감염의 대상이 되는 세포는 mammalian cell, 즉 HEK(human embryonic kidney) 293, HeLa, CHO (chinese hamster ovary) 또는 NIH3T3 세포일 수 있으며, 상기 선별 시약은 히그로마이신(Hygromycin), 푸로마이신(puromycin), 블라스티사이딘(blasticidi), 또는 G418(geneticin)일 수 있으나, 이에 특별히 제한되는 것은 아니다. 예컨대, 본 발명의 일 실시예에서는, FL-MOG/pIRES2-DsRed2 플라스미드로부터 전장 인간 MOG (Full-length MOG, FL-MOG) cDNA를 분리하고, 이를 pIRES2-EGFP 벡터의 XhoI 및 SmaI 부위로 클로닝한 후 이를 Lipofectamine 2000 시약을 사용하여 HEK293 세포에 형질감염시켰으며, 이후 선별 시약으로 G418을 함유하는 배지를 통해 안정한 형질 감염 세포주를 선별하였으며, 여기서 FL-MOG cDNA를 추출 또는 분리하고 발현 벡터에 클로닝하는 과정은 통상의 기술자가 당업계에 알려진 방법을 적절히 선택하여 수행할 수 있다.In the present invention, "stable transfected cell line" refers to a stable cell line expressing the FL-MOG, comprising the steps of cloning a nucleic acid encoding MOG into a fluorescent protein expression vector; Transfecting the MOG-cloned expression vector into cells; It can be prepared by culturing the transfected cells in a medium containing a selection drug to select a stable transfected cell line (MOG-HEK293) expressing MOG. Specifically, the fluorescent protein may be EGFP, GFP, YFP, DsRed2, Tdtomato or mCherry, and the expression vector may be a pIRES2-EGFP or a pIRES-DsRed2 vector. More specifically, the expression vector into which the MOG is cloned in the present invention may be a cloned full-length human MOG (FL-MOG) encoded by the nucleotide sequence shown in SEQ ID NO: 1 in the pIRES2-EGFP vector. In addition, the cells to be transfected may be mammalian cells, that is, HEK (human embryonic kidney) 293, HeLa, CHO (chinese hamster ovary) or NIH3T3 cells, and the selection reagent is hygromycin, furo It may be mycin (puromycin), blasticidi (blasticidi), or G418 (geneticin), but is not particularly limited thereto. For example, in one embodiment of the present invention, full-length human MOG (Full-length MOG, FL-MOG) cDNA is isolated from the FL-MOG/pIRES2-DsRed2 plasmid and cloned into the XhoI and SmaI sites of the pIRES2-EGFP vector. Then, it was transfected into HEK293 cells using Lipofectamine 2000 reagent, and then a stable transfected cell line was selected through a medium containing G418 as a selection reagent, where FL-MOG cDNA was extracted or isolated and cloned into an expression vector. The process may be performed by a person skilled in the art by appropriately selecting a method known in the art.
한편, 상기 FL-MOG를 발현하는 안정한 세포주는 시료 내 MOG-IgG를 검출하고 나아가 MOG-IgG 관련 중추 신경계 염증성 질환을 진단하기 위한 것으로, 본 발명에서 상기 "시료"는 MOG-IgG 관련 중추 신경계 염증성 질환 환자로부터 분리되었거나, MOG-IgG를 포함하는 것으로 예상되는 환자로부터 분리된 척수액, 혈액 또는 혈청을 의미할 수 있으며, 보다 바람직하게는 혈액 또는 혈청을 의미할 수 있다. 상기 시료는 당업계의 통상의 기술자가 필요에 따라 적절한 비율로 희석하여 사용할 수 있다.On the other hand, the stable cell line expressing the FL-MOG is for detecting MOG-IgG in the sample and further diagnosing MOG-IgG-related central nervous system inflammatory disease. It may refer to spinal fluid, blood, or serum isolated from a disease patient or from a patient expected to contain MOG-IgG, and more preferably refer to blood or serum. The sample can be used by a person skilled in the art by diluting it at an appropriate ratio as needed.
본 발명에서 "MOG-IgG 관련 중추 신경계 염증성 질환"은 다양한 탈수초성 표현형을 갖는 MOG-IgG 양성 환자에서 나타날 수 있으며, 구체적으로는 AQP4-IgG 음성 시신경척수염범주질환(neuromyelitis optica spectrum disorder, NMOSD), 급성 파종성 뇌척수염(acute disseminated encephalomyelitis, ADEM), 척수염(Myelitis), 뇌염(Encephalitis) 또는 시신경염(optic neuritis, ON)을 의미하는 것일 수 있으나, 이에 특별히 제한되는 것은 아니다.In the present invention, "MOG-IgG-related central nervous system inflammatory disease" may appear in MOG-IgG-positive patients with various demyelinating phenotypes, specifically, AQP4-IgG-negative neuromyelitis optica spectrum disorder (NMOSD), It may mean acute disseminated encephalomyelitis (ADEM), myelitis, encephalitis, or optic neuritis (ON), but is not particularly limited thereto.
본 발명에 있어서 상기 FL-MOG를 발현하는 안정한 세포주를 상기 분리된 혈액 또는 혈청과 함께 인큐베이이션 한 후, 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가함으로써 MOG-IgG 및 2차 항체 결합체를 형성시킨다. 본 발명에서 상기 "형광-결합된 2차 항체"는 MOG 또는 MOG-IgG에 대한 세포 기반 분석(CBA)을 위한 것으로, 상기 2차 항체는 특히 항-인간 IgG (H+L)일 수 있다. 구체적으로, 본 발명의 일 실시예에서는 MOG-IgG에 특이적으로 결합하는 2차 항체로서 형광-결합된 IgG (H+L)을 사용하는 경우 CBA-IF 및 CBA-FACS 결과 사이에 강한 양의 상관 관계가 있고, 기존의 IgG1 (Oxford) CBA-IF와 비교하여서도 약 98 %의 높은 일치율을 나타냄을 확인하였으며, 특히 형광-결합된 IgG (H+L)을 사용하는 경우 IgM과 교차반응(cross reaction)을 나타내지 않아 보다 특이도가 높고 명확한 형광 신호를 얻을 수 있는 장점이 있음을 확인하였다.In the present invention, the stable cell line expressing the FL-MOG is incubated with the isolated blood or serum, and then a fluorescence-conjugated secondary antibody is added to the incubated sample to MOG-IgG and secondary antibody. form a conjugate. In the present invention, the "fluorescence-bound secondary antibody" is for a cell-based assay (CBA) for MOG or MOG-IgG, and the secondary antibody may in particular be anti-human IgG (H+L). Specifically, in one embodiment of the present invention, when using fluorescence-conjugated IgG (H+L) as a secondary antibody that specifically binds to MOG-IgG, there is a strong positive difference between CBA-IF and CBA-FACS results. It was confirmed that there was a correlation and showed a high concordance rate of about 98% compared to the conventional IgG1 (Oxford) CBA-IF, especially when using fluorescence-conjugated IgG (H+L), cross-reacting with IgM ( It was confirmed that there is an advantage of obtaining a more specific and clear fluorescence signal because it does not show cross reaction).
본 발명에서 "형광을 검출 또는 분석"하는 단계는, 이에 특별히 제한되는 것은 아니나, 면역 형광법(immunofluorescence assay, IF) 또는 유세포 분석(flow cytometry assay, FACS)을 수행하는 것일 수 있다. 본 발명의 일 실시예에서는, MOG-HEK293 세포에 대해 3개의 상이한 2차 항체, Alexa Fluor-594 결합된 염소 항-인간 IgG (H+L), Alexa Fluor-594 결합된 염소 항-인간 IgG1-Fc, Alexa Fluor-594 결합된 염소 항-인간 IgM를 사용하여 CBA-IF(NCC-CBA)를 수행하였으며, CBA-FACS를 통해 3개의 상이한 2차 항체(항-인간 IgG (H+L), IgG1-Fc 및 IgM)의 MOG에 대한 특이도 및 민감도를 측정하였다.The step of "detecting or analyzing fluorescence" in the present invention is not particularly limited thereto, but may be performing an immunofluorescence assay (IF) or a flow cytometry assay (FACS). In one embodiment of the present invention, three different secondary antibodies against MOG-HEK293 cells, Alexa Fluor-594 bound goat anti-human IgG (H+L), Alexa Fluor-594 bound goat anti-human IgGl CBA-IF (NCC-CBA) was performed using Fc, Alexa Fluor-594 bound goat anti-human IgM, followed by CBA-FACS with three different secondary antibodies (anti-human IgG (H+L); The specificity and sensitivity of IgG1-Fc and IgM) to MOG were measured.
