WO2021162071A1 - Method for recovering highly water absorbent resin - Google Patents

Method for recovering highly water absorbent resin Download PDF

Info

Publication number
WO2021162071A1
WO2021162071A1 PCT/JP2021/005152 JP2021005152W WO2021162071A1 WO 2021162071 A1 WO2021162071 A1 WO 2021162071A1 JP 2021005152 W JP2021005152 W JP 2021005152W WO 2021162071 A1 WO2021162071 A1 WO 2021162071A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent resin
highly water
aqueous solution
decomposition product
mass
Prior art date
Application number
PCT/JP2021/005152
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 松井
小林 信弘
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2022500457A priority Critical patent/JP7299407B2/en
Publication of WO2021162071A1 publication Critical patent/WO2021162071A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for recovering a highly water-absorbent resin. Specifically, the present invention relates to a recovery method for recovering a highly water-absorbent resin from a used absorbent article. More specifically, the present invention relates to a recovery method for recovering a highly water-absorbent resin decomposition product after once decomposing and solubilizing the highly water-absorbent resin.
  • Super absorbent polymer (SAP / Super Absorbent polymer) is a water-swellable water-insoluble polymer gelling agent. SAP is used for various purposes such as disposable diapers, sanitary napkins, adult incontinence products (incontinence pads), sanitary materials such as pet sheets (sanitary products), soil water retention agents for agriculture and horticulture, and industrial water stoppages. It is used for.
  • Examples of raw materials for sanitary materials such as disposable diapers which are the main uses of highly water-absorbent resins, include pulp, non-woven fabrics, adhesives, etc. in addition to the above-mentioned highly water-absorbent resins. It is known that this sanitary material is recycled for various purposes after use. Examples of recycling include material recycling, in which raw materials are separated and reused, carbonized into solid fuel, composted by fermentation and used as compost, and recycled by cleaning and sterilizing and reusing as materials for building materials. There is.
  • Patent Document 1 describes that a superabsorbent polymer is decomposed into a low molecular weight polymer and solubilized in water under the condition that a water-absorbing polymer and a compound that produces water, a reducing agent, and a transition metal ion are present. How to make it is described. Then, a method for producing recycled pulp from a mixture containing a water-absorbent polymer decomposition product obtained by the decomposition method is described.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2019-131789
  • Patent Document 1 does not study for efficiently recovering the highly water-absorbent resin decomposition product from the aqueous solution containing the highly water-absorbent resin decomposition product after the fibrous substance such as pulp is recovered.
  • the recovered highly water-absorbent resin decomposition product can be used for solid fuel, soil modifier, and the like. Therefore, it is desired to develop a method for efficiently recovering the highly water-absorbent resin decomposition product from the aqueous solution containing the highly water-absorbent resin decomposition product after the fibrous substance such as pulp is recovered.
  • One aspect of the present invention is to efficiently recover a highly water-absorbent resin decomposition product from an aqueous solution containing a highly water-absorbent resin decomposition product after separating and recovering members such as pulp, non-woven fabric, and adhesive from a used absorbent article. It is an object of the present invention to realize a method for recovering a highly water-absorbent resin.
  • the present inventors decompose the highly water-absorbent resin by adding a specific flocculant to an aqueous solution containing a highly water-absorbent resin decomposition product after recovering members such as pulp, non-woven fabric, and adhesive under certain conditions. They have found that they can efficiently recover objects, and have completed the present invention.
  • the recovery method according to the embodiment of the present invention is a recovery method for recovering the highly water-absorbent resin from the used absorbent article, and decomposes the highly water-absorbent resin in the used absorbent article. Then, from the solubilization step of obtaining the highly water-absorbent resin decomposition product solubilized in water and the aqueous solution containing the decomposed high water-absorbent resin after the solubilization step, the aqueous solution containing the highly water-absorbent resin decomposition product and the aqueous solution thereof.
  • an inorganic flocculant is added to the aqueous solution containing the highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product.
  • the highly water-absorbent resin contains a polyacrylic acid (salt) -based water-absorbent resin as a main component, and in the precipitation recovery step, the inorganic aggregate in an aqueous solution containing the highly water-absorbent resin decomposition product.
  • the pH of the aqueous solution after adding the agent is in the range of 2.5 to 9, and the amount of the inorganic flocculant added is 30 to 400 with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product. It is a recovery method that is mass%.
  • a highly water-absorbent resin decomposition product can be efficiently obtained from an aqueous solution containing a highly water-absorbent resin decomposition product after collecting members such as pulp, non-woven fabric, and adhesive from a used absorbent article. It has the effect of being able to be collected.
  • the mass of the highly water-absorbent resin represents a value converted to solid content.
  • the recovery method according to the embodiment of the present invention is a method of recovering a highly water-absorbent resin from a used absorbent article.
  • the highly water-absorbent resin refers to a water-swellable water-insoluble polymer gelling agent, which is not particularly limited, but refers to a conventional highly water-absorbent resin having a water absorption ratio of 10 to 1000 times.
  • the highly water-absorbent resin may be, for example, a highly water-absorbent resin used for an absorbent article for absorbing an aqueous solution. Further, it may be a highly water-absorbent resin that needs to be disposed of, such as a highly water-absorbent resin adhering to the production apparatus of the highly water-absorbent resin.
  • the highly water-absorbent resin also includes a swelling gel after absorbing the aqueous solution.
  • the highly water-absorbent resin that actually absorbs and swells human urine tends to be easily decomposed and solubilized in the solubilization step described later.
  • the "used absorbent article” may be a water-absorbent resin and pulp, a non-woven fabric, an adhesive, etc. that have absorbed the liquid to be absorbed, which are contained in the absorbent article after use.
  • the "absorbent article” is an article used for water absorption. More specifically, the "absorbent article” is, for example, an absorbent article containing an absorber containing a highly water-absorbent resin and a fibrous substance.
  • the "absorbent article” may be an absorbent article further comprising a liquid-permeable front sheet and a liquid-impermeable back sheet.
  • the absorber is suitably manufactured by blending a highly water-absorbent resin and a fibrous substance, or sandwiching the highly water-absorbent resin with a fibrous substance and molding it into a film shape, a tubular shape, a sheet shape, or the like. Will be done.
  • the fibrous substance include hydrophilic fibers (for example, pulp, cotton linter, crosslinked cellulose fiber, rayon, cotton, wool, acetate, vinylon, etc.).
  • the "absorbable article after use” is not limited to this, but in particular, a sanitary material after use that has absorbed body fluids such as urine and blood (for example, disposable diapers, paper diapers, etc.).
  • a sanitary material after use that has absorbed body fluids such as urine and blood
  • body fluids such as urine and blood
  • examples include sanitary napkins, adult incontinence products (incontinence pads), sanitary materials such as pet sheets (sanitary products), and the like.
  • the "highly water-absorbent resin” contains a polyacrylic acid (salt) -based resin as a main component.
  • a main component is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, particularly preferably 90% by mass or more, based on the total amount of the highly water-absorbent resin. Means that it is 95% by mass or more.
  • polyacrylic acid (salt) refers to polyacrylic acid and / or a salt thereof.
  • the "polyacrylic acid (salt) -based resin” contains acrylic acid and / or a salt thereof (hereinafter, may be referred to as “acrylic acid (salt)”) as a repeating unit as a main component, and a graft component as an optional component. Means a crosslinked polymer containing.
  • the "main component” means that the amount (content) of acrylic acid (salt) used is preferably 50% by mass or more, more preferably 50% by mass or more, based on the entire monomer (excluding the internal cross-linking agent) used for polymerization.
  • the monomer that can be used in combination with acrylic acid (salt) is not limited to this, and is, for example, (anhydrous) maleic acid, itaconic acid, siliceous acid, vinyl sulfonic acid, allyltoluene sulfonic acid, and vinyl.
  • the polyacrylic acid (salt) -based resin is preferably internally crosslinked.
  • the internal cross-linking agent used for internal cross-linking is not particularly limited, but for example, N, N'-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (Meta) Acrylate, Trimethylol Propane Di (Meta) Acrylate, Trimethylol Propanetri (Meta) Acrylate, Glycerin Tri (Meta) Acrylate, Glycerin Acrylate Methacrylate, Ethylene Oxide Modified Trimethylol Propane Tri (Meta) Acrylate, Pentaerythritol Tetra (Meta) ) Acrylate, dipentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallylamine, poly (meth)
  • the amount of the internal cross-linking agent used is not limited to this, but is preferably 0.0001 to 5 mol% with respect to the monomer excluding the internal cross-linking agent. By setting the amount to be used within the above range, a water-absorbent resin having a desired water-absorbing performance can be obtained.
  • the polyacrylic acid (salt) -based resin contains a water-soluble salt of polyacrylic acid.
  • the main component of the water-soluble salt (neutralizing salt) is preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt, still more preferably an alkali metal salt, and particularly preferably a sodium salt.
  • the neutralization rate of the polyacrylic acid (salt) -based resin is not particularly limited, but is preferably 50 mol% or more and 95 mol% or less.
  • the highly water-absorbent resin may contain a resin other than the polyacrylic acid (salt) -based resin.
  • resins other than polyacrylic acid (salt) -based resins include polysulfonic acid (salt) -based resins, maleic anhydride (salt) -based resins, polyacrylamide-based resins, polyvinyl alcohol-based resins, polyethylene oxide-based resins, and polyasparagins.
  • Acid (salt) -based resin polyglutamic acid (salt) -based resin, polyarginic acid (salt) -based resin, starch-based resin, cellulose-based resin, (meth) acrylate cross-linked polymer, (meth) acrylic acid ester-vinyl acetate
  • examples thereof include a saponified crosslinked product of a copolymer, a starch-acrylate graft polymer, and a crosslinked product thereof.
  • the highly water-absorbent resin may be surface-crosslinked.
  • the recovery method according to the present embodiment includes a solubilization step, a separation step, and a precipitation recovery step. Hereinafter, each step will be described.
  • the highly water-absorbent resin in the used absorbent article is decomposed to obtain a highly water-absorbent resin decomposition product solubilized in water.
  • the method for solubilizing the highly water-absorbent resin is not particularly limited, and any method may be used.
  • Japanese Patent Application Laid-Open No. 2019-131789 Patent Document 1
  • Japanese Patent No. 3146053 Japanese Patent No. 3091251
  • Japanese Patent Application Laid-Open No. 2017-128840 Japanese Patent Application Laid-Open No. 2019-108639
  • Japanese Patent Application Laid-Open No. 2019-108640 etc. It is described in.
  • Patent Document 1 describes a method of decomposing and solubilizing a highly water-absorbent resin using a reducing agent and a transition metal ion.
  • Patent No. 3146053 describes a method for decomposing and solubilizing a highly water-absorbent resin at pH 4 to 7.5 using ascorbic acid as a reducing agent.
  • Patent No. 3091251 describes a method for decomposing and solubilizing a highly water-absorbent resin by heat treatment in the presence of an oxidizing agent.
  • Japanese Unexamined Patent Publication No. 2017-128840 describes a method for decomposing and solubilizing a highly water-absorbent resin by immersing it in ozone water.
  • 2019-108639 describes a method for decomposing and solubilizing a highly water-absorbent resin under acidic conditions using chlorine dioxide.
  • Japanese Unexamined Patent Publication No. 2019-108640 describes a method for decomposing and solubilizing a highly water-absorbent resin using a peracid.
  • the mass of the highly absorbent resin contained in the used absorbent article is unknown, the mass of the highly absorbent resin contained in the unused absorbent article and the highly absorbent resin contained in the used absorbent article It is sufficient to consider the general value of the water absorption ratio of.
  • the solubilization step can be carried out on the assumption that the content (solid content conversion value) of the highly water-absorbent resin with respect to the total mass of the used absorbent article is 3 to 9% by mass.
  • the actual content of the highly water-absorbent resin may differ significantly depending on the usage conditions of the used absorbent article, but those skilled in the art can appropriately adjust the decomposition conditions while checking the actual decomposition status. ..
  • the separation step the aqueous solution containing the highly water-absorbent resin decomposition product and other members (members other than the highly water-absorbent resin decomposition product) are separated from the aqueous solution containing the decomposed high water-absorbent resin after the solubilization step.
  • the separated aqueous solution containing the highly water-absorbent resin decomposition product and other members can be recovered and reused.
  • the method for separating the aqueous solution containing the highly water-absorbent resin decomposition product and the other members is not particularly limited, and the soluble substance (high water-absorbent resin decomposition product) and the insoluble substance (pulp, non-woven fabric, adhesive, solubilization) are not particularly limited. Examples thereof include conventional solid-liquid separation means for separating the non-woven resin), such as filtration by a mesh filter and centrifugation.
  • the other members separated and recovered can be washed, dehydrated, dried, etc. as necessary, and then processed into a desired form and reused, for example, as recycled pulp or recycled plastic.
  • ⁇ Precipitation recovery process> In the precipitation recovery step, after the separation step, an inorganic flocculant is added to an aqueous solution containing a highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product.
  • an inorganic flocculant By adding an inorganic additive, a highly water-absorbent resin decomposition product can be precipitated and recovered at low cost.
  • the pH of the aqueous solution after adding the inorganic flocculant to the aqueous solution containing the highly water-absorbent resin decomposition product is in the range of 2.5 to 9.
  • the pH of the aqueous solution after adding the inorganic flocculant to the highly water-absorbent resin decomposition product is preferably 3 to 9, more preferably 3 in terms of improving the recovery rate of the highly water-absorbent resin decomposition product. It is ⁇ 7, and more preferably 3 ⁇ 5.
  • a polymer flocculant described later it is preferable to control the pH after further adding the polymer flocculant to the above pH range.
  • the pH of the aqueous solution can be adjusted by adding an acid or a base.
  • the acid that can be used include, but are not limited to, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid and citric acid.
  • the bases that can be used include, but are not limited to, inorganic bases such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide.
  • the example of the inorganic flocculant used in the present precipitation recovery step is not limited to this, but an iron-based or aluminum-based inorganic flocculant or the like can be preferably used. More specific examples of the iron-based or aluminum-based inorganic flocculants include aluminum sulfate band (aluminum sulfate), polyaluminum chloride (PAC), aluminum chloride, ferric sulfate (polyiron), ferric chloride and Examples include a mixture of two or more of these. Among them, more preferable examples of the inorganic flocculant are aluminum sulfate band, polyaluminum chloride, or a combination thereof.
  • the amount of the inorganic flocculant added in the precipitation recovery step is 30 to 400% by mass with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product.
  • the amount of the inorganic flocculant is 30% by mass or more with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product, the highly water-absorbent resin decomposition product is sufficiently precipitated and the highly water-absorbent resin decomposition product is recovered. The rate also improves.
  • the amount of the inorganic flocculant is 400% by mass or less, a large amount of the inorganic flocculant that does not participate in the coagulation / precipitation of the highly water-absorbent resin decomposition product is relatively rarely present in the aqueous solution, so that the highly water-absorbent resin decomposition
  • the recovery rate of goods is high, which is economically preferable.
  • the amount of the inorganic flocculant added is preferably 35 to 350% by mass with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product in terms of improving the recovery rate of the highly water-absorbent resin decomposition product.
  • the pH of the aqueous solution after adding 50 to 200% by mass of the inorganic flocculant to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product is 2.5 to 7 (more preferably). 3 to 5) is preferable.
  • the mass of the highly absorbent resin decomposition product solid content of the aqueous solution
  • the mass of the highly absorbent resin contained in the unused absorbent article is unknown, for example, the mass of the highly absorbent resin contained in the unused absorbent article.
  • the general value of the water absorption ratio of the highly water-absorbent resin in the absorbent article to be used may be taken into consideration.
  • the amount of the inorganic flocculant to be used can be determined on the assumption that the content of the highly water-absorbent resin (solid content conversion value) with respect to the total mass of the used absorbent article is 3 to 9% by mass.
  • a polymer flocculant in addition to the inorganic flocculant in the present precipitation recovery step.
  • the polymer flocculant By adding the polymer flocculant, the highly water-absorbent resin decomposition product can be easily aggregated in a shorter time.
  • the polymer flocculant include nonionic, anionic, cationic, and amphoteric polymer flocculants. These polymer flocculants may be used alone or in combination of two or more.
  • the polymer flocculant is a cationic polymer flocculant, an amphoteric polymer flocculant, and the like. Alternatively, a combination thereof is more preferable.
  • the preferred weight average molecular weight of the cationic polymer flocculant or the amphoteric polymer flocculant is preferably 500,000 to 20 million, more preferably 1 million to 10 million.
  • the cationic polymer flocculant has a cationic monomer as an essential component, and is not limited to the copolymer of the cationic monomer, or a copolymer of the cationic monomer and (meth) acrylamide and the like. It can be a copolymer with a nonionic monomer.
  • the cationic monomer include dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, a neutralized salt thereof, and a quaternary salt.
  • One type of the cationic monomer may be used alone, or two or more types may be used in combination.
  • cationic polymer flocculants include, for example, polyamine condensate, dicyandiamide / formalin condensate, polyethyleneimine, polyvinylimidazolin, polyvinylpyridine, diallylamine salt / sulfur dioxide copolymer, polydimethyldialylammonium salt, and polydimethyl. Examples thereof include a diallyl ammonium salt / sulfur dioxide copolymer, a polydimethyldiallyl ammonium salt / acrylamide copolymer, a polydimethyldialyl ammonium salt / diallylamine hydrochloride derivative copolymer, and an allylamine salt polymer.
  • the cationic polymer flocculant may be used alone or in combination of two or more.
  • the amphoteric polymer flocculant is a polymer flocculant having a cationic group and an anionic group in one molecule.
  • the cationic group include a tertiary amine, a neutralized salt thereof, a quaternary salt and the like
  • the anionic group include a carboxyl group, a sulfone group or a salt thereof.
  • an amphoteric polymer flocculant having a carboxyl group is preferable.
  • a nonionic component may be contained.
  • examples of the anionic monomer unit include acrylic acid, methacrylic acid, and alkali metal salts thereof.
  • the cationic monomer unit include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, allyldimethylamine or a neutralized salt thereof.
  • examples include quaternary salt.
  • examples of the nonionic monomer unit include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like.
  • an anionic polymer flocculant may be used as the polymer flocculant.
  • the anionic polymer flocculant is not limited to this, for example, a copolymer of acrylamide and sodium acrylate, a copolymer of acrylamide and 2-acrylamide-2-methylpropanesulfonic acid, and acrylamide. And a copolymer of sodium acrylate and 2-acrylamide-2-methylpropanesulfonic acid, sodium polyacrylate, a partial hydrolyzate of polyacrylamide, and the like.
  • the anionic polymer flocculant may be used alone or in combination of two or more.
  • a nonionic polymer flocculant may be used as the polymer flocculant.
  • the nonionic polymer flocculant include polyacrylamide, a copolymer of acrylamide and another nonionic monomer, and the like.
  • the nonionic polymer flocculant may be used alone or in combination of two or more.
  • the preferred weight average molecular weight of the anionic polymer flocculant or the nonionic polymer flocculant is 2 to 20 million.
  • the amount of the polymer flocculant added in the precipitation recovery step is preferably 0.01 with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product. It is about 200% by mass, more preferably 0.05 to 150% by mass, and further preferably 0.1 to 100% by mass.
  • the amount of the polymer flocculant is 0.01% by mass or more, the highly water-absorbent resin decomposition product precipitates in a short time, and the recovery rate of the highly water-absorbent resin decomposition product is improved, which is preferable.
  • the amount of the polymer flocculant is 200% by mass or less, the polymer flocculant that does not participate in the coagulation / precipitation of the highly water-absorbent resin decomposition product does not exist in a large amount in the aqueous solution, so that the highly water-absorbent resin decomposition The recovery rate of goods is improved.
  • the concentration of the highly water-absorbent resin decomposition product in the aqueous solution containing the highly water-absorbent resin decomposition product is preferably 0.01. It is about 10% by mass, more preferably 0.05 to 5% by mass.
  • the highly water-absorbent resin decomposition product can be suitably aggregated by the inorganic flocculant, which is preferably 10% by mass.
  • the following is preferable because the aggregation of the highly water-absorbent resin decomposition product can be shortened.
  • the solid content concentration (mass%) of the highly water-absorbent resin decomposition product in the aqueous solution can be determined by drying the entire aqueous solution in an oven at 130 ° C. for 2 hours.
  • the inorganic additive it is more preferable to add the inorganic additive and then stir.
  • the stirring speed (rotation speed) and stirring time are not particularly limited, but it is more preferable to gradually reduce the stirring speed (rotation speed) in terms of improving the recovery rate of the highly water-absorbent resin decomposition product. ..
  • an inorganic additive is added to an aqueous solution containing a highly water-absorbent resin decomposition product, stirred at a constant rotation speed (first stage), and then stirred at a lower rotation speed than the first stage rotation speed (first stage). (2 steps), and after the 2nd step, it is preferably allowed to stand without stirring (3rd step).
  • the recovered highly water-absorbent resin decomposition product can be processed into a desired form and reused, for example, as a solid fuel or a soil modifier by dehydrating and drying.
  • the highly water-absorbent resin comprises a precipitation recovery step of adding an inorganic flocculant to an aqueous solution containing the highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product.
  • the pH of the aqueous solution after adding the inorganic flocculant to the aqueous solution containing the polyacrylic acid (salt) -based water-absorbent resin as the main component and containing the highly water-absorbent resin decomposition product in the precipitation recovery step is 2.
  • a polymer flocculant is further added to the aqueous solution in the precipitation recovery step.
  • the polymer flocculant is a cationic flocculant or an amphoteric flocculant.
  • the obtained hydrogel polymer was subdivided into a diameter of about 5 mm.
  • the subdivided hydrogel polymer was spread on a 50-mesh wire mesh and dried with hot air at 150 ° C. for 100 minutes.
  • the dried product was then pulverized using a vibration mill to obtain an amorphous crushed water-absorbing polymer precursor having an average particle size of 400 ⁇ m, which was further passed through a sieve having a mesh size of 850 ⁇ m and remained on a sieve having an average particle size of 400 ⁇ m.
  • a surface cross-linking agent composition liquid consisting of 0.04 part by weight of ethylene glycol diglycidyl ether, 0.9 part by weight of propylene glycol, and 3.0 parts by weight of water was mixed with 100 parts by weight of the obtained water-absorbent polymer precursor. ..
  • the highly water-absorbent resin (1) was obtained by heat-treating the mixture at 210 ° C. for 40 minutes.
  • the average particle size of the highly water-absorbent resin (1) was 400 ⁇ m, and the amount of water-soluble components was 9%.
  • the solid content concentration of the aqueous solution containing the highly water-absorbent resin decomposition product (1) was 0.50% by mass, and the weight average molecular weight was 105,000.
  • the insoluble matter remaining on the filtered wire mesh was thoroughly washed with deionized water. Next, the insoluble matter was dried together with the wire mesh in an oven at 180 ° C. for 2 hours, and the decomposition rate of the highly water-absorbent resin was determined according to the following formula and found to be 99.2%.
  • Decomposition rate of high water-absorbent resin (%) [1- ⁇ (mass of wire mesh + insoluble matter after drying)-(mass of wire mesh) ⁇ / (mass of high water-absorbent resin before decomposition)] x 100.
  • the decomposition rate of the highly water-absorbent resin is determined according to the following formula.
  • Decomposition rate of high water-absorbent resin (%) ((mass of aqueous solution containing high water-absorbent resin decomposition product) ⁇ (solid content concentration of high water-absorbent resin decomposition product contained in the aqueous solution [mass%] / 100) ) / (Mass of highly water-absorbent resin (solid content) contained in the used absorbent article before decomposition) ⁇ 100.
  • the mass of the highly water-absorbent resin (solid content) contained in the used absorbent article before decomposition can be calculated by the following formula.
  • Mass of highly absorbent resin (solid content) contained in the used absorbent article before decomposition (total mass of used absorbent article before decomposition) / (used absorption before decomposition per sheet) Mass of sex article) x (mass of highly absorbent resin contained in unused absorbent article per sheet)
  • the content of the highly water-absorbent resin (solid content conversion value) with respect to the total mass of the used absorbent article is 3 to 9% by mass
  • the mass of the sex resin (solid content) can be determined.
  • the agglutinated state of the polymer (highly water-absorbent resin decomposition product) in this state was investigated.
  • ⁇ Aggregates are aggregated and settled to 50% by volume or less of the volume of the aqueous solution, and the supernatant is also highly transparent.
  • ⁇ Aggregation sedimentation of aggregates is observed.
  • ⁇ Agglutination is observed, but there is almost no agglutination sedimentation.
  • No agglutination is observed.
  • Recovery rate of polymer agglomerates [1-Concentration of solids in supernatant after centrifugation (% by mass) / Concentration of highly absorbent resin decomposition products in total aqueous solution (% by mass)] ⁇ 100.
  • the solid content concentration (mass%) of the highly water-absorbent resin decomposition product and the flocculant in the total aqueous solution can be determined by drying the total aqueous solution in an oven at 130 ° C. for 2 hours.
  • Example 1 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 1.8 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulf
  • Example 2 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 3 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulf
  • Example 4 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 10.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulf
  • Example 5 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 15.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 6 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 2.5 g of a 10 mass% aqueous solution of polyaluminum chloride (manufactured by Asada Chemical Industry Co., Ltd., PAC100W) was added as an inorganic flocculant, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes using a magnetic stirrer. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • Example 7 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of polyaluminum chloride (manufactured by Asada Chemical Industry Co., Ltd., PAC100W) was added as an inorganic flocculant, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes using a magnetic stirrer. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • Example 8 As a substitute for the highly water-absorbent resin decomposition product (1), 100 g of a 0.50 mass% aqueous solution of sodium polyacrylate (weight average molecular weight 430,000, neutralization rate 71 mol%) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • a 10 mass% aqueous solution of aluminum sulfate band manufactured by Asada Chemical Industry Co
  • Example 9 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 10 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 11 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 12 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 13 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 14 To a 250 mL glass beaker, 20 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) and 80 g of deionized water were added, and the mixture was sufficiently stirred. Subsequently, 1.0 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and a magnetic stirrer was used at 300 rpm. The mixture was stirred and mixed at the number of revolutions for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • Example 15 To a 250 mL glass beaker, 10 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) and 90 g of deionized water were added and sufficiently stirred. Subsequently, 0.50 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and a magnetic stirrer was used at 300 rpm. The mixture was stirred and mixed at the number of revolutions for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
  • aqueous solution solid content concentration 0.50% by mass
  • deionized water 90 g
  • Example 16 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 17 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 18 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 19 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 20 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 21 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 22 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 23 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 24 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 25 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 1.8 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes.
  • aqueous solution solid content concentration 0.50% by mass
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Example 26 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes.
  • aluminum sulfate band manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate
  • Comparative Example 1 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. The mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes using a magnetic stirrer without adding an inorganic flocculant. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring, but no polymer aggregates were formed.
  • Comparative Example 2 100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 1.0 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product”: aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring. As a result, polymer agglomerates were formed, but no agglomeration sedimentation was observed.
  • Examples 1 to 26 and Comparative Examples 1 to 6 the type of highly water-absorbent resin decomposition product, the weight average molecular weight (Mw) and concentration, the type (product name) and addition amount of the inorganic flocculant, and the type of polymer flocculant.
  • Tables 1 to 3 show the (product name), the amount added, the pH of the solution, the state of aggregation of the polymer agglomerates, and the recovery rate of the polymer agglomerates.
  • PSA1 indicates the highly water-absorbent resin decomposition product (1) obtained in Reference Example 2.
  • PSA2 is sodium polyacrylate (Mw: 430,000, neutralization rate 71 mol%).
  • the weight average molecular weight (Mw) is the weight average molecular weight of the highly water-absorbent resin decomposition product.
  • the concentration of the highly water-absorbent resin decomposition product indicates the solid content concentration (mass%) of the highly water-absorbent resin decomposition product contained in the aqueous solution of the highly water-absorbent resin decomposition product.
  • the addition amount (mass%) of the inorganic flocculant and the polymer flocculant indicates the ratio of the highly water-absorbent resin decomposition product contained in the aqueous solution of the highly water-absorbent resin decomposition product to the solid content.
  • the pH indicates the pH of the highly water-absorbent resin decomposition product aqueous solution after the addition of the inorganic flocculant.
  • the pH of Examples 9 to 13 indicates the pH of the highly water-absorbent resin decomposition product aqueous solution after the addition of the polymer flocculant.
  • the recovery method for recovering the highly water-absorbent resin according to the present invention is a highly water-absorbent resin from an aqueous solution containing a highly water-absorbent resin decomposition product after collecting members such as pulp, non-woven fabric, and adhesive from a used absorbent article. Since decomposition products can be efficiently recovered, absorbent articles such as paper diapers, sanitary napkins, adult incontinence products (incontinence pads), sanitary materials (sanitary products) such as pet sheets, and intermediate decomposition thereof. It can be suitably used in the recycling field where goods are reused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

