WO2021162070A1 - Method for producing monomer for nucleic acid production - Google Patents

Method for producing monomer for nucleic acid production Download PDF

Info

Publication number
WO2021162070A1
WO2021162070A1 PCT/JP2021/005147 JP2021005147W WO2021162070A1 WO 2021162070 A1 WO2021162070 A1 WO 2021162070A1 JP 2021005147 W JP2021005147 W JP 2021005147W WO 2021162070 A1 WO2021162070 A1 WO 2021162070A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
salt
formula
compound represented
alkali metal
Prior art date
Application number
PCT/JP2021/005147
Other languages
French (fr)
Japanese (ja)
Inventor
越本恭平
村上正徳
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021512597A priority Critical patent/JPWO2021162070A1/ja
Publication of WO2021162070A1 publication Critical patent/WO2021162070A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a monomer for producing nucleic acid.
  • Non-Patent Document 1 Examples of the method for synthesizing oligonucleic acid include a phosphoric acid triester method, an H-phosphonate method, and a phosphoramidite method, but the phosphoramidite method is most used as a general-purpose method (Non-Patent Document 1).
  • Patent Document 1 describes a method for producing a single-stranded nucleic acid molecule capable of suppressing the expression of a target gene, and is represented by the following formula (III') in Example A3 as a monomer used for the production. A method for producing a compound is described.
  • Patent Document 2 describes a method for producing a compound represented by the above formula (III'), which can produce a single-stranded nucleic acid molecule in a high yield.
  • An object of the present invention is to provide a method for producing a compound represented by the following formula (III) or a salt thereof, which can produce a high-purity oligonucleic acid.
  • R 1 and R 2 each independently represent a protecting group
  • R 3 and R 4 each independently represent a optionally substituted hydrocarbon group.
  • the present invention includes the following.
  • R 1 is synonymous with the above definition
  • R 2 represents a protecting group
  • R 3 and R 4 each independently represent a optionally substituted hydrocarbon group.
  • alkali metal salt alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone and alkali metal hydroxide , Alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkali earth metal hydroxide, and base selected from the group consisting of quaternary ammonium hydroxide.
  • the production method according to any one of [1] to [3] to be used.
  • the above-mentioned alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid is lithium 6-hydroxyhexanoate, sodium 6-hydroxyhexanoate, potassium 6-hydroxyhexanoate or 6-.
  • R 1 is a trityl group, 4-methoxytrityl group or 4,4′-dimethoxytrityl group
  • R 2 is a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group
  • R 3 is a group.
  • R 4 is an ethyl group or an isopropyl group, a process according to any one of [1] to [5].
  • the present invention provides a method for producing a compound represented by the formula (III) or a salt thereof.
  • the process of the manufacturing method is shown below. [In the formula, R 1 and R 2 each independently represent a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
  • Step 1 Amidation reaction
  • the compound represented by the formula (II) is a compound represented by the formula (I) or a salt thereof in the presence of a dehydration condensing agent, and an alkali metal salt, an alkaline earth metal salt or a quaternary ammonium salt of 6-hydroxyhexanoic acid. And can be obtained by reacting in a solvent.
  • R 1 represents a protecting group.
  • the compound represented by the formula (I) or a salt thereof may be not only a single stereoisomer but also a mixture of stereoisomers such as racemic (for example, a mixture of enantiomers).
  • a stereoisomer refers to a compound having the same chemical structure but different arrangement in three-dimensional space, for example, a conformer isomer, a rotational isomer, a metamutant, a mirror image isomer, a diastereomer, or the like. Can be mentioned.
  • the compound represented by the formula (I) or a salt thereof can be produced by a synthetic method known to those skilled in the art.
  • the compound represented by the formula (I') described later can be obtained by the method described in US2012 / 0035246.
  • the salt of the compound represented by the formula (I) is not particularly limited as long as it does not inhibit the amidation reaction, and is, for example, hydrochloride, bromate, iodate, perchlorate, carbonate, etc. Examples include trifluoromethanesulfonate, tetrafluoroborate or hexafluorophosphate.
  • R 1 represents a protecting group, which may be, for example, a functional group that converts a hydroxyl group into an inactive state, and a known protecting group for a hydroxyl group can be used.
  • a protecting group for the hydroxyl group for example, the description in the literature (Protective Groups in Organic Synthesis 4th Edition, by Greene et al., 2007, John Wiley & Sons, Inc.) can be incorporated.
  • R 1 is, for example, tert-butyldimethylsilyl group, bis (2-acetoxyethyloxy) methyl group, triisopropylsilyloxymethyl group, 1- (2-cyanoethoxy) ethyl group, 2-cyanoethoxymethyl group, 2 Examples include, but are not limited to, a cyanoethyl group, a trilsulfonylethoxymethyl group, a trityl group, a 4-methoxytrityl group or a 4,4'-dimethoxytrityl group.
  • R 1 is preferably a trityl group, a 4-methoxytrityl group or a 4,4'-dimethoxytrityl group.
  • the compound represented by the formula (I) or a salt thereof may be a compound represented by the following formula (I') or a salt thereof.
  • the compound represented by the formula (I') or a salt thereof may be an optically active substance represented by the following formula (I'-1) or the following formula (I'-2) or a salt thereof.
  • the compound represented by the formula (II) may be a compound represented by the following formula (II').
  • the compound represented by the formula (II') may be an optically active substance represented by the following formula (II'-1) or the following formula (II'-2).
  • the alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid is an alkali metal salt of 6-hydroxyhexanoic acid, alkaline earth metal salt of 6-hydroxyhexanoic acid or 6-hydroxyhexanoic acid. It means the quaternary ammonium salt of.
  • the alkali metal salt of 6-hydroxyhexanoic acid, the alkaline earth metal salt of 6-hydroxyhexanoic acid, or the quaternary ammonium salt of 6-hydroxyhexanoic acid are collectively referred to as 6-hydroxyhexanoate. In some cases.
  • 6-hydroxyhexanoate a commercially available product is used, or 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate. , Alkali metal alkoxide, alkaline earth metal hydroxide and quaternary ammonium hydroxide can be obtained by reacting with a base selected from the group in an aqueous solvent.
  • 6-hydroxycaproic acid, 6-hydroxycaproic acid ester or ⁇ -caprolactone commercially available products can be used.
  • the 6-hydroxyhexanoic acid ester is not limited to the following, and for example, 6-hydroxyhexanoic acid alkyl ester, 6-hydroxyhexanoic acid aryl ester, 6-hydroxyhexanoic acid alkylaryl ester, 6-hydroxyhexanoic acid arylalkyl ester, Examples thereof include 6-hydroxyhexanoic acid cycloalkyl ester, 6-hydroxyhexanoic acid alkoxyalkyl ester, 6-hydroxyhexanoic acid silyloxyalkyl ester, 6-hydroxyhexanoic acid carboxylalkyl ester and 6-hydroxyhexanoic acid silyl ester.
  • methyl 6-hydroxyhexanoate ethyl 6-hydroxyhexanoate, benzyl 6-hydroxyhexanoate, 6-hydroxyhexanoic acid (5-carboxypentyl), phenyl 6-hydroxyhexanoate and the like can be mentioned.
  • alkali metal salt of 6-hydroxyhexanoic acid examples include lithium 6-hydroxyhexanoate, sodium 6-hydroxyhexanoate, potassium 6-hydroxyhexanoate, rubidium 6-hydroxyhexanoate, cesium 6-hydroxyhexanoate or 6-hydroxy.
  • Francium hexanoate can be mentioned.
  • alkaline earth metal salt of 6-hydroxyhexanoic acid examples include magnesium 6-hydroxyhexanoate, calcium 6-hydroxyhexanoate, strontium 6-hydroxyhexanoate, barium 6-hydroxyhexanoate or radium 6-hydroxyhexanoate. Be done.
  • the quaternary ammonium salt of 6-hydroxyhexanoic acid is not limited to the following, and includes, for example, benzyltrimethylammonium 6-hydroxyhexanoate, benzyldimethyltetradecylammonium 6-hydroxyhexanoate, benzyltriethylammonium 6-hydroxyhexanoate, and the like.
  • Benzyltributylammonium 6-hydroxyhexanoate triethylmethylammonium 6-hydroxyhexanoate, tributylmethylammonium 6-hydroxyhexanoate, tetramethylammonium 6-hydroxyhexanoate, tetraethylammonium 6-hydroxyhexanoate, tetra-hydroxyhexanoate 6-hydroxyhexanoate Propylammonium, tetrabutylammonium 6-hydroxyhexanoate, tetraoctylammonium 6-hydroxyhexanoate, benzylsinconidinium 6-hydroxyhexanoate, benzylcinconinium 6-hydroxyhexanoate, benzylkinidinium 6-hydroxyhexanoate Alternatively, benzylkininium 6-hydroxyhexanoate can be mentioned.
  • the 6-hydroxycaproate may be an alkali metal salt of 6-hydroxycaproic acid, eg, lithium 6-hydroxycaproate, sodium 6-hydroxycaproate, 6-hydroxycaproic acid. It may be potassium or cesium 6-hydroxyhexanoate.
  • the molar equivalent of 6-hydroxyhexanoate is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
  • the dehydration condensate used in the amidation reaction is not particularly limited, and examples thereof include a triazine type dehydration condensate, a uronium type dehydration condensate, and a carbodiimide type dehydration condensate.
  • a carbodiimide type dehydration condensate is used as the dehydration condensate, it may be used in combination with an additive.
  • the dehydration condensate may be in the form of a free form or a salt, preferably in the form of a salt.
  • a triazine-type dehydration condensing agent is a compound having a structure in which at least one hydrogen atom on a carbon atom of triazine is replaced with a desorbable functional group such as a quaternary ammonium or a halogen atom (for example, a free form or a salt). ) Means.
  • a desorbable functional group such as a quaternary ammonium or a halogen atom (for example, a free form or a salt).
  • a desorbable functional group such as a quaternary ammonium or a halogen atom (for example, a free form or a salt).
  • the triazine-type dehydration-condensant is a triazine-type quaternary morpholinium, for example, 4- [4,6-bis (2,6-kisilyl) -1,3,5-triazine-2-yl]-.
  • derivatives include salts such as perchlorate, trifluoromethanesulfonate, chloride or hexafluorophosphate.
  • the triazine-type dehydration condensing agent may be, for example, a 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium salt.
  • Examples of the derivative of triazine-type quaternary morpholinium, which is a triazine-type dehydration condensant include 4- [4,6-bis (2,6-kisilyl) -1,3,5-triazine-2-yl] -4- Methylmorpholinium perchlorate, 4- [4-methoxy-6- (2,6-kisilyl) -1,3,5-triazine-2-yl] -4-methylmorpholinium perchlorate, 4- (4-t-butyl-6-methoxy-1,3,5-triazine-2-yl) 4-methoxymorpholinium trifluoromethanesulfonate, 4- (4,6-di-t-butyl-1,3) , 5-Triazine-2-yl) -4-methylmorpholinium chloride, N- [4-methoxy-6- (N'-phenylacetamide) -1,3,5-triazine-2-yl] -4- Methyl
  • a uronium-type dehydration-condensing agent is a benzotriazolyl-uronium-type dehydration-condensation agent.
  • the benzotriazolyluronium-type dehydration condensing agent means a compound in which a tetraalkylamidinium structure is added to a 1-hydroxybenzotriazole structure.
  • the four substituents on the two nitrogen atoms of the amidinium structure are not particularly limited as long as they do not inhibit the amidation reaction, and may form a ring together with the nitrogen atom, for example.
  • the 1-hydroxybenzotriazole structure is not particularly limited as long as it does not inhibit the amidation reaction. For example, it may have a substituent on the benzene ring, or a part of carbon atoms in the benzene ring. May be replaced with a nitrogen atom.
  • the benzotriazolyl uronium type dehydration condensing agent generally takes two forms, an O-acyl type (uronium type) and an N-acyl type (aminium type) (Carpino et al., Angewandte Chemie International Edition, 2002). , Vol. 41, p. 441-445.),
  • the benzotriazolyl uronium type dehydration condensate is an O-acyl type (uronium type) and an N-acyl type (Uronium type). Includes both forms of (aminium type).
  • benzotriazolyluronium type dehydration condensate examples include the literature (Knorr et al., Tetrahedron Letters, 1989, Vol. 30, p. 1927-1930; Carpino et al., Organic Letters, 2001, Vol. 3, p. .2793-2795; EL-Faham et al., The Journal of Organic Chemistry, 2008, Vol. 73, p.2731-2737; International Publication No. 1994/007910, International Publication No. 2002/094822, etc.)
  • a dehydration condensing agent can be used.
  • the benzotriazolyluronium-type dehydration condensing agent is a benzotriazolyluronium, for example, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyl.
  • azabenzotriazolyluronium for example, O- (7-azabenzotriazo
  • derivatives include salts such as perchlorate, trifluoromethanesulfonate, chloride or hexafluorophosphate.
  • Benzotriazolyluronium-type dehydration condensing agents include, for example, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium salt and O- (7-azabenzotriazole-). 1-yl) -N, N, N', N'-tetramethyluronium salt may be used.
  • Preferred examples of the benzotriazolyluronium type dehydration condensing agent are O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate or O- (7).
  • -Azabenzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate (hereinafter referred to as HATU) can be mentioned.
  • uronium-type dehydration condensing agent is a compound in which a tetraalkylamidinium structure is added to a leaving group.
  • the four substituents on the two nitrogen atoms of the amidinium structure are not particularly limited as long as they do not inhibit the amidation reaction, and may form a ring together with the nitrogen atom, for example.
  • the leaving group is not particularly limited as long as it does not inhibit the amidation reaction. For example, N-hydroxysuccinimide, ethyl (hydroxyimino) cyanoacetate, N-hydroxyphthalimide, 3-hydroxy-4-oxo-3.
  • Examples of the uronium-type dehydration condensing agent include O- (1,2-dihydro-2-oxo-1-pyridyl) -N, N, N', N'-tetramethyluronium tetrafluoroborate, O- ( 3,4-dihydro-4-oxo-1,2,3-benzotriazine-3-yl) -N, N, N', N'-tetramethyluronium tetrafluoroborate, chloro-N, N, N' , N'-Tetramethylform Amidinium Hexafluoroborate, Fluoro-N, N, N', N'-Tetramethylform Amidinium Hexafluoroborate, (1-cyano-2-ethoxy-2-oxoethylideneamino Oxy) dimethylaminomorpholinocarbenium hexafluoroborate or N, N, N', N'-tetramethyl-O- (N
  • the substituent on N is not particularly limited as long as it does not inhibit the amidation reaction.
  • Examples of the carbodiimide-type dehydration condensing agent include N, N'-dimethylcarbodiimide, N, N'-diethylcarbodiimide, N, N'-dipropylcarbodiimide, N, N'-diisopropylcarbodiimide, and N-tert-butyl-N.
  • salts include perchlorate, trifluoromethanesulfonate, chloride, hexafluorophosphate, hydrochloride, bromate, trifluoromethanesulfonate, perchlorate and the like.
  • a carbodiimide derivative containing a tertiary amine structure or a quaternary ammonium structure is more preferable, for example, a salt such as N- (3'-dimethylaminopropyl) -N'-ethylcarbodiimide or an acid addition salt thereof, N, N'-bis.
  • Examples thereof include salts such as (3'-dimethylaminopropyl) carbodiimide or an acid addition salt thereof, 3- (ethyliminomethylideneamino) propyltrimethylammonium salt or 3- (isopropyliminomethylideneamino) propyltrimethylammonium salt.
  • a particularly preferred example of a carbodiimide-type dehydration condensing agent is N- (3'-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride (hereinafter, EDCI hydrochloride).
  • Examples of the additive used in combination with the carbodiimide type dehydration condensing agent include 1-hydroxybenzotriazole (hereinafter, HOBt), 1-hydroxy-7-azabenzotriazole (hereinafter, HOAt), N-hydroxysuccinimide, and the like.
  • HOBt 1-hydroxybenzotriazole
  • HOAt 1-hydroxy-7-azabenzotriazole
  • N-hydroxysuccinimide and the like.
  • Ethyl (hydroxyimino) cyanoacetate, N-hydroxyphthalimide, 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine, N-hydroxy-5-norbornene-2,3-dicarboxylic acidimide 1-Hydroxy-1,2,3-triazole-4-carboxylate ethyl or 2-hydroxypyridine-N-oxide.
  • the dehydration condensation agent and the additive may be commercially available products, or may be synthesized by a known method or a method similar thereto.
  • the molar equivalent of the dehydration condensing agent is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
  • the molar equivalent of the additive is preferably 0.05 to 10 molar equivalents, more preferably 0.2 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
  • the solvent used for the amidation reaction is appropriately selected depending on the type of reagent used and the like, but is not particularly limited as long as it does not inhibit the reaction.
  • a water-containing solvent is preferable.
  • One type of solvent may be used, or two or more types may be used in combination. When two or more kinds of solvents are used in combination, they may not be mixed with each other and may be non-uniform, or they may be mixed and become uniform.
  • the amount of the solvent used is preferably 1 to 100 times by weight with respect to the compound represented by the formula (I) or a salt thereof.
  • the non-hydrophilic solvent means a solvent that is immiscible with water at an arbitrary ratio.
  • Non-hydrophilic solvents are not limited to, for example, hexane, heptane, toluene, xylene, dichloromethane, chloroform, dichloroethane, methyl tert-butyl ether, cyclopentyl methyl ether, diethyl ether, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, acetic acid.
  • Examples include ethyl or propionitrile.
  • the hydrophilic solvent means a solvent and water that are mixed with water at an arbitrary ratio.
  • the hydrophilic solvent is not limited to the following, but for example, water, methanol, ethanol, tetrahydrofuran, 1,4-dioxane, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1, Examples thereof include 3-dimethyl-2-imidazolidinone, N, N'-dimethylpropyleneurea, acetonitrile, dimethyl sulfoxide or sulfolane.
  • the hydrous solvent means a solvent in which water and an organic solvent (a non-hydrophilic solvent or a hydrophilic solvent other than water) are combined, and they may not be mixed with each other and may be non-uniform, or they may be mixed with each other. It may be uniform.
  • One kind of organic solvent may be used, or two or more kinds may be used in combination.
  • the water-containing solvent is not limited to the following, and examples thereof include a combination of water and a hydrophilic solvent other than water, for example, a combination of water and methanol, a combination of water and ethanol, and water and N, N-dimethylformamide. Or a combination of water and dimethyl sulfoxide is preferred.
  • the composition ratio of the solvent can be appropriately selected according to the reaction.
  • a tertiary amine may be added as an optional component to the amidation reaction, and the tertiary amine is not limited to the following, and examples thereof include triethylamine and diisopropylethylamine.
  • the molar equivalent of the tertiary amine is preferably 0.05 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
  • the reaction time of the amidation reaction can be set in a timely manner, but is typically 10 minutes or more, for example, 10 minutes to 24 hours.
  • the reaction temperature of the amidation reaction can be set in a timely manner, and may be in the range of 0 to 100 ° C., and is usually preferably room temperature (about 10 ° C. to about 35 ° C.).
  • each reagent is not particularly limited, and for example, a method of sequentially adding a compound represented by the formula (I) or a salt thereof, a 6-hydroxyhexanoate and a dehydration condensing agent to a solvent, a formula ( A method of sequentially adding a solvent, 6-hydroxyhexanoate and a dehydration condensing agent to the compound represented by I) or a salt thereof, and to the solvent the compound represented by the formula (I) or a salt thereof, 6-hydroxyhexanelate and A method of adding a dehydration condensing agent at the same time, a method of adding a solvent to a mixture of a compound represented by the formula (I) or a salt thereof, a 6-hydroxyhexanoate and a dehydration condensing agent, and a method represented by a formula (I) mixed with a solvent.
  • a method of simultaneously mixing the 6-hydroxyhexanoate mixed with and the dehydration condensing agent mixed with the solvent can be mentioned.
  • a method of sequentially adding a solvent, a 6-hydroxycaproate and a dehydration condensing agent to the compound represented by the formula (I) or a salt thereof is preferable.
  • the preferred embodiment of the dehydration condensing agent and the preferred embodiment of the solvent can be appropriately combined.
  • a combination of a triazine type dehydration condensing agent and a hydrophilic solvent a combination of a triazine type dehydration condensing agent and a water-containing solvent, a combination of a uronium type dehydration condensing agent and a hydrophilic solvent, and a combination of a uronium type dehydration condensing agent and a water-containing solvent.
  • Examples thereof include a combination, a combination of a carbodiimide type dehydration condensing agent and a hydrophilic solvent, or a combination of a carbodiimide type dehydration condensing agent and an additive and a hydrophilic solvent, and examples of a particularly preferable combination include, for example, DMT-MM and methanol.
  • DMT-MM with dimethyl sulfoxide DMT-MM with water and methanol, DMT-MM with water and dimethyl sulfoxide, HATU with dimethyl sulfoxide, HATU with water and dimethyl sulfoxide
  • EDCI hydrochloride and HOAt and dimethyl sulfoxide The combination with, the combination of EDCI hydrochloride and dimethyl sulfoxide, or the combination of EDCI hydrochloride and HOAt and dimethyl sulfoxide can be mentioned.
  • the organic layer can be washed with an aqueous sodium hydrogen carbonate solution or the like, and then the organic layer can be concentrated to isolate the compound represented by the formula (II).
  • the compound represented by the formula (II) can be purified by appropriately using a known purification method such as chromatography.
  • 6-hydroxyhexanoate 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth
  • a base selected from the group consisting of metal hydroxide and quaternary ammonium hydroxide in an aqueous solvent
  • the mixture may be post-treated or isolated and purified. , It may be used as it is for the reaction with the compound represented by the formula (I) or a salt thereof without post-treatment or isolation and purification.
  • step 1 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal bicarbonate, alkali metal alkoxide, alkaline earth metal water.
  • a step of reacting the compound represented by the formula (I) or a salt thereof with the above mixture in a solvent to obtain a compound represented by the formula (II) (hereinafter, also referred to as step 1 ′′). May be good.
  • 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth metal water are added to the aqueous solvent.
  • the amidation reaction may be carried out by simultaneously adding a base selected from the group consisting of an oxide and a quaternary ammonium hydroxide, a compound represented by the formula (I) or a salt thereof, and a dehydration condensing agent.
  • a base selected from the group consisting of an oxide and a quaternary ammonium hydroxide, a compound represented by the formula (I) or a salt thereof, and a dehydration condensing agent.
  • each reagent is not particularly limited.
  • 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone, alkali metal hydroxide, alkali metal carbonate are added to the aqueous solvent.
  • a base selected from the group consisting of carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides, as well as 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid esters or ⁇ .
  • aqueous solvent contains a base selected from the group consisting of alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth metal hydroxide and quaternary ammonium hydroxide.
  • a method of sequentially adding 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ⁇ -caprolactone is preferable.
  • the order of addition of each reagent is not particularly limited, and for example, a method of sequentially adding a dehydration condensing agent, a compound represented by the formula (I) or a salt thereof, and the above mixture to a solvent, the formula (I).
  • a method of sequentially adding the compound represented by the formula (I) mixed with a solvent or a salt thereof and the above mixture mixed with the solvent to the mixed dehydration condensing agent, or a formula of mixing the dehydration condensing agent mixed with the solvent with the solvent examples thereof include a method of simultaneously adding the compound represented by I) or a salt thereof and the above-mentioned mixture mixed with a solvent.
  • a method of sequentially adding a solvent, the above mixture and a dehydration condensing agent to the compound represented by the formula (I) or a salt thereof is preferable.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide or francium hydroxide.
  • alkali metal carbonate examples include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate or franchium carbonate.
  • alkali metal bicarbonate examples include lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, rubidium hydrogencarbonate, cesium hydrogencarbonate, and franchium hydrogencarbonate.
  • alkali metal alkoxide examples include, but are not limited to, sodium methoxide, sodium ethoxide, lithium tert-butoxide, sodium tert-butoxide or potassium tert-butoxide.
  • alkaline earth metal hydroxides examples include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, and radium hydroxide.
  • the quaternary ammonium hydroxide is not limited to the following, and includes, for example, benzyltrimethylammonium hydroxide, benzyldimethyltetradecylammonium hydroxide, benzyltriethylammonium hydroxide, benzyltributylammonium hydroxide, triethylmethylammonium hydroxide, and water.
  • Tributylmethylammonium oxide Tributylmethylammonium oxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetraoctylammonium hydroxide, benzylcinconidinium hydroxide, benzylcinconinium hydroxide, hydroxide Benzylkinidinium or benzylkininium hydroxide can be mentioned.
  • step 1' as a base selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides.
  • a base selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides.
  • Is preferably an alkali metal hydroxide, and more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide or cesium hydroxide.
  • the molar equivalent of 6-hydroxycaproic acid, 6-hydroxycaproic acid ester or ⁇ -caprolactone is preferably 1 to 10 molar equivalents with respect to the compound represented by the formula (I) or a salt thereof, preferably 1 to 2 molar equivalents. More preferred.
  • the aqueous solvent means a single water or a solvent in which water and an organic solvent are mixed and become uniform.
  • the organic solvent to be mixed with water may be one kind, or two or more kinds may be used in combination.
  • Examples of the aqueous solvent include water, a combination of water and methanol, or a combination of water and dimethyl sulfoxide.
  • the composition ratio of the solvent can be appropriately selected according to the reaction.
  • the amount of the aqueous solvent used is preferably 1 to 100 times by weight with respect to 6-hydroxycaproic acid, 6-hydroxycaproic acid ester or ⁇ -caprolactone.
  • the reaction time of the above step 1' can be set in a timely manner, but is typically 10 minutes or more, for example, 10 minutes to 24 hours.
  • the reaction temperature in the above step 1' can be set in a timely manner, for example, it may be in the range of 0 to 100 ° C., and is usually preferably room temperature (about 10 ° C. to about 35 ° C.).
  • the reaction time of the above step 1 ′′ can be set in a timely manner, but is typically 10 minutes or more, for example, 10 minutes to 24 hours.
  • the reaction temperature in the above step 1 ′′ can be set in a timely manner, for example, it may be in the range of 0 to 100 ° C., and is usually preferably room temperature (about 10 ° C. to about 35 ° C.).
  • the mode of the combination of the base and the aqueous solvent selected from the group consisting of hydroxide is not particularly limited, and for example, a combination of 6-hydroxyhexanoic acid, an alkali metal hydroxide and an aqueous solvent, 6-hydroxyhexanoic acid.
  • Examples include a combination of an ester, an alkali metal hydroxide and an aqueous solvent, a combination of ⁇ -caprolactone, an alkali metal hydroxide and an aqueous solvent, a combination of 6-hydroxyhexanoic acid, sodium hydroxide and water, 6-.
  • Step 2 Amidite conversion reaction
  • the compound represented by the formula (III) or a salt thereof is obtained by reacting the compound represented by the formula (II) with an amidite-forming reagent in the presence of a coupling agent.
  • R 1 and R 2 each independently represent a protecting group
  • R 3 and R 4 each independently represent a optionally substituted hydrocarbon group.
  • the salt of the compound represented by the formula (III) is not particularly limited, and is, for example, hydrochloride, bromate, iodate, perchlorate, carbonate, trifluoromethanesulfonate, tetrafluoroborate. , Hexafluorophosphate or tetrazole salt.
  • R 1 in formula (I) can be incorporated into the description of R 1 in formula (III).
  • R 2 represents a protecting group, for example, it may be a functional group that converts the phosphoric acid group into inactive, and a known protecting group of the phosphoric acid group can be used.
  • a protecting group of the phosphoric acid group for example, the description in the literature (Protective Groups in Organic Synthesis 4th Edition, by Greene et al., 2007, John Wiley & Sons, Inc.) can be incorporated.
  • the R 2 for example, substitution such as a methyl group, an ethyl group, an isopropyl group, tert- butyl group, an allyl group, a 2-cyanoethyl group, 2-trimethylsilylethyl group, 2,2,2-trichloroethyl group, a benzyl group
  • substitution such as a methyl group, an ethyl group, an isopropyl group, tert- butyl group, an allyl group, a 2-cyanoethyl group, 2-trimethylsilylethyl group, 2,2,2-trichloroethyl group, a benzyl group
  • Examples thereof include, but are not limited to, an alkyl group which may be used, a cycloalkyl group such as a cyclohexyl group, or an aryl group which may be substituted such as a phenyl group and a 2-chlorophenyl group.
  • R 3 and R 4 represent hydrocarbon groups that may be substituted independently, respectively, and R 3 and R 4 are rings (eg, for example) with the nitrogen atom to which they are attached. It may form a pyrrolidine ring).
  • the hydrocarbon group means a functional group composed of a carbon atom and a hydrogen atom.
  • R 3 and R 4 independently include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an alkylaryl group, a cycloalkyl group, a cycloalkenyl group, and a cycloalkylalkyl group. ..
  • Examples of the functional group which may be substituted in the above-mentioned hydrocarbon group include a halogen atom, an alkoxy group, an amino group, a silyloxy group, a carbonyl group and a carboxyl group.
  • Preferred embodiments of R 3 and R 4 include, but are not limited to, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a phenyl group or a benzyl group, respectively.
  • R 2 and R 3 and / or R 4 may be combined to form a ring (eg, an oxazaphosphoridine ring), and the ring may be monocyclic or bicyclic.
  • R 1 is preferably a trityl group, a 4-methoxytrityl group or a 4,4′-dimethoxytrityl group.
  • R 2 is preferably a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group.
  • R 3 and R 4 are preferably ethyl groups or isopropyl groups independently of each other.
  • R 1 is a trityl group, a 4-methoxytrityl group or a 4,4′-dimethoxytrityl group
  • R 2 is a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group
  • R 3 is an ethyl group or an isopropyl group
  • R 4 is an ethyl group or an isopropyl group
  • R 1 is 4 , 4'-dimethoxytrityl group
  • R 2 is a 2-cyanoethyl group
  • R 3 and R 4 are both isopropyl groups
  • R 1 is a 4,4'-dimethoxytrityl group and R
  • a combination in which 2 is a 2-chlorophenyl group and R 3 and R 4 are both isopropyl groups is suitable.
  • the compound represented by the formula (III) or a salt thereof may be a compound represented by the following formula (III') or a salt thereof.
  • the compound represented by the formula (III') or a salt thereof may be an optically active substance represented by the following formula (III'-1) or the following formula (III'-2) or a salt thereof.
  • the coupling agent used for the amidite reaction is not particularly limited, and examples thereof include a coupling activator used for oligonucleotide synthesis by a tertiary amine or a phosphoramidite method.
  • the tertiary amine is not limited to the following, and examples thereof include triethylamine and diisopropylethylamine.
  • the molar equivalent of the tertiary amine is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by formula (II).
  • Coupling activators used for oligonucleotide synthesis by the phosphoramidite method are described, for example, in Tetrazole, 69, 2013, 3615-3637, for example, tetrazole, 5-benzylthiotetrazole, 5-ethylthiotetrazole, Azol coupling activators such as 4,5-dicyanoimidazole, 1-hydroxy-benztriazole or 3-nitro-1,2,4-triazole, diisopropylammonium tetrazolide, benzimidazole trifluoroacetate, N- Examples thereof include salt complex coupling activators such as phenylimidazole trifluoroacetate or 1- (cyanomethyl) piperidinium tetrafluoroborate.
  • the molar equivalent of the coupling agent is preferably 0.1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by formula (II).
  • the amidite-forming reagent used in the amidite-forming reaction is not particularly limited, and examples thereof include phosphoramidite and chlorophosphoroamidite.
  • Examples of phosphoramidite include 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphomidite, methyl-N, N, N', N'-tetraisopropylphosphoromidite, tert-butyl-.
  • N, N, N', N'-tetraisopropylphosphorodiamidite allyl-N, N, N', N'-tetraisopropylphosphorodiamidite, benzyl-N, N, N', N'-tetraisopropylphosphorologite Amidite, 2-chlorophenyl-N, N, N', N'-tetraisopropylphosphorodite amidite, 2-cyanoethyl-N, N, N', N'-tetraethyl phosphoramidite, methyl-N, N, N', N'-Tetraethyl phosphoramidite, tert-butyl-N, N, N', N'-tetraethyl phosphoramidite, allyl-N, N, N', N'-tetraethyl phosphoramidite, benzyl-N, N, Examples thereof include N', N'-tetrais
  • chlorophosphoroamidite examples include 2-cyanoethyl-N, N, -diisopropylchlorophosphoroamidite, methyl-N, N, -diisopropylchlorophosphoroamidite or 2-chlorophenyl-N, N, -diisopropylchlorophosphoro. Amidite can be mentioned.
  • the molar equivalent of the amidite-forming reagent is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (II).
  • the coupling agent and the amidite-forming reagent may be commercially available products, or may be synthesized by a known method or a method similar thereto.
  • the amidite reaction may be carried out in an aprotic solvent.
  • the amount of the aprotic solvent used is preferably 1 to 100 times by weight with respect to the compound represented by the formula (II).
  • the aprotic solvent means an organic solvent having no proton donating property.
  • the aprotic solvent is not particularly limited, but for example, toluene, xylene, dichloromethane, chloroform, dichloroethane, methyl tert-butyl ether, cyclopentyl methyl ether, diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, acetone.
  • the reaction time of the amidite reaction can be set in a timely manner, but is typically 2 hours or more, for example, 2 to 24 hours.
  • the reaction temperature of the amidite reaction can be set in a timely manner, for example, it may be in the range of 10 to 100 ° C., and usually room temperature (about 10 ° C. to about 35 ° C.) is preferable.
  • each reagent is not particularly limited.
  • a method of sequentially adding a compound represented by the formula (II), a coupling agent and an amidite reagent to a solvent a compound represented by the formula (II).
  • a method of sequentially adding a solvent, a coupling agent and an amidation reagent to the solvent a method of simultaneously adding a compound represented by the formula (II), a coupling agent and an amidite reagent to the solvent, a compound represented by the formula (II), and a cup.
  • a method of adding a solvent to a mixture of a ring agent and an amidite-forming reagent a method of sequentially mixing a coupling agent mixed with a solvent and an amidite-forming reagent mixed with a solvent with a compound represented by the formula (II) mixed with the solvent.
  • a method of simultaneously mixing the coupling agent mixed with the solvent and the amidite-forming reagent mixed with the solvent to the compound represented by the formula (II) mixed with the solvent can be mentioned.
  • a method of sequentially adding a solvent, a coupling agent and an amidite-forming reagent to the compound represented by the formula (II) is preferable.
  • the organic layer can be washed with an aqueous sodium hydrogen carbonate solution or the like, and then the organic layer can be concentrated to isolate the compound represented by the formula (III) or a salt thereof.
  • the compound represented by the formula (III) or a salt thereof can be purified by appropriately using a known purification method such as chromatography.
  • the preferred embodiment of the coupling agent and the preferred embodiment of the amidite-forming reagent can be appropriately combined.
  • the mode of the combination of the coupling agent and the amidite-forming reagent is not limited to the following, but is a combination of a tertiary amine and chlorophosphoroamidite, or a coupling activator and phospho used for oligonucleotide synthesis by the phosphoramidite method.
  • a combination with a logiamidite can be mentioned.
  • Preferred combinations of the coupling agent and the amidite-forming reagent include a combination of triethylamine and 2-cyanoethyl-N, N, -diisopropylchlorophosphoroamidite or a combination of diisopropylammonium tetrazolide and 2-cyanoethyl-N, N, N.
  • a combination with', N'-tetraisopropylphosphorodiamidite can be mentioned.
  • the compound represented by the formula (III) or a salt thereof can be used as a monomer for nucleic acid synthesis.
  • the present invention also provides a method for producing an oligonucleic acid, which comprises a step of carrying out a nucleic acid synthesis reaction using the compound represented by the formula (III) obtained by the above production method or a salt thereof.
  • the above nucleic acid synthesis reaction can be carried out based on the phosphoramidite method.
  • the obtained oligonucleic acid can be purified by appropriately using a known purification method such as chromatography.
  • oligonucleic acid examples include, but are not limited to, the ssTbRNA molecule, strand 1 or strand 2 described in Example 1 of WO2019 / 189722.
  • DMTr-amide-L-proline can be synthesized, for example, as described in WO2012 / 017919. Specific examples of synthesis are shown below, but the synthesis method is not limited thereto.
  • Fmoc-hydroxyamide-L-proline Fmoc-L-proline (10.0 g, 29.6 mmol), 4-amino-1-butanol (3.18 g, 35.6 mol) and 1-hydroxybenzotriazole (10). .9 g, 70.7 mmol) was mixed, and the mixture was degassed under reduced pressure and charged with argon gas. Anhydrous acetonitrile (140 mL) was added to the obtained mixture at room temperature, and an anhydrous acetonitrile solution (70.0 mL) of dicyclohexylcarbodiimide (7.34 g, 35.6 mmol) was added, and then 15 at room temperature under an argon atmosphere. Stirred for hours.
  • the mixture was diluted with dichloromethane (100 mL), washed with saturated aqueous sodium hydrogen carbonate (150 mL), and then the organic layer was separated. The organic layer was dried over sodium sulfate and then filtered. The solvent was distilled off from the obtained filtrate under reduced pressure. Anhydrous N, N-dimethylformamide (39.0 mL) and piperidine (18.7 mL, 189 mmol) were added to the obtained unpurified residue, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off from the mixed solution under reduced pressure at room temperature.
  • DMTr is a 4,4'-dimethoxytrityl group.
  • ⁇ -Caprolactone (0.280 g, 2.46 mmol) was added to a 1 M aqueous sodium hydroxide solution (2.66 mL) cooled in an ice bath. Then, the ice bath was removed, and the mixture was stirred at room temperature for 2 hours to prepare an aqueous sodium 6-hydroxyhexanoate solution.
  • the solvent was distilled off from the obtained filtrate under reduced pressure.
  • DMTr-hydroxydiamide-L-proline (1.00 g, 1.66 mmol) synthesized in Example 1 was mixed with anhydrous acetonitrile and azeotropically dried 3 times at room temperature.
  • Anhydrous acetonitrile (10.0 mL) and diisopropylammonium tetrazolide (0.341 g, 1.99 mmol) were added to the obtained residue, degassed under reduced pressure, and filled with argon gas.
  • 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphorodiamidite 0.603 g, 1.99 mmol. The mixture was stirred at room temperature for 3 hours.
  • the mixture was diluted with dichloromethane, washed with saturated aqueous sodium hydrogen carbonate (20.0 mL), and further washed with saturated brine (20.0 mL) to separate the organic layer.
  • the organic layer was dried over sodium sulfate and then filtered.
  • the solvent was distilled off from the obtained filtrate under reduced pressure.
  • amino silica gel as a filler
  • DMTr-diamide-L-proline amidite was obtained.
  • the above purity value represents the peak area ratio based on the chromatogram measured under the following HPLC analysis conditions.
  • Example 2 comparing Example 2 and Comparative Example 2, the DMTr-diamide-L-proline amidite synthesized in Comparative Example 2 was converted to RRT 1.64 based on DMTr-diamide-L-proline amidite, and that of Example 2. While 1.8% of individual maximum impurities (hereinafter referred to as RRT 1.64 impurities) were detected in the peak area ratio based on the chromatogram measured under HPLC analysis conditions, DMTr-diamide-L synthesized in Example 2 was detected. -No impurities of RRT1.64 were detected in proline amidite.
  • RRT 1.64 impurities 1.8% of individual maximum impurities
  • Impurities of RRT1.64 are difficult to purify by column chromatography using amino silica gel as a filler, and DMTr-diamide-L-proline amidite, which is a syrup-like substance, cannot be purified by recrystallization. Therefore, the impurities of RRT1.64 were impurities that were difficult to separate by the purification operation.
  • Example 3 An oligonucleic acid having the structure shown below was synthesized.
  • Oligonucleic acid was synthesized by the phosphoramidite method using an automatic nucleic acid synthesizer. TBDMS amidite was used as the RNA amidite for this synthesis. Polymer beads for nucleic acid synthesis to which protected guanosine was bound were used at the 3'end of the oligonucleic acid, and DMTr-diamide-L-proline amidite synthesized in Example 2 was used as a special amidite for ligation of Ly. In addition, solid-phase synthesis of nucleic acid and deprotection reaction after synthesis were carried out according to a conventional method.
  • the oligonucleic acid synthesized in Comparative Example 3 contained all the fractions in which the target oligonucleic acid was eluted.
  • RRT1.05 impurities hereinafter, RRT1.05 impurities
  • the oligonucleic acid synthesized in Example 3 did not contain impurities of RRT1.05 at the stage before purification, and a high-purity oligonucleic acid was obtained by the purification operation.
  • the purified oligonucleic acids of Example 3 and Comparative Example 3 were analyzed by mass spectrometry after desalting treatment, respectively, and it was confirmed that they matched the molecular weight of the target product. From the above results, it was shown that a high-purity oligonucleic acid can be produced by using the compound represented by the formula (III) obtained by the production method of the present invention.
  • a compound represented by the formula (III) or a salt thereof, which can produce a high-purity oligonucleic acid can be produced.