상기 목적을 달성하기 위한 본 발명의 다른 하나의 양태는, MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계; 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주를 선별하는 단계; 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계; 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는, MOG-IgG 관련 중추 신경계 염증성 질환의 예측 또는 진단을 위한 정보를 제공하는 방법을 제공한다. 상기 용어 'MOG-IgG 관련 중추 신경계 염증성 질환'은 전술한 바와 같다.Another aspect of the present invention for achieving the above object, cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; transfecting the cell with the MOG cloned expression vector; culturing the transfected cells in a medium containing a selection reagent to select a stable transfected cell line expressing MOG; incubating the selected cell line and a sample expected to contain MOG-IgG together; forming a MOG-IgG and secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; And it provides a method of providing information for the prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease, comprising the step of detecting or analyzing the fluorescence from the MOG-IgG and the secondary antibody conjugate. The term 'MOG-IgG-related central nervous system inflammatory disease' is the same as described above.
다양한 탈수초성 표현형을 갖는 MOG-IgG 양성 환자에게서 시신경척수염범주질환(NMOSD), 급성 파종성 뇌척수염(ADEM), 척수염(Myelitis), 뇌염(Encephalitis) 또는 시신경염(ON)을 비롯한 MOG-IgG 관련 중추 신경계 염증성 질환이 나타날 수 있는바, 상기 방법을 통해 시료 내 MOG-IgG의 존재 여부 및 수준 등을 확인함으로써 MOG-IgG 관련 중추 신경계 염증성 질환의 예측 또는 진단을 위한 정보를 제공할 수 있다. MOG-IgG-associated central nervous system, including optic neuromyelitis category disease (NMOSD), acute disseminated encephalomyelitis (ADEM), myelitis, Encephalitis, or optic neuritis (ON) in MOG-IgG-positive patients with various demyelinating phenotypes Since inflammatory diseases may appear, information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory diseases may be provided by checking the presence and level of MOG-IgG in the sample through the above method.
구체적으로, 상기 FL-MOG를 발현하는 안정한 세포주와, MOG-IgG를 포함할 것으로 예상되는 시료를 함께 인큐베이션하고 MOG-IgG에 특이적으로 결합하는 2차 항체를 첨가할 시, MOG-IgG가 시료 내 존재할 경우 FL-MOG 및 MOG-IgG 결합에 의해 세포막 주변에 적색 형광이 관찰되며, 시료 내 MOG-IgG가 존재하지 않을 경우 적색 형광이 관찰되지 않는 것을 통해 시료 내 MOG-IgG의 유무를 확인할 수 있으며, 나아가 MOG-IgG 관련 중추 신경계 염증성 질환을 갖는 환자 집단의 MOG-IgG 발현 수준 및 임상 표현형, 질병 코스, 예후를 분석하고 환자군의 분류 등에 활용될 수 있다.Specifically, when a stable cell line expressing the FL-MOG and a sample expected to contain MOG-IgG are incubated together, and a secondary antibody that specifically binds to MOG-IgG is added, MOG-IgG is released from the sample. When present in the sample, red fluorescence is observed around the cell membrane due to FL-MOG and MOG-IgG binding, and when MOG-IgG is not present in the sample, red fluorescence is not observed. Furthermore, it can be used to analyze the MOG-IgG expression level, clinical phenotype, disease course, and prognosis of a patient group with MOG-IgG-related central nervous system inflammatory disease, and to classify the patient group.
상기 목적을 달성하기 위한 본 발명의 또 다른 하나의 양태는, MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계; 및 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하는 단계에 의해 제조되는, MOG를 발현하는 안정한 형질 감염 세포주를 포함하는 MOG-IgG 관련 중추 신경계 염증성 질환의 진단용 조성물을 제공한다. 상기 용어 'MOG-IgG 관련 중추 신경계 염증성 질환'은 전술한 바와 같다.Another aspect of the present invention for achieving the above object, cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; transfecting the cell with the MOG cloned expression vector; And it provides a composition for diagnosis of MOG-IgG-related central nervous system inflammatory disease, comprising a stable transfected cell line expressing MOG, which is prepared by culturing the transfected cells in a medium containing a selection reagent. The term 'MOG-IgG-related central nervous system inflammatory disease' is the same as described above.
상기 목적을 달성하기 위한 본 발명의 또 다른 하나의 양태는, MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계; MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계; 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주를 선별하는 단계; 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계; 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는, MOG-IgG 관련 중추 신경계 염증성 질환의 진단 방법을 제공한다. 상기 용어 'MOG-IgG 관련 중추 신경계 염증성 질환'은 전술한 바와 같다.Another aspect of the present invention for achieving the above object, cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector; transfecting the cell with the MOG cloned expression vector; culturing the transfected cells in a medium containing a selection reagent to select a stable transfected cell line expressing MOG; incubating the selected cell line and a sample expected to contain MOG-IgG together; forming a MOG-IgG and secondary antibody conjugate by adding a fluorescence-conjugated secondary antibody to the incubated sample; and detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugates. The term 'MOG-IgG-related central nervous system inflammatory disease' is the same as described above.
본 발명에서는 MOG-IgG에 특이적으로 결합하는 2차 항체로서 형광-결합된 IgG (H+L)을 사용하는 경우 CBA-IF 및 CBA-FACS 결과 사이에 강한 양의 상관 관계가 있고, 기존의 IgG1 (Oxford) CBA-IF와 비교하여서도 약 98 %의 높은 일치율을 나타냄을 확인하였으며, 특히 본 발명의 방법은 MOG를 발현하는 안정한 세포주(stable cell line)를 제작함으로써 반복적인 형질 감염(transfection)이 요구되지 않으며, 2차 항체 IgM과 교차반응(cross reaction)을 나타내지 않아 특이도가 높고 보다 명확한 형광 신호를 얻을 수 있는 장점이 있다.In the present invention, when fluorescent-conjugated IgG (H+L) is used as a secondary antibody that specifically binds MOG-IgG, there is a strong positive correlation between CBA-IF and CBA-FACS results, and It was confirmed that it showed a high concordance rate of about 98% even compared to IgG1 (Oxford) CBA-IF, and in particular, the method of the present invention repeatedly transfection by constructing a stable cell line expressing MOG. This is not required, and there is an advantage in that it does not show a cross reaction with the secondary antibody IgM, so that it has high specificity and can obtain a clearer fluorescence signal.
도 1의 A 및 B는 각각 FL-MOG로 형질 감염된 hMOG-HEK293 세포주에 대해 웨스턴 블롯 및 유세포 분석법으로 형질 감염 여부를 확인한 결과를 나타낸 것이며, 도 1의 C 내지 E는 각각 대조군(HC), MOG-IGg 음성 및 양성 환자 혈청에 대해 2차 항체로 IgG (H+L), IgG1-Fc 및 IgM를 처리한 경우 형광 신호를 관찰한 결과를 나타낸 것이다. 1A and 1B show the results of confirming transfection by Western blot and flow cytometry for hMOG-HEK293 cell line transfected with FL-MOG, respectively, and C to E of FIG. 1 are control (HC) and MOG, respectively. -Shows the results of observing the fluorescence signal when IgG (H+L), IgG1-Fc and IgM are treated as secondary antibodies for -IGg-negative and positive patient sera.
도 2의 A는 CNS 염증성 질환 환자 및 대조군(HC)의 혈청에 대해 각각 2차 항체 IgG (H+L), IgG1-Fc 및 IgM를 사용하여 CBA-FACS를 수행한 결과를 나타내며, 도 2의 B는 IgG (H+L), IgG1-Fc에 대한 각각의 ROC 곡선 및 MFI 비율에 대한 곡선 아래 면적(AUC)을 계산한 결과를 나타낸 것이다.FIG. 2A shows the results of performing CBA-FACS using secondary antibodies IgG (H+L), IgG1-Fc and IgM for the sera of CNS inflammatory disease patients and controls (HC), respectively. B shows the results of calculating the area under the curve (AUC) for each ROC curve and MFI ratio for IgG (H+L) and IgG1-Fc.