A recovery method according to the present invention comprises a sedimentation recovery step wherein after decomposing and solubilizing a highly water absorbent resin, an inorganic flocculant is added to an aqueous solution that contains the decomposition product of the highly water absorbent resin, thereby having the decomposition product of the highly water absorbent resin settled out and recovered. In the sedimentation recovery step, the aqueous solution has a pH within the range of from 2.5 to 9, and the addition amount of the inorganic flocculant is from 30 to 400% by mass relative to the solid content of the aqueous solution including the decomposition product of the highly water absorbent resin.

Description

高吸水性樹脂の回収方法How to recover highly water-absorbent resin
 本発明は、高吸水性樹脂の回収方法に関する。詳細には、本発明は、使用済みの吸収性物品から高吸水性樹脂を回収する回収方法に関する。より詳細には、高吸水性樹脂を一旦分解し可溶化させた後、その高吸水性樹脂分解物を回収する回収方法に関する。 The present invention relates to a method for recovering a highly water-absorbent resin. Specifically, the present invention relates to a recovery method for recovering a highly water-absorbent resin from a used absorbent article. More specifically, the present invention relates to a recovery method for recovering a highly water-absorbent resin decomposition product after once decomposing and solubilizing the highly water-absorbent resin.
 高吸水性樹脂(SAP/Super Absorbent polymer)は、水膨潤性水不溶性の高分子ゲル化剤である。SAPは、紙おむつ、生理用ナプキン、成人向け失禁用製品(失禁パッド)、ペット用シート等の衛生材料(衛生用品)、農園芸用の土壌保水剤、工業用の止水剤等、様々な用途に利用されている。 Super absorbent polymer (SAP / Super Absorbent polymer) is a water-swellable water-insoluble polymer gelling agent. SAP is used for various purposes such as disposable diapers, sanitary napkins, adult incontinence products (incontinence pads), sanitary materials such as pet sheets (sanitary products), soil water retention agents for agriculture and horticulture, and industrial water stoppages. It is used for.
 高吸水性樹脂の主用途である紙おむつ等の衛生材料の原料としては、前述の高吸水性樹脂の他に、パルプ、不織布および接着剤等が挙げられる。この衛生材料は、使用後に種々の用途にリサイクルされることが知られている。リサイクルの例として、原料を分別して再利用するマテリアルリサイクル、炭化して固形燃料とする燃料化、発酵させて堆肥として使用する堆肥化、洗浄・殺菌して建築資材向け素材として再利用等のリサイクルがある。 Examples of raw materials for sanitary materials such as disposable diapers, which are the main uses of highly water-absorbent resins, include pulp, non-woven fabrics, adhesives, etc. in addition to the above-mentioned highly water-absorbent resins. It is known that this sanitary material is recycled for various purposes after use. Examples of recycling include material recycling, in which raw materials are separated and reused, carbonized into solid fuel, composted by fermentation and used as compost, and recycled by cleaning and sterilizing and reusing as materials for building materials. There is.
 例えば、特許文献1には、吸水性ポリマーと、水、還元剤、および、遷移金属イオンを生成する化合物と、が存在する条件下で吸水性ポリマーを低分子量ポリマーに分解し、水に可溶化させる方法が記載されている。そして、当該分解方法により得られた吸水性ポリマー分解物を含む混合物からリサイクルパルプを製造する方法が記載されている。 For example, Patent Document 1 describes that a superabsorbent polymer is decomposed into a low molecular weight polymer and solubilized in water under the condition that a water-absorbing polymer and a compound that produces water, a reducing agent, and a transition metal ion are present. How to make it is described. Then, a method for producing recycled pulp from a mixture containing a water-absorbent polymer decomposition product obtained by the decomposition method is described.
日本国公開特許公報「特開2019-131789号公報」Japanese Patent Publication "Japanese Patent Laid-Open No. 2019-131789"
 一方、特許文献1には、パルプ等の繊維状物質が回収された後の高吸水性樹脂分解物を含む水溶液から高吸水性樹脂分解物を効率よく回収するための検討がされていない。回収された高吸水性樹脂分解物は固形燃料および土壌改質材等に利用することができる。したがって、パルプ等の繊維状物質が回収された後の高吸水性樹脂分解物を含む水溶液から高吸水性樹脂分解物を効率よく回収する方法の開発が望まれている。 On the other hand, Patent Document 1 does not study for efficiently recovering the highly water-absorbent resin decomposition product from the aqueous solution containing the highly water-absorbent resin decomposition product after the fibrous substance such as pulp is recovered. The recovered highly water-absorbent resin decomposition product can be used for solid fuel, soil modifier, and the like. Therefore, it is desired to develop a method for efficiently recovering the highly water-absorbent resin decomposition product from the aqueous solution containing the highly water-absorbent resin decomposition product after the fibrous substance such as pulp is recovered.
 本発明の一態様は、使用済みの吸収性物品から、パルプ、不織布、接着剤等の部材を分離回収した後の高吸水性樹脂分解物を含む水溶液から高吸水性樹脂分解物を効率よく回収することができる高吸水性樹脂の回収方法を実現することを目的とする。 One aspect of the present invention is to efficiently recover a highly water-absorbent resin decomposition product from an aqueous solution containing a highly water-absorbent resin decomposition product after separating and recovering members such as pulp, non-woven fabric, and adhesive from a used absorbent article. It is an object of the present invention to realize a method for recovering a highly water-absorbent resin.
 本発明者らは、特定の凝集剤を一定の条件下において、パルプ、不織布、接着剤等の部材を回収した後の高吸水性樹脂分解物を含む水溶液に添加することにより高吸水性樹脂分解物を効率よく回収できることを見出し、本発明を完成するに至った。 The present inventors decompose the highly water-absorbent resin by adding a specific flocculant to an aqueous solution containing a highly water-absorbent resin decomposition product after recovering members such as pulp, non-woven fabric, and adhesive under certain conditions. They have found that they can efficiently recover objects, and have completed the present invention.
 すなわち、本発明の一実施形態に係る回収方法は、使用済みの吸収性物品から高吸水性樹脂を回収する回収方法であって、前記使用済みの吸収性物品中の前記高吸水性樹脂を分解し、水に可溶化させた高吸水性樹脂分解物を得る可溶化工程と、前記可溶化工程後の分解した高吸水性樹脂を含む水溶液から、前記高吸水性樹脂分解物を含む水溶液とそれ以外の部材とを分離する分離工程と、前記分離工程後に、前記高吸水性樹脂分解物を含む水溶液に無機系凝集剤を添加して、前記高吸水性樹脂分解物を沈殿および回収する沈殿回収工程と、を含み、前記高吸水性樹脂が、ポリアクリル酸(塩)系吸水性樹脂を主成分として含み、前記沈殿回収工程において、前記高吸水性樹脂分解物を含む水溶液に前記無機系凝集剤を添加した後の水溶液のpHが2.5~9の範囲であり、前記無機系凝集剤の添加量が、前記高吸水性樹脂分解物を含む水溶液の固形分に対して、30~400質量%である、回収方法である。 That is, the recovery method according to the embodiment of the present invention is a recovery method for recovering the highly water-absorbent resin from the used absorbent article, and decomposes the highly water-absorbent resin in the used absorbent article. Then, from the solubilization step of obtaining the highly water-absorbent resin decomposition product solubilized in water and the aqueous solution containing the decomposed high water-absorbent resin after the solubilization step, the aqueous solution containing the highly water-absorbent resin decomposition product and the aqueous solution thereof. After the separation step of separating the members other than the members and the separation step, an inorganic flocculant is added to the aqueous solution containing the highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product. Including the step, the highly water-absorbent resin contains a polyacrylic acid (salt) -based water-absorbent resin as a main component, and in the precipitation recovery step, the inorganic aggregate in an aqueous solution containing the highly water-absorbent resin decomposition product. The pH of the aqueous solution after adding the agent is in the range of 2.5 to 9, and the amount of the inorganic flocculant added is 30 to 400 with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product. It is a recovery method that is mass%.
 本発明の一態様によれば、使用済みの吸収性物品から、パルプ、不織布、接着剤等の部材を回収した後の高吸水性樹脂分解物を含む水溶液から高吸水性樹脂分解物を効率よく回収できるという効果を奏する。 According to one aspect of the present invention, a highly water-absorbent resin decomposition product can be efficiently obtained from an aqueous solution containing a highly water-absorbent resin decomposition product after collecting members such as pulp, non-woven fabric, and adhesive from a used absorbent article. It has the effect of being able to be collected.
 以下、本発明の実施の形態に関して詳細に説明する。但し、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。なお、本明細書においては特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、「~酸(塩)」は「~酸および/またはその塩」、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」をそれぞれ意味する。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this, and various modifications can be made within the range described, and the present invention also relates to an embodiment obtained by appropriately combining the technical means disclosed in each of the different embodiments. Included in the technical scope of. Unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more and B or less". Further, "-acid (salt)" means "-acid and / or a salt thereof", and "(meth) acrylic" means "acrylic and / or methacryl", respectively.
 また、高吸水性樹脂の質量は、特に記載のない限り、固形分に換算した数値を表す。 Unless otherwise specified, the mass of the highly water-absorbent resin represents a value converted to solid content.
 本発明の一実施形態に係る回収方法は、使用済みの吸収性物品から高吸水性樹脂を回収する方法である。 The recovery method according to the embodiment of the present invention is a method of recovering a highly water-absorbent resin from a used absorbent article.
 本明細書において、高吸水性樹脂とは、水膨潤性水不溶性の高分子ゲル化剤であって、特に限定されないものの、10~1000倍の吸水倍率を有する慣用の高吸水性樹脂を指す。高吸水性樹脂は、例えば、水溶液を吸収するための吸収性物品に使用された高吸水性樹脂であってもよい。また、高吸水性樹脂の製造装置内に付着した高吸水性樹脂等の、廃棄処理を行う必要がある高吸水性樹脂であってもよい。また、高吸水性樹脂には、水溶液を吸収した後の膨潤ゲルも含まれる。本発明の一実施形態において、実際に人尿を吸収して膨潤した高吸水性樹脂は、後述する可溶化工程において、分解・可溶化され易い傾向がある。 In the present specification, the highly water-absorbent resin refers to a water-swellable water-insoluble polymer gelling agent, which is not particularly limited, but refers to a conventional highly water-absorbent resin having a water absorption ratio of 10 to 1000 times. The highly water-absorbent resin may be, for example, a highly water-absorbent resin used for an absorbent article for absorbing an aqueous solution. Further, it may be a highly water-absorbent resin that needs to be disposed of, such as a highly water-absorbent resin adhering to the production apparatus of the highly water-absorbent resin. The highly water-absorbent resin also includes a swelling gel after absorbing the aqueous solution. In one embodiment of the present invention, the highly water-absorbent resin that actually absorbs and swells human urine tends to be easily decomposed and solubilized in the solubilization step described later.
 本発明の一実施形態において、「使用済みの吸収性物品」は、使用後の吸収性物品に含まれる、被吸収液を吸収した吸水性樹脂およびパルプ、不織布、接着剤等であり得る。 In one embodiment of the present invention, the "used absorbent article" may be a water-absorbent resin and pulp, a non-woven fabric, an adhesive, etc. that have absorbed the liquid to be absorbed, which are contained in the absorbent article after use.
 本発明の一実施形態において、「吸収性物品」は、吸水用途に用いられる物品である。より具体的には、「吸収性物品」とは、例えば、高吸水性樹脂および繊維状物質を含む吸収体を含む吸収性物品である。「吸収性物品」は、さらに、通液性を有する表面シート、および液不透過性を有する背面シートを備える吸収性物品であってもよい。前記吸収体は、高吸水性樹脂と繊維状物質とをブレンドするか、または、高吸水性樹脂を繊維状物質でサンドイッチし、フィルム状、筒状、シート状等に成型することにより好適に製造される。前記繊維状物質としては、親水性繊維(例えば、パルプ、コットンリンター、架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等)が挙げられる。 In one embodiment of the present invention, the "absorbent article" is an article used for water absorption. More specifically, the "absorbent article" is, for example, an absorbent article containing an absorber containing a highly water-absorbent resin and a fibrous substance. The "absorbent article" may be an absorbent article further comprising a liquid-permeable front sheet and a liquid-impermeable back sheet. The absorber is suitably manufactured by blending a highly water-absorbent resin and a fibrous substance, or sandwiching the highly water-absorbent resin with a fibrous substance and molding it into a film shape, a tubular shape, a sheet shape, or the like. Will be done. Examples of the fibrous substance include hydrophilic fibers (for example, pulp, cotton linter, crosslinked cellulose fiber, rayon, cotton, wool, acetate, vinylon, etc.).
 本発明の一実施形態において、「使用後の吸収性物品」としては、これに限定されるものではないが、特に、尿および血液等の体液を吸収した使用後の衛生材料(例えば、紙おむつ、生理用ナプキン、成人向け失禁用製品(失禁パッド)、ペット用シート等の衛生材料(衛生用品))等が挙げられる。 In one embodiment of the present invention, the "absorbable article after use" is not limited to this, but in particular, a sanitary material after use that has absorbed body fluids such as urine and blood (for example, disposable diapers, paper diapers, etc.). Examples include sanitary napkins, adult incontinence products (incontinence pads), sanitary materials such as pet sheets (sanitary products), and the like.
 本発明の一実施形態において、「高吸水性樹脂」は、ポリアクリル酸(塩)系樹脂を主成分として含む。ここで、本明細書において、「主成分として」とは、高吸水性樹脂の全量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量以上、特に好ましくは95質量%以上であることをいう。 In one embodiment of the present invention, the "highly water-absorbent resin" contains a polyacrylic acid (salt) -based resin as a main component. Here, in the present specification, "as a main component" is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, particularly preferably 90% by mass or more, based on the total amount of the highly water-absorbent resin. Means that it is 95% by mass or more.