Abstract

The purpose of the present invention is to provide a method for producing a monomer for nucleic acid production by which an oligonucleic acid having a high purity can be produced. Provided is a method for producing a compound represented by formula (III) or a salt thereof, said method comprising a step for, in the presence of a dehydration condensation agent, reacting a compound represented by formula (I) or a salt thereof with an alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid in a solvent to give a compound represented by formula (II), and a step for, in the presence of a coupling agent, reacting the compound represented by formula (II) with an amiditation reagent to give the compound represented by formula (III) or a salt thereof. 

Description

核酸製造用モノマーの製造方法Method for producing monomer for nucleic acid production
 本発明は、核酸製造用モノマーの製造方法に関する。 The present invention relates to a method for producing a monomer for producing nucleic acid.
 オリゴ核酸の合成法としては、リン酸トリエステル法、H-ホスホネート法、ホスホロアミダイト法等が挙げられるが、汎用の手法としてホスホロアミダイト法が最も用いられている(非特許文献1)。 Examples of the method for synthesizing oligonucleic acid include a phosphoric acid triester method, an H-phosphonate method, and a phosphoramidite method, but the phosphoramidite method is most used as a general-purpose method (Non-Patent Document 1).
 特許文献1には、標的遺伝子の発現を抑制可能な一本鎖核酸分子の製造方法が記載されており、その製造に使用するモノマーとして、実施例A3には下記式(III’)で示される化合物の製造方法が記載されている。 Patent Document 1 describes a method for producing a single-stranded nucleic acid molecule capable of suppressing the expression of a target gene, and is represented by the following formula (III') in Example A3 as a monomer used for the production. A method for producing a compound is described.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、特許文献2には、高い収率で一本鎖核酸分子を製造することのできる上記式(III’)で示される化合物の製造方法が記載されている。 Further, Patent Document 2 describes a method for producing a compound represented by the above formula (III'), which can produce a single-stranded nucleic acid molecule in a high yield.
US2012/0035246US2012 / 0035246 国際公開WO2017/188042International release WO2017 / 188042
 本発明は、高純度のオリゴ核酸を製造することができる下記式(III)で示される化合物又はその塩の製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a compound represented by the following formula (III) or a salt thereof, which can produce a high-purity oligonucleic acid.
Figure JPOXMLDOC01-appb-C000006
[式中、R及びRは、それぞれ独立して、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
Figure JPOXMLDOC01-appb-C000006
[In the formula, R 1 and R 2 each independently represent a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、上記式(III)で示される化合物の合成過程において、特許文献1や2で用いられている6-ヒドロキシヘキサン酸に代えて、6-ヒドロキシヘキサン酸の塩を用いることで、上記式(III)で示される化合物又はその塩が高純度で得られることがわかった。そして、得られた式(III)で示される化合物又はその塩をモノマーとして用いることで、高純度のオリゴ核酸を製造できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors have replaced the 6-hydroxycaproic acid used in Patent Documents 1 and 2 in the process of synthesizing the compound represented by the above formula (III). Therefore, it was found that the compound represented by the above formula (III) or a salt thereof can be obtained with high purity by using a salt of 6-hydroxycaproic acid. Then, they have found that a high-purity oligonucleic acid can be produced by using the obtained compound represented by the formula (III) or a salt thereof as a monomer, and have completed the present invention.
 アミド化反応において、基質となるカルボン酸は、遊離酸の形態で用いる場合と塩の形態で用いる場合で反応結果に差がないことが一般的に知られている。このことを考えると、本発明者らが見出した上記知見は驚くべきものであった。 In the amidation reaction, it is generally known that there is no difference in the reaction result between the case where the carboxylic acid as a substrate is used in the form of a free acid and the case where the carboxylic acid is used in the form of a salt. Considering this, the above findings found by the present inventors were surprising.
 すなわち、本発明は以下を包含する。 That is, the present invention includes the following.
[1] 脱水縮合剤の存在下、下記式(I)で示される化合物又はその塩と、6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩と、を溶媒中で反応させ、下記式(II)で示される化合物を得る工程と、
Figure JPOXMLDOC01-appb-C000007
[式中、Rは、保護基を表す。]
Figure JPOXMLDOC01-appb-C000008
[式中、Rは、上記の定義と同義である。]
 カップリング剤の存在下、上記式(II)で示される化合物とアミダイト化試薬とを反応させ、下記式(III)で示される化合物又はその塩を得る工程と、
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、上記の定義と同義であり、Rは、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
 を備える、上記式(III)で示される化合物又はその塩の製造方法。
[1] In the presence of a dehydration condensing agent, a compound represented by the following formula (I) or a salt thereof and an alkali metal salt of 6-hydroxyhexanoic acid, an alkaline earth metal salt or a quaternary ammonium salt are mixed in a solvent. The step of reacting to obtain a compound represented by the following formula (II) and
Figure JPOXMLDOC01-appb-C000007
[In the formula, R 1 represents a protecting group. ]
Figure JPOXMLDOC01-appb-C000008
[In the formula, R 1 is synonymous with the above definition. ]
In the presence of a coupling agent, the compound represented by the above formula (II) is reacted with the amidite-forming reagent to obtain the compound represented by the following formula (III) or a salt thereof.
Figure JPOXMLDOC01-appb-C000009
[In the formula, R 1 is synonymous with the above definition, R 2 represents a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
The method for producing a compound represented by the above formula (III) or a salt thereof.
[2] 上記溶媒は、含水溶媒である、[1]記載の製造方法。 [2] The production method according to [1], wherein the solvent is a water-containing solvent.
[3] 上記脱水縮合剤は、トリアジン型脱水縮合剤である、[1]又は[2]記載の製造方法。 [3] The production method according to [1] or [2], wherein the dehydration condensing agent is a triazine-type dehydration condensation agent.
[4] 上記の6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩として、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と、を水系溶媒中で反応させた混合物を用いる、[1]~[3]のいずれかに記載の製造方法。 [4] As the above-mentioned alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone and alkali metal hydroxide , Alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkali earth metal hydroxide, and base selected from the group consisting of quaternary ammonium hydroxide. The production method according to any one of [1] to [3] to be used.
[5] 上記の6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩は、6-ヒドロキシヘキサン酸リチウム、6-ヒドロキシヘキサン酸ナトリウム、6-ヒドロキシヘキサン酸カリウム又は6-ヒドロキシヘキサン酸セシウムである、[1]~[4]のいずれかに記載の製造方法。 [5] The above-mentioned alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid is lithium 6-hydroxyhexanoate, sodium 6-hydroxyhexanoate, potassium 6-hydroxyhexanoate or 6-. The production method according to any one of [1] to [4], which is cesium hydroxyhexanoate.
[6] Rが、トリチル基、4-メトキシトリチル基又は4,4’-ジメトキシトリチル基であり、Rが、2-シアノエチル基、ベンジル基又は2-クロロフェニル基であり、Rが、エチル基又はイソプロピル基であり、Rが、エチル基又はイソプロピル基である、[1]~[5]のいずれかに記載の製造方法。 [6] R 1 is a trityl group, 4-methoxytrityl group or 4,4′-dimethoxytrityl group, R 2 is a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group, and R 3 is a group. an ethyl group or an isopropyl group, R 4 is an ethyl group or an isopropyl group, a process according to any one of [1] to [5].
[7] [1]~[6]のいずれかに記載の製造方法で得られた下記式(III)で示される化合物又はその塩を用いて核酸合成反応を行う工程を備える、オリゴ核酸の製造方法。
Figure JPOXMLDOC01-appb-C000010
[式中、R及びRは、それぞれ独立して、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
[7] Production of oligonucleic acid comprising a step of carrying out a nucleic acid synthesis reaction using the compound represented by the following formula (III) or a salt thereof obtained by the production method according to any one of [1] to [6]. Method.
Figure JPOXMLDOC01-appb-C000010
[In the formula, R 1 and R 2 each independently represent a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
 本発明によれば、高純度のオリゴ核酸を製造することができる式(III)で示される化合物又はその塩を製造することができる。 According to the present invention, it is possible to produce a compound represented by the formula (III) or a salt thereof, which can produce a high-purity oligonucleic acid.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
1.式(III)で示される化合物又はその塩の製造方法:
 本発明は、式(III)で示される化合物又はその塩の製造方法を提供する。該製造方法の工程を下記に示す。
Figure JPOXMLDOC01-appb-C000011
[式中、R及びRは、それぞれ独立して、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
1. 1. Method for producing the compound represented by the formula (III) or a salt thereof:
The present invention provides a method for producing a compound represented by the formula (III) or a salt thereof. The process of the manufacturing method is shown below.
Figure JPOXMLDOC01-appb-C000011
[In the formula, R 1 and R 2 each independently represent a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
(工程1:アミド化反応)
 式(II)で示される化合物は、脱水縮合剤の存在下、式(I)で示される化合物又はその塩と、6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩と、を溶媒中で反応させることで得られる。
Figure JPOXMLDOC01-appb-C000012
[式中、Rは、保護基を表す。]
(Step 1: Amidation reaction)
The compound represented by the formula (II) is a compound represented by the formula (I) or a salt thereof in the presence of a dehydration condensing agent, and an alkali metal salt, an alkaline earth metal salt or a quaternary ammonium salt of 6-hydroxyhexanoic acid. And can be obtained by reacting in a solvent.
Figure JPOXMLDOC01-appb-C000012
[In the formula, R 1 represents a protecting group. ]
 式(I)で示される化合物又はその塩は、単一の立体異性体のみならず、ラセミ体等の立体異性体の混合物(例えば、鏡像異性体の混合物)であってもよい。 The compound represented by the formula (I) or a salt thereof may be not only a single stereoisomer but also a mixture of stereoisomers such as racemic (for example, a mixture of enantiomers).
 立体異性体とは、同じ化学構造を有するが、3次元空間での配置が異なる化合物をいい、例えば、配座異性体、回転異性体、互変異性体、鏡像異性体又はジアステレオマー等が挙げられる。 A stereoisomer refers to a compound having the same chemical structure but different arrangement in three-dimensional space, for example, a conformer isomer, a rotational isomer, a metamutant, a mirror image isomer, a diastereomer, or the like. Can be mentioned.
 式(I)で示される化合物又はその塩は、当業者に公知の合成法を用いて製造することができる。一実施形態では、例えば、US2012/0035246に記載の方法により後述の式(I’)で示される化合物を得ることができる。 The compound represented by the formula (I) or a salt thereof can be produced by a synthetic method known to those skilled in the art. In one embodiment, for example, the compound represented by the formula (I') described later can be obtained by the method described in US2012 / 0035246.
 式(I)で示される化合物の塩としては、アミド化反応を阻害しないものであれば、特に制限はなく、例えば、塩酸塩、臭素酸塩、ヨウ素酸塩、過塩素酸塩、炭酸塩、トリフルオロメタンスルホン酸塩、テトラフルオロホウ酸塩又はヘキサフルオロリン酸塩が挙げられる。 The salt of the compound represented by the formula (I) is not particularly limited as long as it does not inhibit the amidation reaction, and is, for example, hydrochloride, bromate, iodate, perchlorate, carbonate, etc. Examples include trifluoromethanesulfonate, tetrafluoroborate or hexafluorophosphate.
 式(I)及び式(II)中、Rは、保護基を表し、例えば、水酸基を不活性に変換する官能基であってよく、公知の水酸基の保護基を用いることができる。水酸基の保護基については、例えば、文献(Protective Groups in Organic Synthesis 第4版、Greeneら著、2007年、John Wiley & Sons,Inc.)の記載を援用できる。Rは、例えば、tert-ブチルジメチルシリル基、ビス(2-アセトキシエチルオキシ)メチル基、トリイソプロピルシリルオキシメチル基、1-(2-シアノエトキシ)エチル基、2-シアノエトキシメチル基、2-シアノエチル基、トリルスルフォニルエトキシメチル基、トリチル基、4-メトキシトリチル基又は4,4’-ジメトキシトリチル基が挙げられるが、これらに限定はされない。 In the formulas (I) and (II), R 1 represents a protecting group, which may be, for example, a functional group that converts a hydroxyl group into an inactive state, and a known protecting group for a hydroxyl group can be used. As for the protecting group for the hydroxyl group, for example, the description in the literature (Protective Groups in Organic Synthesis 4th Edition, by Greene et al., 2007, John Wiley & Sons, Inc.) can be incorporated. R 1 is, for example, tert-butyldimethylsilyl group, bis (2-acetoxyethyloxy) methyl group, triisopropylsilyloxymethyl group, 1- (2-cyanoethoxy) ethyl group, 2-cyanoethoxymethyl group, 2 Examples include, but are not limited to, a cyanoethyl group, a trilsulfonylethoxymethyl group, a trityl group, a 4-methoxytrityl group or a 4,4'-dimethoxytrityl group.
 式(I)及び式(II)中、Rは、好ましくは、トリチル基、4-メトキシトリチル基又は4,4’-ジメトキシトリチル基である。 In formulas (I) and (II), R 1 is preferably a trityl group, a 4-methoxytrityl group or a 4,4'-dimethoxytrityl group.
 好ましい実施形態では、式(I)で示される化合物又はその塩は、下記式(I’)で示される化合物又はその塩であってよい。 In a preferred embodiment, the compound represented by the formula (I) or a salt thereof may be a compound represented by the following formula (I') or a salt thereof.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(I’)で示される化合物又はその塩は、下記式(I’-1)又は下記式(I’-2)で示される光学活性体又はその塩であってよい。 The compound represented by the formula (I') or a salt thereof may be an optically active substance represented by the following formula (I'-1) or the following formula (I'-2) or a salt thereof.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 好ましい実施形態では、式(II)で示される化合物は、下記式(II’)で示される化合物であってよい。 In a preferred embodiment, the compound represented by the formula (II) may be a compound represented by the following formula (II').
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(II’)で示される化合物は、下記式(II’-1)又は下記式(II’-2)で示される光学活性体であってよい。 The compound represented by the formula (II') may be an optically active substance represented by the following formula (II'-1) or the following formula (II'-2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩とは、6-ヒドロキシヘキサン酸のアルカリ金属塩、6-ヒドロキシヘキサン酸のアルカリ土類金属塩又は6-ヒドロキシヘキサン酸の四級アンモニウム塩のことを意味する。本明細書では、6-ヒドロキシヘキサン酸のアルカリ金属塩、6-ヒドロキシヘキサン酸のアルカリ土類金属塩又は6-ヒドロキシヘキサン酸の四級アンモニウム塩を総称して、6-ヒドロキシヘキサン酸塩と称する場合がある。 The alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid is an alkali metal salt of 6-hydroxyhexanoic acid, alkaline earth metal salt of 6-hydroxyhexanoic acid or 6-hydroxyhexanoic acid. It means the quaternary ammonium salt of. In the present specification, the alkali metal salt of 6-hydroxyhexanoic acid, the alkaline earth metal salt of 6-hydroxyhexanoic acid, or the quaternary ammonium salt of 6-hydroxyhexanoic acid are collectively referred to as 6-hydroxyhexanoate. In some cases.
 6-ヒドロキシヘキサン酸塩は、市販品を用いるか、又は、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と、を水系溶媒中で反応させることで得ることができる。ここで、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンは、市販品を用いることができる。6-ヒドロキシヘキサン酸エステルとしては以下に限定されないが、例えば、6-ヒドロキシヘキサン酸アルキルエステル、6-ヒドロキシヘキサン酸アリールエステル、6-ヒドロキシヘキサン酸アルキルアリールエステル、6-ヒドロキシヘキサン酸アリールアルキルエステル、6-ヒドロキシヘキサン酸シクロアルキルエステル、6-ヒドロキシヘキサン酸アルコキシアルキルエステル、6-ヒドロキシヘキサン酸シリルオキシアルキルエステル、6-ヒドロキシヘキサン酸カルボキシルアルキルエステル、6-ヒドロキシヘキサン酸シリルエステルが挙げられる。より具体的には、6-ヒドロキシヘキサン酸メチル、6-ヒドロキシヘキサン酸エチル、6-ヒドロキシヘキサン酸ベンジル、6-ヒドロキシヘキサン酸(5-カルボキシルペンチル)、6-ヒドロキシヘキサン酸フェニル等が挙げられる。 As the 6-hydroxyhexanoate, a commercially available product is used, or 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate. , Alkali metal alkoxide, alkaline earth metal hydroxide and quaternary ammonium hydroxide can be obtained by reacting with a base selected from the group in an aqueous solvent. Here, as 6-hydroxycaproic acid, 6-hydroxycaproic acid ester or ε-caprolactone, commercially available products can be used. The 6-hydroxyhexanoic acid ester is not limited to the following, and for example, 6-hydroxyhexanoic acid alkyl ester, 6-hydroxyhexanoic acid aryl ester, 6-hydroxyhexanoic acid alkylaryl ester, 6-hydroxyhexanoic acid arylalkyl ester, Examples thereof include 6-hydroxyhexanoic acid cycloalkyl ester, 6-hydroxyhexanoic acid alkoxyalkyl ester, 6-hydroxyhexanoic acid silyloxyalkyl ester, 6-hydroxyhexanoic acid carboxylalkyl ester and 6-hydroxyhexanoic acid silyl ester. More specifically, methyl 6-hydroxyhexanoate, ethyl 6-hydroxyhexanoate, benzyl 6-hydroxyhexanoate, 6-hydroxyhexanoic acid (5-carboxypentyl), phenyl 6-hydroxyhexanoate and the like can be mentioned.
 6-ヒドロキシヘキサン酸のアルカリ金属塩としては、6-ヒドロキシヘキサン酸リチウム、6-ヒドロキシヘキサン酸ナトリウム、6-ヒドロキシヘキサン酸カリウム、6-ヒドロキシヘキサン酸ルビジウム、6-ヒドロキシヘキサン酸セシウム又は6-ヒドロキシヘキサン酸フランシウムが挙げられる。 Examples of the alkali metal salt of 6-hydroxyhexanoic acid include lithium 6-hydroxyhexanoate, sodium 6-hydroxyhexanoate, potassium 6-hydroxyhexanoate, rubidium 6-hydroxyhexanoate, cesium 6-hydroxyhexanoate or 6-hydroxy. Francium hexanoate can be mentioned.
 6-ヒドロキシヘキサン酸のアルカリ土類金属塩としては、6-ヒドロキシヘキサン酸マグネシウム、6-ヒドロキシヘキサン酸カルシウム、6-ヒドロキシヘキサン酸ストロンチウム、6-ヒドロキシヘキサン酸バリウム又は6-ヒドロキシヘキサン酸ラジウムが挙げられる。 Examples of the alkaline earth metal salt of 6-hydroxyhexanoic acid include magnesium 6-hydroxyhexanoate, calcium 6-hydroxyhexanoate, strontium 6-hydroxyhexanoate, barium 6-hydroxyhexanoate or radium 6-hydroxyhexanoate. Be done.
 6-ヒドロキシヘキサン酸の四級アンモニウム塩としては、以下に限定されないが、例えば、6-ヒドロキシヘキサン酸ベンジルトリメチルアンモニウム、6-ヒドロキシヘキサン酸ベンジルジメチルテトラデシルアンモニウム、6-ヒドロキシヘキサン酸ベンジルトリエチルアンモニウム、6-ヒドロキシヘキサン酸ベンジルトリブチルアンモニウム、6-ヒドロキシヘキサン酸トリエチルメチルアンモニウム、6-ヒドロキシヘキサン酸トリブチルメチルアンモニウム、6-ヒドロキシヘキサン酸テトラメチルアンモニウム、6-ヒドロキシヘキサン酸テトラエチルアンモニウム、6-ヒドロキシヘキサン酸テトラプロピルアンモニウム、6-ヒドロキシヘキサン酸テトラブチルアンモニウム、6-ヒドロキシヘキサン酸テトラオクチルアンモニウム、6-ヒドロキシヘキサン酸ベンジルシンコニジニウム、6-ヒドロキシヘキサン酸ベンジルシンコニニウム、6-ヒドロキシヘキサン酸ベンジルキニジニウム又は6-ヒドロキシヘキサン酸ベンジルキニニウムが挙げられる。 The quaternary ammonium salt of 6-hydroxyhexanoic acid is not limited to the following, and includes, for example, benzyltrimethylammonium 6-hydroxyhexanoate, benzyldimethyltetradecylammonium 6-hydroxyhexanoate, benzyltriethylammonium 6-hydroxyhexanoate, and the like. Benzyltributylammonium 6-hydroxyhexanoate, triethylmethylammonium 6-hydroxyhexanoate, tributylmethylammonium 6-hydroxyhexanoate, tetramethylammonium 6-hydroxyhexanoate, tetraethylammonium 6-hydroxyhexanoate, tetra-hydroxyhexanoate 6-hydroxyhexanoate Propylammonium, tetrabutylammonium 6-hydroxyhexanoate, tetraoctylammonium 6-hydroxyhexanoate, benzylsinconidinium 6-hydroxyhexanoate, benzylcinconinium 6-hydroxyhexanoate, benzylkinidinium 6-hydroxyhexanoate Alternatively, benzylkininium 6-hydroxyhexanoate can be mentioned.
 好ましい実施形態では、上記の6-ヒドロキシヘキサン酸塩は、6-ヒドロキシヘキサン酸のアルカリ金属塩であってよく、例えば、6-ヒドロキシヘキサン酸リチウム、6-ヒドロキシヘキサン酸ナトリウム、6-ヒドロキシヘキサン酸カリウム又は6-ヒドロキシヘキサン酸セシウムであってよい。 In a preferred embodiment, the 6-hydroxycaproate may be an alkali metal salt of 6-hydroxycaproic acid, eg, lithium 6-hydroxycaproate, sodium 6-hydroxycaproate, 6-hydroxycaproic acid. It may be potassium or cesium 6-hydroxyhexanoate.