도 3은 다양한 CNS 염증성 질환 환자에 대해 ROC 곡선에서 최적의 컷오프를 계산하고, 각 질환별 MFI 비율의 분포를 나타낸 것이다.Figure 3 calculates the optimal cutoff from the ROC curve for various CNS inflammatory disease patients, and shows the distribution of the MFI ratio for each disease.
도 4는 40명의 MOG-IgG 혈청 양성 환자의 IF 점수 및 MFI 비율로부터 CBA-IF 점수와 CBA-FACS의 상관 관계를 확인한 결과를 나타낸 것이다.4 shows the results of confirming the correlation between CBA-IF scores and CBA-FACS from the IF scores and MFI ratios of 40 MOG-IgG seropositive patients.
도 5의 A 및 B는 각각 FL-MOG로 형질 감염된 FL-MOG + HEK293 세포주 및 EV-형질 감염된 HEK293 세포주에서 형광 신호를 관찰한 결과, 및 2차 항체 IgG (H+L), IgG1-Fc 및 IgM를 사용하여 CBA-FACS를 수행한 결과를 나타낸 것이다.5A and B show the results of observation of fluorescence signals in FL-MOG + HEK293 cell lines and EV-transfected HEK293 cell lines transfected with FL-MOG, respectively, and secondary antibodies IgG (H+L), IgG1-Fc and Shows the results of performing CBA-FACS using IgM.
이하, 본 발명을 하기 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through the following examples. However, these Examples are for illustrative purposes of the present invention, and the scope of the present invention is not limited only to these Examples.
실시예 1: 실험방법Example 1: Experimental method
1-1: 환자군1-1: patient group
국립암센터(NCC)에서 CNS 염증성 질환으로 진단된 355명의 환자 및 대조군(HC)으로 25명의 건강한 사람의 혈청을 사용하였다. 환자군 355명의 인구 통계는 표 1에 나타내었으며, 이들의 혈청 상태는 in-house CBA에 의해 평가되었다. 환자군에는 CNS 염증성 질환을 앓고 NCC에서 치료받은 환자들 중 무작위로 선정된 333명과, IgG1 Oxford CBA(Oxford-CBA)에 의해 이전에 MOG-IgG 양성으로 확인된 22명의 환자가 포함되었다.Serum from 355 patients diagnosed with CNS inflammatory disease at the National Cancer Center (NCC) and 25 healthy people as controls (HC) were used. The demographics of the 355 patient groups are shown in Table 1, and their serum status was assessed by in-house CBA. The patient population included 333 randomly selected patients with CNS inflammatory disease treated at NCC and 22 patients previously identified as MOG-IgG positive by IgG1 Oxford CBA (Oxford-CBA).
최종 추시 진단Last follow-up diagnosis 환자수number of patients 남성:여성Male: Female 샘플링 시 평균 연령Average age at sampling 샘플링 시 Sampling
평균 유병 기간mean duration of illness
MOG-IgG 양성 환자 수Number of MOG-IgG-positive patients
AQP4 양성 NMOSDAQP4-positive NMOSD 6565 11:5411:54 37 (13-67)37 (13-67) 43 (14-73)43 (14-73) 0/65 (0%)0/65 (0%)
AQP4 음성 NMOSDAQP4 negative NMOSD 3737 9:289:28 41 (12-72)41 (12-72) 29 (0-351)29 (0-351) 4/37 (10.8%)4/37 (10.8%)
다발성경화증multiple sclerosis 111111 34:7734:77 32 (16-65)32 (16-65) 24 (0-286)24 (0-286) 0/111 (0%)0/111 (0%)
단일 또는 재발성 척수염Single or recurrent myelitis 5252 32:2032:20 40 (14-74)40 (14-74) 18 (0-196)18 (0-196) 7/52 (13.5%)7/52 (13.5%)
단일 또는 재발성 시신경염Single or recurrent optic neuritis 1616 6:106:10 34 (15-63)34 (15-63) 2 (0-87)2 (0-87) 6/16 (37.5%)6/16 (37.5%)
종양성 탈수초화 또는 ADEM-유사 증상을 포함한 다른 탈수초성 질환 Other demyelinating disorders, including neoplastic demyelination or ADEM-like symptoms 5555 23:3223:32 34 (7-61)34 (7-61) 7 (0-325)7 (0-325) 24/55 (43.6%)24/55 (43.6%)
다른 신경계 질환other neurological disorders 1919 11:811:8 49 (21-68)49 (21-68) 6 (0-212)6 (0-212) 0/19 (0%)0/19 (0%)
105명의 환자에서 3개의 상이한 2차 항체(항-인간 IgG (H+L), IgG1-Fc 및 IgM)의 특이도 및 민감도를 유세포 분석으로 평가하였고, 2차 항체의 특이도 및 민감도는 10명의 환자에서 CBA-IF에 의해 확인되었다. NCC CBA-IF(NCC-CBA) 및 Oxford-CBA-IF의 일치는 125명의 환자(22명의 MOG-IgG 혈청 양성 환자 포함)에서 평가되었다. 모든 참가자로부터 수집된 혈청은 -80℃에 저장하였으며, NMOSD 및 MS의 진단은 각각 2015년 국제 NMOSD 진단 패널 기준 및 2010년 맥도날드 기준을 기반으로 하였다.The specificity and sensitivity of three different secondary antibodies (anti-human IgG (H+L), IgG1-Fc and IgM) in 105 patients were evaluated by flow cytometry analysis, and the specificity and sensitivity of the secondary antibody were evaluated in 10 patients. confirmed by CBA-IF in the patient. Concordance of NCC CBA-IF (NCC-CBA) and Oxford-CBA-IF was evaluated in 125 patients (including 22 MOG-IgG seropositive patients). Serum collected from all participants was stored at -80°C, and the diagnosis of NMOSD and MS was based on the 2015 International NMOSD Diagnostic Panel criteria and the 2010 McDonald's criteria, respectively.
1-2: MOG-HEK 293 세포 제작1-2: MOG-HEK 293 cell production
전장 인간 MOG (Full-length MOG, FL-MOG) cDNA를 FL-MOG/pIRES2-DsRed2 플라스미드로부터 분리하고 pIRES2-EGFP 벡터(Clontech, Mountain View, CA, USA)의 XhoI 및 SmaI 부위로 클로닝 하였다. 모든 서열은 자동 시퀀싱에 의해 확인되었다. 이후 클로닝된 FL-MOG 플라스미드 또는 빈 벡터 플라스미드를 Lipofectamine 2000 시약(Invitrogen, Waltham, MA, USA)을 사용하여 Human Embryonic Kidney 293(HEK293) 세포(ATCC, Manassas, VA, USA)에 형질 감염시켰다. 48시간 후, 세포를 2 mg/mL G418(Invitrogen)을 함유하는 배지로 나누고, 2주 후에 G418-내성 세포를 분리한 후 한계 희석법에 의해 추가로 클로닝 하였다. 각각의 안정한 형질 감염체 클론을 유세포 분석을 사용하여 녹색 형광 단백질(GFP) 발현에 대해 스크리닝 하였다. GFP-양성 세포에서 FL-MOG 단백질 발현은 항-MOG 항체(Santacruz, Dallas, TEXAS, USA)를 사용한 웨스턴 블롯에 의해 확인되었다.Full-length human MOG (Full-length MOG, FL-MOG) cDNA was isolated from the FL-MOG/pIRES2-DsRed2 plasmid and cloned into the XhoI and SmaI sites of the pIRES2-EGFP vector (Clontech, Mountain View, CA, USA). All sequences were confirmed by automated sequencing. Thereafter, the cloned FL-MOG plasmid or empty vector plasmid was transfected into Human Embryonic Kidney 293 (HEK293) cells (ATCC, Manassas, VA, USA) using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA). After 48 hours, the cells were divided into a medium containing 2 mg/mL G418 (Invitrogen), and after 2 weeks, the G418-resistant cells were isolated and further cloned by limiting dilution. Each stable transfectant clone was screened for green fluorescent protein (GFP) expression using flow cytometry. FL-MOG protein expression in GFP-positive cells was confirmed by Western blot using an anti-MOG antibody (Santacruz, Dallas, TEXAS, USA).