 本発明の一実施形態において、「ポリアクリル酸(塩)」とは、ポリアクリル酸および/またはその塩を指す。「ポリアクリル酸(塩)系樹脂」とは、主成分としてアクリル酸および/またはその塩(以下、「アクリル酸(塩)」と称することがある)を繰り返し単位として含み、任意成分としてグラフト成分を含む架橋重合体を意味する。前記「主成分」とは、アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体(内部架橋剤を除く)全体に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量以上、特に好ましくは95質量%以上であることをいう。アクリル酸(塩)と併用され得る単量体としては、これに限定されるものではないが、例えば、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等のアニオン性不飽和単量体および/またはその塩;メルカプタン基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体;が挙げられる。 In one embodiment of the present invention, "polyacrylic acid (salt)" refers to polyacrylic acid and / or a salt thereof. The "polyacrylic acid (salt) -based resin" contains acrylic acid and / or a salt thereof (hereinafter, may be referred to as "acrylic acid (salt)") as a repeating unit as a main component, and a graft component as an optional component. Means a crosslinked polymer containing. The "main component" means that the amount (content) of acrylic acid (salt) used is preferably 50% by mass or more, more preferably 50% by mass or more, based on the entire monomer (excluding the internal cross-linking agent) used for polymerization. Is 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The monomer that can be used in combination with acrylic acid (salt) is not limited to this, and is, for example, (anhydrous) maleic acid, itaconic acid, siliceous acid, vinyl sulfonic acid, allyltoluene sulfonic acid, and vinyl. Monomer sulfonic acid, styrene sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, 2- (meth) acryloyl ethane sulfonic acid, 2- (meth) acryloyl propane sulfonic acid, 2-hydroxyethyl (meth) acryloyl Anionic unsaturated monomers such as phosphate and / or salts thereof; mercaptan group-containing unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; (meth) acrylamide, N-ethyl (meth) acrylamide, N , N-dimethyl (meth) acrylamide and other amide group-containing unsaturated monomers; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl Examples thereof include amino group-containing unsaturated monomers such as (meth) acrylamide.
 前記ポリアクリル酸(塩)系樹脂は、内部架橋されていることが好ましい。内部架橋に用いられる内部架橋剤としては、特に限定されるものではないが、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらの内部架橋剤は1種類を単独で用いてもよいし、2種類以上を併用してもよい。前記内部架橋剤の使用量は、これに限定されるものではないが、内部架橋剤を除く単量体に対して、好ましくは0.0001~5モル%である。当該範囲内の使用量とすることで、所望する吸水性能を有する吸水性樹脂が得られる。 The polyacrylic acid (salt) -based resin is preferably internally crosslinked. The internal cross-linking agent used for internal cross-linking is not particularly limited, but for example, N, N'-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (Meta) Acrylate, Trimethylol Propane Di (Meta) Acrylate, Trimethylol Propanetri (Meta) Acrylate, Glycerin Tri (Meta) Acrylate, Glycerin Acrylate Methacrylate, Ethylene Oxide Modified Trimethylol Propane Tri (Meta) Acrylate, Pentaerythritol Tetra (Meta) ) Acrylate, dipentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether , Ethylene glycol, polyethylene glycol, propylene glycol, glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, glycidyl (meth) acrylate and the like. One type of these internal cross-linking agents may be used alone, or two or more types may be used in combination. The amount of the internal cross-linking agent used is not limited to this, but is preferably 0.0001 to 5 mol% with respect to the monomer excluding the internal cross-linking agent. By setting the amount to be used within the above range, a water-absorbent resin having a desired water-absorbing performance can be obtained.
 前記ポリアクリル酸(塩)系樹脂にはポリアクリル酸の水溶性塩が含まれる。当該水溶性塩(中和塩)の主成分としては、好ましくは一価の塩、より好ましくはアルカリ金属塩またはアンモニウム塩、更に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩が含まれる。前記ポリアクリル酸(塩)系樹脂の中和率は、特に限定されるものではないが、好ましくは50mol%以上95mol%以下である。 The polyacrylic acid (salt) -based resin contains a water-soluble salt of polyacrylic acid. The main component of the water-soluble salt (neutralizing salt) is preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt, still more preferably an alkali metal salt, and particularly preferably a sodium salt. The neutralization rate of the polyacrylic acid (salt) -based resin is not particularly limited, but is preferably 50 mol% or more and 95 mol% or less.
 本発明の一実施形態において、前記高吸水性樹脂は、ポリアクリル酸(塩)系樹脂以外の樹脂を含んでいてもよい。ポリアクリル酸(塩)系樹脂以外の樹脂の例としては、ポリスルホン酸(塩)系樹脂、無水マレイン酸(塩)系樹脂、ポリアクリルアミド系樹脂、ポリビニルアルコール系樹脂、ポリエチレンオキシド系樹脂、ポリアスパラギン酸(塩)系樹脂、ポリグルタミン酸(塩)系樹脂、ポリアルギン酸(塩)系樹脂、デンプン系樹脂、セルロース系樹脂、(メタ)アクリル酸塩架橋重合体、(メタ)アクリル酸エステル-酢酸ビニル共重合体のケン化物架橋体、デンプン-アクリル酸塩グラフト重合体およびその架橋物等が挙げられる。 In one embodiment of the present invention, the highly water-absorbent resin may contain a resin other than the polyacrylic acid (salt) -based resin. Examples of resins other than polyacrylic acid (salt) -based resins include polysulfonic acid (salt) -based resins, maleic anhydride (salt) -based resins, polyacrylamide-based resins, polyvinyl alcohol-based resins, polyethylene oxide-based resins, and polyasparagins. Acid (salt) -based resin, polyglutamic acid (salt) -based resin, polyarginic acid (salt) -based resin, starch-based resin, cellulose-based resin, (meth) acrylate cross-linked polymer, (meth) acrylic acid ester-vinyl acetate Examples thereof include a saponified crosslinked product of a copolymer, a starch-acrylate graft polymer, and a crosslinked product thereof.
 また、本発明の一実施形態において、前記高吸水性樹脂は、表面架橋されていてもよい。 Further, in one embodiment of the present invention, the highly water-absorbent resin may be surface-crosslinked.
 本実施形態に係る回収方法は、可溶化工程と、分離工程と、沈殿回収工程とを含む。以下、各工程について説明する。 The recovery method according to the present embodiment includes a solubilization step, a separation step, and a precipitation recovery step. Hereinafter, each step will be described.
 <可溶化工程>
 可溶化工程では、使用済みの吸収性物品中の高吸水性樹脂を分解し、水に可溶化させた高吸水性樹脂分解物を得る。高吸水性樹脂の可溶化方法は、特に限定されるものではなく、どのような方法であってもよい。例えば、特開2019-131789号公報(特許文献1)、特許第3146053号、特許第3091251号、特開2017-128840号公報、特開2019-108639号公報、および特開2019-108640号公報等に記載されている。
<Solubilization process>
In the solubilization step, the highly water-absorbent resin in the used absorbent article is decomposed to obtain a highly water-absorbent resin decomposition product solubilized in water. The method for solubilizing the highly water-absorbent resin is not particularly limited, and any method may be used. For example, Japanese Patent Application Laid-Open No. 2019-131789 (Patent Document 1), Japanese Patent No. 3146053, Japanese Patent No. 3091251, Japanese Patent Application Laid-Open No. 2017-128840, Japanese Patent Application Laid-Open No. 2019-108639, Japanese Patent Application Laid-Open No. 2019-108640, etc. It is described in.
 特許文献1には、還元剤および遷移金属イオンを使用した高吸水性樹脂を分解して可溶化する方法が記載されている。特許第3146053号には、還元剤であるアスコルビン酸を使用した、pH4~7.5における高吸水性樹脂の分解および可溶化方法が記載されている。特許第3091251号には、酸化剤存在下で加熱処理することによる高吸水性樹脂の分解可溶化方法が記載されている。特開2017-128840号公報には、オゾン水に浸漬させることによる高吸水性樹脂の分解可溶化方法が記載されている。特開2019-108639号公報には、二酸化塩素を使用した、酸性下における高吸水性樹脂の分解および可溶化方法が記載されている。特開2019-108640号公報には、過酸を使用した高吸水性樹脂の分解および可溶化方法が記載されている。 Patent Document 1 describes a method of decomposing and solubilizing a highly water-absorbent resin using a reducing agent and a transition metal ion. Patent No. 3146053 describes a method for decomposing and solubilizing a highly water-absorbent resin at pH 4 to 7.5 using ascorbic acid as a reducing agent. Patent No. 3091251 describes a method for decomposing and solubilizing a highly water-absorbent resin by heat treatment in the presence of an oxidizing agent. Japanese Unexamined Patent Publication No. 2017-128840 describes a method for decomposing and solubilizing a highly water-absorbent resin by immersing it in ozone water. Japanese Unexamined Patent Publication No. 2019-108639 describes a method for decomposing and solubilizing a highly water-absorbent resin under acidic conditions using chlorine dioxide. Japanese Unexamined Patent Publication No. 2019-108640 describes a method for decomposing and solubilizing a highly water-absorbent resin using a peracid.
 使用済の吸収性物品に含まれる高吸水性樹脂の質量が不明な場合は、未使用の吸収性物品に含まれる高吸水性樹脂の質量および使用済の吸収性物品に含まれる高吸水性樹脂の吸水倍率の一般値を考慮すればよい。使用済の吸収性物品の総質量に対する高吸水性樹脂の含有量(固形分換算値)を3~9質量%と仮定して、可溶化工程を実施することができる。使用済の吸収性物品の使用状態により、実際の高吸水性樹脂含有量は大きく異なる可能性もあるが、実際の分解状況を確認しながら、当業者が適宜に分解条件を調整することができる。 If the mass of the highly absorbent resin contained in the used absorbent article is unknown, the mass of the highly absorbent resin contained in the unused absorbent article and the highly absorbent resin contained in the used absorbent article It is sufficient to consider the general value of the water absorption ratio of. The solubilization step can be carried out on the assumption that the content (solid content conversion value) of the highly water-absorbent resin with respect to the total mass of the used absorbent article is 3 to 9% by mass. The actual content of the highly water-absorbent resin may differ significantly depending on the usage conditions of the used absorbent article, but those skilled in the art can appropriately adjust the decomposition conditions while checking the actual decomposition status. ..
 <分離工程>
 分離工程では、可溶化工程後の分解した高吸水性樹脂を含む水溶液から、高吸水性樹脂分解物を含む水溶液とそれ以外の部材(高吸水性樹脂分解物以外の部材)とを分離する。分離した、高吸水性樹脂分解物を含む水溶液およびそれ以外の部材は回収して再利用することができる。高吸水性樹脂分解物を含む水溶液とそれ以外の部材とを分離する方法としては、特に限定されず、可溶性物質(高吸水性樹脂分解物)と不溶性物質(パルプ、不織布、接着剤、可溶化されなかった高吸水性樹脂)とを分離する慣用の固液分離手段、例えば、メッシュフィルター等によるろ過、遠心分離等が挙げられる。
<Separation process>
In the separation step, the aqueous solution containing the highly water-absorbent resin decomposition product and other members (members other than the highly water-absorbent resin decomposition product) are separated from the aqueous solution containing the decomposed high water-absorbent resin after the solubilization step. The separated aqueous solution containing the highly water-absorbent resin decomposition product and other members can be recovered and reused. The method for separating the aqueous solution containing the highly water-absorbent resin decomposition product and the other members is not particularly limited, and the soluble substance (high water-absorbent resin decomposition product) and the insoluble substance (pulp, non-woven fabric, adhesive, solubilization) are not particularly limited. Examples thereof include conventional solid-liquid separation means for separating the non-woven resin), such as filtration by a mesh filter and centrifugation.
 分離回収したそれ以外の部材は、必要に応じて洗浄、脱水、乾燥等を行った後に、例えばリサイクルパルプまたはリサイクルプラスチックとして、所望の形態に加工し、再利用することができる。 The other members separated and recovered can be washed, dehydrated, dried, etc. as necessary, and then processed into a desired form and reused, for example, as recycled pulp or recycled plastic.
 <沈殿回収工程>
 沈殿回収工程では、前記分離工程後に、高吸水性樹脂分解物を含む水溶液に無機系凝集剤を添加して、高吸水性樹脂分解物を沈殿および回収する。無機系添加剤を添加することによって、高吸水性樹脂分解物を低コストで沈殿および回収することができる。
<Precipitation recovery process>
In the precipitation recovery step, after the separation step, an inorganic flocculant is added to an aqueous solution containing a highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product. By adding an inorganic additive, a highly water-absorbent resin decomposition product can be precipitated and recovered at low cost.
 本工程において、前記高吸水性樹脂分解物を含む水溶液に前記無機系凝集剤を添加した後の水溶液のpHは2.5~9の範囲である。添加後の水溶液のpHの範囲が前記範囲内であると、無機系凝集剤を添加したときに高吸水性樹脂分解物が凝集し易くなり、高吸水性樹脂分解物の回収率も向上する。高吸水性樹脂分解物の回収率の向上等の点で、高吸水性樹脂分解物に前記無機系凝集剤を添加した後の水溶液のpHは、好ましくは3~9であり、より好ましくは3~7であり、さらに好ましくは3~5である。また、さらに後述する高分子凝集剤を添加する場合は、さらに高分子凝集剤を添加した後のpHを前記pHの範囲に制御することが好ましい。 In this step, the pH of the aqueous solution after adding the inorganic flocculant to the aqueous solution containing the highly water-absorbent resin decomposition product is in the range of 2.5 to 9. When the pH range of the aqueous solution after the addition is within the above range, the highly water-absorbent resin decomposition product is likely to aggregate when the inorganic flocculant is added, and the recovery rate of the highly water-absorbent resin decomposition product is also improved. The pH of the aqueous solution after adding the inorganic flocculant to the highly water-absorbent resin decomposition product is preferably 3 to 9, more preferably 3 in terms of improving the recovery rate of the highly water-absorbent resin decomposition product. It is ~ 7, and more preferably 3 ~ 5. Further, when a polymer flocculant described later is added, it is preferable to control the pH after further adding the polymer flocculant to the above pH range.
 前記水溶液のpHは、酸または塩基を添加することにより、調製することができる。使用できる酸としては、これに限定されるものではないが、例えば、塩酸、硫酸、硝酸、リン酸等の無機酸、酢酸、クエン酸等の有機酸を挙げることができる。使用できる塩基としては、これに限定されるものではないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等の無機塩基を挙げることができる。 The pH of the aqueous solution can be adjusted by adding an acid or a base. Examples of the acid that can be used include, but are not limited to, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid and citric acid. Examples of the bases that can be used include, but are not limited to, inorganic bases such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide.
 本沈殿回収工程で使用する無機系凝集剤の例としては、これに限定されるものではないが、鉄系またはアルミニウム系無機凝集剤等を好適に用いることができる。前記鉄系またはアルミニウム系無機凝集剤のより具体的な一例としては、硫酸バンド(硫酸アルミニウム)、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄およびこれらの2種類以上の混合物が挙げられる。なかでも、前記無機系凝集剤のより好ましい例は、硫酸バンド、ポリ塩化アルミニウム、またはこれらの組合せである。 The example of the inorganic flocculant used in the present precipitation recovery step is not limited to this, but an iron-based or aluminum-based inorganic flocculant or the like can be preferably used. More specific examples of the iron-based or aluminum-based inorganic flocculants include aluminum sulfate band (aluminum sulfate), polyaluminum chloride (PAC), aluminum chloride, ferric sulfate (polyiron), ferric chloride and Examples include a mixture of two or more of these. Among them, more preferable examples of the inorganic flocculant are aluminum sulfate band, polyaluminum chloride, or a combination thereof.