 6-ヒドロキシヘキサン酸塩のモル当量としては、式(I)で示される化合物又はその塩に対して1~10モル当量が好ましく、1~2モル当量がより好ましい。 The molar equivalent of 6-hydroxyhexanoate is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
 アミド化反応に用いる脱水縮合剤としては、特に制限されないが、例えば、トリアジン型脱水縮合剤、ウロニウム型脱水縮合剤又はカルボジイミド型脱水縮合剤が挙げられる。脱水縮合剤としてカルボジイミド型脱水縮合剤を用いる場合、添加剤と組み合わせて用いてもよい。脱水縮合剤は、遊離体又は塩の形態であってよく、好ましくは塩の形態である。 The dehydration condensate used in the amidation reaction is not particularly limited, and examples thereof include a triazine type dehydration condensate, a uronium type dehydration condensate, and a carbodiimide type dehydration condensate. When a carbodiimide type dehydration condensate is used as the dehydration condensate, it may be used in combination with an additive. The dehydration condensate may be in the form of a free form or a salt, preferably in the form of a salt.
 トリアジン型脱水縮合剤は、トリアジンの、炭素原子上の少なくとも1つの水素原子が、四級アンモニウム又はハロゲン原子等の脱離可能な官能基で置換された構造を有する化合物(例えば、遊離体又は塩)を意味する。トリアジン型脱水縮合剤としては、例えば、文献(Kunishimaら、Tetrahedron、2001年,第57巻、p.1551-1558;Kunishimaら、Chemistry A European Journal、2012年、第18巻、p.15856-15867;日本国特許第4349749号明細書、特開2008-214473号公報、特開2016-141618号公報、特開2016-141619号公報、特開2017-149876号公報等)に記載された脱水縮合剤を用いることができる。より具体的には、トリアジン型脱水縮合剤は、トリアジン型四級モルホリニウム、例えば、4-[4,6-ビス(2,6-キシリル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、4-[4-メトキシ-6-(2,6-キシリル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、4-(4-t-ブチル-6-メトキシ-1,3,5-トリアジン-2-イル)4-メトキシモルホリニウム、4-(4,6-ジ-t-ブチル-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム、N-[4-メトキシ-6-(N’-フェニルアセトアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、N-[4-メトキシ-6-(N’-メチルアセトアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、N-[4-メトキシ-6-(N’-フェニルベンズアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、N-[4-メトキシ-6-(N’-メチルベンズアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、N-[4-メトキシ-6-(2,5-ジオキソピロリジル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、N-[4-メトキシ-6-(2-ピペリドン-1-イル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウム、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム若しくは4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム又はその誘導体が挙げられる。誘導体の例としては、ペルクロラート、トリフルオロメタンスルホナート、塩化物又はヘキサフルオロホスファート等の塩が挙げられる。トリアジン型脱水縮合剤は、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム塩であってよい。 A triazine-type dehydration condensing agent is a compound having a structure in which at least one hydrogen atom on a carbon atom of triazine is replaced with a desorbable functional group such as a quaternary ammonium or a halogen atom (for example, a free form or a salt). ) Means. Examples of the triazine-type dehydration condensing agent include the literature (Kunishima et al., Tetrahedron, 2001, Vol. 57, p.1551-1558; Kunishima et al., Chemistry A European Journal, 2012, Vol. 18, p.1556-15867. The dehydration condensing agent described in Japanese Patent No. 4349479, Japanese Patent Application Laid-Open No. 2008-214473, Japanese Patent Application Laid-Open No. 2016-141618, Japanese Patent Application Laid-Open No. 2016-141619, Japanese Patent Application Laid-Open No. 2017-149876, etc.) Can be used. More specifically, the triazine-type dehydration-condensant is a triazine-type quaternary morpholinium, for example, 4- [4,6-bis (2,6-kisilyl) -1,3,5-triazine-2-yl]-. 4-Methylmorpholinium, 4- [4-methoxy-6- (2,6-kisilyl) -1,3,5-triazine-2-yl] -4-methylmorpholinium, 4- (4-t) -Butyl-6-methoxy-1,3,5-triazine-2-yl) 4-methoxymorpholinium, 4- (4,6-di-t-butyl-1,3,5-triazine-2-yl) ) -4-Methylmorpholinium, N- [4-methoxy-6- (N'-phenylacetamide) -1,3,5-triazine-2-yl] -4-methylmorpholinium, N- [4 -Methoxy-6- (N'-methylacetamide) -1,3,5-triazine-2-yl] -4-methylmorpholinium, N- [4-methoxy-6- (N'-phenylbenzamide)- 1,3,5-Triazine-2-yl] -4-methylmorpholinium, N- [4-methoxy-6- (N'-methylbenzamide) -1,3,5-triazine-2-yl]- 4-Methylmorpholinium, N- [4-methoxy-6- (2,5-dioxopyrrolidyl) -1,3,5-triazine-2-yl] -4-methylmorpholinium, N- [ 4-methoxy-6- (2-piperidone-1-yl) -1,3,5-triazine-2-yl] -4-methylmorpholinium, 4- (4,6-dimethoxy-1,3,5 -Triazine-2-yl) -4-methylmorpholinium or 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium or a derivative thereof can be mentioned. Examples of derivatives include salts such as perchlorate, trifluoromethanesulfonate, chloride or hexafluorophosphate. The triazine-type dehydration condensing agent may be, for example, a 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium salt.
 トリアジン型脱水縮合剤であるトリアジン型四級モルホリニウムの誘導体としては、例えば、4-[4,6-ビス(2,6-キシリル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムペルクロラート、4-[4-メトキシ-6-(2,6-キシリル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムペルクロラート、4-(4-t-ブチル-6-メトキシ-1,3,5-トリアジン-2-イル)4-メトキシモルホリニウムトリフルオロメタンスルホナート、4-(4,6-ジ-t-ブチル-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド、N-[4-メトキシ-6-(N’-フェニルアセトアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムペルクロラート、N-[4-メトキシ-6-(N’-メチルアセトアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムペルクロラート、N-[4-メトキシ-6-(N’-フェニルベンズアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムクロリド、N-[4-メトキシ-6-(N’-メチルベンズアミド)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムクロリド、N-[4-メトキシ-6-(2,5-ジオキソピロリジル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムクロリド、N-[4-メトキシ-6-(2-ピペリドン-1-イル)-1,3,5-トリアジン-2-イル]-4-メチルモルホリニウムクロリド、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド又は4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムトリフルオロメタンスルホナートが好ましく、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(以下、DMT-MM)がより好ましい。 Examples of the derivative of triazine-type quaternary morpholinium, which is a triazine-type dehydration condensant, include 4- [4,6-bis (2,6-kisilyl) -1,3,5-triazine-2-yl] -4- Methylmorpholinium perchlorate, 4- [4-methoxy-6- (2,6-kisilyl) -1,3,5-triazine-2-yl] -4-methylmorpholinium perchlorate, 4- (4-t-butyl-6-methoxy-1,3,5-triazine-2-yl) 4-methoxymorpholinium trifluoromethanesulfonate, 4- (4,6-di-t-butyl-1,3) , 5-Triazine-2-yl) -4-methylmorpholinium chloride, N- [4-methoxy-6- (N'-phenylacetamide) -1,3,5-triazine-2-yl] -4- Methylmorpholinium perchlorate, N- [4-methoxy-6- (N'-methylacetamide) -1,3,5-triazine-2-yl] -4-methylmorpholinium perchlorate, N- [4-methoxy-6- (N'-phenylbenzamide) -1,3,5-triazine-2-yl] -4-methylmorpholinium chloride, N- [4-methoxy-6- (N'-methyl) Benzamide) -1,3,5-triazine-2-yl] -4-methylmorpholinium chloride, N- [4-methoxy-6- (2,5-dioxopyrrolidyl) -1,3,5- Triazine-2-yl] -4-methylmorpholinium chloride, N- [4-methoxy-6- (2-piperidone-1-yl) -1,3,5-triazine-2-yl] -4-methyl Morholinium chloride, 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride or 4- (4,6-dimethoxy-1,3,5- Triazine-2-yl) -4-methylmorpholinium trifluoromethanesulfonate is preferred, 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (4,6-dimethoxy-1,3,5-triazine-2-yl). Hereinafter, DMT-MM) is more preferable.
 ウロニウム型脱水縮合剤の一つの例としては、ベンゾトリアゾリルウロニウム型脱水縮合剤が挙げられる。ベンゾトリアゾリルウロニウム型脱水縮合剤は、1-ヒドロキシベンゾトリアゾール構造にテトラアルキルアミジニウム構造が付加した化合物を意味する。アミジニウム構造の二つの窒素原子上の4つの置換基はアミド化反応を阻害しないものであれば特に制限はなく、例えば、窒素原子とともに環を形成していてもよい。上記1-ヒドロキシベンゾトリアゾール構造は、アミド化反応を阻害しないものであれば特に制限はなく、例えば、ベンゼン環上に置換基を有していてもよいし、ベンゼン環中の一部の炭素原子が窒素原子に置換されていてもよい。 An example of a uronium-type dehydration-condensing agent is a benzotriazolyl-uronium-type dehydration-condensation agent. The benzotriazolyluronium-type dehydration condensing agent means a compound in which a tetraalkylamidinium structure is added to a 1-hydroxybenzotriazole structure. The four substituents on the two nitrogen atoms of the amidinium structure are not particularly limited as long as they do not inhibit the amidation reaction, and may form a ring together with the nitrogen atom, for example. The 1-hydroxybenzotriazole structure is not particularly limited as long as it does not inhibit the amidation reaction. For example, it may have a substituent on the benzene ring, or a part of carbon atoms in the benzene ring. May be replaced with a nitrogen atom.
 ベンゾトリアゾリルウロニウム型脱水縮合剤は、一般にO-アシル型(ウロニウム型)とN-アシル型(アミニウム型)の2つの形態をとることが文献(Carpinoら、Angewandte Chemie International Edition、2002年、第41巻、p.441-445.)で知られているが、本明細書において、ベンゾトリアゾリルウロニウム型脱水縮合剤は、O-アシル型(ウロニウム型)とN-アシル型(アミニウム型)の両方の形態を包含する。 The benzotriazolyl uronium type dehydration condensing agent generally takes two forms, an O-acyl type (uronium type) and an N-acyl type (aminium type) (Carpino et al., Angewandte Chemie International Edition, 2002). , Vol. 41, p. 441-445.), In the present specification, the benzotriazolyl uronium type dehydration condensate is an O-acyl type (uronium type) and an N-acyl type (Uronium type). Includes both forms of (aminium type).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ベンゾトリアゾリルウロニウム型脱水縮合剤としては、例えば、文献(Knorrら、Tetrahedron Letters、1989年、第30巻、p.1927-1930;Carpinoら、Organic Letters、2001年、第3巻、p.2793-2795;EL-Fahamら,The Journal of Organic Chemistry、2008年、第73巻、p.2731-2737;国際公開第1994/007910号、国際公開第2002/094822号等)に記載された脱水縮合剤を用いることができる。より具体的には、ベンゾトリアゾリルウロニウム型脱水縮合剤は、ベンゾトリアゾリルウロニウム、例えば、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム若しくは[(ベンゾトリアゾール-1-イルオキシ)ピペリジン-1-イルメチレン]ピペリジニウム又はその誘導体、或いは、アザベンゾトリアゾリルウロニウム、例えば、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラエチルウロニウム、[(7-アザベンゾトリアゾール-1-イルオキシ)-4-モルホリノメチレン]ジメチルアンモニウム、[(7-アザベンゾトリアゾール-1-イルオキシ)ピペリジン-1-イルメチレン]ピペリジニウム、[(7-アザベンゾトリアゾール-1-イルオキシ)ピロリジン-1-イルメチレン]ピロリジニウム又はその誘導体が挙げられる。誘導体の例としては、ペルクロラート、トリフルオロメタンスルホナート、塩化物又はヘキサフルオロホスファート等の塩が挙げられる。ベンゾトリアゾリルウロニウム型脱水縮合剤は、例えば、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム塩やO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム塩であってもよい。 Examples of the benzotriazolyluronium type dehydration condensate include the literature (Knorr et al., Tetrahedron Letters, 1989, Vol. 30, p. 1927-1930; Carpino et al., Organic Letters, 2001, Vol. 3, p. .2793-2795; EL-Faham et al., The Journal of Organic Chemistry, 2008, Vol. 73, p.2731-2737; International Publication No. 1994/007910, International Publication No. 2002/094822, etc.) A dehydration condensing agent can be used. More specifically, the benzotriazolyluronium-type dehydration condensing agent is a benzotriazolyluronium, for example, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyl. Uronium or [(benzotriazole-1-yloxy) piperidine-1-ylmethylene] piperidinium or a derivative thereof, or azabenzotriazolyluronium, for example, O- (7-azabenzotriazole-1-yl) -N , N, N', N'-tetramethyluronium, O- (7-azabenzotriazole-1-yl) -N, N, N', N'-tetraethyluronium, [(7-azabenzotriazole- 1-Iloxy) -4-morpholinomethylene] dimethylammonium, [(7-azabenzotriazole-1-yloxy) piperidine-1-ylmethylene] piperidinium, [(7-azabenzotriazole-1-yloxy) pyrrolidine-1-ylmethylene ] Pyrrolidineium or a derivative thereof can be mentioned. Examples of derivatives include salts such as perchlorate, trifluoromethanesulfonate, chloride or hexafluorophosphate. Benzotriazolyluronium-type dehydration condensing agents include, for example, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium salt and O- (7-azabenzotriazole-). 1-yl) -N, N, N', N'-tetramethyluronium salt may be used.
 ベンゾトリアゾリルウロニウム型脱水縮合剤の好ましい例としては、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート又はO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート(以下、HATU)が挙げられる。 Preferred examples of the benzotriazolyluronium type dehydration condensing agent are O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate or O- (7). -Azabenzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate (hereinafter referred to as HATU) can be mentioned.
 ウロニウム型脱水縮合剤の別の例としては、脱離基にテトラアルキルアミジニウム構造が付加した化合物が挙げられる。アミジニウム構造の二つの窒素原子上の4つの置換基はアミド化反応を阻害しないものであれば特に制限はなく、例えば、窒素原子とともに環を形成していてもよい。上記脱離基はアミド化反応を阻害しないものであれば特に制限はなく、例えば、N-ヒドロキシコハク酸イミド、エチル(ヒドロキシイミノ)シアノアセタート、N-ヒドロキシフタルイミド、3-ヒドロキシ-4-オキソ-3,4-ジヒドロ-1,2,3-ベンゾトリアジン、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボン酸イミド、1-ヒドロキシ-1,2,3-トリアゾール-4-カルボン酸エチル、2-ヒドロキシピリジン-N-オキシド又はハロゲン原子が挙げられる。上記ウロニウム型脱水縮合剤としては、例えば、O-(1,2-ジヒドロ-2-オキソ-1-ピリジル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボレート、O-(3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアジン-3-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボレート、クロロ-N,N,N’,N’-テトラメチルホルムアミジニウムヘキサフルオロホスファート、フルオロ-N,N,N’,N’-テトラメチルホルムアミジニウムヘキサフルオロホスファート、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロホスファート又はN,N,N’,N’-テトラメチル-O-(N-スクシンイミジル)ウロニウムヘキサフルオロホスファートが挙げられる。 Another example of the uronium-type dehydration condensing agent is a compound in which a tetraalkylamidinium structure is added to a leaving group. The four substituents on the two nitrogen atoms of the amidinium structure are not particularly limited as long as they do not inhibit the amidation reaction, and may form a ring together with the nitrogen atom, for example. The leaving group is not particularly limited as long as it does not inhibit the amidation reaction. For example, N-hydroxysuccinimide, ethyl (hydroxyimino) cyanoacetate, N-hydroxyphthalimide, 3-hydroxy-4-oxo-3. , 4-Dihydro-1,2,3-benzotriazine, N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide, 1-hydroxy-1,2,3-triazole-4-carboxylate ethyl, 2- Hydroxypyridine-N-oxide or halogen atom can be mentioned. Examples of the uronium-type dehydration condensing agent include O- (1,2-dihydro-2-oxo-1-pyridyl) -N, N, N', N'-tetramethyluronium tetrafluoroborate, O- ( 3,4-dihydro-4-oxo-1,2,3-benzotriazine-3-yl) -N, N, N', N'-tetramethyluronium tetrafluoroborate, chloro-N, N, N' , N'-Tetramethylform Amidinium Hexafluoroborate, Fluoro-N, N, N', N'-Tetramethylform Amidinium Hexafluoroborate, (1-cyano-2-ethoxy-2-oxoethylideneamino Oxy) dimethylaminomorpholinocarbenium hexafluoroborate or N, N, N', N'-tetramethyl-O- (N-succinimidyl) uronium hexafluoroborate can be mentioned.
 カルボジイミド型脱水縮合剤は、N=C=Nで表されるカルボジイミド構造を有する化合物を意味する。N上の置換基はアミド化反応を阻害しないものであれば、特に制限はない。カルボジイミド型脱水縮合剤としては、例えば、N,N’-ジメチルカルボジイミド、N,N’-ジエチルカルボジイミド、N,N’-ジプロピルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、N-tert-ブチル-N’-メチルカルボジイミド、N,N’-ジシクロヘキシルカルボジイミド、N-ベンジル-N’-メチルカルボジイミド、N-ベンジル-N’-エチルカルボジイミド、N-ベンジル-N’-プロピルカルボジイミド、N-(3’-ジメチルアミノプロピル)-N’-エチルカルボジイミド、N,N’-ビス(3’-ジメチルアミノプロピル)カルボジイミド、3-(エチルイミノメチリデンアミノ)プロピルトリメチルアンモニウム若しくは3-(イソプロピルイミノメチリデンアミノ)プロピルトリメチルアンモニウム等のカルボジイミド誘導体又はその塩(酸付加塩を含む)を用いることができる。塩の例としては、ペルクロラート、トリフルオロメタンスルホナート、塩化物、ヘキサフルオロホスファート、塩酸塩、臭素酸塩、トリフルオロメタンスルホン酸塩又は過塩素酸塩等が挙げられる。三級アミン構造又は四級アンモニウム構造を含むカルボジイミド誘導体がより好ましく、例えば、N-(3’-ジメチルアミノプロピル)-N’-エチルカルボジイミド若しくはその酸付加塩等の塩、N,N’-ビス(3’-ジメチルアミノプロピル)カルボジイミド若しくはその酸付加塩等の塩、3-(エチルイミノメチリデンアミノ)プロピルトリメチルアンモニウム塩又は3-(イソプロピルイミノメチリデンアミノ)プロピルトリメチルアンモニウム塩が挙げられる。特に好ましいカルボジイミド型脱水縮合剤の例は、N-(3’-ジメチルアミノプロピル)-N’-エチルカルボジイミド塩酸塩(以下、EDCI塩酸塩)である。 The carbodiimide type dehydration condensing agent means a compound having a carbodiimide structure represented by N = C = N. The substituent on N is not particularly limited as long as it does not inhibit the amidation reaction. Examples of the carbodiimide-type dehydration condensing agent include N, N'-dimethylcarbodiimide, N, N'-diethylcarbodiimide, N, N'-dipropylcarbodiimide, N, N'-diisopropylcarbodiimide, and N-tert-butyl-N. '-Methylcarbodiimide, N, N'-dicyclohexylcarbodiimide, N-benzyl-N'-methylcarbodiimide, N-benzyl-N'-ethylcarbodiimide, N-benzyl-N'-propylcarbodiimide, N- (3'-dimethyl Aminopropyl) -N'-ethylcarbodiimide, N, N'-bis (3'-dimethylaminopropyl) carbodiimide, 3- (ethyliminomethylideneamino) propyltrimethylammonium or 3- (isopropyliminomethylideneamino) propyltrimethyl A carbodiimide derivative such as ammonium or a salt thereof (including an acid addition salt) can be used. Examples of salts include perchlorate, trifluoromethanesulfonate, chloride, hexafluorophosphate, hydrochloride, bromate, trifluoromethanesulfonate, perchlorate and the like. A carbodiimide derivative containing a tertiary amine structure or a quaternary ammonium structure is more preferable, for example, a salt such as N- (3'-dimethylaminopropyl) -N'-ethylcarbodiimide or an acid addition salt thereof, N, N'-bis. Examples thereof include salts such as (3'-dimethylaminopropyl) carbodiimide or an acid addition salt thereof, 3- (ethyliminomethylideneamino) propyltrimethylammonium salt or 3- (isopropyliminomethylideneamino) propyltrimethylammonium salt. A particularly preferred example of a carbodiimide-type dehydration condensing agent is N- (3'-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride (hereinafter, EDCI hydrochloride).
 カルボジイミド型脱水縮合剤と組み合わせて用いられる添加剤としては、例えば、1-ヒドロキシベンゾトリアゾール(以下、HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(以下、HOAt)、N-ヒドロキシコハク酸イミド、エチル(ヒドロキシイミノ)シアノアセタート、N-ヒドロキシフタルイミド、3-ヒドロキシ-4-オキソ-3,4-ジヒドロ-1,2,3-ベンゾトリアジン、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボン酸イミド、1-ヒドロキシ-1,2,3-トリアゾール-4-カルボン酸エチル又は2-ヒドロキシピリジン-N-オキシドが挙げられる。 Examples of the additive used in combination with the carbodiimide type dehydration condensing agent include 1-hydroxybenzotriazole (hereinafter, HOBt), 1-hydroxy-7-azabenzotriazole (hereinafter, HOAt), N-hydroxysuccinimide, and the like. Ethyl (hydroxyimino) cyanoacetate, N-hydroxyphthalimide, 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine, N-hydroxy-5-norbornene-2,3-dicarboxylic acidimide , 1-Hydroxy-1,2,3-triazole-4-carboxylate ethyl or 2-hydroxypyridine-N-oxide.
 上記脱水縮合剤及び上記添加剤は、それぞれ、市販品を用いてもよいし公知の方法又はそれに準じた方法で合成してもよい。 The dehydration condensation agent and the additive may be commercially available products, or may be synthesized by a known method or a method similar thereto.
 脱水縮合剤のモル当量としては、式(I)で示される化合物又はその塩に対して1~10モル当量が好ましく、1~2モル当量がより好ましい。また、添加剤のモル当量としては、式(I)で示される化合物又はその塩に対して0.05~10モル当量が好ましく、0.2~2モル当量がより好ましい。 The molar equivalent of the dehydration condensing agent is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof. The molar equivalent of the additive is preferably 0.05 to 10 molar equivalents, more preferably 0.2 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