1-3: MOG-IgG 세포 기반 간접 면역 형광 분석 (CBA-IF)1-3: MOG-IgG cell-based indirect immunofluorescence assay (CBA-IF)
CBA-IF는 MOG-HEK293 세포에 대해 3개의 상이한 2차 항체, Alexa Fluor-594 결합된 염소 항-인간 IgG (H+L) (PBS로 1:2000으로 희석됨), Alexa Fluor-594 결합된 염소 항-인간 IgG (FCγ 단편 특이적, PBS로 1:750으로 희석됨), Alexa Fluor-594 결합된 염소 항-인간 IgM (PBS로 1:750으로 희석됨)를 사용하여 수행하였다. 비특이적 백그라운드 염색을 배제하기 위해 빈 벡터(EV)로 안정적으로 형질 감염된 HEK293 세포를 대조군으로 사용하였다. 각 실험은 이중으로 수행되었으며, 혈청 양성(seropositivity)은 환자의 임상적, 실험적 정보 및 서로의 결과에 대해 알지 못하는 2명의 연구자에 의해 결정되었다. 표면 면역 형광의 강도를 아래 표 2와 같이 점수를 매겼고, 최종 점수는 2명 또는 3명의 연구자로부터의 판독값의 중간값이다. 1 이상의 IF 점수는 양성으로 간주되었으며 점수 0.5는 경계선으로 간주되었다.CBA-IF was directed against MOG-HEK293 cells by three different secondary antibodies, Alexa Fluor-594 bound goat anti-human IgG (H+L) (diluted 1:2000 in PBS), Alexa Fluor-594 bound Goat anti-human IgG (FCγ fragment specific, diluted 1:750 with PBS), Alexa Fluor-594 bound goat anti-human IgM (diluted 1:750 with PBS). HEK293 cells stably transfected with an empty vector (EV) were used as a control to exclude non-specific background staining. Each experiment was performed in duplicate, and seropositivity was determined by two investigators unaware of the patient's clinical and experimental information and each other's results. The intensity of surface immunofluorescence was scored as shown in Table 2 below, with the final score being the median of readings from 2 or 3 investigators. An IF score of 1 or higher was considered positive and a score of 0.5 was considered borderline.
IF 점수IF score 설명Explanation
00 세포막 주위에 결합이 없거나 염색이 고리 형태로 세포막을 둘러싸지 않음No bonds around the cell membrane or the staining does not surround the cell membrane in a ring shape
0.50.5 세포막 주위에 약한 결합이 있으나, 가시 세포 ~ 50 %의 전체 막을 둘러싸지 않음There is a weak bond around the cell membrane, but does not surround the entire membrane of ~50% of the spiny cells
1One 가시 세포 > 50 %에서 고리 형태로 전체 막을 둘러싸는, 선명하지만 약한 결합In prickly cells > 50%, sharp but weak bonds surrounding the entire membrane in ring form
22 가시 세포 > 75 %에서 전체 막을 둘러싸는, 선명하고 적당한 밝기를 나타냄Visible cells > 75% enveloping the entire membrane, showing clear and moderate brightness
33 가시 세포 > 90 %에서 양성 대조군의 밝기와 유사한, 선명하고 밝은 결합Clear, bright binding, similar to that of positive controls in prickly cells > 90%
44 가시 세포 > 90 %에서 양성 대조군보다 강한, 매우 밝은 결합Stronger, very bright binding than positive control in prickly cells >90%
1-4: 세포 기반 유세포 분석 (CBA-FACS)1-4: Cell-based flow cytometry (CBA-FACS)
HEK293 세포를 수확하고 염색 버퍼(0.5 % 소 혈청 알부민이 보충된 2 mM EDTA-1X PBS)에서 세척하였다. 2×105 세포를 얼음상의 96웰 U-bottom 플레이트(Thermo Fisher Scientific, MA, USA)에서 30분 동안 환자 혈청(염색 버퍼로 1:40으로 희석됨, 200 ㎕)과 배양하였다. 이어서, 세포를 PBS로 2회 세척하고, 알로피코시아닌(allophycocyanin) 결합된 염소 항-인간 IgG (H+L) (Jackson Immunology, PA, USA; PBS로 1:2000으로 희석됨) 또는 피코에리트린(phycoerythrin) 결합된 마우스 항-인간 IgG1 Fc (SouthernBiotech, 미국 버밍엄; PBS로 1:1000으로 희석됨) 또는 blue-violet 421 결합된 마우스 항-인간 IgM (BD Bioscience, CA, USA; PBS로 1:50으로 희석됨)과 함께 얼음 상에서 30분 동안 배양하였다. 세포를 세척하고 400 ㎕의 차가운 PBS에 재현 탁시킨 후, 획득 전에 viability dye 7-AAD(BD Biosciences, CA, USA; 샘플 당 5 ㎕)를 세포에 첨가하여 죽은 세포를 배제시켰다. FACSVerse에서 총 10,000개의 세포를 획득하고, Flow Jo 소프트웨어(TreeStar, Ashland, OR, USA)를 사용하여 데이터를 분석하였다. 결합은 평균 형광 강도(MFI)로 표현하였으며, MFI 비율은 MOG-형질 감염된 HEK293 세포의 MFI를 EV-형질 감염된 HEK293 세포의 MFI로 나눈 값에 의해 결정하였다.HEK293 cells were harvested and washed in staining buffer (2 mM EDTA-1X PBS supplemented with 0.5% bovine serum albumin). 2×10 5 cells were incubated with patient serum (diluted 1:40 with staining buffer, 200 μl) in 96-well U-bottom plates (Thermo Fisher Scientific, MA, USA) on ice for 30 min. Cells were then washed twice with PBS and either allophycocyanin bound goat anti-human IgG (H+L) (Jackson Immunology, PA, USA; diluted 1:2000 with PBS) or phycoeri Phycoerythrin bound mouse anti-human IgG1 Fc (SouthernBiotech, Birmingham, USA; diluted 1:1000 in PBS) or blue-violet 421 bound mouse anti-human IgM (BD Bioscience, CA, USA; 1 in PBS) :50)) and incubated on ice for 30 min. After washing and resuspending the cells in 400 μl of cold PBS, viability dye 7-AAD (BD Biosciences, CA, USA; 5 μl per sample) was added to the cells prior to acquisition to exclude dead cells. A total of 10,000 cells were acquired from FACSVerse and data were analyzed using Flow Jo software (TreeStar, Ashland, OR, USA). Binding was expressed as mean fluorescence intensity (MFI), and the MFI ratio was determined as the MFI of MOG-transfected HEK293 cells divided by the MFI of EV-transfected HEK293 cells.
CBA-IF를 기준 표준으로 사용하여, MOG-IgG 혈청 양성 반응을 결정하기 위한 MFI 비율의 유용성을 결정하기 위해 ROC(Receiver-operating characteristic) 곡선 분석을 사용하였다. ROC 곡선 분석을 통해 가장 높은 특이도 및 민감도의 최적 컷오프를 결정하였다. 특이도는 [(AQP4-IgG 양성 NMOSD, MS 및 기타 신경계 질환 (OND) 환자 중 MOG-IgG 음성의 수) / 총 AQP4-IgG 양성 NMOSD, MS 및 OND 환자의 수] x 100으로 계산되었다.Receiver-operating characteristic (ROC) curve analysis was used to determine the usefulness of the MFI ratio for determining MOG-IgG seropositivity, using CBA-IF as a reference standard. The optimal cutoff of the highest specificity and sensitivity was determined through ROC curve analysis. Specificity was calculated as [(number of MOG-IgG negative among AQP4-IgG positive NMOSD, MS and other neurological disease (OND) patients) / total number of AQP4-IgG positive NMOSD, MS and OND patients] x 100.
실시예 2: 실험결과Example 2: Experimental results
2-1: In-house MOG-IgG CBA-IF2-1: In-house MOG-IgG CBA-IF
In-house CBA-IF를 구축하기 위해 FL-MOG로 안정적으로 형질 감염된 HEK293 세포를 사용하였고, 웨스턴 블롯 및 유세포 분석법에 의해 성공적인 형질 감염을 확인하였으며, 형광 수준은 형광 현미경에 의해 측정되었다(도 1의 A 및 B).HEK293 cells stably transfected with FL-MOG were used to construct in-house CBA-IF, successful transfection was confirmed by Western blot and flow cytometry, and fluorescence levels were measured by fluorescence microscopy (Fig. 1). A and B).