 沈殿回収工程における無機系凝集剤の添加量は、高吸水性樹脂分解物を含む水溶液の固形分に対して、30~400質量%である。無機系凝集剤の量が高吸水性樹脂分解物を含む水溶液の固形分に対して30質量%以上であると、高吸水性樹脂分解物が十分に沈殿し、高吸水性樹脂分解物の回収率も向上する。無機系凝集剤の量が400質量%以下であると、高吸水性樹脂分解物の凝集沈殿に関与しない無機系凝集剤が水溶液中に多く存在することが比較的少ないため、高吸水性樹脂分解物の回収率が高く、経済的にも好ましい。高吸水性樹脂分解物の回収率の向上等の点で、無機系凝集剤の添加量は、高吸水性樹脂分解物を含む水溶液の固形分に対して、好ましくは35~350質量%であり、より好ましくは40~300質量%であり、さらに好ましくは50~200質量%であり、特に好ましくは50~150質量%である。本発明の実施形態として、高吸水性樹脂分解物を含む水溶液の固形分に対して、50~200質量%の無機系凝集剤を添加した後の水溶液pHが2.5~7(より好ましくは、3~5)であることが好ましい。 The amount of the inorganic flocculant added in the precipitation recovery step is 30 to 400% by mass with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product. When the amount of the inorganic flocculant is 30% by mass or more with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product, the highly water-absorbent resin decomposition product is sufficiently precipitated and the highly water-absorbent resin decomposition product is recovered. The rate also improves. When the amount of the inorganic flocculant is 400% by mass or less, a large amount of the inorganic flocculant that does not participate in the coagulation / precipitation of the highly water-absorbent resin decomposition product is relatively rarely present in the aqueous solution, so that the highly water-absorbent resin decomposition The recovery rate of goods is high, which is economically preferable. The amount of the inorganic flocculant added is preferably 35 to 350% by mass with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product in terms of improving the recovery rate of the highly water-absorbent resin decomposition product. , More preferably 40 to 300% by mass, further preferably 50 to 200% by mass, and particularly preferably 50 to 150% by mass. As an embodiment of the present invention, the pH of the aqueous solution after adding 50 to 200% by mass of the inorganic flocculant to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product is 2.5 to 7 (more preferably). 3 to 5) is preferable.
 高吸水性樹脂分解物を含む水溶液に含まれる高吸水性樹脂分解物(前記の水溶液の固形分)の質量が不明な場合は、例えば、未使用吸収性物品に含まれる高吸水性樹脂の質量および使用吸収性物品中の高吸水性樹脂の吸水倍率の一般値を考慮すればよい。使用済吸収性物品の総質量に対する高吸水性樹脂の含有量(固形分換算値)を3~9質量%と仮定して、使用する無機系凝集剤の量を決定することができる。 When the mass of the highly absorbent resin decomposition product (solid content of the aqueous solution) contained in the aqueous solution containing the highly absorbent resin decomposition product is unknown, for example, the mass of the highly absorbent resin contained in the unused absorbent article. And the general value of the water absorption ratio of the highly water-absorbent resin in the absorbent article to be used may be taken into consideration. The amount of the inorganic flocculant to be used can be determined on the assumption that the content of the highly water-absorbent resin (solid content conversion value) with respect to the total mass of the used absorbent article is 3 to 9% by mass.
 本発明の一実施形態においては、本沈殿回収工程にて、前記無機系凝集剤に加えて、高分子凝集剤を添加することがより好ましい。高分子凝集剤を添加することにより、高吸水性樹脂分解物がより短時間で凝集し易くなる。前記高分子凝集剤の例としては、ノニオン性、アニオン性、カチオン性、および両性の高分子凝集剤が用いられる。これらの高分子凝集剤は単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。本実施形態においては、高吸水性樹脂がポリアクリル酸(塩)系吸水性樹脂を主成分として含んでいるため、前記高分子凝集剤は、カチオン性高分子凝集剤、両性高分子凝集剤、またはこれらの組合せであることがより好ましい。カチオン性高分子凝集剤または両性高分子凝集剤の好ましい重量平均分子量は、好ましくは50万~2000万であり、より好ましくは100万~1000万である。 In one embodiment of the present invention, it is more preferable to add a polymer flocculant in addition to the inorganic flocculant in the present precipitation recovery step. By adding the polymer flocculant, the highly water-absorbent resin decomposition product can be easily aggregated in a shorter time. Examples of the polymer flocculant include nonionic, anionic, cationic, and amphoteric polymer flocculants. These polymer flocculants may be used alone or in combination of two or more. In the present embodiment, since the highly water-absorbent resin contains a polyacrylic acid (salt) -based water-absorbent resin as a main component, the polymer flocculant is a cationic polymer flocculant, an amphoteric polymer flocculant, and the like. Alternatively, a combination thereof is more preferable. The preferred weight average molecular weight of the cationic polymer flocculant or the amphoteric polymer flocculant is preferably 500,000 to 20 million, more preferably 1 million to 10 million.
 前記カチオン性高分子凝集剤としては、カチオン性モノマーを必須成分として有するものであり、これに限定されるものではないが、カチオン性モノマーの共重合体またはカチオン性モノマーと(メタ)アクリルアミド等のノニオン性モノマーとの共重合体であり得る。前記カチオン性モノマーとしては、例えば、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートまたはこれらの中和塩、4級塩などが挙げられる。前記カチオン性モノマーは、1種類を単独で使用してもよいし、2種類以上を併用してもよい。 The cationic polymer flocculant has a cationic monomer as an essential component, and is not limited to the copolymer of the cationic monomer, or a copolymer of the cationic monomer and (meth) acrylamide and the like. It can be a copolymer with a nonionic monomer. Examples of the cationic monomer include dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, a neutralized salt thereof, and a quaternary salt. One type of the cationic monomer may be used alone, or two or more types may be used in combination.
 その他のカチオン性高分子凝集剤としては、例えば、ポリアミン縮合物、ジシアンジアミド・ホルマリン縮合物、ポリエチレンイミン、ポリビニルイミダリン、ポリビニルピリジン、ジアリルアミン塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩、ポリジメチルジアリルアンモニウム塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩・アクリルアミド共重合体、ポリジメチルジアリルアンモニウム塩・ジアリルアミン塩酸塩誘導体共重合体、アリルアミン塩重合体などが挙げられる。前記カチオン性高分子凝集剤は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。 Other cationic polymer flocculants include, for example, polyamine condensate, dicyandiamide / formalin condensate, polyethyleneimine, polyvinylimidazolin, polyvinylpyridine, diallylamine salt / sulfur dioxide copolymer, polydimethyldialylammonium salt, and polydimethyl. Examples thereof include a diallyl ammonium salt / sulfur dioxide copolymer, a polydimethyldiallyl ammonium salt / acrylamide copolymer, a polydimethyldialyl ammonium salt / diallylamine hydrochloride derivative copolymer, and an allylamine salt polymer. The cationic polymer flocculant may be used alone or in combination of two or more.
 前記両性高分子凝集剤は、1つの分子中にカチオン性基およびアニオン性基を有する高分子凝集剤である。前記カチオン性基としては、第3級アミン、その中和塩、4級塩等、アニオン性基としては、カルボキシル基、スルホン基またはこれらの塩等が挙げられる。特にカルボキシル基を有する両性高分子凝集剤が好ましい。また、これらのイオン性成分の他にノニオン性成分が含まれていてもよい。 The amphoteric polymer flocculant is a polymer flocculant having a cationic group and an anionic group in one molecule. Examples of the cationic group include a tertiary amine, a neutralized salt thereof, a quaternary salt and the like, and examples of the anionic group include a carboxyl group, a sulfone group or a salt thereof. In particular, an amphoteric polymer flocculant having a carboxyl group is preferable. In addition to these ionic components, a nonionic component may be contained.
 より具体的には、アニオン性のモノマー単位として、例えば、アクリル酸、メタクリル酸若しくはこれらのアルカリ金属塩等が挙げられる。カチオン性のモノマー単位としては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、アリルジメチルアミン若しくはこれらの中和塩、4級塩などが挙げられる。ノニオン性のモノマー単位としては、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等が挙げられる。 More specifically, examples of the anionic monomer unit include acrylic acid, methacrylic acid, and alkali metal salts thereof. Examples of the cationic monomer unit include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, allyldimethylamine or a neutralized salt thereof. Examples include quaternary salt. Examples of the nonionic monomer unit include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like.
 本発明の一実施形態においては、前記高分子凝集剤として、アニオン性高分子凝集剤を用いてもよい。前記アニオン性高分子凝集剤としては、これに限定されるものではないが、例えば、アクリルアミドとアクリル酸ナトリウムの共重合物、アクリルアミドと2-アクリルアミド-2-メチルプロパンスルホン酸の共重合物、アクリルアミドとアクリル酸ナトリウムと2-アクリルアミド-2-メチルプロパンスルホン酸の共重合物、ポリアクリル酸ナトリウム、ポリアクリルアミドの部分加水分解物等を挙げることができる。前記アニオン性高分子凝集剤は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。 In one embodiment of the present invention, an anionic polymer flocculant may be used as the polymer flocculant. The anionic polymer flocculant is not limited to this, for example, a copolymer of acrylamide and sodium acrylate, a copolymer of acrylamide and 2-acrylamide-2-methylpropanesulfonic acid, and acrylamide. And a copolymer of sodium acrylate and 2-acrylamide-2-methylpropanesulfonic acid, sodium polyacrylate, a partial hydrolyzate of polyacrylamide, and the like. The anionic polymer flocculant may be used alone or in combination of two or more.
 或いは、本発明の一実施形態においては、前記高分子凝集剤として、ノニオン性高分子凝集剤を用いてもよい。前記ノニオン性高分子凝集剤としてはポリアクリルアミド、アクリルアミドと他のノニオン性モノマーの共重合物等を挙げることができる。前記ノニオン性高分子凝集剤は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。前記アニオン性高分子凝集剤またはノニオン性高分子凝集剤の好ましい重量平均分子量は200万~2000万である。 Alternatively, in one embodiment of the present invention, a nonionic polymer flocculant may be used as the polymer flocculant. Examples of the nonionic polymer flocculant include polyacrylamide, a copolymer of acrylamide and another nonionic monomer, and the like. The nonionic polymer flocculant may be used alone or in combination of two or more. The preferred weight average molecular weight of the anionic polymer flocculant or the nonionic polymer flocculant is 2 to 20 million.
 高吸水性樹脂分解物の凝集し易さの点で、沈殿回収工程における前記高分子凝集剤の添加量は、高吸水性樹脂分解物を含む水溶液の固形分に対して、好ましくは0.01~200質量%であり、より好ましくは0.05~150質量%であり、さらに好ましくは0.1~100質量%である。前記高分子凝集剤の量が0.01質量%以上であると、高吸水性樹脂分解物が短時間で沈殿し、高吸水性樹脂分解物の回収率が向上するため好ましい。前記高分子凝集剤の量が200質量%以下であると、高吸水性樹脂分解物の凝集沈殿に関与しない前記高分子凝集剤が水溶液中に多く存在することがないため、高吸水性樹脂分解物の回収率が向上する。 In terms of the ease of aggregation of the highly water-absorbent resin decomposition product, the amount of the polymer flocculant added in the precipitation recovery step is preferably 0.01 with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product. It is about 200% by mass, more preferably 0.05 to 150% by mass, and further preferably 0.1 to 100% by mass. When the amount of the polymer flocculant is 0.01% by mass or more, the highly water-absorbent resin decomposition product precipitates in a short time, and the recovery rate of the highly water-absorbent resin decomposition product is improved, which is preferable. When the amount of the polymer flocculant is 200% by mass or less, the polymer flocculant that does not participate in the coagulation / precipitation of the highly water-absorbent resin decomposition product does not exist in a large amount in the aqueous solution, so that the highly water-absorbent resin decomposition The recovery rate of goods is improved.
 本発明の一実施形態において、高吸水性樹脂分解物を含む水溶液中の、高吸水性樹脂分解物の濃度、即ち高吸水性樹脂分解物を含む水溶液の固形分濃度は、好ましくは0.01~10質量%であり、より好ましくは0.05~5質量%である。高吸水性樹脂分解物を含む水溶液の固形分濃度が0.01質量%以上であれば、前記無機系凝集剤により高吸水性樹脂分解物を好適に凝集させることができるため好ましく、10質量%以下であれば高吸水性樹脂分解物の凝集を短時間化できるため好ましい。前記水溶液中の高吸水性樹脂分解物の固形分濃度(質量%)は、全水溶液を130℃のオーブンで2時間乾燥させることで決定できる。 In one embodiment of the present invention, the concentration of the highly water-absorbent resin decomposition product in the aqueous solution containing the highly water-absorbent resin decomposition product, that is, the solid content concentration of the aqueous solution containing the highly water-absorbent resin decomposition product is preferably 0.01. It is about 10% by mass, more preferably 0.05 to 5% by mass. When the solid content concentration of the aqueous solution containing the highly water-absorbent resin decomposition product is 0.01% by mass or more, the highly water-absorbent resin decomposition product can be suitably aggregated by the inorganic flocculant, which is preferably 10% by mass. The following is preferable because the aggregation of the highly water-absorbent resin decomposition product can be shortened. The solid content concentration (mass%) of the highly water-absorbent resin decomposition product in the aqueous solution can be determined by drying the entire aqueous solution in an oven at 130 ° C. for 2 hours.
 本発明の一実施形態において、前記無機系添加剤を添加後撹拌することがより好ましい。これにより、高吸水性樹脂分解物をより短時間で沈殿および回収することができる。撹拌の速度(回転数)および撹拌時間は特に限定されるものではないが、高吸水性樹脂分解物の回収率の向上の点で、撹拌速度(回転数)を段階的に下げることがより好ましい。例えば、無機系添加剤を、高吸水性樹脂分解物を含む水溶液に添加後、一定回転数で撹拌後(第1段階)、第1段階の回転数よりも回転数を下げて撹拌し(第2段階)、第2段階後に無撹拌で静置する(第3段階)ことが好ましい。 In one embodiment of the present invention, it is more preferable to add the inorganic additive and then stir. As a result, the highly water-absorbent resin decomposition product can be precipitated and recovered in a shorter time. The stirring speed (rotation speed) and stirring time are not particularly limited, but it is more preferable to gradually reduce the stirring speed (rotation speed) in terms of improving the recovery rate of the highly water-absorbent resin decomposition product. .. For example, an inorganic additive is added to an aqueous solution containing a highly water-absorbent resin decomposition product, stirred at a constant rotation speed (first stage), and then stirred at a lower rotation speed than the first stage rotation speed (first stage). (2 steps), and after the 2nd step, it is preferably allowed to stand without stirring (3rd step).
 回収した高吸水性樹脂分解物は、脱水および乾燥等を行うことにより、例えば固形燃料または土壌改質材として、所望の形態に加工し、再利用することができる。 The recovered highly water-absorbent resin decomposition product can be processed into a desired form and reused, for example, as a solid fuel or a soil modifier by dehydrating and drying.
 〔まとめ〕
 本発明の一実施形態は、以下の〔1〕~〔3〕の態様が含まれる。
〔1〕使用済みの吸収性物品から高吸水性樹脂を回収する回収方法であって、前記使用済みの吸収性物品中の前記高吸水性樹脂を分解し、水に可溶化させた高吸水性樹脂分解物を得る可溶化工程と、前記可溶化工程後の分解した高吸水性樹脂を含む水溶液から、前記高吸水性樹脂分解物を含む水溶液とそれ以外の部材とを分離する分離工程と、前記分離工程後に、前記高吸水性樹脂分解物を含む水溶液に無機系凝集剤を添加して、前記高吸水性樹脂分解物を沈殿および回収する沈殿回収工程と、を含み、前記高吸水性樹脂が、ポリアクリル酸(塩)系吸水性樹脂を主成分として含み、前記沈殿回収工程において、前記高吸水性樹脂分解物を含む水溶液に前記無機系凝集剤を添加した後の水溶液のpHが2.5~9の範囲であり、前記無機系凝集剤の添加量が、前記高吸水性樹脂分解物を含む水溶液の固形分に対して、30~400質量%である、回収方法。
〔2〕前記沈殿回収工程において、高分子凝集剤をさらに前記水溶液に添加する、〔1〕に記載の回収方法。
〔3〕前記高分子凝集剤がカチオン性凝集剤または両性凝集剤である、〔2〕に記載の回収方法。
〔summary〕
One embodiment of the present invention includes the following aspects [1] to [3].
[1] A recovery method for recovering a highly water-absorbent resin from a used absorbent article, wherein the highly water-absorbent resin in the used absorbent article is decomposed and solubilized in water. A solubilization step for obtaining a resin decomposition product, and a separation step for separating the aqueous solution containing the highly water-absorbent resin decomposition product and other members from the aqueous solution containing the decomposed high water-absorbent resin after the solubilization step. After the separation step, the highly water-absorbent resin comprises a precipitation recovery step of adding an inorganic flocculant to an aqueous solution containing the highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product. However, the pH of the aqueous solution after adding the inorganic flocculant to the aqueous solution containing the polyacrylic acid (salt) -based water-absorbent resin as the main component and containing the highly water-absorbent resin decomposition product in the precipitation recovery step is 2. A recovery method in which the amount of the inorganic flocculant added is in the range of 5 to 9 and is 30 to 400% by mass with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product.