 アミド化反応に用いる溶媒としては、用いる試薬の種類などに応じて適宜選択されるが、反応を阻害しないものであれば特に制限はなく、例えば、非親水性溶媒、親水性溶媒又はそれらの混合物が挙げられるが、含水溶媒が好ましい。溶媒は1種類を用いてもよいし、2種類以上を組み合わせて用いることもできる。溶媒を2種類以上組み合わせて用いる場合は、それらが互いに混ざり合わずに不均一になってもよいし、混ざり合って均一になってもよい。溶媒の使用量は、式(I)で示される化合物又はその塩に対して、1~100重量倍が好ましい。 The solvent used for the amidation reaction is appropriately selected depending on the type of reagent used and the like, but is not particularly limited as long as it does not inhibit the reaction. For example, a non-hydrophilic solvent, a hydrophilic solvent or a mixture thereof. However, a water-containing solvent is preferable. One type of solvent may be used, or two or more types may be used in combination. When two or more kinds of solvents are used in combination, they may not be mixed with each other and may be non-uniform, or they may be mixed and become uniform. The amount of the solvent used is preferably 1 to 100 times by weight with respect to the compound represented by the formula (I) or a salt thereof.
 非親水性溶媒とは、水と任意の割合で混ざり合わない溶媒を意味する。非親水性溶媒としては以下に限定されないが、例えば、ヘキサン、ヘプタン、トルエン、キシレン、ジクロロメタン、クロロホルム、ジクロロエタン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル又はプロピオニトリルが挙げられる。 The non-hydrophilic solvent means a solvent that is immiscible with water at an arbitrary ratio. Non-hydrophilic solvents are not limited to, for example, hexane, heptane, toluene, xylene, dichloromethane, chloroform, dichloroethane, methyl tert-butyl ether, cyclopentyl methyl ether, diethyl ether, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, acetic acid. Examples include ethyl or propionitrile.
 親水性溶媒とは、水と任意の割合で混ざり合う溶媒及び水を意味する。親水性溶媒としては以下に限定されないが、例えば、水、メタノール、エタノール、テトラヒドロフラン、1,4-ジオキサン、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、アセトニトリル、ジメチルスルホキシド又はスルホランが挙げられる。 The hydrophilic solvent means a solvent and water that are mixed with water at an arbitrary ratio. The hydrophilic solvent is not limited to the following, but for example, water, methanol, ethanol, tetrahydrofuran, 1,4-dioxane, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1, Examples thereof include 3-dimethyl-2-imidazolidinone, N, N'-dimethylpropyleneurea, acetonitrile, dimethyl sulfoxide or sulfolane.
 含水溶媒とは、水と有機溶媒(非親水性溶媒や水以外の親水性溶媒)とを組み合わせた溶媒を意味し、それらが互いに混ざり合わずに不均一になってもよいし、混ざり合って均一になってもよい。有機溶媒は1種類を用いてもよいし、2種類以上を組み合わせて用いることもできる。含水溶媒としては以下に限定されないが、水と水以外の親水性溶媒との組み合わせが挙げられ、例えば、水とメタノールとの組み合わせ、水とエタノールとの組み合わせ、水とN,N-ジメチルホルムアミドとの組み合わせ又は水とジメチルスルホキシドとの組み合わせが好適である。溶媒の組成比率は反応に合わせて適宜選択できる。 The hydrous solvent means a solvent in which water and an organic solvent (a non-hydrophilic solvent or a hydrophilic solvent other than water) are combined, and they may not be mixed with each other and may be non-uniform, or they may be mixed with each other. It may be uniform. One kind of organic solvent may be used, or two or more kinds may be used in combination. The water-containing solvent is not limited to the following, and examples thereof include a combination of water and a hydrophilic solvent other than water, for example, a combination of water and methanol, a combination of water and ethanol, and water and N, N-dimethylformamide. Or a combination of water and dimethyl sulfoxide is preferred. The composition ratio of the solvent can be appropriately selected according to the reaction.
 アミド化反応には、任意成分として三級アミンを添加してもよく、当該三級アミンとしては、以下に限定されないが、例えば、トリエチルアミン又はジイソプロピルエチルアミンが挙げられる。三級アミンのモル当量としては、式(I)で示される化合物又はその塩に対して0.05~10モル当量が好ましく、1~2モル当量がより好ましい。 A tertiary amine may be added as an optional component to the amidation reaction, and the tertiary amine is not limited to the following, and examples thereof include triethylamine and diisopropylethylamine. The molar equivalent of the tertiary amine is preferably 0.05 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (I) or a salt thereof.
 アミド化反応の反応時間は、適時設定することができるが、典型的には10分以上、例えば、10分間~24時間であってよい。 The reaction time of the amidation reaction can be set in a timely manner, but is typically 10 minutes or more, for example, 10 minutes to 24 hours.
 アミド化反応の反応温度は、適時設定することができ、例えば、0~100℃の範囲であってよく、通常、室温(約10℃~約35℃)が好ましい。 The reaction temperature of the amidation reaction can be set in a timely manner, and may be in the range of 0 to 100 ° C., and is usually preferably room temperature (about 10 ° C. to about 35 ° C.).
 アミド化反応において、各試薬の添加順序に特に制限はなく、例えば、溶媒に、式(I)で示される化合物若しくはその塩、6-ヒドロキシヘキサン酸塩及び脱水縮合剤を順次加える方法、式(I)で示される化合物若しくはその塩に、溶媒、6-ヒドロキシヘキサン酸塩及び脱水縮合剤を順次加える方法、溶媒に、式(I)で示される化合物若しくはその塩、6-ヒドロキシヘキサン酸塩及び脱水縮合剤を同時に加える方法、式(I)で示される化合物若しくはその塩、6-ヒドロキシヘキサン酸塩及び脱水縮合剤の混合物に、溶媒を加える方法、溶媒と混合した式(I)で示される化合物若しくはその塩に、溶媒と混合した6-ヒドロキシヘキサン酸塩及び溶媒と混合した脱水縮合剤を順次混合する方法、又は、溶媒と混合した式(I)で示される化合物若しくはその塩に、溶媒と混合した6-ヒドロキシヘキサン酸塩及び溶媒と混合した脱水縮合剤を同時に混合する方法が挙げられる。通常、式(I)で示される化合物若しくはその塩に、溶媒、6-ヒドロキシヘキサン酸塩及び脱水縮合剤を順次加える方法が好ましい。 In the amidation reaction, the order of addition of each reagent is not particularly limited, and for example, a method of sequentially adding a compound represented by the formula (I) or a salt thereof, a 6-hydroxyhexanoate and a dehydration condensing agent to a solvent, a formula ( A method of sequentially adding a solvent, 6-hydroxyhexanoate and a dehydration condensing agent to the compound represented by I) or a salt thereof, and to the solvent the compound represented by the formula (I) or a salt thereof, 6-hydroxyhexanelate and A method of adding a dehydration condensing agent at the same time, a method of adding a solvent to a mixture of a compound represented by the formula (I) or a salt thereof, a 6-hydroxyhexanoate and a dehydration condensing agent, and a method represented by a formula (I) mixed with a solvent. A method of sequentially mixing a 6-hydroxyhexanoate mixed with a solvent and a dehydration condensing agent mixed with a solvent with the compound or a salt thereof, or a solvent mixed with a compound represented by the formula (I) represented by the formula (I) or a salt thereof. A method of simultaneously mixing the 6-hydroxyhexanoate mixed with and the dehydration condensing agent mixed with the solvent can be mentioned. Usually, a method of sequentially adding a solvent, a 6-hydroxycaproate and a dehydration condensing agent to the compound represented by the formula (I) or a salt thereof is preferable.
 上記脱水縮合剤の好ましい態様と上記溶媒の好ましい態様とは適宜組み合わせることができる。例えば、トリアジン型脱水縮合剤と親水性溶媒との組み合わせ、トリアジン型脱水縮合剤と含水溶媒との組み合わせ、ウロニウム型脱水縮合剤と親水性溶媒との組み合わせ、ウロニウム型脱水縮合剤と含水溶媒との組み合わせ、カルボジイミド型脱水縮合剤と親水性溶媒との組み合わせ又はカルボジイミド型脱水縮合剤及び添加剤と親水性溶媒との組み合わせが挙げられ、特に好ましい組み合わせの態様としては、例えば、DMT-MMとメタノールとの組み合わせ、DMT-MMとジメチルスルホキシドとの組み合わせ、DMT-MMと水及びメタノールとの組み合わせ、DMT-MMと水及びジメチルスルホキシドとの組み合わせ、HATUとジメチルスルホキシドとの組み合わせ、HATUと水及びジメチルスルホキシドとの組み合わせ、EDCI塩酸塩とジメチルスルホキシドとの組み合わせ又はEDCI塩酸塩及びHOAtとジメチルスルホキシドとの組み合わせが挙げられる。 The preferred embodiment of the dehydration condensing agent and the preferred embodiment of the solvent can be appropriately combined. For example, a combination of a triazine type dehydration condensing agent and a hydrophilic solvent, a combination of a triazine type dehydration condensing agent and a water-containing solvent, a combination of a uronium type dehydration condensing agent and a hydrophilic solvent, and a combination of a uronium type dehydration condensing agent and a water-containing solvent. Examples thereof include a combination, a combination of a carbodiimide type dehydration condensing agent and a hydrophilic solvent, or a combination of a carbodiimide type dehydration condensing agent and an additive and a hydrophilic solvent, and examples of a particularly preferable combination include, for example, DMT-MM and methanol. , DMT-MM with dimethyl sulfoxide, DMT-MM with water and methanol, DMT-MM with water and dimethyl sulfoxide, HATU with dimethyl sulfoxide, HATU with water and dimethyl sulfoxide The combination with, the combination of EDCI hydrochloride and dimethyl sulfoxide, or the combination of EDCI hydrochloride and HOAt and dimethyl sulfoxide can be mentioned.
 アミド化反応終了後は、例えば、有機層を炭酸水素ナトリウム水溶液等で洗浄した後、有機層を濃縮することにより式(II)で示される化合物を単離することができる。 After completion of the amidation reaction, for example, the organic layer can be washed with an aqueous sodium hydrogen carbonate solution or the like, and then the organic layer can be concentrated to isolate the compound represented by the formula (II).
 式(II)で示される化合物は、クロマトグラフィー等の公知の精製方法を適宜用いて精製することができる。 The compound represented by the formula (II) can be purified by appropriately using a known purification method such as chromatography.
 6-ヒドロキシヘキサン酸塩として、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と、を水系溶媒中で反応させた混合物を用いる場合、該混合物は、後処理や単離精製を行ってもよいし、後処理や単離精製をすることなく、そのまま、式(I)で示される化合物又はその塩との反応に用いてもよい。すなわち、工程1を、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と、を水系溶媒中で反応させて混合物を得る工程(以下、工程1’とも称する。)と、脱水縮合剤の存在下、式(I)で示される化合物又はその塩と、上記混合物と、を溶媒中で反応させ、式(II)で示される化合物を得る工程(以下、工程1’’とも称する。)と、してもよい。あるいは、水系溶媒に、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と、式(I)で示される化合物又はその塩と、脱水縮合剤と、を同時に加え、アミド化反応を行ってもよい。 As 6-hydroxyhexanoate, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth When a mixture obtained by reacting a base selected from the group consisting of metal hydroxide and quaternary ammonium hydroxide in an aqueous solvent is used, the mixture may be post-treated or isolated and purified. , It may be used as it is for the reaction with the compound represented by the formula (I) or a salt thereof without post-treatment or isolation and purification. That is, in step 1, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal bicarbonate, alkali metal alkoxide, alkaline earth metal water. A step of reacting a base selected from the group consisting of an oxide and a quaternary ammonium hydroxide in an aqueous solvent to obtain a mixture (hereinafter, also referred to as step 1'), and in the presence of a dehydration condensing agent. A step of reacting the compound represented by the formula (I) or a salt thereof with the above mixture in a solvent to obtain a compound represented by the formula (II) (hereinafter, also referred to as step 1 ″). May be good. Alternatively, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth metal water are added to the aqueous solvent. The amidation reaction may be carried out by simultaneously adding a base selected from the group consisting of an oxide and a quaternary ammonium hydroxide, a compound represented by the formula (I) or a salt thereof, and a dehydration condensing agent.
 上記工程1’において、各試薬の添加順序に特に制限はなく、例えば、水系溶媒に、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル若しくはε-カプロラクトン並びにアルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基を順次加える方法、水系溶媒に、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基並びに6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル若しくはε-カプロラクトンを順次加える方法、水系溶媒に、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル若しくはε-カプロラクトン並びにアルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基を同時に加える方法、又は、水系溶媒と混合した6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル若しくはε-カプロラクトンに、水系溶媒と混合したアルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基を混合する方法が挙げられる。通常、水系溶媒に、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基並びに6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル若しくはε-カプロラクトンを順次加える方法が好ましい。 In the above step 1', the order of addition of each reagent is not particularly limited. For example, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate are added to the aqueous solvent. , A method of sequentially adding a base selected from the group consisting of alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth metal hydroxide and quaternary ammonium hydroxide, alkali metal hydroxide, alkali metal to an aqueous solvent. A base selected from the group consisting of carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides, as well as 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid esters or ε. -Method of adding caprolactone sequentially, to aqueous solvent, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkali A method of simultaneously adding a base selected from the group consisting of earth metal hydroxides and quaternary ammonium hydroxides, or to 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone mixed with an aqueous solvent. , A base selected from the group consisting of alkali metal hydroxides mixed with aqueous solvents, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides. There is a method of mixing. Usually, an aqueous solvent contains a base selected from the group consisting of alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth metal hydroxide and quaternary ammonium hydroxide. A method of sequentially adding 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone is preferable.
 上記工程1’’において、各試薬の添加順序に特に制限はなく、例えば、溶媒に、脱水縮合剤、式(I)で示される化合物若しくはその塩及び上記混合物を順次加える方法、式(I)で示される化合物若しくはその塩に、溶媒、上記混合物及び脱水縮合剤を順次加える方法、溶媒に、脱水縮合剤、式(I)で示される化合物若しくはその塩及び上記混合物を同時に加える方法、溶媒と混合した脱水縮合剤に、溶媒と混合した式(I)で示される化合物若しくはその塩及び溶媒と混合した上記混合物を順次加える方法、又は、溶媒と混合した脱水縮合剤に溶媒と混合した式(I)で示される化合物若しくはその塩及び溶媒と混合した上記混合物を同時に加える方法が挙げられる。通常、式(I)で示される化合物若しくはその塩に、溶媒、上記混合物及び脱水縮合剤を順次加える方法が好ましい。 In the above step 1 ″, the order of addition of each reagent is not particularly limited, and for example, a method of sequentially adding a dehydration condensing agent, a compound represented by the formula (I) or a salt thereof, and the above mixture to a solvent, the formula (I). A method of sequentially adding a solvent, the above mixture and a dehydration condensing agent to the compound represented by (I) or a salt thereof, a method of simultaneously adding a dehydration condensing agent, a compound represented by the formula (I) or a salt thereof and the above mixture to the solvent, and a solvent. A method of sequentially adding the compound represented by the formula (I) mixed with a solvent or a salt thereof and the above mixture mixed with the solvent to the mixed dehydration condensing agent, or a formula of mixing the dehydration condensing agent mixed with the solvent with the solvent ( Examples thereof include a method of simultaneously adding the compound represented by I) or a salt thereof and the above-mentioned mixture mixed with a solvent. Usually, a method of sequentially adding a solvent, the above mixture and a dehydration condensing agent to the compound represented by the formula (I) or a salt thereof is preferable.
 アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム又は水酸化フランシウムが挙げられる。 Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide or francium hydroxide.
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム又は炭酸フランシウムが挙げられる。 Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate or franchium carbonate.
 アルカリ金属炭酸水素塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム又は炭酸水素フランシウムが挙げられる。 Examples of the alkali metal bicarbonate include lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, rubidium hydrogencarbonate, cesium hydrogencarbonate, and franchium hydrogencarbonate.
 アルカリ金属アルコキシドとしては、以下に限定されないが、例えば、ナトリウムメトキシド、ナトリウムエトキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド又はカリウムtert-ブトキシドが挙げられる。 Examples of the alkali metal alkoxide include, but are not limited to, sodium methoxide, sodium ethoxide, lithium tert-butoxide, sodium tert-butoxide or potassium tert-butoxide.
 アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム又は水酸化ラジウムが挙げられる。 Examples of alkaline earth metal hydroxides include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, and radium hydroxide.
 四級アンモニウム水酸化物としては、以下に限定されないが、例えば、水酸化ベンジルトリメチルアンモニウム、水酸化ベンジルジメチルテトラデシルアンモニウム、水酸化ベンジルトリエチルアンモニウム、水酸化ベンジルトリブチルアンモニウム、水酸化トリエチルメチルアンモニウム、水酸化トリブチルメチルアンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラオクチルアンモニウム、水酸化ベンジルシンコニジニウム、水酸化ベンジルシンコニニウム、水酸化ベンジルキニジニウム又は水酸化ベンジルキニニウムが挙げられる。 The quaternary ammonium hydroxide is not limited to the following, and includes, for example, benzyltrimethylammonium hydroxide, benzyldimethyltetradecylammonium hydroxide, benzyltriethylammonium hydroxide, benzyltributylammonium hydroxide, triethylmethylammonium hydroxide, and water. Tributylmethylammonium oxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetraoctylammonium hydroxide, benzylcinconidinium hydroxide, benzylcinconinium hydroxide, hydroxide Benzylkinidinium or benzylkininium hydroxide can be mentioned.
 上記工程1’において、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基としては、アルカリ金属水酸化物が好ましく、水酸化リチウム、水酸化ナトリウム、水酸化カリウム又は水酸化セシウムがさらに好ましい。 In step 1', as a base selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides. Is preferably an alkali metal hydroxide, and more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide or cesium hydroxide.
 6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンのモル当量としては、式(I)で示される化合物又はその塩に対して1~10モル当量が好ましく、1~2モル当量がより好ましい。 The molar equivalent of 6-hydroxycaproic acid, 6-hydroxycaproic acid ester or ε-caprolactone is preferably 1 to 10 molar equivalents with respect to the compound represented by the formula (I) or a salt thereof, preferably 1 to 2 molar equivalents. More preferred.
 また、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基のモル当量としては、式(I)で示される化合物又はその塩に対して1~10モル当量が好ましく、1~2モル当量がより好ましい。 The molar equivalent of a base selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides , 1 to 10 molar equivalents are preferable with respect to the compound represented by the formula (I) or a salt thereof, and 1 to 2 molar equivalents are more preferable.