이전의 연구에서는 특히 MS 환자 샘플에서 IgG 항체와 IgM 항체의 교차 반응성으로 인해, MOG-IgG를 검출하기 위한 항-인간 IgG (H+L) 2차 항체의 사용 시 낮은 특이도에 대한 우려가 있었다. 한편, IgG Fc 또는 IgM 2차 항체는 제한된 수의 샘플(n = 10; AQP4-IgG 음성 NMOSD 1명, 단일 또는 재발성 척수염 2명, 종양성 탈수초화 또는 ADEM-유사 증상(ODD)을 포함한 다른 탈수초성 질환 4명, 및 및 건강한 대조군 3명)과 함께 CBA-IF에 사용되었다. Previous studies had concerns about the low specificity of the use of anti-human IgG (H+L) secondary antibodies to detect MOG-IgG, particularly due to the cross-reactivity of IgG and IgM antibodies in MS patient samples. . On the other hand, IgG Fc or IgM secondary antibodies were produced in a limited number of samples (n = 10; 1 AQP4-IgG negative NMOSD, 2 patients with single or recurrent myelitis, neoplastic demyelination or other symptoms including ADEM-like symptoms (ODD)). 4 patients with demyelinating disease, and 3 healthy controls) were used for CBA-IF.
그 결과, IgG (H+L)와 IgG Fc 사이의 형광에는 차이가 없었으며, 특히 IgM 2차 항체가 사용될 때 형광 신호가 보이지 않음을 확인하였다(도 1의 C 내지 E). 구체적으로, MOG-형질 감염된 세포의 세포질(cytosol)에서 녹색 형광이 관찰되었고, MOG-IgG를 포함하는 환자 혈청이 첨가되었을 때 MOG-IgG가 FL-MOG에 결합됨으로써 세포막 주위에서 적색 형광이 관찰되었다(도 1의 E). 한편, 환자 혈청에 MOG-IgG가 포함되어 있지 않은 경우 적색 형광이 관찰되지 않음을 확인하였다(도 1의 C 및 D).As a result, there was no difference in fluorescence between IgG (H + L) and IgG Fc, and in particular, it was confirmed that no fluorescence signal was seen when an IgM secondary antibody was used (FIG. 1C to E). Specifically, green fluorescence was observed in the cytosol of MOG-transfected cells, and when patient serum containing MOG-IgG was added, MOG-IgG was bound to FL-MOG, and red fluorescence was observed around the cell membrane. (FIG. 1E). On the other hand, it was confirmed that red fluorescence was not observed when the patient serum did not contain MOG-IgG ( FIGS. 1C and 1D ).
2-2: MOG-IgG 혈청 상태2-2: MOG-IgG serum status
CNS 염증성 질환 집단으로부터 25명의 HC 및 355명의 환자(AQP4-IgG 양성 NMOSD 65명, AQP4-IgG 음성 NMOSD 37명, MS 111명, 단일 또는 재발성 척수염 52명, 단일 또는 재발성 시신경염(ON) 16명, ODD 55명, OND 7명)의 혈청 상태를 평가하였다. 환자 355 명의 특성 및 MOG-IgG 혈청 양성은 표 1에 나타내었다. 총 355명의 환자 중, 41/355명 (11.5%)이 혈청 양성 반응을 나타내었는데, AQP4-IgG 음성 NMOSD 환자 4/37명 (10.8 %), 단일 또는 재발성 척수염 환자 7/52명 (13.5 %), 단일 또는 재발성 ON 6/16명 (37.5 %) ODD 환자 24/55명 (43.6 %)가 혈청에 MOG-IgG를 갖는 것으로 확인되었다. 또한, AQP4-IgG 양성 NMOSD, MS, OND 환자 183명 및 건강한 대조군 샘플 중 어느 것도 MOG-IgG에 대해 양성이 아니었으며, MOG-IgG에 대해 양성인 41명의 환자들은 모두 MOG-IgG 관련 질환의 알려진 임상 스펙트럼 내의 임상 표현형을 나타내었다. 25 HC and 355 patients from the CNS inflammatory disease cohort (65 AQP4-IgG positive NMOSD, 37 AQP4-IgG negative NMOSD, 111 MS, 52 patients with single or recurrent myelitis, 16 with single or recurrent optic neuritis (ON)) patients, ODD 55, OND 7) were evaluated. Characteristics and MOG-IgG seropositivity of 355 patients are shown in Table 1. Of the total 355 patients, 41/355 (11.5%) were seropositive: 4/37 (10.8%) patients with AQP4-IgG negative NMOSD and 7/52 patients (13.5%) with single or recurrent myelitis. ), single or recurrent ON 6/16 patients (37.5%) ODD patients 24/55 (43.6%) were found to have MOG-IgG in their serum. In addition, none of the 183 AQP4-IgG-positive NMOSD, MS, OND patients and healthy control samples were positive for MOG-IgG, and all 41 patients positive for MOG-IgG had known clinical trials of MOG-IgG-associated disease. Clinical phenotypes within the spectrum were shown.
여성 대 남성의 비율은 28:13 이었으며, 질병 발병 시의 평균 연령은 28세(범위: 3 내지 60세)였다. 발병 시 임상 표현형에는 시신경염(37%), 척수염(29%), 뇌의 염증병변(brain attacks, 24%) 및 다 구역 침범(poly-regional involvement, 10%)이 포함되었다. 평균 유병 기간인 78개월(범위: 3 내지 298개월) 동안, 10명의 환자는 단발성(monophasic)이었고, 31명의 환자는 재발하였다: 26/41명(63 %)의 환자는 적어도 한번의 뇌침범(brain attack)을 경험하였으며, 23/41명(56 %)의 환자는 적어도 하나의 시신경염 attack, 20/41명(49 %)의 환자는 적어도 하나의 척수염 attack을 경험하였다. 뇌의 염증병변(brain attacks) 환자 26명 중 17명(65 %)은 ADEM 유사 병변이 있었고, 7명(27 %)의 환자가 플러피(fluffy)한 뇌간 병변이 있었으며, 2명(8 %)의 환자는 피질 병변이 있었다. 척수염 환자 20명 중 13명(65 %)에서 종단광범위 횡단성척수염(longitudinally extensive transverse myelitis)이 관찰되었으며, 시신경염 환자 23명 중 8명(35 %)이 양측성 침범(bilateral involvement)을 보였다. 마지막 추적 관찰에서, 25/41명(61 %)의 환자에서 동시 또는 연속적인 다 구역 침범이 관찰되었다. 이 환자들에서 가장 흔한 임상적 증상은 시신경염과 뇌의 염증병변(brain attacks)의 조합(12/25명, 48 %)에 이어 척수염과 뇌의 염증병변의 조합(7/25명, 28 %), 시신경염과 척수염(3/25명, 12 %)의 조합으로 나타났다. 3명(12 %)의 환자는 시신경염, 척수염 및 뇌의 염증병변을 나타내었으며, 나머지 16명의 환자는 isolated 척수염(n=7), 시신경염 (n=5) 및 뇌의 염증병변(n=4)과 같은 단독 임상적 증후군(isolated clinical syndrome)을 경험하였다.The female to male ratio was 28:13, and the mean age at onset of the disease was 28 years (range: 3 to 60 years). Clinical phenotypes at onset included optic neuritis (37%), myelitis (29%), brain attacks (24%), and poly-regional involvement (10%). During a median prevalence of 78 months (range: 3 to 298 months), 10 patients were monophasic and 31 patients relapsed: 26/41 (63%) patients had at least one cerebral involvement ( brain attack), 23/41 (56%) patients experienced at least one optic neuritis attack, and 20/41 (49%) patients experienced at least one myelitis attack. Of the 26 patients with brain attacks, 17 (65%) had ADEM-like lesions, 7 (27%) had fluffy brainstem lesions, and 2 (8%) of patients had cortical lesions. Longitudinally extensive transverse myelitis was observed in 13 of 20 (65%) patients with myelitis and bilateral involvement in 8 of 23 patients (35%) with optic neuritis. At the last follow-up, simultaneous or sequential multizone involvement was observed in 25/41 (61%) patients. The most common clinical symptoms in these patients were a combination of optic neuritis and brain attacks (12/25 patients, 48%) followed by a combination of myelitis and brain inflammatory lesions (7/25 patients, 28%). , a combination of optic neuritis and myelitis (3/25 patients, 12%). 3 (12%) patients had optic neuritis, myelitis and brain inflammatory lesions, and the remaining 16 patients had isolated myelitis (n=7), optic neuritis (n=5) and brain inflammatory lesions (n=4). experienced isolated clinical syndromes such as
2-3: CBA-FACS에 의한 혈청 양성의 측정2-3: Determination of seropositivity by CBA-FACS
FL-MOG 안정한 세포주(stable cell line)에서 IgG (H+L)의 유용성을 추가로 확인하기 위해, CNS 염증성 질환 환자 총 105/355명(65/105명의 환자가 무작위로 선택되었고, 40명은 MOG-IgG 혈청 양성 환자) 및 HC 25명의 혈청에 대해 CBA-FACS를 사용하여 실험하였으며, 3개의 다른 2차 항체 IgG (H+L), IgG1-Fc 및 IgM이 사용되었다(도 2의 A). CBA-IF에 의해 발견된 105명의 환자의 혈청 상태는 MOG-IgG 혈청 양성 및 혈청 음성으로 분류되었고, 각 환자의 MFI 비율은 CBA-FACS에 의해 결정되었다. ROC 곡선 분석을 사용하여, IgG (H+L)의 MFI 비율에 대한 곡선 아래 면적은 1.00이고 IgG1-Fc는 0.97이었다(도 2의 B). To further confirm the usefulness of IgG (H+L) in the FL-MOG stable cell line, a total of 105/355 patients with CNS inflammatory disease (65/105 patients) were randomized, and 40 patients with MOG -IgG seropositive patients) and HC were tested using CBA-FACS for the sera of 25 patients, and three different secondary antibodies IgG (H+L), IgG1-Fc and IgM were used (FIG. 2A). The serostats of 105 patients detected by CBA-IF were classified as MOG-IgG seropositive and seronegative, and the MFI ratio of each patient was determined by CBA-FACS. Using ROC curve analysis, the area under the curve for the MFI ratio of IgG (H+L) was 1.00 and that of IgG1-Fc was 0.97 ( FIG. 2B ).