[2] The recovery method according to [1], wherein a polymer flocculant is further added to the aqueous solution in the precipitation recovery step.
[3] The recovery method according to [2], wherein the polymer flocculant is a cationic flocculant or an amphoteric flocculant.
 以下に示す実施例および比較例に従って本発明をより具体的に説明するが、本発明はこれらに限定解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれることとする。 The present invention will be described in more detail with reference to Examples and Comparative Examples shown below, but the present invention is not limited to these, and is obtained by appropriately combining the technical means disclosed in each Example. Examples are also included in the scope of the present invention.
 (参考例1)高吸水性樹脂(1)の製造方法
 アクリル酸ナトリウム(中和率71モル%)の38重量%水溶液5500部に、ポリエチレングリコールジアクリレート(n=9)8.1部を溶解させて反応液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに、前記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸アンモニウム2.4部およびL-アスコルビン酸0.12部を添加したところ、凡そ1分後に重合が開始した。そして、20~95℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。
(Reference Example 1) Production method of highly water-absorbent resin (1) 8.1 parts of polyethylene glycol diacrylate (n = 9) is dissolved in 5500 parts of a 38 wt% aqueous solution of sodium acrylate (neutralization rate 71 mol%). The reaction solution was prepared. Next, the reaction solution was degassed in a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a stainless steel double-armed kneader with a jacket having two sigma-type blades with openable and closable lids, and the system was replaced with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, 2.4 parts of ammonium persulfate and 0.12 parts of L-ascorbic acid were added while stirring the reaction solution, and the polymerization started after about 1 minute. Then, the polymerization was carried out at 20 to 95 ° C., and 60 minutes after the start of the polymerization, the hydrogel polymer was taken out.
 得られた含水ゲル状重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュの金網上に広げ、150℃で100分間熱風乾燥した。次いで乾燥物を、振動ミルを用いて粉砕し、さらに目開き850μmの篩を通過し106μmの篩上に残る、平均粒径が400μmの不定形破砕状の吸水性ポリマー前駆体を得た。 The obtained hydrogel polymer was subdivided into a diameter of about 5 mm. The subdivided hydrogel polymer was spread on a 50-mesh wire mesh and dried with hot air at 150 ° C. for 100 minutes. The dried product was then pulverized using a vibration mill to obtain an amorphous crushed water-absorbing polymer precursor having an average particle size of 400 μm, which was further passed through a sieve having a mesh size of 850 μm and remained on a sieve having an average particle size of 400 μm.
 得られた吸水性ポリマー前駆体100重量部に、エチレングリコールジグリシジルエーテル0.04重量部と、プロピレングリコール0.9重量部、水3.0重量部とからなる表面架橋剤組成液を混合した。前記の混合物を210℃で40分間加熱処理することにより、高吸水性樹脂(1)を得た。高吸水性樹脂(1)の平均粒径は400μm、水可溶成分量は9%であった。 A surface cross-linking agent composition liquid consisting of 0.04 part by weight of ethylene glycol diglycidyl ether, 0.9 part by weight of propylene glycol, and 3.0 parts by weight of water was mixed with 100 parts by weight of the obtained water-absorbent polymer precursor. .. The highly water-absorbent resin (1) was obtained by heat-treating the mixture at 210 ° C. for 40 minutes. The average particle size of the highly water-absorbent resin (1) was 400 μm, and the amount of water-soluble components was 9%.
 (参考例2)高吸水性樹脂(1)の分解
 使用済みの吸収性物品中に含まれる高吸水性樹脂を分解させるモデルとして、以下の操作を行った。
(Reference Example 2) Decomposition of Highly Absorbent Resin (1) The following operation was performed as a model for decomposing the highly absorbent resin contained in the used absorbent article.
 ビーカーに、高吸水性樹脂(1)2.0g、および0.9質量%塩化ナトリウム水溶液40gを入れ、1時間以上放置した(吸水倍率20倍)。次に脱イオン水360g(塩化ナトリウム水溶液と合わせて、吸水性樹脂に対して200倍)を加え、スターラーで撹拌しながら50℃に加熱した。 2.0 g of highly water-absorbent resin (1) and 40 g of 0.9 mass% sodium chloride aqueous solution were placed in a beaker and left for 1 hour or more (water absorption ratio 20 times). Next, 360 g of deionized water (combined with an aqueous sodium chloride solution, 200 times the water-absorbent resin) was added, and the mixture was heated to 50 ° C. with stirring with a stirrer.
 続いて、30質量%過酸化水素水溶液0.29g、硫酸鉄(II)7水和物0.010g、L-アスコルビン酸0.20gを添加し分解を開始した。90分後、水溶液を100メッシュの金網でろ過し、高吸水性樹脂分解物(1)を含む水溶液(以下、「高吸水性樹脂分解物(1)水溶液」と略記する場合がある)を得た。高吸水性樹脂分解物(1)を含む水溶液の固形分濃度は0.50質量%、重量平均分子量は105,000であった。ろ過した金網の上に残った不溶物を脱イオン水で十分に洗浄した。次に、金網と共に前記不溶物を180℃のオーブンで2時間乾燥させ、下記式に従って高吸水性樹脂の分解率を求めたところ99.2%であった。 Subsequently, 0.29 g of a 30 mass% hydrogen peroxide aqueous solution, 0.010 g of iron (II) sulfate heptahydrate, and 0.20 g of L-ascorbic acid were added to start decomposition. After 90 minutes, the aqueous solution is filtered through a 100-mesh wire mesh to obtain an aqueous solution containing the highly water-absorbent resin decomposition product (1) (hereinafter, may be abbreviated as "highly water-absorbent resin decomposition product (1) aqueous solution"). rice field. The solid content concentration of the aqueous solution containing the highly water-absorbent resin decomposition product (1) was 0.50% by mass, and the weight average molecular weight was 105,000. The insoluble matter remaining on the filtered wire mesh was thoroughly washed with deionized water. Next, the insoluble matter was dried together with the wire mesh in an oven at 180 ° C. for 2 hours, and the decomposition rate of the highly water-absorbent resin was determined according to the following formula and found to be 99.2%.
 高吸水性樹脂の分解率(%)=[1-{(金網+乾燥後の不溶物の質量)-(金網の質量)}/(分解前の高吸水性樹脂の質量)]×100。 Decomposition rate of high water-absorbent resin (%) = [1-{(mass of wire mesh + insoluble matter after drying)-(mass of wire mesh)} / (mass of high water-absorbent resin before decomposition)] x 100.
 なお、実際には、使用済みの吸収性物品中に含まれる高吸水性樹脂を分解した後、高吸水性樹脂分解物を含む水溶液とそれ以外の部材とを分離する分離工程が含まれる。その場合、下記の式に従って高吸水性樹脂の分解率を求める。
 高吸水性樹脂の分解率(%)=((高吸水性樹脂分解物を含む水溶液の質量)×(該水溶液中に含まれる高吸水性樹脂分解物の固形分濃度〔質量%〕/100))/(分解前の使用済みの吸収性物品に含まれる高吸水性樹脂(固形分)の質量)×100。
 なお、分解前の使用済みの吸収性物品中に含まれる高吸水性樹脂(固形分)の質量は、下記の式で計算できる。
 分解前の使用済みの吸収性物品に含まれる高吸水性樹脂(固形分)の質量=(分解前の使用済みの吸収性物品の総質量)/(1枚当たりの分解前の使用済みの吸収性物品の質量)×(1枚当たりの未使用の吸収性物品に含まれる高吸水性樹脂の質量)
 もしくは、使用済みの吸収性物品の総質量に対する高吸水性樹脂の含有量(固形分換算値)を3~9質量%と仮定して、分解前の使用済みの吸収性物品に含まれる高吸水性樹脂(固形分)の質量を決定することができる。
In reality, a separation step of decomposing the highly water-absorbent resin contained in the used absorbent article and then separating the aqueous solution containing the highly water-absorbent resin decomposition product from the other members is included. In that case, the decomposition rate of the highly water-absorbent resin is determined according to the following formula.
Decomposition rate of high water-absorbent resin (%) = ((mass of aqueous solution containing high water-absorbent resin decomposition product) × (solid content concentration of high water-absorbent resin decomposition product contained in the aqueous solution [mass%] / 100) ) / (Mass of highly water-absorbent resin (solid content) contained in the used absorbent article before decomposition) × 100.
The mass of the highly water-absorbent resin (solid content) contained in the used absorbent article before decomposition can be calculated by the following formula.
Mass of highly absorbent resin (solid content) contained in the used absorbent article before decomposition = (total mass of used absorbent article before decomposition) / (used absorption before decomposition per sheet) Mass of sex article) x (mass of highly absorbent resin contained in unused absorbent article per sheet)
Alternatively, assuming that the content of the highly water-absorbent resin (solid content conversion value) with respect to the total mass of the used absorbent article is 3 to 9% by mass, the high water absorption contained in the used absorbent article before decomposition The mass of the sex resin (solid content) can be determined.
 [評価項目]
 <ポリマー凝集物の凝集状態>
 250mLガラスビーカー(内径70mm)に、高吸水性樹脂分解物を含む水溶液100mLを加え、室温(25℃)で長さ40mmの攪拌子を用いてマグネチックススターラーにて300rpmで撹拌しながら、各種凝集剤を添加し300rpmで2分間攪拌を継続する。異なる凝集剤を併用する場合は、添加後さらに300rpmで2分間撹拌を継続する。続いて、回転数を30rpmに落として10分間撹拌し、最後に撹拌を停止して10分間静置する。この状態におけるポリマー(高吸水性樹脂分解物)の凝集状態を調べた。
◎ 凝集物が、水溶液体積の50体積%以下まで凝集沈降しており、上澄み液も透明度が高い。
○ 凝集物の凝集沈降が認められる。
△ 凝集物の生成は認められるが、凝集沈降はほとんどない。
× 凝集物の生成が認められない。
[Evaluation item]
<Agglutination state of polymer agglomerates>
To a 250 mL glass beaker (inner diameter 70 mm), add 100 mL of an aqueous solution containing a highly water-absorbent resin decomposition product, and stir at 300 rpm with a magnetic stirrer using a stirrer having a length of 40 mm at room temperature (25 ° C.) to aggregate various types. Add the agent and continue stirring at 300 rpm for 2 minutes. When different coagulants are used in combination, stirring is continued at 300 rpm for 2 minutes after the addition. Subsequently, the rotation speed is reduced to 30 rpm and the mixture is stirred for 10 minutes, and finally the stirring is stopped and the mixture is allowed to stand for 10 minutes. The agglutinated state of the polymer (highly water-absorbent resin decomposition product) in this state was investigated.
◎ Aggregates are aggregated and settled to 50% by volume or less of the volume of the aqueous solution, and the supernatant is also highly transparent.
○ Aggregation sedimentation of aggregates is observed.
△ Agglutination is observed, but there is almost no agglutination sedimentation.
× No agglutination is observed.
 <ポリマー凝集物の回収率>
 ポリマー凝集物の凝集状態を確認後、水溶液を遠沈管に移し、遠心分離機(300G)で室温(25℃)において30分処理することで、凝集物を沈降させた。遠沈管から回収した上澄み液を130℃のオーブンで2時間乾燥させて固形分濃度を測定し、下記式からポリマー凝集物(高吸水性樹脂分解物と凝集剤との凝集物)の回収率を求めた。
ポリマー凝集物の回収率(%)=[1-遠心分離後の上澄み液の固形分濃度(質量%)/全水溶液中の高吸水性樹脂分解物および凝集剤の固形分濃度(質量%)]×100。
全水溶液中の高吸水性樹脂分解物および凝集剤の固形分濃度(質量%)は、全水溶液を130℃のオーブンで2時間乾燥させることで決定できる。
<Recovery rate of polymer aggregates>
After confirming the agglutinated state of the polymer agglomerates, the aqueous solution was transferred to a centrifuge tube and treated with a centrifuge (300 G) at room temperature (25 ° C.) for 30 minutes to settle the agglomerates. The supernatant collected from the centrifuge tube was dried in an oven at 130 ° C. for 2 hours to measure the solid content concentration, and the recovery rate of polymer agglomerates (aggregates of highly water-absorbent resin decomposition products and aggregating agents) was calculated from the following formula. I asked.
Recovery rate of polymer agglomerates (%) = [1-Concentration of solids in supernatant after centrifugation (% by mass) / Concentration of highly absorbent resin decomposition products in total aqueous solution (% by mass)] × 100.
The solid content concentration (mass%) of the highly water-absorbent resin decomposition product and the flocculant in the total aqueous solution can be determined by drying the total aqueous solution in an oven at 130 ° C. for 2 hours.
 <水溶液のpH>
 回収率測定用に上澄み液の極一部を採取した後、水溶液を30rpmで撹拌しながら室温(25℃)で、HORIBA社製ポータブル型pHメーターD-71を用いて水溶液のpHを測定した。
<pH of aqueous solution>
After collecting a small part of the supernatant for measuring the recovery rate, the pH of the aqueous solution was measured at room temperature (25 ° C.) while stirring the aqueous solution at 30 rpm using a portable pH meter D-71 manufactured by HORIBA.
 (実施例1)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液1.8gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 1)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 1.8 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例2)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 2)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例3)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 3)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例4)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液10.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 4)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 10.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例5)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液15.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 5)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 15.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例6)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤としてポリ塩化アルミニウム(浅田化学工業社製、PAC100W)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 6)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 2.5 g of a 10 mass% aqueous solution of polyaluminum chloride (manufactured by Asada Chemical Industry Co., Ltd., PAC100W) was added as an inorganic flocculant, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes using a magnetic stirrer. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例7)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤としてポリ塩化アルミニウム(浅田化学工業社製、PAC100W)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 7)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of polyaluminum chloride (manufactured by Asada Chemical Industry Co., Ltd., PAC100W) was added as an inorganic flocculant, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes using a magnetic stirrer. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例8)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)の代替品として、ポリアクリル酸ナトリウム(重量平均分子量430,000、中和率71モル%)の0.50質量%水溶液を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 8)