 水系溶媒は、単独の水又は水と有機溶媒が混ざり合い均一になった溶媒を意味する。水と混合する有機溶媒は1種類でもよいし、2種類以上を組み合わせて用いることもできる。水系溶媒としては、例えば、水、水とメタノールとの組み合わせ又は水とジメチルスルホキシドとの組み合わせが挙げられる。2種類以上の溶媒を混合する場合の溶媒の組成比率は反応に合わせて適宜選択できる。水系溶媒の使用量は、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンに対して、1~100重量倍が好ましい。 The aqueous solvent means a single water or a solvent in which water and an organic solvent are mixed and become uniform. The organic solvent to be mixed with water may be one kind, or two or more kinds may be used in combination. Examples of the aqueous solvent include water, a combination of water and methanol, or a combination of water and dimethyl sulfoxide. When two or more kinds of solvents are mixed, the composition ratio of the solvent can be appropriately selected according to the reaction. The amount of the aqueous solvent used is preferably 1 to 100 times by weight with respect to 6-hydroxycaproic acid, 6-hydroxycaproic acid ester or ε-caprolactone.
 上記工程1’の反応時間は、適時設定することができるが、典型的には10分以上、例えば、10分間~24時間であってよい。 The reaction time of the above step 1'can be set in a timely manner, but is typically 10 minutes or more, for example, 10 minutes to 24 hours.
 上記工程1’の反応温度は、適時設定することができ、例えば、0~100℃の範囲であってよく、通常、室温(約10℃~約35℃)が好ましい。 The reaction temperature in the above step 1'can be set in a timely manner, for example, it may be in the range of 0 to 100 ° C., and is usually preferably room temperature (about 10 ° C. to about 35 ° C.).
 上記工程1’’の反応時間は、適時設定することができるが、典型的には10分以上、例えば、10分間~24時間であってよい。 The reaction time of the above step 1 ″ can be set in a timely manner, but is typically 10 minutes or more, for example, 10 minutes to 24 hours.
 上記工程1’’の反応温度は、適時設定することができ、例えば、0~100℃の範囲であってよく、通常、室温(約10℃~約35℃)が好ましい。 The reaction temperature in the above step 1 ″ can be set in a timely manner, for example, it may be in the range of 0 to 100 ° C., and is usually preferably room temperature (about 10 ° C. to about 35 ° C.).
 6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と水系溶媒の組み合わせの態様に特に制限はないが、例えば、6-ヒドロキシヘキサン酸とアルカリ金属水酸化物と水系溶媒との組み合わせ、6-ヒドロキシヘキサン酸エステルとアルカリ金属水酸化物と水系溶媒との組み合わせ、ε-カプロラクトンとアルカリ金属水酸化物と水系溶媒との組み合わせが挙げられ、6-ヒドロキシヘキサン酸と水酸化ナトリウムと水との組み合わせ、6-ヒドロキシヘキサン酸メチルと水酸化ナトリウムと水との組み合わせ、ε-カプロラクトンと水酸化リチウムと水との組み合わせ、ε-カプロラクトンと水酸化ナトリウムと水との組み合わせ、ε-カプロラクトンと水酸化カリウムと水との組み合わせ、ε-カプロラクトンと水酸化ナトリウムと水及びメタノールとの組み合わせ又はε-カプロラクトンと水酸化ナトリウムと水及びジメチルスルホキシドとの組み合わせが好適である。 6-Hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, alkali metal alkoxide, alkaline earth metal hydroxide and quaternary ammonium The mode of the combination of the base and the aqueous solvent selected from the group consisting of hydroxide is not particularly limited, and for example, a combination of 6-hydroxyhexanoic acid, an alkali metal hydroxide and an aqueous solvent, 6-hydroxyhexanoic acid. Examples include a combination of an ester, an alkali metal hydroxide and an aqueous solvent, a combination of ε-caprolactone, an alkali metal hydroxide and an aqueous solvent, a combination of 6-hydroxyhexanoic acid, sodium hydroxide and water, 6-. Combination of methyl hydroxyhexanoate, sodium hydroxide and water, combination of ε-caprolactone, lithium hydroxide and water, combination of ε-caprolactone, sodium hydroxide and water, ε-caprolactone, potassium hydroxide and water , A combination of ε-caprolactone, sodium hydroxide, water and methanol, or a combination of ε-caprolactone, sodium hydroxide, water and dimethylsulfoxide is suitable.
(工程2:アミダイト化反応)
 式(III)で示される化合物又はその塩は、カップリング剤の存在下、式(II)で示される化合物とアミダイト化試薬とを反応させることで得られる。
Figure JPOXMLDOC01-appb-C000020
[式中、R及びRは、それぞれ独立して、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
(Step 2: Amidite conversion reaction)
The compound represented by the formula (III) or a salt thereof is obtained by reacting the compound represented by the formula (II) with an amidite-forming reagent in the presence of a coupling agent.
Figure JPOXMLDOC01-appb-C000020
[In the formula, R 1 and R 2 each independently represent a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
 式(III)で示される化合物の塩としては、特に制限はなく、例えば、塩酸塩、臭素酸塩、ヨウ素酸塩、過塩素酸塩、炭酸塩、トリフルオロメタンスルホン酸塩、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩又はテトラゾール塩が挙げられる。 The salt of the compound represented by the formula (III) is not particularly limited, and is, for example, hydrochloride, bromate, iodate, perchlorate, carbonate, trifluoromethanesulfonate, tetrafluoroborate. , Hexafluorophosphate or tetrazole salt.
 式(I)でのRについての説明は、式(III)でのRの説明に援用することができる。 The description of R 1 in formula (I) can be incorporated into the description of R 1 in formula (III).
 式(III)中、Rは、保護基を表し、例えば、リン酸基を不活性に変換する官能基であってよく、公知のリン酸基の保護基を用いることができる。リン酸基の保護基については、例えば、文献(Protective Groups in Organic Synthesis 第4版、Greeneら著、2007年、John Wiley & Sons,Inc.)の記載を援用できる。Rとしては、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、アリル基、2-シアノエチル基、2-トリメチルシリルエチル基、2,2,2-トリクロロエチル基、ベンジル基等の置換されていてもよいアルキル基、シクロヘキシル基等のシクロアルキル基又はフェニル基、2-クロロフェニル基等の置換されていてもよいアリール基が挙げられるが、これらに限定はされない。 In the formula (III), R 2 represents a protecting group, for example, it may be a functional group that converts the phosphoric acid group into inactive, and a known protecting group of the phosphoric acid group can be used. For the protecting group of the phosphoric acid group, for example, the description in the literature (Protective Groups in Organic Synthesis 4th Edition, by Greene et al., 2007, John Wiley & Sons, Inc.) can be incorporated. The R 2, for example, substitution such as a methyl group, an ethyl group, an isopropyl group, tert- butyl group, an allyl group, a 2-cyanoethyl group, 2-trimethylsilylethyl group, 2,2,2-trichloroethyl group, a benzyl group Examples thereof include, but are not limited to, an alkyl group which may be used, a cycloalkyl group such as a cyclohexyl group, or an aryl group which may be substituted such as a phenyl group and a 2-chlorophenyl group.
 式(III)中、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表し、R及びRは、それらが結合している窒素原子とともに環(例えば、ピロリジン環)を形成していてもよい。ここで、炭化水素基とは、炭素原子と水素原子からなる官能基を意味する。R及びRの例としては、それぞれ独立して、アルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アルキルアリール基、シクロアルキル基、シクロアルケニル基、シクロアルキルアルキル基が挙げられる。上記炭化水素基において置換されていてもよい官能基としては、例えば、ハロゲン原子、アルコキシ基、アミノ基、シリルオキシ基、カルボニル基、カルボキシル基が挙げられる。R及びRの好ましい態様としては、それぞれ独立して、メチル基、エチル基、イソプロピル基、tert-ブチル基、フェニル基又はベンジル基が挙げられるが、これらに限定されない。 In formula (III), R 3 and R 4 represent hydrocarbon groups that may be substituted independently, respectively, and R 3 and R 4 are rings (eg, for example) with the nitrogen atom to which they are attached. It may form a pyrrolidine ring). Here, the hydrocarbon group means a functional group composed of a carbon atom and a hydrogen atom. Examples of R 3 and R 4 independently include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an alkylaryl group, a cycloalkyl group, a cycloalkenyl group, and a cycloalkylalkyl group. .. Examples of the functional group which may be substituted in the above-mentioned hydrocarbon group include a halogen atom, an alkoxy group, an amino group, a silyloxy group, a carbonyl group and a carboxyl group. Preferred embodiments of R 3 and R 4 include, but are not limited to, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a phenyl group or a benzyl group, respectively.
 式(III)中、RとR及び/又はRは、一緒になって環(例えば、オキサザホスホリジン環)を形成してもよく、環は単環でも二環でもよい。 In formula (III), R 2 and R 3 and / or R 4 may be combined to form a ring (eg, an oxazaphosphoridine ring), and the ring may be monocyclic or bicyclic.
 式(III)中、Rは、好ましくは、トリチル基、4-メトキシトリチル基又は4,4’-ジメトキシトリチル基である。 In formula (III), R 1 is preferably a trityl group, a 4-methoxytrityl group or a 4,4′-dimethoxytrityl group.
 式(III)中、Rは、好ましくは、2-シアノエチル基、ベンジル基又は2-クロロフェニル基である。 In formula (III), R 2 is preferably a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group.
 式(III)中、R及びRは、好ましくは、それぞれ独立して、エチル基又はイソプロピル基である。 In formula (III), R 3 and R 4 are preferably ethyl groups or isopropyl groups independently of each other.
 式(III)中、R、R、R及びRの好ましい組み合わせの態様としては、Rが、トリチル基、4-メトキシトリチル基又は4,4’-ジメトキシトリチル基であり、Rが、2-シアノエチル基、ベンジル基又は2-クロロフェニル基であり、Rが、エチル基又はイソプロピル基であり、Rが、エチル基又はイソプロピル基である組み合わせが挙げられ、Rが4,4’-ジメトキシトリチル基であり、Rが2-シアノエチル基であり、R及びRがともにイソプロピル基である組み合わせ、又は、Rが4,4’-ジメトキシトリチル基であり、Rが2-クロロフェニル基であり、R及びRがともにイソプロピル基である組み合わせが好適である。 In the preferred combination of R 1 , R 2 , R 3 and R 4 in formula (III) , R 1 is a trityl group, a 4-methoxytrityl group or a 4,4′-dimethoxytrityl group, and R 2 is a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group, R 3 is an ethyl group or an isopropyl group, R 4 is an ethyl group or an isopropyl group, and R 1 is 4 , 4'-dimethoxytrityl group, R 2 is a 2-cyanoethyl group, R 3 and R 4 are both isopropyl groups, or R 1 is a 4,4'-dimethoxytrityl group and R A combination in which 2 is a 2-chlorophenyl group and R 3 and R 4 are both isopropyl groups is suitable.
 好ましい実施形態では、式(III)で示される化合物又はその塩は、下記式(III’)で示される化合物又はその塩であってよい。 In a preferred embodiment, the compound represented by the formula (III) or a salt thereof may be a compound represented by the following formula (III') or a salt thereof.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(III’)で示される化合物又はその塩は、下記式(III’-1)又は下記式(III’-2)で示される光学活性体又はその塩であってよい。 The compound represented by the formula (III') or a salt thereof may be an optically active substance represented by the following formula (III'-1) or the following formula (III'-2) or a salt thereof.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 アミダイト化反応に用いるカップリング剤に特に制限はないが、例えば、三級アミン又はホスホロアミダイト法によるオリゴヌクレオチド合成に用いられるカップリングアクチベーターが挙げられる。 The coupling agent used for the amidite reaction is not particularly limited, and examples thereof include a coupling activator used for oligonucleotide synthesis by a tertiary amine or a phosphoramidite method.
 三級アミンとしては、以下に限定されないが、例えば、トリエチルアミン又はジイソプロピルエチルアミンが挙げられる。三級アミンのモル当量としては、式(II)で示される化合物に対して1~10モル当量が好ましく、1~2モル当量がより好ましい。 The tertiary amine is not limited to the following, and examples thereof include triethylamine and diisopropylethylamine. The molar equivalent of the tertiary amine is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by formula (II).
 ホスホロアミダイト法によるオリゴヌクレオチド合成に用いられるカップリングアクチベーターとしては、例えば、Tetrahedron,69,2013,3615-3637に記載があり、例えば、テトラゾール、5-ベンジルチオテトラゾール、5-エチルチオテトラゾール、4,5-ジシアノイミダゾール、1-ヒドロキシ-ベンゾトリアゾール又は3-ニトロ-1,2,4-トリアゾール等のアゾ-ルカップリングアクチベーター、ジイソプロピルアンモニウムテトラゾリド、ベンズイミダゾールトリフルオロ酢酸塩、N-フェニルイミダゾールトリフルオロ酢酸塩又は1-(シアノメチル)ピペリジニウムテトラフルオロボレート等の塩錯体カップリングアクチベーターが挙げられる。 Coupling activators used for oligonucleotide synthesis by the phosphoramidite method are described, for example, in Tetrazole, 69, 2013, 3615-3637, for example, tetrazole, 5-benzylthiotetrazole, 5-ethylthiotetrazole, Azol coupling activators such as 4,5-dicyanoimidazole, 1-hydroxy-benztriazole or 3-nitro-1,2,4-triazole, diisopropylammonium tetrazolide, benzimidazole trifluoroacetate, N- Examples thereof include salt complex coupling activators such as phenylimidazole trifluoroacetate or 1- (cyanomethyl) piperidinium tetrafluoroborate.
 カップリング剤のモル当量としては、式(II)で示される化合物に対して0.1~10モル当量が好ましく、1~2モル当量がより好ましい。 The molar equivalent of the coupling agent is preferably 0.1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by formula (II).
 アミダイト化反応に用いるアミダイト化試薬に特に制限はないが、例えば、ホスホロジアミダイト又はクロロホスホロアミダイトが挙げられる。 The amidite-forming reagent used in the amidite-forming reaction is not particularly limited, and examples thereof include phosphoramidite and chlorophosphoroamidite.
 ホスホロジアミダイトとしては、例えば、2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト、メチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト、tert-ブチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト、アリル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト、ベンジル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト、2-クロロフェニル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト、2-シアノエチル-N,N,N’,N’-テトラエチルホスホロジアミダイト、メチル-N,N,N’,N’-テトラエチルホスホロジアミダイト、tert-ブチル-N,N,N’,N’-テトラエチルホスホロジアミダイト、アリル-N,N,N’,N’-テトラエチルホスホロジアミダイト、ベンジル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト又は2-クロロフェニル-N,N,N’,N’-テトラエチルホスホロジアミダイトが挙げられる。 Examples of phosphoramidite include 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphomidite, methyl-N, N, N', N'-tetraisopropylphosphoromidite, tert-butyl-. N, N, N', N'-tetraisopropylphosphorodiamidite, allyl-N, N, N', N'-tetraisopropylphosphorodiamidite, benzyl-N, N, N', N'-tetraisopropylphosphorologite Amidite, 2-chlorophenyl-N, N, N', N'-tetraisopropylphosphorodite amidite, 2-cyanoethyl-N, N, N', N'-tetraethyl phosphoramidite, methyl-N, N, N', N'-Tetraethyl phosphoramidite, tert-butyl-N, N, N', N'-tetraethyl phosphoramidite, allyl-N, N, N', N'-tetraethyl phosphoramidite, benzyl-N, N, Examples thereof include N', N'-tetraisopropyl phosphoramidite or 2-chlorophenyl-N, N, N', N'-tetraethyl phosphoramidite.
 クロロホスホロアミダイトとしては、例えば、2-シアノエチル-N,N,-ジイソプロピルクロロホスホロアミダイト、メチル-N,N,-ジイソプロピルクロロホスホロアミダイト又は2-クロロフェニル-N,N,-ジイソプロピルクロロホスホロアミダイトが挙げられる。 Examples of chlorophosphoroamidite include 2-cyanoethyl-N, N, -diisopropylchlorophosphoroamidite, methyl-N, N, -diisopropylchlorophosphoroamidite or 2-chlorophenyl-N, N, -diisopropylchlorophosphoro. Amidite can be mentioned.
 アミダイト化試薬のモル当量としては、式(II)で示される化合物に対して1~10モル当量が好ましく、1~2モル当量がより好ましい。 The molar equivalent of the amidite-forming reagent is preferably 1 to 10 molar equivalents, more preferably 1 to 2 molar equivalents, relative to the compound represented by the formula (II).
 カップリング剤及びアミダイト化試薬は、それぞれ、市販品を用いてもよいし公知の方法又はそれに準じた方法で合成してもよい。 The coupling agent and the amidite-forming reagent may be commercially available products, or may be synthesized by a known method or a method similar thereto.
 アミダイト化反応は、非プロトン性溶媒中で行ってもよい。非プロトン性溶媒の使用量は、式(II)で示される化合物に対して、1~100重量倍が好ましい。 The amidite reaction may be carried out in an aprotic solvent. The amount of the aprotic solvent used is preferably 1 to 100 times by weight with respect to the compound represented by the formula (II).
 ここで、非プロトン性溶媒は、プロトン供与性を持たない有機溶媒を意味する。非プロトン性溶媒に特に制限はないが、例えば、トルエン、キシレン、ジクロロメタン、クロロホルム、ジクロロエタン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、アセトン、酢酸メチル、酢酸エチル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、アセトニトリル、プロピオニトリル、ジメチルスルホキシド又はスルホランが挙げられる。 Here, the aprotic solvent means an organic solvent having no proton donating property. The aprotic solvent is not particularly limited, but for example, toluene, xylene, dichloromethane, chloroform, dichloroethane, methyl tert-butyl ether, cyclopentyl methyl ether, diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, acetone. , Methyl acetate, ethyl acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropyleneurea, acetonitrile, propionitrile, dimethyl sulfoxide or sulfolane Can be mentioned.
 アミダイト化反応の反応時間は、適時設定することができるが、典型的には2時間以上、例えば、2~24時間であってよい。 The reaction time of the amidite reaction can be set in a timely manner, but is typically 2 hours or more, for example, 2 to 24 hours.
 アミダイト化反応の反応温度は、適時設定することができ、例えば、10~100℃の範囲であってよく、通常、室温(約10℃~約35℃)が好ましい。 The reaction temperature of the amidite reaction can be set in a timely manner, for example, it may be in the range of 10 to 100 ° C., and usually room temperature (about 10 ° C. to about 35 ° C.) is preferable.
 アミダイト化反応において、各試薬の添加順序に特に制限はなく、例えば、溶媒に、式(II)で示される化合物、カップリング剤及びアミダイト化試薬を順次加える方法、式(II)で示される化合物に、溶媒、カップリング剤及びアミダイト化試薬を順次加える方法、溶媒に、式(II)で示される化合物、カップリング剤及びアミダイト化試薬を同時に加える方法、式(II)で示される化合物、カップリング剤及びアミダイト化試薬の混合物に、溶媒を加える方法、溶媒と混合した式(II)で示される化合物に、溶媒と混合したカップリング剤及び溶媒と混合したアミダイト化試薬を順次混合する方法、又は、溶媒と混合した式(II)で示される化合物に、溶媒と混合したカップリング剤及び溶媒と混合したアミダイト化試薬を同時に混合する方法が挙げられる。通常、式(II)で示される化合物に、溶媒、カップリング剤及びアミダイト化試薬を順次加える方法が好ましい。 In the amidation reaction, the order of addition of each reagent is not particularly limited. For example, a method of sequentially adding a compound represented by the formula (II), a coupling agent and an amidite reagent to a solvent, a compound represented by the formula (II). A method of sequentially adding a solvent, a coupling agent and an amidation reagent to the solvent, a method of simultaneously adding a compound represented by the formula (II), a coupling agent and an amidite reagent to the solvent, a compound represented by the formula (II), and a cup. A method of adding a solvent to a mixture of a ring agent and an amidite-forming reagent, a method of sequentially mixing a coupling agent mixed with a solvent and an amidite-forming reagent mixed with a solvent with a compound represented by the formula (II) mixed with the solvent. Alternatively, a method of simultaneously mixing the coupling agent mixed with the solvent and the amidite-forming reagent mixed with the solvent to the compound represented by the formula (II) mixed with the solvent can be mentioned. Usually, a method of sequentially adding a solvent, a coupling agent and an amidite-forming reagent to the compound represented by the formula (II) is preferable.
 アミダイト化反応終了後は、例えば、有機層を炭酸水素ナトリウム水溶液等で洗浄した後、有機層を濃縮することにより式(III)で示される化合物又はその塩を単離することができる。 After completion of the amidite reaction, for example, the organic layer can be washed with an aqueous sodium hydrogen carbonate solution or the like, and then the organic layer can be concentrated to isolate the compound represented by the formula (III) or a salt thereof.
 式(III)で示される化合物又はその塩は、クロマトグラフィー等の公知の精製方法を適宜用いて精製することができる。 The compound represented by the formula (III) or a salt thereof can be purified by appropriately using a known purification method such as chromatography.
 上記カップリング剤の好ましい態様と上記アミダイト化試薬の好ましい態様とは適宜組み合わせることができる。カップリング剤とアミダイト化試薬との組み合わせの態様としては、以下に限定されないが、三級アミンとクロロホスホロアミダイトとの組み合わせ又はホスホロアミダイト法によるオリゴヌクレオチド合成に用いられるカップリングアクチベーターとホスホロジアミダイトとの組み合わせが挙げられる。カップリング剤とアミダイト化試薬の好ましい組み合わせの態様としては、トリエチルアミンと2-シアノエチル-N,N,-ジイソプロピルクロロホスホロアミダイトとの組み合わせ又はジイソプロピルアンモニウムテトラゾリドと2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイトとの組み合わせが挙げられる。 The preferred embodiment of the coupling agent and the preferred embodiment of the amidite-forming reagent can be appropriately combined. The mode of the combination of the coupling agent and the amidite-forming reagent is not limited to the following, but is a combination of a tertiary amine and chlorophosphoroamidite, or a coupling activator and phospho used for oligonucleotide synthesis by the phosphoramidite method. A combination with a logiamidite can be mentioned. Preferred combinations of the coupling agent and the amidite-forming reagent include a combination of triethylamine and 2-cyanoethyl-N, N, -diisopropylchlorophosphoroamidite or a combination of diisopropylammonium tetrazolide and 2-cyanoethyl-N, N, N. A combination with', N'-tetraisopropylphosphorodiamidite can be mentioned.