105명의 CNS 염증성 질환 환자의 혈청 양성을 검출하기 위해 ROC 곡선에서 최적의 컷오프를 계산하였으며, 항-인간 IgG (H+L) 및 IgG1-Fc 2차 항체에 대한 최적 컷오프는 각각 3.4 및 2.3이었다. 환자 105명의 최종 추시 진단(diagnosis at last follow-up) 및 각 환자군의 혈청 양성이 결정되었다(도 3). AQP4-IgG 양성 NMOSD, MS 및 OND를 가진 모든 환자는 MOG-IgG 음성이었다. 한편 항-인간 IgG1-Fc 2차 항체는 AQP4-IgG 혈청 양성 NMOSD 환자 1명 및 MS 환자 2명에서 MOG-IgG를 검출하였다(특이도 = 95%). HC 25명 모두의 혈청의 MFI 비율은 IgG (H+L) 및 IgG1-Fc 항체 모두에 대해 컷오프 미만이었으며, IgM 항체에 결합된 샘플은 없었다.The optimal cutoff was calculated from the ROC curve to detect seropositivity in 105 CNS inflammatory disease patients, and the optimal cutoffs for anti-human IgG (H+L) and IgG1-Fc secondary antibodies were 3.4 and 2.3, respectively. Diagnosis at last follow-up of 105 patients and seropositivity in each patient group were determined (FIG. 3). All patients with AQP4-IgG positive NMOSD, MS and OND were MOG-IgG negative. Meanwhile, the anti-human IgG1-Fc secondary antibody detected MOG-IgG in one AQP4-IgG seropositive NMOSD patient and two MS patients (specificity = 95%). The MFI ratio of the sera of all 25 HCs was below the cutoff for both IgG (H+L) and IgG1-Fc antibodies, and no samples bound to IgM antibodies.
2-4: CBA-IF 점수와 CBA-FACS의 상관 관계2-4: Correlation between CBA-IF scores and CBA-FACS
CBA-IF 점수는 전술한 바와 같이 결정되었고, CBA-IF 점수와 CBA-FACS 결과 사이의 상관 관계 또한 결정되었다. 40명의 MOG-IgG 혈청 양성 환자의 IF 점수는 다음과 같았다: 10명의 환자는 1점, 13명은 2점, 10명은 3점, 7명은 4 점이었다. 항-인간 IgG (H+L) 2차 항체는 IgG1-Fc 2차 항체보다 CBA-IF 점수와 더 강한 양의 상관 관계를 나타내었다(도 4). (IgG (H+L): r=0.87, p <0.0001 vs IgG1-Fc: r=0.81, p <0.0001)CBA-IF scores were determined as described above, and correlations between CBA-IF scores and CBA-FACS results were also determined. The IF scores of 40 MOG-IgG seropositive patients were as follows: 10 patients scored 1 point, 13 patients scored 2 points, 10 patients scored 3 points, and 7 patients scored 4. The anti-human IgG (H+L) secondary antibody showed a stronger positive correlation with the CBA-IF score than the IgG1-Fc secondary antibody ( FIG. 4 ). (IgG (H+L): r=0.87, p <0.0001 vs IgG1-Fc: r=0.81, p <0.0001)
2-5: Oxford CBA-IF와 NCC CBA-IF의 높은 일치율2-5: High agreement between Oxford CBA-IF and NCC CBA-IF
분석 결과를 보다 더 검증하기 위해, 환자 125명(AQP4-IgG 양성 NMOSD를 가진 36명, AQP4-IgG 음성 NMOSD를 가진 13명, MS를 가진 27명, 단일 또는 재발성 척수염을 가진 21명, 단일 또는 재발성 시신경염을 가진 6명 및 ODD를 가진 22명)의 혈청 상태를 IgG1 (Oxford) CBA-IF와 비교하였다. 항-인간 IgG (H+L) 이차 항체를 (NCC) CBA-IF에 사용하였다. 그 결과, 두 가지 방법 모두 122/125명(98 %)의 샘플(κ = 0.919, p <0.0001)에 대해 일치하는 결과를 보였으며, 두 방법에서 모두 21/125명의 환자가 MOG-IgG 양성, 101/125명의 환자가 MOG-IgG 음성으로 확인되었다. 3/125명(2 %)의 환자는 오직 하나의 분석, (NCC) CBA-IF에서 2명, 그리고 (Oxford) CBA-IF에서 1명(표 3)에 대해서만 양성이었다. (NCC) CBA-IF에 의해서만 MOG-IgG 양성인 2명의 환자는 AQP4-IgG 음성 NMOSD 환자였다. 다른 하나의 샘플(환자 5)은 AQP4-IgG에 대해 강한 양성, (Oxford) CBA-IF에 의한 MOG-IgG에 대해 경계선 양성인 반면, AQP4-IgG에 대해서는 양성이고 (NCC) CBA IF에 의한 MOG-IgG에 대해서는 음성이었다.To further validate the analysis results, 125 patients (36 with AQP4-IgG positive NMOSD, 13 with AQP4-IgG negative NMOSD, 27 with MS, 21 with single or recurrent myelitis, single or 6 with recurrent optic neuritis and 22 with ODD) were compared with IgG1 (Oxford) CBA-IF. Anti-human IgG (H+L) secondary antibody (NCC) was used for CBA-IF. As a result, both methods showed consistent results for a sample of 122/125 (98%) patients (κ = 0.919, p < 0.0001), and in both methods, 21/125 patients were MOG-IgG positive; 101/125 patients were confirmed as MOG-IgG negative. 3/125 (2%) patients were positive for only one assay, (NCC) CBA-IF in 2, and (Oxford) CBA-IF in 1 (Table 3). (NCC) Two patients who were MOG-IgG positive by CBA-IF alone were AQP4-IgG negative NMOSD patients. The other sample (Patient 5) was strongly positive for AQP4-IgG, borderline positive for MOG-IgG by (Oxford) CBA-IF, while positive for AQP4-IgG and (NCC) MOG- by CBA IF. It was negative for IgG.