As a substitute for the highly water-absorbent resin decomposition product (1), 100 g of a 0.50 mass% aqueous solution of sodium polyacrylate (weight average molecular weight 430,000, neutralization rate 71 mol%) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例9)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、カチオン性高分子凝集剤であるDIAFLOC KM1200S(三菱ケミカル社製)の0.10質量%水溶液5.0gを添加し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 9)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 5.0 g of a 0.10 mass% aqueous solution of DIAFLOC KM1200S (manufactured by Mitsubishi Chemical Corporation), which is a cationic polymer flocculant, was added, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例10)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、両性高分子凝集剤であるDIAFLOC KA606A(三菱ケミカル社製)の0.10質量%水溶液5.0gを添加し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 10)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 5.0 g of a 0.10 mass% aqueous solution of DIAFLOC KA606A (manufactured by Mitsubishi Chemical Corporation), which is an amphoteric polymer flocculant, was added, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例11)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、カチオン性高分子凝集剤であるDIAFLOC KM1200S(三菱ケミカル社製)の0.10質量%水溶液5.0gを添加し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 11)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 5.0 g of a 0.10 mass% aqueous solution of DIAFLOC KM1200S (manufactured by Mitsubishi Chemical Corporation), which is a cationic polymer flocculant, was added, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例12)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、両性高分子凝集剤であるDIAFLOC KA606A(三菱ケミカル社製)の0.10質量%水溶液5.0gを添加し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 12)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 5.0 g of a 0.10 mass% aqueous solution of DIAFLOC KA606A (manufactured by Mitsubishi Chemical Corporation), which is an amphoteric polymer flocculant, was added, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例13)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、カチオン性高分子凝集剤であるDIAFLOC KM1200S(三菱ケミカル社製)の0.10質量%水溶液1.0gを添加し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 13)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1.0 g of a 0.10 mass% aqueous solution of DIAFLOC KM1200S (manufactured by Mitsubishi Chemical Corporation), which is a cationic polymer flocculant, was added, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例14)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を20g、および脱イオン水80gを添加して十分に撹拌した。引き続き、無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液1.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 14)
To a 250 mL glass beaker, 20 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) and 80 g of deionized water were added, and the mixture was sufficiently stirred. Subsequently, 1.0 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and a magnetic stirrer was used at 300 rpm. The mixture was stirred and mixed at the number of revolutions for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例15)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)10g、および脱イオン水90gを添加して十分に撹拌した。引き続き、無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液0.50gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 15)
To a 250 mL glass beaker, 10 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) and 90 g of deionized water were added and sufficiently stirred. Subsequently, 0.50 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and a magnetic stirrer was used at 300 rpm. The mixture was stirred and mixed at the number of revolutions for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例16)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH3.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 16)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 3.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例17)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH8.1とし、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 17)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 8.1, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例18)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH9.0とし、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 18)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 9.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例19)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH3.8に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 19)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 3.8, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例20)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH5.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 20)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 5.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例21)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH3.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 21)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 3.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例22)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH5.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 22)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 5.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例23)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH7.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 23)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 7.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例24)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH9.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 24)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 9.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (実施例25)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液1.8gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、続いて、1モル/L塩酸(関東化学社製)を加えてpH3.8に調整し、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 25)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 1.8 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 3.8, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring. , Polymer aggregates were formed.
 (実施例26)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH3.8に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物が形成された。
(Example 26)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 3.8, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally the mixture was allowed to stand for 10 minutes without stirring, and as a result, polymer aggregates were formed.
 (比較例1)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤を加えずにマグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置したが、ポリマー凝集物は全く形成されなかった。
(Comparative Example 1)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. The mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes using a magnetic stirrer without adding an inorganic flocculant. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring, but no polymer aggregates were formed.
 (比較例2)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液1.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置した結果、ポリマー凝集物は形成されたが、凝集沈降はほとんど見られなかった。
(Comparative Example 2)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 1.0 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring. As a result, polymer agglomerates were formed, but no agglomeration sedimentation was observed.
 (比較例3)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH10.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置したが、ポリマー凝集物は全く形成されなかった。
(Comparative Example 3)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 10.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring, but no polymer aggregates were formed.
 (比較例4)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液2.5gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH1.6に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置したが、ポリマー凝集物は全く形成されなかった。
(Comparative Example 4)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. Add 2.5 g of a 10% by mass aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) as an inorganic flocculant, and use a magnetic stirrer to rotate at 300 rpm. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 1.6, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring, but no polymer aggregates were formed.
 (比較例5)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L塩酸(関東化学社製)を加えてpH2.0に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置したが、ポリマー凝集物は全く形成されなかった。
(Comparative Example 5)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 2.0, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring, but no polymer aggregates were formed.
 (比較例6)
 250mLガラスビーカーに、高吸水性樹脂分解物(1)水溶液(固形分濃度0.50質量%)を100g入れた。無機系凝集剤として硫酸バンド(浅田化学工業社製、「工業用17%品」:硫酸アルミニウム水和物)の10質量%水溶液5.0gを添加し、マグネチックスターラーを用いて300rpmの回転数で2分間攪拌、混合した。続いて、1モル/L水酸化ナトリウム液(関東化学社製)を加えてpH10.3に調整し、300rpmの回転数で2分間撹拌、混合した。引き続き、回転数を30rpmに落として10分間撹拌し、最後に無撹拌で10分間静置したが、ポリマー凝集物は全く形成されなかった。
(Comparative Example 6)
100 g of a highly water-absorbent resin decomposition product (1) aqueous solution (solid content concentration 0.50% by mass) was placed in a 250 mL glass beaker. 5.0 g of a 10 mass% aqueous solution of aluminum sulfate band (manufactured by Asada Chemical Industry Co., Ltd., "Industrial 17% product": aluminum sulfate hydrate) was added as an inorganic flocculant, and the rotation speed was 300 rpm using a magnetic stirrer. Stirred and mixed for 2 minutes. Subsequently, 1 mol / L sodium hydroxide solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 10.3, and the mixture was stirred and mixed at a rotation speed of 300 rpm for 2 minutes. Subsequently, the rotation speed was reduced to 30 rpm, the mixture was stirred for 10 minutes, and finally allowed to stand for 10 minutes without stirring, but no polymer aggregates were formed.
 実施例1~26および比較例1~6について、高吸水性樹脂分解物の種類、重量平均分子量(Mw)および濃度、無機系凝集剤の種類(品名)および添加量、高分子凝集剤の種類(品名)および添加量、溶液のpH、ポリマー凝集物の凝集状態、ならびに、ポリマー凝集物の回収率を表1~3に示す。 For Examples 1 to 26 and Comparative Examples 1 to 6, the type of highly water-absorbent resin decomposition product, the weight average molecular weight (Mw) and concentration, the type (product name) and addition amount of the inorganic flocculant, and the type of polymer flocculant. Tables 1 to 3 show the (product name), the amount added, the pH of the solution, the state of aggregation of the polymer agglomerates, and the recovery rate of the polymer agglomerates.
 表1~3中、「PSA1」は、参考例2で得られた高吸水性樹脂分解物(1)を示す。「PSA2」は、ポリアクリル酸ナトリウム(Mw:430,000、中和率71モル%)である。重量平均分子量(Mw)は、高吸水性樹脂分解物の重量平均分子量である。高吸水性樹脂分解物の濃度は、高吸水性樹脂分解物水溶液中に含まれる高吸水性樹脂分解物の固形分濃度(質量%)を示す。無機系凝集剤および高分子凝集剤の添加量(質量%)は、高吸水性樹脂分解物水溶液中に含まれる高吸水性樹脂分解物の固形分に対する割合を示す。pHは、無機系凝集剤を添加した後の高吸水性樹脂分解物水溶液のpHを示す。実施例9~13のpHは、高分子凝集剤を添加した後の高吸水性樹脂分解物水溶液のpHを示す。 In Tables 1 to 3, "PSA1" indicates the highly water-absorbent resin decomposition product (1) obtained in Reference Example 2. "PSA2" is sodium polyacrylate (Mw: 430,000, neutralization rate 71 mol%). The weight average molecular weight (Mw) is the weight average molecular weight of the highly water-absorbent resin decomposition product. The concentration of the highly water-absorbent resin decomposition product indicates the solid content concentration (mass%) of the highly water-absorbent resin decomposition product contained in the aqueous solution of the highly water-absorbent resin decomposition product. The addition amount (mass%) of the inorganic flocculant and the polymer flocculant indicates the ratio of the highly water-absorbent resin decomposition product contained in the aqueous solution of the highly water-absorbent resin decomposition product to the solid content. The pH indicates the pH of the highly water-absorbent resin decomposition product aqueous solution after the addition of the inorganic flocculant. The pH of Examples 9 to 13 indicates the pH of the highly water-absorbent resin decomposition product aqueous solution after the addition of the polymer flocculant.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~8、14~26および比較例1~6の評価結果から、高吸水性樹脂分解物を含む適正なpH範囲である水溶液に対し、適正な量の無機系凝集剤を添加することにより、高吸水性樹脂分解物を効率よく沈殿回収できることが分かった。また実施例9~13の評価結果から、カチオン性高分子凝集剤または両性高分子凝集剤を無機系凝集剤と併用することにより、高吸水性樹脂分解物の沈殿凝集性が向上し、高吸水性樹脂分解物が取り扱いやすくなることも分かった。 From the evaluation results of Examples 1 to 8, 14 to 26 and Comparative Examples 1 to 6, an appropriate amount of the inorganic flocculant is added to the aqueous solution containing the highly water-absorbent resin decomposition product in an appropriate pH range. Therefore, it was found that the highly water-absorbent resin decomposition product can be efficiently precipitated and recovered. Further, from the evaluation results of Examples 9 to 13, by using the cationic polymer flocculant or the amphoteric polymer coagulant in combination with the inorganic flocculant, the precipitation cohesiveness of the highly water-absorbent resin decomposition product is improved and the water absorption is high. It was also found that the sex resin decomposition products became easier to handle.
 本発明に係る高吸水性樹脂を回収する回収方法は、使用済み吸収性物品から、パルプ、不織布、接着剤等の部材を回収した後の高吸水性樹脂分解物を含む水溶液から高吸水性樹脂分解物を効率よく回収することができるため、紙おむつ、生理用ナプキン、成人向け失禁用製品(失禁パッド)、ペット用シート等の衛生材料(衛生用品)をはじめとする吸収性物品およびその中間分解物を再利用するリサイクル分野等において好適に利用することができる。 The recovery method for recovering the highly water-absorbent resin according to the present invention is a highly water-absorbent resin from an aqueous solution containing a highly water-absorbent resin decomposition product after collecting members such as pulp, non-woven fabric, and adhesive from a used absorbent article. Since decomposition products can be efficiently recovered, absorbent articles such as paper diapers, sanitary napkins, adult incontinence products (incontinence pads), sanitary materials (sanitary products) such as pet sheets, and intermediate decomposition thereof. It can be suitably used in the recycling field where goods are reused.