 式(III)で示される化合物又はその塩は、核酸合成用のモノマーとして用いることができる。 The compound represented by the formula (III) or a salt thereof can be used as a monomer for nucleic acid synthesis.
2.オリゴ核酸の製造方法:
 また、本発明は、上記の製造方法で得られた式(III)で示される化合物又はその塩を用いて核酸合成反応を行う工程を備える、オリゴ核酸の製造方法を提供する。
2. Method for producing oligonucleic acid:
The present invention also provides a method for producing an oligonucleic acid, which comprises a step of carrying out a nucleic acid synthesis reaction using the compound represented by the formula (III) obtained by the above production method or a salt thereof.
 上記核酸合成反応は、ホスホロアミダイト法に基づいて行うことができる。 The above nucleic acid synthesis reaction can be carried out based on the phosphoramidite method.
 得られたオリゴ核酸は、クロマトグラフィー等の公知の精製方法を適宜用いて精製することができる。 The obtained oligonucleic acid can be purified by appropriately using a known purification method such as chromatography.
 オリゴ核酸としては、以下に限定されないが、例えば、国際公開WO2019/189722の実施例1に記載のssTbRNA分子、ストランド1又はストランド2が挙げられる。 Examples of the oligonucleic acid include, but are not limited to, the ssTbRNA molecule, strand 1 or strand 2 described in Example 1 of WO2019 / 189722.
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the technical scope of the present invention is not limited to these examples.
(参考例1)
DMTr-アミド-L-プロリンの合成:
 DMTr-アミド-L-プロリンは、例えば、国際公開WO2012/017919の記載に従って合成することができる。具体的な合成例を以下に示すが、合成方法はそれにより限定されない。
(Reference example 1)
Synthesis of DMTr-amide-L-proline:
DMTr-amide-L-proline can be synthesized, for example, as described in WO2012 / 017919. Specific examples of synthesis are shown below, but the synthesis method is not limited thereto.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(1)Fmoc-ヒドロキシアミド-L-プロリン
 Fmoc-L-プロリン(10.0g、29.6mmol)、4-アミノ-1-ブタノール(3.18g、35.6mol)及び1-ヒドロキシベンゾトリアゾール(10.9g、70.7mmol)を混合し、その混合物に対し、減圧下で脱気し、アルゴンガスを充填した。得られた混合物に、無水アセトニトリル(140mL)を室温で加え、さらに、ジシクロヘキシルカルボジイミド(7.34g、35.6mmol)の無水アセトニトリル溶液(70.0mL)を添加した後、アルゴン雰囲気下、室温で15時間撹拌した。反応終了後、生成した沈殿をろ別し、回収したろ液について、減圧下で溶媒を留去した。得られた残渣をジクロロメタン(200mL)で希釈し、飽和重曹水(200mL)で洗浄した後、有機層を分離した。この有機層を硫酸マグネシウムで乾燥した後、ろ過した。得られたろ液について、減圧下で溶媒を留去し、その残渣にジエチルエーテル(200mL)を加え、粉末化した。生じた粉末をろ取することにより、無色粉末状物質としてFmoc-ヒドロキシアミド-L-プロリンを得た。ここで、Fmocは、9-フルオレニルメチルオキシカルボニル基である。
(1) Fmoc-hydroxyamide-L-proline Fmoc-L-proline (10.0 g, 29.6 mmol), 4-amino-1-butanol (3.18 g, 35.6 mol) and 1-hydroxybenzotriazole (10). .9 g, 70.7 mmol) was mixed, and the mixture was degassed under reduced pressure and charged with argon gas. Anhydrous acetonitrile (140 mL) was added to the obtained mixture at room temperature, and an anhydrous acetonitrile solution (70.0 mL) of dicyclohexylcarbodiimide (7.34 g, 35.6 mmol) was added, and then 15 at room temperature under an argon atmosphere. Stirred for hours. After completion of the reaction, the generated precipitate was filtered off, and the solvent was distilled off from the recovered filtrate under reduced pressure. The obtained residue was diluted with dichloromethane (200 mL), washed with saturated aqueous sodium hydrogen carbonate (200 mL), and then the organic layer was separated. The organic layer was dried over magnesium sulfate and then filtered. With respect to the obtained filtrate, the solvent was distilled off under reduced pressure, and diethyl ether (200 mL) was added to the residue to make a powder. The resulting powder was collected by filtration to give Fmoc-hydroxyamide-L-proline as a colorless powdery substance. Here, Fmoc is a 9-fluorenylmethyloxycarbonyl group.
(2)DMTr-アミド-L-プロリン
 Fmoc-ヒドロキシアミド-L-プロリン(7.80g、19.1mmol)を無水ピリジン(5.00mL)と混合し、室温で2回共沸乾燥した。得られた残留物に、4,4’-ジメトキシトリチルクロリド(8.20g、24.2mmol)、4-ジメチルアミノピリジン(23.3mg、0.191mmol)及び無水ピリジン(39.0mL)を加えた。この混合物を、室温で1時間撹拌した後、メタノール(7.80mL)を加え、室温で30分撹拌した。この混合物を、ジクロロメタン(100mL)で希釈し、飽和重曹水(150mL)で洗浄した後、有機層を分離した。この有機層を硫酸ナトリウムで乾燥した後、ろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた未精製の残渣に、無水N,N-ジメチルホルムアミド(39.0mL)及びピペリジン(18.7mL、189mmol)を加え、室温で1時間撹拌した。反応終了後、その混合液から、減圧下、室温で、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(商品名Wakogel C-300、展開溶媒:ジクロロメタン/メタノール=9/1、0.05%ピリジン含有)に供することにより、淡黄色油状物質としてDMTr-アミド-L-プロリンを得た。ここで、DMTrは、4,4’-ジメトキシトリチル基である。
(2) DMTr-amide-L-proline Fmoc-hydroxyamide-L-proline (7.80 g, 19.1 mmol) was mixed with anhydrous pyridine (5.00 mL) and azeotropically dried twice at room temperature. To the obtained residue was added 4,4'-dimethoxytritylchloride (8.20 g, 24.2 mmol), 4-dimethylaminopyridine (23.3 mg, 0.191 mmol) and anhydrous pyridine (39.0 mL). .. The mixture was stirred at room temperature for 1 hour, methanol (7.80 mL) was added, and the mixture was stirred at room temperature for 30 minutes. The mixture was diluted with dichloromethane (100 mL), washed with saturated aqueous sodium hydrogen carbonate (150 mL), and then the organic layer was separated. The organic layer was dried over sodium sulfate and then filtered. The solvent was distilled off from the obtained filtrate under reduced pressure. Anhydrous N, N-dimethylformamide (39.0 mL) and piperidine (18.7 mL, 189 mmol) were added to the obtained unpurified residue, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off from the mixed solution under reduced pressure at room temperature. The obtained residue was subjected to silica gel column chromatography (trade name: Wakogel C-300, developing solvent: dichloromethane / methanol = 9/1, containing 0.05% pyridine) to obtain DMTr-amide-L as a pale yellow oily substance. -I got proline. Here, DMTr is a 4,4'-dimethoxytrityl group.
(実施例1)
DMTr-ヒドロキシジアミド-L-プロリンの合成:
(Example 1)
Synthesis of DMTr-Hydroxydiamide-L-Proline:
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 氷浴にて冷却した1M水酸化ナトリウム水溶液(2.66mL)にε-カプロラクトン(0.280g、2.46mmol)を加えた。その後、氷浴を外し、室温にて2時間撹拌し、6-ヒドロキシヘキサン酸ナトリウム水溶液を調製した。参考例1で合成したDMTr-アミド-L-プロリン(1.00g、2.05mmol)にメタノール(10.0mL)を室温で加え、さらに先に調製した6-ヒドロキシヘキサン酸ナトリウム水溶液と4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(0.849g、3.07mmol)を加え、室温で1時間撹拌した。この混合物を、酢酸エチル(20.0mL)で希釈し、5%炭酸水素ナトリウム水溶液で洗浄した後、有機層を分離した。この有機層を硫酸ナトリウムで乾燥した後、ろ過した。得られたろ液について、減圧下で溶媒を留去した。得られた残渣を充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒:酢酸エチル/メタノール=100/0~97/3)に供することにより、油状物質としてDMTr-ヒドロキシジアミド-L-プロリン(1.00g、収率81%)を得た。 Ε-Caprolactone (0.280 g, 2.46 mmol) was added to a 1 M aqueous sodium hydroxide solution (2.66 mL) cooled in an ice bath. Then, the ice bath was removed, and the mixture was stirred at room temperature for 2 hours to prepare an aqueous sodium 6-hydroxyhexanoate solution. Methanol (10.0 mL) was added to DMTr-amide-L-proline (1.00 g, 2.05 mmol) synthesized in Reference Example 1 at room temperature, and the previously prepared sodium 6-hydroxyhexanoate aqueous solution and 4- ( 4,6-Dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (0.849 g, 3.07 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The mixture was diluted with ethyl acetate (20.0 mL), washed with 5% aqueous sodium hydrogen carbonate solution, and then the organic layer was separated. The organic layer was dried over sodium sulfate and then filtered. The solvent was distilled off from the obtained filtrate under reduced pressure. By subjecting the obtained residue to column chromatography (developing solvent: ethyl acetate / methanol = 100/0 to 97/3) using amino silica gel as a filler, DMTr-hydroxydiamid-L-proline (developing solvent: ethyl acetate / methanol = 100/0 to 97/3) was used as an oily substance. 1.00 g, yield 81%) was obtained.
(比較例1)
DMTr-ヒドロキシジアミド-L-プロリンの合成:
(Comparative Example 1)
Synthesis of DMTr-Hydroxydiamide-L-Proline:
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 参考例1で合成したDMTr-アミド-L-プロリン(6.01g、12.3mmol)、N-(3’-ジメチルアミノプロピル)-N’-エチルカルボジイミド(2.83g、14.7mmol)、1-ヒドロキシベンゾトリアゾール(3.98g、29.5mmol)及びトリエチルアミン(4.47g、44.2mmol)の無水ジクロロメタン溶液(120mL)を混合した。この混合液に、さらに、アルゴン雰囲気下、室温で、6-ヒドロキシヘキサン酸(1.95g、14.5mmol)を加え、その後、室温で1時間撹拌した。この混合物をジクロロメタン(600mL)で希釈し、飽和食塩水(800mL)で3回洗浄した後、有機層を分離した。この有機層を硫酸ナトリウムで乾燥した後、ろ過した。得られたろ液について、減圧下で溶媒を留去した。これにより、淡黄色泡状物質としてDMTr-ヒドロキシジアミド-L-プロリン(6.29g)を得た。 DMTr-amide-L-proline (6.01 g, 12.3 mmol), N- (3'-dimethylaminopropyl) -N'-ethylcarbodiimide (2.83 g, 14.7 mmol) synthesized in Reference Example 1, 1 -Hydroxybenzotriazole (3.98 g, 29.5 mmol) and triethylamine (4.47 g, 44.2 mmol) in anhydrous dichloromethane (120 mL) were mixed. 6-Hydroxycaproic acid (1.95 g, 14.5 mmol) was further added to this mixed solution under an argon atmosphere at room temperature, and then the mixture was stirred at room temperature for 1 hour. The mixture was diluted with dichloromethane (600 mL), washed 3 times with saturated brine (800 mL), and then the organic layer was separated. The organic layer was dried over sodium sulfate and then filtered. The solvent was distilled off from the obtained filtrate under reduced pressure. As a result, DMTr-hydroxydiamide-L-proline (6.29 g) was obtained as a pale yellow foamy substance.
(実施例2)
DMTr-ジアミド-L-プロリンアミダイトの合成:
(Example 2)
Synthesis of DMTr-diamide-L-proline amidite:
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 実施例1で合成したDMTr-ヒドロキシジアミド-L-プロリン(1.00g、1.66mmol)を無水アセトニトリルと混合し、室温で3回共沸乾燥した。得られた残留物に、無水アセトニトリル(10.0mL)、ジイソプロピルアンモニウムテトラゾリド(0.341g、1.99mmol)を加え、減圧脱気し、アルゴンガスを充填した。その混合物に対し、2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(0.603g、1.99mmol)を加えた。この混合物を、室温で3時間撹拌した。この混合物をジクロロメタンで希釈し、飽和重曹水(20.0mL)で洗浄した後、さらに飽和食塩水(20.0mL)で洗浄し、有機層を分離した。この有機層を硫酸ナトリウムで乾燥した後、ろ過した。得られたろ液について、減圧下に溶媒を留去した。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=1/3)に供することにより、無色シロップ状物質としてDMTr-ジアミド-L-プロリンアミダイト(1.13g、収率85%、純度99%)が得られた。上記純度の値は、下記のHPLC分析条件にて測定したクロマトグラムに基づくピーク面積比率を表す。 DMTr-hydroxydiamide-L-proline (1.00 g, 1.66 mmol) synthesized in Example 1 was mixed with anhydrous acetonitrile and azeotropically dried 3 times at room temperature. Anhydrous acetonitrile (10.0 mL) and diisopropylammonium tetrazolide (0.341 g, 1.99 mmol) were added to the obtained residue, degassed under reduced pressure, and filled with argon gas. To the mixture was added 2-cyanoethyl-N, N, N', N'-tetraisopropylphosphorodiamidite (0.603 g, 1.99 mmol). The mixture was stirred at room temperature for 3 hours. The mixture was diluted with dichloromethane, washed with saturated aqueous sodium hydrogen carbonate (20.0 mL), and further washed with saturated brine (20.0 mL) to separate the organic layer. The organic layer was dried over sodium sulfate and then filtered. The solvent was distilled off from the obtained filtrate under reduced pressure. By subjecting the obtained residue to column chromatography (developing solvent: n-hexane / ethyl acetate = 1/3) using amino silica gel as a filler, DMTr-diamide-L-proline amidite as a colorless syrup-like substance. (1.13 g, yield 85%, purity 99%) was obtained. The above purity value represents the peak area ratio based on the chromatogram measured under the following HPLC analysis conditions.
 DMTr-ジアミド-L-プロリンアミダイトの純度分析の条件は以下の通りである。
・カラム:L-column2 ODS (CERI)4.6×150mm、3μm
・カラム温度:30℃
・移動相:20mM リン酸カリウム塩水溶液/アセトニトリル=30/70
・分析時間:50min
・流速:1.0mL/min
・検出:PDA検出器(210nm)
20mM リン酸カリウム塩水溶液調製法
リン酸二水素カリウム(2.70g)、リン酸水素二カリウム(3.45g)を蒸留水(1980mL)に加え、溶解させる。
The conditions for the purity analysis of DMTr-diamide-L-proline amidite are as follows.
-Column: L-column2 ODS (CERI) 4.6 x 150 mm, 3 μm
-Column temperature: 30 ° C
-Mobile phase: 20 mM potassium phosphate aqueous solution / acetonitrile = 30/70
・ Analysis time: 50 min
・ Flow velocity: 1.0 mL / min
-Detection: PDA detector (210 nm)
20 mM Potassium Phosphate Aqueous Solution Preparation Method Potassium dihydrogen phosphate (2.70 g) and dipotassium hydrogen phosphate (3.45 g) are added to distilled water (1980 mL) to dissolve them.
(比較例2)
DMTr-ジアミド-L-プロリンアミダイトの合成:
(Comparative Example 2)
Synthesis of DMTr-diamide-L-proline amidite:
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 実施例1で合成したDMTr-ヒドロキシジアミド-L-プロリンの代わりに比較例1で合成したDMTr-ヒドロキシジアミド-L-プロリンを用いた以外は実施例2と同様の方法によりDMTr-ジアミド-L-プロリンアミダイト(2工程収率72%、純度97%)を得た。 DMTr-diamide-L- by the same method as in Example 2 except that DMTr-hydroxydiamide-L-proline synthesized in Comparative Example 1 was used instead of DMTr-hydroxydiamide-L-proline synthesized in Example 1. Proline amidite (2-step yield 72%, purity 97%) was obtained.
 ここで、実施例2と比較例2を対比すると、比較例2で合成したDMTr-ジアミド-L-プロリンアミダイトでは、DMTr-ジアミド-L-プロリンアミダイトを基準としてRRT1.64に、実施例2のHPLC分析条件にて測定したクロマトグラムに基づくピーク面積比率で1.8%の個別最大不純物(以下、RRT1.64の不純物)が検出された一方で、実施例2で合成したDMTr-ジアミド-L-プロリンアミダイトでは、RRT1.64の不純物は検出されなかった。RRT1.64の不純物は、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィーでの精製は困難であり、また、シロップ状物質であるDMTr-ジアミド-L-プロリンアミダイトは、再結晶による精製も不可能であることから、RRT1.64の不純物は、精製操作による分離が困難な不純物であった。 Here, comparing Example 2 and Comparative Example 2, the DMTr-diamide-L-proline amidite synthesized in Comparative Example 2 was converted to RRT 1.64 based on DMTr-diamide-L-proline amidite, and that of Example 2. While 1.8% of individual maximum impurities (hereinafter referred to as RRT 1.64 impurities) were detected in the peak area ratio based on the chromatogram measured under HPLC analysis conditions, DMTr-diamide-L synthesized in Example 2 was detected. -No impurities of RRT1.64 were detected in proline amidite. Impurities of RRT1.64 are difficult to purify by column chromatography using amino silica gel as a filler, and DMTr-diamide-L-proline amidite, which is a syrup-like substance, cannot be purified by recrystallization. Therefore, the impurities of RRT1.64 were impurities that were difficult to separate by the purification operation.
(実施例3)
 以下に示す構造のオリゴ核酸の合成を行った。
(Example 3)
An oligonucleic acid having the structure shown below was synthesized.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 オリゴ核酸は、ホスホロアミダイト法により、核酸自動合成装置を使用して合成した。この合成には、RNAアミダイトとしてTBDMSアミダイトを用いた。オリゴ核酸の3’末端には、保護グアノシンを結合した核酸合成用ポリマービーズを用い、Lyの連結のために、特殊アミダイトとして実施例2で合成したDMTr-ジアミド-L-プロリンアミダイトを用いた。また、核酸の固相合成及び合成後の脱保護反応は常法に従い行った。 Oligonucleic acid was synthesized by the phosphoramidite method using an automatic nucleic acid synthesizer. TBDMS amidite was used as the RNA amidite for this synthesis. Polymer beads for nucleic acid synthesis to which protected guanosine was bound were used at the 3'end of the oligonucleic acid, and DMTr-diamide-L-proline amidite synthesized in Example 2 was used as a special amidite for ligation of Ly. In addition, solid-phase synthesis of nucleic acid and deprotection reaction after synthesis were carried out according to a conventional method.
(比較例3)
 実施例2で合成したDMTr-ジアミド-L-プロリンアミダイトの代わりに比較例2で合成したDMTr-ジアミド-L-プロリンアミダイトを用いた以外は実施例3と同様の方法によりオリゴ核酸の合成を行った。
(Comparative Example 3)
Oligonucleic acid was synthesized by the same method as in Example 3 except that DMTr-diamide-L-proline amidite synthesized in Comparative Example 2 was used instead of DMTr-diamide-L-proline amidite synthesized in Example 2. rice field.
 逆相クロマトグラフィーにて、実施例3及び比較例3で合成したオリゴ核酸の溶液をそれぞれ精製したところ、比較例3で合成したオリゴ核酸では、目的のオリゴ核酸が溶出したフラクション全てに、オリゴ核酸を基準としてRRT1.05の不純物(以下、RRT1.05の不純物)が下記のUPLC分析条件にて測定したクロマトグラムに基づくピーク面積比率で2.0%以上検出され、目的のオリゴ核酸と分離が困難な不純物を含む結果となった。一方で、実施例3で合成したオリゴ核酸では、精製前の段階でRRT1.05の不純物を含んでおらず、精製操作により高純度のオリゴ核酸が得られた。 When the solutions of the oligonucleic acids synthesized in Example 3 and Comparative Example 3 were purified by reverse phase chromatography, the oligonucleic acid synthesized in Comparative Example 3 contained all the fractions in which the target oligonucleic acid was eluted. RRT1.05 impurities (hereinafter, RRT1.05 impurities) were detected at a peak area ratio of 2.0% or more based on the chromatogram measured under the following UPLC analysis conditions, and separated from the target oligonucleic acid. The result was that it contained difficult impurities. On the other hand, the oligonucleic acid synthesized in Example 3 did not contain impurities of RRT1.05 at the stage before purification, and a high-purity oligonucleic acid was obtained by the purification operation.
 精製した実施例3及び比較例3のオリゴ核酸をそれぞれ脱塩処理後に質量分析により分析し、目的物の分子量と一致することを確認した。以上の結果より、本発明の製造方法で得られた式(III)で示される化合物を用いることで、高純度のオリゴ核酸を製造できることが示された。 The purified oligonucleic acids of Example 3 and Comparative Example 3 were analyzed by mass spectrometry after desalting treatment, respectively, and it was confirmed that they matched the molecular weight of the target product. From the above results, it was shown that a high-purity oligonucleic acid can be produced by using the compound represented by the formula (III) obtained by the production method of the present invention.
 オリゴ核酸の純度分析の条件は以下の通りである。
・カラム:AQUITY UPLC C18 (Waters)、2.1×50mm、1.7μm
・カラム温度:60℃
・移動相A:100mM 1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール-8mM トリエチルアミン水溶液
・移動相B:メタノール
・展開条件:A/B=95/5→80/20(0-20min、リニアグラジエント)
・流速:0.2mL/min
・検出:PDA検出器(260nm)
The conditions for the purity analysis of oligonucleic acid are as follows.
-Column: AQUITY UPLC C18 (Waters), 2.1 x 50 mm, 1.7 μm
-Column temperature: 60 ° C
-Mobile phase A: 100 mM 1,1,1,3,3,3-hexafluoro-2-propanol-8 mM triethylamine aqueous solution-Mobile phase B: methanol-Development conditions: A / B = 95/5 → 80/20 ( 0-20min, linear gradient)
・ Flow velocity: 0.2 mL / min
-Detection: PDA detector (260 nm)
 本発明により、高純度のオリゴ核酸を製造することができる式(III)又はその塩で示される化合物を製造することができる。 According to the present invention, a compound represented by the formula (III) or a salt thereof, which can produce a high-purity oligonucleic acid, can be produced.