NCC-CBANCC-CBA 합계Sum
양성positivity 음성voice
Oxford-CBAOxford-CBA 양성positivity 2121 1One 2222
음성 voice 22 101101 103103
합계Sum 2323 102102 125125
(κ = 0.919, p <0.0001)(κ = 0.919, p < 0.0001)
또한, 본 발명자들은 MOG-형질 감염된 세포뿐만 아니라 (NCC) CBA-IF 및 CBA-FACS에 의해 EV-형질 감염된 세포에서도 양성 결합을 발견 하였다(도 5의 A 및 B). MOG-IgG 양성 결합은 항-인간 IgG (H+L) 및 IgG-Fc 2차 항체 모두에서 관찰되었다. MOG-IgG MFI 비율은 3가지 2차 항체(항-인간 IgG (H+L), IgG1-Fc 및 IgM) 모두에서 컷오프보다 낮았다(도 5의 B). In addition, we found positive binding in MOG-transfected cells as well as EV-transfected cells by (NCC) CBA-IF and CBA-FACS ( FIGS. 5A and 5B ). MOG-IgG positive binding was observed for both anti-human IgG (H+L) and IgG-Fc secondary antibodies. The MOG-IgG MFI ratio was lower than the cutoff for all three secondary antibodies (anti-human IgG (H+L), IgG1-Fc and IgM) ( FIG. 5B ).
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the claims described below and their equivalents.

Claims (18)

  1. 시료로부터 MOG-IgG를 검출하기 위한 방법으로서,A method for detecting MOG-IgG from a sample, comprising:
    (a) MOG(myelin oligodendrocyte glycoprotein)를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계;(a) cloning a nucleic acid encoding a myelin oligodendrocyte glycoprotein (MOG) into a fluorescent protein expression vector;
    (b) MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염(transfection)시키는 단계;(b) transfecting the MOG-cloned expression vector into cells;
    (c) 상기 형질 감염된 세포를 선별 시약(selection drug)이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주를 선별하는 단계;(c) selecting a stable transfected cell line expressing MOG by culturing the transfected cells in a medium containing a selection drug;
    (d) 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계;(d) incubating the selected cell line with a sample expected to contain MOG-IgG;
    (e) 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및(e) adding a fluorescence-conjugated secondary antibody to the incubated sample to form a MOG-IgG and secondary antibody conjugate; and
    (f) 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는, 방법.(f) detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugate.
  2. 제1항에 있어서, 상기 MOG를 코딩하는 핵산은 서열번호 1로 표시되는 염기서열로 이루어진 것인, 방법.The method of claim 1, wherein the nucleic acid encoding the MOG consists of the nucleotide sequence represented by SEQ ID NO: 1.
  3. 제1항에 있어서, 상기 2차 항체는 항-인간 IgG (H+L)인 것을 특징으로 하는, 방법.The method of claim 1 , wherein the secondary antibody is an anti-human IgG (H+L).
  4. 제1항에 있어서, 상기 (e) 단계에서 2차 항체는 IgM과 교차반응(cross reaction)을 나타내지 않는 것을 특징으로 하는, 방법.The method of claim 1, wherein the secondary antibody in step (e) does not cross-react with IgM.
  5. 제1항에 있어서, 상기 형광 단백질은 EGFP, GFP, YFP, DsRed2, Tdtomato 또는 mCherry인 것을 특징으로 하는, 방법.The method of claim 1, wherein the fluorescent protein is EGFP, GFP, YFP, DsRed2, Tdtomato or mCherry.
  6. 제1항에 있어서, 상기 세포는 HEK(human embryonic kidney) 293, HeLa, CHO (chinese hamster ovary) 또는 NIH3T3 세포인 것을 특징으로 하는, 방법.The method according to claim 1, wherein the cells are human embryonic kidney (HEK) 293, HeLa, CHO (chinese hamster ovary) or NIH3T3 ? cells.
  7. 제1항에 있어서, 상기 선별 시약은 히그로마이신(Hygromycin), 푸로마이신(puromycin), 블라스티사이딘(blasticidi), 또는 G418인 것을 특징으로 하는, 방법.The method of claim 1, wherein the selection reagent is hygromycin, puromycin, blasticidi, or G418.
  8. 제1항에 있어서, 상기 시료는 MOG-IgG 관련 중추 신경계(CNS) 염증성 질환 환자로부터 분리된 척수액, 혈액 또는 혈청인 것인, 방법.The method of claim 1, wherein the sample is spinal fluid, blood or serum isolated from a patient with MOG-IgG-related central nervous system (CNS) inflammatory disease.
  9. 제1항에 있어서, 상기 단계 (f)는 면역 형광법(immunofluorescence assay) 또는 유세포 분석(flow cytometry assay)을 수행하는 것인, 방법.The method of claim 1, wherein step (f) is performed by immunofluorescence assay or flow cytometry assay.
  10. MOG-IgG 관련 중추 신경계 염증성 질환의 예측 또는 진단을 위한 정보를 제공하는 방법으로서,As a method of providing information for prediction or diagnosis of MOG-IgG-related central nervous system inflammatory disease,
    (a) MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계;(a) cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector;
    (b) MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계;(b) transfecting the cell with the MOG cloned expression vector;
    (c) 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주를 선별하는 단계;(c) selecting a stable transfected cell line expressing MOG by culturing the transfected cells in a medium containing a selection reagent;
    (d) 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계;(d) incubating the selected cell line with a sample expected to contain MOG-IgG;
    (e) 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및(e) adding a fluorescence-conjugated secondary antibody to the incubated sample to form a MOG-IgG and secondary antibody conjugate; and
    (f) 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는, 방법.(f) detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugate.
  11. 제10항에 있어서, 상기 MOG를 코딩하는 핵산은 서열번호 1로 표시되는 염기서열로 이루어진 것인, 방법.The method of claim 10, wherein the nucleic acid encoding the MOG consists of a nucleotide sequence represented by SEQ ID NO: 1.
  12. 제10항에 있어서, 상기 MOG-IgG 관련 중추 신경계 염증성 질환은 AQP4-IgG 음성 시신경척수염범주질환(neuromyelitis optica spectrum disorder, NMOSD), 급성 파종성 뇌척수염(acute disseminated encephalomyelitis, ADEM), 척수염(Myelitis), 뇌염(Encephalitis) 또는 시신경염(optic neuritis, ON)인, 방법.11. The method of claim 10, wherein the MOG-IgG-related central nervous system inflammatory disease is AQP4-IgG-negative neuromyelitis optica spectrum disorder (NMOSD), acute disseminated encephalomyelitis (ADEM), Myelitis, Encephalitis or optic neuritis (ON).
  13. (a) MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계;(a) cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector;
    (b) MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계; 및(b) transfecting the cell with the MOG cloned expression vector; and
    (c) 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하는 단계에 의해 제조되는, (c) prepared by culturing the transfected cells in a medium containing a selection reagent,
    MOG를 발현하는 안정한 형질 감염 세포주를 포함하는, MOG-IgG 관련 중추 신경계 염증성 질환의 진단용 조성물.A composition for diagnosis of MOG-IgG-related central nervous system inflammatory disease, comprising a stable transfected cell line expressing MOG.
  14. 제13항에 있어서, 상기 MOG를 코딩하는 핵산은 서열번호 1로 표시되는 염기서열로 이루어진 것인, 조성물.The composition of claim 13, wherein the nucleic acid encoding the MOG consists of the nucleotide sequence represented by SEQ ID NO: 1.
  15. 제13항에 있어서, 상기 MOG-IgG 관련 중추 신경계 염증성 질환은 AQP4-IgG 음성 시신경척수염범주질환(NMOSD), 급성 파종성 뇌척수염(ADEM), 척수염(Myelitis), 뇌염(Encephalitis) 또는 시신경염(ON)인, 조성물. The method of claim 13, wherein the MOG-IgG-related central nervous system inflammatory disease is AQP4-IgG negative optic neuromyelitis category disease (NMOSD), acute disseminated encephalomyelitis (ADEM), myelitis, encephalitis (Encephalitis) or optic neuritis (ON). Phosphorus, composition.