Claims (3)

  1.  使用済みの吸収性物品から高吸水性樹脂を回収する回収方法であって、
     前記使用済みの吸収性物品中の前記高吸水性樹脂を分解し、水に可溶化させた高吸水性樹脂分解物を得る可溶化工程と、
     前記可溶化工程後の分解した高吸水性樹脂を含む水溶液から、前記高吸水性樹脂分解物を含む水溶液とそれ以外の部材とを分離する分離工程と、
     前記分離工程後に、前記高吸水性樹脂分解物を含む水溶液に無機系凝集剤を添加して、前記高吸水性樹脂分解物を沈殿および回収する沈殿回収工程と、を含み、
     前記高吸水性樹脂が、ポリアクリル酸(塩)系吸水性樹脂を主成分として含み、
     前記沈殿回収工程において、前記高吸水性樹脂分解物を含む水溶液に前記無機系凝集剤を添加した後の水溶液のpHが2.5~9の範囲であり、前記無機系凝集剤の添加量が、前記高吸水性樹脂分解物を含む水溶液の固形分に対して、30~400質量%である、回収方法。
    A recovery method for recovering highly water-absorbent resin from used absorbent articles.
    A solubilization step of decomposing the highly water-absorbent resin in the used absorbent article to obtain a highly water-absorbent resin decomposition product solubilized in water.
    A separation step of separating the aqueous solution containing the highly water-absorbent resin decomposition product and other members from the aqueous solution containing the decomposed high water-absorbent resin after the solubilization step.
    After the separation step, a precipitation recovery step of adding an inorganic flocculant to the aqueous solution containing the highly water-absorbent resin decomposition product to precipitate and recover the highly water-absorbent resin decomposition product is included.
    The highly water-absorbent resin contains a polyacrylic acid (salt) -based water-absorbent resin as a main component.
    In the precipitation recovery step, the pH of the aqueous solution after adding the inorganic flocculant to the aqueous solution containing the highly water-absorbent resin decomposition product is in the range of 2.5 to 9, and the amount of the inorganic flocculant added is in the range of 2.5 to 9. The recovery method, which is 30 to 400% by mass with respect to the solid content of the aqueous solution containing the highly water-absorbent resin decomposition product.
  2.  前記沈殿回収工程において、高分子凝集剤をさらに前記水溶液に添加する、請求項1に記載の回収方法。 The recovery method according to claim 1, wherein a polymer flocculant is further added to the aqueous solution in the precipitation recovery step.
  3.  前記高分子凝集剤がカチオン性凝集剤または両性凝集剤である、請求項2に記載の回収方法。 The recovery method according to claim 2, wherein the polymer flocculant is a cationic flocculant or an amphoteric flocculant.
PCT/JP2021/005152 2020-02-14 2021-02-12 Method for recovering highly water absorbent resin WO2021162071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500457A JP7299407B2 (en) 2020-02-14 2021-02-12 Method for recovering super absorbent polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023475 2020-02-14
JP2020023475 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021162071A1 true WO2021162071A1 (en) 2021-08-19