Claims (7)

  1.  脱水縮合剤の存在下、下記式(I)で示される化合物又はその塩と、6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩と、を溶媒中で反応させ、下記式(II)で示される化合物を得る工程と、
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、保護基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、前記の定義と同義である。]
     カップリング剤の存在下、上記式(II)で示される化合物とアミダイト化試薬とを反応させ、下記式(III)で示される化合物又はその塩を得る工程と、
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは、前記の定義と同義であり、Rは、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
     を備える、上記式(III)で示される化合物又はその塩の製造方法。
    In the presence of a dehydration condensing agent, the compound represented by the following formula (I) or a salt thereof is reacted with an alkali metal salt of 6-hydroxyhexanoic acid, an alkaline earth metal salt or a quaternary ammonium salt in a solvent. The step of obtaining the compound represented by the following formula (II) and
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R 1 represents a protecting group. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, R 1 is synonymous with the above definition. ]
    In the presence of a coupling agent, the compound represented by the above formula (II) is reacted with the amidite-forming reagent to obtain the compound represented by the following formula (III) or a salt thereof.
    Figure JPOXMLDOC01-appb-C000003
    [In the formula, R 1 is synonymous with the above definition, R 2 represents a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
    The method for producing a compound represented by the above formula (III) or a salt thereof.
  2.  前記溶媒は、含水溶媒である、請求項1記載の製造方法。 The production method according to claim 1, wherein the solvent is a water-containing solvent.
  3.  前記脱水縮合剤は、トリアジン型脱水縮合剤である、請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein the dehydration condensate is a triazine-type dehydration condensate.
  4.  前記の6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩として、6-ヒドロキシヘキサン酸、6-ヒドロキシヘキサン酸エステル又はε-カプロラクトンと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属水酸化物及び四級アンモニウム水酸化物からなる群から選択される塩基と、を水系溶媒中で反応させた混合物を用いる、請求項1~3のいずれか一項記載の製造方法。 As the alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid, 6-hydroxyhexanoic acid ester or ε-caprolactone, alkali metal hydroxide, alkali metal Claimed to use a mixture of a base selected from the group consisting of carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal hydroxides and quaternary ammonium hydroxides reacted in an aqueous solvent. Item 3. The production method according to any one of Items 1 to 3.
  5.  前記の6-ヒドロキシヘキサン酸のアルカリ金属塩、アルカリ土類金属塩又は四級アンモニウム塩は、6-ヒドロキシヘキサン酸リチウム、6-ヒドロキシヘキサン酸ナトリウム、6-ヒドロキシヘキサン酸カリウム又は6-ヒドロキシヘキサン酸セシウムである、請求項1~4のいずれか一項記載の製造方法。 The alkali metal salt, alkaline earth metal salt or quaternary ammonium salt of 6-hydroxyhexanoic acid is lithium 6-hydroxyhexanoate, sodium 6-hydroxyhexanoate, potassium 6-hydroxyhexanoate or 6-hydroxyhexanoic acid. The production method according to any one of claims 1 to 4, which is cesium.
  6.  Rが、トリチル基、4-メトキシトリチル基又は4,4’-ジメトキシトリチル基であり、
     Rが、2-シアノエチル基、ベンジル基又は2-クロロフェニル基であり、
     Rが、エチル基又はイソプロピル基であり、
     Rが、エチル基又はイソプロピル基である、請求項1~5のいずれか一項記載の製造方法。
    R 1 is a trityl group, a 4-methoxytrityl group or a 4,4′-dimethoxytrityl group.
    R 2 is a 2-cyanoethyl group, a benzyl group or a 2-chlorophenyl group.
    R 3 is an ethyl group or an isopropyl group,
    The production method according to any one of claims 1 to 5, wherein R 4 is an ethyl group or an isopropyl group.
  7.  請求項1~6のいずれか一項記載の製造方法で得られた下記式(III)で示される化合物又はその塩を用いて核酸合成反応を行う工程を備える、オリゴ核酸の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R及びRは、それぞれ独立して、保護基を表し、R及びRは、それぞれ独立して、置換していてもよい炭化水素基を表す。]
    A method for producing an oligonucleic acid, comprising a step of carrying out a nucleic acid synthesis reaction using the compound represented by the following formula (III) or a salt thereof obtained by the production method according to any one of claims 1 to 6.
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, R 1 and R 2 each independently represent a protecting group, and R 3 and R 4 each independently represent a optionally substituted hydrocarbon group. ]
PCT/JP2021/005147 2020-02-14 2021-02-12 Method for producing monomer for nucleic acid production WO2021162070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512597A JPWO2021162070A1 (en) 2020-02-14 2021-02-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023114 2020-02-14
JP2020023114 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021162070A1 true WO2021162070A1 (en) 2021-08-19