  16. MOG-IgG 관련 중추 신경계 염증성 질환의 진단 방법으로서,A method for diagnosing MOG-IgG-related central nervous system inflammatory disease, comprising:
    (a) MOG를 코딩하는 핵산을 형광 단백질 발현 벡터에 클로닝하는 단계;(a) cloning the nucleic acid encoding the MOG into a fluorescent protein expression vector;
    (b) MOG가 클로닝된 상기 발현 벡터를 세포에 형질 감염시키는 단계;(b) transfecting the cell with the MOG cloned expression vector;
    (c) 상기 형질 감염된 세포를 선별 시약이 포함된 배지에서 배양하여 MOG를 발현하는 안정한 형질 감염 세포주를 선별하는 단계;(c) selecting a stable transfected cell line expressing MOG by culturing the transfected cells in a medium containing a selection reagent;
    (d) 상기 선별된 세포주와 MOG-IgG를 포함하는 것으로 예상되는 시료를 함께 인큐베이션하는 단계;(d) incubating the selected cell line with a sample expected to contain MOG-IgG;
    (e) 인큐베이션이 완료된 시료에 형광-결합된 2차 항체를 첨가하여 MOG-IgG 및 2차 항체 결합체를 형성시키는 단계; 및(e) adding a fluorescence-conjugated secondary antibody to the incubated sample to form a MOG-IgG and secondary antibody conjugate; and
    (f) 상기 MOG-IgG 및 2차 항체 결합체로부터 형광을 검출 또는 분석하는 단계를 포함하는, 방법.(f) detecting or analyzing fluorescence from the MOG-IgG and secondary antibody conjugate.
  17. 제16항에 있어서, 상기 MOG를 코딩하는 핵산은 서열번호 1로 표시되는 염기서열로 이루어진 것인, 방법.The method of claim 16, wherein the nucleic acid encoding the MOG consists of the nucleotide sequence represented by SEQ ID NO: 1.
  18. 제16항에 있어서, 상기 MOG-IgG 관련 중추 신경계 염증성 질환은 AQP4-IgG 음성 시신경척수염범주질환(neuromyelitis optica spectrum disorder, NMOSD), 급성 파종성 뇌척수염(acute disseminated encephalomyelitis, ADEM), 척수염(Myelitis), 뇌염(Encephalitis) 또는 시신경염(optic neuritis, ON)인, 방법.17. The method of claim 16, wherein the MOG-IgG-related central nervous system inflammatory disease is AQP4-IgG-negative neuromyelitis optica spectrum disorder (NMOSD), acute disseminated encephalomyelitis (ADEM), Myelitis, Encephalitis or optic neuritis (ON).
PCT/KR2021/001402 2020-02-10 2021-02-03 Method for cell-based assay to detect mog-igg in patients with central nervous system inflammatory diseases WO2021162325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180013657.XA CN115104031A (en) 2020-02-10 2021-02-03 Cell-based assay for detecting MOG-IGG in patients with inflammatory disorders of the central nervous system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200015655A KR102177224B1 (en) 2020-02-10 2020-02-10 Method for cell-based assay to detect MOG-IgG in patients with central nervous system inflammatory diseases
KR10-2020-0015655 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021162325A1 true WO2021162325A1 (en) 2021-08-19

Family

ID=73451543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001402 WO2021162325A1 (en) 2020-02-10 2021-02-03 Method for cell-based assay to detect mog-igg in patients with central nervous system inflammatory diseases

Country Status (3)

Country Link
KR (1) KR102177224B1 (en)
CN (1) CN115104031A (en)
WO (1) WO2021162325A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177224B1 (en) * 2020-02-10 2020-11-11 국립암센터 Method for cell-based assay to detect MOG-IgG in patients with central nervous system inflammatory diseases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190097067A (en) * 2016-12-26 2019-08-20 쿄와 기린 가부시키가이샤 Antibodies That Bind to Myelin Oligodendrosite Glycoproteins
KR102177224B1 (en) * 2020-02-10 2020-11-11 국립암센터 Method for cell-based assay to detect MOG-IgG in patients with central nervous system inflammatory diseases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190097067A (en) * 2016-12-26 2019-08-20 쿄와 기린 가부시키가이샤 Antibodies That Bind to Myelin Oligodendrosite Glycoproteins
KR102177224B1 (en) * 2020-02-10 2020-11-11 국립암센터 Method for cell-based assay to detect MOG-IgG in patients with central nervous system inflammatory diseases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM YESEUL, HYUN JAE-WON, WOODHALL MARK R, OH YU-MI, LEE JI-EUN, JUNG JI YUN, KIM SO YEON, LEE MIN YOUNG, KIM SU-HYUN, KIM WOOJUN,: "Refining cell-based assay to detect MOG-IgG in patients with central nervous system inflammatory diseases", MULTIPLE SCLEROSIS AND RELATED DISORDERS, vol. 40, 1 May 2020 (2020-05-01), pages 1 - 9, XP055835782, ISSN: 2211-0348, DOI: 10.1016/j.msard.2020.101939 *
KIM YESEUL, KIM GAYOUNG, KONG BYUNG SOO, LEE JI-EUN, OH YU-MI, HYUN JAE-WON, KIM SU-HYUN, JOUNG AERAN, KIM BYOUNG JOON, CHOI KYUNG: "Large-Scale in-House Cell-Based Assay for Evaluating the Serostatus in Patients with Neuromyelitis Optica Spectrum Disorder Based on New Diagnostic Criteria", JOURNAL OF CLINICAL NEUROLOGY, vol. 13, no. 2, 1 January 2017 (2017-01-01), pages 175 - 180, XP055835792, ISSN: 1738-6586, DOI: 10.3988/jcn.2017.13.2.175 *
YING PENG , LEI LIU , YUANCHU ZHENG , ZHIXIN QIAO , KAI FENG , JIAWEI WANG: "Diagnostic implications of MOG/AQP4 antibodies in recurrent optic neuritis", EXPERIMENTAL AND THERAPEUTIC MEDICINE, vol. 16, no. 2, 8 June 2018 (2018-06-08), pages 950 - 958, XP055835786, ISSN: 1792-0981, DOI: 10.3892/etm.2018.6273 *

Also Published As

Publication number Publication date
CN115104031A (en) 2022-09-23
KR102177224B1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
Takahashi et al. Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica
Ohkawa et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors
Saiz et al. Revised diagnostic criteria for neuromyelitis optica (NMO) application in a series of suspected patients
Jarius et al. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis
Hayakawa et al. Neuromyelitis optica and anti-aquaporin-4 antibodies measured by an enzyme-linked immunosorbent assay
CN102203613B (en) Neurological autoimmune disorders
CN104640877B (en) Diagnostic methods for detecting autoimmune diseases and related subject matter
WO2012091465A2 (en) Monoclonal antibodies to serum amyloid a, and hybridoma cells producing same
Long et al. Development of a cell-based assay for the detection of anti-aquaporin 1 antibodies in neuromyelitis optica spectrum disorders
WO2021162325A1 (en) Method for cell-based assay to detect mog-igg in patients with central nervous system inflammatory diseases
WO2013168876A1 (en) Kit for monitoring immune status after transplant and monitoring method using same
Seay et al. Neuromyelitis optica: review and utility of testing aquaporin-4 antibody in typical optic neuritis
EP2649448A2 (en) Method for detecting anti-nmda receptor autoantibodies for use in diagnostic procedures
US7955807B2 (en) Method of measuring PTX3 with high sensitivity
US20130260394A1 (en) Method for the diagnosis and/or prognosis of inflammatory states
WO2019083262A1 (en) Method for diagnosing cancer from blood
US20110143367A1 (en) Antibodies against april as biomarkers for early prognosis of lymphoma patients
Pasutharnchat et al. Clinical manifestations of acetylcholine receptor antibody positive and negative myasthenia gravis
EP1327147B1 (en) Neurotransmission disorders
Baro et al. Plasmodium falciparum exploits CD44 as a coreceptor for erythrocyte invasion
US9658227B2 (en) Recombinant GRA antigens and the use of same for early diagnosis of toxoplasmosis
JP2009092561A (en) Diagnosis method of breast adenoma complication myasthenia gravis based on didydro pyridine receptor antibody level
JP2008249618A (en) External secretion disorder diagnostic reagent
WO2019022370A1 (en) Composition for diagnosing gastric cancer and method for diagnosing gastric cancer by using composition
WO2023003334A1 (en) Rapid kit for diagnosis of coronavirus-neutralizing antibody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754482

Country of ref document: EP

Kind code of ref document: A1