Family

ID=77293072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005152 WO2021162071A1 (en) 2020-02-14 2021-02-12 Method for recovering highly water absorbent resin

Country Status (2)

Country Link
JP (1) JP7299407B2 (en)
WO (1) WO2021162071A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131789A (en) * 2018-02-01 2019-08-08 株式会社日本触媒 Method for decomposing water-absorbing polymer, method for producing recycle pulp, and water-absorbing polymer decomposer kit
JP2020049398A (en) * 2018-09-25 2020-04-02 株式会社リブドゥコーポレーション Processing method of used sanitary articles
JP2020116569A (en) * 2019-01-21 2020-08-06 三洋化成工業株式会社 Sanitary article processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131789A (en) * 2018-02-01 2019-08-08 株式会社日本触媒 Method for decomposing water-absorbing polymer, method for producing recycle pulp, and water-absorbing polymer decomposer kit
JP2020049398A (en) * 2018-09-25 2020-04-02 株式会社リブドゥコーポレーション Processing method of used sanitary articles
JP2020116569A (en) * 2019-01-21 2020-08-06 三洋化成工業株式会社 Sanitary article processing method

Also Published As

Publication number Publication date
JPWO2021162071A1 (en) 2021-08-19
JP7299407B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP5693558B2 (en) Method for producing surface postcrosslinked water-absorbing polymer particles
JP6360153B2 (en) Method for producing polyacrylic acid (salt) water-absorbing resin
Duquette et al. Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels
JP5766186B2 (en) Method for producing water-absorbing polymer particles having a low tendency to solidify and a high absorption under pressure
JP6138056B2 (en) Process for producing water-absorbing polymer particles having a high swelling rate
JP6727301B2 (en) Method of manufacturing water absorbent
WO2007126002A1 (en) Process for production of water-absorbable resin
JP2008528740A (en) Water-soluble or water-swellable polymers, especially water-soluble or water-swellable copolymers consisting of acrylamide and at least one ionic comonomer with a low residual monomer content
TW200640954A (en)
JP2010520948A (en) Method for producing a rewet surface-crosslinked superabsorbent
WO2007116554A1 (en) Water-absorbing resin partilce agglomerates and process for produciton thereof
JPH0615574B2 (en) Method for producing water absorbent resin
JP2011527359A (en) Method for producing water-absorbing polymer particles
JP5490130B2 (en) Method for producing water-absorbing polymer particles
CN114245811A (en) Degradation of superabsorbent polymers via oxidative degradation
JP2009280668A (en) Method for producing porous absorbent resin particle
JP3259143B2 (en) Method for producing water absorbent resin
JPH02153903A (en) Production of highly hygroscopic resin
JPH07119246B2 (en) Method for producing water absorbent resin
JPH01292004A (en) Production of highly water-absorbable resin
WO2021162071A1 (en) Method for recovering highly water absorbent resin
JP2012514670A (en) Method for producing water-absorbing polymer particles for suppressing odor
JP2020116569A (en) Sanitary article processing method
KR20160031983A (en) Aminopolycarboxylic acids useful as processing aids in the manufacture of superabsorbents
TW201943777A (en) Permeable superabsorbent and process for production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754367

Country of ref document: EP

Kind code of ref document: A1