Family

ID=77292866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005147 WO2021162070A1 (en) 2020-02-14 2021-02-12 Method for producing monomer for nucleic acid production

Country Status (2)

Country Link
JP (1) JPWO2021162070A1 (en)
WO (1) WO2021162070A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507661A (en) * 2006-10-27 2010-03-11 メルク エンド カムパニー インコーポレーテッド HCV NS3 protease inhibitor
JP2010521523A (en) * 2007-03-16 2010-06-24 ドン・ア・ファーム・カンパニー・リミテッド NOVEL BENZAMIDE DERIVATIVE AND METHOD FOR PRODUCING THE SAME
WO2012057624A1 (en) * 2010-10-25 2012-05-03 Pepscan Systems B.V. Novel bicyclic peptide mimetics
JP2014519518A (en) * 2011-06-17 2014-08-14 アジオス ファーマシューティカルズ, インコーポレイテッド Therapeutically active compositions and methods of their use
WO2017188042A1 (en) * 2016-04-26 2017-11-02 住友化学株式会社 Method for producing monomer for single-stranded nucleic acid molecule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507661A (en) * 2006-10-27 2010-03-11 メルク エンド カムパニー インコーポレーテッド HCV NS3 protease inhibitor
JP2010521523A (en) * 2007-03-16 2010-06-24 ドン・ア・ファーム・カンパニー・リミテッド NOVEL BENZAMIDE DERIVATIVE AND METHOD FOR PRODUCING THE SAME
WO2012057624A1 (en) * 2010-10-25 2012-05-03 Pepscan Systems B.V. Novel bicyclic peptide mimetics
JP2014519518A (en) * 2011-06-17 2014-08-14 アジオス ファーマシューティカルズ, インコーポレイテッド Therapeutically active compositions and methods of their use
WO2017188042A1 (en) * 2016-04-26 2017-11-02 住友化学株式会社 Method for producing monomer for single-stranded nucleic acid molecule

Also Published As

Publication number Publication date
JPWO2021162070A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP6787398B2 (en) Method for producing monomer for single-stranded nucleic acid molecule
RU2561732C2 (en) Methods for synthesis of dihydropyridophthalazinone derivatives
US20040171838A1 (en) Reductive cleavage of the exocyclic ester of uk-2a or its derivatives and products formed therefrom
HU229296B1 (en) Method for producing sulfonamide substituted imidazotriazinones
WO2017010535A1 (en) Production method for nitrogen-containing heterocyclic compound, and intermediate of said nitrogen-containing heterocyclic compound
TWI732826B (en) Preparation method of a new toxin and intermediates thereof
WO2021162070A1 (en) Method for producing monomer for nucleic acid production
EP3313821B1 (en) Process for the preparation of carbamoylamino pyrazole derivatives
JP4575666B2 (en) Synthesis of 2-cyanoaziridine-1-carboxamide
KR101012135B1 (en) Process for preparing Valsartan methyl ester
JP2011057559A (en) Method for producing hydrazinotriazine derivative, method for producing 5-aminopyrazole derivative, and 5-aminopyrazole derivative
JP5279449B2 (en) Process for producing 5- {4- [2- (5-ethyl-2-pyridyl) ethoxy] benzyl} -2,4-thiazolidinedione hydrochloride
KR20180093307A (en) Preparing Method of 4,5-diamino substituted pyrimidine derivatives and Novel Compound for Preparing thereof
JP2023179354A (en) Method for producing morpholino nucleic acid using h-phosphonate technique
WO2024071178A1 (en) Method for producing alkylsilyloxy-substituted benzylamine compound
JP2007153789A (en) Method for producing optically active 3-aminopyrolidine derivative
JP2010526126A (en) Method for producing valsartan
JP2007084449A (en) Manufacturing method of 1,2,4-oxadiazole derivative
JP2005179247A (en) Method for producing esters
KR20090131955A (en) A method for preparing docetaxel and new intermediates for preparing the same
AU2002322800A1 (en) Reductive cleavage of the exocyclic ester of UK-2A or its derivatives and products formed therefrom
JP2004504378A (en) Synthetic method of distamycin derivative
KR20010077046A (en) New alkylation of pyrrole compound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512597

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753441

Country of ref document: EP

Kind code of ref document: A1